
CPU Organization –

Hardware design

Vs.

Microprogramming

CPU StructureC U St uctu e
• CPU must:

F t h i t ti—Fetch instructions

i i—Interpret instructions

—Fetch data

—Process data

—Write data

Source:
Hamacher;;

Single-bus ORGN.

CPU always stores the
results of most calculations in
one special register —p g

typically called
“the Accumulator” of that CPU

ALU

Single Bus
Architecture

Input-Output Gating
of the egiste s in the of the registers in the
single-bus architecture

Timing Diagram
of a:of a:

Memory Read
operationoperation

Three-bus organization
of datapath;of datapath;

Or CPU architecture

Data Flow (Fetch Operation)(p)

Source: Stallings

MIPS (Microprocessor without Interlocked Pipeline
Stages) is a reduced instruction set computer (RISC)
i t ti t hit t (ISA)instruction set architecture (ISA).

Computer workstation systems using MIPS processors are:

SGI, MIPS Computer Systems, Inc., Whitechapel Workstations,
Olivetti, Siemens-Nixdorf, Acer, Digital Equipment Corporation,
NEC, and DeskStation.

Operating systems ported to the architecture include:

SGI's IRIX, Microsoft's Windows NT (until v4.0), Windows CE, SGI s IRIX, Microsoft s Windows NT (until v4.0), Windows CE,
Linux, BSD, UNIX System V, SINIX, QNX.

The R8000 (1994) was the first superscalar MIPS design, able
to execute two integer or floating point and two memory instructions
per cycle. The design was spread over six chips: an integer unit (with
16 KB instruction and 16 KB data caches), a floating-point unit, three
full-custom secondary cache tag RAMs (two for secondary cache
accesses, one for bus snooping), and a cache controller ASIC.

The design had two fully pipelined double precision multiply-
add units, which could stream data from the 4 MB off-chip secondary
cache.

MIPS instruction set

• 32 general purpose registers• 32 general purpose registers

• Backwards compatible

• 32 bit wide (even on 64-bit processors)

 L d t hi• Load-store machine

• 3 categories of instructions
–Load-store
–Arithmetic and logical
–Jump and branchp

Type -31- format (bits) -0-

R opcode (6) rs (5) rt (5) rd (5) shamt (5) funct (6)R opcode (6) rs (5) rt (5) rd (5) shamt (5) funct (6)

I opcode (6) rs (5) rt (5) immediate (16)I opcode (6) rs (5) rt (5) immediate (16)

J opcode (6) Target Address (26)

All MIPS instructions are 32 bits long.

The three instruction formats:
• R-type (Register)
• I-type (Immediate)
• J-type (Jump) J type (Jump)

° The different fields are:
• op: operation of the instruction (opcode)
• rs, rt, rd: the source and destination register specifiers
• shamt: shift amount (arithmetic/logical)
• funct: selects the variant of the operation in the “op” fieldu ct se ects t e a a t o t e ope at o t e op e d
• address / immediate: address offset or immediate value
• target address: target address of the jump instruction

Every instruction : starts with a 6-bit opcode.

In addition to the opcode, R-type instructions specify three
registers, a shift amount field, and a function field;

I-type instructions specify two registers and a 16-bit
immediate value; immediate value;

J-type instructions follow the opcode with a 26-bit jump target.

MIPS Instruction encodingMIPS Instruction encoding

“reg” means a register number between 0 and 31,
“address” means a 16-bit address, and
“n.a.” (not applicable) means this field does not appear in
this format.

add and sub instructions have the same value in the op field; p ;
the hardware uses the funct field to decide the variant of the
operation: add (32) or subtract (34).

I MIPS bl l i t $ 0 t $ 7 t i t In MIPS assembly language, registers $s0 to $s7 map onto registers
16 to 23, and registers $t0 to $t7 map onto registers 8 to 15.

