Matrices
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Matrix Arithmetic and Operation

* Equality: A = B provided dimensions of A and B
are equal and a;; = b;; for all i and j.
Matrices of different sizes cannot be equal.

* Addition, Subtraction: A,y = Byxm = [a;; *
b;;]. Matrices of different sizes cannot be added or
subtracted.

e Scalar Multiple: cA = [caij]; c is any number.
» Multiplication: A,,x, * Byxm = A. Byxm
* Transpose: A = [aij]nxm then A" = [aji]mani'j

* Trace: tr(A) = )./, a;;. If A is not square then
trace is not defined.



Properties of Matrix Arithmetic and the Transpose

*A+B=B+A

A+ (B+C)=(A+B)+C

« A(BC) = (AB)C

*A(BxX(C)=AB £ AC

S(BEOA=BAECA |t
ca(B+C)=aB xalC small denote scalars.
*(axb)C =aC £ bC

* (ab)C = a(b()

*a(BC) = (aB)C = B(al)

* A(B)# B (A), in general.




Properties of Matrix Arithmetic and the Transpose
cA+0=0+A4=4

cA—A4A=0 >

_ Letters in caps define
*0-4A=4 matrices, while that in
*0A=0and A0 =0 small denote scalars.
° AnAm — An+m
. (An)m — Anm
« (AT)T = A
*(A+B)' =A"+B"
e (cA)T =cAT

- (AB)T = BTAT

Theorem Traces of AB and BA are equal. /f ABand BA are

each square, then tr{ AB) = tr( BA)




Important properties of the inverse matrix

Suppose that A and B are invertible matrices of the same
size. Then,

a) ABisinvertible and (AB)™! = B~ 1471

b) A™1 isinvertible and (47171 =

c) Forn=0,1,2...A" isinvertibleand (A")"1 = 4™ =
A-Hr

d) If cis any non zero scalar then cA is invertible

and (cA)™ ! = A_

e) ATis |nvert|ble and (A7) 1= (4~ HT



Inverse Calculation

* The matrix A = [Ccl Z]

will be invertible if ad — bc # 0

and singular if ad — bc = 0.

e |f the matrix is invertible its inverse will be,




The properties of these operations are (assuming that r, s are scalars and the
sizes of the matrices A, B, ( are chosen so that each operation is well defined):

A+B=B+A, (1)
r(AB) = (rA)B = A(rB), (10) (A+B)+C=A+(B+0), (2)
ImA=A=Al: (11) A+0=A4, (3)
(ATYT — A 12y rA+B =rd+rB, (4)
(A+B)T = AT + BT, asy U +(53§ _ E’A;A’ E;;
(rA T = "'“*’flT{ (14) A(BC) = (AB)C, (7)
AB)" = BT AT, (15)  A(B+C)=AB+ AC, ®)
(In)" = In; (16) (B+C)A=DBA+CA, (9)

AA~ = A"TA =T,

OrEG)
Tr(E)=n (trace of identity matrix

Tr(O) =0 (trace of zero matrix)

— Tr(CAB) = Tr(BCA)




Special Matrices : Diagonal Matrix

* Diagonal Matrix: A square matrix is called diagonal
if it has the following form

d;, 0 .. 0
e
0 0 0 dg

* Suppose D is a diagonal matrixand d;,i = 1,..,n
are the entries on the main diagonal.

* If one or more of the d;’s are zero then the matrix
is singular.



Diagonal Matrix (contd.)

* On the other hand if d; # 0, Vi then the matrix is
invertible and the inverse is,

-1
R 0 O 0
1

0 R 0 0

D 1= 1
0 O @ 0
| 1
0 0 0 O i



Triangular matrix

U, Uy Uy, ', 0 0 - 0
0 w,, U, - U, Iy L, 0 - 0
U= 0 0 (B e Uy, L= E31 232 J?3-3 o 0
0 0 0 T ”;c-r.- . {1?:1 Fr.-E z?’ﬁ o i”” %
Upper Triangular Matrix Lower Triangular Matrix

* If Ais a triangular matrix with main diagonal
entries Ay, Ayy, ... , Any then if one or more of the
a;; s are zero the matrix will be singular.

* On the other hand if a;; # 0 Vi then the matrix is
invertible.



Symmetric and anti-symmetric matrices

Suppose that A is an n X m matrix, then A will be
called symmetricif A = A'.

Some properties of symmetric matrices are:
a) For any matrix A, both AAT and ATA are symmetric.

b) If A is an invertible symmetric matrix then A~ is
also symmetric.

c) If Aisinvertible then AAT and AT A are both
invertible.

