Support Vector
Machines

[.inear Classifiers 1

>
N

> yest

f(x,w,b) = sign(wx + D)

° denotes +1 W X + b>0

° denotes -1

How would you
classify this data?

Copyright © 2001, Andrew W.
Moore

How do we characterize “power”’?

Different machines have different amounts of
‘power”.

Tradeoff between:

o More power: Can model more complex classifiers
but might overfit.

o Less power: Not going to overfit, but restricted In
what it can model.

How do we characterize the amount of
power?

Some definitions

Given some machine f

And under the assumption that all training points (x,,y,) were drawn I.i.d
from some distribution.

And under the assumption that future test points will be drawn from the
same distribution

Define Probability of

1
R(a) = TESTERR (&) = E| =|y — f (X, =
(@) (@) [zy (a)} Misclassification

S~

Official terminology Terminology we'll use

Some definitions

Given some machine f

And under the assumption that all training points (x,,y,) were drawn i.i.d
from some distribution.

And under the assumption that future test points will be drawn from the
same distribution

Define
Probability of

1
R(a) = TESTERR (&) = E| =|y — f (X, =
(@) (@) [zy (a)} Misclassification

Official terminology Terminology we'll use

\/ " e

R*™ () = TRAINERR (&) = %Zg‘yk — f (xk,a)‘ —

R = #training set data
points

Fraction Training
Set misclassified

Vapnik-Chervonenkis dimension

R
TESTERR (&) = EBy— f(x,a)} TRAINERR (a) = %Z%\yk — f (%, @)

k=1
Given some machine f, let h be its VC dimension.
h is a measure of f’'s power (h does not depend on the choice of training set)
Vapnik showed that with probability 1-n

h(log(2R/h) +1) —log(r7/ 4)
R

TESTERR (@) < TRAINERR () +\/

This gives us a way to estimate the error on
future data based only on the training error and
the VC-dimension of f

‘ What VC-dimension is used for
TESTERR (@) = EEW— f(x,a)q TRAINERR () =%Z%|yk — (%,)|

k=1

= Given some machine f, let h be its
= his a measure of f’'s ppwer
= Vapnik showed t

C ”' ;'

log(r7/4)

| =

. stimate the error on
aat. vased only on the training error and
C-dimension of f

4
the

Shattering

Machine f can shatter a set of points x,, X, .. X, if and only if...
For every possible training set of the form (x,y,) , (X,,¥5) ,--- (X;,Y,)
...There exists some value of a that gets zero training error.

There are 2" such training sets to
consider, each with a different
combination of +1’s and —1’s for
the y’s

Shattering

Machine f can shatter a set of points x4, X, .. X, if and only if...
For every possible training set of the form (x,,y,) , (X,,¥5) ,--- (X;,Y,)
...There exists some value of a that gets zero training error.
Question: Can the following f shatter the following points?

(@]

o

f(x,w) = sign(x.w)

Shattering

Machine f can shatter a set of points x,, X, .. X, if and only if...
For every possible training set of the form (x;,y,) , (X5,¥5) ,--- (X;,Y,)
... There exists some value of a that gets zero training error.
Question: Can the following f shatter the following points?

f(x,w) = sign(x.w)

« Answer: No problem. There are four training sets to consider

w=(0,1) w=(-2,3) w=(2,-3) w=(0,-1)

Shattering

Machine f can shatter a set of points x,, X, .. X, if and only if...
For every possible training set of the form (x,,y,) , (X,,¥5) ,--- (X;,Y,)
... There exists some value of a that gets zero training error.
Question: Can the following f shatter the following points?

(@]

<> f(x,b) = sign(x.x-b)

Shattering

= Machine f can shatter a set of points x,, X, .. X, if and only if...
For every possible training set of the form (x,,y,) , (X»,¥5) ,--- (X;.Y,)
...There exists some value of a that gets zero training error.

= Question: Can the following f shatter the following points?

-

(o]

B

N

%

« Answer: No way my friend.

