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Title of Research Work:
Weakly Supervised Object Localization

Problem Definition / Research Objectives:

Object Localization is one of the fundamental problems in Computer Vision which helps to
understand visual scenes in a better way. Humans possess an innate capability of recognizing
objects and their corresponding parts and confine their attention to that location in a visual
scene where the object is spatially present. Recently, efforts to train machines to mimic
this ability of humans in the form of weakly supervised object localization, using training
labels only at the image-level, have garnered a lot of attention. Nonetheless, one of the
well-known problems that most of the existing methods suffer from is localizing only the
most discriminative part of an object. Such methods provide very little or no focus on other
pertinent parts of the object. E.g. Given an image of a dog, existing methods try to generate
implicit attention map only on the face of the dog, leaving its other body parts like legs,
tail unattended. This often leads to sub-optimal localization performace. Thus, the focus
of this work has been to design an architecture that can cover the entire extent of integral
objects. This work proposes a novel way of scrupulously localizing objects using training
with labels as for the entire image by mining information from complementary regions in an
image. Primarily, we adapt to regional dropout at complementary spatial locations to create
two intermediate images. With the help of a novel Channel-wise Assisted Attention Module
(CAAM) coupled with a Spatial Self-Attention Module (SSAM), we parallely train our model
to leverage the information from complementary image regions for excellent localization.
Finally, we fuse the attention maps generated by the two classifiers using our Attention-based
Fusion Loss. We validate our method on two benchmark datasets for object localization:
CUB-200-2011 and ILSVRC 2016 datasets.

Summary of Work Done before Review (From the date of admission till now):

e Course work : Completed seven courses, three in the first semester (Jul - Nov 2018),
three in the second semester (Jan - May 2019) and one in the third semester (Jul -
Nov 2019). In the first three semesters I took courses which would help me build my
fundamentals to work in the field of machine learning and computer vision for my
research work.

e Literature Review : Read research papers about recent advances in Object Detection
and Recognition. Found out some unexplored areas in the field of object detection.

e Attended various seminars, workshops and talks in and outside the department related
to my field of research.

Work Done During Review:

Considering the limitations of existing methods in weakly supervised object localization, a
new approach has been developed by us to tackle the problem of localizing only the most-
discriminative part of the object. And the fact that it does not require full supervision during
training makes it an interesting problem and a quite challenging one too. Our approach is
discussed in detail in the following sections.



A Where to Look?: Mining Complementary Image Re-
gions for Weakly Supervised Object Localization

A.1 Introduction

Given a visual scene, humans have an inherent ability to recognize and localize objects of
interest with minimal effort. With the advent of deep convolutional neural networks [11,12],
there has been a remarkable improvement in image recognition [13-15] and object detection
[18-20,22-206]. However, these methods rely on full supervision during training. Recently,
there has been an increasing focus on Weakly Supervised Learning (WSL) techniques that
require minimal supervision or coarse annotation during training, which reduces the effort
of using costly pixel-level annotations. One of the fundamental computer vision tasks like
semantic segmentation that require fine pixel-level annotations, can now be trained using
only bounding box annotations or image-based labels using the WSL approach [30-33].

Weakly Supervised Object Localization (WSOL) aims to classify as well as localize objects
without using expensive bounding box annotations during training. Recently, a lot of ap-
proaches [31-39, 17, 18] have been proposed to tackle this challenging problem. Zhou et
al. [34] put forward the idea of appending a Global Average Pooling (GAP) [10] layer at the
end of convolutional neural networks (CNNs) followed by a fully-connected layer to gener-
ate a class activation map (CAM). CAM highlights the discriminative image region used
to recognize that object category. However, a crucial limitation of this approach is that
it only localizes the most discriminative class-specific region instead of the entire object.
For e.g., given an image of a dog, it only tries to generate implicit attention on its face,
without paying any heed to its remaining body parts. Hence, it often leads to sub-optimal
localization performance.
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Figure 1: An overview of our proposed approach

To overcome this problem, a few recent methods [35,39,45,16] have come up with making
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changes to input image rather than modifying the algorithm. In the paper, Hide-and-Seek
(HaS) [35], Singh and Lee attempt to randomly hide patches of an input image during train-
ing so that their model tries to seek other visible relevant parts of the object. Even though
this approach focuses on non-discriminative object parts, it loses information during train-
ing when the patches are hidden, leading to a limited localization performance. This gives
rise to an interesting question: Is there any way to optimize the localization performance
by maximally utilizing the information lost in regional dropout?

