
Numerical Methods with Worked Examples:
Matlab Edition

C. Woodford � C. Phillips

Numerical Methods
with Worked
Examples:
Matlab Edition

Second Edition

C. Woodford
Department of Computing Service
Newcastle University
Newcastle upon Tyne, NE1 7RU
UK
c.h.woodford@newcastle.ac.uk

Prof. C. Phillips
School of Computing Science
Newcastle University
Newcastle upon Tyne, NE1 7RU
UK

Additional material to this book can be downloaded from http://extras.springer.com.

ISBN 978-94-007-1365-9 e-ISBN 978-94-007-1366-6
DOI 10.1007/978-94-007-1366-6
Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2011937948

1st edition: © Chapman & Hall (as part of Springer SBM) 1997
© Springer Science+Business Media B.V. 2012
No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written
permission from the Publisher, with the exception of any material supplied specifically for the purpose
of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Cover design: deblik

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

mailto:c.h.woodford@newcastle.ac.uk
http://extras.springer.com
http://www.springer.com
http://www.springer.com/mycopy

Preface

This book is a survey of the numerical methods that are common to undergraduate
courses in Science, Computing, Engineering and Technology. The aim is to present
sufficient methods to facilitate the numerical analysis of mathematical models likely
to be encountered in practice. Examples of such models include the linear equations
describing the stress on girders, bridges and other civil engineering structures, the
differential equations of chemical and thermal reactions, and the inferences to be
drawn from observed data.

The book is written primarily for the student, experimental scientist and design
engineer for whom it should provide a range of basic tools. The presentation is
novel in that mathematical justification follows rather than precedes the description
of any method. We encourage the reader first to gain a familiarity with a particular
method through experiment. This is the approach we use when teaching this mate-
rial in university courses. We feel it is a necessary precursor to understanding the
underlying mathematics. The aim at all times is to use the experience of numerical
experiment and a feel for the mathematics to apply numerical methods efficiently
and effectively.

Methods are presented in a problem–solution–discussion order. The solution may
not be the most elegant but it represents the one most likely to suggest itself on the
basis of preceding material. The ensuing discussion may well point the way to better
things. Dwelling on practical issues we have avoided traditional problems having
neat, analytical solutions in favour of those drawn from more realistic modelling
situations which generally have no analytic solution.

It is accepted that the best way to learn is to teach. But even more so, the best
way to understand a mathematical procedure is to implement the method on a to-
tally unforgiving computer. Matlab enables mathematics as it is written on paper
to be transferred to a computer with unrivalled ease and so offers every encourage-
ment. The book will show how programs for a wide range of problems from solving
equations to finding optimum solutions may be developed. However we are not rec-
ommending re-inventing the wheel. Matlab provides an enormous range of ready to
use programs. Our aim is to give insight into which programs to use, what may be
expected and how results are to be interpreted. To this end we will include details of
the Matlab versions of the programs we develop and how they are to be employed.

v

vi Preface

We hope that readers will enjoy our book. It has been a refreshing experience to
reverse the usual form of presentation. We have tried to simplify the mathematics
as far as possible, and to use inference and experience rather than formal proof as a
first step towards a deeper understanding. Numerical analysis is as much an art as a
science and like its best practitioners we should be prepared to pick and choose from
the methods at our disposal to solve the problem at hand. Experience, a readiness to
experiment and not least a healthy scepticism when examining computer output are
qualities to be encouraged.

Chris Woodford
Chris Phillips

Newcastle University, Newcastle upon Tyne, UK

Contents

1 Basic Matlab . 1
1.1 Matlab—The History and the Product 1
1.2 Creating Variables and Using Basic Arithmetic 2
1.3 Standard Functions . 2
1.4 Vectors and Matrices . 3
1.5 M-Files . 5
1.6 The colon Notation and the for Loop 6
1.7 The if Construct . 7
1.8 The while Loop . 8
1.9 Simple Screen Output . 9
1.10 Keyboard Input . 9
1.11 User Defined Functions . 10
1.12 Basic Statistics . 11
1.13 Plotting . 11
1.14 Formatted Screen Output . 12
1.15 File Input and Output . 14

1.15.1 Formatted Output to a File 14
1.15.2 Formatted Input from a File 14
1.15.3 Unformatted Input and Output (Saving and Retrieving Data) 15

2 Linear Equations . 17
2.1 Introduction . 18
2.2 Linear Systems . 19
2.3 Gaussian Elimination . 22

2.3.1 Row Interchanges . 24
2.3.2 Partial Pivoting . 26
2.3.3 Multiple Right-Hand Sides 30

2.4 Singular Systems . 32
2.5 Symmetric Positive Definite Systems 33
2.6 Iterative Refinement . 35
2.7 Ill-Conditioned Systems . 37
2.8 Gauss–Seidel Iteration . 37

vii

viii Contents

3 Nonlinear Equations . 47
3.1 Introduction . 48
3.2 Bisection Method . 49

3.2.1 Finding an Interval Containing a Root 50
3.3 Rule of False Position . 51
3.4 The Secant Method . 52
3.5 Newton–Raphson Method . 55
3.6 Comparison of Methods for a Single Equation 58
3.7 Newton’s Method for Systems of Nonlinear Equations 59

