Principal Component Analysis

& SVD + COVAR

“* Eigen analysis, Karhunen-Loeve transform

“ Eigenvectors: derived from Eigen decomposition of the
scatter matrix

% A projection set that best explains the distribution of
the representative features of an object of interest.

% PCA techniques choose a dimensionality-reducing
linear projection that maximizes the scatter of all
projected samples.



Principal Component Analysis Contd.

* Let us consider a set of Vsample images {x,, x,, ....... » Xt
taking values in n-dimensional image space.

* Each image belongs to one of ¢ classes {X,, X,,....., X_}.

c

 Let us consider a linear transformation, mapping the
original n-dimensional image space to m-dimensional
feature space, where m <n.

* The new feature vectors y, ¢ R™ are defined by the linear

transformation —
T
(=12, N

where, W e R™™ is a matrix with orthogonal columns
representing the basis in feature space.



Principal Component Analysis Contd..

* Total scatter matrix S, is defined as

Sr = Z(xk - 1)(x, _;U)T

where, N is the numbe
image of all samples .

* The scatter of transformed Teature VeCtors 1), s....)ys 1S
Wis, w.

* In PCA, W, is chosen to maximize the determinant of the
total scatter matrix of projected samples, i.e.,

w,, =argmax W’ s,w
w

where {w; | i= 1,2,....,m} is the set of n dimensional
eigenvectors of S, corresponding to m largest eigenvalues
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For a data matrix, X7, with zero empirical mean (the
empirical mean of the distribution has been subtracted from
the data set), where each column is made up of results for a
different subject, and each row the results from a different
probe. This will mean that the PCA for our data matrix X will
be given by:

Y=W'X=XV",

where WXV is the singular value decomposition (SVD) of X.

Goal of PCA:

Find some orthonormal matrix W7, where Y = WTX;
such that

COV(Y) = (1/(n—-1))YYT is diagonalized.

The rows of W are the principal components of X,
which are also the eigenvectors of COV(X).

Unlike other linear transforms (DCT, DFT, DWT etc.),
PCA does not have a fixed set of basis vectors. Its basis
vectors depend on the data set.




Singular Value Decomposition
A = UXVT is known as the “SVD” or the singular value decomposition.

The SVD is closely associated with the eigenvalue-eigenvector factorization QAQT
of a positive definite matrix.

Any m X n matrix A can be factored into

A = UXV" = (orthogonal)(diagonal) (orthogonal)
The columns of U (m X m) are eigenvectors of AAT , and the columns of V (n X
n) are eigenvectors of ATA.

The r singular values on the diagonal of £ (m X n) are the square roots of the
nonzero eigenvalues of both AAT and AT A.

See next few slides for variants 2



Singular Value Decomposition: Any m by n matrix A can be factored
into

A = UzV! = (orthogonal)(diagonal) (orthogonal).
The columns of U (m by m) are eigenvectors of AAT, and the columns of V (n

by n) are eigenvectors of ATA. The r singular values on the diagonal of ¥ (m
by n) are the square roots of the nonzero eigenvalues of both AAT and ATA.

L E
Given the N x p data matrix X, let ~ Hastie - Sec. 18.3.5 - PP 659

X = UDV' ERE)

= RV' ERE)

be the singular-value decomposition (SVD) of X; that 15, V 15 p x N with
orthonormal columns, U 158 N x N orthogonal, and D a diagonal matrix

with elements dy = de = dy = 0. The matnix B 15 N = N, with rows r'_E-T .




Stack the (centered) observations into the rows of an N x p matrix X. We
construct the singular value decomposition of X:

Sec. 14.5 - PP 535
X = UDVT, (14.54)

This 1s a standard decomposition in numerical analysis, and many algo-
rithms exist for its computation (Golub and Van Loan, 1983, for example).
Here U is an N x p orthogonal matrix (UTU = I,) whose columns u; are
called the left singular vectors; V is a p x p orthogonal matrix (VI'V = L)
with columns v; called the right singular vectors, and D 1s a p X p diagonal
matrix, with diagonal elements d; > dy = --- = d, = 0 known as the sin-
Here U and V are N = p and p » p orthogonal matrices, with the columns

of U spanning the column space of X, and the columns of V spanning the
row space. I is a p = p diagonal matrix, with diagonal entries d; = dz =

« = dp = 0 called the singular values of X. If one or more values d; = 0,
X iz singular.

Using the singular value decomposition we can write the least squares
fitted vector as

};‘_}%]5 — :{[:{TE}_IE]‘_}'
UU'y, (3.46)




Singular Value Decomposition
Remark 1.

* For positive definite matrices, X is A and UZVT is identical to
QAQ".

* For other symmetric matrices, any negative eigenvalues in A
become positive in X.

* For complex matrices, X remains real but U and V become unitary
(the complex version of orthogonal).

Remark 2.

U and V give orthonormal bases for all four fundamental subspaces:

first r  columns of U: column space of A
last m—r columns of U: left nullspace of A
first r  columns of V: row space of A
last n—r columns of V: nullspace of A



Singular Value Decomposition

Remark 3.

Eigenvectors of AAT and AT A must go into the columns of U and V:

AAT = (uzvh(vzluh) = uzz'ut  and, similarly, A'A=vEZ'zv!

U must be the eigenvector matrix for AAT .

