Pattern

Classification



An Example of Classification

« “Sorting iIncoming Fish on a conveyor
according to species using optical sensing

Sea bass
Species

Salmon



— Some properties that could be possibly used to
distinguish between the two types of fishes is

\
* Length
e Lightness
G > Features
* Width
 Number and shape of fins
* Position of the mouth, etc... =

— This is the set of all suggested features to explore for use
in our classifier!

Feature is a property (or characteristics) of
an object (quantifiable or non quantifiable) which
is used to distinguish between (or classify) two
objects.



Feature vector

* A Single feature may not be useful always for
classification

A set of features used for classification form a feature
vector

Lightness Width



Keature space

The samples of input (when represented by their features) are
represented as points in the feature space

If a single feature is used, then work on a one- dimensional feature
space.

0 ——0 000 0 oo o —©

v

Point representing samples

* If number of features is 2, then we get points in 2D-
space as shown in the next slide.

 We can also have an n-dimensional feature space
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Decision boundary in one-dimensional case with two
classes.

v

Decision boundary in 2 (or 3)
dimensional case with three
classes




F2

F1

Sample points in a two-dimensional feature space



Some Terminologies:

Pattern

Feature

Feature vector

Feature space

Classification

Decision Boundary

Decision Region

Discriminant function
Hyperplanes and Hypersurfaces
Learning

Supervised and unsupervised
Error

Noise

PDF

Baye’s Rule

Parametric and Non-parametric approaches



Decision region and Decision Boundary

Our goal of pattern recognition is to reach an optimal
decision rule to categorize the incoming data into their
respective categories

The decision boundary separates points belonging to one
class from points of other

The decision boundary partitions the feature space into
decision regions.

The nature of the decision boundary is decided by the
discriminant function which is used for decision. Itis a
function of the feature vector.



Multiple classes

Now consider the extension of linear discriminants to K >2
classes. We might be tempted be to build a K-class discriminant by
combining a number of two-class discriminant functions. However,
this leads to some serious difficulties (Duda and Hart, 1973).

Consider the use of K—1 classifiers each of which solves a
two-class problem of separating points in a particular class C, from
points not in that class. This is known as a one-versus-the-rest
classifier.

An illustration only follows; solutions follow later.



not Cs

Figure 4.2 Attempting to construct a K class discriminant from a set of two class discriminants leads to am-
biguous regions, shown in green. On the left is an example involving the use of two discriminants designed to
distinguish points in class C,. from points not in class C.. On the right is an example involving three discriminant
functions each of which is used to separate a pair of classes C, and C;.



Hyper planes and Hyper surfaces

* For two category case, a positive value of discriminant
function decides class 1 and a negative value decides the
other.

e If the number of dimensions is three. Then the decision
boundary will be a plane or a 3-D surface. The decision
regions become semi-infinite volumes

e [If the number of dimensions increases to more than three,
then the decision boundary becomes a hyper-plane or a
hyper-surface. The decision regions become semi-infinite
hyperspaces.



Learning

The classifier to be designed is built using input samples
which is a mixture of all the classes.

The classifier learns how to discriminate between samples
of different classes.

If the Learning is offline i.e. Supervised method then, the
classifier is first given a set of training samples and the
optimal decision boundary found, and then the
classification is done.

If the learning is online then there is no teacher and no
training samples (Unsupervised). The input samples are
the test samples itself. The classifier learns and classifies at
the same time.



Error

 The accuracy of classification depends on two
things

— The optimality of decision rule used: The central task is
to find an optimal decision rules which can generalize to
unseen samples as well as categorize the training samples
as correctly as possible. This decision theory leads to a
minimum error-rate classification.

— The accuracy in measurements of feature vectors: This
inaccuracy is because of presence of noise. Hence our
classifier should deal with noisy and missing features too.



Classifier Types

Statistical Syntactic Neural

Categories of Statistical Classifiers:

e Linear
e Quadratic
e Piecewise

e Non-parametric



Parametric Decision making (Statistical) - Supervised

Goal of most classification procedures is to estimate the probabilities
that a pattern to be classified belongs to various possible classes, based on the
values of some feature or set of features.

In most cases, we decide which is the most likely class. We need a
mathematical decision making algorithm, to obtain classification.

Bayesian decision making or Bayes Theorem

This method refers to choosing the most likely class, given
the value of the feature/s. Bayes theorem calculates the probability
of class membership.

Define:
P(w;) - Prior Prob. for class w;; P(X) - Prob. (Uncondl.) for feature vector X.

P(w; |X) - Measured-conditioned or posteriori probability

P(X | w;) - Prob. (Class-Condnl.) Of feature vector X in class w,



Bayes Theorem: P(w, |}) x P(X | WQP(Wi)
P(X)

P(X) is the probability distribution for feature X in the entire
population. Also called unconditional density function (or evidence).

P(w;) is the prior probability that a random sample is a
member of the class C..

P(X | w;) is the class conditional probability (or likelihood)
of obtaining feature value X given that the sample is from class w..
It is equal to the number of times (occurrences) of X, if it belongs to
class w;.

The goal is to measure: P(w; | X) -
Measured-conditioned or posteriori probability,

from the above three values.

P(X]w)
This is the Prob. of any vector X
being assigned to class w,.

X, P(X)



Take an example:

Two class problem:
Cold (C) and not-cold (C’). Feature is fever (f).

Prior probability of a person having a cold, P(C) = 0.01.

Prob. of having a fever, given that a person has a cold is,
P(f|C) = 0.4. Overall prob. of fever P(f) = 0.02.

Then using Bayes Th., the Prob. that a person has a cold, given

that she (or he) has a fe;g(rés|:f) 5 P(f | C)P(C) < 04*0.01 287
Not convinced that it works? P(f) 0.02 :
let us take an example with values to verify:

Total Population =1000. Thus, people having cold = 10. People having
both fever and cold = 4. Thus, people having only cold = 10 - 4 = 6.
People having fever (with and without cold) = 0.02 * 1000 = 20.
People having fever without cold = 20 - 4 = 16 (may use this later).

So, probability (percentage) of people having cold along with fever,
out of all those having fever, is: 4/20 = 0.2 (20%).
IT WORKS, GREAT



A Venn diagram,
illustrating the

two class,

one feature problem.

Probability of a joint event - a sample comes from class C and
has the feature value X:

P(C and X) = P(C).P(X|C) = P(X).P(C|X)
= 0.010.4 = 0.02*0.2



Also verify, for a K class problem:
P(X) = P(w,)P(X|w;) + P(w,)P(X]|w,) + ....... + P(w,)P(X|w,)

Thus: e
P(X |w,)P(w,)

P(Wi |X): P(W1)P(X|W1)+P(W2)P(X|W2)+"“+P(Wk)P(X|Wk)

With our last example:
P(f) = P(C)P(f|C) + P(C")P(f|C’)

= 0.01 *0.4 + 0.99 *0.01616 = 0.02

Decision or Classification algorithm according to Baye’s Theorem:

(w; if p(X w)p(w,) > p(X |w,) p(w,)
W, 1f p(X [w,)p(w,) > p(X |w, ) p(w,)

Choose -+




Errors in decision making:

Let.d=21,C=2,
P(C,) = P(C;) = K; 1
x—,u.