3.7.1 Higher Order Systems . 63

4 Curve Fitting . 71
4.1 Introduction . 71
4.2 Linear Interpolation . 72

4.2.1 Differences . 75
4.3 Polynomial Interpolation . 77

4.3.1 Newton Interpolation . 77
4.3.2 Neville Interpolation . 80
4.3.3 A Comparison of Newton and Neville Interpolation 81
4.3.4 Spline Interpolation . 83

4.4 Least Squares Approximation . 86
4.4.1 Least Squares Straight Line Approximation 86
4.4.2 Least Squares Polynomial Approximation 89

5 Numerical Integration . 97
5.1 Introduction . 98
5.2 Integration of Tabulated Functions 98

5.2.1 The Trapezium Rule . 99
5.2.2 Quadrature Rules . 101
5.2.3 Simpson’s Rule . 101
5.2.4 Integration from Irregularly-Spaced Data 102

5.3 Integration of Functions . 104
5.3.1 Analytic vs. Numerical Integration 104
5.3.2 The Trapezium Rule (Again) 104
5.3.3 Simpson’s Rule (Again) 106

5.4 Higher Order Rules . 109
5.5 Gaussian Quadrature . 110
5.6 Adaptive Quadrature . 112

6 Numerical Differentiation . 119
6.1 Introduction . 120
6.2 Two-Point Formula . 120
6.3 Three- and Five-Point Formulae 122
6.4 Higher Order Derivatives . 125

6.4.1 Error Analysis . 126
6.5 Cauchy’s Theorem . 128

Contents ix

7 Linear Programming . 135
7.1 Introduction . 136
7.2 Forming a Linear Programming Problem 136
7.3 Standard Form . 140
7.4 Canonical Form . 141
7.5 The Simplex Method . 142

7.5.1 Starting the Simplex Method 146
7.6 Integer Programming . 149

7.6.1 The Branch and Bound Method 151
7.7 Decision Problems . 153
7.8 The Travelling Salesman Problem 155
7.9 The Machine Scheduling Problem 156

8 Optimisation . 169
8.1 Introduction . 170
8.2 Grid Searching Methods . 171

8.2.1 Simple Grid Search . 171
8.2.2 Golden Section Search . 173

8.3 Unconstrained Optimisation . 175
8.3.1 The Method of Steepest Descent 176
8.3.2 A Rank-One Method . 178
8.3.3 Generalised Rank-One Method 181

8.4 Constrained Optimisation . 184
8.4.1 Minimisation by Use of a Simple Penalty Function 185
8.4.2 Minimisation Using the Lagrangian 187
8.4.3 The Multiplier Function Method 188

9 Ordinary Differential Equations . 197
9.1 Introduction . 198
9.2 First-Order Equations . 200

9.2.1 Euler’s Method . 200
9.2.2 Runge–Kutta Methods . 202
9.2.3 Fourth-Order Runge–Kutta 204
9.2.4 Systems of First-Order Equations 206
9.2.5 Higher Order Equations 207

9.3 Boundary Value Problems . 208
9.3.1 Shooting Method . 208
9.3.2 Difference Equations . 209

10 Eigenvalues and Eigenvectors . 215
10.1 Introduction . 215
10.2 The Characteristic Polynomial 217
10.3 The Power Method . 218

10.3.1 Power Method, Theory 219
10.4 Eigenvalues of Special Matrices 222

10.4.1 Eigenvalues, Diagonal Matrix 222
10.4.2 Eigenvalues, Upper Triangular Matrix 223

x Contents

10.5 A Simple QR Method . 223

11 Statistics . 231
11.1 Introduction . 232
11.2 Statistical Terms . 232

11.2.1 Random Variable . 232
11.2.2 Frequency Distribution 232
11.2.3 Expected Value, Average and Mean 234
11.2.4 Variance and Standard Deviation 234
11.2.5 Covariance and Correlation 236

11.3 Least Squares Analysis . 239
11.4 Random Numbers . 241

11.4.1 Generating Random Numbers 242
11.5 Random Number Generators . 243

11.5.1 Customising Random Numbers 243
11.6 Monte Carlo Integration . 244

Matlab Index . 249

Index . 253

Chapter 1
Basic Matlab

Aims This introductory chapter aims to encourage the immediate use of Mat-
lab through examples and exercises of basic procedures. Sufficient techniques and
skills will be illustrated and practised to prepare for the end of chapter exercises in
the main text and indeed for any numerical calculation. Presentation of results and
reading and writing data from files will also be considered. Overall it is hoped that
the beauty, simplicity and power of Matlab will begin to appear.

1.1 Matlab—The History and the Product

Matlab was devised by Cleve Moler in the late 1970’s to make numerical computing
easier for students at the University of New Mexico. Many of the obstacles to using
a computer for mathematics were removed. In a Matlab program variables, whether
real or complex numbers, vectors or matrices may be named and used as and when
required without prior notification or declaration and may be manipulated according
to the rules of mathematics. Matlab spread to other Universities and in 1984 Cleve
went into partnership with a colleague to set up a company called Mathworks to
market Matlab. Mathworks is now a multi-national corporation specialising in tech-
nical computing software. Matlab and products built on Matlab are used all over
the world by innovative technology companies, government research labs, financial
institutions, and more than 3,500 universities.