* The eigenvalue matrix in the middle is 27 — which is m X m with

o7 , ..., 07 on the diagonal.

e Fromthe ATA = VXT2VT , the V matrix must be the eigenvector
matrix for AT A.



SVD - the theorem (Src: WIKI ++)

Suppose M is an m-by-n matrix whose entries come from the field K,
which is either the field of real numbers or the field of complex numbers. Then
there exists a factorization of the form

M= UzV"

where, U is an m-by-m unitary matrix, the matrix 2 IS m-by-n
with nonnegative numbers on the diagonal and zeros off the diagonal, and V*

denotes the conjugate transpose of V, an n-by-n unitary matrix over K.
Such a factorization is called a (Full) sinqular-value decomposition of M.

The matrix V thus contains a set of orthonormal "input” or "analysing"
basis vector directions for M.

The matrix U contains a set of orthonormal "output"” basis vector
directions for M. The matrix £ contains the singular values, which can be thought
of as scalar "gain controls” by which each corresponding input is multiplied to
give a corresponding output.

A common convention is to order the values Z,;; in non-increasing
fashion. In this case, the diagonal matrix Z is uniquely determined by M (though
the matrices U and V are not).

For p = min(m,n). - U is m-by-p, 2 is p-by-p, and V is n-by-p.
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A timeline of major singular value decomposition developments.

Erichson. N. B.. Voronin. S.. Brunton. S. L.. & Kutz. J. N. (2019). Randomized Matrix
The columns of U (m x m) are eigenvectors of AAT , and the columns of V
(n x n) are eigenvectors of ATA

Given a real matrix A € R™" with m > n, the singular value decomposition takes the form
A=UxV'.

The matrices U = [uy, ..., U] € R™™ and V = [vy,...,vy] € R™" are orthonormal so

x i

that U'U =T and V'V =L The left singular vectors in U provide a basis for the range

(column space), and the right singular vectors in V provide a basis for the domain (row space)

Hﬂl}(ﬂ

of the matrix A. The rectangular diagonal matrix X € contains the corresponding

non-negative singular values oy > ... > g, > 0, describing the spectrum of the data.




The so called “economy” or “thin” SVD computes only the left singular vectors and singular

values corresponding to the number (i.e., n) of right singular vectors

A=UYV=uy,...,u,)diag(oy,...,00)[V1,...,Vn] .

If the number of right singular vectors is small (i.e. n << m),
this is a more compact factorization than the full SVD.

A U 5 vT
O= O I I T ] ™ Y
== : I EEE] ;. prow(A)
== I 0 o ] v+
N E v,
= |EEE . ¢ null(A)
:H:”:I v,
R Ol 0r 0 -+ 0 "
=
I

U1 - Uy Upgg .- Uy
\ J o\ J

cni{ﬂ} CDI(ELT)

Schematic of the “economy” SVD for a rank-r matrix, where m = n.



Low-rank matrices feature a rank (r) that is smaller than the

:I,i)nv:,z?s“ columns of U: column space of A .
columns of U: left nullspace of A
H - _ e o (0),
and the . columns of V: row space of A 't null
Spaces. - columns of V: nullspace of A
A
M X1
O= O I I T ] ™ Y
B == - DEEEEE . prow(A)
SEE A0 0 o v
AEE YAy
= [HEE . poull(A)
:H:”:' v,
o [ [ G0 - 0 "
N =
LI

U1 - Uy Upgg .- Uy
\ J o\ J

cni{ﬂ} CDI(ELT)

Schematic of the “economy” SVD for a rank-r matrix, where m = n.






In practical applications matrices are often contaminated by
errors, and the effective rank of a matrix can be smaller than its exact
rank r.

In this case, the matrix can be well approximated by including
only those singular vectors which correspond to singular values of a
significant magnitude. Hence, it is often desirable to compute a

reduced version of the SVD, as:
Ap = U3 Vi = [, .., wldiag(o1, ..., o) [V, .., v,

where k denotes the desired target rank of the approximation. In other words, this reduced
form of the SVD allows one to express A approximately by the sum of & rank-one matrices

k

Ay = Z oV,
=1

Choosing an optimal target rank % is highly dependent on the task.

For massive datasets, however, the truncated/reduced SVD is
costly to compute. The cost to compute the full SVD of an m X n
matrix is of the order O(mnZ2), from which the first k components
can then be extracted to form A,.

k should be chosen close to the effective rank — data

representation Applcn.; while, chosen much smaller ( << r) for
dimension reduction (PCA).
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The SVD decomposition of an n X d matrix.

Theorem 1.5 Let A be an n x d matriz with right singular vectors vy, va,.... vy, left

4

singular vectors Uy, Us, . . .. U,. and corresponding singuler values oy, 04, ....0,.. Then
1 U2 T ! [:v2 r

4 bk 1

.
A=Y gl
_ZJ' . A=UZVT and AT=VZIUT
1=

U'Uv

< yUT ATA = VIUTUZVT = VZ2VT
ATAV = V32; VTATAV = 32;
vt <>1., =¥V AAT =23

|




The diagonal entries o; = 2; of 2 are uniquely determined by M
and are known as the singular values of M. The number of non-zero
singular values is equal to the rank of M. The columns of U and the
columns of V are called left-singular vectors and right-singular vectors of
M, respectively. They form two sets of orthonormal bases 1y, ..., U, and
¥i. .... ¥, and if they are sorted so that the singular values o; with
value zero are all in the highest-numbered columns (or rows), the singular

+

»
value decomposition can be written as M = ; O u; v: , where
i=1

r < min{m,n} is the rank of M.