Xl.Gr )= ex ’
p(x|C)= e pl— (

0.07

0.06

)2]D.D5 .

0.04

Bayes decision rule: o

Choose C, , if P(x|C,) > P(x]|C,) oozt

0.01 -

This gives (O(, and hence the , , ,
0 ' - ! — ' S

two decision regions. 10 20 30 | 10 50 60
“‘1 (94 “‘2 X%

Classification error (the shaded region — minimum of the two curves):

P(E) = P(Chosen C,;, when x belongs to C,) +
P(Chosen C,, when x belongs to C,)

- PG [P(ICHAY+P(C) [ P(rIC)dy




Class 1 Class 2 Class 3 Class 4 Class 5

N/
A N : I\

u u u u u

1 2 3 4 5
Feature , £ .

Normal distributions of featute measurement for a S-class problem, equal variance.

A minimum distance (NN) supervised classifier

Rule: Assign X to R;, where X is closest to ..



An example of 2-D DRs:
R1 and R2; with a non-linear DB.

LRI o
\\v:-;f Decision Boundary o02s|

An example of 1-D DRs:
R1 and R2.




Decision based on
arbitrary Posteriors,
for an example:
Apples

Vs. Oranges.

g (x)= P(w. [x)

gx)= plxiwPw)
g P(xiw; JP(w)

Commonly used Discriminant functions
based on Baye’s decision rule:
Josi 4 - 2,%)= p(xiw, JP(w)

gX)= In p(xiw,) + In P(w;)



Some examples of dense distribution of instances,

with non-linear decision boundaries
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K-means Clustering (unsupervised)

Given a fixed number of k clusters, assign observations to
those clusters so that the means across clusters for all
variables are as different from each other as possible.

Input

— Number of Clusters, k

— Collection of n, d dimensional vectors X; 5 i=1,2,...,n
Goal: find the k mean vectors U;, L), ..., lU;

Output
— K x n binary membership matrix U where

s

1 1f x; € G;

0 else
& Gj, =1, 2, ..., kK represent the k clusters

U;; = -




If n is the number of known patterns and c the
desired number of clusters, the k-means algorithm is:

Begin

initialize n, ¢, U,;,lU,,..,U,(randomly
selected)

do
l.classify n samples according

to nearest U,

2.recompute .

until no change in LU,

return U,, MU,, .., M,
End




Classification Stage

 The samples have to be assigned to clusters in order to
minimize the cost function which is:

i ZJ Z 2% - MH

=1 | k,x,€G;

* This is the Euclidian Distance of the samples from

its cluster center; for all clusters this sum should
be minimum

» The classification of a point x, is done by:

PR 1 P N PN R Y

kO otherwise




Re-computing the Means

 The means are recomputed according to:

1 [ )
=l Dx
el

 Disadvantages

 What happens when there is overlap between classes...

that is a point is equally close to two cluster centers......
Algorithm will not terminate

* The Terminating condition is modified to “Change in

cost function (computed at the end of the Classification)
Is below some threshold rather than 0”.



An Example

* The no of clusters is 1l *
two in this case. ] # %
. . % ¥ -
* But still there is £ LA .

some overlap

#¥ dimension

Membership Matrix U

Point 4 7 14
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p(x)= alr expl— 1(’“ £y

Bivariate Normal Density:

Normal Density:

] X—fy 2 2P (- )y=Hy) Y=l
2(1—p§y)[( o ) 0.0, L o, )
2
270,0,,/(1- p2)
# - Mean; o - S.D.; p,, -Correlation Coefticient

Visualize p as equivalent to the orientation of the 2-D Gabor filter.

n
For x as a discrete random variable, E()C) 2 Z xiP(xi) 2K lux

the expected value of x:

|
e

p(x,y) =

E(x) is also called the first moment of the dlstrlbutlon

The kth moment is defined as: E(X ) Z ka(X )

P(x;) is the probability of x = x..



Multi-variate Case: X=[x; X, ...... Xql" H
Mean vector: My
Covariance matrix (symmetric): ;Ll =E(X)=
_0.11 Op - - O-ld_ 0'12 O, . . Oy
Ol 8%y o Ry Oy, 0-22 -+ Oy My
> = =
Ou O4p - - Oy | |0y Oy . . 0'5 g

d-dimensional normal density is:

D> x —
Bl 2t saepl orecie e ok
Jdet()(27)" 2

1

5 Jdet(2)(27)"

1
eXp[_EZ(xi _/ui)ng (xj _:uj)]




MBS R e Ol e
G et VR © e o e ey

Jdet(E)(27)’ 2
1 1
- Jdet(x)27)" e 2112(% il

where, s;; is the i-jth component of > (the inverse of covariance matrix X).

Special case, d = 2; where X = (x y)T; Then: /Ll i (ﬂx]

and 2 2 ,Lly
Z A GX ny = O-x p Xy GX Gy
#E D b A 2
O-xy O-y P Xy O, O-y O-y

Can you now obtain this,
as given earlier:

1 [(X—IUX )2_2pxy (x_/ux)(y_;uy)_i_

y_/uy

8_2(1—10%}) Oy O-xo-y ( 9

p(x,y) =

2700, \/ (1-p5)



O, O 4 o, Oy Oy
2
o 0,4 o, O, O,y
I
O, O 4u 101y Oyy O,

d(X) =

-3

U=EX)=

(X -W)'Z,(X -,

H
H;

M,

Contours have constant density
of the distant term (d=2):

The contours are lines of constant Mahalanobis distance (determined

by the matrix X), and are quadratic functions.

The contours of constant density may also be hyper-ellipsoids (non-

diagonal ) of constant Mahalanobis distance to LL.
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Diagonal covariance; ( TN )
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[.“(/ r.. H 'HI] Diagonal covariance;
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S — 0 Remember,
y P ey T asymmetric and oriented
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Read about:
T-SNE plot

Parzen window







Decision Regions and Boundaries

A classifier partitions a feature space into class-labeled
decision regions (DRs).

If decision regions are used for a possible and unique class
assignment, the regions must cover R9 and be disjoint (nhon-
overlapping. In Fuzzy theory, decision regions may be overlapping.

The border of each decision region is a Decision Boundary (DBs).

Typical classification approach is as follows:

Determine the decision region (in RY) into which X falls, and
assign X to this class.

This strategy is simple. But determining the DRs is a
challenge.

It may not be possible to visualize, DRs and DBs, in a general
classification task with a large number of classes and higher feature
space (dimension).



Classifiers are based on Discriminant functions.

In a C-class case, Discriminant functions are denoted by:
g(X),i=1,2,...,C.

This partitions the RYinto C distinct (disjoint) regions, and the
process of classification is implemented using the Decision Rule:

Assign X to class C,, (or region m), where: |G (EX) = o (CA) NG == 1.

Decision Boundary is defined by the locus of points, where:
g, (X)=g/(X),k#l

Minimum distance (also NN) classifier:

Discriminant function is based on the distance to the class mean:

gl(X)=“)5—ﬂf ; gz(X)=H7(—!Z

This does not take into account
class PDFs and priors.




