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Introduction

• A linear regression model assumes that the regression 
function 𝐸(𝑌 |𝑋) is linear in the inputs 𝑋1, . . . ,𝑋𝑝. 

• They are simple and often provide an adequate and 
interpretable description of how the inputs affect the output. 
For prediction purposes they can sometimes outperform 
fancier nonlinear models, especially in situations with small 
numbers of training cases, low signal-to-noise ratio or 
sparse data.



Linear Regression Models and 
Least Squares

• Purpose: - to predict a real-valued output 𝑌. The linear 
regression model has the form.

0 𝑗 𝑗௣௝ୀଵ .                               

• The linear model either assumes that the regression function 𝐸(𝑌 |𝑋) is linear, or that the linear model is a reasonable 
approximation. Here the 𝛽j ’s are unknown parameters or 
coefficients, and the variables 𝑋𝑗 can come from different 
sources:



• We have a set of training data (𝑥1,𝑦1) . . . (𝑥𝑁,𝑦𝑁) from which to 
estimate the parameters . Each 𝑥𝑖 = 𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑝 ் is a 
vector of feature measurements for the 𝑖௧௛ case. The most 
popular estimation method is 𝑙𝑒𝑎𝑠𝑡 𝑠𝑞𝑢𝑎𝑟𝑒𝑠, in which we pick 
the coefficients  𝛽 =  𝛽0,𝛽1, . . . ,𝛽𝑝 ் to minimize the residual 
sum of squares ௜ 𝑖 ଶே௜ୀଵ

௜ 0 𝑖𝑗 𝑗௣௝ୀଵ ଶே௜ୀଵ .            

• From a statistical point of view, this criterion is reasonable if 
the training observations (𝑥𝑖,𝑦𝑖) represent independent 
random draws from their population. Even if the 𝑥𝑖’𝑠 were 
not drawn randomly, the criterion is still valid if the 𝑦𝑖’𝑠 are 
conditionally independent given the inputs 𝑥𝑖. 



FIGURE 3.1. Linear least squares fitting with 𝑋 ∈ ℝଶ. We seek 
the linear function of 𝑋 that minimizes the sum of squared 

residuals from 𝑌.

Figure 3.1 illustrates the geometry of least-squares fitting in the (p+1)-
dimensional space occupied by the pairs (X, Y ).



• Figure 3.1 illustrates the geometry of least-squares fitting 
in the ℝ௣ାଵ −dimensional space occupied by the pairs (𝑋,𝑌 ). Note that (3.2) makes no assumptions about the 
validity of model (3.1); it simply finds the best linear fit to 
the data. Least squares fitting is intuitively satisfying no 
matter how the data arise; the criterion measures the 
average lack of fit.

• How do we minimize (3.2)? 
Denote by 𝐗 the  𝑁 ×  (𝑝 +  1) matrix with each row an 

input vector (with a 1 in the first position), and similarly let 𝒚 be the 𝑁-vector of outputs in the training set. Then we 
can write the residual sum-of-squares as்



• This is a quadratic function in the 𝑝 + 1 parameters. 
Differentiating with respect to 𝛽, we obtain

డோௌௌడఉ ்
డమோௌௌడఉడఉ೅ ்

• Assuming (for the moment) that 𝑿 has full column rank, and 
hence 𝑿்𝑿 is positive definite, we set the first derivative to 
zero ்

• To obtain the unique solution் ିଵ ୘



FIGURE 3.2. The N-dimensional geometry of least 
squares regression with two predictors. The outcome vector 𝑦 is 
orthogonally projected onto the hyperplane spanned by the 
input vectors 𝑥1 and 𝑥2. The projection 𝑦ො represents the vector 
of the least squares predictions



• The predicted values at an input vector 𝑥0 are given by           𝑓መ 𝑥0 =  1 ∶  𝑥0 ்𝛽መ  ;the fitted values at the training inputs are் ିଵ ்
where 𝑦ො𝑖 =  𝑓መ(𝑥௜) .The matrix 𝐇 =  𝑿 𝑿்𝑿 ିଵ𝑿் appearing 

in equation (3.7) is sometimes called the “hat” matrix because 
it puts the hat on 𝑦.
• The hat matrix 𝐇 computes the orthogonal projection, and 

hence it is also known as a projection matrix. It might 
happen that the columns of 𝑿 are not linearly independent, 
so that 𝐗 is not of full rank. for example, if two of the inputs 
were perfectly correlated, (𝑒.𝑔. , 𝑥ଶ =  3x1) .



