CPU Organization —

Hardware design

VS.

Microprogramming

CPU Structure

e CPU must:
—Fetch Instructions

— Interpret instructions

—Fetch data

—Process data

—Write data

Address
lines

Data
lines

Control
unit

T

IR

h@—

PC

Lo

MAR

=

¢—o—

“—» MBR

—O»

Internal CPU bus

Source:
Hamacher;

Single-bus ORGN.

CPU always stores the
results of most calculations in
one special register —

typically called
“the Accumulator” of that CPU

Single Bus
Architecture

Input-Output Gating
of the registers in the
single-bus architecture

Timing Diagram
of a:

Memory Read
operation

Bus A

Incrementer I

R

PC

-

——

Constant 4

(eSS

Register
file

:

Instruction
decoder

!

IR

MDR

" FETITTVRPPRRIEEYTPRRLE:

!

Memory bus

data lines

MAR

o DT R P

1

Address
lines

Three-bus organization
of datapath;

Or CPU architecture

Data Flow (Fetch Operation)

CPU

PC :D- MAR
[T <: Memory
Control ::>

Unit

IR K—]MBR

Address Data Control

Bus Bus Bus
MBRE = Memory bulfer register
MAR = Memory address register
IR = Instruction register

PC = Program counter Source: Stallings

MIPS (Microprocessor without Interlocked Pipeline
Stages) is a reduced instruction set computer (R1SC)
Instruction set architecture (1SA).

Computer workstation systems using MIPS processors are:

SGI, MIPS Computer Systems, Inc., Whitechapel Workstations,
Olivetti, Siemens-Nixdorf, Acer, Digital EqQuipment Corporation,
NEC, and DeskStation.

Operating systems ported to the architecture include:

SGI's IRIX, Microsoft's Windows NT (until v4.0), Windows CE,
Linux, BSD, UNIX System V, SINIX, QNX.

The R8000 (1994) was the first superscalar MIPS design, able
to execute two integer or floating point and two memory instructions
per cycle. The design was spread over six chips: an integer unit (with
16 KB instruction and 16 KB data caches), a floating-point unit, three
full-custom secondary cache tag RAMs (two for secondary cache
accesses, one for bus snooping), and a cache controller ASIC.

The design had two fully pipelined double precision multiply-
add units, which could stream data from the 4 MB off-chip secondary
cache.

MIPS instruction set

= 32 general purpose registers

« Backwards compatible

32 bit\
e | oad-s

= 3 catec
—Lc
—Ar
—Ju

Number Name Purpose
$0 $0 Always 0
The Assembler Temporary used by the assembler in

$1 $at expanding

pseudo-ops.

These registers contain the Returned Value of a
$2-$3 $v0-$v1 subroutine; if
the value is 1 word only $v0 is significant.
$4-$7 $a0- | The Argument registers, these registers contain the first 4
a3 argument values for a subroutine call.

$8-$15,
$24,525

The Temporary Registers.

$16-$23

The Saved Registers.

The Kernel Reserved registers. DO NOT USE.

$26-$27 $k0-Sk1
The Globals Pointer used for addressing static global
$28 Sgp variables.
$29 $sp The Stack Pointer.
$30 $fp The Frame Pointer, if needed
$31 $ra The Return Address in a subroutine call.

MIPS assembly language

e T —

add $s1,%s2,4s3

$s] = £s7+ 453

thres register operands

Arithmetic T SuD $51,85¢,%53 $51 - $52 - 853 three register operands
Data transfar load word lw $51,100(%s52) $31 = Memory[$s2 + 100] | Data from memory to register
store word cw $s51.100(%s2) Memory[$s2 + 100] = £s]1 | Data from register to memory
and and $s1.8s7.%s3 $s1 =4$s2 & $s3 three reg. operands; bit-by-bit AND
or or $s1,.%52,8353 §s51 =452 | §s3 thres reg. operands; bit-by-bit OR
nor nor $sl.$s2.%s3 §51 =- (§s2 | $s3) three reg. operands; bit-by-bit NOR
Logical and immediats andi $s1,.$s2.100 $s1 =452 & 100 Bit-by-bit AND reg with constant
nr immediata i £=1. 4<7.100 £s1 =457 | 1nn Ritdaehit (TR g with mnnstant
shift l=ft logical 11 $s1.3s2.10 $sl =452 << 10 Shift left by constant
shift right logical sr1 $3s1.3s2.10 $sl=4s2 2> 10 Shift right by constant
branch on equal beqgq $sl.8s2.L if($5]1 = $52)goto L Equal test and branch
branch on not equal | bne 51,857, L if($s]l =35)goto L Mot equal tast and branch
Conditional branch | 58t ©n less than st $sl.3s2.38s3 if ($52 < $s3) §s1 =1; Compare less than; used with beq,
elza $51 =0 bne
set on less than s1t $s1.8s2.100 if ($52 < 100) §51 =1; Compare less than immediate; used
immediate else $51 -0 with baq, bna
jump J L go to L Jump to target address
Unconditional jump | jump register $ra goto $ra For procedure return

jurnp and link

ira=PC +4;gotol

For procedure call

Type -31- format (bits) -0-

R opcode (6) rs (5) rt (5) rd (5) shamt (5) | funct (6)

I opcode (6) rs (5) rt (5) iImmediate (16)

J opcode (6) Target Address (26)

All MIPS instructions are 32 bits long.

The three instruction formats:
e R-type (Register)
e I-type (Immediate)
e J-type (Jump)

° The different fields are:
e Op: operation of the instruction (opcode)

e rs, I'L, rd: the source and destination register specifiers

e shamt: shift amount (arithmetic/logical)

e funct: selects the variant of the operation in the “op” field
e address / immediate: address offset or immediate value
e target address: target address of the jump instruction

Instruction Formats

I-Type (Immediate).
31 26 25 21 20 16 15 0

opcode rs rt offset

6) 5 16

J-Type (Jump).
31 26 25 0

opcode instr_index

6 26

R-Type (Reqgister).
31 26 25 21 20 16 15 11 10 6 5 0

opcode rs rt rd sa function

6 5 5 5 5 6
Every instruction : starts with a 6-bit opcode.

INn addition to the opcode, R-type instructions specify three
registers, a shift amount field, and a function field;

I-type instructions specify two registers and a 16-bit
Immediate value;

J-type instructions follow the opcode with a 26-bit jump target.

| Instruction | Format | op | rs | ft | rd | shamt | funct | addross
add 0 eg | reg | reg 0 3240 n.a.

R
5UD (subtract) R 0 eg | reg | reg 0 34, n.a.
add immediate | B | ™E | ®E | na Mn.a. n.8. constant
|'W (load word) I 3 | TEE reg | n.a. MN.a. n.g. address
SW (store word) I A3 | rEE reg | n.a. MN.a. M.g. address

MIPS Instruction encoding

“reg” means a register number between O and 31,
“address” means a 16-bit address, and

“n.a.” (not applicable) means this field does not appear in
this format.

add and sub instructions have the same value in the op field;
the hardware uses the funct field to decide the variant of the
operation: add (32) or subtract (34).

In MIPS assembly language, registers $s0O to $s7 map onto registers
16 to 23, and registers $tO to $t7 map onto registers 8 to 15.

Hence, $s0 means register 16, $s1 means register 17, $s2 means
register 18, . .., $t0 means register 8, $t1l means register 9 etc.

add $t0, $s1, $s2 = 0 17 18 g 0 12

lw $t0, 32($s3)
add $tO, $s2, $tO

The assignment sw $t0, 48($s3)

statement:
A[300] = h + A[300];

Is compiled into:

[* <opn.> dtn, src
Iw $tO, 1200($tl1) # Temporary reg $tO gets A[300]

The Equivalent C-statement is:

A[12] = h + A[8];

add $t0, $s2, $tO # Temporary reg $t0 gets h + A[300]

sw $tO, 1200($tl) # Stores h + A[300] back into A[300];
[* <opn.> src, dtn
op rs Irt rd Addr/Shamt Funct
35 9 8 1200
O 18 8 8 0 32
43 9 8 1200

MIPS Addressing Mode Summary

Multiple forms of addressing are generically called addressing
modes. The MIPS addressing modes are the following:

1. Register addressing, where the operand is a register
2. Base or displacement addressing, where the operand is at
the memory location, whose address is the sum of a register and a

constant in the instruction

3. Immediate addressing, where the operand is a constant
within the instruction itself

4. PC-relative addressing, where the address is the sum of
the PC and a constant in the instruction

5. Pseudodirect addressing, where the jump address is the 26
bits of the instruction concatenated with the upper bits of the PC

Five MIPS addressing modes.

The operands are
shaded in color. The
operand of mode 3 is In
memory, whereas the
operand for mode 2 is a
register. Note that
versions of load and
store access bytes,
halfwords, or words.

For mode 1, the
operand is 16 bits of the
Instruction itself.

Modes 4 and 5 address
INnstructions in memaory,
with mode 4 adding a
16-bit address shifted
left 2 bits to the PC and
mode 5 concatenating a
26-bit address shifted
left 2 bits with the 4
upper bits of the PC.

