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Pattern Classification

Assumptions - Data are independently and identically distributed



A Major Assumption till now...

Training and future (test) data come from
a same task and a same domain.

» Represented in same feature and label
spaces.

> Follow a same distribution.



Training
distribution

Testing
distribution
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Transfer Learning

In the machine learning community

* The ability of a system to recognize and apply knowledge and
skills learned 1n previous tasks to novel tasks or new domains,
which share some commonality.

CALTECH dataset PASCAL dataset

TRAIN DETECT



Transfer Learning

* The ability of a system to recognize and apply knowledge and
skills learned in previous tasks to novel tasks or new domains,

which share some commonality.

Labeled data from source
domain present.

source domain target domain

Transfer learning uses either | |
small number of labeled ™

b -
data or unlabeled data from |@ 2 (”\2}‘ @"’

target domain. [Saenko et al. ECCV 10]




Why Transfer Learning?

» In some domains, labeled data are in short supply.
» In some domains, the labeling cost is very expensive.

» In some domains, the learning process is time consuming.

<& How to extract knowledge learnt from related domains
to help learning in a target domain with a few labeled
data?

<& When to transfer knowledge learnt from the related
domain to help the task in the target domain?

¥ Transfer learning techniques may help!




What is TL:

A major assumption in many machine learning and data mining algorithms is that
the training and future data must be in the same feature space and have the same
distribution.

However, in many real-world applications, this assumption may not hold. For
example, we sometimes have a classification task in one domain of interest, but we only
have sufficient training data in another domain of interest, where the latter data may be
in a different feature space or follow a different data distribution.

In such cases, knowledge transfer, if done successfully, would greatly improve the
performance of learning by avoiding much expensive data-labeling efforts.

Definition 1 (Transfer Learning). Given g source dowmain Dg
and fearning task T g, a lavgel dowmgin Dy and learning fask

T, transfer learning gimns fo help anprove the learning of the
target prediciive funclion [r{-) in Dr using the knowledge in
Dg and T, where D # Dr, or Ts # T




Different Settings of Transfer Learning

| Transier Learning Sellings Related Areas Source Domain Labels | Target Domain Labels | Tasks
frcluctive Transfer Learning Multi-lask Learning Available Available Regression,
Classification
sell-taught Learming Unavailable Available Regression,
Classification
| Tronsductive Transjer Learming | Domain  Adaptation, sample | Available Unavailable Regression,
&Selection Bias, Co-variate Shift Classification
Lnsnpervised Transfer Learning Unavailable Unavailable Clustering,
Dimensionality
[Reduction
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Transfer £ Labeled data are Assm;m". ; " f' - =
. : : sSumption:
Learning Bvsﬂ[;zﬂieggﬁﬂ Transductive | §  different | Domain
Transfer Learning goams bt L 1 Adaptation
\ - i single task k'
No labeled data in .\. .................................... -_—-
both source and : Assumption: single

target domain

domain and single task

Unsupervised
Transfer Learning

Sample Selection Bias
{Covariance Shift




Approaches to Transfer Learning

Different Approaches Used in Different Settings

Instonce-transfer

Feohue-representotion-fransfer

Model-transfer Discover shared parameters or priors of
models between a source domain and a
target domain

Relational-knowledge- Build mapping of relational knowledge
transfer between a source domain and a target
domain.




Approaches to Transfer Learning

Inductive Transductive Unsupervised
Transfer Learning | Transfer Learning | Transfer Learning
Instance-transfer v v
Feature-representation- v v V
transfer
Model-transfer \
Relational-knowledge- \
transfer

TL applications:

sensor-network-based localization, text classification, image classification,
video classification, social network analysis, and logical inference.



