Example: line fitting

Example: line fitting

n

Model fitting

Measure distances

.
& s
. -33
&
& s ?
=
| -}
-
& L ? 5
e & , -
&
& « & T
- y
e
=
L & & % g & e
&
' = -
&
- a - |
&
& & -
-3 . -
'

' & e ©

Count inliers

-
»
-
[
-
-
-
» . -
™
»
-
»
»
[
o
* -

C

Another trial

»
e
»
»
. - -
*
»
o
-
-
[
-
-
» »

C

The best model

e
#;
f’/'
S
e .
A . . @

c=135

Feature matchin

P
-
1]
-y
Simm
= 1
= A
- L
Sy

=l i el e BLE
- J -'L P
-

a =
Nl g F

Feature matching

 Exhaustive search

« for each feature in one image, look at all the other features in
the other image(s)

» Hashing
« compute a short descriptor from each feature vector, or hash
longer descriptors (randomly)

* Nearest neighbor techniques
 k-trees and their variants

What about outliers?

P
-
1]
-y
Simm
.-;-'E:"
-]
)

=l i el e BLE
g J-'L l-l-l-——.—ll
...r'I e

Feature-space outlier rejection

Let’s not match all features, but only these that have
“similar enough” matches?

How can we do it?
« SSD(patch1,patch2) < threshold
e How to set threshold?

correct matches |
— — - incorrect matches | :

probability density

Z | 1 - - 1
0 10 20 30 40 50 60
1-NN squared error

Feature-space outlier rejection

A better way [Lowe, 1999].
* 1-NN: SSD of the closest match
« 2-NN: SSD of the second-closest match
* Look at how much better 1-NN is than 2-NN, e.g. 1-NN/2-NN
 Thatis, is our best match so much better than the rest?

— — —incorrect matches
6_ .E...,.. o oo
. i
: !
5 S
=
b=
s 4
° {
2
=
1 Eh o obon Bosconoo@ooosuscdbosssnsdbootosoeluooosskncusoofjostoeue Boooeno e oooo e
8
2_
1+
0 _ 1 =] — = =) | 1 1]]
0 0.1 0.2 03 04 0.5 0.8 0.7 0.8 0.9 1

1-NN/2-NN squared error

Feature-space outliner rejection

Can we now compute H from the blue points?
* No! Still too many outliers...
 What can we do?

Matching features

What do we do about the “bad” matches?

RAndom SAmple Consensus

Select one match, count inliers

RAndom SAmple Consensus

Select one match, count inliers

Least squares fit

Find “average” translation vector

RANSAC for estimating homography

OO b WODN -

RANSAC loop:

. Select four feature pairs (at random)

. Compute homography H (exact — DLT ?)
. Compute inliers where SSD(p.’, Hp,)< ¢

. Record the largest set of inliers so far

. Re-compute least-squares H estimate on

the largest set of the inliers

RANSAC in general

« RANSAC = Random Sample Consensus

 an algorithm for robust fitting of models in the
presence of many data outliers

« Compare to robust statistics

» Given N data points x;, assume that majority
of them are generated from a model with
parameters 0O, try to recover 6.

Bias strategy Model s

scale
S*
} ! o+

D s(R) Estimate o(h)
Build MSS parameter Build the CS
vector
T’(h) S(h)

1ter

. . th - _ Termination
RANSAC A" iteration (keep the best CS) criterion
The RANSAC algorithm is essentially composed of two steps
that are repeated in an iterative fashion (hypothesize{and{test framework):
e Hypothesize. First minimal sample sets (MSSs) are randomly selected from the input
dataset and the model parameters are computed using only the elements of the MSS. The
cardinality of the MSS is the smallest sufficient to determine the model parameters (as opposed
to other approaches, such as least squares, where the parameters are estimated using all the
data available, possibly with appropriate weights).
e Test. Inthe second step RANSAC checks which elements of the entire dataset are
consistent with the model instantiated with the parameters estimated in the rst step. The set of
such elements is called consensus set (CS).