1. Immeadiate addressing

op

rs

rn

Immediate

2. Reqgister addressing

op (rs |t | d|... [unct Registers
| - Registar
3. Base addressing
op | rs | r Address Mamory
I
¥
Register ®—- [Byte] Halfword| Word
I 4
4. PC-relative addressing
op | rs | rt Addross Memory
I
PC ®—~ Word
I 4
5. Pseudodirect addressing
op Addrass Mamory
I
L]
PC (_;",—- Word

sll/srl = sl $t2, $sO, 4
Shift left/ right logical # reg $t2 = reg $s0 << 4 bits
op re rt rd shamit funct
0 16 10 4 0
MIPS operands

32 $c0, $s1.... .45 Fast locations for data. In MIPS, data must be in registers to perform arithmetic.
MIPS assembly language
Moiroction | Example | Meaming
add add $s1.3s52,.8s3 $s1 =§s2 + §s3 Three operands; overflow detected
Arithmetic | subtract sub $s51.$57. 451 $51 = §s2 - §s3 Three operands; overflow detected
add immediate addi $s1,$s2,100 |[$s1=4%s57+100 + constant; overflow detected
and and $s1,%s52.%s3 $5] =457 & §=3 Three reg. operands; bit-by-bit AND
o or $s1 %52 %53 $51 =452 | $s3 Three reg. operands; bit-by-bit OR
nor nor $s1,.%s2.%s3 $5] =~ (57 [$53) Three reg. operands; bit-by-bit NOR
Logical and immediate andi $s1.$s2.100 $z1 = 4§52 & 100 Bit-by-bit AND reg with constant
or immediate ori $s1.%$s2.100 $51 =452 | 100 Bit-by-bit OR reg with constant
shift left logjcal sl %$s1.%$s2.10 $51 = 4§52 << 10 Shift left by constant
shift right logical | $3c1, $:2,10 $s] — 452 =~ 10 Shift right by constant
Diata koad ward lw $s1,10008s2) [4s5] = Memory[$sZ + 100] | Word from memory to register
transfer | store word sw $s51,10008s2) [Memonf$s? + 100]= $:=1 | Word from register to memory

MIPS machine language

add R 0 18 19 A7 0 32 add $s1.4s2,.8s53
zub R 0 18 19 A7 0 34 sub $s1.$s2,.8s53
Iw | 35 18 17 100 Iw $s51,1000(%s2)
SW | 43 18 17 100 sWw $s51,10008s2)
MIPS assembly language
m—m
add $s1.,%$s2.453 $51 — $s52 + $s3 three register operands
Arithmetic
subtract sub 451,852,853 $s]1 = §s? - §s3 three register operands
load word Iw $s51,1000(%s2) $s] = Memory[$s? + 100] | Data from memory to register
fata transter store word sw $51,100($52) Memory[$s2 +100] = $s1 | Data from register to memory
and and $sl,8s57,8s53 $s]1 =452 & $s2 three reg. operands; bit-by-bit AND
or or $s1.8s2.48:52 §s51=4s2 | §s3 thres reg. operands; bit-by-bit OR
nor nor $sl.8s5/7.%8s53 §51=- (4§52 |$s3) thres reg. operands; bit-by-bit NOR
Logical and immediats andi $sl1.%s7.100 $s1=4$s2 & 100 Bitty-bit AND reg with constant
or immediate ori $s1.%s7.100 §s1=4%s2 | 100 Bitby-bit OR reg with constant
shift left logical 511 $s51.4%s52.10 $s1=%s2 << 10 Shift left by constant
shift right logical srl $3s1.8s72.10 $sl =452 3> 10 Shift right by constant
branch on equal beq $s1.8s2.L if (5] == $s)goto L Equal test and branch
branch on not equal | bne $s1 822 L if (4] -8z} goto L Mot equal test end branch
Conditional branch | 58t ©n less than st $s1,8s2.8s3 if ($52 < $53) §s51 =1; Compare less than; used with baq,
else $51 =0 bne
set on less than g1t $s1.$s52.100 if ($52 < 100) $51 = 1; Compare less than immediate; used
immediate glse $51 =0 with beq, bne
jumip] | go to L Jump to targst addrass
Unconditional jump | jump register |jr $ra goto $ra For procedure return
jumip and link jal . $ra=PC + 4; goto | For procedure call

Addressing in Branches and Jumps

J 10000 # go to location 10000

2 1 00D

o bits 26 bits
one $sO, $s1, ExXit # go to Exit, if $sO <> $s1

5 16 17 Exit

6 bits 5 bits 5 bits 16 bits

A branch instruction would calculate the following:
Program counter = Register + Branch address;

This sum allows the program to be as large as 232 and
still be able to use conditional branches, solving the branch
address size problem. The question is then, which register?

Since the program counter (PC) contains the address of
the current instruction, we can branch within +/-(21°) words
of the current instruction if we use the PC as the register
to be added to the address. Almost all loops and if statements
are much smaller than 216 words, so the PC is the ideal choice.
This form of branch addressing is called PC-relative
addressing.

Addressing in Branches and Jumps

Hence, the MIPS address is actually relative to the

address of the following instruction (PC + 4) as opposed to the
current instruction (PC).

Like most recent computers, MIPS uses PC-relative
addressing for all conditional branches because the destination
of these instructions is likely to be close to the branch.

On the other hand, jump-and-link instructions invoke
procedures that have no reason to be near the call, and so they
normally use other forms of addressing. Hence, the MIPS
architecture offers long addresses for procedure calls by using
the J-type format for both jump and jump-and-link instructions.

Since all MIPS instructions are 4 bytes long, MIPS stretches
the distance of the branch by having PC-relative addressing refer to
the number of words to the next instruction instead of the number of
byvtes. Thus, the 16-bit field can branch four times as far by
iInterpreting the field as a relative word address rather than as a
relative byte address.

Similarly, the 26-bit field in jump instructions is also a word
address, meaning that it represents a 28-bit byte address.

Since the PC is 32 bits, 4 bits must come from somewhere else. The
MIPS jump instruction replaces only the lower 28 bits of the PC,
leaving the upper 4 bits of the PC unchanged.

while (saveli] == k) /* C-code
| += 1;

Assume that | and k correspond to registers
$s3 and $s5 and the base of the array save is in $s6.

The while loop above, compiled into this MIPS assembler
code:

Loop: sll $t1, $s3, 2 # Temp reg $t1 =4 * i
add $t1, $t1, $s6 # $t1 = address of save[i]
lw $tO, O($tl) # Temp reg $tO = save[i]
bne $t0O, $s5, Exit # go to Exit if save[i] <> k
addi $s3, $s3, 1 #Hi=i+1
J Loop # go to Loop

EXIt:

If we assume we place the loop starting at location

80000 in memory, what is the MIPS machine code for this
loop?

Loop: sll $t1, $s3, 2 # Temp reg $t1 =4 * |

add $t1, $t1, $s6 # $t1 = address of save[i]
lw $tO, O($tl) # Temp reg $t0 = saveli]
bne $t0, $s5, Exit # go to Exit if save[i] <> k
addi $s3, $s3, 1 Hi=i+ 1
J Loop # go to Loop
EXit:

S0000 0 0 149 - 4 0

e000d 0 " 22 " 0 32

s000s 35 = & d

e0012 5 & 21 2

a0016 & 19 19 1

s0020 2 200040

a0024

beq $s0, $s1, L1;
replace by a pair of instructions that offers a much greater
branching distance bne $s0. $s1. L2
J L1
L2:

Five MIPS addressing modes.

The operands are
shaded in color. The
operand of mode 3 is In
memory, whereas the
operand for mode 2 is a
register. Note that
versions of load and
store access bytes,
halfwords, or words.

For mode 1, the
operand is 16 bits of the
INnstruction
Iitself. Modes 4 and 5
address instructions in
memory, with mode 4
adding a 16-bit address
shifted left 2 bits to the
PC and mode 5
concatenating a 26-bit
address shifted left 2
bits with the 4 upper
bits of the PC.

1. Immeadiate addressing

op

rs

rn

Immediate

2. Reqgister addressing

op (rs |t | d|... [unct Registers
| - Registar
3. Base addressing
op | rs | r Address Mamory
I
¥
Register ®—- [Byte] Halfword| Word
I 4
4. PC-relative addressing
op | rs | rt Addross Memory
I
PC ®—~ Word
I 4
5. Pseudodirect addressing
op Addrass Mamory
I
L]
PC (_;",—- Word

Features in a multi-cycle implementation of a MIPS processor :

m A single memory unit is used for both instructions and
data.

m There is a single ALU, rather than an ALU and two adders.

m One or more registers are added after every major
functional unit to hold the output of that unit until the value
IS used In a subsequent clock cycle.

In this multi-cycle design, we assume that the clock cycle
can accommodate at most one of the following operations: a

memory access, a register file access (two reads or one write), or
an ALU operation.

Hence, any data produced by one of these three functional
units (the memory, the register file, or the ALU) must be saved,
INto a temporary register for use on a later cycle.