Remember Baye's: P(w, |}) 1 P(X | WQP(Wi)
P(X)

Consider
discriminant function as: %l'-r?{?] =1In P[H|Wi.1' + In F(w;)

and class-conditional Prob.1 as: (X o )TZ_I (X iy )
PX W)= ke et da
Jdet(Z,)(27)’ :

g.(x) =

Many cases arise, due to the varying nature of X:
e Diagonal (equal or unequal elements);

o Off-diagonal (+ve or —ve).



Let the discrimination function for the ith class be:
g,(X)=P(C, | X), andassume P(C,)=P(C,),Vi, j;i # j.

Remember, multivariate Gaussian density?

1 (X —p) Z(X = p)
gi(X):P(X|Ci):\/d ()2 )d exp[— 5
et(Z,)(27
Define: | (X_ﬂl-)Tzi_l(X_ﬂl-)
Gi(X) =y 10g[P(X| Ci)] =10g[ 1o
Jdet(Z,)(27)’ 2

Ny,
=k.d, +q

Thus the classification is now influenced by the square

distance (hyper-dimensional) of X from |i;, weighted by the 1.
Let us examine: — 2

di =(X—p) (X -p.)

This quadratic term (scalar) is known as the
Mahalanobis distance (the distance from X to |; in feature space).




e

di =(X—p) T (X - p.)

For a given X, some G_,(X) is largest where (d_)? is the
smallest, for a class i = m (assign X to class m, based on NN Rule) .

Simplest case: Di—= I, the criteria becomes the Euclidean
distance norm (and hence the NN classifier).

This is equivalent to obtaining the mean |,,, for which X is
the nearest, for all ||; The distance function is then:

5D
di =|X-pu, "= XTX-2u" X +u" 1 (all vector notations)
Thus, G.(X)=d /2=(X"X)/2—u' X +(u' 1)/2

LT

=, X + W Neglecting the class-invariant term.

T
T U U This gives the simplest
where, @ = . and @, =—"—"" |inear discriminant function

2 or correlation detector.



The perceptron (ANN) built to form the linear discriminant function

X1
X2
- O(X)
O(X)= (Z Wixi) T W
X Wio l

View this as (in 2-D space):




The decision region boundaries are determined by solving :
= : % B T o
G,(X) =G, (X), which gives : (@ —@; )X + (@, —®,,) =0

This is an expression of a hyperplane separating the decision
regions in RY, The hyperplane will pass through the origin, if:

W,y = W,

Generalized results (Gaussian case) of a discriminant function:

1 ()" 2 (X =)

G,(X)=log[P(X | C;)] =log| ]
Jdet(Z,)(27) 2
1 T -1 d 1
= (X =) E (X = ) = () log2m) - log(E)

The mahalanobis distance (quadratic term) spawns a nhumber
of different surfaces, depending on X1, It is basically a vector
distance using a -1 norm. It is denoted as: HX ﬂ 2

l

i




Make the case of Baye’s rule more general for class assignment.
Earlier we has assumed that:

g,(X)=P(C,| X), assuming P(C,)=P(C,),Vi, j;i # J.
Now, G, (X) =log[P(C, | X).P(X)]=log[ P(X | C,)]+log[P(C))]
1 (X =) 2, (X =)
[ - +log[ P(C))]
Jdet(Z,)(27)° 2

1 8 d 1
S Gl p) T (X —p)— (iostan Frelogl) el K40,

1 & 1 Neglecting the
- _E(X B /Ul-)Tzi (X — ’ui) _Elog(zi) +1og[ P(C;)] constant term

Simpler case: 2.; = ¢°I, and eliminating the class-independent bias,

we have:
G/(X) =~ (X ) (X —) + og[P(C))]
02

These are loci of constant hyper-spheres, centered at class mean.
More on this later on.....

G,(X) = log




If 2 is a diagonal matrix, with equal/unequal c;2:

o2 0
0 o,
0O O

0
0

o,

and Y.

Considering the discriminant function:

G,(X) == (X~ ) E (X —,) -

1

/o

%f

5 log(zi) By log[P(Ci)]

1
o;

This now will yield a weighted distance classifier. Depending
on the covariance term (more spread/scatter or not), we tend to put
more emphasis on some feature vector components than the other.

Check out the following:
This will give hyper-elliptical surfaces in R9Y, for each class.

It is also possible to linearise it.




More general decision boundaries

Take P(C;,) = K for all i, and eliminating the class independent

terms yield:
G(X)=(X-p)' T (X -p.)

—52

di =(X ) TN X - ) =—X"Z] X + 20 X - i T
2 1 :

Gl (X) - (2 I,LLZ)TX e 2,UZTZ I,Lll as 2. =2, and are symmetric.

Thus, G,(X)=w' X+w,

|
o a1 @ T~-1
where @, =X 1, and @, __Eﬂi XU,
Thus the decision surfaces are hyperplanes and decision

boundaries will also be linear (use G;(X) = G;(X), as done earlier)

Beyond this, if a diagonal 2 is class-dependent or off-diagonal terms
are non-zero, we get non-linear DFs, DRs or DBs.



The discriminant function (DF) for linearly separable classes is:
e
g, (X)=w X+a,

where, ®; is a dx1 vector of weights used for class i.

This function leads to DBs that are hyperplanes. It's a point in

1D, line in 2-D, planar surfaces in 3-D, and ....... -
X
3-D case:
(w,,w,)| x, |=0 Iis a plane passing through the origin.

\ 43 > ooy =
In general, the equation: C()T (X e Xd) — O; => (()TX —d =0

represents a plane H passing through any point (position vector) X,.

This plane partitions the space into two mutually exclusive regions,
say R, and R,. The assignment of the vector X

(o .
to either the +ve side, or >0 if XeR
—ve side or along H, et r .
can be implemented by: (()TX —d=0 if Xe H

<0 it XeR



41.1 Two classes

The simplest representation of a linear discriminant function is obtained by tak-
ing a linear function of the input vector so that

y(x) = W Lx 4+ wg (4.4)

where w 1s called a weight vector, and wq 1s a bias (not to be confused with bias in
the statistical sense). The negative of the bias 1s sometimes called a threshold. An
input vector x is assigned to class C; if y(x) = 0 and to class C, otherwise. The cor-
responding decision boundary is therefore defined by the relation y(x) = 0, which
corresponds to a (D — 1)-dimensional hyperplane within the ID-dimensional input
space. Consider two points x, and xp both of which lie on the decision surface.
Because y(xa ) = y(xp) = 0, we have w'(x, —xg) = 0 and hence the vector w is
orthogonal to every vector lying within the decision surface, and so w determines the
orientation of the decision surface. Similarly, if x 1s a point on the decision surface,
then y(x) = 0, and so the normal distance from the origin to the decision surface is
given by

wlx Wo

(4.5)

Iwll — lwll’

We therefore see that the bias parameter wy determines the location of the decision
surface. These properties are illustrated for the case of ) = 2 in Figure 4.1.