1. Sample Data Randomly

-

v

p

2. Estimate Parameters
using Sampled Data

S

4

v

p-

3. Calculate Error of Data
w.r.t. the Estimation

~

Step 3.5
\ 4

4. Count # of Inlier
Candidates

Stepl) 4.5

aximum # of Inli
ndidates until No

7. Enough # of
Iteration?

8. Return the Final
Estimation

RANSAC with Boil-out Test
Hypothesis R-RANSAC with SPRT Feng and Hung' MAPSAC
Generation : e
R-RANSAC with Tyq Test
S e RANSAC UMLESAC
rogressive
) AMILESAC
R AN S AC pbM-estimator
PROSAC LO-RANSAC
Local Optimization
NAPSAC
GASAC
MLESAC MAPSAC
Guided MLESAC MSAC QDEGSAC
B Fo nction |
——
Hypothesis ;"% i east Square Method f
Evaluation 2 ==*RANSAC
z == MSAC
Step 5.5 == MLESAC \
(6. Keep the Parameters as 3 %’a §$
L the Final Estimation 3 Illllll{;:lll‘ jll.l:!‘lll.llll
! IIIIIIIIII/’I- ﬁlll.ll.ll
Step 7.5 K'Y e
/ v 2 T, Sk
s o =

. o\‘\

47'*!.”

Error e.

0
Loss Functions

RANSAC converts a estimation problem in the continuous domain into a selection prob-
lem in the discrete domain. For example, there are 200 points to find a line and least square
method uses 2 points. There are 200C> = 19,900 available pairs. The problem is now to select
the most suitable pair among huge number of pairs.

2.2 Hypothesis Evaluation

RANSAC finally chooses the most probable hypothesis, which is supported by the most
inlier candidates (Step 5 and 6). A datum is recognized as the inlier candidate, whose error
from a hypothesis is within a predefined threshold (Step 4). In case of line fitting, error
can be geometric distance from the datum to the estimated line. The threshold is the second
tuning variable, which is highly related with magnitude of noise which contaminates inliers
(shortly the magnitude of noise). However, the magnitude of noise is also unknown in almost
all application. |
RANSAC solves the selection problem as an optimization problem. It is formulated as

Z Loss (Err(d;M)) } . (2)

M = argmin
M dc?
where Z is data, Loss is a loss function, and Err is a error function such as geometric dis-

tance. The loss function of least square method is represented as Loss(e) = €. In contrast,

RANSAC uses
0 le|<c
const otherwise

Loss(e) = { (3)
where ¢ is the threshold. Figure 3 shows difference of two loss functions. RANSAC has
constant loss at large error while least square method has huge loss. Outliers disturb least
squares because they usually have large error.

RANSAC algorithm

Run How many times?

big?
1) draw (am> randomly Srcr)glle]f,ls better
(2) fit parameters © with these n samples
)

(3) for each of other N-n points, calculate
its distance to the fitted model, count the
number oflier poin

Output © with the largest ¢

How to define?
Depends on the problem.

How to determine k

n: number of samples drawn each iteration

p: probability of real inliers
P: probability of at least 1 success after K trials

P=1-(1-p")

—— -
n samples are all inliers

| -

"

a failure

\ & 4
Y

failure after k trials

ni| p k

= log(1—P) for P=0.99 0.5| 35

3
log(1-p") 6| 0.6| 97
6| 0.5]| 293

RANSAC Method for computing F:

(i) Interest points: Compute interest points in each image.

(ii) Putative correspondences: Compute a set of interest point matches based
on proximity and similarity of their intensity neighbourhood;

(iii) RANSAC robust estimation: Repeat for N samples:
(a) Select a random sample of 7 (or 8) correspondences and compute

the fundamental matrix F (Algebraic Min. or DLT).

(b) the solution with most inliers is retained; i.e. Choose the F with the
largest number of inliers;

Repeat the following two steps, until stability:

(iv) Non-linear estimation: re-estimate F from all correspondences classified
as inliers by minimizing a cost function, using the Levenberg-Marquardt (LM)
algorithm.

(v) Guided matching: Further interest point correspondences are now
determined using the estimated F to define a search strip about the epipolar
line.

