

CS1300: Introduction to CSECS1300: Introduction to CSE

A computer is a programmable machine designed to
sequentially and automatically carry out a sequence of

ith ti l i l ti (t ti) arithmetic or logical operations (computations).

The particular sequence of operations can be changed readily,
allo ing the comp te to sol e mo e than one kind of p oblemallowing the computer to solve more than one kind of problem.

Science (Latin: scientia means "knowledge") is a
systematic enterprise that builds and organizes knowledge in the
form of testable explanations and predictions about the world.

i ifi i b d f li bl k l d hScientific concepts is a body of reliable knowledge that
can be logically and rationally explained.

Engineering is the discipline, art, skill and profession of
acquiring and applying scientific, mathematical, economic,
social and practical knowledge in order to design and build social, and practical knowledge, in order to design and build
structures, machines, devices, systems, materials and
processes that safely realize improvements to the lives of people.

It is a creative application of scientific principles to design
or develop structures, machines, apparatus, or manufacturing
processes, or works utilizing them singly or in combination; or to
forecast their behavior under specific operating conditions;

Science

Physical

Life/Biology
Social &

Applied
FormalPhysical

Behavioural methods

PhysicsPhysics

Chemistry

Astronomy

Earth SciencesC e s y a c e ces

Mathematics Computer
Science

M th ti lMathematical
Logic

Mathematical
Statistics

REFERENCES

1 G Polya "How to Solve It" 2nd ed Princeton University Press 1957 ISBN: 0‐1. G. Polya, How to Solve It , 2nd ed., Princeton University Press, 1957, ISBN: 0
691‐08097‐6.

2 Jon Bentle "Programming Pearls" Addi W l I 2000 ISBN 0 2012. Jon Bentley, "Programming Pearls", Addison‐Wesley, Inc., 2000, ISBN: 0‐201‐
65788‐0.

3. David Reed; A balanced Introduction to Computer Science; Prentice Hall, 2004.

What is Computer Science?

Computer science (CS) is the systematic study of Computer science (CS) is the systematic study of
algorithmic methods for representing and transforming
information, including their theory, design, implementation,

li ti d ffi iapplication and efficiency.

Development ranges from computability theory, the
i i f h d l iinvention of the stored-program electronic computer to
modern VLSI and cloud computing. The roots of cs extend
deeply into mathematics and engineering. Mathematics deeply into mathematics and engineering. Mathematics
imparts analysis to the field; engineering imparts design.

What is Computer Engineering?

Computer engineering (CENG) is the design and
prototyping of computing devices and systems.

While sharing much history and many areas of interest
with CS, CENG concentrates its effort on the ways in which
computing ideas are mapped into working physical systems.
Emerging equally from the disciplines of CS and EE CENG Emerging equally from the disciplines of CS and EE, CENG
rests on the intellectual foundations of these disciplines, the
basic physical sciences and mathematics.

Computer science is the study of the theoretical
foundations of information and computation and of practical
t h i f th i i l t ti d li ti i techniques for their implementation and application in
computer systems.

C i i i l i h i h Computer scientists invent algorithmic processes that
create, describe, and transform information and formulate
suitable abstractions to model complex systems.suitable abstractions to model complex systems.

The body of knowledge of computing is frequently
described as the systematic study of algorithmic processes y y g p
that describe and transform information: covering theory,
analysis, design, efficiency, implementation, and application.
Th f d t l ti d l i ll f ti i The fundamental question underlying all of computing is:

What can be (efficiently) automated?
The profession contains various specialities such as

computer science, computer engineering, software
engineering, information systems, domain-specific
applications, and computer systems.

It’s a rich discipline, with (often) nothing connected
between designers/experts and users of the CS systems.

Computer Applications vs. Systems
A li tio St d of I fo tio P o e i Applications: Study of Information Processing

tasks and their related data representations, to solve real-life
problems in domains of real-life sciences and other branches p
of engineering and Applied Sciences.