Figure 4.1 lllustration of the geometry of a
linear discriminant funciion in two dimensions.
The decision surface, shown in red, is perpen-
dicular to w, and its displacement from the
origin is confrolled by the bias paramefer wo.
Also, the signed orthogonal distance of a gen-
eral point x from the decision surface is given
Dy y(x)/ ||w.




An alternative is to introduce K (K — 1)/2 binary discriminant functions, one
for every possible pair of classes. This 1s known as a one-versus-one classifier. Each
point is then classified according to a majority vote amongst the discriminant func-
tions. However, this too runs into the problem of ambiguous regions, as illustrated
in the right-hand diagram of Figure 4.2.

We can avoid these difficulties by considering a single A -class discriminant
comprising K linear functions of the form

UR(X) = Wi X + Wi (4.9)

and then assigning a point x to class Cy, if y.(x) > y;(x) for all j # k. The decision
boundary between class Cj, and class C; is therefore given by yi.(x) = y;(x) and
hence corresponds to a (D — 1)-dimensional hyperplane defined by

(Wi — w;) ' x + (wpo — wjg) = 0. (4.10)

This has the same form as the decision boundary for the two-class case discussed in
Section 4.1.1, and so analogous geometrical properties apply.




A relook at,

Linear Discriminant Function g(X):

Orientation of H is determined by .

Location of H is determined by d.

A

H is a hyperplane for d > 3.

N

W,

HI

The complementary role of
a sample 1n parametric space:

)

+ve side, R,

XTW=0

e
y—

-ve side, Rn\

Pattern/feature Space

' The figure shows a 2D representation.
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LMS learning Law in BPNN or FFNN models

Read about perceptron

Xz vs. multi-layer feedforward network
> O(X)
we+n X, i X, <0
e W, if X[W, >0
N, 18 the learning rate parameter
X4 Wio A
W;

Xk\

Wi

| We+n X, if X, eX, and X W, <0
o W,-nX, if X,eX,and X W, >0




W, +n X, if X,eX, and X, W <0
W,-nX, if X,eX,and X W, >0

n, decreases with each iteration UZ% :{




In case of FFNN, the objective is to minimize the error term:

A

o — LMS Learning Algorithm:

VAN

AW, =ne, X,




—1 : : : -1 : : :
-1 0.5 0 0.5 1 -1 —0.5 0 0.5 1

Filgure 4.7 lllustration of the convergence of the perceptron learning algorithm, showing data peints from two
classes (red and blue) in a two-dimensional feature space (g1, ¢2). The top left plot shows the initial parameter
vector w shown as a black arrow together with the corresponding decision boundary (black line), in which the
arrow points towards the decision region which classified as belonging to the red class. The data point circled
in green is misclassified and so its feature vector is added to the current weight vector, giving the new decision
boundary shown in the top right plot. The boftom left plot shows the next misclassified point to be considered,
indicated by the green circle, and its feature vector is again added to the weight vector giving the decision
boundary =shown in the bottom riaht olot for which all data ooints are comactly classifiod.



Lets look at Bishop chap 5;

Start Sec. 4.1.7, pp 192.



MSE error surface (in case of multi-layer perceptron):

¢, =%[dk ~ X W =E/2—-P'W+Q1/2W'RW.

P' =E[d,X/];

R=E[X X/]1=E[




Effect of class Priors — revisiting DBs in a more general case.

P(X | w)= p(w | Ty = PE1WIPOR)
P(X)

| ol XA E (X - 1,
Jdet()(27)° 2

glf}{j = In ]::[:-{|wij + In Flw;)

9,(x) = —{x —p) 2lx — ) —gl T - 1L142| + In Plw;)

CASE A. — Same diagonal X, with identical diagonal elements.

Canceling in class-invariant terms

g:(X)=— [(X 1) (X = )]+ In P(w,)

2 2
(X' X =24 X+ 1]+ 1In P(w,)

g,-(X)—2 :



~1
(X) =
g.(X) S

Thus, g.(X)=w X +w,

[(X/X —2u X + 1 1.1+ 1n P(w))

T
where . :%2 anda)i():_gi lei—l—lIlP(Wi)
O

The linear DB is thus: g, (X)=g,(X),k #/
whichis: (@, —w) )X + (@, ~ @) =0;

Prove that the 2"d constant term: !
(W — @) = (@, — @) X,; Where

My — 1 In P(@,)
2
e~ (@)

1
X, =5(uk+ﬂ,)—02

Thus the linear DB is:

wi(X-X,)=0;

where, W = W, — U, Nothing new,
seen earlier



CASE — A. — Same diagonal 2. with identical diagonal elements (Contd.)

Linear DB:
W' (X-X,)=0;
where, W =u, — /1,

o A P S P(w,)
>
el P@)

1
X, =§(:uk +4)=0°

Festure X
04 .
Pl )
A
1
decisiond 93 : decision B2
boundany : boundary
I : ]
1
. | oz : ]
| P(ve)- LI+ ﬁgﬂ F || PO ]
i 0.3 |- : 0.1
; ] o : ]
| s [ ] 1
] 1
:. e ] " i ..-Fl-""lr i "'“-a:. i
i pp B g -6 -4 2R1 D z 1 Rp © &
Feature ¥
RN I E
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decision
+~  boundary




CASE — B. — Arbitrary >, but identical for all class.
=7 &
gi(X) :7[(X_ﬂi)Tz I(X—,ul.)]+1nP(wl.)

Removing the class-invariant quadratic term:

&) =l 4 () X +1n POw)

Thus, g.(X)=w' X+w,

where @ =X and @,, = —% (X +1n P(w),)
The linear DB is thus: g, (X)=g,(X),k #/
whichis: (@, — @ )X +(®,,—®,) = 0;
(w,,—w,)=(w-w,)" X,; where

My — K 1 P(@,)
(=)' 27 (1, — 1) P(w)

& Prove it.

|
X, zz(ﬂk +:Uz)_



Thus the linear DB is: JJ/' (X — X)) =0;

1 where, W =w,-®w, where @ :Z_lﬂi
Thus, W =2 (U, — I,);

The normal to the DB, "W", is thus the transformed line
joining the two means.

The transformation matrix is a symmetric X ..

The DB is thus -
a tilted (rotated) vector joining the two means.

Let > (2-D) be diagonal, with non-identical diagonal elements: 0;and O,

A

Then, W, = ;

d =2case. Directionof DB =

v




Thus the linear DB is: WT(X_XO) =0;
where, W=w, —w, Wwhere @, = D y78
Thus, W =X"(u, — 1t,);

Special case:

Let, > (2—D) be arbitrary, but with diagonal elements (=1)._

Solve for W in this case, and compare with the diagonal X case.



Feature

2

Feature 2

Incre 52 decreasing 51
Fea 1

Diagonal X
in all cases.

Increasing 51 and decreasing 52

Feaiure 1

Feature 2

Increasing o, and decreasing o,
Feature 1  *,

]

. — E

Feature 2

Increasing 51 and decreasing s2
Feature 1




Feature 2

in 2 are both

Covariance is 0.8

Feature 1

Feature 2

TETTTT S, T TET T T

Covariance is -0.39
Feature 1

in all cases

Diagonal elemgnts

D L

Covariance is 0.601(
Feaiure 1

Feature 2
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P(w1)=0.5 "

elliptical contour
lines.