Hence, $s0 means register 16, $s1 means register 17, $s2 means , $ g , $ g , $
register 18, . . . , $t0 means register 8, $t1 means register 9 etc.

add $t0, $s1, $s2 

lw $t0, 32($s3) # Temporary reg $t0 gets A[8]

add $t0, $s2, $t0 # Temporary reg $t0 gets h + A[8]

The assignment
statement:

A[300] = h + A[300];

sw $t0, 48($s3) # Stores h + A[8] back into A[12]

A[300] = h + A[300];

is compiled into:

/* < > dt

The Equivalent C-statement is:

A[12] = h + A[8];
/* <opn.> dtn, src

lw $t0, 1200($t1) # Temporary reg $t0 gets A[300]

add $t0, $s2, $t0 # Temporary reg $t0 gets h + A[300]

sw $t0, 1200($t1) # Stores h + A[300] back into A[300];

t d Add /Sh t F t

sw $t0, 1200($t1) # Stores h + A[300] back into A[300];

/* <opn.> src, dtn
op rs rt rd Addr/Shamt Funct

35 9 8 1200

0 18 8 8 0 320 18 8 8 0 32

43 9 8 1200

MIPS Addressing Mode Summary

M lti l f f dd i i ll ll d dd i Multiple forms of addressing are generically called addressing
modes. The MIPS addressing modes are the following:

1. Register addressing, where the operand is a register

2. Base or displacement addressing, where the operand is at p g, p
the memory location, whose address is the sum of a register and a
constant in the instruction

3. Immediate addressing, where the operand is a constant
within the instruction itself

4. PC-relative addressing, where the address is the sum of
the PC and a constant in the instruction

5. Pseudodirect addressing, where the jump address is the 26
bits of the instruction concatenated with the upper bits of the PC

Five MIPS addressing modes.

The operands are
shaded in color The shaded in color. The
operand of mode 3 is in
memory, whereas the
ope and fo mode 2 is a operand for mode 2 is a
register. Note that
versions of load and
t b t store access bytes,

halfwords, or words.
For mode 1, the

d i 16 bit f th operand is 16 bits of the
instruction itself.

M d 4 d 5 dd Modes 4 and 5 address
instructions in memory,
with mode 4 adding a

bi dd hif d16-bit address shifted
left 2 bits to the PC and
mode 5 concatenating a
26-bit address shifted
left 2 bits with the 4
upper bits of the PC.

sll $t2, $s0, 4
reg $t2 = reg $s0 << 4 bits

sll/srl =
Shift left/ right logical

4*(230-1)

j 10000 # go to location 10000
Addressing in Branches and Jumps

bne $s0, $s1, Exit # go to Exit, if $s0 <> $s1bne $s0, $s1, Exit # go to Exit, if $s0 <> $s1

A branch instruction would calculate the following:
Program counter = Register + Branch address;Program counter = Register + Branch address;

This sum allows the program to be as large as 232 and
still be able to use conditional branches, solving the branch , g
address size problem. The question is then, which register?

Since the program counter (PC) contains the address of
th t i t ti b h ithi +/ (215) d the current instruction, we can branch within +/-(215) words
of the current instruction if we use the PC as the register
to be added to the address. Almost all loops and if statements
are much smaller than 216 words, so the PC is the ideal choice.
This form of branch addressing is called PC-relative
addressing.

Hence, the MIPS address is actually relative to the
address of the following instruction (PC + 4) as opposed to the

Addressing in Branches and Jumps

address of the following instruction (PC + 4) as opposed to the
current instruction (PC).

Like most recent computers, MIPS uses PC-relative
dd i f ll diti l b h b th d ti ti addressing for all conditional branches because the destination

of these instructions is likely to be close to the branch.

On the other hand, jump-and-link instructions invoke On the other hand, jump and link instructions invoke
procedures that have no reason to be near the call, and so they
normally use other forms of addressing. Hence, the MIPS
architecture offers long addresses for procedure calls by using architecture offers long addresses for procedure calls by using
the J-type format for both jump and jump-and-link instructions.

Since all MIPS instructions are 4 bytes long, MIPS stretches
the distance of the branch by having PC-relative addressing refer to the distance of the branch by having PC-relative addressing refer to
the number of words to the next instruction instead of the number of
bytes. Thus, the 16-bit field can branch four times as far by
interpreting the field as a relative word address rather than as a interpreting the field as a relative word address rather than as a
relative byte address.

Similarly, the 26-bit field in jump instructions is also a word
address, meaning that it represents a 28-bit byte address.address, meaning that it represents a 28 bit byte address.
Since the PC is 32 bits, 4 bits must come from somewhere else. The
MIPS jump instruction replaces only the lower 28 bits of the PC,
leaving the upper 4 bits of the PC unchanged.

while (save[i] == k) /* C-code
i += 1;;

Assume that i and k correspond to registers
$s3 and $s5 and the base of the array save is in $s6.