Matlab is a high-level user friendly technical computing language and interactive
environment for algorithm development, data visualisation, data analysis, and nu-
meric computation. Matlab applications include signal and image processing, com-
munications, control design, test and measurement, financial modelling and analy-
sis, and computational biology. Matlab provides specialised collections of programs
applicable to particular problem areas in what are known as Toolboxes and which
represent the collaborative efforts of top researchers from all over the world. Mat-
lab can interface with other languages and applications and is the foundation for all
MathWorks products. Matlab has an active user community that contributes freely

C. Woodford, C. Phillips, Numerical Methods with Worked Examples: Matlab Edition,
DOI 10.1007/978-94-007-1366-6_1, © Springer Science+Business Media B.V. 2012

1

http://dx.doi.org/10.1007/978-94-007-1366-6_1

2 1 Basic Matlab

available Matlab programs to a supported web site1 for distribution and appraisal.
Help, advice and discussion of matters of common interest are always available in
internet user forums. Whatever the question, someone somewhere in the world will
have the answer.

1.2 Creating Variables and Using Basic Arithmetic

To create a single variable just use it on the left hand side of an equal sign. Enter the
name of the variable to see its current value.

The ordinary rules of arithmetic apply using the symbols +, −, ∗ and \ for ad-
dition, subtraction, multiplication and division and ∧ raising to a power. Use round
brackets (and) to avoid any ambiguities.

In the interests of clarity when illustrating Matlab commands the ∧ symbol will
be used throughout the book to denote the caret (or circumflex) entered from most
keyboards by the combination SHIFT-6.

Exercises

1. Enter the following commands2 on separate lines in the command window.

(i) r = 4 (ii) ab1 = 7.1 + 3.2 (iii) r
(iv) A = r∧2 (v) sol = ab1∗(1 + 1/r) (vi) ab1 = sol∧ (1/2)
(vii) CV2 = 10/3 (viiii) x = 1.5e-2

2. Enter one or more of the previous commands on the same line using a semi-
colon ; to terminate each command. Notice how the semi-colon may be used to
suppress output.

3. If £1000 is owed on a credit card and the APR is 17.5% how much interest would
be due? Divide the APR by 12 to get the monthly rate.

1.3 Standard Functions

Matlab provides a large number of commonly used functions including abs, sqrt,
exp, log and sin, cos and tan and inverses asin, acos, atan. Functions are called
using brackets to hold the argument, for example

x = sqrt(2); A = sin(1.5); a = sqrt(a∧2 + b∧2); y = exp(1/x);

For a full list of Matlab provided functions with definitions and examples, follow the
links Help → Product Help from the command window and choose either Functions
By Category or Functions Alphabetical List from the ensuing window.

1www.mathworks.com/matlabcentral/fileexchange/
2We may also terms such as statement, expression and code within the context of Matlab com-
mands.

http://www.mathworks.com/matlabcentral/fileexchange/

1.4 Vectors and Matrices 3

Exercises

1. Find the longest side of a right angled triangle whose other sides have lengths 12
and 5. Use Pythagoras: (a2 + b2 = c2).

2. Find the roots of the quadratic equation 3x2 − 13x + 4 using the formula
x = (−b ± √

b2 − 4ac)/2a. Calculate each root separately. Note that arithmetic
expressions with an implied multiplication such as 2a are entered as 2∗a in Mat-
lab.

3. Given a triangle with angle π/6 between two sides of lengths 5 and 7, use the
cosine rule (c2 = a2 + b2 − 2ab cosC) to find the third side.

Note that π is available in Matlab as pi.

1.4 Vectors and Matrices

Vectors and matrices are defined using square brackets. The semi-colon ; is used
within the square brackets to separate row values.

For example the matrix

A =
⎛
⎝

2 3 −1
4 8 −3

−2 3 1

⎞
⎠

may be created using

A = [2 3 −1; 4 8 −3; −2 3 1]

A row vector v = (2 3 −1) may be created using v = [2 3 −1].
The transpose of a vector (or matrix) may be formed using the ' notation. It fol-

lows that the column vector

w =
⎛
⎝

5
3
2

⎞
⎠

may be created using either w = [5; 3; 2] or w = [5 3 2]'.

Exercises

1. Create the row vector x = (4 10 −1 0).
2. Create the column vector y = (−5.3 −2 0.9 1).
3. Create the matrix

B =
⎛
⎝

1 7.3 −5.6 2
1.4 8 −3 0
−2 6.3 1 −2

⎞
⎠ .

4. The roots of a polynomial may be found by using the function roots. For ex-
ample the command roots(p) will return the roots of a polynomial, where p

4 1 Basic Matlab

specifies the vector of coefficients of the polynomial beginning with the coef-
ficient of the highest power and descending to the constant term. For example
roots([1 2 −3]) would find the roots of x2 + 2x − 3. Use roots to check the
solution of question (2), Sect. 1.3.

Individual elements of a vector or matrix may be selected using row-column
indices, for example by commands such as A(1, 2) or z = w(3).