(@]

\o

-

-
N

/

Co

T

f(x,b) = sign(x.x-h)

N

B
W

Co

T

Co

=
%

©
~/

Definition of VC dimension

Given machine f, the VC-dimension h is

The maximum number of points that can be
arranged so that f shatter them.

Example: What's VC dimension of f(x,b) = sign(x.x-b)

VC dim of trivial circle

Given machine f, the VC-dimension h is

The maximum number of points that can be
arranged so that f shatter them.

Example: What's VC dimension of f(x,b) = sign(x.x-b)

Answer = 1. we can’t even shatter two points! (but it's
clear we can shatter 1)

D\ (1
N N
Co @ G ©

-/ -/

Reformulated circle

Given machine f, the VC-dimension h is

The maximum number of points that can be
arranged so that f shatter them.

Example: For 2-d inputs, what's VC dimension of f(x,q,b) =
sign(gx.x-b)

‘ Reformulated circle
Given machine f, the VC-dimension h iIs

The maximum number of points that can be
arranged so that f shatter them.

Example: What's VC dimension of f(x,q,b) = sign(gx.x-b)

e Answer =2

I AR
P - T
Co ©, Co ©, Co g 0 ®

(

‘ Reformulated circle
Given machine f, the VC-dimension h iIs

The maximum number of points that can be
arranged so that f shatter them.

Example: What's VC dimension of f(x,q,b) = sign(gx.x-b)

 Answer=2

-
N

N
%

Co

©
/

T

A

q,b are -ve 9%
A A D
@@, @@, G @

Vapnik-Chervonenkis dimension

R
TESTERR (&) = EBy— f(x,a)} TRAINERR (a) = %Z%\yk — f (%, @)

k=1
Given some machine f, let h be its VC dimension.
h is a measure of f’'s power (h does not depend on the choice of training set)
Vapnik showed that with probability 1-n

h(log(2R/h) +1) —log(r7/ 4)
R

TESTERR (@) < TRAINERR () +\/

This gives us a way to estimate the error on
future data based only on the training error and
the VC-dimension of f

Definition of VC dimension

Given machine f, the VC-dimension h is

The maximum number of points that can be
arranged so that f shatter them.

Example: What's VC dimension of f(x,b) = sign(x.x-b)

[inear Classifiers (T
X > f - yest

f(x,w,b) = sign(wx + D)

° denotes +1

° denotes -1

How would you
classify this data?

[inear Classifiers

° denotes +1

° denotes -1

f > yest

f(x,w,b) = sign(wx + D)

How would you
classify this data?

[inear Classifiers

° denotes +1

° denotes -1

o\
\

f > yest

fix vw,b) = sign(w x + D)

Any of these
would be fine..

..but which is
best?

[.inear Classifiers 1
X

!

> yest

f(xw,b) = sign(w x + D)

° denotes +1

° denotes -1

How would you
classify this data?

/ \
Misclassified

to +1 class

‘Classiﬁer Margin 1
X

f > yeSt

f(x,w,b) = sign(w x + D)
° denotes +1

Define the margin
of a linear

- classifier as the
width that the
boundary could be
increased by
before hitting a
datapoint.

° denotes -1

Maximum Margin (T
X

g f ~ ysest
1. Maximizing the margin is good
according to intuition
° denotes +1 2. Implies that only support vectors are
> denotes -1) important; other training examples
° % . are ignorable.
e “|3. Empirically it works very well.
L . ° 4/c - linear classifier
Support Vectors 7 |. with the. um
are those ° ° ° o ! .
datapoints that S o © Maximum margin.
the margin .0 This is the
pushes up v e : .
against simplest kind of

