ICCV 2007 tutorial on
Discrete Optimization Methods
In Computer Vision

part |
Basic overview of graph cuts



Disclaimer

m Can not possibly cover all discrete optimization methods
widely used in computer vision in the last 30 years

= \We mainly concentrate on

 Discrete energy minimization methods that can be applied to
Markov Random Fields with binary or n-labels

— applicable to a wide spectrum of problems in vision

* Methods motivated by LP relaxations
— good bounds on the solutions



Discrete Optimization Methods
In Computer Vision

m Part |: basic overview of graph cuts

 binary labeling
— a few basic examples
— energy optimization
- submodularity (discrete view)

. continuous functionals (geometric view)
. posterior MRF energy (statistical view)

o extensions to multi-label problems
— Interactions: convex, robust, metric
— move-based optimization



2D Graph cut < shortest path on a graph

Example:
find the shortest Shortest paths Graph Cuts
closed contour in a given approach approach
domain of a graph (/ive wire, intelligent scissors)

Compute the shortest path Compute the

p-=>p for a point p. minimum cut that
Repeat for all points on the separates red region
gray line. Then choose the from blue region
optimal contour.




Graph cuts for optimal boundary detection
(B&J, ICCV’01)
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Standard minimum s-t cuts algorithms

m Augmenting paths [Ford & Fulkerson, 1962]
m Push-relabel [Goldberg-Tarjan, 1986]

adapted to N-D grids used in computer vision

m Tree recycling (dynamic trees) [B&K, 2004]
m Flow recycling (dynamic cuts) [Kohli & Torr, 2005]
m Cut recycling (active cuts) [Juan & Boykov, 2006]
m Hierarchical methods
- In search space [Lombaert et al., CVPR 2005]
- In edge welghts (capacity scaling) [Juan et al., ICCV07]



Optimal boundary in 2D

“max-flow = min-cut”



Optimal boundary in 3D

3D bone segmentation (real time screen capture)



Graph cuts applied to multi-view
reconstruction

surface of good photoconsistency

visual hull
(silhouettes)

CVPR’05 slides from Vogiatzis, Torr, Cippola



Adding regional properties
(B&J, ICCV’01)

regional bias example

suppose I°and I' are given
“expected” intensities
of object and background D, (t) oc exp (—II =1 /202)

D, (s) ccexp (|1, —1°|F /25?)

NOTE: hard constrains are not required, in general.



Adding regional properties
(B&J, ICCV’01)

. 1

“expected” intensities of
object and background

1° and I' -

can be re-estimated

D, (s) ccexp (|1, —1°|F /25?)
D, (t) ccexp (-~ 1, 1|2/ 25%)

EM-style optimization of piece-vice constant Mumiford-Shah model



Adding regional properties
(B&J, ICCV’01)

More generally, regional bias can be based on any
Intensity models of object and background

'@ . acut D,(L,)=—InPr(l |L)
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Adding regional properties
(B&J, ICCV’01)
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(a) Original image (b} Intensity histograms (c) Optimal segmentation



Iterative learning of regional color-models

m GMMREF cuts (Blake et al., ECCV04)
m Grab-cut (Rother et al., SIGGRAPH 04)

parametric regional model — Gaussian Mixture (GM)
designed to guarantee convergence



At least three ways to look at
energy of graph cuts

|: Binary submodular energy

I1: Approximating continuous surface functionals
I11: Posterior energy (MAP-MRF)



Simple example of energy

Regional term Boundary term
E(L) = > D,(L,) + Zprq-a(Lp = L,)
; t-links " nelinks

L, e{s,t}

binary object
segmentation




Graph cuts for minimization of

submodular binary energies |
Regional term Boundary term
E(L) Z E,(L,) + > E(L,, L)
t-links st n-links L, e{s,t}

m Characterization of binary energies that can be globally
minimized by s-t graph cuts [Boros&Hummer, 2002, K&Z 2004]

E(L) can be minimized | &= |E(S,S)+E(t,t) <E(S,t)+E(t,s)
by s-t graph cuts

Submodularity (“convexity”)

m Non-submodular cases can be addressed with some

optimality guarantees, e.g. QPBO algorithm
e (see Boros&Hummer, 2002, Tavares et al. 06, Rother et al. 07)