We propose to solve the above problem by introducing to strategically mine information
from complementary image regions. Regional dropout methods [12,16] have significantly
demonstrated the ability to generalize well on image classification and object localization.
We also venture to leverage this generalization ability and create two complementary im-
ages, each possessing regional dropout at complementary spatial locations in the respective
images. To create these input images, we adapt to randomly hide patches in the input image
similar to Hide-and-Seek [35], as illustrated in figure 1. We perform joint training of these
complementary image regions as two input channels, using two parallel classifiers. Further,
we try to fuse the information captured in both these input channels by incorporating a
novel Channel-wise Assisted Attention Module (CAAM) along with a Spatial Self-Attention
Module (SSAM). Both these modules take input features extracted from pre-trained CNNs.
CAAM takes inspiration from [13, 414, 50|, and tries to model interactions in the channel
dimension between features extracted from two complementary images. SSAM is inspired
by [30,43,50] to capture feature dependencies in the spatial dimension. We finally aggre-
gate the inter-dependencies modeled by these two modules: CAAM and SSAM, for better
localization ability. We also propose an Attention-based Fusion Loss, inspired by [29], to
fuse the two attention maps obtained using the complementary images. Almost all the pre-
vious works rely only on the classification objective to learn the implicit attention maps,
which serve as a testimony of visual explanations learned by the model to localize objects.
However, we feel that relying only on the classification objective for localizing objects limits
the overall localization performance. The use of our proposed Attention-based Fusion Loss,
along with the usual cross-entropy loss to train our localization model, to the best of our
knowledge, is the first of its kind.

A.2 Related Work

Zhou et al. [31] put forward the idea of appending a Global Average Pooling (GAP) [10]
layer at the end of convolutional neural networks (CNNs) followed by a fully-connected
layer to generate a class activation map (CAM). CAM highlights the discriminative image
region used to recognize that object category. Randomly masking certain regions in an input
image have found to be effective in capturing richer object context and better generalization
performance. Bazzani et al. [51] proposed to mask out certain regions in an image that lead to
a drop in the image recognition performance, finally feeding the regions to an agglomerative
clustering algorithm which indicate higher objectness of such merged regions in the input
image. In Hide-and-Seek [35], the crux was to randomly hide patches in an input image
forcing the network to focus on other relevant object parts. Cutout [10] is yet another
successful generalizable approach that drops a certain amount of input region from the
input image. However, these methods lose information while training the network using
regional dropout. We make use of information lost in regional dropout while training the
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network, by generating two images to mask complementary spatial locations. The work
in [30] generates self-produced guidance masks, which in turn are used in the form of pixel-
level supervision for localizing objects. Zhang et al. [37] proposed adversarial erasing in
feature space that mine information from two adversarial parallel classifiers for superior
localization performance. Choe and Shim, in their work [3%|, proposed to use self-attention
mechanism to generate a drop mask and an importance map from the input feature map and
randomly select either of them along with the input feature map for localizing objects. Yang
et al. [17] uses a linear combination of activation maps from the highest probability score of a
class to the lowest probability score, thereby assisting in suppressing the background regions
and focusing more on the foreground object of interest. The most recent work of EIL [15] by
Mai et al. attempts to jointly perform adversarial erasing and mining discriminative regions
to localize objects efficiently.

