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Matrix Arithmetic and Operation
• Equality: 𝐴 =  𝐵 provided dimensions of A and B 

are equal and 𝑎௜௝ = 𝑏௜௝  for all 𝑖 and 𝑗. 
Matrices of different sizes cannot be equal.

• Addition, Subtraction:  𝐴௡×௠ ± 𝐵௡×௠ = [𝑎௜௝ ±𝑏௜௝]. Matrices of different sizes cannot be added or 
subtracted.

• Scalar Multiple: 𝑐𝐴 = 𝑐𝑎௜௝ ; c is any number.
• Multiplication: 𝐴௡×௣ ∗ 𝐵௣×௠ = 𝐴.𝐵௡×௠
• Transpose:  𝐴 = [𝑎௜௝]௡×௠ then 𝐴் = [𝑎௝௜]௠×௡∀𝑖, 𝑗
• Trace: 𝑡𝑟 𝐴 = ∑ 𝑎௜௜௡௜ୀଵ . If 𝐴 is not square then 

trace is not defined.



Properties of Matrix Arithmetic and the Transpose

• 𝐴 + 𝐵 = 𝐵 + 𝐴
• 𝐴 + (𝐵 + 𝐶) = (𝐴 + 𝐵) + 𝐶
• 𝐴(𝐵𝐶) = (𝐴𝐵)𝐶
• 𝐴(𝐵 ± 𝐶) = 𝐴𝐵 ± 𝐴𝐶
• (𝐵 ± 𝐶)𝐴 = 𝐵𝐴 ± 𝐶𝐴
• 𝑎(𝐵 ± 𝐶) = 𝑎𝐵 ± 𝑎𝐶
• (𝑎 ± 𝑏)𝐶 = 𝑎𝐶 ± 𝑏𝐶
• (𝑎𝑏)𝐶 = 𝑎(𝑏𝐶)
• 𝑎(𝐵𝐶) = (𝑎𝐵)𝐶 = 𝐵(𝑎𝐶)
• A (B) ≠ 𝐵 (𝐴), in general.

Letters in caps define 
matrices, while that in 
small denote scalars.



Properties of Matrix Arithmetic and the Transpose
• 𝐴 + 0 = 0 + 𝐴 = 𝐴
• 𝐴 − 𝐴 = 0
• 0 − 𝐴 = 𝐴
• 0𝐴 = 0 𝑎𝑛𝑑 𝐴0 = 0
• 𝐴௡𝐴௠ = 𝐴௡ା௠
• 𝐴௡ ௠  = 𝐴௡௠
• 𝐴் ் = 𝐴
• 𝐴 ± 𝐵 ் = 𝐴் ± 𝐵்
• 𝑐𝐴 ் = 𝑐𝐴்
• 𝐴𝐵 ்  =  𝐵்𝐴்

Letters in caps define 
matrices, while that in 
small denote scalars.



Important properties of the inverse matrix
Suppose that A and B are invertible matrices of the same 
size. Then,
a) AB is invertible and 𝐴𝐵 ିଵ = 𝐵ିଵ𝐴ିଵb) 𝐴ିଵ is invertible and (𝐴ିଵ)ିଵ = 𝐴
c) For 𝑛 = 0,1,2 …𝐴௡ is invertible and 𝐴௡ ିଵ = 𝐴ି௡ =𝐴ିଵ ௡
d) If 𝑐 is any non zero scalar then 𝑐𝐴 is invertible

and 𝑐𝐴 ିଵ = ଵ௖ 𝐴ିଵ.e) 𝐴்is invertible and (𝐴்)ିଵ= 𝐴ିଵ ்



Inverse Calculation

• The matrix 𝐴 = 𝑎 𝑏𝑐 𝑑
will be invertible if 𝑎𝑑 − 𝑏𝑐 ≠ 0
and singular if 𝑎𝑑 − 𝑏𝑐 = 0.