Whole rows (or columns) may be selected. For example, A(: , 1) selects the
1st column and A(3 , :) selects the 3rd row of a matrix A. More generally, having
assigned values to variables i and j, use expressions such as abc = A(: , j) to assign
the j th column of A to a variable, abc and xyz = A (i , :) to assign the ith row of
A to a variable, xyz.

Exercises

1. Using B (as above) assign the values held at B(1, 2) to a variable, a and B(3, 4)
to variable, b.

2. Form a vector, v1 from the 2nd column of B and the vector, v2 from the 1st row
of B.

Note that Matlab enforces the rules regarding the multiplication of matrices and
vectors. A command of the form A∗B is only executed if A has the same number of
columns as B has rows.

Exercises

1. Using the previous A and w form the product A∗w. See what happens if the order
of multiplication is reversed.

2. The norm (or size) of a vector, v where v = (v1, . . . , vn) is defined to be√
v2

1 + · · · + v2
n. Find the norm of the vector (3 4 5 −1) either by adding indi-

vidual terms and taking the square root or by using the formula
√

v.vT , where v

is a row vector. Check the result using the Matlab function norm and a command
of the form norm(v).

In general inserting spaces in Matlab commands does not affect the outcome.
However care has to be taken when forming a list of numbers as is the case when
specifying the elements of a vector or an array. The notation for numbers takes
priority over the notation for expressions connecting numbers with operators. In
practice this means that the command, V = [1 2 −1] produces the 3-element
vector, [1 2 −1]. On the other hand, V = [1 2 − 1] produces the 2-element vector,
[1 1].

In addition to the usual operations for adding, subtracting and multiplication of
compatible matrices and vectors Matlab provides a large number of other matrix–
vector operations. Use the Matlab help system and follow the links Help → Product
Help → Functions: By Category → Mathematics → Arrays and Matrices (and also
→ Linear Algebra) for details. As example we consider the left-division \ operator.

1.5 M-Files 5

A system of linear equations such as

3x1 + 5x2 + 7x3 = 25,

x1 − 4x2 + 2x3 = 10,

4x1 − x2 − 3x3 = −1

may be written in the form Ax = b, where

A =
⎛
⎝

3 5 7
1 −4 2
4 −1 −3

⎞
⎠ , x =

⎛
⎝

x1
x2
x3

⎞
⎠ , b =

⎛
⎝

25
10
−1

⎞
⎠ .

If A is an n × n matrix and b is a column vector having n rows then the solution
(if it exists) to the linear system of equations written in the form Ax = b is given in
Matlab by using the command

x = A\b

A warning is given if the solution does not exist or is unreliable due to rounding
error.

Exercises

1. Solve the following systems of equations.

(i) 2 a + c = 5 (ii) 3 a + 2 c − d = 3
3 a − 2 c = 4 2 a − 2 c + 3 d = 9

a − c − d = 2.

1.5 M-Files

On the whole entering Matlab commands and statements line by line is too error
prone for anything but very short, transitory programs. Programs under development
and programs which are going to be used repeatedly are better stored as a sequence
of commands in a file. Such files are called M-files. A single command, filename
if that is the name of the M-file stored in the working directory, causes Matlab to
execute the commands stored in filename. An M-file is created by opening the File
menu in the command window and following the link New → M-File. At this point
a new window titled Untitled opens into which Matlab commands may be entered.
Use the Save As option to save the M-file and allocate a name. A suffix .m will be
added automatically. The file may be re-opened for editing using the open option
from the File menu.

Exercises

1. Use the file menu to create an M-file. Enter a sequence of commands. Save the
file using a name of your choice. Execute the newly created M-file. Edit the file
if necessary to obtain successful execution, then close the file.

2. Re-open the M-file, make changes to the program and re-execute.

6 1 Basic Matlab

1.6 The colon Notation and the for Loop

The colon operator, which has already been used in specifying rows and columns
of matrices (page 4), may be used to specify a range of values. In general the colon
operator uses variable names or actual numbers. For example:

1 : n is equivalent to 1, 2, 3, 4, . . . , n. (incrementing by 1)
1 : m : n is equivalent to 1, 1+m, 1+2m, 1+3m, . . . , n. (incrementing by m)

The colon notation is particularly useful in the for construct, which repeats a se-
quence of commands a number of times. For example, the following code adds the
first 10 integers: 1, 2, . . . , 10, one by one. The running total is held in the variable
addnumbers.

addnumbers = 0; % initial total
for i = 1 : 10;

addnumbers = addnumbers + i; % running total
end

Note the use of the % symbol to document the program. Matlab ignores anything on
the line following the % sign.

Exercises

1. By making a small change to the program above, use Matlab to find the sum of
the even numbers 2, . . . , 10.

2. Create the vector b = (2.5 5 9 −11). Add the elements of b by indexing the
elements of b within a for loop, in which a statement of the form

eltsum = eltsum + b(i)

holds the running total in the variable, eltsum.
3. The following series may be used to calculate an approximation to

√
2

xn+1 = xn

2
+ 1

xn

, n = 1,2, . . . , x1 = 1.