The term sometimes refers to the compact SVD, a similar decomposition M = UXV® inwhich X is square
diagonal of size r X 7, where 7 < min{';rn, ﬂ} is the rank of M, and has only the non-zero singular values. In
this variant, U's anm x r semi-unitary mafrix and V' is ann x r semi-unitary matrix, such that
Uv=v'v=l,.




1: Full SVD,

2: Thin SVD (remove
columns of U not
corresponding to rows of
V*),

3: Compact SVD (remove
vanishing singular values
and corresponding
columns/rows in U and V*),

4: Truncated SVD (keep only
largest t singular values and
corresponding
columns/rows in U and V¥*)




A :m X nmatrix of ra

eigenvectors

AAI- —> U, Uy Uy o, Uy Uy

span column space of 4 span left nullspace of A: N(4)

A'd —> Ve Va Vi, o Vi, Wy
span row space of 4 _span nullspace of 4. N(4)

U S




Singular Value Decomposition

Example 1.

This A has only one column: rankr =1. Then X hasonly g; = 3:

9
3
2
3

A'A is 1 by 1, whereas AA! is 3 by 3. They both have eigenvalue 9 (whose square root
is the 3 in X). The two zero eigenvalues of AA! leave some freedom for the eigenvectors

in columns 2 and 3 of U. We kept that matrix orthogonal.



Singular Value Decomposition

Example 2.
Now A has rank 2, and AAT = [_21 _21] withA = 3and 1:

. - T 111 =21 6
1 0 + 1 |=1 1|[v/3 00 /V6
R I3 NI o 10|t O 1 /V2

| i 1L 11 /V3

Notice v 3 and v 1. The columns of U are left singular vectors (unit
eigenvectors of AAT).

The columns of V are right singular vectors (unit eigenvectors of AT A).



I menernl. the best rank-r approximmntion to 4 s given by

. = " ot 4] i h B 5
s = = o, = 0 ora g [} = ~ L
A= |wmy wua ... uEs B} B Wi Wa. .

5 o e ] 4] s &) i L
E - == B 1 B . TE o - : a5

— 1 VT -t -1721]3'1.-’3_—' o R, L E__'I_'I,.‘."?:
and it can be shown thak
|4 — Al = \’fur:_l_;] a2 oA T2
The WMATLA R command
[0, 58, V]l = =svdlal

returns the SV D decomposition of the

that 4 — 75V T,

Forample

The SV I of the ollowine matrix A is:

—= a2
L4l in

i [

—2

20
i)

]
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A

{a)] Enter the malirix A4 and compute 7, 5 and V osing the svd comand.
Werily thak A4 = £FSVT.

A DsEwWer:

> A=[—0,8,20;44,18,18:9,
[0,3,V]l==wda{a)
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3. o300
o
o

0.3333
0. 8857
0.6568G67
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—0. 8000
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—0L 000

n}
15,0000
o

0. B6857F
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werilby Lhat

—a,

0. 0o00
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n}
3. 0000

0.6857F
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13 ;

T3

makrizc A1, that is, it returns mattices 07, 5 and VW such

2 a 5 1 2 2
-2 8 20 5 s 30 0 O 3 3 3
= |14 19 10| = | £ 3 0 15 0 = i —=
o o ! = 5 ﬂ 0 ‘3 g :1! .j!
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N Lol T iy
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I Y s | Fa [ e e i
[ / ) T | X
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— e T
(rotation) (scale) {rotation)

U=3=+=V* returms the mabrix A
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As seen here, the SVD is given by 4 = I7TSTV7, with

a 0o o1 0 400 {l
a1 0 0 -, a3 o0 q
a0 o0 —1 |°° 0 0«3 0 d
1 00 N a o o0 q

]

il
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0
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12

The matrix is rank » = 3. A rank-two approximation is given by zeroing out the smallest

singular value, which produces
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R U 3 VT
5 5 0 0 11 [-027 055 =078 0
4511 0| [-029 047 044 -071|[1374 0 0 0][-032 -032 =052 -052 —05°
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[0 1 2]
[-1 0 3]
[-2 -3 0]
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e
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X: U Y VT

[40 -10 110] [-0.2673 0.9561 0.1204] [439.5452 O. 0.] [-0.3405 0.0851 -0.9364]
[-0.5345 -0.0431 -0.8441] [-0.9379 0.0396 0.3447]
80 -20 220] [-0.8018 -0.29 0.5226] [ O. 0. 0.] [-0.0664 -0.9956 -0.0664]
120 -30 330]
[ O. 0. 0.]
[0 O O] [oO. 0.8944 0.4472] [8.3666 0. 0.] [-0.2673 -0.5345 -0.8018]
[ 0.4472 -0.4 0.8 ] [ O. -0.8321 0.5547]
[-1 -2 -3] [0.8944 0.2 -0.4 ] [oO. Ty (g |DWHREELS ksl duievesi

[-2 -4 -6] [ O. 0. 0.]




Applications of Singular Value Decomposition

Image Processing.
» Suppose a satellite takes a picture, and wants to send it to Earth.

* The picture may contain 1000 X 1000 “pixels”—a million little
squares, each with a definite color.

* We can code the colors, and send back 1,000,000 numbers.

* It is better to find the essential information inside the 1000 X
1000 matrix, and send only that.