• Then 𝑿்𝑿 is singular and the least squares coefficients 𝛽መ are 
not uniquely defined. However, the fitted values 𝑦ො   = 𝑿𝛽መ    are 
still the projection of 𝑦 onto the columns pace of 𝑿; The non-
full-rank case occurs most often when one or more 
qualitative inputs are coded in a redundant fashion.

• There is usually a natural way to resolve the non-unique 
representation, by recoding and/or dropping redundant 
columns in 𝑿.



• Rank deficiencies can also occur in signal and image 
analysis, where the number of inputs 𝑝 can exceed the 
number of training cases 𝑁. In this case, the features are 
typically reduced by filtering or else the fitting is controlled 
by regularization 

• Assume that the observations 𝑦𝑖 are uncorrelated and have 
constant variance 𝜎ଶ, and that the 𝑥𝑖 are fixed (non random). 
The variance–covariance matrix of the least squares 
parameter estimates is easily derived from (3.6) and is given 
by

் ିଵ ଶ



• Typically one estimates the variance 𝜎ଶ by. 

ଶ ଵே ି ௣ ିଵ 𝑖 ௜ ଶே௜ୀଵ
• The 𝑁 − 𝑝 − 1 rather than N in the denominator makes  𝜎ොଶ

an unbiased estimate of 𝜎ଶ:  𝐸(𝜎ଶ) = 𝜎ଶ.



• The conditional expectation of 𝑌 is linear in 𝑋1, . . . ,𝑋𝑝. We also 
assume that the deviations of 𝑌 around its expectation are 
additive and Gaussian. Hence

1 𝑝
0 𝑗 𝑗௣௝ୀଵ

where the error 𝜀 is a Gaussian random variable with 
expectation zero and variance 𝜎ଶ, written ε ~ N(0,𝜎ଶ) .Under (3.9), it is easy to show that் ିଵ ଶ
• This is a multivariate normal distribution with mean vector 

and variance–covariance matrix as shown.



The Gauss–Markov Theorem
• One of the most famous results in statistics asserts that 

the least squares estimates of the parameters 𝜷
have the smallest variance among all linear 
unbiased estimates. 

• This observation will lead us to consider biased estimates 
such as ridge regression later. We focus on estimation of 
any linear combination of the parameters θ =  𝑎்𝛽 ; for 
example, predictions 𝑓 𝑥0 =  𝑥଴் 𝛽  are of this form. 

• The least squares estimate of 𝑎்𝛽 is் ் ் ିଵ ்



• Considering 𝑿 to be fixed, this is a linear function 𝒄଴்𝒚 of the 
response vector 𝒚. If we assume that the linear model is 
correct, 𝑎்𝛽መ is unbiased since் ் ் ିଵ ்

் ் ିଵ ்
்

• The Gauss–Markov theorem states that if we have any 
other linear estimator ் that is unbiased for ்
that is, ் ் , then

் ்



• Consider the mean squared error of an estimator 𝜃 in 
estimating θ:

ଶ ଶ
• The first term is the variance, while the second term is the 

squared bias. The Gauss-Markov theorem implies that the 
least squares estimator has the smallest mean squared error 
of all linear estimators with no bias. 



Multiple Regression from Simple 
Univariate Regression

• The linear model (3.1) with 𝑝 > 1 inputs is called the multiple 
linear regression model. 

• Suppose first that we have a univariate model with no 
intercept, that is,

• The least squares estimate and residuals are

𝑖 𝑖ேଵ ௜ଶேଵ
௜  𝑖 ௜
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• Convenient vector notation, we let                                       y =  𝑦1, . . . ,𝑦𝑁 ் , x =  (𝑥1, . . . , 𝑥𝑁)் and define

𝑖 𝑖ே௜ୀଵ்
• 𝐼𝑛𝑛𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 between 𝑥 and 𝑦 .Then we can write𝐱, 𝒚𝐱, 𝐱



• As we will see, this simple univariate regression provides 
the building block for multiple linear regression. 