Anti-Symmetric or Skew-Symmetric:

An anti-symmetric matrix is a square matrix that
satisfies the identity A = =AT:



Other Special forms of matrices:

- Toeplitz matrix - Compound Matrix

- Block Circulant Matrix

g-inv & Pseudo-inv

- Orthogonal (also, -skew -sym) GRAM matrix

- PD, PSD, ... Kernel of matrix

- Tri-diagonal system

Schur Complement

- Hessian

PERM (n)

- Jacobian

Skew-symmetric

- Adjoint and Adjugate matrices DET Matrix

- (skew-) Hermitian (or self-adjoint ) matrix

] i Idempotent Matrices
- Covariance matrix

Vandermonde Matrices

- Periodic matrices



Matrix Multiplication

1. The order makes a difference...AB is different from BA.
2. Rule : The number of columns in first matrix must
equal number of rows in second matrix.
In other words, the inner dimensions must be equal.
3. Dimension of product : The answer will be number of
rows in first matrix by number of columns in second

matrix.
In other words, the outer dimensions.

;><[3 1] _ 3 1]><‘21 =10
R




Matrix Multiplication

Multiplication of two matrices, A and B, produces the
matrix C whose elements, ¢; ; (0 <=1i <n,0 <=j <m),

are computed as follows:

-1
Cij= z a; by j
k=0

where Ais an n X p matrix and B is an p X m matrix.

Column

i - Sum
Multlpl< j / results
N N
Row
} —
SN ] s
Ci:j
\\\“__’_J/




Matrix Notation and Matrix Multiplication

Nine co-efficients 2u+v + w=5
Three unknowns 4u — 6V = —2
Three right-hand sides —2u+7v+2w =9
Ax =D
[ 2 1 1] u 5
A=|4 -6 0 x=H b=|-2
-2 7 2. w | O _

Co-efficient matrix Solution vector constant vector



There are two ways to multiply a matrix A and a vector x.

* One way is a row at a time, each row of A combines
with x to give a component of Ax. There are three inner
products when A has three rows:

1 1 6| [2 1.241-546-0 7
Ax by rows 30 1[15]=13-24+0-5+3:0] =16
11 4] (0] [1-241-5+4-0 |7

* Second way, multiplication a column at a time. The
product Ax is found all at once, as a combination of the
three columns of A:

Ax by columns 23] +5[0]+0[3] = 1|6




Properties of matrix multiplication

* Every product Ax can be found using whole columns.
Therefore Ax is a combination of the columns of A.
The coefficients are the components of x.

* The identity matrix I, with 1s on the diagonal and Os
everywhere else, leaves every vector unchanged.

Identity matrix /A = A and BI = B.



Properties of matrix multiplication

* The i, j entry of AB is the inner product of the i-th

row of A and the j-th column of B

(AB)3; = az1bip + azzbyy + azzbz; + azeby;

Row times
column

AB =

u——'_-'-'__‘--

i * *k
N
\§(AB)32




Properties of matrix multiplication

e Each entry of AB is the product of a row and a
column:
(AB);j = (row i of A) times (column j of B)
e Each column of AB is the product of a matrix and a
column:
column jof AB = A times (column j of B)
* Each row of AB is the product of a row and a

matrix:
rowiof AB = (rowiof A) times B



Properties of matrix multiplication

 For matrices A,B,C,D,E and F,
* Matrix multiplication is associative:
(AB)C = A(BC)
* Matrix operations are distributive:
AB+C)=AB+ACand (B+C)D =BD +CD
* Matrix multiplication is not commutative: Usually

FE # EF
Exception :
(1 0 0 1 00 1 0 0
E=1-2 10 and F=1]01 0 EF=|-21 0
0O 0 1 1 0 1 1 0 1

=FE



Norms

To meter the lengths of vectors in a vector space
we need the idea of a norm.

Norm is a function that maps x to a nonnegative real
number

|| For

A Norm must satisfy following properties:
1 —Positivity HXH >0 ,Vx#0

2 —Homogeneity HaXH = ‘05‘ Hx

,Vxe FandV ae C

3 —Triangleinequality HX + yH < HXH + Hy

,VX,yeF



Norm of vectors

1
p-normis: || = (Z a, pjp
I

For p=1 we have 1-norm or sum norm [, = (Z aij
I

norm

For p=c0 we have co-norm or max
norm

p=1

For p=2 we have 2-norm or euclidian 4], _(Z‘a‘ jm

b = maxfla
I

22



The Ip—Norm

The |- Norm for a vector x is defined as (p21):

. 1/p
= 2 xl
] i
P i=1

|~

Examples:

: - T
- for p=2 we have the ordinary euclidian norm: ‘x L =NVX X
2
- for p= « the definition is ‘x ;= max|.x,
o I<i<n
o 42
- a norm for matrices is induced via HAH = max —~
=0 ||

- for |, this means :
[|A||,=maximum eigenvalue of ATA



Properties of Matrix Norms

* These induced matrix norms satisfy:

AB
Ax‘

<

<

4

A|>0if A#0

7/AH = ‘7/‘ : HAH for any scalar ¥
A+B|<||4
‘.