PW1)=08.. . P(w2)=0.1

Point P is actually closer (in the
Euclidean sense) to the mean for the
Orange class.

The discriminant function evaluated e
at P is smaller for class "apple’ than it =R
is for class 'orange’.

$
apples

Decision
5 Boundary

weight

s = I‘z oranges

 — -



CASE C. — Arbitrary 3. all parameters are class dependent.

—1 Tt —1
gi(X):T[(X_lui) 2, (X_;ui)]_Tln

Zi

+In P(w,)

Thus, o.(X)=X'WX+w' X +®,;
gl I I 10

where W, =—X;

a2
w =X 1 and
Wiy = _%ﬂiTzi_llui _%ln‘zi‘ +1n P(w,)

The DBs and DFs are hyper-quadrics. g, (X)= g, (X),k#1

We shall first look into a few cases of such surfaces next.



Example [Duda, Hart]:

Draw and Visualize (qualitatively)
the iso-contours

Get expression of DB:

Assume; P(w,) = P(w,) = 0.5;




Quadratic Decision Boundaries

In RY with X = (X4, X5, ...,X4)T, consider the equation:

wa +Z ZW XX +wa +w =0

i=l j=i+l

The above equation is defined by a quadric discriminant
function, which yields a quadric surface.

If d=2, X = (Xx;, X,)T equation (1) becomes:

2 2 #r



Special cases of equation:

2 2 £

Case 1:

W, = W,, = W,, =0; Eqn. (2) defines a line.
Case 2:

defines a circle.

Case 3:

W, =W,, =1; W,, = W, = W, = 0; defines a circle whose center is at the origin.
Case 4:

W,, = W,, = 0; defines a bilinear constraint.
Case 5:

w,, = W,, =W, = 0; defines a parabola with a specific orientation.
Case 6:

w, Z0,w, #0,w, Zw,;w, =w, =w, =0
defines a simple ellipse.

Selecting suitable values of w;’s, gives other conic sections; Hyperbolic ??

For d > 3, we define a family of hyper-surfaces in R9.



wa +Z Zw XX, +wa +w =0 .1

=l Jj=i+l
In the above equation, the total number of parameters is: ?2?
2d +1 +d(d-1)/2 =

Organize these parameters, and manipulate the equation to obtain:

}TWX+WT}+(00 =0 .3

has d terms, has term, and is a matrix as:
w., 1f1=]

1l

(d2-d) non-diagonal terms of the matrix W, @, =51 e
is obtained by duplicating (split into two parts): sz’j 1f 1# ]
d(d-l)/z Wijs' >

In equation 3, the symmetric part of matrix W, contributes to
the Quadratic terms. Equation 3 generally defines a
hyperhyperboloidal surface.

If W=1/0, we get a hyper-spheres/planes.



}TW}+WT}+(()O =0

i R (X—,ul.)TZ_l(X—,ul.) =—XTZ_1X—I—2/11.TZ_1X—ILLZ.TZ_I,LLZ.

Example of linearization:

g(X)=x,—x"—-3x,+6=0
To Linearize, let x; = x,2. Then:
g(X)=x,—x,=3x,+6=W X+w
where, X =[x,,x,,x,]"

and W' =[-3,1,—1]



cASE - C. ArbitrawZ all parameters are class dependent — contd..

Ml [(X 1) (X~ 1) 21
— ]

Thus, gl.(X)zX "WX+o'X+w,; where W, = : — >

w ="'y and w,= —% wx'u —%ln|2| +1n P(w.)

0.5 16

P{w|x) | | -"Iﬁ' \ |
03 14} } un
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Gk =0 OO s
P =P, =0;

X X, 't Yoo
Hy <Hys B = 15

Hyperbolic Delelsion boundal"y formed when
W1 and W2 have elliptical contours oriented
orthogonally to each other.
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Read about GMM,
and estimation using
MLE or EM methods.




Kullback-Leibler divergence

The directed Kullback-Leibler divergence between
Exp(A,) (‘true’ distribution) and Exp(A) ('approximating’
distribution) is given by: A

A(of[A) = log(o) — log(A) + 1= — 1.

Dy (Pl|Q) = ZP 1) log il

Q1
Dy (p.g)= Zpo)log;’((l’) S o)+ Y g0
or
Dy, (p.q) == p()logq(i)+ > p(i)log p(i)
=H(p,q) - H(p)

=cross entropy(P& Q) - entropy(p)






Bregman divergence
D, o(p.q) = F(p)~F(q)—(VF(q),p—q)

Jensen-Shannon divergence: The Bregman distance
associated with F for points (P, Q), is the difference
between the value of F at point P and the value of the first-
order Taylor expansion of F around point Q evaluated at
point P. F is a continuously-differentiable real-valued and
strictly convex function defined on a closed convex set.

D,.(p,q)= DKL(P»M);D(Q’M); where M =(P+Q)/2

Deviance information criterion
Bayesian information criterion
Quantum relative entropy

Information gain in decision trees
Solomon Kullback and Richard Leibler
Information theory and measure theory
Entropy power inequality

Information gain ratio

F-divergence




Principal Component Analysis

«* Eigen analysis, Karhunen-Loeve transform

% FEigenvectors: derived from Eigen decomposition of the
scatter matrix

% A projection set that best explains the distribution of
the representative features of an object of interest.

% PCA techniques choose a dimensionality-reducing
linear projection that maximizes the scatter of all
projected samples.




Principal Component Analysis Contd.

* Let us consider a set of NV sample images {x,, x,, ....... » XN
taking values in n-dimensional image space.

* Each image belongs to one of ¢ classes {X;, X,,....., X_}.

 Let us consider a linear transformation, mapping the
original n-dimensional image space to m-dimensional
feature space, where m <n.

* The new feature vectors y, ¢ R™ are defined by the linear

transformation —
T
k=12, N

where, W.e R™™ is a matrix with orthogonal columns
representing.the basis in feature space.




Principal Component Analysis Contd..

* Total scatter matrix S is defined as

:Z_l(xk 1)(x, — 1)’

where, /V is the numbe
image of all samples .

* The scatter of transformed Teature ve ‘ I,yz,....yN 1
Wis . Ww.

* In PCA, W, is chosen to maximize the determinant of the
total scatter matrix of projected samples, i.e.,

L, =argmax|iv’s,w|
w

where {w; | 1= 1,2,....,m/} is the set of n dimensional eigenvectors
of S corresponding to m largest eigenvalues (check proot).




Principal Component Analysis Contd.

- Eigenvectors are called eigen images/pictures and also
basis images/facial basis for faces.

- Any data (say, face) can be reconstructed approximately as
a weighted sum of a small collection of images that define a
facial basis (eigen images) and a mean image of the face.

« Data form a scatter in the feature space through

projection set (eigen vector set)

* Features (eigenvectors) are extracted from the training
set without prior class information

=» Unsupervised learning




Demonstration of KL Transform

) First
eigen
vector

_ Second
eigen
vector




Another One




Another Example

Object plot after Translation

AU
150

00

-100

-150

=20
L

-0 -150 -100 - 1 il 1000 150 AU

Source: SQUID Homepage




Principal components analysis (PCA) is a technique
used to reduce multi-dimensional data sets to lower
dimensions for analysis.

