


MATHEMATICAL MODEL OF IMAGE DEGRADATION

g(x,y) = H{ f(x,y)} + nx, y)
H{w,v).F{(uv)=G6u7v)

Gl »
H (u,v)= o %(u,v) F(u,V):G(u’V)H (u,v)

. g(x.v)
Degradation Restorati -
f.yy= > function * ‘gh(érr?;)on % > flx.y
H

Noise
n(x.y)

RESTORATION ‘

‘ DEGRADATION



Gaussian Kernel

Source: C. Rasmussen



Gaussian filters

(O =5 pixels (O =10 pixels O =30 pixels




Gaussian filter

e Removes “high-frequency” components from
the image (low-pass filter)

e Convolution with self is another Gaussian

K

— Convolving two times with Gaussian kernel of
width 0 = convolving once with kernel of width

V2

Source: K. Grauman



Sharpening revisited

 What does blurring take away?

detail

Source: S. Lazebnik
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Sharpen filter

unfiltered =
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filtered =
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Convolution in the real world

Camera shake

Source: Fergus, et al. “Removing Camera Shake from a Single Photograph”, SIGGRAPH 2006

Bokeh: Blur in out-of-focus regions of an image.

Source: http://lullaby.homepage.dk/diy-camera/bokeh.html



Image Sharpening
* |dea: compute intensity differences in local
Image regions.

* Useful for emphasizing transitions in
intensity (e.g., in edge detection).

input image
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Sharpening

before

Source: D. Lowe



Filtering as matrix multiplication

[ 0.2 02 02 0 0 0 0 0 0 0 0 0 0 0 02 02 ]
0.2 02 02 02 0 0 0 0 0 0 0 0 0 0 0 0.2
0.2 02 02 02 02 0 0 0 0 0 0 0 0 0 0 0

0 02 02 02 02 02 0 0 0 0 0 0 0 0 0 0
0 0 02 02 02 02 02 0 0 0 0 0 0 0 0 0
0 0 0 02 02 02 02 02 0 0 0 0 0 0 0 0
0 0 0 0 02 02 02 02 02 0 0 0 0 0 0 0
0 0 0 0 0 02 02 02 02 02 0 0 0 0 0 0
0 0 0 0 0 0 02 02 02 02 02 0 0 0 0 0
0 0 0 0 0 0 0 02 02 02 02 02 0 0 0 0
0 0 0 0 0 0 0 0 02 02 02 02 02 0 0 0
0 0 0 0 0 0 0 0 0 02 02 02 02 02 0 0
0 0 0 0 0 0 0 0 0 0 0.2 02 02 02 02 0
0 0 0 0 0 0 0 0 0 0 0 02 02 02 02 02
0.2 0 0 0 0 0 0 0 0 0 0 0 0.2 02 02 02
0.2 02 0 0 0 0 0 0 0 0 0 0 0 02 02 02

What kind of filter is this?
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Multiplying row and column vectors

(0 0 02 02 02 02 02 0]

1
_ = == O OO
| ]
1
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Filtering as matrix multiplication




A model of the image
degradation/restoration process

Degradation g(x.y) _ .

. Restoration .
fley) o function ﬁl'[E['{il] flx.y)
I ;

Noise
n(x, v)
DEGRADATION RESTORATION

{ g(x,y)=fx,y)*h(x,y)+n(X,y)
G(u,v)=F(u,v)H(u,v)+N(u,v)



Measure the mean and variance

= Histogram is an estimate of PDF

- M= Zzip(zi)

< z.€S

o’ = Z(Zi _:u)zp(zi)

=

Gaussian: u, o
© { Uniform: a, b



Additive noise only

Noise

glx, v)

DEGRADATION

{ a(x,y)=f(x,y)+n(x,y)
G(u,v)=F(u,v)+N(u,v)

Restoration
filter(s)

RESTORATION |

flx.y)



Estimation by image
observation

= Take a window in the image
= Simple structure
= Strong signal content

= Estimate the original image in the window

known
G (u,v)—

H (u,v)=—
\ estimate

F(u,v)



Inverse filtering

= With the estimated degradation function
H(u,v)
Unknown
G(u,v)=F(u,v)H(u,v)+N(u,v) /noise

=2 F(u,v)= G(u,v) =F(u,v)+ N(u,v)
H(u,v) H(u,v)