Al

‘ + HB H (triangle inequality)
B

xH for any vector x



Condition Number

* If A is square and nonsingular, then

141 47
* If Ais singular, then cond(A) = cond(4) = HAH HA H

* If A is nearly singular, then cond(A) is large.

* The condition number measures the ratio of Mol (T 15T AL 11110 S SRR B\ C1rgb

maximum shrinkage:
100 =200
~200 401

Row - sum norm of A= | A | = Max (300, 601) = 601.

. | 4x| 4x)
HAHHA H: max —-= || mn+—-~=
w0 a0 |1

Row - sum norm of A"l = || A”! || = Max (6.01, 3) = 6.01.
Condition Number k(A) = 601 (6.01) = 3612 (large).

A is 11l - conditioned.



The Gaussian Elimination Method

* The Gaussian elimination method is a technique for
solving systems of linear equations of any size.

* The operations of the Gaussian elimination method
are:

1.Interchange any two equations.

2.Replace an equation by a nonzero constant
multiple of itself.

3.Replace an equation by the sum of that equation
and a constant multiple of any other equation.



Row-Reduced Form of a Matrix

4 )
* Each row consisting entirely of zeros lies below
all rows having nonzero entries.

* The first nonzero entry in each nonzero row is
1 (called a leading 1).

* In any two successive (nonzero) rows, the
leading 1 in the lower row lies to the right of
the leading 1 in the upper row.

* If a column contains a leading 1, then the
other entries in that column are zeros.

N /




Row Operations

-
1. Interchange any two rows.

2. Replace any row by a nonzero constant
multiple of itself.

3. Replace any row by the sum of that row
and a constant multiple of any other row.




Terminology for the
Gaussian Elimination Method

-
Unit Column

A column in a coefficient matrix is in unit form if
one of the entries in the column is a 1 and the
other entries are zeros.

Pivoting

* The sequence of row operations that transforms
a given column in an augmented matrix into a
unit column.

-




Notation for Row Operations

-

* Letting R; denote the i-th row of a matrix, we
write

Operation1: R, < R;tomean:
Interchange row i with row j.

Operation 2:  cR; to mean:
replace row [ with ¢ times row I.

Operation 3: R, + aR; to mean:

Replace row [ with the sum of row
[ and a times row J.

~




Example
* Pivot the matrix about the circled element

ERE

Solution:
1 — 2R,

HHEE A A




he Gaussian Elimination Method

1. Write the augmented matrix corresponding to
the linear system.

2. Interchange rows, if necessary, to obtain an
augmented matrix in which the first entry in the
first row is nonzero. Then pivot the matrix about
this entry.

3. Interchange the second row with any row below
it, if necessary, to obtain an augmented matrix in
which the second entry in the second row is
nonzero. Pivot the matrix about this entry.

4. Continue until the final matrix is in row-reduced
form.

~

J




Augmented Matrices

* Matrices are rectangular arrays of numbers that
can aid us by eliminating the need to write the
variables at each step of the reduction.

* For example, the system
2x +4y + 6z =22
3x + 8y + 5z =27
—x+y+2z=2

12 4 6 |22]!

'| 3 8 5 |27 Augmented matrix
'l-1 1 2|21} [cIB]

" Coefficient

Matrix [C]



Matrices and Gaussian Elimination

* Every step in the Gaussian elimination method can
be expressed with matrices, rather than systems of
equations, thus simplifying the whole process:

 Steps expressed as systems of equations:
2x +4y + 6z = 22
3x + 8y + 5z =27
—x+y+2z=2

* Steps expressed as augmented matrices:

2 4 6|22
3 8 5127
-1 1 21| 2.