The applications include exploratory data analysis and
generating predictive models. PCA involves the computation of the

eigenvalue decomposition or Sinqular value decomposition of a data
set, usually after mean centering the data for each attribute.

PCA is mathematically defined as an orthogonal linear
transformation, that transforms the data to a new coordinate
system such that the greatest variance by any projection of
the data comes to lie on the first coordinate (called the first
principal component), the second greatest variance on the
second coordinate, and so on.

PCA can be used for dimensionality reduction in a data

set by retaining those characteristics of the data set that
contribute most to its variance, by keeping lower-order
principal components and ignoring higher-order ones. Such
low-order components often contain the "most important”
aspects of the data. But this is not necessarily the case,
depending on the application.




For a data matrix, X7, with zero empirical mean (the
empirical mean of the distribution has been subtracted from
the data set), where each column is made up of results for a
different subject, and each row the results from a different

probe. This will mean that the PCA for our data matrix X will
be given by:

Y=W'X=XV",

where WXV is the singular value decomposition (SVD) of X.

Goal of PCA:

Find some orthonormal matrix WT, where Y = WTX;
such that

COV(Y) = (1/(n-1))YYT is diagonalized.

The rows of W are the principal components of X,
which are also the eigenvectors of COV(X).

Unlike other linear transforms (DCT, DFT, DWT etc.),
PCA does not have a fixed set of basis vectors. Its basis
vectors depend on the data set.




SVD - the theorem

Suppose M is an m-by-n matrix whose entries come from the field K,
which is either the field of real numbers or the field of complex numbers. Then
there exists a factorization of the form

M= U3V~

where U is an m-by-m unitary matrix over K, the matrix Z is m-by-n with
nonnegative numbers on the diagonal and zeros off the diagonal, and V*
denotes the conjugate transpose of V, an n-by-n unitary matrix over K. Such a
factorization is called a sinqular-value decomposition of M.

The matrix V thus contains a set of orthonormal "input” or "analysing"
basis vector directions for M.

The matrix U contains a set of orthonormal "output"” basis vector
directions for M. The matrix Z contains the singular values, which can be
thought of as scalar "gain controls” by which each corresponding input is
multiplied to give a corresponding output.

A common convention is to order the values Z,; in non-increasing
fashion. In this case, the diagonal matrix Z is uniquely determined by M
(though the matrices U and V are not).

For p = min(m,n) — U is m-by-p, 2 is p-by-p, and V is n-by-p.




The Karhunen-Loeve transform is therefore equivalent
to finding the sinqular value decomposition of the data matrix
X, and then obtaining the reduced-space data matrix Y by
projecting X down into the reduced space defined by only the

first L singular vectors, W T T
o X — WV’ Y = W, X =2V,

The matrix W of singular vectors of X is equivalently
the matrix W of eigenvectors of the matrix of observed
covariances C = X XT

COV(X)=XX"=wxx'W' =wDwW"

The eigenvectors with the largest eigenvalues
correspond to the dimensions that have the strongest
correlation in the data set. PCA is equivalent to empirical
orthogonal functions (EOF).

PCA is a popular technique in pattern recognition. But it
Is not optimized for class separability. An alternative is the
linear discriminant analysis, which does take this into
account. PCA optimally minimizes reconstruction error under
the L, norm.




PCA by COVARIANCE Method

We need to find a dxd orthonormal transformation matrix WT, such that:

T
with the constraint that:

Cov(Y) is a diagonal matrix, and W1 = WT,

COV(Y)=E[YY'1=E(W' ' X)(W"X)"]
=E[(W' X)X 'W)]=W"E[XX"TW

=W"'COV(X)W =W"(WDW" YW =D
WCOV (Y)=WW" 'COV(XW =COV (X)W

Can you derive from the above, that:

,COV(X)W, ]



} X3 | and y do not fully describe the distribution
A 2x2 covariance matrix is needed; the
x — = directions of the arrows correspond to the
: eigenvectors of this covariance matrix am
Xn their lengths to the square roots of the

eigenvalues.
are random variables, each with finite variance, then the covariance matrix I is the matrix whose (i, j) entry is the covariance

ij = cov(X;, X;j) = B[(Xi — ) (X — pj)]

where
mi = E(X;)
is the expected value of the ith entry in the vector X [%2%" "% | other words, we have
(E[(X1 — i) (X1 — )] E[(Xy — ) (Xo — p2)] --- E[(Xi — p1) (X — ptn)]]
E[(X2 — p2)(Xy — )] E[(X2 — po) (X2 — p2)] -+ E[(X2 — p2) (X — ptn)]
3 =

_E[(Xn — pa) (X1 — )] E[(Xn — pa)(Xo — p2)] -+ E[(Xn — pn)(Xn — F"N)]_

The inverse of this matrix, 2—1 is the inverse covariance matrix, also known as the concentration matrix or precision matrix:!" see precision (statistics). The elements of the precision
matrix have an interpretation in terms of partial correlations and partial variances [aton needed]

Generalization of the variance [e

The definition above is equivalent to the matrix equality
T
% =E (X - E[X]) (X - E[X])"]
This form can be seen as a generalization of the scalar-valued variance to higher dimensions. Recall that for a scalar-valued random variable X

o® = var(X) = E[(X - E(X))’] = E[(X - E(X)) - (X — E(X))].

Indeed, the entries on the diagonal of the covariance matrix ¥ are the variances of each element of the vector X .

Conflicting nomenclatures and notations le

Nomenclatures differ. Some statisticians, following the probabilist William Feller, call this matrix the variance of the random vector X, because it is the natural generalization to higher
dimensions of the 1-dimensional variance. Others call it the covariance matrix, because it is the matrix of covariances between the scalar components of the vector X. Thus

var(X) = cov(X) = E [(X — E[X])(X - E[X])T] .
However, the notation for the cross-covariance between two vectors is standard:

cov(X,Y) = E [(X — EX])(Y — E[Y])T] .



The var notation is found in William Feller's two-volume book An Introduction to Probability Theory and Its Applications,' but both forms are quite standard and there is no ambiguity between
them.

The matrix E is also often called the variance-covariance matrix since the diagonal terms are in fact variances.

Properties [edit]

Fory, = E [(X - E[X]) (X - E[X])T] and g4 = E(X), where X is a random p-dimensional variable and Y a random g-dimensional variable, the following basic properties
apply:[ctation needed]
15 =E(XX") - pp”
Y is positive-semidefinite and symmetric.
cov(AX +a) = A cov(X)AT
cov(X,Y) = cov(Y,X)T
cov(X; + X5,Y) = cov(X;,Y) +cov(X,, Y)
ifp=g.then var(X + Y) = var(X) + cov(X,Y) + cov(Y, X) + var(Y)
cov(AX +a,B"Y +b) = A cov(X,Y)B
8. If X and 'Y are independent or uncorrelate, then COV(X . Y) =0
where X ; Xl and X2 are random px1 vectors, Y’ is a random gx1 vector, & is a gx1 vector, b is a px1 vector, and A and B are gxp matrices.

