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using Expectation Maximization
(EM) Technique
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The Gaussian Distribution

J Univariate Gaussian Distribution
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J Multi-Variate Gaussian Distribution
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We need to estimate these parameters (2, i) of a
distribution:

One method — Maximum Likelihood (ML) Estimation.
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Which is MAP, and which one MLE ??
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ML Method for estimating parameters

1 Consider log of Gaussian Distribution
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J Take the derivative and equate it to zero
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Where, N is the number of samples or data points



Gaussian Mixtures
J Linear super-position of Gaussians

p(x) = ﬂkzv(x|:ukﬂzk)

k=1
Number of Gaussians

I\/Iixiﬁ% coefficient: weightage
for each Gaussian dist.

Jd Normalization and positivity require:
0 < T < 1, Z T, =

k=1
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J Consider log- |Ike|lh00d
In p(X |u,2,7) = Z In p(x,) = Z ln{z TN (x, Iﬂkazk)}
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ML does not work here as there is no closed form solution

Parameters can be calculated using -
Expectation Maximization (EM) technique



Example: Mixture of 3 Gaussians
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Latent variable: posterior prob.

d We can think of the mixing coefficients as prior probabilities
for the components

J For a given value of ‘x’, we can evaluate the
corresponding posterior probabilities, called
responsibilities



Jd From Bayes rule
7y (x) = p(k |x) = PEOPILTE)
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Interpret N, as the effective no. of points assigned
to cluster k.




Expectation Maximization

d EM algorithm is an iterative optimization technique
which is operated locally

J Estimation step: for given parameter values we can compute the
expected values of the latent variable.

(d Maximization step: updates the parameters of our model based on
the latent variable calculated using ML method.



EM Algorithm for GMM

Given a Gaussian mixture model, the goal is to maximize the
likelihood function with respect to the parameters comprising the means
and covariances of the components and the mixing coefficients.

1. Initialize the means u,, covariances 2 ; and mixing

coefficients 7 ;, and evaluate the initial value of the log
likelihood.

2. E step. Evaluate the responsibilities using the current
parameter values
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EM Algorithm for GMM

3. M step. Re-estimate the parameters using the current
responsibilities
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4. Evaluate log likelihood

In p(X |p,2,n)= Z ln{z 7, N(x, |.”kazk)}

If there is no convergence, return to step 2.



EM Algorithm : Example
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EM Algorithm : Example
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K-means vs GMM

Two representative techniques are k-means and Gaussian Mixture Model (GMM).
K-means assigns data points to the nearest clusters, while GMM assigns data to
the Gaussian densities that best represent the data.
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Hard clustering: a
data pointis
assigned only one

/ _ | cluster,

Soft clustering: a
data pointis
assigned multiple
Gaussians
probabilistically.




Expectation Maximization

J EM algorithm is an iterative optimization technique
which is operated locally

d Estimation step: for given parameter values we can compute the
expected values of the latent variable.

(d Maximization step: updates the parameters of our model based on
the latent variable calculated using ML method.



Other Applications of Latent Variable:

- HMM, PGM, LDA (latent Dirichlet Allocation),
any mixture models (e.g. multi-variate Bernoulli);
Bayesian Learning with mixed graph models (DAG, G-DMG etc.)