SVM (Called an
/ 4LSVM)
Linear SVM

‘ Linear SVM Mathematlcally

Oa?f’ x’ /\ M—Marg|n W|dth

X !
A - _ A
\XA‘FX \0//,’y « Q(ed\ 10
X
QOF

What we know: N .
= W.XT+b=+1 M = - —
= W.X+b=-1 ‘W‘ ‘W‘

=W, (Xt-x) =2

Linear SVM Mathematically

Goal: 1) Correctly classify all training data
WX, +b>1 ify =+1

WX, +b <1 ify= }2

y.(WX; +b) >1 foralli P
M —
1, \W\

same as minimize —WW

2) Maximize the Margin

We can formulate a Quadratic Optimization Problem and solve for w and b

1
Minimize @(W) = EWtW

y. (WX: +b) >1 Vi

subject to

Solving the Optimization Problem

Find w and b such that

d(w) =2 wTw is minimized;

and for all {(X; ,Yi)}: v; (W™, +b) >1
Need to optimize a quadratic function subject to linear
constraints.
Quadratic optimization problems are a well-known class of
mathematical programming problems, and many (rather
Intricate) algorithms exist for solving them.
The solution involves constructing a dual problem where a

Lagrange multiplier a;is associated with every constraint in the
primary problem:

Find a;...ay such that

Q@) =Xa; - YaXLaouyy;X;TX; is maximized and
(1) Zayy;=0

(2) o; =0 for all ¢

The Optimization Problem Solution

The solution has the form:

W =2ayiX; b=vy,- w'x, for any x, such that a,=0

Each non-zero a; indicates that corresponding x; is a
support vector.

Then the classifying function will have the form:
f(X) = Zayx,™X + b

Notice that it relies on an inner product between the test
point X and the support vectors X;.

Also keep in mind that solving the optimization problem
involved computing the inner products x;'x; between all
pairs of training points.

Dataset with noise

* denotes +1 Hard Margin: So far we require
all data points be classified correctly

° denotes -1

- No training error
What if the training set is
noisy?

- Solution 1: use very powerful
kernels

OVERFITTING!

Soft Margin Classification

Slack variables §i can be added to allow
misclassification of difficult or noisy examples.

What should our quadratic
optimization criterion be?

Minimize
o 1 R
° “ww+C) g
2 1

Hard Margin v.s. Soft Margin

The old formulation:

Find w and b such that
®(w) =% w'w is minimized and for all {(X; ,y;)}
yi (WX +b)=1

The new formulation incorporating slack variables:

Find w and b such that
d(w) =2 wTw + CX& is minimized and for all {(X; ,Y;)}
yi (W', +b)>1-& and &>O0foralli

Parameter C can be viewed as a way to control
overfitting.

Hard 1-dimensional Dataset

What would SVMs do with this data?

Not a big surprise

o o] () O
X=0)
Positive “plane” eg

Doesn’t look like slack variables will save us this time...

o O o o []

ative “plane”

taken from Andrew W. Moore 33

Hard 1-dimensional Dataset

Make up a new feature!

Sort of...
... computed from
original feature(s)

Zy :(walf)

Separable! MAGIC!

New features are sometimes called basis functions.
Now drop this "augmented” data into our linear SVM.

taken from Andrew W. Moore 34

Kernels and Linear Classifiers

Let # = [#1,7>] € R? be a vectorial represenation
of object r € X

Let ¢ : X — K C R3 feature map be given by
¢(%) = [%1,73, F172])T € K C R3

Def. Feature space: K
We will use linear classifiers in this feature space.

In the original space R? for a given w € R3 the decision surface is:

Xo(w) = {Z € R? | w1¥1 + woi3 + w3F172 = 0}

e This is nonlinear in # € R2

e This is linear in the feature space ¢(&) € K ¢ R3
35

o(T) = 71,73, T175]! € K C R3 feature map

Picture is taken from R. Herbrich 3°

Kernels and Linear Classifiers

() = [¢p1(D), $2(T), ¢3(D)] = [7F1, T3, T172]T

\/

Feature functions

e We seek for a small set of basis vectors {¢;}
which allows perfect discrimination between
the classes in X (Feature selection)

e If we have too many features = overfitting can happen.

37

Non-linear SVMs

Datasets that are linearly separable with some noise
work out great:
g — | @._. -

But what are we going to do if the dataset is just too hard?