If it were not saved then the possibility of a timing race
could occur, leading to the use of an incorrect value.

lorld MemBead Memite I nte Keqlst Rgivrnile AL e A

register 1

fckliess

Mamory
MenData

Read
Read d ‘1_?, 1 | lata

iegister 2 MUl

H’fijlﬂncght“ﬁgﬂd tesult
[eOisIer data 7 P——

Wite ML
A

Instrudtion
Instiction 115-111

TGSl

data

Ins yuction |5-0)

Memt akeg ALlUSrcl ALUOp

Source - D. A. Patterson and J. L. Hennessy,
major functional blocks of the CPU, for multi-cycle datapath
Implementation of the ISA instructions (MIPS)

The following temporary registers are added to meet
these requirements:

m The Instruction register (IR) and the Memory data register
(MDR) are added to save the output of the memory for an
Instruction read and a data read, respectively. Two separate

registers are used, since, both values are needed during the
same clock cycle.

m The A and B registers are used to hold the register operand
values read from the register file.

m The ALUOuUt register holds the output of the ALU.

Because several functional units are shared for
different purposes, use multiplexors. For example, since one
memory is used for both instructions and data, we need a
multiplexor to select between the two sources for a memory

address, namely, the PC (for instruction access) and ALUOut
(for data access).

A single ALU must accommodate all the inputs. Major
parts of the datapath now consists of:

1. An additional multiplexor is added for the first ALU input.
The multiplexor chooses between the A register and the

PC.

2. The multiplexor on the second ALU input is a 2-4 way
multiplexor. The two additional inputs to the multiplexor
are the constant 4 (used to increment the PC) and the
sigh-extended and shifted offset field (used in the branch

address computation).

With the jump instruction and branch instruction,
there are three possible sources for the value to be written

iInto the PC:

1.The output of the ALU, which is the value PC + 4 during
Instruction fetch. This value should be stored directly into

the PC.

2. The register ALUOut, which is where we will store the
address of the branch target after it is computed.

3. The lower 26 bits of the Instruction register (I1R) shifted
left by two and concatenated with the upper 4 bits of the
Incremented PC, which is the source when the instruction

IS a jJump.

The PC is written both unconditionally and conditionally.
During a normal increment and for jumps, the PC is written
unconditionally. If the instruction is a conditional branch,
the incremented PC is replaced with the value in ALUOuUt

only if the two designhated registers are equal.

PCWriteCond / \\\ PCSource

PCWrite IIII Outputs '|I Al Lo
st ALUSICE

|
MoemRead | Control |

MemWrite | et

MamioRaqg \ P lll RegWrite

AWrite / RegDst
b {
""'u._

L
Instruction [25-0]
—i-i

“wED

MamData

Instnaction
[31-26]

Instnaction
[25—21]

Instruction
[EIII-—‘I E]

Instnaction .
['I 5—0]

Instruction
ragister

Instruction
[15-0]

Memory
data

register

Instruction [5—0]

Actions of the 1-bit control signals

Fagst The registar fike destination number for the Write | The reglister fille gaestination number for the Write reglster comeas from the
rEgisier comes om the i ekl ra Mo
RagWrite None. The peneratpurpose reglster selacted by the Wiite reglster number Is
writien with the value of the Write data Input.
ALLESICH Thee first ALU operand Is the PC. The first AL operand comes from the A reglster.
MemA=ad Nioine, Content of memary at the location specified by the Address input 1S put
on Memory data output.
MemWrite Nione. Memaony contemts at the location specifed by the Address Input 15
replaced by value on Write data input.
MemioRag The value Ted to the register fle 'Wiite data Input | The value fed to the ragister file Write data input comes from the MDH.
COMES from ALLCuE.
oD The PC 5 used to supply the address to e ALLUDUE I5 used 1o supply the address to the memaory unit.
MEmory unit.
IRMrite Rione, The output of the memoly Is written into the 1R.
PCWITTE Nioine, The PC Is writien: thie source s combrodied by PCSOURCE.
PCWteCond Hione. The PC |s written i the Zero output from the ALL s also aciive.

Actions of the 2Z-bit control signals

ALLMOp DO The ALU performs an add operation.
01 The ALU performs 3 subtract operation.
10 Thee funct fleld of Me Instruction determines the ALU operation.
ALUSICE Do The second Input to the ALL comes from the B reglster.
01 Thee sacond Input to the ALU Is the constant 4.
10 The second Input to the ALU Is the sign-extended, lower 16 bits of the IR,
11 The second Input to the ALU Is the sign-extented, lower 16 bits of the IR shifted left
2 bits.
PCSource Do Dutput of the ALU [PC + 4) Is 5ent to the PC for wiiting,
D1 The contents of ALLXut (the branch target address) are sent to the PC for witing.
10 Thie Jump target address (IR[2530] shifted |eft 2 bits and concatenated witn
PC + 4[31:28]} Is sant to the PC for writing.

Instruction Instruction Desired ALU control
DpCode operaton ALU acthon Input
) o0 koad word OO add o1

oW 00 | store word D000 add o010
Branch equal 01 |branch equal D000, =ubtract 0110
R-type 10 |[aod 100000 add 0010
R-fype 10 | subtract 100010 subtract 0110
R-type 10 | AND 100100 and D000
A-fype 10 |[oOR 100101 or o001
R-type 10 | seton less than 101010 sat on less than 0111

FIGURE 5.12 How the ALU control bits are set depends on the ALUOp control bits and
the different functlon codes for the R-type Instruction. The opoode, listed in the first column,

L) X L) X 010

0 a X X

X 1 X X L) X L) X o110
1 X X X o o a o 010
1 X X X o o 1 o o110
1 X X X o 1 a o 000
1 X X X o 1 a 1 o001
1 X X X 1 o 1 o o111

FIGURE 5.13 The truth table for the three ALU control bits [called Oparatlon). The inputs
are the ALUOp and function code held. Only the entries for which the AL control is asserted are shown.

F (-0}
—

F3

F2

ALUOP

Y

ALUCpD

ALL control block

ALUOp

O

F1

FO

Operation?

Y

D Operation

Operation(

—

—= Ciperation

1 0 g d 1 g
II|' 0 1 1 i i I] d 0 0
) L 1 L 0 0 1 d 0 g
k2] L 0 L 0 0 0] 0 1

FIGURE 518 Tho satting of the comtrol Beas b complotedy detormingd by the oproda Niokds of tho Instraction. Th fm = ¢

I TN)

Op5 1 1 0 Ir,--""--._III

Lo 0 0 . 0 PCWrieCond | \ PBouns
. Op3 0 0 1 0 — !

Op2 0 0 0 1 “NER | gy pe | ALUCD

Op1 0 1 1 0 b | i

Op0 0 1 1 0 - ALLIEmE

RegDst 1 0 X M Mom-oad | Coml §

ALUST 0 1 1 0 FECTTETES | ALUSmA

MemtoReg 0 1 X X d [

RegWrite 1 1 0 0 viaTicheg | E:—?H I Fagiwio
Outputs MemRead 0 1 0 0 i _.' |'-|;|:___

MemWrite 0 0 1 0

Branch 0 0 0 1

ALUOp1 1 0 0 d I uction (2501

ALUQpO 0 0 0 1

The control function for a simple implementation is
completely specified by this truth table.

Inputs

R-form

g

FCWReC ond I-"J..-_.--"'.I FCSouncs

i iI Cutoirs Il. _:Il_l:l:l

al Ll ErmE
MaomHaad | Comiral |
e | | ALUSmA
Wartichag | I‘E{—?H | Regia
Adta | ! Paegls
LY
Insruction 501
Outputs
RegDst
ALUSIC
MemtoReg
RegWiite
MemRead
MemWrite
Branch
ALUOP1
ALUOpO

«2.5 The structured implementation of the control function as described

Each MIPS iInstruction needs from three to five of these steps:

1. Instruction fetch step:
Fetch the instruction from memory and compute the address
of the next sequential instruction:
IR <= Memory|[PC];
PC <= PC + 4;

2. Instruction decode and register fetch step

A <= Reg[IR[25:21]]; // Red. rs in opcode

B <= Reg[IR[20:16]]; // Reg. rtin opcode

ALUOuUt <= PC + (sign-extend (IR[15-0]) << 2);
// Branch target address

3. Execution, memory address computation, or branch completion

1) Memory reference:
ALUOuUt <= A + signh-extend (IR[15:0]);

11) Arithmetic-logical instruction (R-type):
ALUOut <= A op B;

1) Branch:
iIf (A ==B) PC <= ALUOut;

3. Execution, memory address computation, or branch completion

i) Memogpy Teference:
<: A + signh-extend (IR[15:0]);

i11) Arithmetic-logical instruction (R-type):
ALUOuUt <= A op B;

111) Branch:
If (A ==B) PC <= ALUOut;

Iv) Jump:
/7 {X, y} represents concatenation of bit fields x and y
PC <= {PC [31:28], (IR[25:0]] <<2)};

4. Memory access or R-type instruction completion step
Memoeiry reference:
<: Memory ; //1.oad
U
Memory [ALUOut] <= B; //Store from rt to Mem.

