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Goals of ADMM

» Solve problems with very large number of features or
training examples

* ADMM suitable for distributed convex optimization
problems or large scale ML problems

* ADMM : decomposition-coordination procedure

* Blend benefits of dual decomposition and augmented
lagrangian methods (method of multipliers) for
constrained optimization problem



Let us say we are solving the following constrained problem:

min f(x)

subject to

ci(x)=0¥ie L

This problem can be solved as a series of unconstrained minimization problems. Far reference, we first list the penalty method approach:

min &) = F(x) + px 3 (%)’

1ef
The penalty method solves this problem, then at the next iteration it re-solves the problem using a larger value of t;, (and using the old solufion

as the initial guess or "warm-start”).
The augmented Lagrangian method uses the following unconstrained objective:
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and after each iteration, in addition to updating zi,, the variable A is also updated according to the rule

A = A — pici (%)
where X}, is the solution to the unconstrained problem at the kth step, i.e. X = argmin®y, [1{]

The variable A is an estimate of the Lagrange multiplier, and the accuracy of this estimate improves at every step.




The strong Lagrangian principle: Lagrange duality |edit]
Given a nonlinear programming problem in standard form
minimize f)(z)
subject to f;(z) <0,i€{1,...,m}
hi(z) =0, i€ {L,...,p}
with the domain D C R having non-empty interior, the Lagrangian function A : R" x R™ x BY = R is defined as

P
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The vectors A and » are called the dual variables or Lagrange multiplier vectors associated with the problem. The Lagrange dual function g ; R" xR < Ris

defined as

m f
giv) = nf Ae, A v) = inf | fo(e) + Zf\sfi(fﬂ) +) whi(e) |.
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The dual function g is concave, even when the initial problem is not convex, because it is a point-wise infimum of affine functions. The dual function yields lower

bounds on the optimal value p* of the initial problem; for any A > 0 and any v we have g(A, v) < p".

If a consraint qualification such as Slater's condition holds and the original problem is convex, then we have strong duality ie. d* = ill&:-[ g{)\, If] =inffy = '
20




Convex problems [edi]
Far a convex minimization problem with inequality constraints,
minitize f(z)
subjectto  gi(x) <0, i=1,...,m
the Lagrangian dual problem is
i1
maximize inf flz) + j;uj 9:(z)
subjectto w0, i=1...,m

where the objective function is the Lagrange dual function. Provided that the functions f and g1, -+, ¢, are continuously differentiable, the infimum occurs where

the gradient is equal to zero. The problem

B

maximize  f(z)+ )  u;g;(a)
p=

Tt
subject to  Vf(z)+ z u;Vgi(z) =0
=1

Is called the Wolfe dual problem. This problem may be difficult to deal with computationally, because the objective function is not concave in the joint vaniables
m

(u, m). Also, the equality constraint V f(m) - Euj?gj(m] 15 nonlinear in general, so the Wolfe dual problem is typically a nonconvex optimization problem. In
=1

any case, weak duality holds.[17]




Alternating direction method of multipliers [ed]

The altemating direction method of multipliers (ADMM) is a variant of the augmented Lagrangian scheme that uses partial updates for the dual
varables. This method is often applied to solve problems such as

min f(z) + g(z).

This i5 equivalent fo the constrained problem

min f(z) + g(y), subjectto z=uy.
Ly

Though this change may seem trivial, the problem can now be attacked using methods of constrained optimization (in particular, the augmentes
Lagrangian method), and the objective function is separable in x and y. The dual update requires solving a proximity function in x and y at the
same time; the ADMM technique allows this problem to be solved approximately by first solving for x with y fixed, and then solving for y with x
fixed. Rather than iterate until convergence (like the Jacobi method). the algorithm proceeds directly to updating the dual vanable and then
repeating the process. This is not equivalent to the exact minimization, but surprisingly. it can still be shown that this method converges to the
right answer (under some assumptions). Because of this approximation, the algorithm is distinct from the pure augmented Lagrangian method.




Dual problem

= Consider a convex equality constrained optimization
problem

minimize f(x)
subject to Ax =0b

= Lagrangian function: L(x,y) = f(x) + y'(4Ax — b)
where x: primal variable
y: the lagrangian variable/dual variable

= Dual function : g(y) = inf, L(x,y)
* Dual problem : maximize g(y)

= recover x* = argmin, L(x,y")
y*is the optimal dual variable



DUAL ASCENT

» (Gradient ascent for the dual problem :
yk+1 — yk 1+ akAg(yk)
k : iteration no, o :step size

. Ag(yk) = AX — b, where £ = argmin, L(x,y")

" 1.¢, the dual ascent method consists of the following steps

x**1 = argmin, L(x,y") // x-minimization step

yit = yk + a:’“(Ax}!‘Jr1 — b) //dual update step



DUAL DECOMPOSITION

= If f 1s separable to N subfunctions,

F) = Z i)

where x = (x4, ..., Xy ) and the variables x; € R™ are subvectors
of x.

