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Ridge Regression vs. PCA 
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Ridge Regression vs. PCA 
• We discuss an interesting connection between ridge 

regression and PCA, which gives further insight into why 
ridge regression works well.  From (7.44), as below:

• Let ୘ be the of (data). From Equation 
(Murphy), we have௥௜ௗ௚௘ ଶ ିଵ ୘

• Hence the ridge predictions on the training set are 
given by ௥௜ௗ௚௘ ୘ ଶ ିଵ ୘୘ j஽௝ୀଵ ௝௝ ୨୘



where ௝௝ ଶ ିଵ ௝௝ ఙೕమఙೕమା ஛
• And 𝜎௝ are the singular values of 𝐗. Hence

௥௜ௗ௚௘ ୨ ఙೕమఙೕమା ஛஽௝ୀଵ ୨୘
• In contrast, the least squares prediction is

௟௦ ୘ ିଵ ୘ ୘ ୨ ୨୘஽௝ୀଵ

௥௜ௗ௚௘ ୘ ଶ ିଵ ୘
୘ j஽௝ୀଵ ௝௝ ୨୘



• If 𝜎௝ଶ is small compared to λ, then direction 𝐮௝ will not have 
much effect on the prediction. In view of this, we define the 
effective number of degrees of freedom of the model as 
follows: ஢ౠమ஢ౠమ ା ஛஽௝ୀଵ

• When λ =  0, dof(λ)  =  𝐷, and as λ → ∞, dof(λ)  →  0.
• Let us try to understand why this behavior is desirable. It 

can be shown that 𝑐𝑜𝑣 𝐰 𝒟 =  𝜎ଶ 𝐗𝐓𝐗 ିଵ (Sec. 7.6, Murphy), 
if we use a uniform prior for .

Sec. 7.6: Posterior, of Bayesian linear regression



• Thus the directions in which we are most uncertain about 𝐰 are determined by the eigenvectors of this matrix with 
the smallest eigenvalues. 

• Furthermore, it is known that the squared singular values 𝜎௝ଶ are equal to the eigenvalues of 𝑋்𝑋. Hence small 
singular values 𝜎௝ correspond to directions with high 
posterior variance.

• It is these directions which ridge shrinks the most.

ଶ 𝐓 ିଵ



Figure 7.9 Geometry of ridge regression. The likelihood is shown as 
an ellipse, and the prior is shown as a circle centered on the origin.

• This process is illustrated in Figure 7.9. The horizontal 𝑤ଵ parameter is not-well determined by the data (has high 
posterior variance), but the vertical 𝑤ଶ parameter is well-
determined. Hence 𝑤ଶ௠௔௣ is close to wෝଶ௠௟௘, but 𝑤ଵ௠௔௣is shifted 
strongly towards the prior mean, which is 0.



• In this way, ill-determined parameters are reduced in size 
towards 0. This is called shrinkage. 

• There is a related, but different, technique called principal 
components regression. 



• The idea is this: first use 𝑃𝐶𝐴 to reduce the 
dimensionality to 𝐾 dimensions, and then use these low 
dimensional features as input to regression. 

• However, this technique does not work as well as ridge 
in terms of predictive accuracy (Hastie et al. 2001,𝑝70). 

• The reason is that in 𝑃𝐶 regression, only the first 𝐾
(derived) dimensions are retained, and the remaining 𝐷 −  𝐾 dimensions are entirely ignored. By contrast, 
ridge regression uses a “soft” weighting of all the 
dimensions.



Multi-task learning
• Sometimes we want to fit many related classification or 

regression models. It is often reasonable to assume the 
input-output mapping is similar across these different 
models, so we can get better performance by fitting all the 
parameters at the same time. 

• In machine learning, this setup is often called multi-task 
learning (Caruana 1998), transfer learning (e.g., (Raina 
et al.2005)), or learning to learn (Thrun and Pratt 1997).

• In statistics, this is usually tackled using hierarchical 
Bayesian models (Bakker and Heskes 2003), although there 
are other possible methods (see e.g., (Chai 2010)).



Hierarchical Bayes for multi-task 
learning

• Let 𝑦௜௝ be the response of the 𝑖௧௛ item in group 𝑗, for 𝑖 =  1 ∶ 𝑁௝
and 𝑗 = 1 ∶ 𝐽. For example, 𝑗 might index schools, 𝑖 might 
index students within a school, and 𝑦௜௝ might be the test 
score. 

• Or 𝑗 might index people, and 𝑖 might index purchase, and 𝑦௜௝might be the identity of the item that was purchased. 

• Let 𝑥௜௝be a feature vector associated with 𝑦௜௝. The goal is to 
fit the models 𝑝(𝑦௝|𝑥௝) for all 𝑗.

• Although some groups may have lots of data, there is often a 
long tail, where the majority of groups have little data. 



• Thus we can’t reliably fit each model separately, but we 
don’t want to use the same model for all groups. 

• As a compromise, we can fit a separate model for each 
group, but encourage the model parameters to be 
similar across groups. 

• More precisely, suppose 𝔼 [𝑦௜௝|x௜௝] = 𝑔(x௜௝்𝛽௝), where 𝑔 is 
the link function for the Generalized Linear Model. 

• Furthermore, suppose 𝛽௝ ∼  𝒩(𝛽∗,𝜎௝ଶ𝑰), and that 𝛽∗ ∼𝒩(𝜇,𝜎∗ଶ𝑰). 
• In this model, groups with small sample size borrow 

statistical strength from the groups with larger sample 
size, because the 𝛽௝ ’s are correlated via the latent 
common parents 𝛽∗. 



• The term 𝜎௝ଶ controls how much group 𝑗 depends on the 
common parents and the 𝜎∗ଶ term controls the strength of 
the overall prior.

• Suppose, for simplicity, that 𝝁 =  𝟎, and that 𝜎௝ଶ and 𝜎∗ଶ are all 
known (e.g., they could be set by cross validation). The 
overall log probability has the form:

• log𝑝 𝒟 𝛽 + log𝑝 𝛽 = ∑ [௝ log𝑝 𝒟௝ 𝛽௝ − ఉೕି ఉ∗ మଶఙೕమ ]  − | ఉ∗ |మଶఙೕమ       (9.110)
• We can perform 𝑀𝐴𝑃 estimation of 𝛽 =  (𝛽ଵ:௃ ,𝛽∗) using 

standard gradient methods. 

• Alternatively, we can perform an iterative optimization 
scheme, alternating between optimizing the 𝛽௝ and the 𝛽∗; 
since the likelihood and prior are convex, this is guaranteed 
to converge to the global optimum. 

• Note that once the models are trained, we can discard 𝛽∗, 
and use each model separately.