C ti S t Effi i t St t Computing Systems: Efficient Structures,
mechanisms and schemes for processing information. The
real-life problem domain is often not considered here.p

To be an expert, one must have knowledge of both.
C t Ed ti tt t t l id t th l ti hi Computer Education attempts to elucidate the relationship
between application and computer systems.

Line of division may not be clean always. Overlap exists
over areas/problems such as:

Languages, O/S, Networks, HCI, etc.

Relationship with Other Science disciplines

- CS is more close to MATHS than Physics (comes next necessary CS is more close to MATHS, than Physics (comes next, necessary
for hardware design), Chem and Biology;

Mathematical logic Theorems of Turing Godel; Boolean - Mathematical logic, Theorems of Turing, Godel; Boolean
Algebra, maths in algorithm analysis etc.

i l CS h h di i li f (i- EE is more close to CSE than other disciplines of Engg,. (its
stronger bond than Chemistry vs. Chem. Engg, aircraft design and
CFD, pharmacy and biology, material science and nano etc.p y gy

- Some Algos., were specifically designed to solve Engg. problems –
FFT, Flight simulators, CAD/CAM, VLSI, spatial data analysis and FFT, Flight simulators, CAD/CAM, VLSI, spatial data analysis and
display (GIS, Graphics etc.)

- Computing is called an “Engineering Science”- Computing is called an Engineering Science .

- Of course, it has brought in a few scientists/engineers from
di ifi d fi ld t th (?) i Bi ti R b ti GIS t diversified fields together (?); - in Biocomputing, Robotics; GIS etc.

- Most importantly, many other fields have benefited due to CSE,
where attempts to solve problems of “grand challenge” demand
massively high-speed parallel computations.

What do we study in INTRO of “INTRO to CSE” ??

- Digital Systems

- Practical USAGE of Computers

Hi t f d l t- History of developments

- Domain and Applicationspp

- Your courses in next 4-5 years

- Areas and Sub-areas

- Issues and Concerns

P i /Al ith- Programming/Algorithms

Di it l A l S tDigital versus Analog Systems

• In a digital system information is
represented and processed in discreterepresented and processed in discrete
rather than continuous forms.

• Systems based on continuous forms
f i f ti ll d lof information are called analog

systems

C ti d Di tContinuous and Discrete

time

Advantages of Digital Systemsg g y

• More flexibility• More flexibility
• Can design high speed circuits
• Better precision
• Same results for same inputsSame results for same inputs

– Analog circuits vary with respect
to temperature voltage etcto temperature, voltage etc.

• Information storage and retrieval
f nctions a e easiefunctions are easier.

• Built in error detection and
correction are possible

• Can build smaller systemsCa bu d s a e syste s

Disadvantages of Digital Systemsg g y

W ld t id di it l• World outside a digital,
while computer is analog!p g

S l ti• Solution:
– Input: Analog-to-Digital (A/D) p g g (/)

converter at the input end.
Processing: Done using a digital – Processing: Done using a digital

system.
– Output: Digital-to-Analog (D/A)

converter at the output end. p

What are computers used for?What are computers used for?

• Traditional:• Traditional:
– Automation
– Control

• New Age:
Communication– Communication

– Entertainment
– Socializing

• Pervades all aspects of life

Information RepresentationInformation Representation

• Humans use languagesg g
– Alphabet

W d– Words
– Sentences
– Punctuations, Numbers

All b li– All are symbolic
– All these have to be agreed upon t ese a e to be ag eed upo

prior to communication

• Computer has a limited alphabet size

Brief History of CSE
1800+ Charles Babbage Difference Engine
1920 V. Bush Analog Computers
1930 Alan Turing;

K. Godel;
Konrad Zuse

Algorithms and
Rule based machine Systems;

First Electronic Computers;p ;
Calculators

1940 John Von
N

Fetch and Execute model;
P ti l C tNeumann;

Shannon
Practical Computers;
Information Theory;

ENIAC; UNIVAC
1950-60 IBM series; Microcomputers;

Compilers; ICs; peripherals; OS;
Courses Offered in UnivsCourses Offered in Univs.