• If the matrix is invertible its inverse will be, 

𝐴ିଵ =  1𝑎𝑑 − 𝑏𝑐 𝑑 −𝑏−𝑐 𝑎





Special Matrices : Diagonal Matrix
• Diagonal Matrix: A square matrix is called diagonal 

if it has the following form 

𝐷 = 𝑑ଵ 0 … 00 𝑑ଶ … 0⋮ ⋮ ⋱ ⋮0 0 0 𝑑௡
• Suppose D is a diagonal matrix and 𝑑௜ , 𝑖 = 1, . . ,𝑛

are the entries on the main diagonal. 
• If one or more of the 𝑑௜′𝑠 are zero then the matrix 

is singular. 



Diagonal Matrix (contd.) 

• On the other hand if 𝑑௜ ≠ 0,∀𝑖 then the matrix is 
invertible and the inverse is,

𝑫ି𝟏 =
𝟏𝒅𝟏 𝟎 𝟎 … 𝟎𝟎 𝟏𝒅𝟐 𝟎 … 𝟎𝟎 𝟎 𝟏𝒅𝟑 … 𝟎⋮ ⋮ ⋮ ⋱ ⋮𝟎 𝟎 𝟎 𝟎 𝟏𝒅𝒏



Triangular matrix

Upper Triangular Matrix Lower Triangular Matrix

• If 𝐴 is a triangular matrix with main diagonal 
entries 𝑎11,𝑎22 , … ,𝑎௡௡ then if one or more of the 𝑎𝑖𝑖’s are zero the matrix will be singular. 

• On the other hand if 𝑎𝑖𝑖 ≠ 0  ∀𝑖 then the matrix is 
invertible.



Symmetric and anti-symmetric matrices
Suppose that 𝐴 is an 𝑛 × 𝑚 matrix, then 𝐴 will be 
called symmetric if 𝐴 =  𝐴்.
Some properties of symmetric matrices are:

a) For any matrix 𝐴, both 𝐴𝐴𝑇 and 𝐴𝑇𝐴 are symmetric.
b) If 𝐴 is an invertible symmetric matrix then 𝐴ିଵ is 

also symmetric.
c) If 𝐴 is invertible then 𝐴𝐴𝑇 and 𝐴𝑇𝐴 are both 

invertible.
Anti-Symmetric or Skew-Symmetric:
An anti-symmetric matrix is a square matrix that 
satisfies the identity A = -AT.



Other Special forms of matrices:
- Toeplitz matrix

- Block Circulant Matrix

- Orthogonal (also, -skew   -sym)

- PD, PSD, …

- Tri-diagonal system

- Hessian

- Jacobian

- Adjoint and Adjugate matrices

- (skew-) Hermitian (or self-adjoint ) matrix

- Covariance matrix

- Periodic matrices

- Compound Matrix

- g-inv & Pseudo-inv

- GRAM matrix

- Kernel of matrix

- Schur Complement

- PERM (n)

- Skew-symmetric

- DFT Matrix

- Idempotent Matrices

- Vandermonde Matrices



Matrix Multiplication
1.  The order makes a difference…AB is different from BA.
2.  Rule : The number of columns in first matrix must

equal number of rows in second matrix. 
In other words, the inner dimensions must be equal.

3. Dimension of product : The answer will be number of 
rows in first matrix by number of columns in second 
matrix. 
In other words, the outer dimensions.

[ ]4
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2
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Matrix Multiplication
Multiplication of two matrices, A and B, produces the 
matrix C whose elements, 𝑐௜,௝ (0 ൏= 𝑖 ൏ 𝑛, 0 ൏= 𝑗 ൏ 𝑚), 
are computed as follows:𝑐௜,௝ = ෍ 𝑎௜,௞𝑏௞,௝௟ିଵ௞ୀ଴
where A is an 𝑛 × 𝑝 matrix and B is an 𝑝 × 𝑚 matrix.



