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Linear Classifiers
f x

a

yest

denotes +1

denotes -1

f(x,w,b) = sign(w x + b)

How would you 
classify this data?

w x + b<0

w x + b>0

Copyright © 2001, Andrew W. 

Moore



How do we characterize “power”?

 Different machines have different amounts of 

“power”.

 Tradeoff between:

 More power: Can model more complex classifiers 

but might overfit.

 Less power: Not going to overfit, but restricted in 

what it can model.

 How do we characterize the amount of 

power?



Some definitions
 Given some machine f

 And under the assumption that all training points (xk,yk) were drawn i.i.d
from some distribution.

 And under the assumption that future test points will be drawn from the 
same distribution

 Define

icationMisclassif

ofy Probabilit
),(

2

1
)(TESTERR)( 








 aaa xfyER

Official terminology Terminology we’ll use



Some definitions
 Given some machine f

 And under the assumption that all training points (xk,yk) were drawn i.i.d 
from some distribution.

 And under the assumption that future test points will be drawn from the 
same distribution

 Define

icationMisclassif

ofy Probabilit
),(

2

1
)(TESTERR)( 








 aaa xfyER

Official terminology Terminology we’ll use

iedmisclassifSet 

TrainingFraction 
),(

2

11
)(TRAINERR)(

1

 


R

k

kk

emp xfy
R

R aaa

R = #training set data 

points



Vapnik-Chervonenkis dimension

 Given some machine f, let h be its VC dimension.

 h is a measure of f’s power (h does not depend on the choice of training set)

 Vapnik showed that with probability 1-h
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This gives us a way to estimate the error on 

future data based only on the training error and 

the VC-dimension of f



What VC-dimension is used for

 Given some machine f, let h be its VC dimension.

 h is a measure of f’s power.

 Vapnik showed that with probability 1-h
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Shattering
 Machine f can shatter a set of points x1, x2 .. xr if and only if…

For every possible training set of the form (x1,y1) , (x2,y2) ,… (xr ,yr)

…There exists some value of a that gets zero training error.

There are 2r such training sets to 

consider, each with a different 

combination of +1’s and –1’s for 

the y’s



Shattering

 Machine f can shatter a set of points x1, x2 .. Xr if and only if…

For every possible training set of the form (x1,y1) , (x2,y2) ,… (xr ,yr)

…There exists some value of a that gets zero training error.

 Question: Can the following f shatter the following points?

f(x,w) = sign(x.w)



Shattering
 Machine f can shatter a set of points x1, x2 .. Xr if and only if…

For every possible training set of the form (x1,y1) , (x2,y2) ,… (xr ,yr)

…There exists some value of a that gets zero training error.

 Question: Can the following f shatter the following points?

f(x,w) = sign(x.w)

• Answer: No problem. There are four training sets to consider

w=(0,1) w=(0,-1)w=(2,-3)w=(-2,3)



Shattering

 Machine f can shatter a set of points x1, x2 .. Xr if and only if…

For every possible training set of the form (x1,y1) , (x2,y2) ,… (xr ,yr)

…There exists some value of a that gets zero training error.

 Question: Can the following f shatter the following points?

f(x,b) = sign(x.x-b)



Shattering
 Machine f can shatter a set of points x1, x2 .. Xr if and only if…

For every possible training set of the form (x1,y1) , (x2,y2) ,… (xr ,yr)

…There exists some value of a that gets zero training error.

 Question: Can the following f shatter the following points?

f(x,b) = sign(x.x-b)

• Answer: No way my friend. 



Definition of  VC dimension

Given machine f, the VC-dimension h is

The maximum number of points that can be 
arranged so that f shatter them. 

Example: What’s VC dimension of f(x,b) = sign(x.x-b)



VC dim of  trivial circle
Given machine f, the VC-dimension h is

The maximum number of points that can be 
arranged so that f shatter them. 