2x +4y + 6z = 22
3x + 8y + 5z =27
—x+y+2z=2

x+2y+3z=11
3x +8y + 5z =27
—x+y+2z=2

x+2y+3z=11
2y —4z = —6
—x+y+2z=2

x+2y+3z=11
2y —4z = —6
3y +5z =13

LW
— 00 &

N

|
p—
p—

-
N

L=o®

6 |22
; 24
212
@ R'1:1R1
3|11 2
5 27]
212
@R’2=R2—3R1
3 11
C _6]
2 2
@R’3=R3+R1
3 11
C _4
5 13
1
@ R; =5 Ry
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X =3 - 1
y—2z=-3 [0
zZ=2 , 0

X =3 : 1
y =-3 lO
z=2 0

—

0
1
0

0
0

@

3
1
2

|

Row Reduced Form
of the Matrix

Thus, the solution to the system is x

and z = 2.

R;_ - R1 —7R3

R, =R, + 2R,

I
w
=

I
-



Gaussian Elimination in the case of unique
solution

4 )

* With a full set of n pivots, there is only one solution.

* The system is non singular, and it is solved by
forward elimination and back-substitution.




Systems with no Solution

-

* If there is a row in the augmented matrix
containing all zeros to the left of the vertical
line and a nonzero entry to the right of the
line, then the system of equations has no
solution.




Theorem

-~

a. If the number of equations is greater (over-

determined system) than or equal to the
number of variables in a linear system, then
one of the following is true:

i. The system has no solution.

ii. The system has exactly one solution.

iii. The system has infinitely many solutions.

. If there are fewer equations than variables

(under-determined system) in  a linear
system, then the system either has no
solution or it has infinitely many solutions.




Linear Equation
An equation of the form ax + by + ¢ =0, where g, b, ¢ are real numbers, a #0, b #0 and x, y are variables; is
called a linear equation in two variables.

Linear Equations

ncident, Consistent Inconsistent
il - Paralle] Lines
Intersecung Coincident a b
gt : 4
Lines Lines SR ~L
4 - b a b ¢ 4 b =
s ST e MNo Solution
Unique solution Infinite solutions

Example for Solving Equations with Zero Solutions

Determine whether the following equation has zero, one, or infinitely many solutions.

ar+9r +8 =14y — 20 + 9



Consider the three pairs of linear equations
1st pair: 2x-5y + 4 =0, 2x+y-8=0
2nd pair: 4x + 6y =24, 2x+ 3y =6

3rd pair: x-2y =5, 3x - 6y = 15

e | . ) b c
Ve | 2. for parallel lines, El = =+ £ El

. . : i
3. for coincident lines, -



Inverse matrix

* The inverse of an n by n matrix is another n by n matrix. The inverse of A is
written A~ (and pronounced “A inverse”).

* The fundamental property is simple: If you multiply by A and then multiply by
A~1, you are back where you started:

Inverse matrix If b =Axthen A~ b =x

* Thus A~'Ax = x.The matrix A~! times 4 is the identity matrix. Not all
matrices have inverses. An inverse is impossible when Ax is zero and x is
nonzero. Then A~! would have to get back from Ax = 0 to x. No matrix can
multiply that zero vector Ax and produce a nonzero vector x.

* Our goals are to define the inverse matrix and compute it and use it, when A~!
exists—and then to understand which matrices don’t have inverses.



Properties : Inverse matrix

1K The inverse of A is a matrix B such that BA =7 and AB = I. There is at
most one such B, and it is denoted by A~ !:

A'TA=71 and AA'=1. (1)

Note 1. The inverse exists if and only if elimination produces n pivots (row exchanges
allowed). Elimination solves Ax = b without explicitly finding A=,

Note 2. The matrix A cannot have two different inverses, Suppose BA = [ and also
AC = 1. Then B = C, according to this “proof by parentheses”:

B(AC) = (BA)C gives BI=IC whichis B=C. (2)
This shows that a left-inverse B (multiplying from the left) and a right-inverse C (multi-

plying A from the right to give AC = I) must be the same matrix.
Note 3. If A is invertible, the one and only solution to Ax = b is x = A~ ' b:

Multiply Ax=b by A~ '. Then x=A'Ax=A"'b.

Note 4. (Important) Suppose there is a nonzero vector x such that Ax = 0. Then A
cannot have an inverse. To repeat: No matrix can bring 0 back to x.
If A is invertible, then Ax = 0 can only have the zero solution x = 0.



Properties : Inverse matrix

Note 5. A 2 by 2 matrix is invertible if and only if ad — bc 1s not zero:

—1
b 1 [a —b
2 by 2 inverse [a ] [ ] (3)

c d :ad—bc —Cc a

This number ad — bc is the determinant of A. A matrix is invertible if its determinant
is not zero (Chapter 4). In MATLAB, the invertibility test is fo find n nonzero pivots.
Elimination produces those pivots before the determinant appears.

Note 6. A diagonal matrix has an inverse provided no diagonal entries are zero:

d 1/d
If A= then A~ = and AA" ' =1.
d, 1/d,

When two matrices are involved, not much can be done about the inverse of A + B.