Matrix Notation and Matrix Multiplication    2𝑢 + 𝑣  +   𝑤 = 5    4𝑢 − 6𝑣           = −2−2𝑢 + 7𝑣 + 2𝑤 = 9Nine co-efficients
Three unknowns
Three right-hand sides𝐴𝑥 = 𝑏

𝐴 = 2 1 14 −6 0−2 7 2  𝑏 = 5−29  𝑥 = 𝑢𝑣𝑤  
Co-efficient matrix Solution vector constant vector



There are two ways to multiply a matrix 𝐴 and a vector 𝑥.
• One way is a row at a time, each row of 𝐴 combines 

with 𝑥 to give a component of 𝐴𝑥. There are three inner 
products when 𝐴 has three rows:

• Second way, multiplication a column at a time. The 
product 𝐴𝑥 is found all at once, as a combination of the 
three columns of 𝐴: 



Properties of matrix multiplication
• Every product 𝐴𝑥 can be found using whole columns. 

Therefore 𝐴𝑥 is a combination of the columns of 𝐴. 
The coefficients are the components of 𝑥.

• The identity matrix 𝐼, with 1s on the diagonal and 0s 
everywhere else, leaves every vector unchanged.

Identity matrix 𝐼𝐴 = 𝐴 and 𝐵𝐼 = 𝐵.



Properties of matrix multiplication

• The 𝑖, 𝑗 entry of AB is the inner product of the 𝑖-th
row of 𝐴 and the 𝑗-th column of 𝐵𝐴𝐵 ଷଶ = 𝑎ଷଵ𝑏ଵଶ + 𝑎ଷଶ𝑏ଶଶ + 𝑎ଷଷ𝑏ଷଶ + 𝑎ଷସ𝑏ସଶ



Properties of matrix multiplication
• Each entry of AB is the product of a row and a 

column:𝐴𝐵 ௜௝ = 𝑟𝑜𝑤 𝑖 𝑜𝑓 𝐴  𝑡𝑖𝑚𝑒𝑠 (𝑐𝑜𝑙𝑢𝑚𝑛 𝑗 𝑜𝑓 𝐵)
• Each column of AB is the product of a matrix and a 

column:𝑐𝑜𝑙𝑢𝑚𝑛 𝑗 𝑜𝑓 𝐴𝐵 = 𝐴 𝑡𝑖𝑚𝑒𝑠 (𝑐𝑜𝑙𝑢𝑚𝑛 𝑗 𝑜𝑓 𝐵)
• Each row of AB is the product of a row and a 

matrix:𝑟𝑜𝑤 𝑖 𝑜𝑓 𝐴𝐵 =  (𝑟𝑜𝑤 𝑖 𝑜𝑓 𝐴) 𝑡𝑖𝑚𝑒𝑠 𝐵



Properties of matrix multiplication

• For matrices 𝐴,𝐵,𝐶,𝐷,𝐸 and 𝐹,
• Matrix multiplication is associative: (𝐴𝐵)𝐶 = 𝐴(𝐵𝐶)
• Matrix operations are distributive: 𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶 and 𝐵 + 𝐶 𝐷 = 𝐵𝐷 + 𝐶𝐷
• Matrix multiplication is not commutative: Usually𝐹𝐸 ≠ EF
Exception :  
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Norms
To meter the lengths of vectors in a vector space
we need the idea of a norm. 

+→ RF:.

Norm is a function that maps x to a nonnegative real 
number  

A Norm must satisfy following properties:  

0 x,0x   Positivity 1 ≠∀>−

C  and F x,xy   Homogeneit 2 ∈∀∈∀=− ααα x

 Fy x,,yx   inequality Triangle 3 ∈∀+≤+− yx
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Norm of vectors
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The lp-Norm

The lp- Norm for a vector x is defined as (p≥1):

pn
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p
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= 
=

Examples: 
- for p=2 we have the ordinary euclidian norm:

- for p= ∞ the definition is

- a norm for matrices is induced via 

- for l2 this means   :
||A||2=maximum eigenvalue of ATA
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Properties of Matrix Norms

• These induced matrix norms satisfy:
0 if A 0

 for any scalar 

 (triangle inequality)

 for any vector 

A

A A

A B A B

AB A B

Ax A x x

γ γ γ
> ≠

= ⋅

+ ≤ +

≤ ⋅

≤ ⋅



Condition Number
• If A is square and nonsingular, then

• If A is singular, then cond(A) = ∞
• If A is nearly singular, then cond(A) is large.
• The condition number measures the ratio of maximum stretch to 

maximum shrinkage:

1cond( )A A A−= ⋅

1

1

00
max min

xx

Ax Ax
A A

x x

−

−

≠≠

   
⋅ = ⋅      

   



The Gaussian Elimination Method

• The Gaussian elimination method is a technique for 
solving systems of linear equations of any size.