Example: What’s VC dimension of f(x,b) = sign(x.x-b)

Answer = 1: we can’t even shatter two points! (but it’s 
clear we can shatter 1)



Reformulated circle

Given machine f, the VC-dimension h is

The maximum number of points that can be 

arranged so that f shatter them. 

Example: For 2-d inputs, what’s VC dimension of f(x,q,b) = 

sign(qx.x-b)



Reformulated circle
Given machine f, the VC-dimension h is

The maximum number of points that can be 

arranged so that f shatter them. 

Example: What’s VC dimension of f(x,q,b) = sign(qx.x-b)

• Answer = 2

q,b are -ve



Reformulated circle
Given machine f, the VC-dimension h is

The maximum number of points that can be 

arranged so that f shatter them. 

Example: What’s VC dimension of f(x,q,b) = sign(qx.x-b)

• Answer = 2 (clearly can’t do 3)

q,b are -ve



Vapnik-Chervonenkis dimension

 Given some machine f, let h be its VC dimension.

 h is a measure of f’s power (h does not depend on the choice of training set)

 Vapnik showed that with probability 1-h
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Definition of  VC dimension

Given machine f, the VC-dimension h is

The maximum number of points that can be 
arranged so that f shatter them. 

Example: What’s VC dimension of f(x,b) = sign(x.x-b)



Linear Classifiers
f x

a

yest

denotes +1

denotes -1

f(x,w,b) = sign(w x + b)

How would you 
classify this data?
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classify this data?



Linear Classifiers
f x

a

yest

denotes +1

denotes -1

f(x,w,b) = sign(w x + b)

Any of these 
would be fine..

..but which is 
best?



Linear Classifiers
f x

a

yest

denotes +1

denotes -1

f(x,w,b) = sign(w x + b)

How would you 
classify this data?

Misclassified

to +1 class



Classifier Margin
f x

a

yest

denotes +1

denotes -1

f(x,w,b) = sign(w x + b)

Define the margin
of a linear 
classifier as the 
width that the 
boundary could be 
increased by 
before hitting a 
datapoint.

Classifier Margin
f x

a

yest

denotes +1

denotes -1

f(x,w,b) = sign(w x + b)

Define the margin
of a linear 
classifier as the 
width that the 
boundary could be 
increased by 
before hitting a 
datapoint.



Maximum Margin
f x

a

yest

denotes +1

denotes -1

f(x,w,b) = sign(w x + b)

The maximum 
margin linear 
classifier is the 
linear classifier 
with the, um, 
maximum margin.

This is the 
simplest kind of 
SVM (Called an 
LSVM)

Linear SVM

Support Vectors 
are those 
datapoints that 
the margin 
pushes up 
against

1. Maximizing the margin is good 
according to intuition

2. Implies that only support vectors are 
important; other training examples 
are ignorable.

3. Empirically it works very well.



Linear SVM Mathematically

What we know:

 w . x+ + b = +1 

 w . x- + b = -1 

 w . (x+-x-) = 2 

X-
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Linear SVM Mathematically

 Goal: 1) Correctly classify all training data

if yi = +1

if yi = -1

for all i

2) Maximize the Margin

same as minimize

 We can formulate a Quadratic Optimization Problem and solve for w and b

 Minimize 

subject to                          

w
M

2


www t

2

1
)( 

1 bwxi

1 bwxi

1)(  bwxy ii

1)(  bwxy ii

i

wwt

2

1



Solving the Optimization Problem

 Need to optimize a quadratic function subject to linear 

constraints.

 Quadratic optimization problems are a well-known class of 

mathematical programming problems, and many (rather 

intricate) algorithms exist for solving them.

 The solution involves constructing a dual problem where a 

Lagrange multiplier αi is associated with every constraint in the 

primary problem:

Find w and b such that

Φ(w) =½ wTw is minimized; 

and for all {(xi ,yi)}:  yi (wTxi + b) ≥ 1

Find α1…αN such that

Q(α) =Σαi - ½ΣΣαiαjyiyjxi
Txj is maximized and 

(1) Σαiyi = 0

(2) αi ≥ 0 for all αi



The Optimization Problem Solution

 The solution has the form:

 Each non-zero αi indicates that corresponding xi is a 

support vector.