*—0 *—0—

0 X
How about... mapping data to a higher-dimensional
space:

38

Non-linear SVMs: Feature spaces

General 1dea;:

the original input space can always be

mapped to some higher-dimensional feature space
where the training set is separable:

® . e ®
t5d ‘o,
Od .
0 .
3 ®] B
. i E *
C -, ®) o
. .
o ()
e, . ‘e

39

The “Kernel Trick™

To produce linear separability in Higher Dimension, the linear classifier
relies on dot product between vectors K(x;,X;)=X;X;

If every data point is mapped into high-dimensional space via some
transformation ®: x — @(x), the dot product becomes:

K(X;,X;)= 0(x;) To(X;)
A kernel function is some function that corresponds to an inner product in
some expanded feature space.

Example:
2-dimensional vectors x=[x; X,]; let K(x;,x;)=(1 + x;7x;)?
Need to show that K(x;,x;)= ¢(X;) To(X;):
K(X;,%;)=(1 + %;%;)?,
= 14 X%+ 2 Xig X1 XipXiot Xip™Xjo” + 2Xi1XG1 + 2XipX i
= [1 X2 V2 Xy Xip Xi? V2% V2% T[1 X2 V2 Xy X5, Xip? V2%, V2x,]
= @(x) To(x;)), where @(x) = [1 X2 V2 XX, X2 V2%, V2x,]

40

What Functions are Kernels?

For some functions K(x;x;) checking that

K(Xi»%;)= 9(X;) To(x;) can be cumbersome.
Mercer’s theorem:
Every semi-positive definite symmetric function is a kernel

Semi-positive definite symmetric functions correspond to a
semi-positive definite symmetric Gram matrix:

K(X1.Xq) | K(X1,X5) | K(X4,X35) K(X1,Xn)
K(X2,X1) | K(X2,X5) | K(X5,X3) K(X2,Xp)
K(X.@.,Xl) K(X.|;|;X2) K(X.|;|;X3) K(X.@.,XN)

Examples of Kernel Functions
Linear: K(x;,x;)= X; 'X;
Polynomial of power p: K(x;,x;)= (1+ X; 'x;)P

Gaussian (radial-basis function network):
2

X =X,
[,

207

K (%, %;) = €xp(-

Sigmoid: K(x;,x;)= tanh(ByX; 'x; + B,)

42

Non-linear SVMs Mathematically

Dual problem formulation:

Find a;...aysuch that
(1) Zayy; =0
(2) a; > 0 for all a;

The solution is:

f(x) = Zayy;K(X;, X;)+ b

Optimization techniques for finding a;’s remain the same!

43

Nonlinear SVM - Overview

SVM locates a separating hyperplane in the
feature space and classify points in that
space

It does not need to represent the space
explicitly, simply by defining a kernel
function

The kernel function plays the role of the dot
product in the feature space.

44

Properties of SVM

Flexibility in choosing a similarity function
Sparseness of solution when dealing with large
data sets

- only support vectors are used to specify the separating
hyperplane

Ability to handle large feature spaces

- complexity does not depend on the dimensionality of the
feature space

Overfitting can be controlled by soft margin
approach

Nice math property: a simple convex optimization

problem which is guaranteed to converge to a single global
solution

Feature Selection

45

SVM Applications

e SVM has been used successfully in many
real-world problems
- text (and hypertext) categorization

- image classification
- bioinformatics (Protein classification,

Cancer classification)
- hand-written character recognition

46

Weakness of SVM

e It is sensitive to noise

- A relatively small number of mislabeled examples can
dramatically decrease the performance

e It only considers two classes

- how to do multi-class classification with SVM?
- Answer:
1) with output arity m, learn m SVM'’s

e SVM 1 learns "Output==1" vs "Output !'= 1"
e SVM 2 learns "Output==2" vs "Output != 2"
e SVM m learns "Output==m" vs "Output '= m”

2)To predict the output for a new input, just predict with
each SVM and find out which one puts the prediction the
furthest into the positive region.