Definition 3 (Transductive Transfer Learning). Given a
source domain Dg and a corvesponding learning task Tg, a
targef dowmain Dr and a corresponding learning fask T,
transductive transfer learning aims {o inprove the learning of
the targel predictive function [r(-) in Dy using the knowledge in
Do and Tg, where Dg # Dy and T = Ty, Inaddition, soine

wilabeled targei-domain data imust be available af raining tine.,

Definition 1 (Transfer Learning). Given g source dowmain Dy
and learning fask T g, 7 fargel dowmgin Dy and learning fask
T 1, transfer learning aims fo help tinprooe the learning of fhe
targef predictive funclion fr(-) in Dy using the knowledge in

Do anid Tg, where Dg == Dy, or T £ Tr
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7 Transfer Component S.J. Pan, I.W. Tsang, J.T. Kwok, and Q. Yang, "Domain Adaptation via Transfer

Analysis (TCA) Component Analysis,” Proc. 21st Int’l Joint Conf. Artificial Intelligence, 2009.



Notations

Domain: Task:
e Feature space A'; e Given A and label space V;
o P(x),wherez € X. e Tolearn f : x — y, or estimate P(y|z),

wherez e X andy € ).

Two domains are different = Two tasks are different =

Xs # Xr, or Ps(x) # Pr(z). Vs # Yr, or fs # fr (Ps(y|z) # Pr(y|z)).




Transductive Transfer Learning

‘Domain difference is caused —
| . ® —
-by feature representations yS yT ’

o Ps(ylz) = Pr(yl|z).

® But, XS 7é XT or PS(:IT) 7£ PT(.T)

Sample Selection Bias
/ Covariate Shift

Domain Adaption




Transductive Transfer Learning
Instance-transfer Approaches

Sample Selection Bias / Covariance Shift
[Zadrozny ICML-04, Schwaighofer JSPI-00]
Input: A lot of labeled data in the source domain and no labeled data in the

target domain. PS (y | X) = Pt (y | X)

Output: Models for use in the target domain data. PS (X) F PT (X)
Assumption: The source domain and target domain are the same. In addition, PS (X’ y) # l)T (X’ y)
P(Yy| X) and P(Y; | X;) are the same while P(X) and P(X;)may be

different causing by different sampling process (training data and test data).

Main Idea: Re-weighting (important sampling) the source domain data.



Sample Selection Bias/Covariance Shift
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One straightforward solution 1s to estimate P(X) and P(X;) ,
respectively. However, estimating density function 1s a hard problem.

Sample Selection Bias / Covariate Shift
[Quionero-Candela, et al, Data Shift in Machine Learning, MIT Press 2009]



Sample Selection Bias/Covariance Shift
Kernel Mean Match (KMM)

[Huang et al. NIPS 2006]
Main Idea: KMM tries to estimate (3, = Ezii directly instead of estimating

density function.

It can be proved that (; can be estimated by solving the following quadratic
programming (QP) optimization problem.

To match means between '
/) | training and test data in a RKHS

nin
3

st. 0, €[0,B] and |Y 7 B; — ng| < nge

%,:‘Z:fT Kp— k13

Theoretical Support: Maximum Mean Discrepancy (MMD) [Borgwardt et al.
BIOINFOMATICS-06]. The distance of distributions can be measured
by Euclid distance of their mean vectors in a RKHS.



Transductive Transfer Learning
Feature-representation-transfer Approaches

Domain Adaptation
[Blitzer et al. EMNL-06, Ben-David et al. NIPS-07, Daume 111 ACL-07]

Assumption: Single task across domains, which means P(Y; | X)and P(Y, | X,)
are the same while P(X;) and P(X,)may be different causing by feature
representations across domains.

Main Idea: Find a “good” feature representation that reduce the “distance”
between domains.

Input: A lot of labeled data in the source domain and only unlabeled data in the
target domain.

Output: A common representation between source domain data and target
domain data and a model on the new representation for use in the target domain.



Domain Adaptation

Structural Correspondence Learning (SCL)
[Blitzer et al. EMNL-06, Blitzer et al. ACL-07, Ando and Zhang JMLR-05]

Motivation: If two domains are related to each other, then there may exist
some “pivot” features across both domain. Pivot features are features that

behave in the same way for discriminative learning in both domains.