In SVD some ¢’s are significant and others are extremely small.

If we keep 20 and throw away 980, then we send only the
corresponding 20 columns of U and V.

The other 980 columns are multiplied in UZVT by the small ¢’s that
are being ignored. If only 20 terms are kept, we send 20 times 2000
numbers instead of a million (25 to 1 compression).



Definition [edit]

Throughout this arficle, boldfaced unsubscripted X and Y are used to refer o random vectors, and unboldfaced subscripted A and ¥;
are used fo refer fo scalar random variables.

If the entries in the column vecior

X =(X,X,...,%X)F

/ _— _—
are random variables, each with finite variance and expected value, then l@:wanaﬂce mairix Ky i5 the matrix whose {i, j} entry is the
covariancellkp. 177

K_'S;_'Ij[j = COV Xﬁ,Xj: = E[{X,, — E[X“){Xj — E[XJ]]]

/

72}

A\

_— =

where the operator E denotes the expected value (mean) of its argument.

Conflicting nomenclatures and notations [ edit]

Nomenclatures differ. Some statisticians, following the probabilist William Feller in his fwo-volume book An infroduction to Probability
Theory and fis Applications, ] call the matrix Kxx the variance of the random vector X, because it is the natural generalization fo higher
dimensions of the 1-dimensional variance. Others call it the covariance matrix, because it is the matrix of covariances befween the scalar
components of the vector X

var(X) = cov(X, X) = E[(X — E[X])(X - E[X])*].

= =i =4 =0 i ] li [

Sample paints from a bivariate
Gaussian distribution with a standart
deviation of 3 in roughly the lower |eft-
upper right direction and of 1 in the
orthogonal direction. Because the x
and y companents co-vary, the
variances of = and i do not fully
describe the distribution. A2 = 2
covariance matrix is needed; the
directions of the arrows correspond f
the eigenvectors ofthis covariance
matrix and their lengths to the square
roots of the eigenvalues.

Both forms are quite standard, and there is no ambiguity befween them. The matrix Ky is also often called the varfance-covariance matrix, since the diagonal ferms are in fac

variances.

By comparison, the notation for the cross-covariance mairix between two vectors is

cov(X,Y) = Kxy = E[(X — B[X])(Y - E[Y])T].




Basic properties

For Kxx = var{X) = E[{X — E[X]) (X - E[X])"| and px = E[X], where X = (X, ..., X,)T is a n-dimensional random variable, the
following basic properties apply:[4

1. Kxx = B(XX") - pxpx”

2 Kyy is posiive-semidefinite, ie. a’ Kyxa> 0 foralla e B"

3. Kxy is symmeiric, ie. Ky = Kxx

4. For any constant (i.e. non-random} m X n matrix A and constani m x 1 vector a, one has var(AX +a) = A var{X) A"

5. 1TY is another random vector with the same dimension as X, then var{X + Y) = var(X) + cov(X,Y) + cov(Y, X} + var(Y)
where cov{X, Y) is the cross-covariance mairix of X and Y.

For random veciors X and Y, each containing random elementis whose expecied
value and variance exisi, the cross-covariance matrix of X and Y is defined
b},[“lj:p.ESE

Kxy = cov(X, Y)E B[(X — pux)(Y — py)7] (Eq1)

where ux = E[X] and uy = E[Y] are veciors containing the expected values of
X and Y. The vectors X and ¥ need not have the same dimension, and either might be a scalar value

The cross-covariance matrix is the matrix whose (1, 7) eniry is the covariance

Kx,y; = cov|X;, ¥;] = E[(X: — E[X;]}(Y; — E[Y;])]




For the cross-covariance mairix, the following basic properiies apply:l2

1 eov(X,Y) = B[XYT] — px ey

2 cov(X,Y) = cov(Y, X)T

3 cov(Xy 4 Xa,Y) =cov(X, Y} -+ cov(X5, Y)

4. cov(AX +a,B"Y +b) = A cov(X,Y)B

5. F X and Y are independent {or somewhat less restrictedly, if every random variable in X is uncorrelated with every random
variable in Y), then cov(X,Y) = 0,

where X, X, and Xz are randomp ¥ 1 veciors, Y is a random g x 1 vecior, aisag » Lvecior, bisap x 1 vector, 4 and B
are g X p matrices of constants, and Oy i a8 p > g matrix of zeroes.

Given a sample consisting of n independent observations Xy,..., X, of a p-dimensional random vector X & RP*! (a px1 column-vector), an unbiased estimator of the (p=xp)

covariance matrix

% = B|(X - BIX]) (X - BIX])"

i5 the sample covarance mairix

LY - B - B

n—11=1

Q=

where ; is the Hih observation of the p-dimensional random vector, and the vecior




Var[bX] = B[(X — B[X])(bX - E[BX])"]
= B[(bX - BE[X])(bX - BE[A])" ]

Which matrices are covariance matrices?

let b be a (p x 1) real-valued vector, then
var(bX) = bT var(X)b,
which must always be nonnegative, since it is the vanance of a real-valued random variable, so a covariance matrix is always a positive-semidefinite matrix.

The above argument can be expanded as follows:
w' B[(X - EX])(X - BX])"|w = E[w" (X - E[X])(X - E[X])"w]
=E[(w"(X-E[X))"] >0,

where the last inequality follows from the observation that w” (X — B[X)]) is a scalar.