The while loop above compiled into this MIPS assembler

$s3 and $s5 and the base of the array save is in $s6.

The while loop above, compiled into this MIPS assembler
code:
Loop: sll $t1, $s3, 2 # Temp reg $t1 = 4 * i

dd $ $ $ $ dd f [i]add $t1, $t1, $s6 # $t1 = address of save[i]
lw $t0, 0($t1) # Temp reg $t0 = save[i]
bne $t0, $s5, Exit # go to Exit if save[i] <> k
addi $s3, $s3, 1 # i = i + 1
j Loop # go to Loop

Exit:Exit:

If we assume we place the loop starting at location
80000 in memory what is the MIPS machine code for this 80000 in memory, what is the MIPS machine code for this
loop?

Loop: sll $t1, $s3, 2 # Temp reg $t1 = 4 * i
add $t1, $t1, $s6 # $t1 = address of save[i]
lw $t0 0($t1) # Temp reg $t0 = save[i]lw $t0, 0($t1) # Temp reg $t0 = save[i]
bne $t0, $s5, Exit # go to Exit if save[i] <> k
addi $s3, $s3, 1 # i = i + 1
j L # t Lj Loop # go to Loop

Exit:

beq $s0, $s1, L1;
replace by a pair of instructions that offers a much greater
branching distance bne $s0 $s1 L2branching distance bne $s0, $s1, L2

j L1
L2:

Five MIPS addressing modes.

The operands are
shaded in color The shaded in color. The
operand of mode 3 is in
memory, whereas the
ope and fo mode 2 is a operand for mode 2 is a
register. Note that
versions of load and
t b t store access bytes,

halfwords, or words.
For mode 1, the

d i 16 bit f th operand is 16 bits of the
instruction
itself. Modes 4 and 5
dd i i i address instructions in

memory, with mode 4
adding a 16-bit address
hif d l f bi hshifted left 2 bits to the

PC and mode 5
concatenating a 26-bit
address shifted left 2
bits with the 4 upper
bits of the PC.

Features in a multi-cycle implementation of a MIPS processor :

A single memory unit is used for both instructions and ■ A single memory unit is used for both instructions and
data.

Th i i l ALU th th ALU d t dd■ There is a single ALU, rather than an ALU and two adders.

■ One or more registers are added after every major
functional unit to hold the output of that unit until the value
is used in a subsequent clock cycle.

In this multi-cycle design, we assume that the clock cycle
can accommodate at most one of the following operations: a
memory access, a register file access (two reads or one write), or
an ALU operation.

Hence, any data produced by one of these three functional
units (the memory, the register file, or the ALU) must be saved,
into a temporary register for use on a later cycle.

If it t d th th ibilit f ti i If it were not saved then the possibility of a timing race
could occur, leading to the use of an incorrect value.

Source - D. A. Patterson and J. L. Hennessy,y,
major functional blocks of the CPU, for multi-cycle datapath
implementation of the ISA instructions (MIPS)

The following temporary registers are added to meet
these requirements:

■ The Instruction register (IR) and the Memory data register
(MDR) are added to save the output of the memory for an
instruction read and a data read respectively Two separate instruction read and a data read, respectively. Two separate
registers are used, since, both values are needed during the
same clock cycle.

■ The A and B registers are used to hold the register operand
values read from the register file.

■ The ALUOut register holds the output of the ALU.

Because several functional units are shared for
different purposes, use multiplexors. For example, since one
memory is used for both instructions and data we need a memory is used for both instructions and data, we need a
multiplexor to select between the two sources for a memory
address, namely, the PC (for instruction access) and ALUOut
(f d t)(for data access).

A single ALU must accommodate all the inputs. Major
parts of the datapath now consists of:parts of the datapath now consists of:

1. An additional multiplexor is added for the first ALU input.
Th lti l h b t th A i t d th The multiplexor chooses between the A register and the
PC.

2. The multiplexor on the second ALU input is a 2-4 way
multiplexor. The two additional inputs to the multiplexor
are the constant 4 (used to increment the PC) and the ()
sign-extended and shifted offset field (used in the branch
address computation).

With the jump instruction and branch instruction,
there are three possible sources for the value to be written
into the PC:into the PC:

1.The output of the ALU, which is the value PC + 4 during
i t ti f t h Thi l h ld b t d di tl i t instruction fetch. This value should be stored directly into
the PC.