1970-90 PC; CMOS; RISC; CISC;
1990-2000 Web; Parallel systems;1990 2000 Web; Parallel systems;

2000+ Multi-core; Bio-; Quantum etc.
2020+ Nano + functional + ??2020+ Nano + functional + ??

ENIAC

CRAY

Design of the von Neumann
architecture (1947)

Central Processing Unit (CPU) based COg ()

The organization of a simple computer with
one CPU and two I/O devicesone CPU and two I/O devices

Typical Motherboard (Pentium III)
S. Bridge

IDE Disk Conn
BIOS ROM

Floppy Conn.Power Conn.

Memory

IDE Disk Conn.

AGP
Processor

AGP

PCI Cards

N. Bridge

Rear Panel Conn.

AGP - Accelerated Graphics Port;
PCI - Peripheral Component Interconnect;
IDE I d D i El iIDE – Integrated Drive Electronics;
BIOS - Basic input/output system

Three Pillars in ComputingThree Pillars in ComputingThree Pillars in ComputingThree Pillars in Computing
Operating ArchitectureOperating
Systems

Architecture

 Organization
 OS
 Systems Design

 Architecture
 Network Design

 Systems Design
 Performance

Evaluation

Applications
+ Theory  Algorithms, Compilers Theory

 Software Engineering
 Databases, Artificial

Intelligence etc
 Speech, Signal Processing

Introduction 22

Four Areas Four Areas in in Computer Science & Computer Science & EnggEnggFour Areas Four Areas in in Computer Science & Computer Science & EnggEngg..
Operating
S t ArchitectureSystems Architecture

 Organization
Architecture

 OS
 Systems Design

 Architecture
 Network Design

 Performance
Evaluation

ApplicationsApplications
 Software Engineering, Networks

Theory
 Algorithms Compilers

 Artificial Intelligence – PR, ANN, SC
 Speech, Signal/Image/Video

Processing

 Algorithms, Compilers
 Cryptosystems
 Graph TheoryProcessing

 Graphics, Multimedia
 Databases VLSI Robotics

Graph Theory
 Biocomputing

23

 Databases, VLSI, Robotics

Hardware Software Theory Applications

S it hi Di t Switching
Theory and

Digital
Computational

Engineering

Discrete
Mathematics for

Computer

Introduction to
Database Systems,

Data MiningDesign Science Data Mining

Computer
Mathematical
Concepts for

AI, PR, CV,
SPEECH ANN Computer

Organization Paradigms of
Programming

Concepts for
Computer
Science

SPEECH, ANN,
DVP, AVP, SC, RL,
MBS, CBR, ML…

Computer
System
Design

Operating
Systems

Principles of
Communication

Computer
Graphics;

MultimediaDesign Multimedia
Language

Translators
Data Structures
and Algorithms

VLSI, Digital
System Testing

Principles of
Software

Languages,
Machines and

Computer
Networks, Optical
Networks Cloud Engineering Computations Networks, Cloud

Computing
Cyptography & yp g p y

N/W Sec.;
Unconv. Models
of Computing

Modern Compilers

Problem

Identify, Input, Output,
Analytical Solution & Modular TasksAnalytical Solution & Modular Tasks

Flowchart Design

Convert to Algorithmic Steps

Write program/code
Typical Flow-diagram
From Problem

Debug/Compile

To Solution,
Using Computers Debug/Compile

E t t t ltExecute program to get results
on Machine

Domain of CS(E)
• Till 1980s, mostly used for number crunching, data , y g,
processing;

PC d i t t h d f t di ti • PCs and internet, changed focus to coordination,
communication and entertainment

• Knowledge involved efficient design and programming,
information processing, theoretical studies and limitations.

• Usability, standardization, reliability, safety and
transparency are other issues.p y

• Overlap with other (recent) fields:
DNA di (bi l)• DNA encoding (biology);

• Cognitive models – psychology, neuro-biology etc.
• Smaller and faster chips, faster communication media;a e a d as e c ps, as e co u ca o ed a;
• Biological memories;
• Super-parallel computation;

C t h• Cryptography.