Calculate x1, x2, . . . , x7 and show convergence to
√

2. The following code would
be sufficient

x(1) = 1 % first approximation
for n = 1 : 6

x(n+1) = x(n)/2 + 1/x(n) % successive approximations
end

Devise an alternative, more economical version which does not save intermediate
results but simply displays and then overwrites the current estimate of

√
2 by the

next estimate.
4. The Fibonacci numbers: 0,1,1,2,3,5,8,13, . . . (each number is the sum of the

two preceding numbers) relate to several natural phenomena. Use a for loop to
print the ratio of successive Fibonacci numbers Fn+1/Fn for n = 2, . . . ,20 and
so illustrate convergence of this ratio to (1 + √

5)/2 (The Golden ratio).

1.7 The if Construct 7

Note By default Matlab continues printing until a program is completed. To view
output page by page enter the command more on. To restore the default enter more.

1.7 The if Construct

In addition to the loop structure program flow may be controlled using if, else and
elseif. The basic constructs are shown below:

if expression; if expression; if expression;
statements; statements; statements;

end; else elseif expression;
statements; statements;

end; else
statements;

end;

where expression is a logical statement which evaluates to either true or false and
where statements is any set of Matlab statements. Logical statements include vari-
able relationships such as:

== (equals) > (greater than) >= (greater than or equal to)
< (less than) <= (less than or equal to) ∼ (not) && (and) || (or)

Use brackets for compound expressions to ensure that Matlab interprets the logic as
intended.

Exercises

1. Predict the values of the variables following execution of the fragments of code.
Enter the code in a Matlab program to verify the outcome.

(i) x = 2;
y = 1;
if x > 2; y = x; end;

(ii) a = 1;
b = 2;
if a == 1; b = a + 1; end;

(iii) u = 1; v = 2; w = −2;
if (u ∼= 0 && u < abs(w)) || u < 0;

u = u + w;
else

u = u − w;
end;

2. In using the formula for the solution of a quadratic equation the discriminant
(b2 − 4ac) may be positive (indicating two real roots), zero (a double root) or
negative (complex roots). Write Matlab code to set a variable roots to 2, 1 or 0

8 1 Basic Matlab

depending on the value of the discriminant. Test the program using various val-
ues of a, b and c.

3. Given a vector (or matrix) of dimension (m, n) use a for loop within a for loop to
count the number of non-zero elements. Test your code on simple examples.

Note the function size may be used to determine the dimensions of an array. For
example [n m] = size(A) returns the number of rows, n and the number of
columns, m.

1.8 The while Loop

The while loop repeats a sequence of instructions until a specified condition is met.
It is used as an alternative to the for loop in cases where the number of required
repeats is not known in advance. The basic construct is:

while expression
Matlab commands

end;

If expression evaluates to true the Matlab commands are executed and the program
returns to re-evaluating expression. If expression evaluates to false the command
following end; (if any) is executed.

Exercises

1. Although a for loop would be more appropriate, enter the following code which
uses a while loop to find the sum of the numbers 1, . . . , 10.

addnumbers = 0; % set running total to 0
n = 1; % first number
while n <= 10

addnumbers = addnumbers + n; % add current number to running total
n = n + 1; % next number

end;
addnumbers % show the result

2. Create a vector of numbers which includes one or more zeros. Construct a while
loop to find the sum of the numbers up to the first zero.

3. Use a while loop and the previously quoted series to calculate an approximation
to

√
2 accurate to 4 decimal places by terminating the loop when the difference

between successive estimates is less than 0.00005.

Note Enter Ctrl C from the keyboard to terminate execution prematurely (useful if
a program runs out of control).

1.9 Simple Screen Output 9

1.9 Simple Screen Output

As an alternative to entering the name of a variable the function disp may be used
to output a value or a string. The standard forms are disp(x) and disp('s ') where x

is a variable and s is a string of alphanumeric and other characters.

Exercises

1. Assign a value to the single variable root and enter the command

disp('Root of the equation:'); disp(root);

to show how more meaningful output may be produced.
2. Repeat the previous question with a vector rather than a single variable.

1.10 Keyboard Input

The function input may be used to request user input. The standard form is
x = input('request'). The user sees the character string request on the screen and
enters number(s) from the keyboard to be allocated to the program variable x. If
an answer in the form of a character string is required the command has the form
x = input('request','s'). The command is useful for constructing programs that inter-
act with the user.

Note The character string, \n may be inserted into the request string to move the
cursor to a new line.

Exercises

1. As part of an interactive program, use the following code to obtain the value of
m and echo the input to the screen. The program asks for confirmation (Y or N)
that the number is correct and if necessary repeats the original request.

m=input('Enter the number of data values \n');
reply=input('Is that correct, answer Y or N\n','s');
while ∼ strcmp(reply,'Y')

input('Enter the number of data values\n');
reply=input('Is that correct, answer Y or N\n','s');

end;
disp('Thank you');

2. Modify the program by allowing a maximum of 3 corrections to the first entry.
3. Write a program to request a password from the user. Compare the reply with a

stored string. If necessary repeat the request at most twice until there is agree-
ment.

10 1 Basic Matlab

Note the function strcmp may be used to compare two strings. strcmp(a, b) evaluates
to true if a and b are identical and false otherwise. If two strings have equal leading
characters but one has trailing blanks they are not considered equal. The function
strncmp for comparing the leading n characters of two strings is also provided by
Matlab. Enter the command help strncmp for details.

