ALGORITHMS

Algorithm

o Dictionary definition

Procedure for solving a mathematical
problem in a finite number of steps that
frequently involves repetition of an

operation

A step-by-step method for accomplishing a
task

o Informal description

-
ey Ve I Vel aValal ~d ~ v~ L~

An ordered sequence of instructions that is
guaranteed to solve a specific problem

An algorithm is a list that looks like:

STEP 1: Do something.
STEP 2: Do something.
STEP 3: Do something.

Cc o o o o O O

STEP N: Stop. You are finished.

Categories of operations used to construct
algorithms:

d

d

L)

Sequential operations

Carry out a single well-defined task; when
that task is finished, the algorithm moves on
to the next operation

Conditional operations

Ask a guestion and then select the next
operation to be executed on the basis of the
answer to that question

Tell us to go back and repeat the execution of
a previous block of instructions

Algorithm

2 A well-ordered collection of unambiguous
and effectively computable operations that,
when executed, produces a result and halts
INn a finite amount of time

Unambiguous operation

o An operation that can be understood and
carried out directly by the computing agent
without needing to be further simplified or
explained

Computing agent

o The machine, robot or person automati

carrying out the steps of the algorithm

O

allv/
Yy

ALl

o Does not need to understand the concepts or
iIdeas underlying the solution

Example problem with STRINGS

Problem:
Rotate a 1-D vector of n elements left by J positions.

e.g. abcdefgh n =s8;

If j = 3, output: defghabc

. ﬂPF“ﬂ-ﬂ?

Array, T2 b C

c/defgha/b
d e f g h a by c

No. of operations : O({*n);
Space required : n element intermediate vector

Problem:
Rotate a 1-D vector of n elements left by j positions.

e.g. abcdefgh n =s;

Solution (?) for - If j = 3, output: defghabc
No. of operations : O(n);
Space required : n element intermediate vector

a | b lc dle | f g

Solution (?) for -
No. of operations : O(kn);
Space required : m (<n) element intermediate vector

L a | bl c]d]e | f
Temp.
Array, T =2 a
d e f g h a b C

Watch Steps:
« Move xX[0] to t;

« Move X[]j] to x[O0]; x[2)] to X[}];-....... /* all indices are
{xXmod n} */

The sequence of movement is:
d’ g1 b1 e1 h1 C1 f1 a
So finally, U come back to x[0] =2 (a);

 for xX[0O], copy from T {single element space}

« STOP when Xx[O] or T is touched

Take, n =8; j = 3. Solve it now, using previous algo.

la | blcld e | f g h il j k||

d g J

The sequence of movement is:
d,g,jJ,a ---- O0OPS I
Process HALTED — WHY ??

Soln. ?7?

Re-Start from next element x[1],...... till

over.
- a complex code results, compared to the earlier

version (but U got O(n) time and space, j = 1).

Can U still be more elegant with idea/Zalgo. and code,
and get same run/space complexity ?7?

Problem:
Rotate a 1-D vector of n elements left by J positions.

e.g. abcdefgh n =8;

If j = 3, output: defghabc
Let P = abc; Q = degfh.

Thus with Input =2 PQ; Output - QP.

OK? How do U extrapolate this idea for a good and neat
Implementation
Look at this transformation:

(P" Q)" 2> QP;
We need a function which can reverse all the
elements in an array A’;

Use the same to reverse the elements in a specified
portion of an array (Ac)’.

e.g. abcdefgh n =8;

If j = 3, output: defghabc

Look at this transformation:

(P" Q)" > QP;
Algo:
Reverse (O, j-1): cbadefgh;
Reverse (J, n-1): cbahgfed;
Reverse (0, n-1): defghaboc;

Reversing a string sequence is the most easiest
program/function, you need to write.