Issues and Concerns in the field

Given a (logically correct) algorithm, a digital computer
is always available with enough (almost infinite) resources to
accomplish the task. In fact, it should be possible then to
execute a large set of such simulation processes.

Practitioner is expected to be specialized/skilled in four
basic areas:

• Algorithmic thinking

• Data Structure and Representation

• Programming

• Design of systems• Design of systems

CS is a combination of all these four sub-areas/skills;
not just 1 or 2 of them.

• Algorithmic thinking
- Interpretation of the object under study, understand

d f l t ti t b t d t i and formulate action as step-by-step procedures to give
unambiguous results, when carried out by anyone, on any
machine, anytime. , y

Emphasizes standard procedure and scientific thinking
to analyze and reproduce physical effects and observe
th d i (lid) i tthem under various (valid) environments.

• Data Structure and Representation
Effi i t t t d t th t th bl ld b - Efficient way to store data, so that the problem could be

solved (most) efficiently. Efficiency – retrieval, processing
time and memory; inventing encoding phenomena for rich time and memory; inventing encoding phenomena for rich
algorithms;

• ProgrammingProgramming
- Algorithms to programs/software, so that the machine can

execute; requires knowledge of languages, tools, O/S etc.

• Design of systems
- Practical considerations, Engg. Tradeoffs, integration of

 i / i i li bili d f parts, meeting cost/time constraints, reliability and safety
requirements etc.

Common misconceptions about computer science :

 Computer science is the study of computers Computer science is the study of computers

 Computer science is the study of how to write
computer programscomputer programs

 Computer science is the study of the uses and
applications of computers and software

The general public sometimes confuses computer The general public sometimes confuses computer
science with careers that deal with computers (such as
information technology), or think that it relates to their
own experience of computers, which typically involves
activities such as gaming, web-browsing, and word-
processing processing.

However, the focus of computer science is more on
d t di th ti f th d t understanding the properties of the programs used to

implement software such as games, banking and web-
browsers and using that understanding to create new browsers, and using that understanding to create new
programs or improve existing ones.

Standardized notions of computer science

– The study of algorithms
• Formal and mathematical properties• Formal and mathematical properties
• Efficient design and analysis

- Hardware Design
• Formal methods• Formal methods
• Logical blocks to RTL

- Linguistic realizations and Applications
• NLP AI ANN CG CN DB• NLP, AI, ANN, CG, CN, DB…….

- Programming and Software Engg- Programming and Software Engg.
• Coding
• Testing re-engineering• Testing, re-engineering,
• Code maintenance

 Computer scientist designs and develops p g p
algorithms to solve problems

 Operations involved in designing algorithmsp g g g

 Formal and mathematical properties
 Studying the behavior of algorithms to determine y g g

whether they are correct and efficient

 Hardware realizations
 Designing and building computer systems that

are able to execute algorithms

 Linguistic realizations Linguistic realizations

 Designing programming languages and Designing programming languages and
translating algorithms into these languages

 Applications

 Identifying important problems and designing
correct and efficient software packages to solvecorrect and efficient software packages to solve
these problems

Relationship with Other Science disciplines (contd.)

COMPUTATION (C ti C t ti l i) h - COMPUTATION (Computing or Computational science) has
emerged as a third paradigm of science;

- Large problems solved in the fields of: Crystalline structure,
quantum thermodynamics, Schroedinger Eqn., Navier-Stokes
E i CFD l b l li t d li th f ti Eqn., in CFD, global climate modeling, weather forecasting,
Stock market prediction/analysis, human genome sequencing,
drug discovery and forensics.g y

Oth () i di i li hi h b fit - Other non (pure-) science disciplines which benefit –
Library Science, Management Science, Economics, Medicine,
Psychology and Cognitive science, Linguistics, Philosophy, syc o ogy a d Cog e sc e ce, gu s cs, osop y,
Humanities and Social sciences (behavior, law, politics etc.)