Arithmetic-logical instruction (R-type):
Reg[IR[15:11]] <= ALUOut; // Req. rd in opcode

5. Memory read completion step -
Load: Reg[IR[20:16]] <:, // Reg. rt

Action for R-type
Stop name instructions

Instruction fetch IR <= Memory[PC

Instruction decode,/ register fetch

ALUOut <= P -2 IH[.lE O} << 2)
Execution, address computation, AL Out <= Aop B ALUQut == A + signextend if (A ==8) P Pl 28
branch,/jump completion P (IR{15:0]) PC == ALUDut (IR{-25:0]],2'b00)}
Memory access or R-4ype [IR[15:11]] == Load: MDR <= MemonyALUOut)
completion ALUOwt or
Store: W
Memory read completion Load(Reg]IR[20:16]] -:itp

FIGURE 5.30 Summary of the steps taken to execute any instruction class. Instructions take from three to five execution steps. The
first two steps are independent of the instruction class. After these

steps, an instruction takes from one to three more cycles to complete,
depending on the instruction class.

INn a multi-cycle implementation, a new instruction will be
started as soon as the current instruction completes.

The register file actually reads every cycle, but as long as the
IR does not change, the values read from the register file are
iIdentical. In particular, the value read into register B during the
Instruction decode stage, for a branch or R-type instruction, is the
same as the value stored into B during the Execution stage and then
used in the Memory access stage for a store word instruction.

Action for R-type Action for memory- Action for Action for
Step name instructions reforence instructions branches jumps

Instruction fetch IR <= Memory[PC]
PC==PC+4

Instruction decode/ register fetch A <= Reg [IR[25:21])

B <= Reg [IR{20:16]]

ALUOu == PC + (signextend (IR[15:0]) << 2}

Execution, address computation, AL Out == Aop B ALUQut == A + signextand if (A ==8) PC <= {PC [31:28],
branch,/jump completion (IR{15:0]) PC == ALUOut (IR{25:0]],2'b00)}
Memory access or R-type Reg [IR[15:11]] == Load: MDR <= Memory ALUOwt]
completion ALUQut o

Stora: Memory [ALUOut] <= B

Memory read completion

Load: Reg]IR{20:16]] <= MDR

FIGURE 5.30 Summary of the steps taken to execute any instruction class. Instructions take from three to five execution steps. The

Remember this ?? -

Now compare the two

.. §res R aan e as

Step Action

A Al LR S Wk s AR s e e e s - B e S R e e e S

PCout, MAR;,,, Read, Select4, Add, Z;,

1

2 Zouty PCin, Yin, WMFC

3 MDR,ut, IRin

4 Oftset-field-of-IR,,;, Add, Z;,
5 Zout, PCin, End

Action for R-type Action for memory- Action for Action for
Step name mstructions reference instructions branches jumps

Instruction fetch IR <= Memory{PC]
PC==PC+4

Instruction decode, register fetch A <= Reg [IR[25:21]]

B <= Reg [IR{20:18]]

ALUOut == PC + (sign-extend (IR[15:0]) <= 2)
Execution, address computation, AL Out <= Aop B ALUQuUt == A + signextend if (A ==8) PC == {PC [31:28],
branch/jump completion {IR{15:0]) PC == ALUOut (IR{-25:0]],2'b00)}
Memory access or R-iype Reg [IR[15:11]] == Load: MDR <= Memony{ALUOwt]
completion ALUOwt of
Store: Memory [ALUQut] <= B

Memory read completion Load: Reg]IR[20:16]] == MDR

FIGURE 5.30 Summary of the steps taken to execute any instruction class. [nstructions take from three to five execution steps. The
Start

' !

Instruction fetch/decode and register fetch

l I I l

Memory access R-type instructions Branch instruction Jump instruction
instructions

FIGURE 5.31 The high-level view of th@nitu state machine :nntlnl;>he first steps are inde-

Functions of Control Unit

“»» Sequencing
» Causing the CPU to step through a series of micro-
operations

“» Execution
» Causing the performance of each micro-op

“»Use of Control Signals to accomplish the task

Types of Control Signals

e (Clock

0 One micro-instruction (or set of parallel micro-
Instructions) per clock cycle

e Instruction register
» Op-code for current instruction
» Determines which micro-instructions are performed

e Flags
» State of CPU
» Results of previous operations

e From control bus
» Interrupts
» Acknowledgements

Flags

Clock

Model of Control Unit

| Instruction register

4

Control signals

> within CPU
> Control signals

Control from control bus
Unit <

>

Control signals
to control bus

Control bus

HARDWIRED CONTROL

The required control signals are determined by the
following information:

« Contents of the control Step Counter
« Contents of the IR
« Contents of the condition code flags

« External I/P signals, MFC, IRQ etc.

Control Unit with Decoded Inputs

Instruction register |

3

/ Decoder \

e | =
o To=—

Timing <

Clock 2 generator .
Th—>

Control
Unit

Flags

o e e e . e e e Em e e e e e e R e e e e e e e e e

IR

CLK » Control Step Counter ¢-_F_Q_|§_S_|_E_T __________
STEP Decoder
Tl l l T2 l Tn
INS,
> — External
— Inputs
INS,
Instruction
Decoder ENCODER
Condition
, Codes
INS,,
RUN

CONTROL ¥--mome--

SIGNALS

By separating the decoding and encoding functions, we obtain the more detailed block
diagram in Figure 7.11. The step decoder provides a separate signal line for each step,
or time slot, in the control sequence. Similarly, the output of the instruction decoder
consists of a separate line for each machine instruction. For any instruction loaded in
the IR, one of the output lines INS; through INS,, is set to 1, and all other lines are
set to 0. (For design details of decoders, refer to Appendix A.) The input signals to the
encoder block in Figure 7.11 are combined to generate the individual control signals
Y;s, PC,u, Add, End, and so on. An example of how the encoder generates the Z,,

For an “ADD” instruction (ISA): For a “Branch” instruction (ISA):

PCout, MARIn, READ, SEL #4, ADD, Zin

Offset (IRout), ADD, Zin

1.
2.
3.
4
5 Zout, PCin, END

1.
2
3.
4.
5
6. MDRout, SELY, ADD, Zin

Z =T,+T..ADD+T,.BR +.....

END =T,.ADD + T..BR + (T:.CF + T,.CF’).BRN +....

When RUN = O, the counter STOPS; required from W__MFC;

Design logic mostly based on FSM (Finite State machine)

Z. =T, +T.ADD+T,.BR+.....

Branch Add

Add Branch
N

End

END =T,.ADD + T..BR + (T:.CF + T,.CF’).BRN +....

FSM — based Hardware Control Unit design

Moore type machine necessary - output signal depends on the
current state.

Next state depends on the input and current state.

Each state generates a set of control signals.

To implement any ISA, the system sequentially changes state from
one to another. Control Unit implements the steps.

For a sequence of “N” steps, there are Sy tO Sy_; stages.

At each stage S;: a set of outputs O, g....0Oj \,_1 are generated,
depending on the S;.

Categories of control signals: functions for ALU, select of storage
units, select of data routes (based on design).

Typical Moore State Graph

Moore state table

A+ B* Z (Present
X=0 X=1 output)
S,00 S, 00 11 S, 0
S,01 S, 00 11 S, 1
S,11 S,11 10 S, 1
S;10 S;10 01 S, 0

Moore network example

Combinati
onal

Sub N/W
for F/F
inputs

Q
Q,

Q,

Q,

Q,*

+
D, FIF
Ik

Q"

D, FIF
Ik

D, FIF
Clk

Clk

Combinati
-onal

Sub N/W
for
Outputs

The outputs of the combinational logic are the next-
state number and the control signals to be asserted for the
current state.

The inputs to the combinational logic are the current
state and any inputs used to determine the next state. In
this case, the inputs are the instruction register opcode
bits.

Notice that in the FSM for Hardwired Control, the
outputs depend only on the current state, not on the
INputs.

Identifying characteristic for a Moore machine is that
the output depends only on the current state.

For a Moore machine, the box labeled combinational
control logic can be split into two pieces. One piece has the
control output and only the state input, while the other has
only the next-state output.

STIRT l

INSTRCN REG.
DECODE
FETCH FETCH
MEM. ACCESS R-Type JUMP
INSTRCN INSTRCN. ?NR SAPRCCHN INSTRCN

| |

OVERALL state machine diagram for CPU

Register
MMEORY
ADDRESS BRANCH
COMPN.