• The operations of the Gaussian elimination method 
are:
1.Interchange any two equations.
2.Replace an equation by a nonzero constant 

multiple of itself.
3.Replace an equation by the sum of that equation 

and a constant multiple of any other equation.



Row-Reduced Form of a Matrix

• Each row consisting entirely of zeros lies below 
all rows having nonzero entries.

• The first nonzero entry in each nonzero row is
1 (called a leading 1).

• In any two successive (nonzero) rows, the 
leading 1 in the lower row lies to the right of 
the leading 1 in the upper row.

• If a column contains a leading 1, then the 
other entries in that column are zeros.



Row Operations

1. Interchange any two rows.

2. Replace any row by a nonzero constant 
multiple of itself.

3. Replace any row by the sum of that row  
and a constant  multiple of any other row.



Terminology for the
Gaussian Elimination Method

Unit Column
• A column in a coefficient matrix is in unit form   if 

one of the entries in the column is a 1 and the 
other entries are zeros.

Pivoting
• The sequence of row operations that transforms 

a given column in an augmented matrix into a 
unit column.



Notation for Row Operations

• Letting 𝑅𝑖 denote the 𝑖-th row of a matrix, we 
write

Operation 1: 𝑅𝑖 ↔  𝑅𝑗 to mean: 
Interchange row 𝑖 with row 𝑗.

Operation 2: 𝑐𝑅𝑖 to mean: 
replace row 𝑖 with 𝑐 times row 𝑖.

Operation 3: 𝑅𝑖 + 𝑎𝑅𝑗 to mean: 
Replace row 𝑖 with the sum of row 𝑖 and 𝑎 times row 𝑗.



• Pivot the matrix about the circled element

Example

3 5 92 3 5
3 5 92 3 5

1 5/3 32 3 5 1 5/3 30 −1/3 −1
Solution: 𝟏𝟑𝑹𝟏 𝑹𝟐 − 𝟐𝑹𝟏



The Gaussian Elimination Method

1. Write the augmented matrix corresponding to 
the linear system.

2. Interchange rows, if necessary, to obtain an 
augmented matrix in which the first entry in   the 
first row is nonzero. Then pivot the matrix about 
this entry.

3. Interchange the second row with any row below 
it, if necessary, to obtain an augmented matrix in 
which the second entry in the second row is 
nonzero. Pivot the matrix about this entry.

4. Continue until the final matrix is in row-reduced
form.



• Matrices are rectangular arrays of numbers that 
can aid us by eliminating the need to write the 
variables at each step of the reduction.

• For example, the system2𝑥 + 4𝑦 + 6𝑧 = 223𝑥 + 8𝑦 + 5𝑧 = 27−𝑥 + 𝑦 + 2𝑧 = 2
may be represented by the augmented matrix2 4 6 223 8 5 27−1 1 2 2

Augmented Matrices

Coefficient 
Matrix [C]

Augmented matrix 
[C|B]



Matrices and Gaussian Elimination
• Every step in the Gaussian elimination method can 

be expressed with matrices, rather than systems of 
equations, thus simplifying the whole process:

• Steps expressed as systems of equations:2𝑥 + 4𝑦 + 6𝑧 = 223𝑥 + 8𝑦 + 5𝑧 = 27−𝑥 + 𝑦 + 2𝑧 = 2
• Steps expressed as augmented matrices:

2 4 6 223 8 5 27−1 1 2 2



2𝑥 + 4𝑦 + 6𝑧 = 223𝑥 + 8𝑦 + 5𝑧 = 27−𝑥 + 𝑦 + 2𝑧 = 2 2 4 6 223 8 5 27−1 1 2 2𝑥 + 2𝑦 + 3𝑧 = 113𝑥 + 8𝑦 + 5𝑧 = 27−𝑥 + 𝑦 + 2𝑧 = 2 1 2 3 113 8 5 27−1 1 2 2𝑥 + 2𝑦 + 3𝑧 = 11        2𝑦 − 4𝑧 = −6−𝑥 + 𝑦 + 2𝑧 = 2 1 2 3 110 2 −4 −6−1 1 2 2𝑥 + 2𝑦 + 3𝑧 = 11        2𝑦 − 4𝑧 = −6        3𝑦 + 5𝑧 = 13 1 2 3 110 2 −4 −60 3 5 13

𝑹𝟏ᇱ = 𝟏𝟐𝑹𝟏
𝑹𝟐ᇱ = 𝑹𝟐 − 𝟑𝑹𝟏
𝑹𝟑ᇱ = 𝑹𝟑 + 𝑹𝟏
𝑹𝟐ᇱ = 𝟏𝟐𝑹𝟐



𝑥 + 2𝑦 + 3𝑧 = 11          𝑦 − 2𝑧 = −3        3𝑦 + 5𝑧 = 13 1 2 3 110 1 −2 −30 3 5 13   𝑥      + 7𝑧 = 11         𝑦 − 2𝑧 = −3      3𝑦 + 5𝑧 = 13 1 0 7 170 1 −2 −30 3 5 13   𝑥      + 7𝑧 = 11         𝑦 − 2𝑧 = −3              11𝑧 = 22 1 0 7 170 1 −2 −30 0 11 22   𝑥      + 7𝑧 = 11         𝑦 − 2𝑧 = −3                   𝑧 = 2 1 0 7 170 1 −2 −30 0 1 2

𝑹𝟏ᇱ = 𝑹𝟏 − 𝟐𝑹𝟐
𝑹𝟐ᇱ = 𝟏𝟐𝑹𝟐

𝑹𝟑ᇱ = 𝑹𝟑 − 𝟑𝑹𝟐
𝑹𝟑ᇱ = 𝟏𝟏𝟏𝑹𝟑
𝑹𝟏ᇱ = 𝑹𝟏 − 𝟕𝑹𝟑



Row Reduced Form 
of the Matrix

   𝑥                = 3         𝑦 − 2𝑧 = −3                   𝑧 = 2 1 0 0 30 1 −2 −30 0 1 2   𝑥            = 3         𝑦      = −3               𝑧 = 2 1 0 0 30 1 0 10 0 1 2
Thus, the solution to the system is 𝑥 =  3, 𝑦 =  1, 

and 𝑧 =  2.

𝑹𝟏ᇱ = 𝑹𝟏 − 𝟕𝑹𝟑
𝑹𝟐ᇱ = 𝑹𝟐 + 𝟐𝑹𝟑



Gaussian Elimination in the case of unique 
solution

• With a full set of 𝑛 pivots, there is only one solution. 
• The system is non singular, and it is solved by 

forward elimination and back-substitution. 



Systems with no Solution

• If there is a row in the augmented matrix 
containing all zeros to the left of the vertical
line and a nonzero entry to the right of the 
line, then the system of equations has no
solution.



Theorem

a. If the number of equations is greater (over-
determined system) than or equal to the 
number of variables in a linear system, then 
one of the following is true:
i. The system has no solution.
ii. The system has exactly one solution.
iii. The system has infinitely many solutions.

b. If there are fewer equations than variables 
(under-determined system) in    a linear 
system, then the system either has no
solution or it has infinitely many solutions.





Consider the three pairs of linear equations
1st pair: 2x - 5y + 4 = 0, 2x + y - 8 = 0
2nd  pair: 4x + 6y = 24, 2x + 3y = 6
3rd pair: x - 2y = 5, 3x - 6y = 15



Inverse matrix
• The inverse of an n by n matrix is another n by n matrix. The inverse of 𝐴 is 

written 𝐴ିଵ (and pronounced “𝐴 inverse”). 