• Suppose next that the inputs 𝟏 𝟐 𝑝 (the columns of 
the data matrix ) are orthogonal; that is 𝐣 𝒌 =  0 for 
all 𝑗 ≠  𝑘. Then it is easy to check that the multiple least 
squares estimates 𝛽መ𝑗 are equal to 𝒋 𝒋 𝒋 —the 
univariate estimates. In other words, when the inputs are 
orthogonal, they have no effect on each other’s parameter 
estimates in the model.

• Orthogonal inputs occur most often with balanced, 
designed experiments (where orthogonality is enforced), 
but almost never with observational data. 



• Hence we will have to orthogonalize them. Suppose next 
that we have an intercept and a single input  (1-D) x. Then 
the least squares coefficient of x has the form

1 𝐱 ି ௫̅𝟏, ௬𝐱ି௫̅𝟏, 𝐱ି௫̅𝟏
• where 𝑥  = ∑ 𝑥𝑖/𝑁௜ , and 0 the vector of 𝑁 ones. 

• We can view the estimate (3.27) as the result of two 
applications of the simple regression(3.26). The steps are:

1. Regress 𝐱 on 𝟏 to produce the residual 𝒛 = 𝐱 −  𝑥𝟏;

2. Regress 𝐲 on the residual 𝒛 to give the coefficient 𝛽መ1.



• In this procedure, “regress 𝒃 on a” means a simple 
univariate regression of 𝒃 on a with no intercept, 
producing coefficient 𝛾ො  =  ⟨𝒂,𝒃⟩/⟨𝒂,𝒂⟩ and residual vector 𝐛 − γො𝐚. We say that 𝒃 is adjusted for a, or is 
“orthogonalized” with respect to a.

• Step 1 orthogonalizes x with respect to 𝐱0 =  𝟏. Step 2 is 
just a simple univariate regression, using the orthogonal 
predictors 𝟏 and 𝑧. Figure 3.4 shows this process for two 
general inputs 𝐱ଵ and 𝐱𝟐. The orthogonalization does not 
change the subspace spanned by 𝐱1 and 𝐱2, it simply 
produces an orthogonal basis for representing it.

• This recipe generalizes to the case of p inputs, as shown 
in Algorithm 3.1. Note that the inputs 𝐳0, . . . , 𝐳୨ିଵ in step 2
are orthogonal, hence the simple regression coefficients 
computed there are in fact also the multiple regression 
coefficients.



Linear Methods for Regression

FIGURE 3.4. Least squares regression by orthogonalization of the 
inputs. The vector 𝐱2 is regressed on the vector 𝐱1, leaving the 
residual vector 𝒛. The regression of 𝒚 on 𝒛 gives the multiple 

regression coefficient of 𝐱2. Adding together the projections of 𝒚 on 
each of 𝐱𝟏 and 𝒛 gives the least squares fit 𝒚ෝ.



1. Initialize 𝒛0 =  𝐱𝟎 =  𝟏.

2. For 𝑗 =  1, 2, . . . ,𝑝 
Regress 𝐱𝑗 on 𝒛𝟎, 𝒛𝟏 … . . , 𝒛𝒋ି𝟏 to    
produce coefficients:

ℓ𝑗 = 𝒛ℓ, 𝐱ℓ𝒛ℓ,  𝐳ℓ
and residual vector𝑗 𝑗 𝑘𝑗 𝑘௝ିଵ௞ୀ଴ 

3. Regress y on the residual 𝐳𝑝 to give the estimate 𝛽መ𝑝.

Algorithm 3.1 Regression by Successive Orthogonalization.



• The result of this algorithm is

𝑝 ⟨𝐳௣,  𝐲⟩⟨𝐳೛, 𝐳೛⟩ (3.28)

• Re-arranging the residual in step 2, we can see that each of 
the 𝐱𝑗 is a linear combination of the 𝐳𝑘, 𝑘 ≤  𝑗. 

• Since the 𝒛𝑗 are all orthogonal, they form a basis for the 
column space of 𝐗, and hence the least squares projection 
onto this subspace is yො. 