Other methods - Gold-standard (MLE); Sampson Distance
(cost) function;

(c) (d) detected corners

superimposed on the imaaes.
There are appr«
corners on eaclz

The following r =}l
superimposed ¢
image: (e) 188 =
matches showng
linking corners,
mismatches;

(f) outliers - 89 of the putative
matches,

(h) final set of 157
correspondences after guided
matching and MLE.

Both the fundamental and essential matrices could completely
describe the geometric relationship between corresponding points of
a stereo pair of cameras.

The only difference between the two is that the fundamental
matrix deals with uncalibrated cameras, while the essential matrix
deals with calibrated cameras.

Applications

Feature Matching and RANSAC

© Krister Parmstrand

with a lot of slides stolen from 15-463: Computational Photography
Steve Seitz and Rick Szeliski Alexei Efros, CMU, Fall 2005

Automatic image stitching

Automatic image stitching

Automatic image stitching

Automatic image stitching

Automatic image stitching

Correspondence Results

Chum & Matas 2005

Object Recognition Results

Brown & Lowe 2005

Object Recognition Results

Nister & Stewenius 2006

Object Classification Results

Grauman & Darrell 2006, Dorko & Schmid 2004

Geometry Estimation Results

Snavely, Seitz, & Szeliski 2006

RANSAC for Homography

RANSAC for Homography

RANSAC for Homography

lon

t

Ica

if

-
D
>
-
O
[©
L®,
O
&
O

t

IS

Probab

Plane perspective mosaics

— 8-parameter generalization of affine motion

« works for pure rotation or planar surfaces
— Limitations:

* local minima

* slow convergence

Revisit Homography

/xl\ 'f 0 xc"/X\

yil~10 f vy |Y /OX Y,Z)
1) o 0o 1]z, cf/xc c’

/xz\ _f 0 xc_ (X VX
»i~10 f y.RY

1) [0 0 1] (£,

Estimate f from H?

(x,—x\ | f, O
Ny |~ 0 A
.1) 10 0
(x,-x\ | /£, O
Vo=V |~ 0 S
.1) 10 0

0l X
0 Y
I\Z)

0l (X))
OIRl Y
1] (£,

C//COXc’YC’ZC')
/ X,
X
R ~K;'HK,
a b c/ f,
=| d e g/ f
AVANSYANAE
) Ji
= 2 f, ?

The drifting problem

 Error accumulation
— small errors accumulate over time

Bundle Adjustment

Associate each image 1 with K. R,

Each image 1 has features :P;;
matched with that say j-th feature in m-th frame

Trying to minimize total matching residuals

E(all £, andR)) = ZZ\py ~ KZ-RZ-RZK;IijHz

(i,m) j

Derive the above, from fundamentals (eqns. 2 slides back).

Rotations

 How do we represent rotation matrices?

1. Axis / angle (n,6)
R =1+ sinf [n], + (1- cosb) [n].?
(Rodriguez Formula), with
[n], be the cross product matrix.

0 — (11 (Lo EJl
axb=]|al,b=| a; 0 —ay| |bs

Incremental rotation update

1. Small angle approximation
AR =1 + sinf [n],, + (1- cosB) [n].>
“1+0 [n], = I+{o],
linear in w= 6n

2. Update original R matrix
R—R AR

Recognizing Panoramas

[Brown & Lowe,
ICCV'03]

Finding the panoramas

Finding the panoramas

Algorithm overview

Algorithm: Panoramic Recognition

Input: n unordered images

Algorithm overview

Algorithm: Panoramic Recognition

Input: n unordered images

I. Exfract SIFT features from all n images

Algorithm overview

Algorithm: Panoramic Recognition

Input: n unordered images

I. Exfract SIFT features from all n images

II. Find £ nearest-neighbours for each feature using a k-d
tree

Algorithm overview

Algorithm: Panoramic Recognition

Input: n unordered images

I. Exfract SIFT features from all n images

II. Find £ nearest-neighbours for each feature using a k-d
tree

ITI. For each image:
(i) Select m candidate matching images (with the
maximum number of feature matches to this im-

age)

Algorithm overview

Algorithm: Panoramic Recognition

Input: n unordered images

L.