R-TYPE
COMPN.

v \4

FSM Graph

PCWriteCond / \\\ PCSource

PCWrite IIII Outputs '|I Al Lo
st ALUSICE

|
MoemRead | Control |

MemWrite | et

MamioRaqg \ P lll RegWrite

AWrite / RegDst
b {
""'u._

L
Instruction [25-0]
—i-i

“wED

MamData

Instnaction
[31-26]

Instnaction
[25—21]

Instruction
[EIII-—‘I E]

Instnaction .
['I 5—0]

Instruction
ragister

Instruction
[15-0]

Memory
data

register

Instruction [5—0]

netructon fetch _
netrucion decoda
Register feich

Me=mRead
0 AlLUSrcA =0 1
lorlD =10
| RWirite ALUScA =0
Stari * ALUSKCE = 04 AlLUScB = 11
ALUOPp = 00 ALUCp =00
PCWrite
PCSource = 00
Py
:;:.“;'9: N o
) -y & 5
;.;tt o od "
o oF g)
¥
Memuory-reference FSM R-type FSM Branch FSM Jump FSM

(Figure 5.33) {Figure 5.34) {Figure 5.35) (Figure 5.38)

Instruction fetch Instruction dacodey

register feich

Al LSrcA = 0
Start AlLUSHEH = 11
ALLUOp - 00
)
L —_—
- 4 = dc@ f-l?- —
o Fri] -=
"'"-:!E"I & i | |
=
O e g, g
Memory eddress Branch Jumg
compuiation complation compdation
2 o
Al USrcE - 10 PCSource = 10
Al DD = 0D

Mamory read
completon step

Combinational

control logic Datapath control outputs

CIthpuL-a <

Inputs

Y
i s ™y

THT L || e

Inputs from Instruction | State registes

register opcode fleld + W T = | How big must the
state register be?

Moore type machine - output signal depends on the
current state.

Next state depends on the input and current state.

Control logic

Inputs
A

Oulputs

r

1

PCWrite

PCWriteCond

kar(l

MemBead

Elemirite

IRWrite

MemtaReq

PCSource

ALLIOD

ALUSicB

ALLISICA

Regivrite

Reglst

W53

M5

M5

M50

L)
(=1
I:IT

SEEEER

—
L

(3 | —

|

Instruction register

State register

opcode field

t

[1

0

i Instruction fetch

Instruction decode/

register fetch

PCWrite statel + stateS A'E"Sg‘rz:ﬂfu 1
PCWnteCond statad lorD = D ALUSrcA =0

Start —— IRWrite | ALUSKCE =11
lorD state3d + stateb ALUSrcB = 01 ALUOp = 00
MemRead state0 + state3 el
MemWrite stateb g S =

- ; P R & I
IRWrite statel Vemory address wﬁ.@m & & 8 sump
MemtoReg statod computatior maﬁ"» Execution completion completion
PCSourcel stated o L sren o)
PCSourcel statel ALUSreA = 1 ALUSrcA =1 e PCWrite
ALUOpL stated ALUOp =00 ALUOp= 10 PCWriteCond
PCSource =01
ALUCpD states
AL USrcB1 statel +state?
ALUSrcBO statel + statel -
Memory Memon,
Al USrcA state? + statet& + state8 access access R-type completion
- 3
RegWrite stated + stata’7
Reglst stata7 MemRead MemWrite
lorD = 1 lorD = 1
Mot Statol statod + statob + state7 o °
MextStatal statal
MextStata? statel
MextState3 stato?
MextStatad stata3
RegDst=0
MextStatab state? RegWrite N
MemtoReg=1

NextStatof statel sonE
MextStataT stateb
NextState8 statel (Op="beg")
NextStatod stated (Op="jmp")

FIGURE C.2.3 The logic equations for the control unit shown in a shorthand form.

PCWrite statel + stated ! - . =

BCWrieCond mr—" NextStatel = State = 53-52-51-50

lorD stated + state5 NextState3 = State2 - (Op[5-0] = lw)

MemRead statel + stated — — —

MemWrita ——— = 53-52-51-50-0p5-0pd - Op3 - Op -
S S NextState5 = State2 - (Op[5-0] = sw)

MamtoReg stated _ _ _ _
PCSourcel stated = 53-52-51-50-0p5-0pd - Op3 - Op -
PeSourced Stated NextState7 = State6 = S3-S2 - S1- S0

ALUOp1 statof

ALUOpO stated NextState® = Statel - (Op|5-0] = jmp)

ALUSrcB1 statel +state? _ 5—3 . ﬁ . ﬁ 5[- 'DpS) Dp4 _ ng _ 'Dpl .
ALUSrCBO statel + statel

:tg;rﬁi ﬁi : :EIE? * stated NS0 is the logical sum of all these terms.

RegDst state T

MNextStatol gtatod + statob + state? + statcl + statol

MextStatel statel

MNextStata? statel (Op="Tw"}+{0p="sW")

MextStated state? (Op="1w")

MextStated stated

MextStateb state? (Op="sw")

MextStateb statel (Op = "Rtype’)

MextState7 statob

NextStato8 statel (Op="beq")

NextStated statol (Op="jmp")

FIGURE C.3.3 The logic equations for the control unit shown in a shorthand form.

Opl

Opl

- Opl

- Opl

- Opl

Break the
control function
INto two parts:

- the next-state
outputs, which
depend on all the
INnputs,

and

- the control -
signal outputs,
which depend
only on the
current-state bits

Let’s look at

a ROM-based
Implementation,

Q 0 0]

1 0 0

a. Truth table for PCWrite

BN
0 0 ad 1]

0 0 1

d. Truth table for MemRead

ENENENEN
0 1 0 1]

g. Truth table for MemtoReg

EENENENEE
| 0 1 | 1 | 1]

j- Truth table for ALUIOp1
EXEKIENEN
0 0 0 1]

Q 0 0 1

m. Truth table for ALUSCBO

| 0 1 1 1 |
p. Truth table for RegDst

|1 0 0 n:a|

b. Truth table for PCWmteCond

EEREERIE
0 | 1 | 0 1 |

e. Truth tablae for MemWrita

| @ | 2 | a2 | o |
1 0 0 1

h. Truth tablae for PCSourcal

| o2 | 2 | s | ® |
1 | ad | 0 1] |

k. Truth table for ALUORD
I == =
0 0 1 0

0 1 1

1 0 L]
n. Truth table for ALUSrcA

] 0 1 1

] 1 0 1

. Truth table for lorD

BE N N
| 1] 0 0 | ad |

f. Truth table for IRWrite

| 8 | 2 [a1 | ®
1 0 0 0

i. Truth table for PCSourced
Q 0 0 1
0 0 1 0
. Truth table for ALUSmcB1
Q0 1 0 0
Q0 1 1 1

0. Truth table for RegWrite

first.

FIGURE C.2.4 The truth tables are shown for the 16 datapath control signals that depend only on the current-state imput
bits, which are shown for each table. Each truth table row corresponds to 64 entries: one for each possible value of the 6 Op bits. Notice that

—ovpte _ it vlues (51301

@000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001
PCWrite 1 o 0 0 0 0 0 0 0 1
PCWriteCond 0 o 0 0 0 0 0 0 1 0
lorD 0 o 0 1 0 1 0 0 0 0
MemRead 1 o 0 1 0 0 0 0 0 0
MemWrite 0 o 0 0 0 1 0 0 0 0
IRWrite 1 O 0 0 0 0 0 0 0 0
MemtoReg 0 0 0 0 1 0 0 0 0 0
PCSourcel 0 O 0 0 0 0 0 0 0 1
PCSourcel 0 o 0 0 0 0 0 0 1 0
ALUOp1 0 o 0 0 0 0 1 0 0 0
ALUCpD 0 o 0 0 0 0 0 0 1 0
ALUSrcB1 0 1 1 o 0 0 0 0 0 0
ALUSrcBO 1 1 0 0 0 0 0 0 0 0
ALUSrcA 0 o 1 0 0 0 1 0 1 0
RapgWrte 0] 0] 1] 0 1 0 0
RegDst 0 o 0 0 0 0 0 1 0 0

FIGURE C.2.6 The truth table for the 16 datapath control cutputs, which depend only on
the state inputs. The values are determined from Figure C.3.4. Although there are 16 possible values for

the 4-bit state field, only 10 of these are used and are shown here. The 10 possible values are shown at the

Lower 4 bits of the address Bits 19-4 of the word

0000 1001010000001000
0001 OOG0000000011000
0010 O000000000:0010100
0011 0011 000000000000
0100 0000001 000000010
0101 00101 00000000000
0110 O00C00000001000100
0111 O00CG0000000000011
1000 0100000010100100
1001 1 000001 GO000000

FIGURE C.3.7T The contents of the upper 16 bits of the ROM depend only on the state

inputs. These values are the same as those in Figure C.3.6, simply rotated 907 This set of control words
would be duplicated 64 times for every possible value of the upper 6 bats of the address.

e.g.: PCWrite is high in states O and 9; this corresponds to
addresses with the 4 low-order bits being either O0O00 or
1001. The bit will be high in the memory word independent of
the inputs Op[5—0], so the addresses with the

bit high are 000000000, 0000001001, 0000010000,
0000011001, ...,1111110000, 1111111001.