Main Idea: To identify correspondences among features from different
domains by modeling their correlations with pivot features. Non-pivot features
form different domains that are correlated with many of the same pivot
features are assumed to correspond, and they are treated similarly in a

discriminative learner.



SCL

[Blitzer et al. EMNL-06, Blitzer et al. ACL-07, Ando and Zhang JMLR-05]

Input:

Output:

labeled source data {(x;, )i 1}
unlabeled data from both domains {x; }

predictor f : X — YV

a) Heuristically choose m pivot
features, which is task specific.

b) Transform each vector of pivot
/ o

feature to a vector of binary
values and then create
corresponding prediction problem.

Learn parameters of each
prediction problem

Do Eigen Decomposition

| on the matrix of
parameters and learn the
linear mapping function.

(2. Forl{=1tom \

| . . |

I Wy = argmin (ZJ L(w - x;,pe(x;) )+

| A D —
| Alwl[?) |

| 1
__e&d /

(3. W=[wi|...|Wm]. [UDV']=svDW).
| 0= T[l:h_.:' |
S ————————
II 4. Return f, a predictor trained \|

| Mt r I

I on o, | oYt

\ ' t=1 I

Use the learnt mapping function to
construct new features and train
classifiers onto the new representations.
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Domain Adaptation
— A type of Transfer Learning

Domain adaptation of statistical classifiers 1s the problem that
arises when the data distribution in our test domain 1s different
from that in our training domain [Jing Jiang, 2008].

<& How to extract knowledge learnt from related domains
to help learning in a target domain with a few labeled
data?

<& When to transfer knowledge learnt from the related
domain to help the task in the target domain?

In some domains, labeled data are in short supply.
In some domains, the labeling cost is very expensive.
In some domains, the learning process 1s time consuming.



Why Domain Adaptation?

Training samples of two classes



Why Domain Adaptation?

* Training Data is not
uniformly sampled.

e Change in the sensor
alters the distribution of
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Why Domain Adaptation?

* Training Data is not
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e Change in the sensor
alters the distribution of
data.




Why Domain Adaptation?

Domain adaptation is the process where one can
use the training samples available from source
domain to aid a classification task.

Training Data is not
uniformly sampled.

Change in the sensor
alters the distribution of
data.

Training samples are
drawn from source
domain, and test
samples are drawn from
target domain.



An Example

o7

0B

STATISTICAL DOMAIN
ADAPTATION




Domain Adaptation (DA)

Source Domain : Gallery Samples
: Probe Samples

* Reasons for domain adaptation

Difference in resolution

Blur

Noise

Low-contrast

Different camera parameters

35



Common Approaches

Distribution of — Distribution of
Source Domain Target Domain

« Spatial topology of the  Need to capture the
instances in source domain is distribution of Target
preserved - important Domain
parameter for many of the
classifiers like KNN, clustering « Problem: Small number of
algorithms. samples lead to erroneous

parameterization of

« This ensures a set of distribution

constraints for forming the
transformation matrix.



Domain Adaptation
[Saenko et al. ECCYV 10]

miny (W)
s.t. (XTWY)>0, 1<i<ec.

source domain target domain

X € Souce Domain

Domain Y € Target Domain

simyy (z, y) = = Wy.

W is the transformation matrix




METHOD 1:
DA BY EIGEN DOMAIN TRANSFORMATION



Nice Property of Gaussian Distribution

Ayi=1,2,..,d are the
set of eigen-values

®;,,i =1,2,..,d are the
set of eigen-vectors.

PROBLEM: Real world dataset hardly follow a Gaussian Distribution.
SOLUTION: Fit a Gaussian Mixture Model separately in both the domains.

PROBLEM: Small sample size in Target domain.
SOLUTION: Using centroid-based clustering technique to form clusters
following Gaussian distribution simultaneously in both the domains.