Three paradigms in CSE

THEORY
EXPERIMENTATION

DESIGN

THEORY: Building conceptual frameworks and
notations for understanding relationships among objects in a notations for understanding relationships among objects in a
domain and the logical consequences of axioms and laws.

EXPERIMENTATION: Exploring models of systems and
architectures within given application domains and testing
whether those models can predict new behaviors accurately whether those models can predict new behaviors accurately.

DESIGN: Constructing computer systems that support
work in given organizations or application domains.

The three paradigms constantly interact in the work of The three paradigms constantly interact in the work of
computer scientists; the interaction brings in the vigor and
richness of the field.

In areas of rapidly developing technology, such as
databases, human interfaces, and Web-based systems,
th ti i i i l t b i i d i t idl theoreticians aim mainly at bringing order into a rapidly
accumulating mass of experience through broad conceptual
frameworks, taxonomies, and analytic methods. , , y

In mature areas such as computational complexity,
algorithms, data structures, automata, formal languages, algorithms, data structures, automata, formal languages,
switching theory, graph theory, combinatorics, and formal
languages, theoreticians focus on deeper, comprehensive

l f h f hi h f l d l i t analyses of phenomena for which formal models exist.

With a few notable exceptions including logic design,
hi l ith l i d il th hgraphics, algorithm analysis, and compilers, theory has

had limited impact on the complex problems of practical
systems and applications.systems and applications.

Experimenters construct models of phenomena or of
possible systems. Examples are measurement of programs and possible systems. Examples are measurement of programs and
systems, validation of hypotheses, prototyping to extend
abstractions to practice, logic simulation, simulations of

t d f h i l t ti f t l t systems and of physical processes, testing of protocols, system
performance analysis, and comparisons of different
architectures.

Designers are concerned with building systems that
meet clear specifications and satisfy their customers -p y
performance analysis, reliability, safety, security, and ethics.

Significant accomplishments include program Significant accomplishments include program
development systems, simulators, microchip design systems,
VLSI, CAD, CAM, graphics, databases, and supercomputers., , , g p , , p p

Unsuccessful design - unreliable, undependable,
unsafe too costly too difficult to change and too complex to unsafe, too costly, too difficult to change, and too complex to
understand.

Subareas of the FieldSubareas of the Field

Computer science can be divided into a number of
coherent subareas, each with substantial theoretical,
experimental, and design issues,

1 Algorithms & Data StructuresSub-areas
2 Programming Languages

3 Architecture

Of CS:

3 Architecture

4 Operating Systems and Networks

5 Software Engineering

6 D t b & I f ti R t i l6 Databases & Information Retrieval

7 Artificial Intelligence & Robotics

8 Graphics

9 Human Computer Interaction

10 Computational Science0 Co pu a o a c e ce

11 Organizational Informatics

12 Bioinformatics

New and emerging fields of CS (few):

DNA di d l i- DNA sequence encoding and analysis

- Modeling cognitive process of the human braing g p

- New materials for faster chip and communication

- Bio-sensors and bio-memories

- Quantum processes for super-computers and cryptography

Obi ti (HCI)- Obiquous computing (HCI)

- Large scale systems for complex analysisg y o o p y

- Pervasive and Cloud Computing

- Multi-core, pipelined, super-scalar architectures

- ???

Algorithms & Data Structures

Theory of algorithms encompasses computability
theory, computational complexity theory, concurrency theory,
probabilistic algorithm theory, database theory, randomized
algorithms pattern-matching algorithms graph and network algorithms, pattern-matching algorithms, graph and network
algorithms, algebraic algorithms, combinatorial optimization
and cryptography.

It is supported by discrete mathematics (graph theory,
recursive functions recurrence relations combinatorics) recursive functions, recurrence relations, combinatorics),
calculus, induction, predicate logic, temporal logic (a calculus
of time dependent events), semantics, probability, and
statistics.

Testing has yielded valuable characterizations (e g Testing has yielded valuable characterizations (e.g.
performance) of certain methods such as divide-and-conquer,
greedy algorithms, dynamic programming, finite state
machine interpreters, stack machine interpreters, heuristic
searches, randomized algorithms and parallel and distributed
algorithmsalgorithms.