47

Back to the Perceptron Example
<SP EEX

File Edit Wiew Insert Tools ‘Window Help

Newral Network DESRIGHN Percepiron Rule J—
*
Click [Learn] to apply
o the perceptron rule
[to a single vectar.
O Click [Train] to apply
1t G i the rule up to & times.
. Click [Fandom] to set
Learn the weights to random
O yalles.
. Drag the white and
VGELR black dots o define
1t different problems.
R andom :
2 I
o : Contents
" MNoBias -3}, . . '
A o 1 3 Cloze
=[-3.5 -1.8] [] Chapter 4

48

The Perceptron

e The primal algorithm in the feature space

D ={(x;,y;),i=1,...,m} training data set.

x; = ¢(x;) € K C R™ feature map.

1., w=0¢eR"
2.,V (x;,y;), 1 =1,...,m, evaluate sign(y;{x;, w))

3., If x; is misclassified (sign(y;(x;,w)) < 0)
then w = w + y;x;

4., If no mistakes occur = STOP

49

The primal algorithm in the feature space

Algorithm 1 Perceptron learning algorithm (in primal variables).

Require: A feature mapping¢ : X' — K C £}

Ensure: A linearly separable training sample z = ((x1, y1), ..., (X, Yi))
wo=0;r=0
repeat If z; is misclassified

for j =1,...,mdo /
if y; (¢ (x;).w) <0 then
Wil =W+ Y@ (\j)
[<—1+1
end if
end for
until no mistakes have been made within the for loop
return the final weight vector w;

Picture is taken from R. Herbrich >°

The Perceptron

We start at wg =0 KL C R"

m=— num of training examples,
n = dim(IC),

t= num of mistakes so far

m m
= wr = > o;¢(x;) = > a;x; € R™ at time step ¢

Thus instead of tuning n variables
w = (w1,...,wn) (Primal variables)
in the large n-dimensional feautre space K, it is
enough to learn o« = («aq, ..., o) values (Dual variables).

51

The Perceptron
The Dual Algorithm in the feature space

D ={(x;,y;),1=1,...,m} training data set.
x; = ¢(xz;) € K C R™ feaure map, ¢ =1,...,m

t= num 9]{ mistakes somfar
= wr = > ap(x;) = > ayx; € R at time step ¢

1=1 =1

We update a; € R™ whenever a mistake occurs

1., ag=0¢€ R™
2., vVg=1,...,m evaluate
L (11
Yi (X5, W) = y; (X5, _Zl QX;) = Y; _Zl ;i (X, X;)
1= 1=

3., If z; is misclassified (y;(x;, ws) < 0) then update a; € K

4., If no mistakes occur = STOP 52

The Dual Algorithm in the feature space

Algorithm 2 Perceptron learning algorithm (in dual variables).

Require: A feature mapping ¢ : X' — K C £}
Ensure: A linearly separable training sample z = ((x1, y1), ..., (X, Ym))
o =0
repeat
for j=1,....,mdo —
if y; > o (@ (xi), ¢ (x;)) <0 then
Aj <o)+ Y
end if
end for
until no mistakes have been made within the for loop
return the vector o of expansion coefficients

If T IS misclassified

Picture is taken from R. Herbrich >3

The Dual Algorithm in the feature space

For the classification of a new object (x,vy)

we have to evaluate
T

y Y ai(x,x;)

1=1

We don't have to know the actual values of x = ¢(x)!

It is enough to know the inner products
(x,x%;) Vi=1,...,m

between the object and the training points

54

Kernels

Definition: (kernel)

We are given ¢ : X — K C (5 feautre mapping.

The kernel k£ : X x X — R is the corresponding
inner product function:

k(zi, zj) = ((xi), cb(évg)) = (X4, Xj) [

Xz XJ

Kernels

Definition: (Gram matrix, kernel matrix)

Gram matrix G € R™*™ of kernel k at {x1,...,xm}:

Given a kernel £ A X A —- R

and a training set {z1,...,zm} } = Gij = klzi, 2) = (xi,%;)

Definition: (Feature space, kernel space)

IC = span{op(x) | v € X} C R"”

56

Kernel technique

Definition:

Matrix G € R™*™ is positive semidefinite (PSD)
& G is symmetric, and 0 < 87'GB vB € Rm*m

Given a kernel £ : A X X —- R

and a training set {z1,...,zm} } = Gij = k(wj, 25) = (x5, %j)1c

Lemma:

The Gram matrix is symmetric, PSD matrix.