Eigen Domain Transformation (EDT)

TARGET DOMAIN
SOURCE DOMAIN

— =
N

IET-IP (2015)



Eigen Domain Transformation (EDT)

TARGET DOMAIN
SOURCE DOMAIN

—\
—
Lower Dimensional

IET-IP (2015)
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Eigen Domain Transformation (EDT)

TARGET DOMAIN
SOURCE DOMAIN

il
v

/

Transformatio Lower Dimensional

pace

IET-IP (2015)



Eigen Domain Transformation (EDT)

* Finding the optimal number of dimension for estimating sub-space

IET-IP (2015)
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Eigen Domain Transformation (EDT)

* Finding the optimal number of dimension for estimating sub-space

3
V3
V, > U,
U;

Vi

IET-IP (2015)



Eigen Domain Transformation (EDT)

* Finding the optimal number of dimension for estimating sub-space

Vs
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IET-IP (2015)



Eigen Domain Transformation (EDT)

* Finding the optimal number of dimension for estimating sub-space

Distance between two sub-spaces
55r0j(up' V) =p — trace(V, UpUp V)

IET-IP (2015)



Eigen Domain Transformation (EDT)

* Finding the optimal number of dimension for estimating sub-space

Distance between two sub-spaces
85r0j(Up,Vp) = p — trace(VLU,ULV,)

IET-IP (2015)



Eigen Domain Transformation (EDT)

* Finding the optimal number of dimension for estimating sub-space

Distance between two sub-spaces:
85roj(Up, V) = p — trace(Vy U,USV,)

* Transformation of source domain data
X = XU,.0, P T P _
Extension to RKHS has
been proposed
Non-linear
Transformation

IET-IP ‘15
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Eigen Domain Transformation (EDT)

* Finding the optimal number of dimension for estimating sub-space

Distance between two sub-space
85roj(Up, V) = p — trace(Vy U,USV,)

* Transformation of source domain data

X = XU,.A, YTy
Extension to RKHS has

.\ been proposed
Eigen- .
Non-linear
vector of .
Transformation
target

domain



METHQOD 2:
DA USING DOMAIN INVARIANT FEATURES



Discrepancy between Distributions

* Maximum Mean Discrepancy (MMD): The distance between a
pair of distributions can be well estimated by the distance of the
means of the two samples in Reproducing Kernel Hilbert Space
(RKHS) [Gretton 2009, Pan et al 2009].



Source: X

Discrepancy between Distributions

Target: Y

Maximum Mean Discrepancy (MMD): The distance between a
pair of distributions can be well estimated by the distance of the
means of the two samples in Reproducing Kernel Hilbert Space
(RKHS) [Gretton 2009, Pan et al 2009].



Discrepancy between Distributions

Target: (V)

Kernel
Function:
()

Target: Y

Source: ®(X)

Kernel
Function:
()

Source: X

* Maximum Mean Discrepancy (MMD): The distance between a
pair of distributions can be well estimated by the distance of the
means of the two samples in Reproducing Kernel Hilbert Space
(RKHS) [Gretton 2009, Pan et al 2009].



Discrepancy between Distributions
Mean of @(X) = Mean of @(Y)

Target: (V)

Kernel
Function:
()

Target: Y

Source: ®(X)

Kernel
Function:
b

Source: X

* Maximum Mean Discrepancy (MMD): The distance between a
pair of distributions can be well estimated by the distance of the
means of the two samples in Reproducing Kernel Hilbert Space
(RKHS) [Gretton 2009, Pan et al 2009].



Introducing Manifold

* Manifold: A space which locally looks Euclidean

* AIM: Find a sub-space W, where the underlying distributions and
manifolds of two domains are same.



Cost functions

A. Difference in means between two domains:

=  Minimize the disparity in distributions of two domains using the
concept of MMD

ICIP’ 14
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Cost functions

A. Difference in means between two domains:
Minimize the disparity in distributions of two domains using the
concept of MMD

B. Preserving local spatial arrangement of data:
For an instance in source domain, the set of the instances that
forms its neighborhood remains preserved after transformation

ICIP’ 14




Defining Landmark points

* Manifold distance: distance between two points lying on a manifold can be
approximated by the length of the path between the two points using an
adjacency graph.