The sum might or might not be invertible. Instead, it is the inverse of their product
AB which is the key formula in matrix computations. Ordinary numbers are the same:

(a+b)~! is hard to simplify, while 1/ab splits into 1/a times 1/b. But for matrices the
order of multiplication must be correct—if ABx =y then Bx =A"'yand x = B~ 'A~ ly.
The inverses come in reverse order.



Properties : Inverse matrix

1L A product AB of invertible matrices is inverted by B—1A~!:

Inverse of AB (AB) ' =B~ '1A" L. (4)
Proof. To show that B~'A~! is the inverse of AB, we multiply them and use the associa-
tive law to remove parentheses. Notice how B sits next to B~ !: [ A | b]
(AB)(B™'A™") =ABB 'A ' =AIA ' =AA ' =] = [GFEA| GFEDb];
(B 'A™YAB) =B 'A"'AB=B"'IB=B"'B=1.
- U = GFEA;
-1 - A-1 -1
A similar rule holds with three or more matrices: U A (G FE)
Inverse of ABC  (ABC) ' =cC'B7 A7 A1=UL(GFE)!

when the elimination matrices E, F, G were inverted to
come back from U to A. In the forward direction, GFEA was U. In the backward
direction, L = E “1F=1G=1 was the product of the inverses. Since G came last, G|
comes first. Please check that A~! would be U !GFE.



Calculation of A™1 : The Gauss-Jordan Method

e Giventhe n X n matrix A:

1. Adjoin the n X n identity matrix / to obtain the
augmented matrix [A | ] ].

2. Use a sequence of row operations to reduce [A|] ] to
the form |I | B] if possible.

e Then the matrix B is the inverse of A.



Example

* Find the inverse of the matrix A =

Solution
* We form the augmented matrix

N W N
_ N
N = =
= R R
O R O

N W N

= o 9

=N

o> ==




Example

* Find the inverse of the matrix A =

Solution

2 1 1
3 2 1
2 1 2

|

* And use the Gauss-Jordan elimination method to reduce it to

the form [ | B]:

0 1 o mm)

0 0 1
R{+ R,
R; — R,

3 2 1

lle
2 1 2

1 0 O] R1 —R;

-3 2 0
-1 0 1

2 -1 O]

2
1 2

0O]1 -1 O
0 1 O]
0O 0 1
o _R,
R, + 3R,

\ Rs + 2R,
-1 1 O
3 =2 0]
2 -2 1




Example

3 2 1
2 1 2

2 1 1
* Find the inverse of the matrix A =

Solution

* And use the Gauss-Jordan elimination method to reduce it to
the form [/ | B]:

1 0 1 2 -1 0 1 0 0|3 -1 -1
0O 1 -1]-3 2 0 0 1 0|—-4 2 1
o 0o 1 1-1 0 1 B 0O 0 11-1 O 1
Previous step R,+R, " A g
I, B
3 -1 -1

B=A1=|-4 2 1
-1 0 1.




Finding the inverse of a square matrix
using LU decomposition

The inverse [B] of a square matrix [A] is defined as

How can LU Decomposition be used to find the inverse?

Methods for LU-Decomp:
Doolittle decomposition, Crout decomposition,
Cholesky decomposition, Full/partial pivots,
Cormen (recursive)



Example: Inverse of a Matrix

Find the inverse of a square matrix [A]
(25 5 1
[4]=| 64 8 1
144 12 1]

Using the decomposition procedure, the [L] and [U]
matrices are found to be

1 0 0l[25 5 ]
l4]l=|L)lU]=|256 1 0]| 0 —48 —156
576 35 1|/|0 0 07




Example: Inverse of a Matrix

Solving for the each column of [B] requires two steps
1)Solve [L] [Z] = [C] for [Z]
2)Solve [U] [X] = [Z] for [X]
1 0 0fz] [1
Step1: [L]z]=[|c]—=|256 1 0

576 3.5 1)z, | |0

z, =1
This generates the 2,562, +2, =0

equations:
5.76z,+3.5z, +z, =0



Example: Inverse of a Matrix

Solving for [Z]
_Zl _
z, =1
z, = 0-2.56z [Z] —| %2
=0-2.56(1) | Z3
=-2.56

z, =0-5.76z,-3.5z,
=0-5.76(1)-3.5(-2.56)
=32



Example: Inverse of a Matrix

Solving [U][X] = [Z] for [X]

25
0
0

51
~48 -1.56
0 07 |

25b,, +5b,, +b,, =1

S

11

S~

21

S~

31 ]

