CS2310: Digital Logic Design Lab Experiment 4

Prof. Sukhendu Das

25 August 2015

Problem Statement

Adders form a core component of the Arithmetic Logic Unit (ALU) and play a major role in calculating memory addresses, table indices etc., in Computer Processors. In this lab, you will be learning and implementing Adder circuits for unsigned numbers.

The Half adder takes in two input bits and produces two output bits, the sum and the carry, the XOR and AND of the two bits respectively.

The Full adder takes in two input bits and a third bit (carry-in). It also produces two output bits, the sum and the carry-out. Their truth tables are given below.

Truth table for Half adder				Truth Table of Full Adder				
				Inputs			Outputs	
INP	TS	OU	TPUTS	X	Y	Z	C	S
A	B	SUM	CARRY	0	0	0	0	0
0	0	0	0	0	0 1	1 0	0	1
0	1	1	0	0	1	1	1	0
1	0	1	0	1	0	0	0	1
1	1	0	1	1	0	1	1	0
1	1	0	1	1	1 1	0 1	1	0 1

Figure 1: Truth tables for Half Adders and Full Adders

A)Half Adders and Full Adders

You will first implement a Half Adder using basic logic gates, and then implement a Full Adder using Half Adders and basic logic gates.

B) Ripple-carry Adders

Connect multiple adders (half/full) to display the 4 -bit sum of two 3 -bit numbers.