Jun Li and Pengwei Hao, “Finding representative landmarks of data on manifolds,”
Pattern Recognition, 2009



Defining Landmark points

* Manifold distance: distance between two points lying on a manifold can be
approximated by the length of the path between the two points using an
adjacency graph.

* If x and y are two landmark points, then a third landmark point, lying in
between them can be defined as:

( Manifold dist. from Euclidean dist. from )

4= argmax adjacent Landmark points  adjacent Landmark points

w

Jun Li and Pengwei Hao, “Finding representative landmarks of data on manifolds,”
Pattern Recognition, 2009



Cost functions

C. Estimating disparity in the shape of the two domains

ICIP’ 14
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Cost functions

C. Estimating disparity in the shape of the two domains

D. Inter-class distance in source domain:

Maximize the inter-class distance in source domain in the sub-space to be
estimated.

ICIP’ 14



Optimization framework

e Combined cost function:

fW) = trace(WTPw)

I, + 1, + 2(By — Ay) — M —LT =1 ] [X]
Y

where P = | XT T
x™ v7] [ —L,T - 1T Is+2(By —4,) + 1,

11, I, and I5 - Indicator matrices to calculate difference of means
M — used to estimate inter-class distance in source domain

Ay and By - Indicator matrices to represent distance between edges in MST
build on source domain

Ay and By - Indicator matrices to represent distance between edges in MST
build on target domain

14,5, I and I - Indicator matrices to represent sum of distances between
corresponding landmark points in two domains. ICIP’ 14



Optimization framework

* Combined cost function in RKHS:
f(Z) = trace(ZTPxZ)
I +1, +2(By —Ay) — M —LT =1
—LT = 1T Is+2(By — 4)) + I

s [0 )]

where Py = K[

Where, W = [®(X)T ®(¥)T]Z and K = [

ICIP’ 14



Optimization framework

* Combined cost function in RKHS:
f(Z) = trace(ZTPxZ)
I +1, +2(By —Ay) — M —LT =1
—LT = 1T Is+2(By — 4)) + I

s [0 )]

where Py = K[

Where, W = [®@(X)T &()T]Z and K = [

e Optimization function:

minimize tr(Z'PyZ)
subject to Z'KZ =1

Solution: Zis formed by the Eigenvectors of P 1K

If Z, and Z, are the matrices containing first n, rows and last n, rows of Z, then:

Transformed Source Domain data: X = KyxZ, + KxyZ,
Transformed Target Domain data: ¥ = KxyZ; + KyyZ,

ICIP’ 14



Results: Synthetic (toy) data

2D example

3D example

Before transformation After transformation
ICIP’ 14



DATASET: Office+Caltech

* Proposed by Saenko et al. (ECCV 2010)
 Extended by Gong et al. (CVPR 2012)

AMAZON DSLR

WEBCAM

CALTECH

gum—

&
o —

\ 31 classes of objects, 3 domains

10 classes of objects, 4 domains



DATASET: Office+Caltech

* Proposed by Saenko et al. (ECCV 2010)
 Extended by Gong et al. (CVPR 2012)

WEBCAM

Mt
=F=

31 classes of objects, 3 domains I

DSLR

AMAZON CALTECH

10 classes of objects, 4 domains

Number of training samples per class

Source Domain Target Domain

Amazon

Caltech

DSLR

Webcam

Amazon

Caltech

DSLR

Webcam

20

20

8

8

3

3

3

3




Experimental results

* Object categorization on Office+Caltech dataset
* KNN (K=1) classifier has been used