 Then the classifying function will have the form:

 Notice that it relies on an inner product between the test 

point x and the support vectors xi.

 Also keep in mind that solving the optimization problem 

involved computing the inner products xi
Txj between all 

pairs of training points.

w =Σαiyixi             b= yk- wTxk for any xk such that αk 0

f(x) = Σαiyixi
Tx + b



Dataset with noise  

 Hard Margin: So far we require 

all data points be classified correctly 

- No training error

 What if the training set is 

noisy?

- Solution 1: use very powerful 

kernels

denotes +1

denotes -1

OVERFITTING!



Slack variables ξi can be added to allow 

misclassification of difficult or noisy examples.

e7

e11

e2

Soft Margin Classification

What should our quadratic 

optimization criterion be?

Minimize
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Hard Margin v.s. Soft Margin

 The old formulation:

 The new formulation incorporating slack variables:

 Parameter C can be viewed as a way to control 

overfitting.

Find w and b such that

Φ(w) =½ wTw is minimized and for all {(xi ,yi)}
yi (wTxi + b) ≥ 1

Find w and b such that

Φ(w) =½ wTw + CΣξi is minimized and for all {(xi ,yi)}
yi (wTxi + b) ≥ 1- ξi and    ξi ≥ 0 for all i
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Hard 1-dimensional Dataset

What would SVMs do with this data?

Not a big surprise

x=0

Positive “plane” Negative “plane”

x=0

Doesn’t look like slack variables will save us this time…

taken from Andrew W. Moore
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Hard 1-dimensional Dataset
Make up a new feature!

Sort of… 
… computed from 
original feature(s)

x=0

),( 2

kkk xxz

New features are sometimes called basis functions.

Separable! MAGIC!

Now drop this “augmented” data into our linear SVM.
taken from Andrew W. Moore
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Kernels and Linear Classifiers

We will use linear classifiers in this feature space.



36Picture is taken from R. Herbrich
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Kernels and Linear Classifiers

Feature functions
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Non-linear SVMs

 Datasets that are linearly separable with some noise 

work out great:

 But what are we going to do if the dataset is just too hard? 

 How about… mapping data to a higher-dimensional 

space:

0 x

0 x

0 x

x2
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Non-linear SVMs:  Feature spaces

 General idea:   the original input space can always be 

mapped to some higher-dimensional feature space 

where the training set is separable:

Φ:  x → φ(x)
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The “Kernel Trick”
 To produce linear separability in Higher Dimension, the linear classifier 

relies on dot product between vectors K(xi,xj)=xi
Txj

 If every data point is mapped into high-dimensional space via some 

transformation Φ:  x → φ(x), the dot product becomes:

K(xi,xj)= φ(xi)
Tφ(xj)

 A kernel function is some function that corresponds to an inner product in 

some expanded feature space.

 Example: 

2-dimensional vectors x=[x1   x2];  let K(xi,xj)=(1 + xi
Txj)

2
,

Need to show that K(xi,xj)= φ(xi)
Tφ(xj):

K(xi,xj)=(1 + xi
Txj)

2
,

= 1+ xi1
2xj1

2 + 2 xi1xj1 xi2xj2+ xi2
2xj2

2 + 2xi1xj1 + 2xi2xj2

= [1  xi1
2  √2 xi1xi2  xi2

2  √2xi1  √2xi2]
T [1  xj1

2  √2 xj1xj2  xj2
2  √2xj1  √2xj2] 

= φ(xi)
Tφ(xj),    where φ(x) = [1  x1

2  √2 x1x2  x2
2   √2x1  √2x2]
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What Functions are Kernels?

