
LOGISTIC  REGRESSION

Bishop Sec. 4.3.2; Wiki;
Also,
Online Notes from Andrew Ng







- Draw the curve



(Solve it now)







Prob. model + MLE process



Directly from Murphy;
Sec. 8.3.1

𝝁 = 𝒔𝒊𝒈𝒎(𝑾𝑻𝒙)





)



Same as LMS learning rule  - except the non-linear sigmoid in “h”.

Newton Raphson’s method for maximizing l(θ)







Consider a general classification problem, in which the response 
variable y can take on any one of k values, so y ∈ {1, 2, . . . , k}.

(for i = 1, . . . , k)





The conditional distribution of 
y given x is :

This model, which applies to classification problems where y ∈
{1, . . . , k}, is  called softmax regression. 
It is a generalization of logistic regression.



If we have a training set of m examples {(x(i), y(i)); i = 1, . . . ,m} 
and would like to learn the parameters θi of this model, 
write down the log-likelihood, as:



LOGISTIC REGRESSION ( to rewind/Altn symbols)
• The posterior probability of class 𝐶ଵ can be written as a logistic 

sigmoid acting on a linear function of the feature vector 𝜙 so 
that

with
• Here,  𝜎(・) is the logistic sigmoid function defined by

• In the terminology of statistics, this model is known as logistic 
regression, although it should be emphasized that this is a 
model for classification rather than regression.



LOGISTIC REGRESSION
• For an M-dimensional feature space 𝜙, this model has M 

adjustable parameters.
• By contrast, if we had fitted Gaussian class conditional 

densities using maximum likelihood, we would have used 
2M parameters for the means and M(M + 1)/2 
parameters for the (shared) covariance matrix.
• Together with the class prior 𝑝(𝐶ଵ), this gives a total of 

M(M+5)/2+1 parameters, which grows quadratically with 
M, in contrast to the linear dependence on M of the 
number of parameters in logistic regression.
• For large values of M, there is a clear advantage in 

working with the logistic regression model directly.



LOGISTIC REGRESSION
• We now use maximum likelihood to determine the 

parameters of the logistic regression model.
• To do this, we shall make use of the derivative of the 

logistic sigmoid function, which can conveniently be 
expressed in terms of the sigmoid function itself

• For a data set {𝜙௡, 𝑡௡}, where 𝑡௡ ∈ {0, 1} and 𝜙௡ = 𝜙(𝐱௡), with 𝑛 = 1, . . . ,𝑁, the likelihood function 
can be written



LOGISTIC REGRESSION

Here

• We can define an error function by taking the negative 
logarithm of the likelihood, which gives the cross entropy 
error function in the form 

where,



LOGISTIC REGRESSION
• Taking the gradient of the error function with respect to 

w, we obtain

• where we have made use of the derivative of sigmoid.
• In particular, the contribution to the gradient from data 

point n is given by the ‘error’ 𝑦௡ − 𝑡௡ between the target 
value and the prediction of the model, times the basis 
function vector 𝜙௡.



----- XXXX -------