—2.56
3.2

—4.8b, —1.56b,, =—2.56
0.7b,, =3.2




Example: Inverse of a Matrix

So the first column of

Using Backward Substitution the inverse «

by, =£= 4571 by,

0.7 bl =
p . ~2.56+1.560b,, 2!
2 4.8 | b3y

_ —2.56+1.560(4.571) _ 0.9504
—4.8

1-5b,, —b

b, = 21 731
25

_1-5(-0.9524)-4.571 _ 004762

25




Example: Inverse of a Matrix

Repeating for the second and third columns of the
inverse

Second Column Third Column
25 5 1]b,] [0 25 5 1][b,] [0]
64 8 1|b,|=]1 64 8 1||b,|=|0
_144 12 1__b32_ _O_ _144 12 1_ _b33_ _1_
_bl2_ _bl3_

bzz = b23 =

_b32_ _b33_




Example: Inverse of a Matrix

The inverse of [A] is

[0.04762 —0.08333 0.03571 ]
4] =|-0.9524 1417  —0.4643
4571  —5.000  1.429

To check your work do the following operation

[AI[A]™" = [1] = [A]"[A]



The Moore-Penrose pseudo inverse i1s a generalization of the matrix inverse
when the matrix may not be invertible. If A is invertible, then the Moore-
Ifthe coun Penrose pseudo inverse is equal to the matrix inverse. However, the Moore- ormula the pseudo
inverse: Penrose pseudo inverse is defined even when A is not invertible.

Pseudo

More formally, the Moore-Penrose pseudo inverse, A*, of an m-by-n matrix is
defined by the unigue n-by-m matnx satisfying the following four criteria (we
Here A® 5 are only considering the case where A consists of real numbers).

However, if 1. AATA=A

2. ATAAT = AT
This is a rigl 3 {AA+]' — AAT
If both the 4 (ATA) = ATA pseudo inverse is
_equal to th '
If A I1s an mxn matrix where 1= i and A is of full rank (= r7), then | /7 -J
AR (PAD= b

g At = (AAY 1A -
AR . 716
- and the solution of Ax = b is x = A*h. In this case, the solution is not exact. It ~-J
finds the solution that is closest in the least squares sense. ) b




Eigenvalues and Eigenvectors

CS6015/LARP

Ack: Linear Algebra and Its Applications, Gilbert Strang



The Solution of Ax = Ax

« Ax = Axis a nonlinear equation; A multiplies x. If we could
discover A, then the equation for x would be linear.

* We could write Alx in place of Ax, and bring this term over to the
left side:
(A—ADHx = 0

The vector x is in the nullspace of A — AL

The number A is chosen so that A — Al has a nullspace.

* We want a nonzero eigenvector x. The vector x = 0 always
satisfies Ax = Ax, but it is useless.

* To be of any use, the nullspace of A — AI must contain vectors other
than zero.

* In short, A — AI must be singular.



The Solution of Ax = Ax

5A The number A is an eigenvalue of A if and only if A — A[ is singular:
det(A —AI) =0. (10)
This is the characteristic equation. Each A is associated with eigenvectors x:

(A—ADx=0 or  Ax=Ax. (11)



The Solution of Ax = Ax

* Example:

4 —5 we shift A by A7 to make it singular:
A=

2 =3 -5

4—A
btract A/ A—Al =
Subtrac [ N Y

Determinant A—All=(4—-A1)(—3—A4)+10 or AZ—A—2

* This is the characteristic polynomial.

* |ts roots, where the determinant is zero, are the eigenvalues.

A2 A —2=(A+1)(A—2)



The Solution of Ax = Ax

—b+tVb*—4 1+
Eigenvalues A= \é @ _ 2\@ — —1land 2
a

* There are two eigen values, because a quadratic has two roots.

e ThevaluesA = —1and A = 2 leadto asolutionof Ax = Axor
(A—ADx = 0.

5 -5 0
M=—1: (A-MDx= Y| =
2 =21z 0

The solution (the first eigenvector) is any nonzero multiple of x;:

1
Eigenvector for 1, x| = L] .



The Solution of Ax = Ax

The solution (the first eigenvector) 1s any nonzero multiple of x;:

1
Eigenvector for A, x| = [1] .

The computation for A is done separately:

b=2:  (A—pl)x= E 2] H - lg]

The second eigenvector is any nonzero multiple of x;:

Eigenvector for A, Xy = [5] .



The Solution of Ax = Ax
* The steps in solving Ax = Ax:

1. Compute the determinant of 4 — AI. With 4
subtracted along the diagonal, this determinant is a
polynomial of degree n. It starts with (—1)".