1.11 User Defined Functions

Matlab provides a variety of built-in functions to cover a vast range of activities but
it also allows user-defined functions. As we will see this can be a very useful facility.
Each user-defined file must be stored in an M-file with the same name (apart from
the .m suffix) as the function. The function heading has the form

function [out1,out2, . . .] = functionname (in1, in2, . . .)

where functionname is the chosen name of the function (and the M-file), in1, in2, . . .

are input parameters to the function and out1,out2, . . . are output parameters. In
practice actual values or names of variables would be used as parameters.

As an example we consider a function for calculating the sum of the series

1 + x + x2 + · · · + xn.

We will call our function sumGP and allow for two input variables x and n and one
output parameter sum.

The following code (or similar) would be entered in an M-file with the name
sumGP.m. The variable names we have used as parameters (and corresponding vari-
ables within the function) are an arbitrary choice.

function [result] = sumGP(x, n)
if x == 1; result = n+1 % Check for the exceptional case.
else result = (x∧(n+1) − 1)/(x − 1)
end

Assuming the M-file, sumGP.m is in the working directory a command of the
form z = sumGP(p, q) or sumGP(p, q) would be used to apply the function where
p and q are either variable names or actual values. In this instance variables z, p and
q would take the place of parameters result, x and n used in the formal definition of
SumGP.

Exercises

1. Create the aforementioned function sumGP and test it using the commands
sumGP(1,4) (which should return the value 5) and sumGP(0.5,2) (to re-
turn 1.75).

2. Write and test a function FtoC having one input and one output parameter
to convert degrees Fahrenheit to degrees Centigrade. Use the formula C =
(5/9)(F − 32). Establish the function in the M-file FtoC.m and test it from a
program with calls such as FtoC(32) and centigrade = FtoC(212).

1.12 Basic Statistics 11

3. Write a function MaxElement to find the largest absolute value of all elements of
an array or vector. Test the function on simple examples. Note that for a given ma-
trix or vector, A the Matlab function max applied to abs(A), as in max(abs(A))

would produce the same result.

1.12 Basic Statistics

A list of basic statistical functions, including mean and std (standard deviation), and
plotting functions bar (bar charts) and pie (pie charts) may be found by following
the links Help → Product Help → Functions: By Category → Data Analysis from
the command window. Other statistical applications including Regression Analysis,
Hypothesis Testing and Multivariate Methods may be found in the Statistics Tool-
box. Follow the links Help → Product Help → Statistics Toolbox for details.

Exercises

1. As examples of some of the basic functions store a random selection of numbers
in a vector v and enter each of the commands: mean(v), std(v), bar(v) and pie(v)

separately.
2. Enter the command help pie for an explanation of the pie function and use the

information to add labels to the pie chart of variables v.

1.13 Plotting

For 2-D graphics, the basic commands are: plot(v), plot(u, v) and plot(u, v, 's ')
where u and v are vectors and s is a combination of up to three character options,
one from under each heading of Table 1.1.

The default option for plotting corresponds to '−b' (solid line, no data marks,
blue).

Exercises

1. Store a random selection of (x, y) coordinates in the vectors x and y and enter
the command plot(x, y, ' − +r ').

2. Repeat the previous question with other character strings.

Table 1.1 Plotting options

Line style Data markers Colour

− solid line + plus sign y yellow r red

−. dash–dot line o circle m magenta g green

−− dashed line . dot c cyan b blue

: dotted line * asterisk k black g white

x cross

12 1 Basic Matlab

3. Use the following program to plot the functions y = x2 over the interval 0 <=
x <= 4.

% define sufficient x-points across the range [0, 4] to produce a smooth curve
% use Matlab function linspace to generate 40 equally spaced values across
% the range [0, 4]

x = linspace (0, 4, 40);
% form the vector of y-values, using the .∗ operator for element by element
% matrix multiplication

y = x.∗x
% plot the curve using continuous (red) lines,

plot(x, y, 'r');

4. Plot the functions y = x and y = sin(x) and y = cos(x) over the range [0,2π] on
the same graph but using different colours. The command hold may be used to
retain the current plot to add further plots. Re-issuing the command hold releases
the current plot.

5. Details of the enormous range of Matlab facilities for plotting, annotation and
visualisation may be found by following the links from the help menu in the
command window. As a rather spectacular example use the following program
to plot the three dimensional surface defined by z = x2 −y2 across the x–y ranges
[−2,2] on both axes.

% establish a grid of points equally spaced at intervals of 0.1 across the range
[x, y] = meshgrid(−2 : 0.1 : 2, −2 : 0.1 : 2);

% establish z-values using element by element multiplication
z = x.∗x − y.∗y

% plot the surface
surf(x, y, z);
colorbar % show the colour scale.

1.14 Formatted Screen Output

By default Matlab prints numbers using 5 digits. To obtain output using up to 16
digits enter the command format long. To restore the default enter format short. In
this section we consider how numbers may be presented in more specialised form
in terms of style, field width and number of decimal places. In general formatted
output of one or more variables is produced by using the command sprintf to build
an output string, which is displayed using disp.

