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using Expectation Maximization 

(EM) Technique
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The Gaussian Distribution
 Univariate Gaussian Distribution
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 Multi-Variate Gaussian Distribution

( ) ( ) ( )






 −−−


= − μxμx

2
1exp

2 π
1μ,x 1T

21 /)|Ν(

mean covariance

mean variance



We need to estimate these parameters (Σ, μ) of a 
distribution:

One method – Maximum Likelihood (ML) Estimation.



Which is MAP, and which one MLE ??



ML Method for estimating parameters
 Consider log of Gaussian Distribution
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 Take the derivative and equate it to zero
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Where, N is the number of samples or data points



Gaussian Mixtures
 Linear super-position of Gaussians
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Number of Gaussians Mixing coefficient: weightage 
for each Gaussian dist.

 Normalization and positivity require:
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 Consider log-likelihood:
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ML does not work here as there is no closed form solution

Parameters can be calculated using  -
Expectation Maximization (EM) technique



Example: Mixture of 3 Gaussians
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Latent variable: posterior prob.

 We can think of the mixing coefficients as prior probabilities 
for the components

 For a given value of ‘x’, we can evaluate the 
corresponding posterior probabilities, called 
responsibilities
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 From Bayes rule

Latent 
Variable N

N where, k
k =π

Interpret Nk as the effective no. of points assigned 
to cluster k.



Expectation Maximization

 EM algorithm is an iterative optimization technique 
which is operated locally

 Estimation step: for given parameter values we can compute the 
expected values of the latent variable.

 Maximization step: updates the parameters of our model based on 
the latent variable calculated using ML method.



EM Algorithm for GMM
Given a Gaussian mixture model, the goal is to maximize the 

likelihood function with respect to the parameters  comprising the means 
and covariances of the components and the mixing coefficients.

1. Initialize the means     , covariances and mixing 
coefficients     , and evaluate the initial value of the log 
likelihood.
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2. E step. Evaluate the responsibilities using the current     
parameter values


=



= K

j
jjj

kkk
k

x

xx

1
),|(

),|()(
μπ

μπγ
N

N



EM Algorithm for GMM
3. M step. Re-estimate the parameters using the current 

responsibilities
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4. Evaluate log likelihood

If there is no convergence, return to step 2.

 
= = 








=
N

1n

K

1k
kknk ),|x(Nln),,|X(pln μππμ



EM Algorithm : Example
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Expectation Maximization
 EM algorithm is an iterative optimization technique 

which is operated locally

Initial 
point

Optimal 
point

 Estimation step: for given parameter values we can compute the 
expected values of the latent variable.

 Maximization step: updates the parameters of our model based on 
the latent variable calculated using ML method.



Other Applications of Latent Variable:

- HMM, PGM, LDA (latent Dirichlet Allocation),  
any mixture models   (e.g. multi-variate Bernoulli);
Bayesian Learning with mixed graph models (DAG, G-DMG etc.) 




