
ICCV 2007 tutorial on
Discrete Optimization Methods 

in Computer Vision 

part  I
Basic overview of graph cuts



Disclaimer

 Can not possibly cover all discrete optimization methods 
widely used in computer vision in the last 30 years

 We mainly concentrate on
• Discrete energy minimization methods that can be applied to 

Markov Random Fields with binary or n-labels
– applicable to a wide spectrum of problems in vision

• Methods motivated by LP relaxations
– good bounds on the solutions



Discrete Optimization Methods 
in Computer Vision

 Part  I: basic overview of graph cuts
• binary labeling 

– a few basic examples
– energy optimization

• submodularity (discrete view)
• continuous functionals (geometric view)
• posterior MRF energy (statistical view)

• extensions to multi-label problems
– interactions: convex, robust, metric  
– move-based optimization



Shortest paths
approach

(live wire, intelligent scissors)

2D Graph cut shortest path on a graph

Example:
find the shortest 

closed contour in a given 
domain of a graph

Compute the shortest path
p ->p for a point p. 

p

Graph Cuts
approach

Compute the 
minimum cut that 

separates red region 
from blue region

Repeat for all points on the 
gray line. Then choose the 

optimal contour.





Graph cuts for optimal boundary detection
(B&J, ICCV’01)
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Standard minimum s-t cuts algorithms

 Augmenting paths [Ford & Fulkerson, 1962]
 Push-relabel [Goldberg-Tarjan, 1986]

 Tree recycling (dynamic trees) [B&K, 2004]
 Flow recycling (dynamic cuts) [Kohli & Torr, 2005]
 Cut recycling (active cuts) [Juan & Boykov, 2006]
 Hierarchical methods

- in search space [Lombaert et al., CVPR 2005]
- in edge weights (capacity scaling) [Juan et al., ICCV07]

adapted to N-D grids used in computer vision



Optimal boundary in 2D

“max-flow = min-cut”



Optimal boundary in 3D

3D bone segmentation (real time screen capture)



Graph cuts applied to multi-view  
reconstruction

CVPR’05 slides from Vogiatzis, Torr, Cippola

visual hull
(silhouettes)

surface of good photoconsistency



Adding regional properties
(B&J, ICCV’01)
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regional bias example
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NOTE: hard constrains are not required, in general.EM-style optimization of piece-vice constant Mumford-Shah model

Adding regional properties
(B&J, ICCV’01)
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“expected” intensities of
object and background

can be re-estimated
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Adding regional properties
(B&J, ICCV’01)
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More generally, regional bias can be based on any 
intensity models of object and background



Adding regional properties
(B&J, ICCV’01)



Iterative learning of regional color-models

 GMMRF cuts (Blake et al., ECCV04)
 Grab-cut (Rother et al., SIGGRAPH 04)

parametric regional model – Gaussian Mixture (GM)
designed to guarantee convergence



At least three ways to look at
energy of graph cuts

I:  Binary submodular energy 

II: Approximating continuous surface functionals
III: Posterior energy (MAP-MRF)



Simple example of energy
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Graph cuts for minimization of 
submodular binary energies             I

 Characterization of binary energies that can be globally 
minimized by s-t graph cuts [Boros&Hummer, 2002, K&Z 2004]

 Non-submodular cases can be addressed with some 
optimality guarantees, e.g. QPBO algorithm 
• (see Boros&Hummer, 2002,  Tavares et al. 06, Rother et al. 07)
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Graph cuts for minimization of 
continuous surface functionals                 II

[K&B, ICCV 2005]
[B&K, ICCV 2003]

 Characterization of energies of binary cuts C as                    
functionals of continuous surfaces 

This image cannot currently be displayed.
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any convex, 

symmetric metric g
e.g. Riemannian
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any vector field v

Regional bias
any scalar function f



One extension
using parametric max-flow methods

 optimization of ratio functionals

 In 2D can use DP [Cox et al’96, Jermyn&Ishikawa’01] 
 In 3D, see a poster on Tuesday (Kolmogorov, Boykov, Rother)
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Graph cuts for minimization of
posterior energy                                        III

 Greig at al. [IJRSS, 1989]
• Posterior energy (MRF, Ising model)
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Example: binary image restoration

Spatial prior
(regularization)

Likelihood
(data term)



Graph cuts algorithms can minimize 
multi-label energies as well



Multi-scan-line stereo 
with s-t graph cuts (Roy&Cox’98)
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s-t graph-cuts for 
multi-label energy minimization

 Ishikawa 1998, 2000, 2003
 Generalization of construction by Roy&Cox 1998

V(dL)
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Pixel interactions V:
“convex” vs. “discontinuity-preserving”  

V(dL)

dL=Lp-Lq

Potts 
model

Robust or “discontinuity preserving”
Interactions V

V(dL)

dL=Lp-Lq

“Convex”
Interactions V

V(dL)

dL=Lp-Lq

V(dL)

dL=Lp-Lq

“linear” 
model

(weak membrane models,
see a book by Blake and Zisserman, 87)



Pixel interactions:
“convex” vs. “discontinuity-preserving”

“linear” V

truncated 
“linear” V



Robust interactions
 NP-hard problem (3 or more labels) 

• two labels can be solved via s-t cuts (Greig at. al., 1989)

 a-expansion approximation algorithm 
(Boykov, Veksler, Zabih 1998, 2001)

• guaranteed approximation quality (Veksler, thesis 2001)
– within a factor of 2 from the global minima (Potts model)

• applies to a wide class of energies with robust interactions
– Potts model   (BVZ 1989)
– “metric” interactions   (BVZ 2001)
– can be extended to arbitrary interactions with weaker guarantees

• truncation (Kolmogorov et al. 2005) 
• QPBO (Boros and Hummer, 2002)

 Other “move” algorithms (e.g. a-b swap, jump-moves)
 More is coming later in this tutorial



a-expansion algorithm

1. Start with any initial solution
2. For each label  “a”  in any (e.g. random) order

1. Compute optimal a-expansion move (s-t graph cuts)
2. Decline the move if there is no energy decrease

3. Stop when no expansion move would decrease energy



other labelsa

a-expansion move
Basic idea: break multi-way cut computation 

into a sequence of binary s-t cuts



a-expansion moves

initial solution

-expansion

-expansion

-expansion

-expansion

-expansion

-expansion

-expansion

In each a-expansion a given label “a”  grabs space from other labels

For each move we choose expansion that gives the largest decrease in 
the energy:      binary optimization problem



Metric interactions

V(a,b)=0  iff a=b

V(a,b) = V(b,a) >= 0   

V(a,c) <= V(a,b)+V(b,c)   Triangular
inequality

Implies that every expansion move (a binary problem)
is submodular



a-expansions:
examples of metric interactions

Potts V

“noisy diamond”“noisy shaded diamond”

Truncated “linear” V



Multi-way graph cuts

Multi-object Extraction



Multi-way graph cuts

Stereo/Motion with slanted surfaces 
(Birchfield &Tomasi 1999)

Labels = parameterized surfaces

EM based:  E step = compute surface boundaries  
M step = re-estimate surface parameters 



Multi-way graph cuts

stereo vision

original pair of “stereo” images

depth map

ground truthBVZ 1998KZ 2002



Multi-way graph cuts

Graph-cut textures 
(Kwatra, Schodl, Essa, Bobick 2003)

similar to “image-quilting” (Efros & Freeman, 2001) 
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normalized correlation,
start for annealing, 24.7% err

simulated annealing, 
19 hours,   20.3% err

a-expansions (BVZ 89,01)
90 seconds,   5.8% err
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a-expansions vs. simulated annealing