Conversely, every symmetric positive semi-definite matrix is a covariance matrix. To see this, suppose M is ap X p symmetric positive-semidefinite matrix. From
the finite-dimensional case of the spectral theorem, it follows that M has a nonnegative symmetric square root, which can be denoted by M"2 Let X be anyp X |

column vector-valued random variable whose covariance matnx is the p X o identity matrix. Then

var(MY2X) = M2 var(X) M2 = M.




The conjugate transpose, also known as the Hermitian transpose, of an m x n
complex matrix A is an n X m matrix obtained by transposing A and applying complex conjugate
on each entry (the complex conjugate of a + ib being a — i b, for real numbers a and b )

A= (4) = AT
(AAT)" = (AT) AT = AAT. (4)

A matrix is full row rank when each of the rows of the matrix are linearly independent and full
column rank when each of the columns of the matrix are linearly independent.

For a square matrix these two concepts are equivalent and we say the matrix is full rank if all
rows and columns are linearly independent. A square matrix is full rank if and only if its
determinant is nonzero.

For a non-square matrix with m rows and n columns, it will always be the case that either the
rows or columns (whichever is larger in number) are linearly dependent. Hence when we say that a
non-square matrix is full rank, we mean that the row and column rank are as high as possible, given
the shape of the matrix. So, if there are more rows than columns (m > n), then the matrix is full
rank if the matrix is full column rank.

The rank of A equals the number of non-zero singular values, which is the same as the
number of non-zero diagonal elements in 2 in the singular value decomposition A = U 2 V*



If 4 is a matrix over the real numbers then the rank of 4 and the rank of its corresponding Gram mairix are equal. Thus, for real

mairces

rank(AT 4) = rank(4A4") = rank(4) = rank(4").
-

suppose A is an » ¥ M mairix and 72 == 7. It must be that
rank(A*) = rank(A) < min(n,m) < max(n,m).

Using the fact that ranfk(AB) < rank(A) for any A, B for which the produet is defined, we have
that:

rank(AAY) < rank(A) < max{n,m)
rank(A*A) < rank(A*) < max(n,m).

But it must be the case that the dimensions of AA* or A* A is max(n, m). Therefore at least one of

them does not have full rank. For sguare matrices, not having full rank is equivalent to being
singular.



1 4
Example 1 1 92 3 AT _ |9 =
A= [4 5 6] 3 6

1 4
oo 1203 (14 32
C =AA _[ ]x 2 5 —[32 -

1 4 |9 3 17 22 27
D=ATA =12 5 x[é - (J 22 29 36
3 6 27 36 45]

rank(A) = rank(A?) = rank(C) = rank(D) = 2



Example 2

C=AAT =

D=ATA =

(06
27
71

17

14
28
15
22

30

oo = W

27
19
48
10

28
56
30
44
60

S = oD
— Ol DD
DO 00 Lo
DO W = =]

71 17]
48 10
125 29
29 9

15 22 30 |
30 44 60
31 49 31
49 78 46
31 46 70

rank(A) = rank(A?) = rank(C) = rank(D) = 3

N (SO, NS

= W NN

= OO0 Ol = b

o o= OO
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The data table to be analyzed by PCA comprises
I observations described by [ wvariables and it is
reprewnt&d by the I xJ matrix X, whose generic
element is x;;. The matrix X has rank L where
L <=min{l,J}.

In general, the data table will be preprocessed
before the analysis. Almost always, the columns of X
will be centered so that the mean of each column
is qual to 0 (i.e., X'1 =0, where 0 is a J by
1 vector of zeros and 1 is an I by 1 vector of
ones). If in addition, each element of X is divided
I::j.-' -m-I (or /T —1), the analysis is referred to as
a covariannce PCA because, in this case, the matrix
XTX is a covariance matrix. In addition to centering,
when the variables are measured with different units,
it is customary to standardize each variable to unit
norm. This is obtained by dividing each variable by
its norm (i.e., the square root of the sum of all the
squared elements of this variable). In this case, the
analysis is referred to as a correlation PCA because,
then, the matrix XTX is a correlation matrix {most
statistical packages use correlation preprocessing as a
default).




21.1 The covariance matrix and principal com-

ponent analysis

Suppose S is an m X n data matrix, in which the first dimension is the space-
like dimension and the second is the time-like dimension. At each location 1,
we assume that we have subtracted off the time mean, so that 5;(t) has a time-
mean of zero. Then the covariance (j, between measurement S;; = S;(t;) at

location i and Sp; = Sp(f;) at location p is Lecture 21: Principal
Component Analysis

1 e ]
S S..5 . c Christopher S.
‘P e | Z_Il "R Bretherton
J= Winter 2014

The sum can be regarded as an inner product of the i'th row of S and the j'th
column of ST. Hence we can assemble a covariance matrix between the m
different space locations, whose 7, p element is Cjp:

1
Cg — sl
n—1




The covariance matrix Cg is real and symmetric. Hence it can be diagonalized,
which simplifies the covariance structure. We could do this in the normal way
by finding its eigenvalues and eigenvectors. However, there is also a close rela-
tionship between Cg and the SVD of the data matrix which is advantageous to

exploit. _ _ CovV(X) = XX" =wzr'w’ = wpw’
Let the SVD of the data matrix be: [fe{0)' (Y)=D

S =UxVv7’
Basic properties of the SVD give the diagonalization of Cg:
Cg = UAUT

where A = diag(o?)/(n — 1). The left singular vectors u of the data matrix
are the eigenvectors of the covariance matrix. If we rotate the data matrix into
this basis by setting S = U7 S, then the rotated data has covariance matrix

In this rotated coordinate system, the variance decouples (is mutually uncorre-
lated) between coordinate directions, with direction k contributing a wvariance
o2 /(n—1). The time-dependent amplitude of the k'th rotated data component
. TS - .

