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15 called the logistic function or the sigmoid function.
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We want to choose @ so as to mimimize J(#). To do so, let’s use a search

algorithm that starts with some “initial guess” for 8, and that repeatedly
changes # to make J(#) smaller, until hopefully we converge to a value of
0 that minimizes J(#). Specifically, let’s consider the gradient descent
algorithm, which starts with some initial €, and repeatedly performs the
update:

@
(This update is simultaneously peﬁolmed for all values of j
Here, o 1s called the learning rate. This is a very natural alﬂollthm thaﬁt

1epea.ted13-' takes a step 1n the direction of steepest decrease of J.




Probatility of passing axam varsus hours of studying

g Exam
L
{54 ]

o
e

Linear Regression

Prabahility of pesain

y:'l.---------- DR

L

Straight line

\

Haurs ;Lu-:l',.'ing

Dependent Variable
-

}.‘: il

| [P [PRORIRT [ Ny R

Predicted Y can exceed
0and 1range

-t
Il

Dependent Variable

el

[

Logistic Regression

>-Curve | pradicted Y Lies

within
Oand 1range

lim lnimmin Al mme Vel mln



DA

DA

0.7~

DG

oz}
=

D4

]

D2

where

1

he(z) = g(67x) =

M p—

14 e

14 e

1s called the logistic function or the sigmoid function.
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Logistic Regression

Loglstic regression uses the form
efo+B1X
I'D(X) — 1 + efot+f X’

(e ~2 2.71828 is a mathematical constant [Euler’s number.|)
It 1s easy to see that no matter what values 5y, 51 or X take,

p(X') will have values between 0 and 1.

A bit of rearrangement gives (Solve it now)

p(X)

This monotone transformation 1s called the log odds or logit

transformation of p(X).




Definition of the inverse of the logistic function

We can now define the logit (log odds) function as the inverse g = ¢ 1 of the standard logistic function. It is
easy to see that it satisfies:

_pl=)
1 — plx)

and equivalently, afier exponentiating both sides we have the odds:

o (p(x)) = logit p(a) = Ln(

)Zﬁ'ﬂ + G,

o(x) Y .
I—pl@)

The odds ratio

For a continuous independent variable the odds ratio can be defined as:

plz1)
odds(z - 1) (m) o+ (2+1)

odds(z) ( plz) ) ey 5@
1-plx)

This exponential relationship provides an interpretation for 51 : The odds multiply by 1
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We use maximum likelihood to estimate the parameters.

31] 3 H }C' H l_p(ﬂ:i))'

1y =1 iy =0

This likelihood gives the probability of the observed zeros and
ones 1in the data. We pick 5y and 51 to maximize the likelihood
of the observed data.

Logistic regression with several variables

p(X) \_ . .
log (1_}?{}{]) = Bo + 51Xy +--- 4 B X,

3& B X448 Xy
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So, given the logistic regression model, how do we fit 6 for 1t7

Let us assume that

Ply=1]|z;0) he(x) Prob. model + MLE process
Ply=0|z;8) = 1— hg(x)

Note that this can be written more compactly as

-
p(y | z;8) = (he(z))* (1 — he(z))
Assuming that the m training examples were generated independently, we
can then write down the likelihood of the parameters as

L(#) = py| X;0)

= | [p(® | 2;6)
=1
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(1 — he(iﬁm))l_ym



MLE

The negative log-likelihood for logistic regression is given by Directly fromsl\/lu;pgyl;
ecC. o0.o.

NLL(w) Tog[ui =D x (1 — g1 8e=0)]
| p = sigm(W'x)

= [y log s + (1 — i) log(1 — ;)]

This is also called the cross-entropy error function (see Section 2.8.2).
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NLL(w) =) log(1+ exp(—3w" x;))
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g = —f(w) Zi:ml yi)xi = X (n—¥) 8.5)
H = r.';f‘l.' J’w]T ZI wﬂu’x _Z“ [_nr-'l*l,-']'::': [8.6)
= XIsx 8.7)

where 8 £ diag(p;(1 — p;)). One can also show (Exercise 8.3) that H is positive definite.




he(z) = g(87z) =
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where
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15 called the logistic function or the sigmoid function.

= ) y@logh(z®) + (1 — y™)log(1 — h(z'")) _
i=1

one training example (z,v), and take de
. I g = —ffw*—Zm-rm
eradient ascent rule:
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the stochastic gradient ascent rule

H‘- _H —|—;}_{U

Same as LMS learning rule - except the non-linear sigmoid in “h”.