Program libraries for theoretical formulations, e.g.
mathematical software, searching, sorting, random number
generation, textual pattern matching, hashing, graphs, trees,
communication network protocols distributed-data updates communication network protocols, distributed-data updates,
semaphores, deadlock detectors, synchronizers, storage
managers, lists, tables, and paging algorithms. Theoretical
results translated into useful/practical systems: RSA public
key cryptosystem, production-quality compilers, and VLSI
circuit layoutcircuit layout.

Programming languages
Medium for virtual machines that execute algorithms Medium for virtual machines that execute algorithms

and with notations for algorithms and data; It also deals with
efficient translations from high-level languages into machine
codes.

Language involve data types operations control Language involve data types, operations, control
structures, mechanisms for introducing new types and
operations. The sets of strings of symbols that are generated
by such notations are called languages.

How are these abstractions implemented on computers?How are these abstractions implemented on computers?

What notation (syntax) can be used effectively and
efficiently to specify what the computer should do?

How are functions (semantics) associated with How are functions (semantics) associated with
language notations?

How can machines translate between languages?

The theory of programming languages studies models of
machines that generate and translate languages and of

 f i lid t i i th lgrammars for expressing valid strings in the languages.

Examples include models of formal languages and
t t T i hi P t t l bd l l iautomata, Turing machines, Post systems, lambda-calculus, pi-

calculus, and propositional logic.

Th th d l ith ti th t d f thThe theory deals with semantics, the study of the
relationships between strings of the language and states of the
underlying virtual machines. underlying virtual machines.

It deals with types, which are classes of objects. Related
mathematics is predicate logic, temporal logic, modern algebra,mathematics is predicate logic, temporal logic, modern algebra,
and mathematical induction.

Examples: procedural languages (Cobol Fortran Algol Examples: procedural languages (Cobol, Fortran, Algol,
Pascal, Ada, and C),
- object-oriented languages (Clu, Smalltalk, C++, Eiffel, Java),
- functional languages (Lisp, ML, Haskell),
- dataflow languages (Sisal, Val, Id Nouveau),
- logic (Prolog) - logic (Prolog),
- string (Snobol, Icon), and concurrency (Concurrent Pascal,
Occam, SR, Modula-3).

Classification of languages based on their syntactic and
semantic models, for example, semantic models, for example,
static typing, dynamic typing, functional, procedural, object-
oriented, logic specification, message-passing, and dataflow.

Classification by application, for example, business
data processing simulation list processing and graphicsdata processing, simulation, list processing, and graphics.

Classification by functional structure, for example,y , p ,
procedure hierarchies, functional composition, abstract data
types, and communicating sequential processes.

Abstract implementation models have been developed
for each major type of language, including:j yp g g , g
imperative, object-oriented, logic and constraint, concurrent,
and distributed.

Run-time models have been implemented, for static and
dynamic execution models, type checking, storage and
register allocation, compilers, cross compilers, interpreters,
analyzers that find parallelism in programs and programming analyzers that find parallelism in programs, and programming
environments that aid users with tools for efficient syntactic
and semantic error checking, profiling, debugging, and
tracing.

A crowning achievement has been programs that take A crowning achievement has been programs that take
the description of a language and automatically produce a
compiler that will translate programs in that language into
machine code (examples include YACC and LEX in Unix
environments);

Often designers create a mini-language and a parser.

Operating Systems and Networks
Control mechanisms that allow multiple resources to be Control mechanisms that allow multiple resources to be

efficiently coordinated in computations distributed over many
computer systems connected by local and wide-area
networks.

It has yielded well-known operating systems such as
Unix, Multics, Mach, VMS, Mac-OS, OS/2, MS-DOS, and
Windows NT.

The field has yielded efficient standard methods
including time sharing systems, automatic storage allocators,
multilevel schedulers memory managers hierarchical file multilevel schedulers, memory managers, hierarchical file
systems. It has produced standard utilities including editors,
document formatters, compilers, linkers, and device drivers. p
It has produced standard approaches to files and file systems.