• Since 𝒛𝑝 alone involves 𝑝 (with coefficient 1), we see that 
the coefficient (3.28) is indeed the multiple regression 
coefficient of on 𝑝.

• The multiple regression coefficient 𝛽መ𝑗 represents the additional 
contribution of 𝑗 on 𝒚, after 𝑗 has been adjusted 
for 0 1 ௝ିଵ ௝ାଵ ௣



• Algorithm is known as the Gram–Schmidt
procedure for multiple regression,. We can obtain 
from it not just 𝑝, but also the entire multiple least 
squares fit, 

• We can represent step 2 of Algorithm 3.1 in matrix form:

where 𝐙 has as columns the z𝑗 (in order), and 𝚪 is the 
upper triangular matrix with entries ௞௝. 



• Introducing the diagonal matrix 𝐃 with 𝑗𝑡ℎ diagonal entry 𝐷𝑗𝑗 = ∥ z𝑗 ∥, we get ି𝟏
the so-called QR decomposition of 𝐗. Here 𝐐 is an                  𝑁 × (𝑝 + 1) orthogonal matrix,𝐐்𝐐 =  𝐈, and 𝐑 is a                     (𝑝 +  1)  ×  (𝑝 +  1) upper triangular matrix. 

• The 𝑸𝑹 decomposition represents a convenient 
orthogonal  basis for the column space of 𝑿. It is easy to 
see, for example, that the least squares solution is given 
by ିଵ ்

்
• Equation (3.32) is easy to solve as 𝑹 is upper triangular



Multiple Outputs
• Suppose we have multiple outputs 𝑌1,𝑌2, . . . ,𝑌௄  that we wish 

to predict from our inputs 𝑋0,𝑋1,𝑋2, . . . ,𝑋𝑝. We assume a 
linear model for each output

𝑘 0𝑘 𝑗 𝑗𝑘 𝑘௣௝ୀଵ
𝑘 𝑘

• With 𝑁 training cases we can write the model in matrix 
notation

• Here 𝐘 is the 𝑁 × 𝐾 response matrix, with 𝑖𝑘 entry 𝑦𝑖𝑘, 𝐗 is 
the 𝑁 × (𝑝 + 1) input matrix, 𝐁 is the (𝑝 +  1)  ×  𝐾 matrix of 
parameters and 𝐄 is the 𝑁 × 𝐾 matrix of errors.



• A straightforward generalization of the univariate loss 
function (3.2) is

௜௞ ௞ 𝑖 ଶே
௜ୀଵ

௄
௞ୀଵ ்

• The least squares estimates have exactly the same form as 
before ் ିଵ ்
If the errors ε = (ε1,……, εκ) in (3.34) are correlated;  if
Cov(ε) =  Σ, then the multivariate weighted criterion:





Subset Selection
• There are two reasons why we are often not satisfied with 

the least squares estimates (3.6).
 The first is 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦: the least squares 

estimates (not just linear) often have low bias but 
large variance. Prediction accuracy can sometimes 
be improved by shrinking or setting some 
coefficients to zero. By doing so we sacrifice a little 
bit of bias to reduce the variance of the predicted 
values, and hence may improve the overall 
prediction accuracy.

 The second reason is 𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑡𝑖𝑜𝑛. With a large 
number of predictors, we often would like to 
determine a smaller subset that exhibit the 
strongest effects. In order to get the “big picture,” 
we are willing to sacrifice some of the small details.

𝛽መ =  𝑿்𝑿 ିଵ𝐗୘𝐲



• In this section, we describe a number of approaches to 
variable subset selection with linear regression. In later 
sections we discuss shrinkage and hybrid approaches for 
controlling variance, as well as other dimension-reduction 
strategies. These all fall under the general heading 𝒎𝒐𝒅𝒆𝒍 𝒔𝒆𝒍𝒆𝒄𝒕𝒊𝒐𝒏. 

• With subset selection we retain only a subset of the 
variables, and eliminate the rest from the model. Least 
squares regression is used to estimate the coefficients of 
the inputs that are retained. There are a number of 
different strategies for choosing the subset.