Proof:
X =[x1,...,Xm] € R = G = XTX ¢ pmxm

0 < (XB8,XB)x = BTGP .

Kernel technique

We already know that several algorithms
use the kernel values only
(...and NOT the feature values)!

Key idea:

58

Kernel technique

We have seen so far how to build a kernel k(-,-)
from a given feature map ¢ : X — R"

Now we want to do the opposite:

A function k(-,-) is kernel & there exists a feature space K and
feature map ¢ : X — K, such that k(x1,25) = (¢(x1), d(x2)) i

59

From Vector domain to Functions

e Observe that each vector v = (v[1], v[2], ..., V[n])
is @ mapping from the integers {1,2,..., n} to <

e\We can generalize this easily to INFINITE domain

w = (w[1], w[2], ..., w[n], ...)
where w is mapping from {1,2,...} to <

12 j 1

<4 L

(Tgv) (@) = (Gv) (@) = Z v
7?,, (i.4) £(2)

60

From Vector domain to Functions

From integers we can further extend to

e <oOr
o <M

e Strings

e Graphs

e Sets

e Whatever

61

Kernels

We don’t need the K C I5 assumption. It is enough if K is a
complete inner product (Hilbert) space.

Definition: inner product, Hilbert spaces

(.} : K x K — R is an inner product in vector space K, iff for all
vectors z,y, z € K and all scalars a € R:

* Symmetry: (z,y) = (y,x).

* Linearity in the first argument:

(az,y) = alz,y), {(z +y,2) = (x,2) + (y,2).

* Positive-definite: (x,x) > 0 with equality only for x = 0.
This is more general than the inner product in R* =15

Examples:
e space of square integrable functions Lo(X),
e Space of square summable infinite series >

Integral operators, eigenfunctions

Definition: Eigenvalue, Eigenfunction

e)\ IS the eigenvalue,
o W c Ly(X) is the eigenfunction
of integral opreator (T.f)(-) = [k(-,z) f(x)dx
X

<~ X

' 5/(" k(z, 7)Y (2)dzs = Mp(z) Vo € X

loIZ, =/ Y2 (x)de = 1

T he

when X = {z1,...,x,} is a finite set.

previous Gv = A\v IS a special case of this,

63

Positive (semi) definite operators

Definition: Positive Definite Operator

k(-,-) is symmetric kernel,
= (L) = [h(,2) f(2)da
X

T . Lo(X) — Lo(X) operator is positive semi definit

N ffk(:"é,:c)f(:c)f(ﬁ”:)da:dﬁ? >0 Vfe Lo(X)
X X

The previous v! Go > 0 Is a special case of this,
when X = {z1,...,z,} is a finite set.

64

Mercer’s theorem

(k(,) € Lo(X x X),

k is symmetric: k(x,7) = k(Z, x)

b S
() < (TLf)() = Jv k(-,z) f(x)dx operator is pos. semi definit

Y;, i =1,2,... are the eigenfunctions of T,
vaith eigenvalues)\

(()\17A27'°')El17)\@ZO\V/’L

Y; € Loo(X), Vi=1,2,...

k(x,x)

o

) variables

65

Mercer’s theorem

We like the Mercer’'s theorem becuase of the expansion:
oo
k(z,z) = > A\i(2)y(Z) Ve,
i=1
It shows the existence of the feature map ¢ : X — K C I5

= (¢(x), o))y,
= (VA1¢1(2), VA2 (), ..)T (VA1Y1(2), vVAaa(x),. .)