Also network architectures such as Ethernet, FDDI, , ,
token ring nets, SNA, and DECNET. It has produced protocol
techniques embodied in the US Department of Defense
protocol suite (TCP/IP) virtual circuit protocols Internet protocol suite (TCP/IP), virtual circuit protocols, Internet,
real time conferencing, and X.25. Considerable attention has
been devoted to security and privacy issues in the Internet.

What are effective control strategies for job scheduling,
memory management, communications, access to software

 i ti t t k li bilit resources, communication among concurrent tasks, reliability,
and security?

C t t ht Ab t ti d i f ti hidi Concepts taught: Abstraction and information-hiding
principles; binding of user-defined objects to internal
computational structures; process and thread management; computational structures; process and thread management;
memory management; job scheduling; secondary storage and
file management; performance analysis; distributed

t ti t d ll l ti t computation; remote procedure calls; real-time systems;
secure computing; and networking, including layered
protocols, Internet protocols, naming, remote resource usage, protocols, Internet protocols, naming, remote resource usage,
help services, and local network routing protocols such as
token passing and shared buses.

Also concurrency theory (synchronization, determinacy,
and deadlocks); scheduling theory; program behavior and

 h k fl h memory management theory; network flow theory;
performance modeling and analysis. Supporting mathematics
include bin packing, probability, queuing theory, queuing include bin packing, probability, queuing theory, queuing
networks, communication and information theory, temporal
logic, and cryptography.

ARCHITECTURES
The theory of architecture includes: digital logic, y g g ,

Boolean algebra, coding theory, and finite-state machine
theory.

Supporting mathematics include statistics, probability,
queuing theory, reliability theory, discrete mathematics,q g y, y y, ,
number theory, and arithmetic in different number systems.

M th d i l ffi i t d i f CPU Methods involve efficient design of CPU, memory,
interface circuitry (I/O), etc. Multi-processor design, large
storage etc. are also considered. g

What about performance ?? How does one measure
th t ? C d i di it l d b h ??that ? Can you design digital sensors as used by humans ??

Difference between architecture and organization ??e e ce e ee a c ec u e a d o ga a o

From low level transistors  GATES  functional units
 i it  i t ti f l t processing units  interconnections for a large system

ARCHITECTS in CSE use:
- finite state machines,

l th d f th i i t f b i - general methods of synthesizing systems from basic
components,
- models of circuits and finite state machines for computing p g
arithmetic functions,
- models for data path and control structures, optimizing
i t ti t f i d l d kl d instruction sets for various models and workloads,
- hardware reliability, space, time,
- organization of machines for various computational models, g p ,
and
- identification of “levels of abstraction” at which the design

 b i d fi ti i t ti t can be viewed -- e.g., configuration, program, instruction set,
registers, and gates.

Designs involve - arithmetic function units cache von-Designs involve - arithmetic function units, cache, von-
Neumann machine, RISCs (Reduced Instruction Set
Computers), CISCs (Complex Instruction Set Computers),
error recovery, computer aided design (CAD); systems and
logic simulations for the design of VLSI circuits, reduction
programs for layout and fault diagnosis silicon compilers programs for layout and fault diagnosis, silicon compilers
(compilers that produce instructions for manufacturing a
silicon chip).

Software Engineering
This area deals with the design of programs and large g p g g

software systems that meet specifications and are safe,
secure, reliable, and dependable.

Fundamental questions include:

Wh t th i i l b hi d th d l t f What are the principles behind the development of
programs and programming systems?

H d th t t t How does one prove that a program or system meets
its specifications?

H d d l ifi ti th t d t itHow does one develop specifications that do not omit
important cases and can be analyzed for safety?

fBy what processes do software systems evolve
through different generations?

By what processes can software be designed for
understandability and modifiability?

What methods reduce complexity in designing very
large software systems?