2. The register ALUOut, which is where we will store the
address of the branch target after it is computed.

3. The lower 26 bits of the Instruction register (IR) shifted
left by two and concatenated with the upper 4 bits of the
incremented PC, which is the source when the instruction incremented PC, which is the source when the instruction
is a jump.

The PC is written both unconditionally and conditionally The PC is written both unconditionally and conditionally.
During a normal increment and for jumps, the PC is written
unconditionally. If the instruction is a conditional branch,
h i d C i l d i h h l i Othe incremented PC is replaced with the value in ALUOut

only if the two designated registers are equal.

The control function for a simple implementation is
completely specified by this truth table.

Each MIPS instruction needs from three to five of these steps:

1. Instruction fetch step:p
Fetch the instruction from memory and compute the address

of the next sequential instruction:
IR <= Memory[PC];
PC <= PC + 4;

2. Instruction decode and register fetch step

A <= Reg[IR[25:21]]; // Reg. rs in opcode
B <= Reg[IR[20:16]]; // Reg. rt in opcode
ALUOut <= PC + (sign-extend (IR[15-0]) << 2);

// h dd// Branch target address

3. Execution, memory address computation, or branch completion

i) Memory reference:
ALUOut <= A + sign-extend (IR[15:0]);

ii) Arithmetic-logical instruction (R-type):ii) Arithmetic-logical instruction (R-type):
ALUOut <= A op B;

iii) Branch:
if (A == B) PC <= ALUOut;

3. Execution, memory address computation, or branch completion

i) Memory reference:
ALUO t < A + i t d (IR[15 0])ALUOut <= A + sign-extend (IR[15:0]);

ii) Arithmetic-logical instruction (R-type):
ALUOut <= A op B;UOut op ;

iii) Branch:
if (A == B) PC <= ALUOut;

iv) Jump:
// {x, y} represents concatenation of bit fields x and y

PC <= {PC [31:28], (IR[25:0]] <<2)};

4. Memory access or R-type instruction completion step

Memory reference:Memory reference:
MDR <= Memory [ALUOut]; //Load
or
Memory [ALUOut] <= B; //Store from rt to Mem.e o y [UOut] < ; //Sto e o t to e

Arithmetic-logical instruction (R-type):
Reg[IR[15:11]] <= ALUOut; // Reg. rd in opcodeg[[]] ; // g p

5. Memory read completion step -
Load: Reg[IR[20:16]] <= MDR; // Reg. rt

first two steps are independent of the instruction class. After these
steps, an instruction takes from one to three more cycles to complete,
depending on the instruction class. depending on the instruction class.

In a multi-cycle implementation, a new instruction will be
started as soon as the current instruction completes.

The register file actually reads every cycle, but as long as the
IR does not change, the values read from the register file are
identical. In particular, the value read into register B during the
I t ti d d t f b h R t i t ti i th Instruction decode stage, for a branch or R-type instruction, is the
same as the value stored into B during the Execution stage and then
used in the Memory access stage for a store word instruction.

R b thi ?? Remember this ?? 

Now compare the two

Functions of Control Unit

Sequencing
Causing the CPU to step through a series of micro-

ioperations

Execution
Causing the performance of each micro-op

Use of Control Signals to accomplish the taskg p

Types of Control Signalsyp g
• Clock

o One micro-instruction (or set of parallel micro-o One micro-instruction (or set of parallel micro-
instructions) per clock cycle

• Instruction register
 Op-code for current instruction
 D i hi h i i i f d Determines which micro-instructions are performed

• Flags• Flags
 State of CPU
 Results of previous operations Results of previous operations

• From control bus
 Interrupts
 Acknowledgements

Model of Control UnitModel of Control Unit

HARDWIRED CONTROL

The required control signals are determined by the
following information:following information:

• Contents of the control Step Counter

• Contents of the IR

• Contents of the condition code flags

• External I/P signals, MFC, IRQ etc.g Q

Control Unit with Decoded InputsControl Unit with Decoded Inputs

CLK Control Step Counter RESET

STEP Decoder

T T T

External

T1 T2 Tn

INS1

ENCODER
Instruction

Decoder
IR

Inputs
INS2

ENCODERDecoder

Condition
CodesCodes

INSm

RUN ENDRUN

CONTROL
SIGNALS

For an “ADD” instruction (ISA): For a “Branch” instruction (ISA):For an ADD instruction (ISA):

1. PCout, MARin, READ, SEL #4, ADD, Zin
2.

()

1. PCout, ………, Zin
2.

3.
4.
5.