18 U™ = O V.

This decomposition of the covariance matrix is called principal compo-
nent analysis (PCA). The vectors u; are called the loading vectors or
patterns. The vectors v are called the principal components or PCs.
Various application-dependent normalizations are applied to the PCs




Steps for principal component analysis

e Principal component analysis using the covariance function should only be considered if all of the

The|  variables have the same units of measurement.

1, If the variables have different units of measurement, (i.e., pounds, feet, gallons, etc), or if we wish each
variable to receive equal weight in the analysis, then the variables should be standardized before
* conducting a principal components analysis. To standardize a variable, subtract the mean and divide by

* the standard deviation: lata
X, —i
ZlJ — -s‘. :
2
3 where
her

4 e X;; = Data for variable j in sample unit j
e ;= Sample mean for variable j
2 e 8; = Sample standard deviation for variable j

Note! The variance-covariance matrix of the standardized data is equal to the correlation matrix for the
unstandardized data. Therefore, principal component analysis using the standardized data is
equivalent to principal component analysis using the correlation matrix.




A Summary of the PCA Approach

Standardize the data.

Obtain the Eigenvectors and Eigenvalues from the covariance matrix or
correlation matrix, or perform Singular Value Decomposition.

Eigenvalues from SVD are sorted in descending order; so choose the k
eigenvectors that correspond to the k largest eigenvalues where k is the
number of dimensions of the new feature subspace (k<d).

Construct the projection matrix W from the selected k eigenvectors.

Using SVD on the data matrix has two advantages over just calling the Matlab
funection eig on the covariance matrix Cg, which would give the JE};’ (n—1)s
as the eigenvalues, and the patterns u; as the eigenvectors. First, if m > n
(more variables than samples), Cg 1s m x m, which can become very large (m
15 over 2000 m our Paeifie S5T example, while n 1s only 396). Only n or less
of these elgenvalues will be nonzero, but ihis can choke Matlab., Note there is
a short version svds that, like eigs will just return a small number of leading
sineular modes, which is all we usually care about in PCA. That can minimize
computation and memory requirements if the dataset is larpge.

second, the right singular vectors automatically give the principal compo-
nent time series for the patterns. To get these by eigendecomposition of the
covariance matrix requires an extra step of projecting the data at each time
onto the eigenvectors ug.




The Karhunen-Loeve transform is therefore equivalent
to finding the singular value decomposition of the data matrix
X, and then obtaining the reduced-space data matrix Y by
projecting X down into the reduced space defined by only the

first L singular vectors, W, :
g X =wxv', Y=w'X=XV/

The matrix W of singular vectors of X is equivalently
the matrix W of eigenvectors of the matrix of observed
covariances C = X XT

COV(X)=XX"=wxx'W"' =wDw"

The eigenvectors with the largest eigenvalues
correspond to the dimensions that have the strongest
correlation in the data set. PCA is equivalent to empirical
orthogonal functions (EOF).

PCA is a popular technique in pattern recognition. But it
is not optimized for class separability. An alternative is the
linear discriminant analysis, which does take this into
account. PCA optimally minimizes reconstruction error under
the L, horm.




PCA by COVARIANCE Method

We need to find a dxd orthonormal transformation matrix W7, such that:

T
with the constraint that:

Cov(Y) is a diagonal matrix, and W1 = WT,

COV(Y)=E[YY 1= E[(W" X)(W" X)"]

=E[(W" X)X W)|=W"E[XX "W

=W"'COV(XW =W"(WDW" W =D
WCOV(Y)=WW"'COV(X)W =COV (X)W

Can you derive from the above, that:

:ﬂ,,VVl,ﬂsz, Mal=
COV (X)W, COV (XWy...., COV (X W, ]




Maximise U™ XXTustu'u = 1

Construct Langrangian u™x™u -Au'u
Vector of partial derivatives set to zero
XXTu-2u=(xxT-a)u=0

As u # 0 then u must be an eigenvector of xxTwith
ainanvalile X
let u be an arbitrary vector of length 1, so that uls (a column vector of
length 1) 1s its projection on the data matrix. Let 41 = UTu be this unit vector
expressed into the rotated basis (in which it will also have length 1). Then
1

var[u’ S| u’ 557 u




Example of PCA

~1 ~2 4
Samples: x =1 fx,= x, =|0]; 0
2 1 3 2 1 3

3-D problem, with N = 3.

Each column is an observation (sample) and each row a variable ( dlmenS|on)

Mean of the samples:

-

_%-

%
| 5

M. = % ) X1 = > X2 > X3
2 0 —1
Method — 1 (easiest) ) ) ) )
- % - % I 13 COVAR =

1
3
0

%

1

_%;

T

(XX )/2=(1/2) -




Method — 2 (PCA defn.)