N oo s~ N

This covariance matrix is a useful tool in many different areas. From it a transformation matrix can be derived, called a whitening transformation, that allows one to completely decorrelate the
datale*efon needed] or from a different point of view, to find an optimal basis for representing the data in a compact way!*%" neededl (see Rayleigh quotient for a formal proof and additional
properties of covariance matrices). This is called principal components analysis (PCA) and the Karhunen-Loéve transform (KL-transform).

As a linear operator [edit]

Applied to one vector, the covariance matrix maps a linear combination, ¢, of the random variables, X, onto a vector of covariances with those variables: CTE — COV(CTX., X)

Treated as a bilinear form, it yields the covariance between the two linear combinations: d ¥ ¢ = COV(dTX, c'X ) The variance of a linear combination is then ¢ T Y1, its
covariance with itself.

Similarly, the (pseudo-)inverse covariance matrix provides an inner product, (C — | ) M |C - IJ) which induces the Mahalanobis distance, a measure of the "unlikelihood" of ¢.[aton needed]

Which matrices are covariance matrices? [edit]

From the identity just above, let |y be a ( P X 1) real-valued vector, then
var(b"X) = b" var(X)b,

which must always be nonnegative since it is the variance of a real-valued random variable. and the symmetry of the covariance matrix's definition it follows that only a positive-semidefinite
matrix can be a covariance matrix [°*3%" neededl The answer to the converse question, whether every symmetric positive semi-definite matrix is a covariance matrix, is "yes.” To see this,
suppose M is a pxp positive-semidefinite matrix. From the finite-dimensional case of the spectral theorem, it follows that M has a nonnegative symmetric square root, that can be denoted by
M'2. Let X be any px1 column vector-valued random variable whose covariance matrix is the pxp identity matrix. Then

var(MY2X) = M"?(var(X))MY? = M.



Samples:

X

3-D problem, with N = 3.

Example of PCA

1 -2 4
X=[1 3 0
2 1 3

Each column is an observation (sample) and each row a variable (dimension),

Mean of the samples:

Method — 1 (easiest)

-4

_13 %

0

M =

_% 113'
_%;

1

)

4
3

2

X1

COVAR =
T

-7

_%.
0

(XX )/2=(1/2) -




Method — 2 (PCA defn.)

C1=
1.7778 0.4444 0
0.4444 0.1111 0
0 0 0

C2=
5.4444 -3.8889 2.3333
-3.8889 2.7778 -1.6667
2.3333 -1.6667 1.0000

SigmaC =

20.6667 -8.3333 6.0000
-8.3333 4.6667 -3.0000
6.0000 -3.0000 2.0000

Next do SVD, to get vectors.

X1

5, = <N1_1>;<xk ), — 1)

A A2 3 P 3
0 —1 1
C3=
13.4444 -4.8889 3.6667
-4.8889 1.7778 -1.3333
3.6667 -1.3333 1.0000
COVAR =
SigmaC/2 =
10.3333 -4.1667 3.0000
-4.1667 2.3333 -1.5000
3.0000 -1.5000 1.0000



For a face image with N samples and dimension d (=w*h, very large), we have:

The array X or Xavg of size d*N (N vertical samples stacked horizontally)

Thus XXT will be of d*d, which will be very large. To perform eigen-
analysis on such large dimension is time consuming and may be erroneous.

Thus often X7X of dimension N*N is considered for eigen-analysis. Will
it result in the same, after SVD? Lets check:

62/ _25 ]

o 7%

_ _ 05/ 14 ~10.3333 -4.1667 3.0000
S=XX =(1/2) - A A —3|= -4.1667 2.3333 -1.5000
6 I 3.0000 -1.5000 1.0000

. P 0.9444 1.2778 -2.2222
S"=X" X = 12778 46111 -5.8889
.2.2222 -5.8889 8.1111

Lets do SVD of both:



T
S=XX =
10.3333 -4.1667 3.0000

-4.1667 2.3333 -1.5000
3.0000 -1.5000 1.0000

U=

-0.8846 -0.4554 -0.1010
0.3818 -0.8313 0.4041
-0.2680 0.3189 0.9091

13.0404 0 0
0 0.6263 0
0 0 0.0000

V =
-0.8846 -0.4554 0.1010

0.3818 -0.8313 -0.4041
-0.2680 0.3189 -0.9091

0.9444 12778 -2.2222
12778 4.6111 -5.8889
22222 -5.8889 8.1111

U=

-0.2060 0.7901 0.5774
-0.5812 -0.5735 0.5774
0.7872 -0.2166 0.5774

13.0404 0 0
0 0.6263 0
0 0 0.0000

V =
-0.2060 0.7901 0.5774

-0.5812 -0.5735 0.5774
0.7872 -0.2166 0.5774



Samples: Example, where d <> N:

—3 —2 —1 4 S 6
X — Xy = X, = X, = . X = X, = .
1 5 V) 5 V3 " “V4 5 V4 "' V6 )
—3 —2 —1 4 S 7
2-D problem (d=2), with N = 6. X =
. : 3 2 1 4 5 6
Each column is an observation (sample) 3 2 1 4 5 7
and each row a variable (dimension),
Mean of the samples: XM=
3/2 -4.5000 -3.5000 -2.5000 2.5000 3.5000 4.5000
u . = 5 /13 X -4.6667 -3.6667 -2.6667 2.3333 3.3333 5.3333

XMT* XM =

) 42.0278 32.8611 23.6944 -22.1389 -31.3056 -45.1389
COVAR(X) =XM* XM 35 8611 256944 18.5278 -17.3056 -24.4722 -35.3056
= 775000 820000  23.6944 18.5278 13.3611 -12.4722 -17.6389 -25.4722
800000 873333  -22.1389 -17.3056 -12.4722 11.6944 16.5278 23.6944
-31.3056 -24.4722 -17.6389 16.5278 23.3611 33.5278

451389 -35.3056 -25.4722 23.6944 33.5278 48.6944



COVAR(X) = XM * XMT

= 77.5000 82.0000
82.0000 87.3333

U=
-0.6856 -0.7280
-0.7280 0.6856
S =
164.5639 0
0 0.2694
V =

-0.6856 -0.7280
-0.7280 0.6856

42.0278

32.8611

23.6944
-22.1389
-31.3056
-45.1389

U=
-0.5053
-0.3951
-0.2849

0.2660
0.3762
0.5432

S =

32.8611

25.6944
18.5278
-17.3056
-24 4722
-35.3056

-0.1469
-0.0654
0.0162
0.4241
0.5057
-0.7337

164.5639 0

0
0

o OO

0.2694

o O OO

XMT* XM =

23.6944 -22.1389 -31.3056 -45.1389
18.5278 -17.3056 -24.4722 -35.3056
13.3611 -12.4722 -17.6389 -25.4722
-12.4722 11.6944 16.527/8 23.6944
-17.6389 16.5278 23.3611 33.5278
-25.4722 23.6944 33.5278 48.6944

-0.7547

0.3632
-0.0433
-0.5083
-0.0258
-0.1938

0.3882 0.0214 0.0486
0.0984 -0.4091 0.7284
-0.3456 -0.7396 -0.5002
-0.5306 -0.1150 0.4429
0.6601 -0.4043 -0.0539
0.0541 -0.3293 0.1332

eNoNoNoNoNa!
e oNoNoNoNa!

v=U??