Features of X i . .
P Chann;l—wwe Assisted
Attention Module

Spatial Self-
Attention Module

T ) ; @ Global Average
"""" v = Pooling
o -

Sum follow?d

by convolution

E |:| Classifier
o L Attention-based
Input X at_fuse Fusion Loss function

Features of X Classifier X

Figure 2: Our proposed architecture

A.3 Proposed Approach
A.3.1 Notations

Given an input image I, with its image-level label, y;, the goal of weakly supervised object
localization is to learn a model that is capable of classifying the input image I into one of C
object categories in the dataset and localizing the object in that image using a bounding box
B. From I, we create two input images, X and X, with regional dropout at complementary
spatial locations in an image, as shown in figure 1. We adapt to hide patches in the input
image as in [35]. We form our input X by randomly hiding patches of an image. However,
we regain the information lost in input X by forming another input X, which we call the
X complement. Input X reveals the information in the hidden patches of input X, whereas
hides the information in visible patches of input X. We extract features from inputs X and
X using a shared CNN having parameters 6. We denote these features as F,, and F5, where
Fx: Fi’ c RCXHXW‘

A.3.2 Mining Information from Complementary Image Regions

The information captured from CNN features (F, and F;) of both inputs X and X are used
individually as well as combined (fused) using Spatial Self Attention Module (SSAM) and
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Channel-wise Assisted Attention Module (CAAM) modules respectively (shown in figure 2).
Finally, we aggregate the features captured both by SSAM and CAAM for better feature
representations of F, and Fj, denoted by F! and FY respectively. F! and F} are then passed
to a global average pooling layer [10], followed by their respective classifiers. By jointly
training the two branches concerning the inputs X and X, viz., classifier X and classifier
X, our model precisely gets an idea regarding “where to look" in the input image while
classifying it correctly.

A.3.3 Channel-wise Assisted Attention Module

To compute CAMs [31], Zhou proposed to multiply the weights of the last fully connected
layer of the classifier to the feature maps of the preceding convolution layer. Towards the
last layers of the CNN, the feature maps tend to capture the class-specific responses. Hence,
CAM highlights the most discriminative region of the object belonging to that category. In
the work [50], Fu put forth the idea of a Channel Attention Module to capture long-range
inter-dependencies between channels of feature maps in a fully supervised setting for the
task of semantic segmentation. Adapting the idea from [50], we attempt to leverage the
class-specific inter-dependencies between channels of input features from both the branches,
F, and F;. So, our CAAM module takes as input the CNN features, F, and F; and outputs
features with more meaningful representation, denoted by F and F¥ respectively. Ff, Fg
€ ROMXW A similar approach has been studied in [19] recently using a cross-correlated
attention network in the spatial dimension. However, our CAAM module tries to capture
inter-dependencies in the channel dimension of two feature maps.
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Figure 3: Channel-wise Assisted Attention Module (CAAM)

To compute F¢, we take the input features F,, F; and reshape them to R“*Y  where
N = H x W corresponds to the number of pixels in the feature map. We then generate
channel attention matrix (), as follows:

Q. = Softmax(F, ® FI) (1)
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where, Q, € R“*® and ® denotes matrix multiplication. (), consists of the learnable
attention weights denoted by \Y € Q,, i,j € {1...C’}, which capture inter-dependencies
between the channels of F), and F;. Further, we multiply transpose of @), with F; to get Y,
as:

Y, = QL ® F; (2)

We then reshape Y, as RE*H*W and generate F¢ as :

Fi=F,+6,Y, (3)
Here, 9, is used to scale the features of Y,. It is initially set to 0 and iteratively trained
similar to that in [13,50]. The detailed expression for F¢ is as follows :
B = F 0,y N (4)
k=1

F¢ refers to channel-wise attended features of input F, assisted by input F;. We can see
in equation (4) that the final features F¢ are a weighted sum of features of all locations of
input feature Fj; and the original features F,.

Similarly, to compute F¥ we follow the same set of steps as followed for F{. However, we save
computations as well as parameters in generating the channel attention matrix @z (shown
in figure 3), as it is the transpose of Q.

Qz = Softmax(F; ® FT) (5)

From equations (1) and (5), it is evident that @)z is actually transpose of @),. But for the
purpose of simplicity, we denote it as Q3 itself. Also, we denote its learnable attention
weights as Ay € Q; and ¢,j € {1...C'}. Similarly, for F¢:

c
Fy" = F +0; ) MFY (6)
k=1
Similar to equation (4), d;z is also used as a scaling factor for Yz. It is initially set to 0 and
learns weight as training progresses. F¥ refers to channel-wise attended features of input Fj
assisted by input F,. As shown in equation (6), the features of F¥ are a weighted sum of
features of all locations of input feature F, and the original features Fj.