• The fundamental property is simple: If you multiply by 𝐴 and then multiply by 𝐴ିଵ , you are back where you started:

Inverse matrix          If 𝑏 = 𝐴𝑥 then 𝐴ିଵ𝑏 = 𝑥
• Thus 𝐴ିଵ𝐴𝑥 =  𝑥. The matrix  𝐴ିଵ times 𝐴 is the identity matrix. Not all 

matrices have inverses. An inverse is impossible when 𝐴𝑥 is zero and 𝑥 is 
nonzero. Then 𝐴ିଵ would have to get back from 𝐴𝑥 = 0 to x. No matrix can 
multiply that zero vector Ax and produce a nonzero vector x. 

• Our goals are to define the inverse matrix and compute it and use it, when 𝐴ିଵ
exists—and then to understand which matrices don’t have inverses.



Properties : Inverse matrix



Properties : Inverse matrix



Properties : Inverse matrix

𝐴|𝑏
= [GFEA|GFEb];

U = GFEA;
U-1 = A-1 (GFE)-1

A-1 = U-1(GFE)-1



• Given the 𝑛 × 𝑛 matrix 𝐴:

1. Adjoin the 𝑛 × 𝑛 identity matrix 𝐼 to obtain the 
augmented matrix [𝐴 | 𝐼 ].

2. Use a sequence of row operations to reduce [𝐴 | 𝐼 ] to 
the form [𝐼 | 𝐵] if possible.

• Then the matrix 𝐵 is the inverse of 𝐴.

Calculation of ିଵ : The Gauss-Jordan Method



Example

• Find the inverse of the matrix 𝐴 = 2 1 13 2 12 1 2
Solution
• We form the augmented matrix 2 1 1 1 0 03 2 1 0 1 02 1 2 0 0 1



Example
• Find the inverse of the matrix 𝐴 = 2 1 13 2 12 1 2
Solution
• And use the Gauss-Jordan elimination method to reduce it to 

the form [𝐼 | 𝐵]:2 1 1 1 0 03 2 1 0 1 02 1 2 0 0 1 −1 −1 0 1 −1 03 2 1 0 1 02 1 2 0 0 1
1 1 0 −1 1 00 −1 1 3 −2 00 −1 2 2 −2 1

𝑹𝟏 − 𝑹𝟐
−𝑹𝟏𝑹𝟐 + 𝟑𝑹𝟑𝑹𝟑 + 𝟐𝑹𝟏1 0 1 2 −1 00 1 −1 −3 2 00 0 1 −1 0 1

𝑹𝟏 + 𝑹𝟐    −𝑹𝟐𝑹𝟑 − 𝑹𝟐



Example

• Find the inverse of the matrix 𝐴 = 2 1 13 2 12 1 2
Solution
• And use the Gauss-Jordan elimination method to reduce it to 

the form [𝐼 | 𝐵]:

𝑹𝟏 − 𝑹𝟑𝑹𝟐 + 𝑹𝟑
1 0 1 2 −1 00 1 −1 −3 2 00 0 1 −1 0 1

Previous step

1 0 0 3 −1 −10 1 0 −4 2 10 0 1 −1 0 1𝑰𝒏 𝑩𝐵 = 𝐴ିଵ = 3 −1 −1−4 2 1−1 0 1



Finding the inverse of a square matrix
using LU decomposition

The inverse [B] of a square matrix [A] is defined as

How can LU Decomposition be used to find the inverse?

Methods for LU-Decomp:
Doolittle decomposition, Crout decomposition,
Cholesky decomposition, Full/partial pivots,
Cormen (recursive)



Example: Inverse of a Matrix
Find the inverse of a square matrix [A]

Using the decomposition procedure, the [L] and [U] 
matrices are found to be

[ ]















=

112144
1864
1525
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[ ] [ ][ ]
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


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

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
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










==

7000
561840

1525

153765
01562
001

.