Graph cuts for minimization of
continuous surface functionals

E(C

m Charac
functia

>) =|[ g() ds +j<|\|,vx>ds.+ [ £(x)dp
C C Q(C)
Geometric length Flux Regior
any convex, any vector fieldv ~ any scalar

symmetric metric J
e.g. Riemannian

terization of energies of binary cuts C as
nals of continuous surfaces

[B&K, ICCV 2003]
[K&B, ICCV 2005]

1al bias
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One extension
using parametric max-flow methods

m optimization of ratio functionals

J'<I§|,\7X>ds
E(C)= CJ'g(.) ds :9(-) ds
C E(C)=-=5
f(x)dp

Q(C)

m In 2D can use DP [Cox et al’96, Jermyn&Ishikawa’01]
m In 3D, see a poster on Tuesday (kolmogorov, Boykov, Rother)



Graph cuts for minimization of
posterior energy n

m Greig at al. [IJRSS, 1989]
 Posterior energy (MRF, Ising model)

E(L) = > -InPr(D,|L,) + > V. (L, L)

P paeN

Likelihood Spatial prior Lp E{S’t}
(data term) (regularization)
" aom " m

Example: binary image restoration



Graph cuts algorithms can minimize
multi-label energies as well



Multi-scan-line stereo
with s-t graph cuts (Roy&Cox’98)

t cut

Disparity labels




s-t graph-cuts for
multi-label energy minimization

m Ishikawa 1998, 2000, 2003

m Generalization of construction by Roy&Cox 1998
E(L) = 2 Dy(Ly) + X V(L Ly L, e R’

pg € N

Linear interactions “Convex” interactions

+ V(dL) 4V(dL)

L/

dL=Lp-Lqg

dL=Lp-Lqg



Pixel interactions V:
“convex’ vs. “discon

“Convex”
Interactions V/

tinuity-preserving”
Robust or “discontinuity preserving”
Interactions V/

(weak membrane models,
see a book by Blake and Zisserman, 87)

£ V(dL)

“linear”
mode/

dL=Lp-Lq
tv(dL)

N

dL=Lp-Lq

t V(dL)
Potts
mode/
» dL=Lp-Lq
+ V(dL)
_\ /_ dL=Lp-Lq




Pixel interactions:

“convex” vs. “discontinuity-preserving”

‘ “linear” V
truncated
-

“linear” V




Robust interactions

m NP-hard problem (3 or more labels)
e two labels can be solved via s-z cuts (Greig at. al., 1989)

® a-expansion approximation algorithm
(Boykov, Veksler, Zabih 1998, 2001)

 guaranteed approximation quality (Veksler, thesis 2001)
— within a factor of 2 from the global minima (Potts model)

 applies to a wide class of energies with robust interactions
— Potts model (BVZ 1989)
— “metric” interactions (BVZ 2001)

— can be extended to arbitrary interactions with weaker guarantees
. truncation (Kolmogorov et al. 2005)
. QPBO (Boros and Hummer, 2002)

m Other “move” algorithms (e.g. a-b swap, jump-moves)
= More is coming later in this tutorial



a-expansion algorithm

=

Start with any initial solution
2. For each label “a” in any (e.g. random) order

1. Compute optimal a-expansion move (s-t graph cuts)
2. Decline the move If there is no energy decrease

3. Stop when no expansion move would decrease energy



a-expansion move

Basic idea: break multi-way cut computation
Into a sequence of binary s-t cuts




a-expansion moves

In each a-expansion a given label “a” grabs space from other labels
initial solution
@ -expansion

@ -cxpansion

@ -cxpansion

@ -expansion

For each move we choose expansion that gives the largest decrease in
the energy: binary optimization problem



Metric interactions

V(a,b)=0 iff a=b
V(a,b) = V(b,a) >= 0

V(a,c) <= V(a,b)+V(b,c) H;nuga‘fi'gr

Implies that every expansion move (a binary problem)
IS submodular




a-expansions:
examples of metric interactions
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Multi-way graph cuts

Multi-object Extraction




Multi-way graph cuts

Stereo/Motion with slanted surfaces
(Birchfield &Tomasi 1999)

Labels = parameterized surfaces

EM based: E step = compute surface boundaries
M step = re-estimate surface parameters



Multi-way graph cuts

stereo vision

original pair of “stereo” images



Multi-way graph cuts

Graph-cut textures
(Kwatra, Schodl, Essa, Bobick 2003)

similar to “image-quilting” (Efros & Freeman, 2001)



a-expansions vs. simulated annealing

reim ket arorealatmn, a-expansions (BVZ 89,01)
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