A.3.4 Spatial Self-Attention Module
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Figure 4: Spatial Self-Attention Module (SSAM)

Apart from the inter-dependencies between the features of channels F, and F; modeled by
CAAM, it is significant to consider their individual contribution as well for efficient feature
representation. We also hypothesize that to get the object’s correct spatial location, it is
important to have an overall view of the visual scene and give the corresponding weightage to
the entire scene as per the objectness. In the work [13], self-attention was used in GANs [1].
Taking motivation from [13], we propose to use spatial self-attention for localizing objects.
So the input to our SSAM module is the features F, and Fj; and its output is spatially
attended features F° and F? respectively. Both F* and Fj are of dimension RE*H*W,
As illustrated in figure 4, given features F,, we compute matrices M, L and P using 1x1
convolution where, {M, L} € RE*T*W where C = C/8, and P € RY*H*W Mathematically,
we compute [ as:

K, = Softmar(M* @ L)

R,=P®K] (7)

F=F,+a,R,

where, «a, is a weight factor for R,. The parameter a, and the weight matrices M, L, P, K,
and R, are learnt during training. Similarly, F can be formulated as:

A.3.5 Aggregation

For features F, and F; coming from each of the input branches, we have two enhanced
feature representations, {FS, F:} and {FS, FZ}: the channel assisted features and the



spatially attended features respectively. To take advantage of complementary information
in both these features, we fuse them using an element-wise sum. Finally, a convolution layer
is used to bind them together as follows:

F!' = conv(FS + F?); FL= conv(F§ + FY) (9)

Here, F! and F! denote the feature maps from final convolution layer in our proposed
framework. We use outputs of these final convolution layers to generate localization maps.

A.3.6 Attention-based Fusion Loss

We train our model in an end-to-end way to obtain two localization maps, in a manner
similar to CAM [341]. We use cross-entropy loss for training both the classifier branches.
However, both the classifiers discover complementary object parts during training. Thus,
it is necessary to fuse the pair of localization maps. This is done by our Attention-based
Fusion Loss, such that our model learns to focus on the entire object during training and
generalizes well during testing (as we do not use two branches during testing).

Algorithm 1: Our training algorithm

N =

® N O ok W

10
11
12

Input: N training images along with their image-level labels, {(I;,y;)}Y,, hyperparameter /3.
while convergence condition not met do

Create two images X and X with spatial dropout at complementary image locations, for an
input image;

Compute CNN features as: Fy + f(X, é) and F; + f(X, é),

Use CAAM to compute: F¢ « fOAAM () F¢ < fOAAM (R,

Use SSAM to compute: F$ « f9SAM(F,) F2 < f95AM ()

Aggregate CAAM and SSAM outputs: FY < conv(FS + F), FL + conv(F§ + F%);

Compute predicted labels as: p, = g.(X, 0%, F), pz = gz(X, 6%, FL);

Compute cross entropy loss for classifiers X and X: Leg,= =Y, vilogpas, Lep,= — Y,
yilog pz i;

Compute Attention-based Fusion Loss as in eq. (14);

Obtain total loss as: Lyt = Log, + Log; + 8% Lat fuse;

Backpropagate loss and update parameters é, 6=, 6%

end

Calculating localization maps: The features from our last convolution layer, F! and FY
having parameters 6% and 6 consist of C' feature maps each having spatial dimension H x .
These features are fed to the global average pooling (GAP) [10] layer. Let the value of k™
feature map at spatial location (m,n) of F! and F! be denoted as F!" (m,n) and FL* (m,n)
respectively. After performing GAP on the k' feature maps, we get the activation units
G% and G respectively. We pass the outputs from GAP layer to the respective classifiers.
Let the weights for a given class ¢ coming from the k™ activation unit be denoted as WP,
The softmax outputs of the classifiers for a particular class ¢ are denoted by H, and Hj,.



Mathematically, we denote this process as:
ZFtkmn Gg—ZFtkmn (10)
Zw’f H; = ZWka (11)
From equations (10) and (11),

Hyo = N WEFS (m,n); (12)

mmn k

Similar to equation (12), we express H;,_ in terms of WP, F;k For a particular class ¢, we
denote the localization maps for both the input features F! and Fyt, as follows:

Ay (myn) =Y WEFE (m,n);
k

k (13
Az, (m,n) = Z WEEL (m,n)

We finally combine these localization maps A,, and Az_ using our proposed Attention-based
Fusion Loss function (as illustrated in figure 5).