 For some functions K(xi,xj) checking that 

K(xi,xj)= φ(xi)
Tφ(xj) can be cumbersome.

 Mercer’s theorem:  

Every semi-positive definite symmetric function is a kernel

 Semi-positive definite symmetric functions correspond to a 

semi-positive definite symmetric Gram matrix:

K(x1,x1) K(x1,x2) K(x1,x3) … K(x1,xN)

K(x2,x1) K(x2,x2) K(x2,x3) K(x2,xN)

… … … … …

K(xN,x1) K(xN,x2) K(xN,x3) … K(xN,xN)

K=
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Examples of  Kernel Functions

 Linear: K(xi,xj)= xi 
Txj

 Polynomial of power p: K(xi,xj)= (1+ xi 
Txj)

p

 Gaussian (radial-basis function network):

 Sigmoid: K(xi,xj)= tanh(β0xi 
Txj + β1)

)
2

exp(),(
2

2



ji

ji

xx
xx


K
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Non-linear SVMs Mathematically

 Dual problem formulation:

 The solution is:

 Optimization techniques for finding αi’s remain the same!

Find α1…αN such that

Q(α) =Σαi - ½ΣΣαiαjyiyjK(xi, xj) is maximized and 

(1)  Σαiyi = 0

(2) αi ≥ 0 for all αi

f(x) = ΣαiyiK(xi, xj)+ b
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 SVM locates a separating hyperplane in the 

feature space and classify points in that 

space 

 It does not need to represent the space 

explicitly, simply by defining a kernel 

function

 The kernel function plays the role of the dot 

product in the feature space.

Nonlinear SVM - Overview
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Properties of SVM

• Flexibility in choosing a similarity function
• Sparseness of solution when dealing with large 

data sets
- only support vectors are used to specify the separating 
hyperplane 

• Ability to handle large feature spaces
- complexity does not depend on the dimensionality of the 
feature space

• Overfitting can be controlled by soft margin 
approach

• Nice math property: a simple convex optimization 
problem which is guaranteed to converge to a single global 
solution

• Feature Selection
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SVM Applications
• SVM has been used successfully in many 

real-world problems

- text (and hypertext) categorization

- image classification

- bioinformatics (Protein classification,   

Cancer classification)

- hand-written character recognition
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Weakness of SVM

• It is sensitive to noise

- A relatively small number of mislabeled examples can 
dramatically decrease the performance

• It only considers two classes

- how to do multi-class classification with SVM?

- Answer: 
1) with output arity m, learn m SVM’s
• SVM 1 learns “Output==1” vs “Output != 1”
• SVM 2 learns “Output==2” vs “Output != 2”
• :
• SVM m learns “Output==m” vs “Output != m”

2)To predict the output for a new input, just predict with 
each SVM and find out which one puts the prediction the 
furthest into the positive region.
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Back to the Perceptron Example
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The Perceptron

• The primal algorithm in the feature space
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The primal algorithm in the feature space

Picture is taken from R. Herbrich
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The Perceptron
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The Perceptron
The Dual Algorithm in the feature space
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The Dual Algorithm in the feature space

Picture is taken from R. Herbrich
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The Dual Algorithm in the feature space
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Kernels

Definition: (kernel)
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Kernels

Definition: (Gram matrix, kernel matrix)

Definition: (Feature space, kernel space)
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Kernel technique

Lemma:

The Gram matrix is symmetric, PSD matrix.

Proof:

Definition: 
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Kernel technique

Key idea:
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Kernel technique
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From Vector domain to Functions

• Observe that each vector v = (v[1], v[2], ..., v[n]) 
is a mapping from the integers {1,2,..., n} to <

•We can generalize this easily to INFINITE domain 
w = (w[1], w[2], ..., w[n], ...) 
where w is mapping from {1,2,...} to <

1
2

1 2 1

1

G vi

j



61

From Vector domain to Functions

From integers we can further extend to 

• < or 

• <m

• Strings

• Graphs

• Sets

• Whatever

• …
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Kernels

Definition: inner product, Hilbert spaces 
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Integral operators, eigenfunctions

Definition: Eigenvalue, Eigenfunction
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Positive (semi) definite operators

Definition: Positive Definite Operator
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Mercer’s theorem

(*)

2 variables 1 variable
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Mercer’s theorem

...☺
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A nicer characterization

Theorem: nicer kernel characterization
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Vapnik-Chervonenkis dimension

• Given some machine f, let h be its VC dimension.