NA — No adaptation

Method C->A D->A W->A A->C D->C W->C A->D C->D W->D A->W C->W D->W Avg.
NA 21.5 26.9 20.8 22.8 24.8 16.4 22.4 21.7 40.5 23.3 20.0 53.0 26.2
TCA 21.9 16.8 13.4 16.2 17.7 11.1 16.7 22.8 32.3 23.6 22.0 44.7 21.6
GFS 36.9 32.0 27.5 35.3 294 21.7 30.7 32.6 54.3 31.0 30.6 66.0 35.7
GFK 36.9 32.5 31.1 35.6 29.8 27.2 35.2 35.2 70.6 34.4 33.7 74.9 39.8
SA 39.0 38.0 37.4 35.3 324 32.3 37.6 38.6 80.3 38.6 36.8 83.6 44.2
DA-CIET 35.6 36.2 37.5 34.6 32.7 30.3 33.2 38.7 72.8 35.7 33.6 72.8 41.1
DA-GMCV 34.2 37.3 37.9 36.8 32.2 30.6 34.5 38.9 76.9 36.4 37.1 75.9 42.4
DA-PSA 40.2 39.2 39.4 36.3 333 32.7 36.8 40.8 81.2 38.4 36.6 81.4 44.7
DA-EDT | 40.7 444 48.8 36.6 37.0 36.2 43.3 44.1 85.8 40.0 38.5 85.3 48.2
DA-DIF | 564 39.8 42.9 48.4 43.8 36.7 39.2 46.6 85.6 393 38.4 83.8 50.0

* TCA-SJ Pan, LW. Tsang, J.T. Kwok, and Qiang Yang, “Domain adaptation via transfer component analysis,” IEEE Trans on Neural Networks, 2011.
* GFS - Raghuraman Gopalan, Ruonan Li, and R Chellappa, “Domain adaptation for object recognition: An unsupervised approach,” in ICCV, 2011.
* GFK - Boging Gong, Yuan Shi, Fei Sha, and Kristen Grauman, “Geodesic flow kernel for unsupervised domain adaptation,” CVPR, 2012.

* SA - B Fernando, A Habrard, M Sebban, and T Tuytelaars, “Unsupervised visual domain adaptation using subspace alignment,” ICCV, 2013.




Negative Transfer

Most approaches to transfer learning assume transferring knowledge across domains be always
positive.

However, in some cases, when two tasks are too dissimilar, brute-force transfer may even hurt the
performance of the target task, which is called negative transfer [Rosenstein et al NIPS-05 Workshop].

Some researchers have studied how to measure relatedness among tasks [Ben-David and Schuller
NIPS-03, Bakker and Heskes JMLR-03].

How to design a mechanism to avoid negative transfer needs to be studied theoretically.



6.

Publications

.“Unsupervised Domain Adaptation using Eigen-Vectors for Object Categorization", Suranjana Samanta

and S. Das; IET Image Processing, Special issue on Machine Learning for Image Processing, Volume
9, Issue 11, November 2015, pp. 925-930; (Impact Factor: 1.4), DOI:10.1049/iet-ipr.2014.0754.

. "Minimising Disparity in Distribution for Unsupervised Domain Adaptation by Preserving the Local Spatial

Arrangement of Data"; Suranjana Samanta and Sukhendu Das; IET Computer Vision (Impact Factor
1.09), Volume 10, Issue 5, August 2016, pp. 443-449. DOI:10.1049/iet-cvi.2015.0322.

. Mutual variation of Information on Transfer-CNN for Face Recognition with degraded probe samples.

Samik Banerjee, Sukhendu Das. Neurocomputing, Elsevier, (Impact Factor: 3.317), Volume 310,
October 2018, pp. 299-315, (May, 2018), DOI: 10.1016/j.neucom.2018.05.038.

. Soft-Margin Learning for Multiple Feature-Kernel Combinations With Domain Adaptation, for Recognition

in Surveillance Face Dataset. Samik Banerjee, Sukhendu Das. Proceedings of 29th CVPR (CVPRW)
Workshop on Biometrics, IEEE, (Google h5-index: 45) pp. 169-174, Las Vegas, USA (June, 2016); #Ctn - 6

. Face Recognition in Surveillance Conditions with Bag-of-words, using Unsupervised Domain Adaptation.