3.
4. Offset (IRout), ADD, Zin
5. Zout, PCin, END

6. MDRout, SEL Y, ADD, Zin

....... 461  BRTADDTTZin

END = T7.ADD + T5.BR + (T5.CF + T4.CF’).BRN +….

When RUN = 0, the counter STOPS; required from W_MFC;

Design logic mostly based on FSM (Finite State machine)

....... 461  BRTADDTTZin

END = T7.ADD + T5.BR + (T5.CF + T4.CF’).BRN +….

FSM – based Hardware Control Unit design

Moore type machine necessary - output signal depends on the
current state.

Next state depends on the input and current state.

E h f l i lEach state generates a set of control signals.

To implement any ISA, the system sequentially changes state from
 t th C t l U it i l t th tone to another. Control Unit implements the steps.

For a sequence of “N” steps, there are S0 to SN-1 stages.

At each stage Si: a set of outputs Oi,0….Oi,M-1 are generated, g i p i,0 i,M 1 g

depending on the Si.

Categories of control signals: functions for ALU, select of storage
units, select of data routes (based on design).

S

0

Typical Moore State GraphS0

0 10

S1 S2

0

1

1

1

S3

11
Moore state table

0 0
AB

A+ B+ Z (Present
output)X=0 X=1

Moore state table

X 0 X 1
S0 0 0 S0 0 0 1 1 S2 0
S1 0 1 S0 0 0 1 1 S2 1
S2 1 1 S2 1 1 1 0 S3 1
S3 1 0 S3 1 0 0 1 S1 0

Moore network example

Combinati
onal

D1 F/F
Clk

Q1
X1
X2

Q1
+

Z1

Sub N/W
for F/F
inputs

D2 F/F
Clk

Q2
Xm

Q2
+ Combinati

-onal Z2
inputs

Q1

Q

Clk
Sub N/W

for
Outputs ZQ2

Qk
Dk F/F
Clk

Qk

Qk
+

Outputs Zn

Qk Clk

Clk

The outputs of the combinational logic are the next-
state number and the control signals to be asserted for the
current state.

The inputs to the combinational logic are the current p g
state and any inputs used to determine the next state. In
this case, the inputs are the instruction register opcode
bits bits.

Notice that in the FSM for Hardwired Control, the
outputs depend only on the current state not on the outputs depend only on the current state, not on the
inputs.

Id tif i h t i ti f M hi i th t Identifying characteristic for a Moore machine is that
the output depends only on the current state.

For a Moore machine, the box labeled combinational
control logic can be split into two pieces. One piece has the
control output and only the state input, while the other has p y p ,
only the next-state output.

START

INSTRCN
DECODE

REG.
FETCH

DECODE
FETCH

MEM. ACCESS
INSTRCN

R-Type
INSTRCN.

BRANCH
INSTRCN

JUMP
INSTRCN

OVERALL state machine diagram for CPU

INSTRCN INSTRCN.START INSTRCN.
FETCH

INSTRCN.
DECODE/
Register
FETCH

START

MMEORY
ADDRESS
COMPN.

EXECUTION BRANCH JUMP

MEMORY
ACCESS

R-TYPE
COMPN.

ACCESS

WRITE
BACKBACK

FSM Graph

Moore type machine - output signal depends on the
current state.

Next state depends on the input and current state.

Break the
control function
into two parts: into two parts:

- the next-state
outputs, which p ,
depend on all the
inputs,

and

- the control - the control 
signal outputs,
which depend
o l o the only on the
current-state bits

Let’s look at
a ROM-based
i l t ti implementation,
first.

e.g.: PCWrite is high in states 0 and 9; this corresponds to
addresses with the 4 low-order bits being either 0000 or g
1001. The bit will be high in the memory word independent of
the inputs Op[5–0], so the addresses with the
bit high are 000000000, 0000001001, 0000010000, bit high are 000000000, 0000001001, 0000010000,
0000011001, . . . , 1111110000, 1111111001.

The general form of this is XXXXXX0000 or XXXXXX1001.

The truth table for
next-state output bit
(NS[0])(NS[0]).

The next-state
outputs depend on the outputs depend on the
value of Op[5–0],
which is the opcode
field and the current field, and the current
state, given by S[3–0].