.. 
..
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Example: Inverse of a Matrix
Solving for the each column of [B] requires two steps
1)Solve [L] [Z] = [C] for [Z] 
2)Solve [U] [X] = [Z] for [X] 

Step 1:

This generates the 
equations:

[ ][ ] [ ]
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



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





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
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1

z
z
z
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Example: Inverse of a Matrix

Solving for [Z]

( )

( ) ( )
23

5625317650
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Example: Inverse of a Matrix
Solving [U][X] = [Z] for [X]


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Example: Inverse of a Matrix

Using Backward Substitution
So the first column of 
the inverse of [A] is:

( )

( ) 04762.0
25

571.49524.051
25

51

9524.0
8.4

571.4560.156.2
8.4
560.156.2
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7.0
2.3
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Example: Inverse of a Matrix
Repeating for the second and third columns of the 
inverse

Second Column Third Column
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Example: Inverse of a Matrix

The inverse of [A] is

[ ]
















−
−−

−
=−

429.1000.5571.4
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03571.008333.004762.0
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Eigenvalues and Eigenvectors
CS6015/LARP

Ack: Linear Algebra and Its Applications , Gilbert Strang



The Solution of 𝑨𝒙 =  𝝀𝒙
• 𝐴𝑥 =  𝜆𝑥 is a nonlinear equation; 𝜆 multiplies 𝑥. If we could 

discover 𝜆, then the equation for 𝑥 would be linear.
• We could write 𝜆𝐼𝑥 in place of 𝜆𝑥, and bring this term over to the 

left side: (𝐴 − 𝜆𝐼)𝑥 =  0 
• We want a nonzero eigenvector 𝑥. The vector 𝑥 =  0 always 

satisfies 𝐴𝑥 =  𝜆𝑥, but it is useless.
• To be of any use, the nullspace of 𝐴 − 𝜆𝐼 must contain vectors other 

than zero. 
• In short, 𝑨 − 𝝀𝑰 must be singular.



The Solution of 𝑨𝒙 =  𝝀𝒙



The Solution of 𝑨𝒙 =  𝝀𝒙
• Example:

• This is the characteristic polynomial.
• Its roots, where the determinant is zero, are the eigenvalues. 



The Solution of 𝑨𝒙 =  𝝀𝒙
• There are two eigen values, because a quadratic has two roots.
• The values 𝜆 =  −1 and 𝜆 =  2 lead to a solution of 𝐴𝑥 =  𝜆𝑥 or (𝐴 − 𝜆𝐼)𝑥 =  0.



The Solution of 𝑨𝒙 =  𝝀𝒙



The Solution of 𝑨𝒙 =  𝝀𝒙
• The steps in solving 𝐴𝑥 =  𝜆𝑥:

1. Compute the determinant of 𝑨 −  𝝀𝑰. With 𝜆
subtracted along the diagonal, this determinant is a 
polynomial of degree 𝑛. It starts with −𝜆 ௡ .

2. Find the roots of this polynomial. The 𝑛 roots are 
the eigenvalues of 𝐴.

3. For each eigenvalue solve the equation (𝑨 − 𝝀𝑰)𝒙 =  𝟎. Since the determinant is zero, there are 
solutions other than 𝑥 =  0. Those are the 
eigenvectors.



The Solution of 𝑨𝒙 =  𝝀𝒙 (Recap)

• The key equation was 𝐴𝑥 =  𝜆𝑥.
• Most vectors 𝑥 will not satisfy such an equation. 
• They change direction when multiplied by 𝐴, so that 𝐴𝑥 is not a 

multiple of 𝑥. 
• This means that only certain special numbers are eigenvalues, and 

only certain special vectors 𝒙 are eigenvectors.



Example 3. The eigenvalues are on the main diagonal when 𝐴 is 
triangular.

• The determinant is just the product of the diagonal entries.

• It is zero if 𝜆 =  1, 𝜆 = ଷସ  , 𝑜𝑟 𝜆 = ଵଶ
• The eigenvalues were already sitting along the main diagonal.



For a 2 by 2 matrix, the trace and determinant tell us everything:



https://www.geogebra.org/m/KuMAuEnd







Singular Value Decomposition

𝐴 =  𝑈Σ𝑉் is known as the “SVD” or the singular value 
decomposition.

The SVD is closely associated with the eigenvalue-eigenvector 
factorization 𝑄Λ𝑄் of a positive definite matrix.