C1=
1.7778 0.4444
0.4444 0.1111

0 0

X1
0
0

C2
5.4444 -3.8889 2.3333
-3.8889 2.7778 -1.6667
2.3333 -1.6667 1.0000

SigmaC =

20.6667 -8.3333 6.0000
-8.3333 4.6667 -3.0000
6.0000 -3.0000 2.0000

Next do SVD, to get vectors.

4
3
A ,XZ 3 ,x3 3
0 —1 1
C3 =
13.4444 -4.8889 3.6667
-4.8889 1.7778 -1.3333
3.6667 -1.3333 1.0000
COVAR =
SigmaC/2 =
10.3333 -4.1667 3.0000
-4.1667 2.3333 -1.5000
3.0000 -1.5000 1.0000

| r
Sp = (m); (X —40)(x, — 1)

o




For a face image with N samples and dimension d (=w*h, very large), we have:

The array X or X, of size d*N (N vertical samples stacked horizontally)

Thus XXT will be of d*d, which will be very large. To perform eigen-
analysis on such large dimension is time consuming and may be erroneous.

Thus often X™X of dimension N*N is considered for eigen-analysis. Will
it result in the same, after SVD? Lets check:

62/ _25 ]

-~ 254 1 4A ° 10.3333 -4.1667 3.0000
S=XX =1/2) - A A —3|= .4.1667 2.3333 -1.5000
. : ) 3.0000 -1.5000 1.0000

. ;o 0.9444 1.2778 -2.2222
S"=X"X= 12778 46111 -5.8889
.2.2222 -5.8889 8.1111

Lets do SVD of both:



S=XX =
10.3333 -4.1667 3.0000
-4.1667 2.3333 -1.5000
3.0000 -1.5000 1.0000

U=

-0.8846 -0.4554 -0.1010
0.3818 -0.8313 0.4041
-0.2680 0.3189 0.9091

13.0404 0 0
0 0.6263 0
0 0 0.0000

V =

-0.8846 -0.4554 0.1010
0.3818 -0.8313 -0.4041
-0.2680 0.3189 -0.9091

§"=xT X =

0.9444 1.2778 -2.2222
1.2778 4.6111 -5.8889
-2.2222 -5.8889 8.1111

U=

-0.2060 0.7901 0.5774
-0.5812 -0.5735 0.5774
0.7872 -0.2166 0.5774

13.0404 0 0
0 0.6263 0
0 0 0.0000

V=

-0.2060 0.7901 0.5774
-0.5812 -0.5735 0.5774
0.7872 -0.2166 0.5774



Samples: Example, where d <> N:

-3 —2 —1 4 5 6
X, — X, = . X, = X, = X = X, = .
1 V2 s7v3 | s “V5 V6 ”
-3 —2 —1 4 5 7
2-D problem (d=2), with N = 6. X =
3 2 1 4 5 6
Each column is an observation (sample) 3 2 1 4 5 7

and each row a variable (dimension),

Mean of the samples: XM=
3/2 -4.5000 -3.5000 -2.5000 2.5000 3.5000 4.5000
H . = 5 /3 ; -4.6667 -3.6667 -2.6667 2.3333 3.3333 5.3333

XMT* XM =

. 42.0278 32.8611 23.6944 -22.1389 -31.3056 -45.1389
COVAR(X) =XM*XM' 35 8611 256944 18.5278 -17.3056 -24.4722 -35.3056
- 775000 820000  23.6944 185278 13.3611 -12.4722 -17.6389 -25.4722

82.0000 87.3333 -22.1389 -17.3056 -12.4722 11.6944 16.5278 23.6944
-31.3056 -24.4722 -17.6389 16.5278 23.3611 33.5278
451389 -35.3056 -25.4722 23.6944 33.5278 48.6944



COVAR(X) = XM * XMT

= 77.5000 82.0000
82.0000 87.3333

U=

-0.6856 -0.7280
-0.7280 0.6856

S =

164.5639 0

0 0.2694

V =

-0.6856 -0.7280
-0.7280 0.6856

42.0278

32.8611

23.6944
-22.1389
-31.3056
-45.1389

U=
-0.5053
-0.3951
-0.2849

0.2660
0.3762
0.5432

S =

32.8611

25.6944
18.5278
-17.3056
-24.4722
-35.3056

-0.1469
-0.0654
0.0162
0.4241
0.5057
-0.7337

164.5639 0

0

o O oo

0.2694

o O oo

XMT* XM =

23.6944 -22.1389 -31.3056 -45.1389
18.5278 -17.3056 -24.4722 -35.3056
13.3611 -12.4722 -17.6389 -25.4722
-12.4722 11.6944 16.5278 23.6944
-17.6389 16.5278 23.3611 33.5278
-25.4722 23.6944 33.5278 48.6944

-0.7547 0.3882 0.0214 0.0486

0.3632
-0.0433
-0.5083
-0.0258
-0.1938

0
0
0.0
0
0
0

0.0984
-0.3456
-0.5306

0.6601

0.0541

0
0
0
0.0
0
0

coocooo

-0.4091
-0.7396
-0.1150
-0.4043
-0.3293

cOcoocooo

0.7284
-0.5002
0.4429
-0.0539
0.1332

v=U?2?