= 5 Awi@u@ = k) O

v(x) = (Y1(x),Y>(x),...) is known as Mercer map

66

A nicer characterization

The (*) condition in the Mercer's theorem is a bit ugly,
but we have a nicer form that characterizes when
a function k(-,-) : X x X — R is a kernel

(i.e. scalar product in some inner product space)

Theorem: nicer kernel characterization

67

Vapnik-Chervonenkis dimension

TESTERR () = EBY— f (x,a)} TRAINERR () = ii =

—ly, — f
R & Z‘Yk (Xk’a)‘

e Given some machine f, let A be its VC dimension.
e /1is a measure of f's power (4 does not depend on the choice of training set)
e Vapnik showed that with probability 1-n

h(log(2R/h) +1) —log(r7/ 4)
R

TESTERR () < TRAINERR () +\/

This gives us a way to estimate the error on
future data based only on the training error and
the VC-dimension of £

68

Non-linear SVMs

Datasets that are linearly separable with some noise
work out great:
g — | @._. -

But what are we going to do if the dataset is just too hard?

*—0 *—0—

0 X
How about... mapping data to a higher-dimensional
space:

69

The “Kernel Trick™

To produce linear separability in Higher Dimension, the linear classifier
relies on dot product between vectors K(x;,X;)=X;X;

If every data point is mapped into high-dimensional space via some
transformation ®: x — @(x), the dot product becomes:

K(X;,X;)= 0(x;) To(X;)
A kernel function is some function that corresponds to an inner product in
some expanded feature space.

Example:
2-dimensional vectors x=[x; X,]; let K(x;,x;)=(1 + x;7x;)?
Need to show that K(x;,x;)= ¢(X;) To(X;):
K(X;,%;)=(1 + %;%;)?,
= 14 X%+ 2 Xig X1 XipXiot Xip™Xjo” + 2Xi1XG1 + 2XipX i
= [1 X2 V2 Xy Xip Xi? V2% V2% T[1 X2 V2 Xy X5, Xip? V2%, V2x,]
= @(x) To(x;)), where @(x) = [1 X2 V2 XX, X2 V2%, V2x,]

70

Examples of Kernel Functions
Linear: K(x;,x;)= X; 'X;
Polynomial of power p: K(x;,x;)= (1+ X; 'x;)P

Gaussian (radial-basis function network):
2

X =X,
[,

207

K (%, %;) = €xp(-

Sigmoid: K(x;,x;)= tanh(ByX; 'x; + B,)

71

Mercer’s theorem

(k(,) € Lo(X x X),

k is symmetric: k(x,7) = k(Z, x)

b S
() < (TLf)() = Jv k(-,z) f(x)dx operator is pos. semi definit

Y;, i =1,2,... are the eigenfunctions of T,
vaith eigenvalues)\

(()\17A27'°')El17)\@ZO\V/’L

Y; € Loo(X), Vi=1,2,...

k(x,x)

o

) variables

72

Reproducing Kernel Hilbert Spaces

For a given kernel k(-,-) we already know how to define feature
space K, and ¢ : X — K feature map (Mercer map):

K =13, and ¢(z) = (vVA1¢1(2), vVApa(z),..)T

Now, we show another way using RKHS

k:XxX — R given kernel = Fg = {k(x,)|z € X'} function space

We will add inner product to Fpy function space
= Pre-Hilbert space

Completing (closing) a pre-Hilbert space - Hilbert space

73

Reproducing Kernel Hilbert Spaces

k:XxX — R given kernel = Fg = {k(x,)|z € X'} function space

(e1,.m) given = f() = ¥ ak(z;”) € Fo

S
(Z1,...,%s) given = g(-) = > Bik(Z;,-) € Fo

1=1
The inner product
k(z3,)] r
<fa E:l Z azﬁjk(mza j) (333) f() = Z a;k(z;,)
1=1 7= =1
= Z a;g(x;)
k(CUQ, ())
k(xq, -
Z Bif (&) (%) .