II.

I1I.

Extract SIFT features from all n images

Find £ nearest-neighbours for each feature using a k-d
tree

For each image:
(i) Select m candidate matching images (with the
maximum number of feature matches to this im-
age)

(i1) Find geometrically conisistent feature matches
using RANSAC to solve for the homography be-
tween pairs of images

Algorithm overview

Algorithm: Panoramic Recognition

Input: n unordered images

I. Exfract SIFT features from all n images

II. Find £ nearest-neighbours for each feature using a k-d
tree

ITI. For each image:
(i) Select m candidate matching images (with the

maximun number of feature matches to this im-
age)

(i1) Find geometrically conisistent feature matches
using RANSAC to solve for the homography be-
tween pairs of images

(1i1) Verify image matches using probabilistic model

I'V. Find connected components of image matches

Finding the panoramas

Finding the panoramas

Algorithm overview

Algorithm: Panoramic Recognition

Input: n unordered images

I. Exfract SIFT features from all n images

II. Find £ nearest-neighbours for each feature using a k-d
tree

ITI. For each image:
(i) Select m candidate matching images (with the

maximun number of feature matches to this im-
age)

(i1) Find geometrically conisistent feature matches
using RANSAC to solve for the homography be-
tween pairs of images

(1i1) Verify image matches using probabilistic model

I'V. Find connected components of image matches

Algorithm overview

Algorithm: Panoramic Recognition

Input: n unordered images

I. Exfract SIFT features from all n images

II. Find £ nearest-neighbours for each feature using a k-d
tree

ITI. For each image:
(i) Select m candidate matching images (with the

maximun number of feature matches to this im-
age)

(i1) Find geometrically conisistent feature matches
using RANSAC to solve for the homography be-
tween pairs of images

(1i1) Verify image matches using probabilistic model

I'V. Find connected components of image matches

V. For each connected component:
(1) Perform bundle adjustment to solve for the rota-
tion Ay, #3, A3 and focal length f of all cameras

Algorithm overview

Algorithm: Panoramic Recognition

Input: n unordered images

I. Exfract SIFT features from all n images

II. Find £ nearest-neighbours for each feature using a k-d
tree

ITI. For each image:
(i) Select m candidate matching images (with the

maximun number of feature matches to this im-
age)

(i1) Find geometrically conisistent feature matches
using RANSAC to solve for the homography be-
tween pairs of images

(1i1) Verify image matches using probabilistic model

I'V. Find connected components of image matches

V. For each connected component:
(1) Perform bundle adjustment to solve for the rota-
tion Ay, #3, A3 and focal length f of all cameras

(ii) Render panorama using multi-band blending

Output: Panoramic image(s)

Why “Recognising Panoramas™?

1D Rotations (0)

* Ordering = matching images

Why “Recognising Panoramas™?

1D Rotations (0)

* Ordering = matching images

Why “Recognising Panoramas™?

1D Rotations (0)

* Ordering = matching images

e 2D Rotations (6, ¢)
— Ordering & matching images

Why “Recognising Panoramas™?

1D Rotations (0)

* Ordering = matching images

e 2D Rotations (6, ¢)
— Ordering & matching images

Why “Recognising Panoramas™?

1D Rotations (0)

* Ordering = matching images

e 2D Rotations (6, ¢)
— Ordering & matching images

Homography for Rotation

Parameterise each camera by rotation and focal length

0 0 —6;3 6;5 |
R; = ellx, [9,] = 03 0 —0;1
—0;5 0i1 0

i
This gives pairwiseK”: — 8

a; = H;;u;, H; = KRRIK

Bundle Adjustment

New images initialised with rotation, focal length of best
matching image

Bundle Adjustment

New images initialised with rotation, focal length of best
matching image

Multi-band Blending
Burt & Adelson 1983

» Blend frequency bands over range o A

Results

Matching Mistakes

» Accidental alignment
— repeated / similar regions
» Failed alignmentS§ — =
— moving objects
— low overlap
— “feature-less” regions

* No 100% reliable
algorithm?