X:

[55001]
[45110]
[54110]
[00444]
[00555]
[11444]

Covariance Matrix for X:

[ 4.917 4.75 -4.083 -4.083 -4.333]
[ 4.75 4.917 -4.083 -4.083 -4.333]
[-4.083 -4.083 3.583 3.583 3.667]
[-4.083 -4.083 3.583 3.583 3.667]
[-4.333 -4.333 3.667 3.667 4.222]

SVD applied on Covariance Matrix:

2 0.076 -0.707 -0.511 0. ]
2 0.076 0.707 -0.511 0. ]
.413 -0.365 -0. -0.443 0.707]
.413 -0.365 -0. -0.443 -0.707]
44 0.85 -0. -0.289 0. ]

.48
.48

|—||—||—||—||—|c
OOOQQ "

Z

[20.611 0.308 0.167 0.137 0. ]

482 -0.482 0.413 0.413 0.44]
.076 0.076 -0.365 -0.365 0.85]
07 0.707 -O. -0. -0. ]
11 -0.511 -0.443 -0.443 -0.289]

-0. 0.707 -0.707 -0. ]



X: Covariance Matrix for XT:

Ei g (1) (1) H [ 5.36 4.16 4.16 -4.48 -5.6 -3.36]
e altol [ 4.16 3.76 3.56 -3.68 -4.6 -2.76]
L6440 [ 4.16 3.56 3.76 -3.68 -4.6 -2.76]
o oeeal [-4.48 -3.68 -3.68 3.84 4.8 2.88]
S aaa) [-5.60 -4.60 -4.6 4.8 6.0 3.6 ]

[-3.36 -2.76 -2.76 2.88 3.6 2.16]
SVD applied on Covariance Matrix of xT:

462 0.669 -0. -0.486 0.31 0.087]
.383 -0.518 0.707 -0.243 0.155 0.043]
.383 -0.518 -0.707 -0.243 0.155 0.043]
7 -0.071 0. -0.289 0.492 -0.715]
7 -0.088 -0. -0.72 -0.3 0.37]
8 -0.053 0. 0.21 0.723 0.584]

[24.292 0.388 0.2 0. O0. 0. ]

.462 -0.383 -0.383 0.397 0.497 0.298]
0.669 -0.518 -0.518 -0.071 -0.088 -0.053]
0.707 -0.707 O. -0. 0. ]
62 -0.231 -0.231 -0.253 -0.74 0.261]
28 -0.164 -0.164 -0.608 0.298 -0.616]
35 -0.067 -0.067 0.635 -0.33 -0.679]



SVD applied on Covariance Matrix of X:

X:

[-2 8 20] U:

[14 19 10] [-0.465 0.568 0.68 ]

[2-2 1] [-0.814 0.028 -0.581]
[-0.349 -0.823 0.449]
D:
[111. 69. 0.]

Covariance Matrix of X: V transposed:

-0.465 -0.814 -0.349]
[46.222 43.111 -14.222] [

[43.111 73.556 29.889] [0.568 0.028 -0.823]
[-14.222 29.889 60.222] [-0.68 0.581-0.449]




2

o

0. 0.
[-1.414 2.309
[-1.414 -2.309
[ O. 2.309
[ O. 0.

r—

Cov(X):

[
[
[-
[

0.48 0.261-0.339
0. 261 2.987 0.277
-0.339 0.277 1.44
0.113-0.092 0.12

ocoocob

113]
092]

0.
-0.092
0.12]
0.16 ]

~eoo0o

SVD applied on Cov(X):

U:

[-0.079 0.324 -0.826 -0.455]
[-0.985 0.116 0.092 0.087]
[-0.151 -0.937 -0.241 -0.205]
[ 0.022 -0.063 -0.502 0.862]

D:
[3.052 1.531 0.421 0.063]

V_transpose:

[-0.079 -0.985 -0.151 0.022]
[0.324 0.116 -0.937 -0.063]
[-0.826 0.092-0.241 -0.502]
[-0.455 0.087 -0.205 0.862]



X:

[1000 2]
[00300]
[0000O0]
[04000]

Covariance Matrix for X:

188 025 -0.188 0.  0.375]

25 -0.75 0. -0.5 ]

188 075 1.688 0. -0.375]
0. 0. 0. O.

[0.
[-0.
[-0.
[0. ]

[0.375-0.5 -0.375 0. 0.75]

SVD applied on Covariance Matrix:

U:

[-0.065 -0.25 -0.365-0.894 0. ]
[0.918 0.23 -0.323 0. 0. ]
[-0.368 0.796-0.48 0. 0. ]
[0. 0. 0. 0. 1. ]
[-0.131-0.5 -0.73 0.447 0. ]

D:
[3.39 1.7650.47 0. 0. ]

V_transpose:

[-0.065 0.918-0.368 0. -0.131]
[-0.25 0.23 0.796 0. -0.5 ]
[-0.365-0.323-0.48 0. -0.73]
[0.894 0. -0. 0. -0.447]
[0. 0. 0. 1. 0. ]



SVD applied on Covariance Matrix

of X transposed:
X:
[1000 2] U:
[00300] [0.162 -0.457 -0.875 0. ]
[0000 0] [0.292 0.869-0.4 0. ]
[0. 0. 0. -1. ]
[04000] [-0.943 0.191-0.274 0. ]
D.

] ] [2.791 1.524 0.325 0. ]
Covariance Matrix for X

transposed: V_transpose:

[0.64-0.36 0. -0.48] [0.162 0.292 0. -0.943]
[-8-3601-461 0-O -0.48] [-0.457 0.869 0. 0.191]
%-o'. 182043 o -2]_56] [0.875-0.4 0. -0.274]

[0. 0. -1. 0. ]