74

Reproducing Kernel Hilbert Spaces

Note:

While for calculating (f, g) 7, we use their
representations: a € R", 3 € R%, {z;}/_4, {553‘}?:1
the (f,9)r, is independent of the representation of f, g

Proof:

If we change a € R" or z; = (f,g)5, doesn’'t change
(because of (*)) The same for 3 € RS

(9 Fy =D aif(x) =) Bif(F) (%)
11 j=1

75

Reproducing Kernel Hilbert Spaces

Lemma:
(f,g) is an inner product of Fg

= JFp is pre-Hilbert space
F = close(Fp) is a Hilbert space

e Pre-Hilbert space:
Like the Euclidean space with rational scalars only

e Hilbert space:
Like the Euclidean space with rea/scalars

Proof:
L, {f,9)7 = (9 /)

2., {cf +dg,h) 5y = c(f, h) 5y + dlg, h) 7y Ve, d €R, Vf,g,h € Fo
3., ([, fl7o 20

4., ([N)rg=0&f=0

76

Reproducing Kernel Hilbert Spaces
Lemma: (Reproducing property)

Proof: definition of (f,g)r

Lemma: The constructed features match to &

Huhh...

Proof: reproducing property

77

Reproducing Kernel Hilbert Spaces

Proof of property 4.,:
0 < (f(@)?=(f k(z,)%, Va

/

rep. property

we need only that <0,0>=0!

Hence, if (f,flr=0= (f(2))?2=0, Vz € X
= f(x) =0, Vex e X
= =0

78

The Representer Theorem

In the perceptron problem we could use the dual
algorithm, because we had this representation:

ni
fx) = (o(x), w)x =) aik(z,z;)
=1
and thus we had to update «a1,...,am only, and not w € X!

The Representer theorem provides us a big class
of problems, where the solution can be represented by

)= aik(z;,:), aecR™
i—=1

79

The Representer Theorem
Theorem: k(-,-) : X x X — R, Mercer kernel on X)
z=1(x1,1y1), .., (@m,ym) € (X x Y)™ training sample
gemp : (X x Y x R)™ = RU {00} ¢ =

greg . R — [0, 00) strictly increasing function

F . RKHS induced by k(-,-) |

= f* = argmin e r Rreglf, 2]
= argminger gempl(xs, yis f(2i))ici1. .my] + greg(IIF1)
~) ’

1st term, empirical loss 2Md term, regularization

admits the following representation:
m
f*(.): Zla’[,k(aj’[,y')) o — (al,...,am) ERm
1=

80

The Representer Theorem

Message:
Optimizing in general function classes is difficult, but
in RKHS it is only finite! (m) dimensional problem

Proof of Representer Theorem:
¢(z) = k(z,) = &(z)(")

x1,...,Tm training samples are given

feF = ()= % ag(z)()+v()
where F 3 v L span{é(z1),. .., ¢(xm)},
thus (v, ¢(z;))r =0 Vi=1l,...,m

81

Proof of the Representer Theorem

Proof of Representer Theorem

fr=arg min Rreglf, z] = arg min gempl (@i, yss f(:cz-))z-e{l_,_m}]+€r6g(l|f||),

v

1st term, empirical loss 2" term, regularization
= f(z;) = ([, k(zy, ")) Fr = (,;1 o () + v, o)) F
o(x;) B
= ¥ ailo(@). 6())r = 3 aik(zi,z)

= f(x;) depends only on ay,...,am, but independent from v!

= 15 term depends only on aq,...,0Qm, but not on v

82

Proof of the Representer Theorem
fr=arg min Rreglf, z] = argmin gemp[(wwyzaf(mz))ze{l_._mj]+€reg(||f||)’

fe fw
1st term, empirical loss 2" term, regularization
Let us examine the 2™ term.

greg(I1F11) = greg (Il 3= ei(a:) +)

= greg(,/|l _;1 azﬁb(%)”% + ||U||§-“

since F > v L span{¢(x1),...,0(xm)}
>9T‘eg(|| Z a; ()| F)

with equality only if v = Ol
= any minimizer f* must have v =0

= ()= £ okl)

83