2. Find the roots of this polynomial. The n roots are
the eigenvalues of A.

3. For each eigenvalue solve the equation (4 —
ADx = 0. Since the determinant is zero, there are
solutions other than x = 0. Those are the
eigenvectors.



The Solution of Ax = Ax (Recap)

* The key equation was Ax = Ax.
* Most vectors x will not satisfy such an equation.

* They change direction when multiplied by A, so that Ax is not a
multiple of x.

* This means that only certain special numbers are eigenvalues, and
only certain special vectors x are eigenvectors.



Example 3. The eigenvalues are on the main diagonal when A is
triangular.

-
[N
o
N n
|

det(A—AI)=| 0 (1-2)(3 -2)(3

-
B

-

N —

-

* The determinant is just the product of the diagonal entries.

e ItiszeroifA = 1,1 =Z,0r/1 :%

* The eigenvalues were already sitting along the main diagonal.



5B The sum of the n eigenvalues equals the sum of the n diagonal entries:
Traceof A=A+ - +A, =ai+ - +am. (15)

Furthermore, the product of the n eigenvalues equals the determinant of A.

For a 2 by 2 matrix, the trace and determinant tell us everything:

b :
“ p has trace a + d, and determinant ad — bc
C
a—A b )
A - I — =
detlA Al =detl = 42 A_

The eigenvalues are A = -



A |
12 —
direction of purple wvectors parallel to vi=1 = [1 —1]! and

blue vectors parallel to va=z = [1 1]'. The red vectors
are not parallel to either eigenvector, so, their directions
are changed by the transformation. The lengths of the
purple vectors are unchanged after the transformation
(due to their eigenvalue of 1), while blue vectors are
three times the length of the original (due to their
elgernvalue of 3).

Y

_}lj.-" ..................................................... ;

The transformation matrizc A = [ J presemnes the

........

O X Ax

Watrix A acts by stretching the vector x,
not changing its direction, so X is an
eigenvector of A.




Eigenvalues of geometric transformations

Scaling Unequal scaling Rotation Horizontal shear Hyperbolic rotation
| ‘i 1 1]

I < >y M | h
ustration 7 ! _m_ —
Matrix [kl 0 ] [cosﬁ —sinﬂ] [1 k] I:c-:ushtp sinh{p]

0 ks sinfl cos@ 0D 1 sinh¢ cosh
Characteristic Y _ _ 2 82 5
solynomial (A—k) (A=F1)(A—FR2) | A° —2cos(B)A+ 1 (A—1) A% —2cosh(p)A+1
;’hl = Em ;'hl = e¥
: _ M=k = cosf + tsin @ L — cosh  + sinh
Eigenvalues, A; A=l =~Fk Ao = Ao = = A=Az =1 Ao = e~ %
= cosf —isin @ = cosh p — sinh ¢
Algebraic mult., =1 =1 pr =1
i = p() H p2 = 1 pp =1 o pp =1
Geometric mult., ¥ =1 v =1 y=1
% = (i) " 73 = 1 Yo =1 I Y2 =1
u_dl_ 11—‘1_ u—_l
Ei ct All ct © Lo L = e
igenvectors nonzero vectors o 0 o " 1= 0 o " 1 ]
‘T L] ‘- L+ 2= | —1




Matrix Type Eigendecomposition Properties

Square Eigenvalues: always real, nonnegative
Symmetric Eigenvectors: always orthogonal

sSquare Eigenvalues: can be complex
Asymmetric Eigenvectors: don't necessarily exist
Eigendecompaosition not possible




Singular Value Decomposition

A = UXVT is known as the “SVD” or the singular value
decomposition.

The SVD is closely associated with the eigenvalue-eigenvector
factorization QAQT of a positive definite matrix.

Any m X n matrix A can be factored into

A = UXV'! = (orthogonal)(diagonal) (orthogonal)

The columns of U (m X m) are eigenvectors of AAT , and the
columns of V (n X n) are eigenvectors of AT A.

The r singular values on the diagonal of £ (m X n) are the square
roots of the nonzero eigenvalues of both AA” and AT A.



Singular Value Decomposition
Remark 1.

* For positive definite matrices, £ is A and UXV7 is identical to QAQ.

* For other symmetric matrices, any negative eigenvalues in A

become positive in X.

* For complex matrices, X remains real but U and IV become unitary

(the complex version of orthogonal).

Remark 2.

U and V give orthonormal bases for all four fundamental subspaces:

first r columns of U:
last m —r columns of U:
first r columns of V:

last n—r columns of V:

column space of A
left nullspace of A
row space of A
nullspace of A



Singular Value Decomposition

Remark 3.