• h is a measure of f’s power (h does not depend on the choice of training set)

• Vapnik showed that with probability 1-h
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This gives us a way to estimate the error on 
future data based only on the training error and 
the VC-dimension of f
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Non-linear SVMs

 Datasets that are linearly separable with some noise 

work out great:

 But what are we going to do if the dataset is just too hard? 

 How about… mapping data to a higher-dimensional 

space:

0 x

0 x

0 x

x2
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The “Kernel Trick”
 To produce linear separability in Higher Dimension, the linear classifier 

relies on dot product between vectors K(xi,xj)=xi
Txj

 If every data point is mapped into high-dimensional space via some 

transformation Φ:  x → φ(x), the dot product becomes:

K(xi,xj)= φ(xi)
Tφ(xj)

 A kernel function is some function that corresponds to an inner product in 

some expanded feature space.

 Example: 

2-dimensional vectors x=[x1   x2];  let K(xi,xj)=(1 + xi
Txj)

2
,

Need to show that K(xi,xj)= φ(xi)
Tφ(xj):

K(xi,xj)=(1 + xi
Txj)

2
,

= 1+ xi1
2xj1

2 + 2 xi1xj1 xi2xj2+ xi2
2xj2

2 + 2xi1xj1 + 2xi2xj2

= [1  xi1
2  √2 xi1xi2  xi2

2  √2xi1  √2xi2]
T [1  xj1

2  √2 xj1xj2  xj2
2  √2xj1  √2xj2] 

= φ(xi)
Tφ(xj),    where φ(x) = [1  x1

2  √2 x1x2  x2
2   √2x1  √2x2]
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Examples of  Kernel Functions

 Linear: K(xi,xj)= xi 
Txj

 Polynomial of power p: K(xi,xj)= (1+ xi 
Txj)

p

 Gaussian (radial-basis function network):

 Sigmoid: K(xi,xj)= tanh(β0xi 
Txj + β1)

)
2

exp(),(
2

2


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Mercer’s theorem

(*)

2 variables 1 variable
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Reproducing Kernel Hilbert Spaces

Now, we show another way using RKHS

Completing (closing) a pre-Hilbert space  Hilbert space

Now, we show another way using RKHS
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Reproducing Kernel Hilbert Spaces

The inner product:

(*)
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Reproducing Kernel Hilbert Spaces

Note:

Proof:

(*)
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Reproducing Kernel Hilbert Spaces

Lemma:

• Pre-Hilbert space: 
Like the Euclidean space with rational scalars only

• Hilbert space: 
Like the Euclidean space with real scalars

Proof:
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Reproducing Kernel Hilbert Spaces
Lemma: (Reproducing property)

Lemma: The constructed features match to k

Huhh...
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Reproducing Kernel Hilbert Spaces

Proof of property 4.,:

rep. property

we need only that <0,0>=0!
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The Representer Theorem
In the perceptron problem we could use the dual 

algorithm, because we had this representation:
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The Representer Theorem

Theorem:

1st term, empirical loss 2nd term, regularization
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The Representer Theorem

Proof of Representer Theorem:

Message: 
Optimizing in general function classes is difficult, but 
in RKHS it is only finite! (m) dimensional problem
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Proof of the Representer Theorem

Proof of Representer Theorem

1st term, empirical loss 2nd term, regularization
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1st term, empirical loss 2nd term, regularization

Proof of the Representer Theorem