The general form of this 1Is XXXXXX0000 or XXXXXX1001.

| | | =
| | O ==

| Ol Ol =

o I I

e N

e e e)
(ol R I

=

(e | e e f

o | | | e

0 0

0

1

0

0 0

0

1

d. The truth table for the NSO output, which is active when the next stateis 1, 3, 5, 7, or 9. This happens

only if the current state is one of 0, 1, 2, or 6.

The truth table for
next-state output bit

(NS[OD).

The next-state
outputs depend on the
value of Op[5—0],
which is the opcode
field, and the current
state, given by S[3—-0]

NextStatel
NextState3

MNextState5

NextState/
MNextState®

= Statg¢0
= Stat;

= §3.(s2.

J

= §3-52-51-580
Op[5-0] = lw)

= Staktez (Op|5-0] =sw)

= 53 |52

= Stateb

= 53 .52-51-50

= Statgl/ (Op|5-0] = jmp)

= §3.52-51-50-Op5-Opd - Op3 - Op2 -

S1.50-0p5-Opd - Op3 - Op2 -

S1-50- Op5 - Opd - Op3 - Op2 -

NS0 is the logical sum of all these terms.

- Opl

- Opl

- Opl

= |) =

| | O ==
x| O O =
= W I
e N
e) e e
= O O
ol Wl el K=
)) e) e

o | | | e

O

0 0 1 0 0 0 0 1

d. The truth table for the NSO output, which is active when the next stateis 1, 3, 5, 7, or 9. This happens
only if the cument stateisone of 0, 1, 2, or 6.

The four truth
tables for the
four next-state
output bits
(NS[3-0]).

The next-state

0) 0 0 1)) 0 0 1
0) 0 1 0)) 0 0 1

a. The truth table for the NS3 output, active whan the next state is 8 or 9. This signal is activated when
the curmrent state is 1.

outputs depend
on the value of
Op[5—0], which
IS the opcode
field, and the
current state,

0) 0 0 0)) 0 0 1
1 o 1 0 1 1) 0 1 0
X X X X X X 0 0 1 1
X X X X X X 0 1 1 0

b. The truth table for the NS2 ocutput, which is active when the next state is 4, 5, 6, or 7. This situation
occurs when the current state is one of 1, 2, 3, or 6.

s e | e
S L=
ol =] el]

given by S[3—0]

A K
= olrlolo
=lolo|lo|lo
A K
e | i | e | s

S E=1E=]1k=]='
=1 =11y

=

X 1

C. The truth table for the NS1 output, which is active when the next state is 2, 3, 6, or 7. The next state
iz one of 2. 3, 6, or 7 only if the current state is one of 1, 2. or &.

Cumrent state
${3-0]

[, | B
[R-Format)

000010
{Jmp)

001 0D
(beq)

100011
(1w)

Amy other
value

@01 | 0001 0001 N0 o001
0110 101 1000 0010 0010 llegal
WO WO 00, oofi) | mfa) ilegal
0100 0100 000 0100 0100 llegal
0000 0000 0000 D000 0000 llegal
0000 0000 0000 Q000 0000 llegal

<011 | 0 0111 0111 | omIT—>|[iegal
0000 0000 0000 Q000 0000 llegal
0000 0000 0000 0000 0000 llegal
0000 0000 0000 0000 0000 llegal

FIGURE C.2.8 This table contalns the lower 4 bits of the comtrol word (the NS cutputs),
which depend on both the state Inputs, $[3-0], and the opcode, Op [5-0], which come-
spond to the Imstrection opoode. These valees can be determined from Figure C3.5. The opcode

name is shown under the encoding in the heading. The 4 bits of the control word whose address is given by
the current-state bits and Op bits are shown in each entry. For example, when the state input bits are 0000,

the cutput i always 0001, independent of the other inputs; when the state is 2, the next state i don't care for
three of the inpuats, 3 for 1w, and 5 for SW. Together with the entries in Figure C3.7, this table specihes the

contents of the control unit ROM. For example, the word at address 1000110001 is obtained by inding the

The entry from the top yields

1001010000001000

ODOOOO00O001 1000

e ——————————
000000000 10100

OO 1 OOOOOOON0000

word at

00001 000000010

OO0 OOCOO000N00

COO000O00 1000100

ODOOOOO0DN00N0011

CLOOO0O01 0100100

L CaDnCaTnCel 1 oo o e e

ant state | 000000
| (R-format

Any other
value
o001

0000
0001 0110 1001 1000 @ 0010 llegal
0010 YK YO0 OO 0011 0101 llegal
0011 0100 0100 0100 0100 0100 llegal
0100 0000 0000 0000 0000 0000 llegal
0101 0000 0000 0000 0000 0000 llegal
0110 0111 0111 0111 0111 0111 llegal
0111 0000 0000 0000 0000 0000 legal
1000 0000 0000 0000 0000 0000 llegal
1001 0000 0000 0000 0000 0000 llegal

0000000000011000, while the
appropriate entry in the table
below is 0010. Thus the control

address 1000110001

is 00000000000110000010.

The column labeled “Any other
value” applies only when the
Op bits do not match one of
the specified opcodes.

00010 00100
J)| (jmp) (beq)
0001 0001 0001 o0l 0001

For example, the worc
at address

1000110001 is
obtained by finding (i)
the upper 16 bits from
the table on top, using
only the state input
bits (O001) and (ii)
concatenating the
lower 4 bits found by
using the entire

address (0001 to finc

the row and 100011
to find the column).

For ALU Control & simple CPU control lines
— check slides:

32 - 35

PLA Im

-
I
I
|
l
L

OR-Plan

Start

Imstruction fetch

Instruction decoded
ragisier fsich

ALUSMCA = 0
ALUISKE = 11
ALUOp = 00

(Op =)

Jumg
complation

PC\Writa
PCSource = 10

e
S £
=
-.,Il-ni"l"'q':n Qﬁ .ﬂq}c;
-n,;;l‘!'- & [
=1
ot & fs)
Memory eddress Hranch
CormpLtEticin Exacution completion
2 a8
SroA ALLISrCA, - 1
PTLLIIEmEI T10 e
ALUOD = 0D ALUCp = 01
PCWiraCond
i PCSource = 01
SRS
-;L Mamory Meamory
O ¢ AcoEss BCLaEEs H-type completicn
5
MemWria RegDst - 1
lorD = 1 RagWlrite
bemicHeg = O

kameo

completon step

ry read

AND-Plane

Cond

TYPES of PLDS:

e PAL - PAL devices have arrays of transistor cells arranged in a
"fixed-OR, programmable-AND" plane used to implement ""sum-of-
products' binary logic equations

e PLA - The PLA (also FPLA) has a set of programmable AND gate
planes, which link to a set of programmable OR gate planes, which
can then be conditionally complemented to produce an output. This
layout allows for a large number of logic functions to be synthesized
in the sum of products (and sometimes product of sums) in canonical
forms.

e GAL - The GAL (Generic Array Logic) was an improvement on the
PAL because one device was able to take the place of many PAL
devices or could even have functionality not covered by the original
range. Its primary benefit, however, was that it was erasable and re-
programmable making prototyping and design changes easier for
engineers.

e A similar device called a PEEL (programmable electrically erasable
logic) was introduced by the International CMOS Technology (I1CT)
corporation.

« FPGA - FPGAs contain programmable logic components called
"logic blocks", and a hierarchy of reconfigurable interconnects that

allow the blocks to he "wired toagether - somewhat like a one-chin
3\’&' I IS T T IS VVVEITUAL TTIINW A Vi 1w 1 llr.l

CATIJ VWV I N\ N IJ I\ W\ KNI

programmable breadboard.

The most common FPGA architecture consists of an array of
configurable logic blocks (CLBs), 1/0 pads, and routing channels.
Generally, all the routing channels have the same width (humber
of wires). Multiple 1/0 pads may fit into the array — programmable
using HDL.

e CPLD — between PALs and FPGAs. Has ROM and hence non-
volatile. Handles complex logics with feedback and arithmetic
operations.

« ROM -

 PLC - Automation of machinery control — a small embedded system

« PLL ??

Various optimizers and sequencers are used for efficient design.
Difficult to design when complex operations/instructions are
necessary —

Floating point, superscalar, pipelining etc.

Correcting errors and debugging is difficult

How do you implement W(MECQC) in this state machine ??

Minor modifications of the 1SA requires lot of changes and redo
the design.

Complex instructions may require to go through several states
and signhals to be generated

Many opcodes — the design may require a RISE lab./hall for
generating the truth table.

Microprogramming

Step Action

PCout, MARy, Read, Select4, Add, Zi,

Znuh Pcim Y‘iﬂ.'l Wh’IFC

MDRout, Rin

1
2
3
4
5]

< Micro-Instructions for:

Raaut] Mﬂnim Rﬁﬂ.d
Rlou, Yin, WMFC

f
Y AN N R B Bl 8 e 8 e] B w8 W e e e e R A AR R A o g g

pug | © © o o o o —
DINM | © — © © — o o
e 1 = n..u._”.. o5 - o o ©
MY o o o o © o —
el e el

0
!
0

e e R e e . A S S AT A S L LR A R SR A .