Eigenvectors of AAT and AT A must go into the columns of U and V:

AAT = (wxvh(vzluh) = uzz'u?  and, similarly, ATA =VETZVT

* U must be the eigenvector matrix for AAT .

* The eigenvalue matrix in the middle is ZX” — which is m X m with

o2 ,...,07 on the diagonal.

* Fromthe ATA = VETEVT , the V matrix must be the eigenvector
matrix for AT A.



Singular Value Decomposition

Example 1.
This A has only one column: rankr =1. Then X hasonly o; = 3:

9
3
2
3

A'A is 1 by 1, whereas AA! is 3 by 3. They both have eigenvalue 9 (whose square root
is the 3 in X). The two zero eigenvalues of AA! leave some freedom for the eigenvectors

in columns 2 and 3 of U. We kept that matrix orthogonal.



Singular Value Decomposition

Example 2.
Now A has rank 2, and AAT = [_21 _21] with A = 3and 1:

1 -2 1| /Ve6
S At I | MO | R
1 1 1| /V3

Notice v 3 and v 1. The columns of U are left singular vectors (unit
eigenvectors of AAT ).

The columns of V are right singular vectors (unit eigenvectors of AT A).
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Applications of Singular Value Decomposition

Image Processing.
e Suppose a satellite takes a picture, and wants to send it to Earth.

* The picture may contain 1000 X 1000 “pixels”—a million little
squares, each with a definite color.

* We can code the colors, and send back 1,000,000 numbers.

* It is better to find the essential information inside the 1000 X
1000 matrix, and send only that.

In SVD some ¢’s are significant and others are extremely small.

If we keep 20 and throw away 980, then we send only the
corresponding 20 columns of U and V.

The other 980 columns are multiplied in UXVT by the small ¢’s that
are being ignored. If only 20 terms are kept, we send 20 times 2000
numbers instead of a million (25 to 1 compression).






The conjugate transpose, also known as the Hermitian transpose, of an m x n
complex matrix A is an n X m matrix obtained by transposing A and applying complex conjugate
on each entry (the complex conjugate of a + ib being a — i b, for real numbers a and b )

(AAT)" = (AT) AT = AAT.

A matrix is full row rank when each of the rows of the matrix are linearly independent and full
column rank when each of the columns of the matrix are linearly independent.

For a square matrix these two concepts are equivalent and we say the matrix is full rank if all rows
and columns are linearly independent. A square matrix is full rank if and only if its determinant is
nonzero.

For a non-square matrix with m rows and n columns, it will always be the case that either the rows
or columns (whichever is larger in number) are linearly dependent. Hence when we say that a non-
square matrix is full rank, we mean that the row and column rank are as high as possible, given the
shape of the matrix. So, if there are more rows than columns (m > n), then the matrix is full rank if the
matrix is full column rank.

The rank of A equals the number of non-zero singular values, which is the same as the number of
non-zero diagonal elements in 2 in the singular value decomposition A = U 2 V*



If 4 is a matrix over the real numbers then the rank of 4 and the rank of its corresponding Gram mairix are equal. Thus, for real

mairces

rank(AT 4) = rank(4A4") = rank(4) = rank(4").
-

suppose A is an » ¥ M mairix and 72 == 7. It must be that
rank(A*) = rank(A) < min(n,m) < max(n,m).

Using the fact that ranfk(AB) < rank(A) for any A, B for which the produet is defined, we have
that:

rank(AAY) < rank(A) < max{n,m)
rank(A*A) < rank(A*) < max(n,m).

But it must be the case that the dimensions of AA* or A* A is max(n, m). Therefore at least one of

them does not have full rank. For sguare matrices, not having full rank is equivalent to being
singular.



Example 1

1 4
_ (23 T _
I

| 3 6
o
oo 1203 14 32
¢=ad _[4 5 6]>< 3 2 _[32 77
(1 4] (17 22
D=ATA =12 5 XE g 2]— 22 29
3 6 27 36

rank(A) = rank(A?) = rank(C) = rank(D) = 2

27
36
45




Example 2

3 6 1
1 2 2
A= 2 4 5
0 0 1
(96
27
O =AAT —
71
17

rank(A) = rank(A?) = rank(C) = rank(D) = 3

o GO W =

DO B =]

27
19
48
10

71
48
125
29

17]
10
29

3 1 2 0
6 2 4 0
1 2 5 1
1 3 8 2
7 1 4 2]
D=ATA =

[ 14

28
15
22

30

28
56
30

60

15
30
31
49
31

22
44
49
78
46

30 |
60
31
46
70