Fusing the localization maps: Unlike in [37], which relies on non-differentiable max
function for fusing localization maps from two classifiers, we propose to combine the local-
ization maps using an Attention-based Fusion Loss inspired from [29]. We first convert the
obtained localization maps into their respective vectorized forms, i.e., V,, = vec(A,,) and
Vi, = vec(Az,) and perform lo-normalization of V., and V;,. Our proposed Attention-based
Fusion Loss is formulated as follows:

v, Ve \°
Lat fuse = — = - 14
= < Hwh) 1)

We simply train our network with the proposed Attention-based Fusion Loss coupled with
the categorical cross-entropy loss for efficient and integral object localization. The total loss
function for training our model is:

Ltot - LC’E(y7pm) + LCE(yupi) + ﬁ * Latifuse (15>

where, Log denotes the categorical cross-entropy loss function, 5 is a hyperparameter used to
scale our Attention-based Fusion Loss. Empirically, we choose 8 = 50 in our experiments.
y denotes the true labels, p, and p; denote the predictions made by our complementary
classifiers.
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After Attention-
based Fusion Loss

Input image  Classifier X  Classifier X

Figure 5: Visualization of the proposed Attention-based Fusion Loss During training, we
visualize the effect of our proposed loss function. The left column denotes the input image,
the second and third columns denote the localization maps of our two classifiers and the
right column denotes the localization map after applying our Attention-based Fusion Loss.

A.4 Experiments and Results
A.4.1 Experimental Setup

Datasets: We perform our experiments on two benchmark datasets used for object local-
ization, CUB-200-2011 [3] and ILSVRC 2016 [1]. CUB-200-2011 has a total of 11,788 images
spanning across 200 bird categories, of which 5,994 images are used for training and 5,794
for testing. ILSVRC 2016 has approximately 1.2 million images in the training set across
1000 different categories, and 50,000 images in the validation set. We compare our results
across different methods on the ILSVRC 2016 validation set.

Evaluation Metrics: We evaluate our method using the following metrics: 1) Top-1 local-
ization (Top-1 Loc) accuracy [/ calculates the fraction of images that are correctly classified
and the predicted bounding box has 50% IoU with the ground truth bounding box. 2) Top-
1 classification (Top-1 Clas) accuracy determines the fraction of images that are correctly
classified. 3) GT-known localization (GT-Loc) accuracy [35] only considers the fraction of
images for which the predicted bounding box has 50% IoU with the ground truth bound-
ing box, independent of the Top-1 classification accuracy. 4) Apart from the above three
standard metrics, we also evaluate our method on the recently proposed MaxBoxAccv2 |2]
metric (as shown in table 4).

11



Method | Top-1 Loc (%) | Top-1 Clas (%) |

InceptionV3-CAM [31] 43.67 73.80
InceptionV3-SPG [30] 46.64 -
InceptionV3-DANet [10] 49.45 71.20
VGG-CAM |[31] 34.41 67.55
VGG-ACoL [37] 45.92 71.90
VGG-ADL [3] 52.36 65.27
VGG-CCAM [17] 50.07 73.20
VGG-EIL [15] 56.21 72.26
Ours-VGG 58.12 72.59
ResNet50-CAM [31] 10.41 75.68
ResNet50-CutMix [39] 54.81 -
Ours-ResNet50 64.70 77.28

Table 1: Quantitative Results on CUB-200-2011 dataset.

A.4.2 Implementation Details

We experiment with VGG16 [13] and ResNet50 [15] as the backbone CNN architectures
for our proposed approach. As in [31], we remove the layers after conv5-3 in the VGG16
network. We insert our CAAM and SSAM modules after conv5-3 layer of the original
VGG16 network. The aggregated outputs from both CAAM and SSAM modules are then
fed to a global average pooling (GAP) layer [10], followed by a fully-connected layer for
classification. We follow similar steps for ResNet50 backbone as well. Both VGG16 and
ResNet50 architectures are initialized with weights pre-trained on ImageNet 1] dataset. We

extract our localization maps followed by bounding boxes, in a similar way to [34]. During
testing, we do not hide patches in the input image, similar to [35]. Also, we deactivate CAAM
and SSAM modules during testing, similar to vanilla CAM [34] model for fair comparison

with other existing state-of-the-art methods (shown in tables 1, 2 & 3).