SVD applied on Covariance Matrix

X: of X:

[-2 8 20]

[14 19 10] U:

[2 -2 1] [-0.465 0.568 0.68 ]
[-0.814 0.028 -0.581]
[-0.349 -0.823 0.449]

G

111. 69. 0.
Covariance Matrix of X: L ]

[ 46.222 43.111 -14.222]
[ 43.111 73.556 29.889]
[-14.222 29.889 60.222]

T.

465 -0.814 -0.349]
568 0.028 -0.823]
68 0.581 -0.449]

|—|HH <

-0.
0.
-0.



X2 —22x + 121 — 25

T
L™
_
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—
i
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|
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I

(x — 16)(x — 6).




Scatter Matrices and Separability criteria

Scatter matrices used to formulate criteria of class
separability:

Within-class scatter Matrix: It shows the scatter
of samples around their respective class expected
vectors.

Between-class scatter Matrix: It is the scatter
of the expected vectors around the mixture
mean.....Jn is the mixture mean..

Sy = iNZ- (tt; = ) = 1)’




Scatter Matrices and Separability criteria

% Mixture scatter matrix: It is the covariance matrix of
all samples regardless of their class assignments.

N
ST — Z(‘xk _lu)(xk _:u)T — SW +SB
k=1

* The criteria formulation for class separability
needs to convert these matrices into a number

* This number should be larger when between-
class scatter is larger or the within-class scatter is

smaller

Several Criteria are..

J,=h|S;'S |=In[$|~In]$,]

J,=tr(S,)— u(trsS, —c)




Linear Discriminant Analysis

e Learning set is labeled — supervised learning

* Class specific method in the sense that it tries to ‘shape’ the
scatter in order to make it more reliable for classification.

 Select W to maximize the ratio of the between-class
scatter and the within-class scatter.

Between-class scatter matrix is defined by-

u; 1s the mean of class X;

N, is the no. of samples in class X,

Within-class scatter matrix




Linear Discriminant Analysis

1s chosen to satisty

* If ), 1s nonsingular, W,

{w.|i=12,...m}1s the set of eigenvectors of Sy and S,
corresponding to m largest eigen values.1.¢.

 There are at most (c-/) non-zero eigen values. So upper
bound of'm 1s (¢-1).




Linear Discriminant Analysis

Sy 1s singular most of the time. It’s rank 1s at most N-c

Solution — Use an alternative criterion.

* Project the samples to a lower dimensional space.
» Use PCA to reduce dimension of the feature space to N-c.

* Then apply standard FLD to reduce dimension to c-1.

W, is given by /4 W W

opt pca

W =aTg maX‘WTSTW‘ W, =arg max‘WTWW
~ WSy W )

pca




Demonstration for LDA
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Figure 4.6 The left plot shows samples from two classes (depicted in red and blue) along with the histograms
resulting from projection onto the line joining the class means. Note that there is considerable class overlap in
the projected space. The right plot shows the corresponding projection based on the Fisher linear discriminant,

showing the greatly improved class separation.



into a labelled set in the one-dimensional space y. The within-class variance of the
transformed data from class Cj, 1s therefore given by

sp= ) (yn — i)’ (4.24)

nely

where y, = wW'x,. We can define the total within-class variance for the whole

data set to be simply s% + s2. The Fisher criterion is defined to be the ratio of the
between-class variance to the within-class variance and is given by

(my —my)?

J(w) = , (4.25)

2 2
.5'1—]—52




, : C . wiSpw
rewrite the Fisher criterion in the form J(w) =

WL Sww

where Sp is the between-class covariance matrix and 1s given by
Sp = — m- — T
B = (I — my )(my — 1m;,)

and Swy 1s the total within-class covariance matrix, given by

Sw = Z (X, — My ) (X — 1111}T + Z (X, — Mg (% — 1112}T. (4.28)

'FLEG;[ ﬂEﬂjg

Differentiating (4.26) with respect to w, we find that J(w) is maximized when

(WTSEW]SWEW — (WTSer)SEW, {4.29)

From (4.27), we see that Sgw is always in the direction of (ms —m, ). Furthermore,
we do not care about the magnitude of w, only its direction, and so we can drop the
scalar factors (w'Spw) and (wT1Sww). Multiplying both sides of (4.29) by Sﬁ}
we then obtain

W o< Sy (Mg — my). (4.30)

Note that if the within-class covariance is isotropic, so that Sy 1s proportional to the
unit matrix, we find that w is proportional to the difference of the class means, as
discussed above.

The result (4.30) 1s known as Fisher’s linear discriminant, although strictly it
1s not a discriminant but rather a specific choice of direction for projection of the
data down to one dimension. However, the projected data can subsequently be used




Hand workout EXAMPLE:

_ 1 2 3 5
Data Points: 1 2 3 4
Class: I T
Lets try first :
2.9286
Overall data mean:
5.0000

COVAR of the mean-subtracted data:

7.3022 3.3077
3.3077 5.3846

Eigenvalues after SVD of above:
9.7873 2.8996

Finally, the eigenvectors:

-0.6007
0.7995




Same EXAMPLE for LDA :

. 1 2 3
Data Points: 1 2 3

Class:

S, = 10.6122 8.5714
8.5714 8.0000

S,= 20.6429
INV(S,). S, = -17.00
27.20 -22.40
-31.268 25.75

Perform Eigendecomposition
on above:

Eigenvalues of S, 1 Sy, :

Eigenvectors:

0:6357
0.7719




S, = 10.6122 8.5714
8.5714 8.0000

S, = 20.6429
-17.00

-17.00
14.00

Eigenvalues of SW'1 Sy :

53.687
0

-0.7719 0.6357
0.6357 0.7719

Eigenvectors:

= 10.6122 8.5714
8.5714 8.0000

203.143
- 95.00

- 95.00
87.50

297.83

0.0
-0.7355 -0.6775
0.6775 0.7355

Eigenvalues of S, 1 Sy, :

Eigenvectors:
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Same EXAMPLE for LDA, with C = 3:

. 1 2 3 5

Data Points: 1 2 3 4
Class:

S, = 8.0764 -2.125

-2125 4.1667
S,= 56.845 52.50
INV(S,) .S, = 52.50 50.00

11.958 11.155
18.7 17.69

Perform Eigendecomposition
on above:

Eigenvalues of SW'1 Sb ; 30.5
0.097

Eigenvectors:

- 0.69
0.728




Data projected along
1st eigenvector:




Some of the latest advancements in Pattern recognition technology deal with:

* Neuro-fuzzy (soft computing) concepts

« Multi-classifier Combination — decision and feature fusion
* Reinforcement learning

* Learning from small data sets

* Generalization capabilities

« Evolutionary Computations

* Genetic algorithms

« Pervasive computing

* Neural dynamics

« Support Vector machines - kernel methods

 Modern ML methods — semi-supervised, transfer learning, domain adaptation
Manifold based learning, deep learning, MKL, ....
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