= o o O - O

.n”_...... = o 1Mu! —_— 0
............................ Mn.T.M.].uM]:..M:.!m..i.Mi

—_—a o - O o

LIETIE ST T (e - & mmas Gmsms BEme mmm S e A mme S AR emE nmm e mem

g
i g
. 8 |
o
g B
bz
g =

=
g 3
[= T

Address

0

= I

Microinstruction

Pcaﬂh mn‘im Rﬂa‘d! SEIECt"i: Addi z‘iﬂ-
znuh PC‘.I"I‘.I'I Yim WMFC
rﬂDHouh [B-in

Rranch to startine address of annronriate mierorontine

: l ﬁ External
] inputs

E
Starting and "
IR ':> branch address K:Z Cn:g:ﬂ;un {

generator

The ,UPC Is iIncremented every time a new micro-

fAt~rlhaAdl F rn Flhoa + 1
instruction is fetched from the micro- pProgram \\/OnLi"Ol

Store) memory, except in the following situations:

1. When a new instruction is loaded into the IR, the

HUPC is loaded with the starting address of the micro-
routine for that instruction.

2. When a Branch microinstruction i1s encountered

and the branch condition is satisfied, the UPC is loaded
with the branch address.

3. When an End microinstruction is encountered, the

HMPC is loaded with the address of the first CW In the
microroutine for the instruction fetch cycle (this address

Is 0).

Drawbacks of this simple micro-instrcn. system:

- assigning individual bits to each control signal results Iin
long microinstructions because the number of required
signals is usually large.

- only a few bits are set to 1 (for active gating) in any
given microinstruction, which means the available bit

space is poorly used.

Assume:
In total, 42 control signhals are needed.
e.g.
- Read, Write, Select, WMFC, End,;
- Add, Subtract, AND, and XOR;
- Separate sighals to R;’s ; PC, IR, MAR, MDR etc.

42 bits would be needed in each microinstruction.
Fortunately, the length of the microinstructions can be
reduced easily. Most sighals are not needed simultaneously,
and many signals are mutually exclusive.

For example, only one function of the ALU can be
activated at a time. The source for a data transfer must be
unique because it Is not possible to gate the contents
of two different registers onto the bus at the same time.
Read and Write signals to the memory cannot be active
simultaneously.

This suggests that sighals can be grouped so that all
mutually exclusive signals are placed in the same group.
Thus, at most one microoperation per group is specified in
any microinstruction

For example, four bits suffice to represent the 16
available functions in the ALU.

Register output control signhals can be placed in a
group consisting of PC_ ., MDR_ ¢, Z,,t. Offset, :» RO ¢
R1,.,: R2,u6 R3., @and TEMP ; -

Thus, do this natural grouping (of mutually exclusive

signhals) and then -
Select anyone by a 4-bit code.

Most fields must include one inactive code for the case
INn which no action is required.

Grouping control signals into fields requires a little
more hardware because decoding circuits must be used to
decode the bit patterns of each field into individual control

signals.
The cost of this additional hardware is more than offset

by the reduced number of bits in each microinstruction,
which results in a smaller CONTROL store.

Microinstruction

EEENENENERENERE

F1 (4 bits) F2 (3 bits) F3 (3 bits) F4 (4 hits) F5 (2 bits) F6 (1 bit) F7(1 bit) F8 (1 bit)
0000: No transfer 000: No transfer 000: No transfer 0000; Add 00: Noaction 0: SelectY 0:Noaction 0: Continue
0001: PC,, 001: BC,, 001: MAR,, 0001; Sub 01: Read L: Selectd 1: WMEC 1: End
0010: MDR,, 010:IR,, 010: MDR,, : 10: Write

0011:Z,,, 011:Z;, 011; TEMP.,

0100:R0,, 100:R0, 100:Y,, 1111: XOR

010L: R, 101:R1;, v

0l:R2,, 110:R2, b

0111: R3,, 111:R3;,

1010: TEMP,,,

1011: Offset

Only 20 bits are needed to store the patterns for the 42 signals

Microinstruction

VERTICAL ORGANIZATION is

Fl F2 3 [F4 Fs I :
also possible, where compact
codes are generated using
F1 (4 bits) F2(3bits) F3(3bits) F4(4bits) F5(2bits) highly encoded schemes.
0000: No transfer 000: No transfer 000; No transfer 0000; Add 00; No action
0001: PC,,, 001: PC;, 001: MAR,, 0001: Sub 01: Read
0010:MDR,, OIO:IR, 010: MDR,, : 10: Write
0011:Z,,, 011:Z;, 011: TEMP,,
0100: RO, 100: RO, 100: Y;, 1111: XOR HORIZONTAL
0101: R1,,, 101:R1,, v ORGANIZATION
0l0:RY,, ORI, Dy
OLRY, ILR3, T E% ;' | N
1010: TEMP,,,, byl Bigl 1 ;L:.I
. Jidifia sl gl B SSET
1011: Offset, , 3 AR IR; NEE z ¥ HE
A P | ™ .
I Diiilglﬂz_ﬂgﬂl'l lﬂiﬂ!ﬂﬂﬂﬂg
2 1;0°0[0j0.0/110 0j0[110 0;0(1]0]
3 0:0:i0[0{1/1;0{0/0/0;0/0{0{0]{0}0]
4 0:0:1 1nhnunlnintﬂ§u§t}1uﬂ§
| i i !
5 ﬂ;usuuuninw*u-ﬂilgnnlu:
| N
6 0:0/0/0{1:00j0:1{1:0;0:0[{0f0]0:
I j i P i
7 ingnznn;ngn;nngnn13[1@15:};0 |
y } i i i i . i]

MICROPROGRAM SEQUENCING

Having a separate microroutine for each machine
INnstruction results in a large total number of microinstructions
and a large control store.

If most machine instructions involve several addressing
modes, there can be many instruction and addressing mode
combinations. A separate microroutine for each of these
combinations would produce considerable duplication of
common parts.

Its better to organize the microprogram so that the
microroutines share as many common parts as possible. This
reguires many branch microinstructions to transfer control
among the various parts.

e.g. Consider an instruction of the type:

Add Rsrc’ Rdst
Addressing modes:
register, autoincrement, autodecrement, and indexed, as
well as the indirect forms of these four modes.

DOU

MAR « [PC}; Read; Z « [PC] + 4

EY{—[E};W

I

Indexed l Autodecrcnmm

Address indicated by
an OCTAL number;

Note minor change in
notation of micro-

nDroaram instructions
Register indirect

161

 J
141 I 121

MAR « [PC]; Read YA [R.sm] MAR & [Rsrc]; Read
Ze|[PC]+4 Z« [Rsrc]+4
122

PC « [Z]; WMFC

163

Y « [MDR]
164

MARRSIM—[Z] Read Rsre « [Z]

Z « [Y] + [Rsrc] lemh[170, 0

165
MAR ¢ [Z]; Read

166

Branch{ 170, OR }; WMFC

17N

123
l 170

MAR ¢ [MDR]; Read; WMFC

111

Branch{171}; WMFC

102 Registerdirnct 101

[Brancn(172) -—I_'n-msml _I

O

000
I MAR « [PC]; Read: Z « [PC] + 4
I = -
IPC.?«—[Z];WMFCI

002
I IR %MDR] I

T —

I Branch{InstDec, OR} I

Microroutines for other instructions

Indexed Autodecrement Autoincrerment Register indirect
1 161 I 141 I 121 T _l 111
MAR «— [PC]; Read Z «— [Rsrc] — 4 MAR «— [Rsrc]; Read I I MAR «— [Rsrc]; Read
Z— [PCl+4 Z «— [Rsrc] + 4 i
162 142 1 122 4 112
I PC « [Z]; WMFC I IMAR.Rsn:q— [Z): Read I Rsrc « [Z] I l Branch{171}; WMFC
163 1 123
I Y « [MDR] I IBra.m:h[170, OR }; WMFCI
164 1 143 |
I Z « [Y]+ [Rsrc] I Iﬂmh{ 170, OR}; WMFCI
165
| MAR — 21 Reaa |
L |
L 166
Ianch{]'}'ﬂ,DR};WMFCI T 4 =
7" \
170 S =

(lMARt—!MDR]; Read: WMFC' L=/

t 171

I Y « [MDR] | 102 Register direct 101

} I Branch ({172} I-—I Y « [Rsrc] _l

172
I Z «— [Y] + [Rdst] I .

173
1 Bdst o 71 1 End

Branch Address Modification using Bit-ORiIng

Consider the point labeled “@ ” in the figure. At this

point, It IS necessary to choose between actions required by
direct and indirect addressing modes.

If the indirect mode is specified Iin the instruction, then
the microinstruction in location 170 is performed to fetch the
operand from the memory.

If the direct mode iIs specified, this fetch must be
bypassed by branching immediately to location 171.

The most efficient way to bypass microinstruction 170
Is to have the preceding branch microinstructions specify the
address 170 and then use an OR gate to change the least
significant bit of this address to 1 if the direct addressing
mode is involved.

This I1s known as the bit-ORing technique for modifying
branch addresses.

