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-10.1; 10.3 - Bayes Net (DGM)



Ridge Regression vs. PCA

hr
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J(w) =+ Y s — (o + W x3))7 + Al w2 (7.32)
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where A 2 o/ and ||w|5 =3 ; wf = w w is the squared two-norm. Here the first term is
the MSEf NLL as usual, and the second term, A = 0, is a complexity penalty. The corresponding

solution is given by

Wridge = (Mp + X X)Xy (7.33)

This technique is known as ridge regression, or penalized least squares. In general, adding
4 (Gaussian prior to the parameters of a model fo encourage them to be small is called #-
regularization or weight decay. Note that the offset term wp is not regularized, since this jost




Now let
X=QR (7.41)

be the QR decomposition of X, where Q is orthonormal (meaning QT Q = QQ! =1I), and
R. is upper triangular. Then

XIX)'=R'Q'QRrR) = (R'R)1=RR? (7.42)

Hence

Wrdee = RRTRTQTy =R7!QF
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If I :» N, we should first perform an SVD decomposition. In particular, let X = USVY be
the SVD of X, where VIV = Iy, UUT = ¥ U =1, and S is a diagonal N x N matrix.
Now let Z = UD be an N x N matrix. Then we can rewrite the ridge estimate thus:

— 1"1-LZTZ + -':"-IJ"-.’ :]'_IZT}'- (7.44)




Wridge = [Ap + X"X]7'XTy i (7.33)

Substituting X = USVT, the SVD decomposition

where U:N XN, S:N XN, V:D XN and
Ul'u =1,,V'v =1,,VVl =1,

Wriage = [Mp + (USV)T(USVH] (USV")"y
= [Al, + VSUTUSVT]"VSUTy
= [AVI VT + VS2VT]"lvsuTy
= [V(AIy + S2)VT]"VSUTy
= V(AL + S2)"vTVsSuTy
= V(AL + S2)"1SUTy

Substituting Z = US, ZT =8sU”, Z'Z =SUTUS = §*
Therefore,
Wridge =V +Z"Z) 1 Z"y . (7.44)



Ridge Regression vs. PCA

« We discuss an interesting connection between ridge
regression and PCA, which gives further insight into why
ridge regression works well. From (7.44), as below:

V(Z'Z+ M) 12y

« Let X = USV! be the SVD of X (data). From Equation

7.44 (Murphy), we have
Wrigge = V(S + AD)7'SUTy (7.45)

 Hence the ridge predictions on the training set are
given by

¥ =XW, g0 = U[SVIV(S® + M)—ls]UT y (7.46)
= USUTy =37_ uS;uly (7.47)



¥ =XW,iq50 = USVIV(SZ 4+ AD)7ISUTy (7.46)

= USU'y = uS;uly (7.47)

where
2

A 2 1 j
2 [S(Se+Al)” S] 0']2+7\ (7.48)

SJ-

- And g; are the singular values of X. Hence
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V= XWyrigge = ? 1 U 02_]”\ ;Fy (7.49)
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« In contrast, the least squares prediction is

D

§ = XW;; = (USVT)(VS~tuTy) = uuly = 2 1ujujTy (7.50)
]=



- If o7 is small compared to 2, then direction u; will not have

much effect on the prediction. In view of this, we define the
effective number of degrees of freedom of the model as
follows:

2
- (7.51)
J 1 0']2 + A

dof(A) =
« When A = 0,dof(A) = D, and as A - o, dof(A) - 0.

« Let us try to understand why this behavior is desirable. It

can be shown that cov [w|D] = ¢2(X"X) ' (Sec. 7.6, Murphy),
if we use a uniform prior for w.

Sec. 7.6: Posterior, of Bayesian linear regression
plw|X,y,07) o< Niw|wy, V)N (¥|Xw, oy ) =Niw|wp, Vi)

1.
Vi Votwg + —V Xy




cov [w|D] = ¢? (XTX)

« Thus the directions in which we are most uncertain about

w are determined by the eigenvectors of this matrix with
the smallest eigenvalues.

« Furthermore, it is known that the squared singular values
ajz are equal to the eigenvalues of X7X. Hence small

singular values g; correspond to directions with high
posterior variance.

« It is these directions which ridge shrinks the most.
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Figure 7.9 Geometry of ridge regression. The likelihood is shown as
an ellipse, and the prior is shown as a circle centered on the origin.

« This process is illustrated in Figure 7.9. The horizontal
w,; parameter is not-well determined by the data (has high
posterior variance), but the vertical w, parameter is well-
determined. Hence w,"“" is close to w4"¢, but w, Tis shifted
strongly towards the prior mean, which is 0.



- In this way, ill-determined parameters are reduced in size
towards 0. This is called shrinkage.

 There is a related, but different, technique called principal
components regression.



« The idea is this: first use PCA to reduce the

dimensionality to K dimensions, and then use these low
dimensional features as input to regression.

However, this technique does not work as well as ridge
in terms of predictive accuracy (Hastie et al. 2001,p70).

 The reason is that in PC regression, only the first K
(derived) dimensions are retained, and the remaining
D — K dimensions are entirely ignored. By contrast,

ridge regression uses a “soft” weighting of all the
dimensions.



Multi-task learning

Sometimes we want to fit many related classification or
regression models. It is often reasonable to assume the
input-output mapping is similar across these different
models, so we can get better performance by fitting all the
parameters at the same time.

In machine learning, this setup is often called multi-task
learning (Caruana 1998), transfer learning (e.g., (Raina
et al.2005)), or learning to learn (Thrun and Pratt 1997).

In statistics, this is usually tackled using hierarchical
Bayesian models (Bakker and Heskes 2003), although there
are other possible methods (see e.g., (Chai 2010)).



Hierarchical Bayes for multi-task
learning

Let y;; be the response of the i*" item in group j, for i = 1: N;
and j=1:]. For example, j might index schools, i might
index students within a school, and y;; might be the test
score.

Or j might index people, and i might index purchase, and
y;jmight be the identity of the item that was purchased.

Let x;;be a feature vector associated with y;;. The goal is to
fit the models p(y;|x;) for all ;.

Although some groups may have lots of data, there is often a
long tail, where the majority of groups have little data.



Thus we can't reliably fit each model separately, but we
don’t want to use the same model for all groups.

As a compromise, we can fit a separate model for each
group, but encourage the model parameters to be
similar across groups.

More precisely, suppose E [y;;|x;;] = g(x{;8;), where g is
the link function for the Generalized Linear Model.

Furthermore, suppose g; ~ N'(B.,¢*I), and that B, ~
N (u, o2D.

In this model, groups with small sample size borrow
statistical strength from the groups with larger sample
Ssize, because the g; s are correlated via the latent

common parents g..



The term ajz controls how much group j depends on the

common parents and the ¢? term controls the strength of
the overall prior.

Suppose, for simplicity, that p = 0, and that ¢/ and o2 are all

known (e.g., they could be set by cross validation). The
overall log probability has the form:

2

logp(DIB) + logp(B) = 3 [logp(D|8,) — "2;]’2*' | -0 9110)

We can perform MAP estimation of f = (f;.,;,B.) using
standard gradient methods.

Alternatively, we can perform an iterative optimization
scheme, alternating between optimizing the g; and the g,;

since the likelihood and prior are convex, this is guaranteed
to converge to the global optimum.

Note that once the models are trained, we can discard g,,
and use each model separately.