The general form is
sprintf ('formatstring', variables)
where formatstring is a string composed of text, formats and parameters

variables is a list of variables to be output and separated by commas.
If necessary the formatstring is repeated until the list of the variables to be
output is completed.

1.14 Formatted Screen Output 13

Formats are preceded by % and are applied in the order of the variables. The more
used formats are illustrated below:

d for integer format
for example %6d for a field width of 6 places.

f fixed point format
for example %10.5f for a field width of 10 places and 5 decimal places.

e floating point (exponent) format
for example %10.3e for a field width of 10 places and 3 decimal place
exponent.

We will use the parameter \n (newline) but there are others. For more details and
details of other features of the format command, enter help format in the command
window.

Exercises

1. Enter the following code to compare π and its popular approximation 22/7.

ratio = 22/7;
s1 = sprintf('pi to 6 decimal places is %8.6f ', pi);
s2 = sprintf('22/7 to 6 decimal places is %8.6f ', ratio);
disp(s1); disp(s2);

2. Repeat the previous question making use of the \n parameter to obtain the same
output using a single string. It may be necessary to use more that one line to enter
the format. Use the continuation mark as shown in the example below.

3. Allocate values to variables Node, ux and uy and use the following commands
to produce the output:

Node 27 ux 1.0934 uy 3.5e+005

s = sprintf(. . . % three dots indicate a continuation to the next line
'Node %3d ux %6.4f uy %10.3e', Node, ux, uy);
disp(s);

4. Display the matrix

A =
⎛
⎝

1 2 4.56
3 4 5.0
3 29 4.567

⎞
⎠

noting that Matlab stores elements of a matrix in column order and so to obtain
the desired effect the transpose of A is used, for example:

s = sprintf('%6.3f %6.3f %6.3f \n ', A');
disp(s);

5. Repeat the previous question but with a more detailed format so that the display
of matrix A bears a closer resemblance to the form shown above.

14 1 Basic Matlab

1.15 File Input and Output

In order to access a file it must be opened. A command of the form fid =
fopen('filename', 'w+') opens a file for read, write and create access in M/S Win-
dows systems (other operating systems may vary). Formats may be used for ap-
pending output to an existing file. Enter the command help fopen for details. The
variable, fid is known as a file identifier and is used by Matlab to identify the file in
subsequent operations.

1.15.1 Formatted Output to a File

The command fprintf writes formatted data to a file. The structure of the command
is exactly the same as that of sprintf but with a file identifier as the first parameter.
For example fprintf (fid, . . .).

Exercises

1. Repeat any of the questions from (1.14) but print the results to a file. Display the
file after executing the formatting code using the command type filename.

Use the following code as an example which opens and writes to a Windows
file myfile.txt. If the file already exists it is overwritten.

fid = fopen('myfile.txt','w+');
fprintf(fid, 'pi to 6 decimal places is %8.6f ', pi);
type myfile.txt

1.15.2 Formatted Input from a File

There are other commands for reading formatted input from a file but textscan is par-
ticularly useful as it does not require the precise specification of incoming formats.
For example to read a line of the form

Node 27 ux 1.0934 uy 3.5e+005
textscan only requires the information

%s %d %s %f %s %f
where %s denotes a character string, %d denotes an integer and %f denotes a fixed or
floating point number. Other formats are available.

Exercises

1. Create a file data.txt with first line:

Node 27 ux 1.0934 uy 3.5e+005

1.15 File Input and Output 15

Enter the code shown below to open the file, read the data and allocate the
numbers to program variables a, b and c. The function textscan produces out-
put in a Matlab cell, which differs from an array in that elements of different
sizes and different types may be stored. In this example the name mydata has
been chosen for the cell, output corresponding to each item in the format string
is placed in successive positions of mydata. Whereas items from a matrix are re-
trieved using enclosing (and) parentheses, items from a cell are retrieved using
the pair { and }.

fid = fopen('data.txt');
mydata = textscan(fid, ' %s %d %s %f %s %f ')
% retrieve the numbers 27, 1.0934 and 3.5e+005
% the strings Node, ux and uy will be held in mydata{1}, mydata{3} and
% mydata{5}
a = mydata{2}
b = mydata{4}
c = mydata{6}

The function textscan may be used to collect data from several consecutive lines
of data provided the stated format applies. To limit the number of lines that textscan
reads for a given format a third parameter is available. A command of the form
textscan(fid, format, n) would apply the format n times from the current position.
A command frewind(fid) is available to re-set the internal pointer to start of the file.

A further feature of textscan allows unwanted data to be skipped by inserting
an ∗ between the relevant % and the following s, d or f in the format string.

Exercises

1. Add a few more lines of similar data to the file mydata. Use a single textscan
command to read the whole file and notice how the data is retrieved as column
vectors.

2. Modify the format string of the previous question. Choose a selection of columns
of the data file to be retrieved.

1.15.3 Unformatted Input and Output (Saving and Retrieving
Data)

Workspace variables may be stored more economically as unformatted data (data in
binary form and as such impossible to read with the human eye) in a file having a
name with a .mat suffix. Use the commands save to save and load to restore.

For example the command save('savedata.mat', 'x ', 'y ', 'z') would store variables
x, y, z in the file savedata.mat and load('savedata.mat', 'x ', 'y ', 'z') would re-load
the variables. The commands save and load without parameters save and load all
workspace variables.