Newton Raphson’s method for maximizing /(0)




As a generalized linear model

The particular model used by logistic regression, which distinguishes it from standard linear regression and from other types of regression analysis used
for binary-valued outcomes, is the way the probability of a particular ouicome is linked to the linear predictor function:

logit(E[Y; | 214, &m]) = logit(p;) = lu( 1 b ) =B+ Bz 4+ Bt

¢

Writien using the more compact notation described above, this is:

CaEl | ) = gy = ) =5,

This formulation expresses logistic regression as a type of generalized linear model, which predicts variahles with various types of probability
distributions by fitfing a linear predictor function of the above form to some sort of arhitrary fransformation of the expected value of the variable.




Logistic regression with more than two classes

So far we have discussed logistic regression with two classes.
It 1s easily generalized to more than two classes. One version
(used in the R package glmnet) has the symmetric form

E.ﬂﬂk+.ﬂlki}fl+“-+.ﬁpkﬁp

Pl‘(}f — MX) — ?;1 eBoe+B1e X1+ +Bpe Xp

Here there 1s a linear function for each class.

Multiclass logistic regression 1s also referred to as muliinomial
TEGTESSLOT.




Consider a general classification problem, in which the response
variable y can take on any one of k values, soy € {1, 2, ..., k}.




response function

|

This function mapping from the n’s to the ¢’s 1s called the softmax functior

where 61, ...,0,_1 € R™" are the parameters of our model



= i|z; 8)

The conditional distribution of p{;y -
y given X IS :

This model, which applies to classification problems where y €
{1, ..., k}, is called softmax regression.
It is a generalization of logistic regression.



If we have a training set of m examples {(x(i), y(i));i=1, ..

and would like to learn the parameters O; of this model,
write down the log-likelihood, as:

e

O (PR 3 N ) s )
E- log p Y |‘1' I 'IL”

i=1
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LOGISTIC REGRESSION ( to rewind/Altn symbols)

* The posterior probability of class C; can be written as a logistic
sigmoid acting on a linear function of the feature vector ¢ so

that
p(Ci|®) = y(@) = o (W' o)

with p(Ca|@) = 1 — p(Cyi|@)
* Here, o( = ) is the logistic sigmoid function defined by
1
1 + exp(—a)

o(a) =

* In the terminology of statistics, this model is known as logistic
regression, although it should be emphasized that this is a
model for classification rather than regression.



LOGISTIC REGRESSION

* For an M-dimensional feature space ¢, this model has M
adjustable parameters.

* By contrast, if we had fitted Gaussian class conditional
densities using maximum likelihood, we would have used
2M parameters for the means and M(M + 1)/2
parameters for the (shared) covariance matrix.

* Together with the class prior p(C;), this gives a total of
M(M+5)/2+1 parameters, which grows quadratically with
M, in contrast to the linear dependence on M of the
number of parameters in logistic regression.

* For large values of M, there is a clear advantage in
working with the logistic regression model directly.



LOGISTIC REGRESSION

* We now use maximum likelihood to determine the
parameters of the logistic regression model.

* To do this, we shall make use of the derivative of the
logistic sigmoid function, which can conveniently be
expressed in terms of the sigmoid function itself

do

— =o0(l —0).
da

* For a data set {¢,,, t,,}, where t,, € {0, 1} and
¢, = o(x,), withn =1,..., N, the likelihood function

can be written

p(tjw) = HJH {1—y,}' 7"

n=1



LOGISTIC REGRESSION
N
ptw) = [t {1 =wa}' ™"

n=1

Here t — (Tl f\) '.:'llld yn S ])(Cl|¢) )

* We can define an error function by taking the negative
logarithm of the Iikelihood which gives the cross entropy

E(w)=—Inp(tjw) = Z {tn Iny, + (1 —,) In(1 — yn)}

n=1

Where, yn_ — O-(an) and a"'}’l — WTqb??



LOGISTIC REGRESSION

* Taking the gradient of the error function with respect to

w, we obtain
N

VE(W) — Z(yn- o tﬂ-)(ybn

n=1

* where we have made use of the derivative of sigmoid.

* In particular, the contribution to the gradient from data
point n is given by the ‘error’ y,, — t,, between the target
value and the prediction of the model, times the basis

function vector ¢,,.



Decision Tree, f-measure = 0.889780

Logistic Regression, f-measure = 0.922420
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