Th f t th The four truth
tables for the
four next-state

 bi output bits
(NS[3–0]).

The next-state
outputs depend
on the value of
Op[5–0], which
is the opcode
field, and the
current state,
given by S[3–0].

The entry from the top yields
0000000000011000, while the
appropriate entry in the table
b l i 0010 Th th t l below is 0010. Thus the control
word at address 1000110001
is 00000000000110000010.

The column labeled “Any other
value” applies only when the
Op bits do not match one of
the specified opcodes

For example, the word
at address
1000110001 i

the specified opcodes.

1000110001 is
obtained by finding (i)
the upper 16 bits from
the table on top usingthe table on top, using
only the state input
bits (0001) and (ii)
concatenating the concatenating the
lower 4 bits found by
using the entire
address (0001 to findaddress (0001 to find
the row and 100011
to find the column).

For ALU Control & simple CPU control lines
– check slides:

32 - 35

TYPES of PLDS:

• PAL - PAL devices have arrays of transistor cells arranged in a
"fixed OR programmable AND" plane used to implement "sum of"fixed-OR, programmable-AND" plane used to implement "sum-of-
products" binary logic equations

• PLA - The PLA (also FPLA) has a set of programmable AND gate • PLA - The PLA (also FPLA) has a set of programmable AND gate
planes, which link to a set of programmable OR gate planes, which
can then be conditionally complemented to produce an output. This
layout allows for a large number of logic functions to be synthesized layout allows for a large number of logic functions to be synthesized
in the sum of products (and sometimes product of sums) in canonical
forms.

• GAL - The GAL (Generic Array Logic) was an improvement on the
PAL because one device was able to take the place of many PAL p y
devices or could even have functionality not covered by the original
range. Its primary benefit, however, was that it was erasable and re-
programmable making prototyping and design changes easier for
engineers.

• A similar device called a PEEL (programmable electrically erasable
logic) was introduced by the International CMOS Technology (ICT)
corporation.

• FPGA - FPGAs contain programmable logic components called
"logic blocks", and a hierarchy of reconfigurable interconnects that
allow the blocks to be "wired together“ - somewhat like a one-chip allow the blocks to be wired together somewhat like a one chip
programmable breadboard.

The most common FPGA architecture consists of an array of The most common FPGA architecture consists of an array of
configurable logic blocks (CLBs), I/O pads, and routing channels.
Generally, all the routing channels have the same width (number
of wires). Multiple I/O pads may fit into the array – programmable) p / p y y p g
using HDL.

• CPLD – between PALs and FPGAs. Has ROM and hence non-
volatile. Handles complex logics with feedback and arithmetic
operations.

• ROM –

• PLC - Automation of machinery control – a small embedded system

• PLL ??

Various optimizers and sequencers are used for efficient design.

Difficult to design when complex operations/instructions are
necessary –
Floating point superscalar pipelining etcFloating point, superscalar, pipelining etc.

Correcting errors and debugging is difficultCorrecting errors and debugging is difficult

How do you implement W(MFC) in this state machine ??

Minor modifications of the ISA requires lot of changes and redo
the design.g

Complex instructions may require to go through several states
and signals to be generated

M d h d i i RISE l b /h ll f Many opcodes – the design may require a RISE lab./hall for
generating the truth table.

Microprogramming

 Micro-Instructions for: ADD (R3), R1

The PC is incremented every time a new micro-
instruction is fetched from the micro-program (Control instruction is fetched from the micro-program (Control
Store) memory, except in the following situations:

1 When a ne inst ction is loaded into the IR the 1. When a new instruction is loaded into the IR, the

PC is loaded with the starting address of the micro-
routine for that instruction.routine for that instruction.

2. When a Branch microinstruction is encountered

d th b h diti i ti fi d th PC i l d d and the branch condition is satisfied, the PC is loaded
with the branch address.

3. When an End microinstruction is encountered, the

PC is loaded with the address of the first CW in the
microroutine for the instruction fetch cycle (this address microroutine for the instruction fetch cycle (this address
is 0).

Drawbacks of this simple micro-instrcn. system:

- assigning individual bits to each control signal results in
long microinstructions because the number of required
signals is usually largesignals is usually large.

- only a few bits are set to 1 (for active gating) in any
given microinstruction which means the available bit given microinstruction, which means the available bit
space is poorly used.