’ Method \ Top-1 Clas (in %) ‘
InceptionV3-CAM |[34] 68.10
GoogLeNet-HaS-32 [35] 70.70
VGG-CAM |[34] 66.60
VGG-ACoL [37] 67.50
VGG-ADL [35] 69.48
VGG-CCAM [17] 66.60
VGG-EIL [15] 70.48
Ours-VGG 71.24

Table 2: Classification performance on ILSVRC 2016 dataset.
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’ Method

| Top-1 Loc (%) | GT-Loc (%) |

InceptionV3-CAM [31] 46.29 -
GoogLeNet-HaS-32 [35] 45.21 60.29
InceptionV3-SPG [30] 48.60 64.69
InceptionV3-DANet [10] 47.53 -
InceptionV3-MEIL [18] 49.48 -
VGG-CAM [34] 42.80 57.72
VGG-ACoL [37] 45.80 62.96
VGG-ADL [3] 44.92 -
VGG-CCAM [17] 48.22 63.58
VGG-EIL [18] 46.27 -
Ours-VGG 51.64 66.32
ResNet50-CAM 1] 38.99 51.86
ResNet50-SE-ADL [38] 48.53 —~
ResNet50-CutMix [39] 47.25 —
Ours-ResNet50 52.36 67.89

Table 3: Localization Results on ILSVRC 2016 dataset.

| Method [ CUB-200-2011 [ ILSVRC 2016 |
CAM [3] 711 61.1
Ha$-32 [35)] 76.3 61.8
ACoL [37] 72.3 60.3
SPG [30] 63.7 61.6
ADL [35] 75.7 60.8
CutMix [39] 71.9 62.1
Ours 77.5 63.4

Table 4: Evaluating our method on MaxBoxAccv2. We evaluate our model on the recently
proposed MaxBoxAccv2 metric [2] on VGG16 as the backbone.

In figure 6, we compare our results qualitatively with the baseline CAM [3/] model. Ground
truth bounding boxes are denoted in Red, whereas predicted bounding boxes are denoted in
Green. Visually, we observe that our attention maps are much precise and our model tries
to localize non-discriminative object parts (like the wings, legs, tail of the bird) as well.
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(a) CUB-200-2011 (b) ILSVRC 2016

Figure 6: Qualitative Results

(v) Future Plans: Extend the work of weakly-supervised object localization for the case of
multiple objects in an image, more like weakly-supervised object detection, laying the foun-
dation for significantly bridging the gap between supervised and weakly-supervised methods.

(vi) Visible Research Output:

(a) Full Paper(s) Published in Conference Proceedings:

e “Where to Look?: Mining Complementary Image Regions for Weakly Supervised
Object Localization”, Sadbhavana Babar and Sukhendu Das; In the IEEE Winter
Conference on Applications of Computer Vision (WACV) [Rank A], Fully Virtual,
Jan 5-9, 2021.

(b) Seminars/Workshops/Conferences/Exchange Programmes attended and Pa-
pers Presented:

e Attended the Computer Vision Track of the Google Research India Al Summer
School from August 20-22, 2020.

e Attended the Workshop on Machine Intelligence and Brain Research organized by
the Center for Computational Brain Research (CCBR), IIT Madras from January
2-10, 2020.

e Attended IMPRINT Project Review Meeting II held at IIT Delhi from 31,/10/2019
to 01/11/2019.

e Visited DRDO, CAIR in Bangalore to gain insights about the ongoing IMPRINT
Project from January 10-11, 2019.

e Attended 11th Indian Conference on Computer Vision, Graphics and Image Pro-
cessing (ICVGIP) 2018 held at IIIT Hyderabad from December 18-22, 2018.

(c) Awards/Honours, if any:

e Awarded cash prize for being in the top-20 performers in the CVIT Computer Vision
Summer School, 2019 held at IIIT Hyderabad from 01/07/2019 to 07/07/2019.
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