Three kinds of theory are used for software engineering:

- Program verification and proof (which treats forms of
proofs and efficient algorithms for constructing them),

- Temporal logic (which is predicate calculus extended to
allow statements about time-ordered events), and),

- Reliability theory (which relates the overall failure
b bilit f t t th f il b biliti f it probability of a system to the failure probabilities of its

components over time).

Nine major categories of Models and measurements in
software engineering :

(1) Specification of the input-output functions of a system:
predicate transformers, programming calculi, abstractp , p g g ,
data types, object-oriented notations, and Floyd-Hoare
axiomatic notations.

(2) The process by which a programmer constructs software:
stepwise refinement, modular design, separate compilation, p , g , p p ,
information-hiding, dataflow, software lifecycle models,
layers of abstraction.

(3) Processes to develop software systems: specification-
driven, evolutionary, iterative, formal, and cleanroom. , o o y, , o , oo

(4) Processes to assist programmers in avoiding or removing
b i th i t di t d t t dit t ibugs in their programs: syntax-directed text editors, stepwise
program execution tracers, programming environments, and
software tools.so a e oo s

5) Methods to improve the reliability of programs: software
fault tolerance, N-version programming, multiple-way , p g g, p y
redundancy, check pointing, recovery, information flow
security, testing, and quality assurance.

(6) Measurement and evaluation of programs.

7) Matching software systems with machine
architectures (the more specialized high-performance

t t l) computers are not general-purpose).

(8) Organizational strategies and project management. (8) g o g p oj g

(9) Software tools and environments.

Software projects use version control systems to track
versions of the modules of the emerging system; examples
are RCS and SCCS.

Many syntax directed editors, line editors, screen
editors, and programming environments have been
implemented; examples are Turbo C and Turbo Pascal.

Database and Information Retrieval Systems
This area deals with the organization of large sets of This area deals with the organization of large sets of

persistent, shared data for efficient query and update.

The term database is used for a collection of records The term database is used for a collection of records
that can be updated and queried in various ways.

The term retrieval system is used for a collection of The term retrieval system is used for a collection of
documents that will be searched and correlated; updates and
modifications of documents are infrequent in a
retrieval system.

F d l i i l d Fundamental questions include:

What models are useful for representing data
elements and their relationships?

How can basic operations such as store, locate, match,
and retrieve be combined into effective transactions?

How can the user interact effectively with these
transactions?

Fundamental questions (Contd.) –

How can high-level queries be translated into high
performance programs? performance programs?

What machine architectures lead to efficient
retrieval and update?

How can data be protected against unauthorized How can data be protected against unauthorized
access, disclosure, or destruction?

How can large databases be protected from
inconsistencies due to simultaneous update?

How can protection and performance be achieved when
the data are distributed among many machines?

How can text be indexed and classified for efficient retrieval?

A variety of theories have been devised and used to study
and design database and information retrieval systems.

These include relational algebra and relational calculus,
concurrency theory, serializable transactions, deadlock

ti h i d d t t ti ti l i f lprevention, synchronized updates, statistical inference, rule-
based inference, sorting, searching, indexing, performance
analysis, and cryptography (ensuring privacy of information y , yp g p y (g p y
and authentication of persons who stored it or attempt to
retrieve it).

Models and associated measurements:
(1) Data models for the logical structure of data and relations
among data elements: object-based, record-based. (2) Storing among data elements: object based, record based. (2) Storing
files for fast retrieval, notably indexes, trees, inversions, and
associative stores. (3) Access methods. (4) Query optimization.
(5) Concurrency control and recovery (6) Integrity (consistency) (5) Concurrency control and recovery. (6) Integrity (consistency)
of a database under repeated updates, including concurrent
updates of multiple copies. (7) Database security and privacy,
including protection from unauthorized disclosure or alteration of
data and minimizing statistical inference. (8) Virtual machines
associated with query languages (e.g., text, spatial data, pictures, associated with query languages (e.g., text, spatial data, pictures,
images, rule-sets). (9) Hypertext and multimedia integration of
different kinds of data (text, video, graphics, voice).

Artificial Intelligence and Robotics