Any 𝑚 ×  𝑛 matrix 𝐴 can be factored into

The columns of 𝑈 (𝑚 ×  𝑚) are eigenvectors of 𝑨𝑨𝑻 , and the 
columns of 𝑉 (𝑛 ×  𝑛) are eigenvectors of 𝑨𝑻𝑨. 
The 𝑟 singular values on the diagonal of Σ (𝑚 ×  𝑛) are the square 
roots of the nonzero eigenvalues of both 𝐴𝐴் and 𝐴்𝐴.



Singular Value Decomposition
Remark 1. 
• For positive definite matrices, Σ is Λ and 𝑈Σ𝑉் is identical to 𝑄Λ𝑄்.
• For other symmetric matrices, any negative eigenvalues in Λ

become positive in Σ.
• For complex matrices, Σ remains real but 𝑈 and 𝑉 become unitary

(the complex version of orthogonal).

Remark 2.
U and V give orthonormal bases for all four fundamental subspaces:



Singular Value Decomposition

Remark 3. 
Eigenvectors of 𝐴𝐴் and 𝐴்𝐴 must go into the columns of 𝑈 and 𝑉:

• U must be the eigenvector matrix for 𝐴𝐴் . 
• The eigenvalue matrix in the middle is ΣΣ்— which is 𝑚 ×  𝑚 with 𝜎ଵଶ , … ,𝜎௥ଶ on the diagonal.
• From the 𝐴்𝐴 =  𝑉Σ்Σ𝑉் , the 𝑉 matrix must be the eigenvector 

matrix for 𝐴்𝐴.



Singular Value Decomposition

Example 1.
This A has only one column: rank 𝑟 = 1. Then Σ has only 𝜎ଵ  =  3:



Singular Value Decomposition

Example 2.

Now A has rank 2, and 𝐴𝐴் = 2 −1−1 2 with 𝜆 =  3 and 1:

Notice √ 3 and √ 1. The columns of U are left singular vectors (unit 
eigenvectors of 𝐴𝐴் ). 
The columns of V are right singular vectors (unit eigenvectors of 𝐴்𝐴).





Applications of Singular Value Decomposition

Image Processing.
• Suppose a satellite takes a picture, and wants to send it to Earth. 
• The picture may contain 1000 ×  1000 “pixels”—a million little 

squares, each with a definite color. 
• We can code the colors, and send back 1,000,000 numbers. 
• It is better to find the essential information inside the 𝟏𝟎𝟎𝟎 × 𝟏𝟎𝟎𝟎 matrix, and send only that.

In SVD some 𝜎’s are significant and others are extremely small.
If we keep 20 and throw away 980, then we send only the 
corresponding 20 columns of 𝑈 and 𝑉.
The other 980 columns are multiplied in 𝑈Σ𝑉் by the small 𝜎’s that 
are being ignored. If only 20 terms are kept, we send 20 times 2000 
numbers instead of a million (25 to 1 compression).





The conjugate transpose, also known as the Hermitian transpose, of an m × n  
complex matrix A is an n × m matrix obtained by transposing A and applying complex conjugate 
on each entry (the complex conjugate of a + ib being a − i b, for real numbers a and b )

A matrix is full row rank when each of the rows of the matrix are linearly independent and full 
column rank when each of the columns of the matrix are linearly independent. 

For a square matrix these two concepts are equivalent and we say the matrix is full rank if all rows 
and columns are linearly independent. A square matrix is full rank if and only if its determinant is 
nonzero. 

For a non-square matrix with m rows and n columns, it will always be the case that either the rows 
or columns (whichever is larger in number) are linearly dependent. Hence when we say that a non-
square matrix is full rank, we mean that the row and column rank are as high as possible, given the 
shape of the matrix. So, if there are more rows than columns (m > n), then the matrix is full rank if the 
matrix is full column rank. 

The rank of A equals the number of non-zero singular values, which is the same as the number of 
non-zero diagonal elements in Σ in the singular value decomposition A = U Σ V* 





Example 1 



Example 2 