0 Wide BRANCH ADDRESSING

Branch{ InstDec, OR}

’ = Microroutines for other instructions
Autodecrement Autoincrement Register indirect

T] a1

The instruction decoder {InstDec}, generates the
starting address of the microroutine that implements the
iInstruction that has just been loaded into the IR.

INn our example, register IR contains the Add instruction,
for which the instruction decoder generates the micro-
Instruction address 101, which cannot be loaded as is into the

microprogram counter (UPC).

The bit-ORiIng technique can be used at this point to
modify the starting address generated by the instruction
decoder to reach the appropriate path.

Bit-Oring should change the address 101 to one of the
five possible address values, 161, 141, 121, 101, or 111,
depending on the addressing mode used in the instruction

Execute the instruction -
Add (Rsrc)+, Rdst
J’

Contents of IR ! OPc

Address Microinstructio!

(octal)

000 PC,,0 MARm, Read, Selectd, Add, z,,,

001 Zour PCins Y, WMEC

002 MDR,,;, IR,,

003 uBranch {pPC « 101 (from Instruction decoder);
HWPCs 4 ¢ [IR;q0]; WPC; « [IRg] - [IRg] - [IRg]}

121 Rsrc,,, MAR,,, Read, Select4, Add, Z,,

122 Zoun RSIC;,

123 uBranch {UPC « 170; uPC, « [IRg]}, WMFC

170 MDR,,, MAR, , Read, WMFC

171 MDR,,, Y;,

172 Rdst,,, SelectY, Add, Z,,

173 Z,., Rdst,, End

Microinstruction for Add [Rsrc)+,Rdst.

Mode

A

Fa

11 10 87 473 0

The instruction has a 3-bi
field to specify the
addressing mode for the
source operand, as above.

Bit patterns:
11, 10, 01, and 00, located
IN bits 10 and 9, denote the
Indexed, autodecrement,
autoincrement,
and register modes,
respectively.

For each of these modes,
bit 8 Is used to specify the
Indirect version.

Address Microinstructio: /

P y/—
3 BRI S R L SIS RIS BRSPS S S E 4 B TR Cmmnts nf IR GP Elﬂe
000 PC,. MAR;,,

001 Z o PCins Y i WMFC
002 MDR,,

_ Add (Rsrc)+, Rdst;
uBranch {uPC « 101 (from Instruction decoder)~. | R,,_o fOr Auto-increment

5.4 & [IRyggli HPC; ¢« [IR,q] - [IRg] - [IR mode: 01;
121 Rsrc,,» MAR,,, Read, Selectd, Add, Z;, IRg = O (no Indirect);
122 Zopun RSIC;y
123 < uBranch (1PC - 170; jPCy [IRgl}, WMFC > | YIS,
170 MDR,,., MAR,,, Read, WMFC HPCs_ ;s = (010), = (2)g;
171 MDR,,, Y;,
172 Rdst,,, SelectY, Add, Z,, Modified (PC for
173 Z,.» Rdst. . End branching after (003)g =
(121)4;

Microinstruction for Add (Rsrc)+,Rdst.

Modified UPC for branching
after (123)g = (171)g; //Direct mode

Micro-instruction with ‘“next Address Field”.

<* for self-stvdy — in END SEM Exam. *>

The selection of the next
microinstruction is controlled by
the sequencing control outputs
from the control logic.

The address select logic contains
a set of dispatch tables as well as
the logic to select from among the
alternative next states.

The combination of
the current
microprogram counter,
Incrementer, dispatch
tables, and address
select logic forms a 1

A typical implementation of a

microcode controller

storage

Outputs <

Inprul

Microcode 4

seguencer that selects l 1

|

Microprogram counter

the next . ;
microinstruction. \ Adder /

Address select logic |=

Inputs from instruction
register opcode field

Datapath
control
outputs

Sequencing
control

Ihgiatﬂ PCWrite
ontrol control uancing
E-LI:|

Fetch Add wead PC
Add P: |At5hft Read Dispatch 1
Meml Add A Extend Dispatch 2
LKZ Read ALU Seq
Nrite MDR Fetch
SWZ Nrite ALl Fetch
Rformatl | Func code A B Seq
Nrite ALU Fetch
EEO] Subt A B ALUOut Fetch
cond
JUMP1 Jump Fetch
address

FIGURE 5.7.2 The microprogram for the control unit. Eccall that the labels are used to determine
the targcts for thc -:|:i.1-]:lu.l:i:h u]:lcrnti-:-:m-. Dispatch 1 docs njum]:l bascd on the IR to a label i:n-:linE with a 1,

I

I

— Time

BE

[= =]

(a) Sequential execution

Interstage buffer
B1

Instruction
fetch
unit

Execution
unit

{b) Hardware organization

Fa Ez

F3

— Time

E,

(c) Pipelined execution

PIPELINING

Hence, 4 units of time
slots used;

Compared to 3*2 = 6
units of time required
for a Sequential
operation.

A pipelined processor may process each instruction in
four steps, as follows:

F Fetch: read the instruction from the memory;

D Decode: decode the instruction and fetch the source
operand(s);

E Execute: perform the —» Time
operation specified by the Cekeee 12 3 4 5 6 7
Instruction; Instruction

W Write: store the result { -

in the A
il LiiIC U

ctin
Ol

o0 pn
o A

L BB ID | B |W
Here, 7 units of time
slots used; I o | & | W
Compared to 4*4 = 16 T -
units of time required for . o | D | B g W

a Sequential operation.

2 3
D, E;
Fp | D

F

F: Fetch
instruction

Bl

— [ime

Interstage buffers

W, -
/

D : Decode
instruction
and fetch

operands
m

B2

T

E: Execute
operation

B3

! W Write
results

|=

A Data Hazard, due to delayed EXEC cycle

INnstruction
or Control
Hazard

— 1Ime

. — TIME
Clock cycle | 2 3 4 5 6 7 8 9
Stage
F: Fetch FI Fz Fz Fz Fz Fa
D: Decode Dy idle idle idle D, Dy
E: Execute E, idle idle idle E» E;

W: Write W, idle idle ide W; W,

(b) Function performed by each processor stage in successive clock cycles

An Instruction or Control Hazard,
also possible

due to Cache miss in W_MFC

The Decode unit is idle in cycles 3 through 5,
the Execute unit is idle in cycles 4 through 6,
and the Write unit is idle in cycles 5 through 7.

Such idle periods are called stalls. They are also often
referred to as bubbles in the pipeline.

Once created as a result of a delay in one of the

pipeline stages, a bubble moves downstream until it reaches
the last unit.

Load

A Structural Hazard, also possible

due conflict of usage of the same resource
by two or more instructions

— 1me

Clockcycle 1 2 3 5 6 7

Instruction

XR1.R2= naws [&

Data Hazard, due to concurrent instruction dependencies

A«<3+A

Assume A = 5; B«4xA

Concurrent execution leads to B = 20 (incorrect)
Sequential execution leads to: B = 32 (Correct)

A«5xC
No problem of concurrency In this case: g 904+

— [1ME
Clock cycle 1 2 3 4 5 6 7 8 9

Mul R2,R3.R4
Add RS,R4,RE mstrocton

- G

o G EEE
13 (=] ___[o]=]w]
I | IF4 Dy | Ey

An Instructional Hazard, also possible due to
- Branching

Read:

- Pre-fetching

- Delayed Branch

- Branch Prediction

- Dispatch operation

- Performance (throughput) Gain

- Effect of Addressing modes
- Condition codes

- Datapath and Control

- Superscalar CPU

- Out of order execution

. Instruction Decode Execute Al
Instruction Fetch egister Fetch Address Calc. Memory Access Write Back
|F 1D EX MEM WEB
— Mext PC
I Maxt SEQ 2C Naxt SEQ PC
o
. RSL
RS Branch
[St Register i taken
File -
—FI_ -
= o il T "1 ol |
- b : -
. I oy 1 13-
& T Imm E

A

A

-
|2

A

WB Data

Pipelined MIPS, showing the five stages (instruction fetch,
Instruction decode, execute, memory access and write back

A superscalar CPU architecture implements a form of
parallelism called instruction level parallelism within a single
processor. It therefore allows faster CPU throughput than would
otherwise be impossible at a given clock rate.

A superscalar processor executes more than one instruction
during a clock cycle by simultaneously dispatching multiple
Instructions to redundant functional units on the processor. Each
functional unit is not a separate CPU core but an execution resource
within a single CPU such as an arithmetic logic unit, a bit shifter, or
a multiplier.

In the Flynn Taxonomy, a superscalar processor is classified
as a MIMD processor (Multiple Instructions, Multiple Data).
While a superscalar CPU is typically also pipelined, pipelining and
superscalar architecture are considered different performance
enhancement techniques.

The superscalar techniqgue is traditionally associated with several
iIdentifying characteristics (within a given CPU core):

 Instructions are issued from a sequential instruction stream

« CPU hardware dynamically checks for data dependencies between
Instructions at run time (versus software checking at compile time)
« The CPU accepts multiple instructions per clock cycle

