CS2310: Digital Logic Design Lab Experiment 4

Prof. Sukhendu Das

25 August 2015

Problem Statement

Adders form a core component of the Arithmetic Logic Unit (ALU) and play a major role in calculating memory addresses, table indices etc., in Computer Processors. In this lab, you will be learning and implementing Adder circuits for unsigned numbers.

The *Half adder* takes in two input bits and produces two output bits, the sum and the carry, the XOR and AND of the two bits respectively.

The *Full adder* takes in two input bits and a third bit (carry-in). It also produces two output bits, the sum and the carry-out. Their truth tables are given below.

<u> Truth table for Half adder</u>								
INPUTS		OUTPUTS						
Α	B	SUM	CARRY					
0	0	0	0					
0	1	1	0					
1	0	1	0					
1	1	0	1					

Truth	Table	of H	Full	Adder
-------	-------	------	------	-------

Inputs			Outputs		
x	Ŷ	z	С	s	
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	
1	- 0	0	0	1	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	

Figure 1: Truth tables for Half Adders and Full Adders

A)Half Adders and Full Adders

You will first implement a Half Adder using basic logic gates, and then implement a Full Adder using Half Adders and basic logic gates.

B) Ripple-carry Adders

Connect multiple adders (half/full) to display the 4-bit sum of two 3-bit numbers.