Least Angle Regression (LARS)

LASSO

- LASSO is a constrained version of Ordinary Least Squares (OLS)
- Let $x_1, x_2, \dots x_p$ be the variables/predictors and y be the response
- $X = \begin{bmatrix} x_1 & x_2 \dots x_p \end{bmatrix}$, the matrix with columns containing the predictors.
- If the regression coefficients, $\hat{\beta} = (\hat{\beta}_1, \hat{\beta}_2 \dots \hat{\beta}_p)'$ give the estimated response \hat{y} , then

$$\hat{y} = \sum_{j=1}^{p} x_j \hat{\beta}_j$$

• LASSO chooses $\hat{\beta}$ by minimizing total squared error subject to a constraint on the coefficients, i.e

$$\min \left| |y - \hat{y}| \right|^2 \quad subject \ to \ \sum_{j=1}^p |\hat{\beta}_j| \le t$$

Forward Stagewise Regression

- A subset selection method (select a subset of variables with linear regression)
- Idea:
- Repeat
 - Select the predictor having largest absolute correlation with residual vector
 - Update the estimated response to move in the direction of the correlated variables

Stagewise

- Iterative technique that begins with $\hat{y} = 0$ and builds up the regression function in successive small steps.
- At any step, let $c(\hat{y})$ be the vector of *current correlations* $\hat{c} = c(\hat{y}) = X'(y - \hat{y})$

where \hat{c}_j is proportional to the correlation between predictor x_j and current residual vector $(y - \hat{y})$

• The Stagewise algorithm moves the prediction in the direction of the greatest current correlation

$$\hat{j} = argmax[\hat{c}_j] \text{ and } \hat{y} = \hat{y} + \epsilon * sign(\hat{c}_j) * x_j$$

where ϵ is a small constant

Least Angle Regression

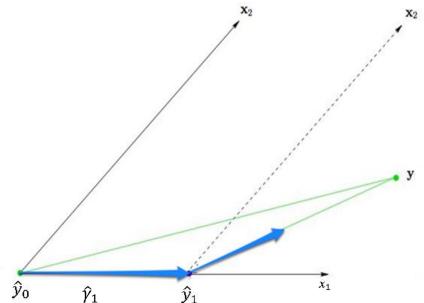
- Both LASSO and Stagewise are variants of a basic procedure called Least Angle Regression (LARS)
- LARS is a stylized version of the Stagewise procedure
- Only *p* steps are required for the full set of solutions (*p* is the number of variables) for LARS
- The advantages of LARS compared to Stagewise procedure
 - The prediction movement is in a direction which is equiangular to all the most equally correlated variables (**optimal directions**)
 - optimum stepsize (i.e ϵ) is taken such that the next variable is equally correlated with the previously taken variables (**optimal sized leaps**)

Least Angle Regression

- Assume standardized predictors in the model (mean 0 and unit variance)
- Algorithm
 - Start with no predictors in the model
 - Find the predictor x_1 most correlated to the residual (equivalently, the variable making **least angle** with the residual)
 - Keep moving in the direction of the most correlated predictor until another predictor x_2 becomes equally correlated with the residual.
 - Move in a direction equiangular to both the predictors
 - Continue until all the predictors are in the model

Example

- Example with 2 correlated variables x_1 and x_2
- y is the response, \hat{y}_0 .. \hat{y}_2 are estimated responses at each step , $\hat{\gamma}_1 \dots \hat{\gamma}_2$ are the optimal step sizes
- At $\hat{y}_0 = 0$, the residual vector $y \hat{y}_0$ is most correlated to x_1 (least angle) $\hat{y}_1 = \hat{y}_0 + \hat{\gamma}_1 x_1$
- Select $\hat{\gamma}_1$ such that the residual $y-\hat{y}_1$ is equally correlated with x_1 and x_2
- Then, $\hat{y}_2 = \hat{y}_1 + \hat{\gamma}_2 u_2$, where u_2 is the unit bisector (equiangular vector)
- Here, $\hat{y}_2 = y$



LARS (contd)

- At k^{th} step, let A_k be the set of active variables/predictors and β_{A_k} be the coefficient vectors and \hat{y}_k be the estimated response.
- X_{A_k} be the active variables i.e those variables whose absolute correlation with the residual vector equals the maximal achievable absolute correlation.
- The current residual will be $r_k = y \hat{y}_k = y X_{A_k}\beta_{A_k}$
- The coefficients are moved in the direction $\delta_k = (X_{A_k}^T X_{A_k})^{-1} X_{A_k}^T r_k$

i.e
$$\beta_{A_k}(\gamma) = \beta_{A_k} + \gamma \delta_k$$

Equiangular vector

•
$$\beta_{A_k}(\gamma) = \beta_{A_k} + \gamma \delta_k$$

• Thus
$$\hat{y}(\gamma) = X_{A_k}\beta_{A_k}(\gamma) = X_{A_k}\beta_{A_k} + \gamma * X_{A_k}\delta_k$$

 u_k : makes equal angles with the predictors in A_k

- Prove that u_k makes equal angles with the active predictors $X_{A_k}^T u_k = X_{A_k}^T X_{A_k} \delta_k = X_{A_k}^T X_{A_k} (X_{A_k}^T X_{A_k})^{-1} X_{A_k}^T r_k = X_{A_k}^T r_k$
- The entries of the vector $X_{A_k}^T r_k$ are all the same since the predictors have same correlation with residuals (by construction)

LAR algorithm:

Least Angle Regression is similar to forward stagewise, but only enters "as much" of a predictor as it deserves

Algorithm 3.2 Least Angle Regression.

- 1. Standardize the predictors to have mean zero and unit norm. Start with the residual $\mathbf{r} = \mathbf{y} \bar{\mathbf{y}}, \beta_1, \beta_2, \dots, \beta_p = 0.$
- 2. Find the predictor \mathbf{x}_j most correlated with \mathbf{r} .
- 3. Move β_j from 0 towards its least-squares coefficient $\langle \mathbf{x}_j, \mathbf{r} \rangle$, until some other competitor \mathbf{x}_k has as much correlation with the current residual as does \mathbf{x}_j .
- 4. Move β_j and β_k in the direction defined by their joint least squares coefficient of the current residual on $(\mathbf{x}_j, \mathbf{x}_k)$, until some other competitor \mathbf{x}_l has as much correlation with the current residual.
- 5. Continue in this way until all p predictors have been entered. After $\min(N-1, p)$ steps, we arrive at the full least-squares solution.

Modification of LAR to solve LASSO problem

Algorithm 3.2a Least Angle Regression: Lasso Modification.

4a. If a non-zero coefficient hits zero, drop its variable from the active set of variables and recompute the current joint least squares direction.

References

- Efron, Bradley, et al. "Least angle regression." *The Annals of statistics* 32.2 (2004): 407-499.
- The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Trevor Hastie, Robert Tibshirani, Jerome Friedman, Springer, 2008