Partitioning the matrix A, of size M x K (K=XI_, n;),
conformably as A = [A; -+ Ay ], where each A; is a matrix of

size M xn;. SodAx = Il-vzl A;x;,

* then L 1s separable :

LG y) = T, (fi(x) +yT (Aix; — )

* Dual decomposition has N x-minimization steps for each
iteration



Dual Decomposition

* Dual descent 1s applied to N sub-functions and N separate
x-minimizations will result

X"t = argmin,, L(x;,y*) i=12. N

// X-minimization step
yrt = y* + a"(Z{-V:l Ax it — b) //dual update step

" scatter, update 1n parallel, gather

" solve a large problem by iteratively solving smaller
subproblems in parallel.

* Dual variable update step provides coordination

» Works with a lot of assumptions and often slow



Augmented Lagrangian &
Method of Multipliers

* A method to make dual ascent more robust
" Augmented Lagrangian:
L,(x,y) = f(x) + y"(Ax — b) + p/2||Ax — b||5
p 1s the penalty coefficient
* Method of Multipliers

x**1 = argmin, L,(x, y*) // x-minimization step
yl+l=yk + p(Axk+1 — b) //dual update step,
// step length p

* Disadvantage: Can’t do decomposition 1in X-minimization
term because of the quadratic penalty term



following problem formulation is sufficient for most applications of the ADMM:

min f(z) + g(Mz). (1)

TeR™

Here, M is an m x n matrix, often assumed to have full column rank, and f and ¢ are convex
functions on R™ and R™, respectively. We let f and ¢ take not only values in R but also the

resurgence of mterest in the ADMM: the “lasso™ or “compressed sensing” problem. This
problem takes the form

| 2
min Az = B[ + vz, 2)

where A is a p x n matrix, b € R?, and v > () is a given scalar parameter. The idea of the
model is find an approximate solution to the linear equations Az = b, but with a preference

for making the solution vector z € R" sparse; the larger the value of the parameter v, the
more the model prefers sparsity of the solution versus accuracy of solving Az = b. While this



Alternating direction method of
multipliers (ADMM)

= A method with
- good robustness of method of multipliers

- which can support decomposition
* ADMM problem form

minimize f(x)+ g(z)
subjectto Ax + Bz =¢c

* Augmented Lagrangian form:
Ly(x,z,y) = f(x) + g(2) + yI'(Ax + Bz — ¢) + gHAx + Bz — cl‘z



ADMM updates

. x**1 = argmin, (Lp(x,zk,yk))

// X-minimization step
z**1 = argmin, (Lp(xk“,z,yk))
//z-minimization step
yk+l = yk 4 p(Axk+1 4 B+l _ c)
//dual update step



Example

= Consider the optimization problem
minimize f(x) = Y- fi (%)
* The problem is not separable because x is shared among
all convex and closed functions f;(x)

* To make the problem separable, introduce a set of
local variables x; and a global variable z such that the
constraint becomes that all local variables should agree

n
minimize fi (x;)
i=1
subjectto x; —z=0,i=1,....n



Augmented Lagrangian and
ADMM updates

= Augmented Lagrangian:n

Lo(xy, - Xn, 2,1, W YN) = Z(fi(xi) +y:i(x; — 2) + p/2]|x; — z]15)

=1

= ADMM updates

x = argmin,, [fl-(xi) + A5 (x; — z%) + g “xi — Zk”i] , Vi

k+1 . 1vyn k+1 , 1k
z" == Qi (xi +;)’i)

k+1 . .k k k+1 .
yitt =y e —2) A;: lagrange variable

t: 1iteration number



The alternating direction method of multipliers (ADMM) is a convex optimization algorithm
dating back to the early 1980°s [10, 11]; it has attracted renewed attention recently due to
its applicability to various machine learning and image processing problems. In particular,

e It appears to perform reasonably well on these relatively recent applications, better
than when adapted to traditional operations research problems such as minimum-cost
network flows.

The ADMM can take advantage of the structure of these problems, which involve
optimizing sums of fairly simple but sometimes nonsmooth convex functions.

Extremely high accuracy is not usually a requirement for these applications, reducing
the impact of the ADMM’s tendency toward slow “tail convergence”.

Depending on the application, it is often is relatively easy to implement the ADMM
in a distributed-memory, parallel manner. This property is important for “big data”
problems in which the entire problem dataset may not fit readily into the memory of
a single processor.

The recent survey article [3] describes the ADMM from the perspective of machine learning

applications; another, older survey is contained in the doctoral thesis [5].
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