Assume:
In total, 42 control signals are needed.

e.g.
- Read, Write, Select, WMFC, End;
- Add, Subtract, AND, and XOR;, , , ;
- Separate signals to Ri’s ; PC, IR, MAR, MDR etc.

42 bits would be needed in each microinstruction.
Fortunately the length of the microinstructions can be Fortunately, the length of the microinstructions can be
reduced easily. Most signals are not needed simultaneously,
and many signals are mutually exclusive.

For example, only one function of the ALU can be
activated at a time. The source for a data transfer must be
unique because it is not possible to gate the contents
of two different registers onto the bus at the same time.
Read and Write signals to the memory cannot be active g y
simultaneously.

This suggests that signals can be grouped so that all This suggests that signals can be grouped so that all
mutually exclusive signals are placed in the same group.
Thus, at most one microoperation per group is specified in
any microinstructionany microinstruction

For example, four bits suffice to represent the 16
available functions in the ALU.

Register output control signals can be placed in a
group consisting of PCout, MDRout, Zout, Offsetout, R0out,group consisting of PCout, MDRout, Zout, Offsetout, R0out,
R1out, R2out, R3out and TEMPout .

Thus do this natural grouping (of mutually exclusive Thus, do this natural grouping (of mutually exclusive
signals) and then -

Select anyone by a 4-bit code.

Most fields must include one inactive code for the case
in which no action is required.

Grouping control signals into fields requires a little
more hardware because decoding circuits must be used to
d d th bit tt f h fi ld i t i di id l t l decode the bit patterns of each field into individual control
signals.

The cost of this additional hardware is more than offset
by the reduced number of bits in each microinstruction,
which results in a smaller CONTROL store.

Only 20 bits are needed to store the patterns for the 42 signals

VERTICAL ORGANIZATION is
also possible, where compact
codes are generated using
highly encoded schemes.

HORIZONTALHORIZONTAL
ORGANIZATION

MICROPROGRAM SEQUENCING

Having a separate microroutine for each machine Having a separate microroutine for each machine
instruction results in a large total number of microinstructions
and a large control store.

If most machine instructions involve several addressing
modes, there can be many instruction and addressing mode
combinations A separate microroutine for each of these combinations. A separate microroutine for each of these
combinations would produce considerable duplication of
common parts.

Its better to organize the microprogram so that the
microroutines share as many common parts as possible. This
requires many branch microinstructions to transfer control
among the various parts.

e g Consider an instruction of the type:e.g. Consider an instruction of the type:

Add Rsrc, Rdst
Addressing modes: Addressing modes:
register, autoincrement, autodecrement, and indexed, as
well as the indirect forms of these four modes.

Address indicated by
an OCTAL number;

Note minor change in
notation of micro-
program instructions

Branch Address Modification using Bit-ORing

C id h i l b l d “ ” i h fi hiConsider the point labeled “ ” in the figure. At this
point, it is necessary to choose between actions required by
direct and indirect addressing modes. g

If the indirect mode is specified in the instruction, then
the microinstruction in location 170 is performed to fetch the the microinstruction in location 170 is performed to fetch the
operand from the memory.

If the direct mode is specified this fetch must be If the direct mode is specified, this fetch must be
bypassed by branching immediately to location 171.

The most efficient way to bypass microinstruction 170 The most efficient way to bypass microinstruction 170
is to have the preceding branch microinstructions specify the
address 170 and then use an OR gate to change the least
i ifi bi f hi dd if h di dd isignificant bit of this address to 1 if the direct addressing

mode is involved.

This is known as the bit-ORing technique for modifying
branch addresses.

Wide BRANCH ADDRESSING

The instruction decoder {lnstDec} generates the The instruction decoder {lnstDec}, generates the
starting address of the microroutine that implements the
instruction that has just been loaded into the IR.

In our example, register IR contains the Add instruction,
for which the instruction decoder generates the micro-
instruction address 101, which cannot be loaded as is into the instruction address 101, which cannot be loaded as is into the

microprogram counter (PC).
The bit-ORing technique can be used at this point to g q p

modify the starting address generated by the instruction
decoder to reach the appropriate path.

Bit-Oring should change the address 101 to one of the
five possible address values, 161, 141, 121, 101, or 111,
depending on the addressing mode used in the instruction

Execute the instruction -
Add (Rsrc)+, Rdst

The instruction has a 3-bit
field to specify the
add essing mode fo the addressing mode for the
source operand, as above.

