CS6464W - CSLT SOFTWARE ASSIGNMENT - 1

Release Date: 24th Feb 2023

Submission Date: 23rd March 2023

1. Correlation Assignment:

The assignment is to measure the correlation, and produce a scatterplot, that shows the relationship between any two variables. The attached "Q1_data_xx.Rda" file contains the predictors $(x_1, x_2, ...)$ and the outcome (y). Use R and perform experiments to:

- i) Calculate the correlation between the predictors and also between the predictor and the outcome.
- ii) Generate the scatterplot matrix.
- iii) Based on the correlation values, discuss about the influence of predictors $(x_1, x_2, ...)$ on y.
- iv) Fit linear model on the data; Based on the coefficient of the predictors, identify the significant predictors.

File Names (Links to download files are given in the webpage):

- Q1 data 01.Rda
- Q1 data 02.Rda

(Refer to Table 1 for your assigned dataset)

2. Regression - Polynomial Fitting:

Consider the problem of fitting one-dimensional data with a polynomial. Write an R code to:

- i) Plot function y given in "Q2 fun xx".
- ii) Randomly extract 100 points from the function and add normally distributed noise to the data points to get "noisy data", \hat{y} .
- iii) Fit polynomial of degree d (values given in the table 1 below) to the noisy data.
- iv) Compute the bias and variance for the models fitted.
- v) Plot the bias-variance plot.

Functions: (Code for both functions)

Q2_fun_01:
$$y = e^{-5(x-0.3)^2} + 0.5 e^{-100(x-0.5)^2} + 0.5 e^{-100(x-0.75)^2}$$

Q2_fun_02: $y = 2 - 3x + 10x^4 - 5x^9 + 6x^{14}$

3. Central Limit Theorem:

Suppose X is a random variable whose probability distribution is specified by "Q2 dist xx".

Given an iid sample of size m such that $S_m = \sum_{i=1}^m X_i$.

According to CLT, for large m, S_m can be approximated by normal distribution. Prove it by plotting the density functions of S_m and the normal distribution, with parameters obtained using CLT, for different m values (given in the table 1 below).

Distributions: (Code for both distributions)

Q2 dist 01: $X \sim Gamma(\alpha, 1)$, where α is the shape parameter.

Q2_dist_02: $X \sim Binomial(n, p)$, where $n \in \mathbb{N}$ and $p \in [0, 1]$ are the parameters.

Deadline: 24/03/2023

Table 1:

S.No	Roll	Q1 Data	Q2: d values	Q3: m values
	number			
1	CS21M501	Q1_data_01.Rda	1,9,25	1,5,10,50,100,500
2	CS21M504	Q1_data_02.Rda	2,10,26	2,6,20,60,200,600
3	CS21M509	Q1_data_01.Rda	3,11,27	3,7,30,70,300,700
4	CS21M010	Q1_data_02.Rda	4,12,28	4,8,40,80,400,800
5	CS21M014	Q1_data_01.Rda	5,13,29	5,9,50,90,500,900
6	CS21M015	Q1_data_02.Rda	6,14,30	6,10,60,100,600,1000
7	CS21M017	Q1_data_01.Rda	7,15,23	7,11,70,110,700,1100
8	CS20M502	Q1_data_02.Rda	8,16,24	8,12,120,800,1200
9	Nagarajan	Q1_data_02.Rda	8,16,24	8,12,120,800,1200