T T

Estimate of Problem: O 'or small values

original image Sol: limit the frequency

around the origin




5
Atmospheric Turbulence Blur H('u_, U) s e_k(u2+ P g

Obtain restoration as:

F(u,v)= H_l(u,v)G(u,v)

Minimize: E[.g(x _,V) £ h(x, _.V) 5 f(x,, y)]z



Modeling Blurring Process

 Linear degradation model

x(m,n) —— h(m,n) y(m,n)

w(m,n)

h(m,n) blurring filter

w(m,n) ~ N(0,0 vzv) additive white Gaussian noise

21



The Curse of Noise

z(m,n)

w(m,n) ~ N(O, va)

Blurring SNR

2
O-Z
2

BSNR =101log,,

w




Blind vs. Nonblind Deblurring

= Blind deblurring (deconvolution):

blurring
= Nonbling
blurring

kernel h(m,n) is unknown
deconvolution:

kernel h(m,n) is known

= In this course, we only cover the

nonblind

case (the easier case)

23



Image Deblurring

= Introduction
= Inverse filtering

« Suffer from noise amplification
= Wiener filtering

= Tradeoff between image recovery and
noise suppression

= [terative deblurring™
= Landweber algorithm

24



Inverse Filter

_______________________________________________________________________________

—— y(m,n)— h(m,n)

blurring filter

—‘ Q(m,n)

inverse filter

______________________________________________________________________________

h combi (m’ n)

To compensate the blurring, we require

combl

(m,n)=h(m,n)®h' (m,n) =

Z Zh (m—k,n— l)h(k 1) = 8(m,n),¥ (m,n)

f=—o0 |=—oo

1
H(w,w,)

HI(WIDWZ) =

25



Inverse Filtering (Con’t)

inverse filter
w(m,n)
Spatial:

x(m,n) = y(m,n) ® h' (m,n) = (x(m,n) ® h(m,n)+w(m,n)) ® h' (m,n)

Frequency:

% X(w,wy)) H(w,,w,)+W (w,,w,)

X(w,w,) =Y (w,w)H' (w,w,) = (Wi, ,) L2 > 2
ST H(Wlpwz)

-
-
.
.
.
’
1

wW(w,,w
:X(WI,WZ)\'F ( 1° 2) \

—>

amplified noise

26



Basic idea:

To handle zeros in H(w,,w,), we treat them separately

when performing the inverse filtering

1

H (w,w,)= H(w,,w,)
0

| H (W, w,) >0
| H(w,w,) IS0

Pseudo-inverse Filter

Hi

= Ere

then
H ~1 if |6|<<|H|
'™ H

and

Hy=0 if |§|>> |H|

27



Image Deblurring

= Introduction
= Inverse filtering

« Suffer from noise amplification
= Wiener filtering

= Tradeoff between image recovery and
noise suppression

= [terative deblurring™
= Landweber algorithm

28



Norbert Wiener (1894-1964)

| The renowned MIT professor Norbert Wiener
was famed for his absent-mindedness. While
crossing the MIT campus one day, he was
stopped by a student with a mathematical
problem. The perplexing question answered,
Norbert followed with one of his own: "In which
direction was I walking when you stopped me?"
he asked, prompting an answer from the
curious student. "Ah," Wiener declared,
"then I've had my lunch”

Anecdote of Norbert Wiener

29



The Wiener filter can be understood better in the frequency domain. Suppose we want to design a frequency-
domain filter G(k,|) so that the restored image is given by

X (k1) = Gk, )Y (k,1)

We can choose G(k,|) so that we minimize

= y(m,n) = h(m,n)*x(m,n) + u(m,n)
E(|X(k, 1) - Gk, )Y (k,1)|°]
where * is 2-D convolution, h(m,n) is the point-spread function (PSF), f(m,n) is the original image, and u(m,n) is
noise.