Bit patterns:Bit patterns:
11, 10, 01, and 00, located
in bits 10 and 9, denote the
indexed autodecrement indexed, autodecrement,
autoincrement,
and register modes,

ti l respectively.

For each of these modes,
bit 8 is used to specify the bit 8 is used to specify the
indirect version.

Add (R)+ Rd tAdd (Rsrc)+, Rdst;
IR10-9 for Auto-increment
mode: 01;;
IR8 = 0 (no Indirect);

Thus,Thus,

PC5-3 = (010)2 = (2)8 ;

Modified PC for
branching after (003)8 =
(121)8 ; (121)8 ;

Modified PC for branching
after (123)8 = (171)8 ; //Direct mode

Micro-instruction with “next Address Field”.

<* For self-study – in END SEM Exam. *>

A typical implementation of a
microcode controllerThe selection of the next

microinstruction is controlled by
the sequencing control outputs
from the control logic.

Th dd l t l i t i The address select logic contains
a set of dispatch tables as well as
the logic to select from among the
alternative next statesalternative next states.

The combination of
hthe current

microprogram counter,
incrementer, dispatch
t bl d dd tables, and address
select logic forms a
sequencer that selects
the next the next
microinstruction.

PIPELINING

Hence, 4 units of time
slots used;

Compared to 3*2 = 6
units of time required
fo a Seq ential for a Sequential
operation.

A pipelined processor may process each instruction in
four steps, as follows:

F Fetch: read the instruction from the memory;

D D d d d th i t ti d f t h th D Decode: decode the instruction and fetch the source
operand(s);

E Execute: perform the
operation specified by the
instruction;instruction;

W Write: store the result
in the destination locationin the destination location.

Here, 7 units of time
slots used;slots used;

Compared to 4*4 = 16
units of time required for units of time required for
a Sequential operation.

A Data Hazard, due to delayed EXEC cycle

Instruction
or Control
H dHazard

An Instruction or Control Hazard,
also possible

due to Cache miss in W_MFC

The Decode unit is idle in cycles 3 through 5The Decode unit is idle in cycles 3 through 5,
the Execute unit is idle in cycles 4 through 6,
and the Write unit is idle in cycles 5 through 7.

Such idle periods are called stalls. They are also often
referred to as bubbles in the pipeline.

Once created as a result of a delay in one of the
pipeline stages, a bubble moves downstream until it reaches p p g ,
the last unit.

A Structural Hazard, also possible

due conflict of usage of the same resource
by two or more instructions

Data Hazard, due to concurrent instruction dependencies

Assume A = 5;
C t ti l d t B 20 (i t)Concurrent execution leads to B = 20 (incorrect)
Sequential execution leads to: B = 32 (Correct)

No problem of concurrency in this case:

An Instructional Hazard, also possible due to
- BranchingBranching

Read:

- Pre-fetching
D l d B h- Delayed Branch

- Branch Prediction
- Dispatch operationDispatch operation
- Performance (throughput) Gain

- Effect of Addressing modes
- Condition codes

Datapath and Control- Datapath and Control
- Superscalar CPU
- Out of order executionOut of order execution

Pipelined MIPS, showing the five stages (instruction fetch,
instruction decode, execute, memory access and write back

A superscalar CPU architecture implements a form of
parallelism called instruction level parallelism within a single
processor. It therefore allows faster CPU throughput than would p g p
otherwise be impossible at a given clock rate.

A superscalar processor executes more than one instruction p p
during a clock cycle by simultaneously dispatching multiple
instructions to redundant functional units on the processor. Each
functional unit is not a separate CPU core but an execution resource
within a single CPU such as an arithmetic logic unit, a bit shifter, or
a multiplier.

h l l i l ifi dIn the Flynn Taxonomy, a superscalar processor is classified
as a MIMD processor (Multiple Instructions, Multiple Data).
While a superscalar CPU is typically also pipelined, pipelining and

l hit t id d diff t f superscalar architecture are considered different performance
enhancement techniques.

The superscalar technique is traditionally associated with several The superscalar technique is traditionally associated with several
identifying characteristics (within a given CPU core):
• Instructions are issued from a sequential instruction stream
• CPU hardware dynamically checks for data dependencies between • CPU hardware dynamically checks for data dependencies between
instructions at run time (versus software checking at compile time)
• The CPU accepts multiple instructions per clock cycle