• Best subset regression finds for each 𝑘 ∈  {0, 1, 2, . . . , 𝑝} the 
subset of size 𝑘 that gives smallest residual sum of 
squares (3.2). An efficient algorithm— the leaps and 
bounds procedure (Furnivall and Wilson, 1974)—makes 
this feasible for 𝑝 as large as 30 or 40. 

• The lower boundary represents the models that are 
eligible for selection by the best-subsets approach. The 
best-subset curve (blue lower boundary in Figure 3.5) is 
necessarily decreasing, so cannot be used to select the 
subset size 𝑘. 

• There are a number of criteria that one may use; typically 
we choose the smallest model that minimizes an estimate 
of the expected prediction error. E.g. cross-validation to 
estimate prediction error and select k; the AIC criterion is 
a popular alternative.



FIGURE 3.5. All possible subset models for an (the prostate cancer) 
example. At each subset size is shown the residual sum-of-squares for 
each model of that size.



Forward- and Backward-Stepwise 
Selection

• Rather than search through all possible subsets (which 
becomes infeasible for p much larger than 40), we can 
seek a good path through them. 

• Forward-stepwise selection starts with the intercept, and 
then sequentially adds into the model the predictor that 
most improves the fit. 

• Like best-subset regression, forward stepwise produces a 
sequence of models indexed by 𝑘, the subset size, which 
must be determined.

• Forward-stepwise selection is a 𝑔𝑟𝑒𝑒𝑑𝑦 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚, producing 
a nested sequence of models. In this sense it might seem 
sub-optimal compared to best-subset selection. 



• However, there are several reasons why it might be 
preferred:

 𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙; for large p we cannot compute the 
best subset sequence, but we can always compute 
the forward stepwise sequence (even when 𝑝 ≫ 𝑁).

 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙; a price is paid in variance for selecting the 
best subset of each size; forward stepwise is a more 
constrained search, and will have lower variance, but 
perhaps more bias.



• Backward-stepwise selection starts with the full model, and 
sequentially deletes the predictor that has the least impact 
on the fit. The candidate for dropping is the variable with the 
smallest 𝑍-score. Backward selection can only be used when  𝑁 > 𝑝, while forward stepwise can always be used.

• Figure 3.6 shows the results of a small simulation study to 
compare best-subset regression with the simpler 
alternatives forward and backward selection. 



FIGURE 3.6. Comparison of four subset-selection techniques on a 
simulated linear regression problem 𝑌 =  𝑋்𝛽  + 𝜀. There are 𝑁 =300 observations on 𝑝 =  31 standard Gaussian variables, with 

pairwise correlations all equal to 0.85. For 10 of the variables, the 
coefficients are drawn at random from a 𝑁(0, 0.4) distribution; the 
rest are zero. The noise 𝜀~ N(0, 6.25), resulting in a signal-to-noise 
ratio of 0.64. Results are averaged over 50 simulations. Shown is 
the mean-squared error of the estimated coefficient 𝛽መ(𝑘) at each 

step from the true 𝛽.



Forward-Stagewise Regression
• Forward-stagewise regression (𝐹𝑆) is even more 

constrained than forwardstepwise regression. 

• It starts like forward-stepwise regression, with an 
intercept equal to 𝑦ത, and centered predictors with 
coefficients initially all 0. 

• At each step the algorithm identifies the variable most 
correlated with the current residual. It then computes 
the simple linear regression coefficient of the residual on 
this chosen variable, and then adds it to the current 
coefficient for that variable. 

• This is continued till none of the variables have correlation 
with the residuals—i.e. the least-squares fit when 𝑁 >  𝑝.



• Unlike forward-stepwise regression, none of the other 
variables are adjusted when a term is added to the 
model. 

• As a consequence, forward stagewise can take many 
more than 𝑝 steps to reach the least squares fit, and 
historically has been dismissed as being inefficient. 

• It turns out that this “slow fitting” can pay dividends in 
high-dimensional problems.

• Forward-stagewise regression is included in Figure 3.6. 
In this example it takes over 1000 steps to get all the 
correlations below 10−4. For subset size k, we plotted the 
error for the last step for which there where k nonzero 
coefficients. Although it catches up with the best fit, it 
takes longer to do so.



Contd.  - in part B;