Samik Banerjee, Sukhendu Das. Proceedings of 9th Indian Conference on Computer Vision, Graphics
and Image Processing (ICVGIP), ACM, pp. 50, IISc. Bangalore, India, (December, 2014); #Ctn - 10.

"Unsupervised Domain Adaptation Using Manifold Alignment for Object and Event Categorization", S.
Samanta and S. Das, in International Conference on Image Processing (ICIP), France, 2014.

. "Modeling Sequential Domain Shift through Estimation of Optimal Sub-spaces for Categorization”, S.

Samanta, T. Selvan and S. Das, in British Machine Vision Conference (BMVC), UK, 2014.

. "Domain Adaptation Based on Eigen-Analysis and Clustering, for Object Categorization"”, S. Samanta

and S. Das, in International Conference on Computer Analysis of Images and Patterns (CAIP), UK,
2013.



References

S. J. Pan, I. Tsang, J. Kwok, and Q. Yang, "Domain adaptation via transfer component
analysis”, IEEE Transactions on Neural Networks, 2011.

M. Baktashmotlagh, M. Harandi, B. Lovell, and M. Salzmann, "“Unsupervised domain
adaptation by domain invariant projection”, in ICCV, 2013.

A. Gretton, A. Smola, J. Huang, M. Schmittfull, K. Borgwardt, and B. Scholkopf, “"Covariate
shift by kernel mean matching”, Dataset shift in machine learning, 2009.

C. Wang and S. Mahadevan, “"Heterogeneous domain adaptation using manifold alignment”,
IJCAI, 2011

J. Yang, R. Yan, and A. G. Hauptmann, “Cross-domain video concept detection using
adaptive SVMs”, ICM, 2007.

R. Gopalan, R. Li, and R. Chellappa, “"Domain adaptation for object recognition: An
unsupervised approach”, ICCV, 2011.

B. Gong, Y. Shi, F. Sha, and K. Grauman, “"Geodesic flow kernel for unsupervised domain
adaptation”, CVPR, 2012.

B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars, “Unsupervised visual domain
adaptation using subspace alignment”, ICCV, 2013.

L. Duan, D. Xu, I. W. Tsang, and J. Luo, "Visual event recognition in videos by learning from
web data”, IEEE TPAMI, 2012.

J. Li and P. Hao, “Finding representative landmarks of data on manifolds”, PR, 2009.

D. Zhai, B. Li, H. Chang, S. Shan, X. Chen, and W. Gao, "“Manifold alignment via
corresponding projections”, BMVC, 2010.



References

A. Asuncion, D. N., 2007. UCI machine learning repository;
http://www.ics.uci.edu/~mlearn/MLRepository.html

Saenko, K., Kulis, B., Fritz, M., Darrell, T., 2010. Adapting visual category models to new domains. In:
European conference on Computer Vision. pp. 213-226.

Chattopadhyay, R., Krishnan, N. C., Panchanathan, S., 2011. Topology preserving domain adaptation for
addressing subject based variability in semg signal. In: AAAI Spring Symposium: Computational Physiology.

Sugiyama, M., Nakajima, S., Kashima, H., von Bu“nau, P., Kawanabe, M., 2007. Direct importance estimation
with model selection and its application to covariate shift adaptation. In: Neural Information Processing
Systems. pp. 1962—-1965.

Pan, S. J,, Yang, Q., 2010. A survey on transfer learning. IEEE Transactions on Knowledge and Data
Engineering 22, 1345-1359.

Huang, J., Smola, A. J., Gretton, A., Borgwardt, K. M., Sch”olkopf, B., 2006. Correcting sample selection bias
by unlabeled data. In: Neural Information Processing Systems. pp. 601-608.

Sinno Jialin Pan; Department of Computer Science and Engineering, The Hong Kong University of
Science and Technology, PPT - A Survey on Transfer Learning

Chang Wang, A Geometric Framework For Transfer Learning Using Manifold Alignment, Ph.D. thesis,
University of Massachusetts at Amherst, 2010.