The minimizer of this expression is:

H(k,1)
(Hk, D)) + Sulk,1)/S2(k,1)

G(k,1) =

a2 = the variance at each pixel

then the noise power spectrum is given by

where S.(k,{) = signal power spectrum
L I o 2
and S, (k,!) = noise power spectrum Su(k,l) = MNa,

This filter gives the minimum mean-square error estimate of X(k,|). Now 30



Wiener Filtering

Also called Minimum Mean Square Error (MMSE) or Least-Square (LS) filtering

_ H*(w,w,)
| H(w, w,) |2 +I|<

l

constant

Hmmse (Wl s WZ )

o> —— noise energy
Example choice of K: K = _V2V
O, — signal energy

K=0 — inverse filtering

31



Constrained Least Square Filtering

Similar to Wiener but a different way of balancing the tradeoff between

H*(w,w,)

Hmmse (W19 WZ) =

| H(wi,wy) " +y [ Cwi, wy) [

Example choice of C:

C(m,n)=|-1

v=0 — inverse filtering

1 0]
4 -1
-1 0
\ -

Laplacian operator

32



Image Deblurring

= Introduction
= Inverse filtering

« Suffer from noise amplification
= Wiener filtering

= Tradeoff between image recovery and
noise suppression

= Iterative deblurring™
= Landweber algorithm

33



Method of Successive Substitution

= A powerful technique for finding the roots of any
function f(x)

= Basic idea

= Rewrite f(x)=0 into an equivalent equation x=g(x) (x is
called fixed point of g(x))

= Successive substitution: x;,;=9g(X)

= Under certain condition, the iteration will converge to the
desired solution

34



Numerical Example

f(x)=x>=3x+2
|

Two roots: X, =1,x, =2

2
f(x)=x2—3x+2=O:>x=x t2

: 2

successive substitution: |y

_xf+2
i+l 3

= g(x)

35



Numerical Example (Con’t)

1 .
IR=NS
0.8
0.7k

0.6 H

== 05H

0.4

0.3

0.z

0.1

1]

0 20 40 &0 a0 100 120
iteration number i

Note that iteration quickly converges to x=1



[LLandweber Iteration

Linear blurring Y (w,,w,) = H(w,, w,) X (w,,w,)
}
We want to find the root of f(X)=Y-HX
f(X)=0=2X=X+0(X)=X+(Y-HX)=g(X)
,B relaxation parameter — controls convergence property

Successive substitution:

X, =0
Xn+1 :Xn +IB(Y_HX71)

37



TOTAL VARIATION DEBLURRING

Tikhonov regularization: The main objective of regularization is to incorporate more information about the desired solution in order to
stabilize the problem and find a useful and stable solution. The most common and well-known form of regularization is that of Tikhonov

(Stand and Rudnicki, 2007). The Tikhonov regularized minimum norm solution of Eq. 1 is the vector FsOU" that minimizes the expression:

[t gl 2 JL£]; (5)

where, A>0 is called a regularization parameter.

We denote:

F = argn:ju{ |Ff - gL +1.*|L|

) (6)

Regularization can be understood as a balance between two requirements:

«  fshould give a small residual Hf-g

*  fshould be small in L* norm

The regularization parameter A>0 can be used to tune the balance. Note that in inverse problems there are typically infinitely many f
satisfying Eg. 6.
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APPLICATION TO IMAGE RESTORATIOM

This study will establish a new approach that can be used to solve a constrained optimization ill-posed problem in order to improve a
bBlurred or noisy image. We will add many types of degradation functions to matrices of different sizes and then try to restore the
original. Our starting image is a gray-level image contained in the mxn matrix. Each element in the matrix represents a pixel's gray
intensity between black and white {0 and 255).

Assume, we know how fast the blurring function operator is known. The simplest approach is to solve the least squares problem:

min(|H = X - G[[") (18)

In practice the results obtained with this simple approach tend to be noisy, because this term expresses only the fidelity to the awvailable
data g. To compensate for this, a regularization term below is added to improve smoothness of the estimate:

0.004 s Lo X (19)

where, L is the discrete Laplacian, which relates each pixel to those surrounding it. L = del2(X)} is a discrete approximation of:

VX 1 (dX &)
IN 2N dx dy ) (20)

where, X is the estimated matrx. The matrix L has the same size as X with each element equal to the difference between an element of

¥ and the average of its four neighbors.
Since, we know we are looking for a gray intensity, we also impose the constraint that the elements of X must fall between 0 and 255.

To obtain the deblurred image, we want to solve for X
min || Hx3-G P + 0.004=]) L= |*) (21])

We can implement our objective function using this expression; the number of variables in this objective function to be minimized will b
mxn which is the size of the original matrix representing the original image.