16 1 Basic Matlab

Exercises

1. Assign variables to matrices A and B. Save the matrices in unformatted form to
a .mat file.

2. Clear A and B from the workspace using the command clear A B. Check that
they no longer exist.

3. Retrieve the matrices A and B from the .mat file. Check that nothing has been
lost.

Chapter 2
Linear Equations

Aims In this chapter we look at ways of solving systems of linear equations,
sometimes known as simultaneous linear equations. We investigate

• Gaussian elimination and its variants, to obtain a solution to a system.
• partial pivoting within Gaussian elimination, to improve the accuracy of the re-

sults.
• iterative refinement after Gaussian elimination, to improve the accuracy of a first

solution.

In some circumstances the use of Gaussian elimination is not recommended and
other techniques based on iteration are more appropriate including

• Gauss–Seidel iteration.

We look at the method in detail and compare this iterative technique with direct
solvers based on elimination.

Overview We begin by examining what is meant by a linear relationship, before
considering how to handle the (linear) equations which represent such relationships.
We describe methods for finding a solution, which simultaneously satisfies several
such linear equations. In so doing we identify situations for which we can guarantee
the existence of one, and only one, solution; situations for which more than one
solution is possible; and situations for which there may be no solution at all.

As already indicated, the methods to be considered neatly fall into two categories;
direct methods based on elimination; and iterative techniques. We look at each type
of method in detail. For direct methods we need to bear in mind the limitations of
computer arithmetic, and hence we consider how best to implement the methods so
that as the algorithm proceeds the accumulation of error may be kept to a minimum.
For iterative methods the concern is more related to ensuring that convergence to a
specified accuracy is achieved in as few iterations as possible.

Acquired Skills After reading this chapter you will appreciate that solving lin-
ear equations is not as straightforward a matter as might appear. No matter which

C. Woodford, C. Phillips, Numerical Methods with Worked Examples: Matlab Edition,
DOI 10.1007/978-94-007-1366-6_2, © Springer Science+Business Media B.V. 2012

17

http://dx.doi.org/10.1007/978-94-007-1366-6_2

18 2 Linear Equations

method you use accumulated computer errors may make the true solution unattain-
able. However you will be equipped with techniques to identify the presence of
significant errors and to take avoiding action. You will be aware of the differences
between a variety of direct and indirect methods and the circumstances in which the
use of a particular method is appropriate.

2.1 Introduction

One of the simplest ways in which a physical entity may be seen to behave is to vary
in a linear manner with respect to some external influence. For example, the length
(L) of the mercury column in a thermometer is accepted as being directly related to
ambient temperature (T); an increase in temperature is shown by a corresponding
increase in the length of the column. This linear relationship may be expressed as

L = kT + c.

Here k and c are constants whose values depend on the units in which temperature
(degrees Celsius, Fahrenheit, etc.) and length (millimetres, inches, etc.) are mea-
sured, and on the bore of the tube. k represents the change in length relative to a rise
in temperature, whilst c corresponds to the length of the column at zero degrees.
We refer to T as the independent variable and L as the dependent variable. If we
were to plot values of L against corresponding values of T we would have a straight
line with slope k and intercept on the L axis equal to c.

A further example of a linear relationship is Hooke’s Law (2.1) which relates the
tension in a spring to the length by which it has been extended. If T is the tension,
x is the extension of the spring, a is the unextended length and λ is the modulus of
elasticity, then we have

T = λ

a
x. (2.1)

Typical units are Newtons (for T and λ) and metres (for x and a). A plot of T

against x would reveal a straight line passing through the origin with slope λ/a.
An example which involves more than two variables is supplied by Kirchoff’s

Law which states that the algebraic sum of currents meeting at a point must be zero.
Hence, if i1, i2 and i3 represent three such currents, we must have

i1 + i2 + i3 = 0. (2.2)

An increase in the value of one of the variables (say i1) must result in a correspond-
ing decrease (to the same combined value) in one or more of the other two variables
(i2 and/or i3) and in this sense the relationship is linear. For a relationship to be lin-
ear, the variables (or constant multiples of the variables) are combined by additions
and subtractions.

2.2 Linear Systems 19

2.2 Linear Systems

In more complicated modelling situations it may be that there are many linear re-
lationships, each involving a large number of variables. For example, in the stress
analysis of a structure such as a bridge or an aeroplane, many hundreds (or indeed
thousands) of linear relationships may be involved. Typically, we are interested in
determining values for the dependent variables using these relationships so that we
can answer the following questions:

• For a given extension of a spring, what is the tension?
• If one current has a specific value, what values for the remaining currents ensure

that Kirchoff’s Law is preserved?
• Is a bridge able to withstand a given level of traffic?

As an example of a linear system consider a sporting event where spectators were
charged for admission at the rate of £15.50 for adults and £5.00 for concessions. It is
known that the total takings for the event was £3312 and that a total of 234 spectators
were admitted to the event. The problem is to determine how many adults watched
the event.

If we let x represent the number of adults and y the number of concessions then
we know that the sum of x and y must equal 234, the total number of spectators.
Further, the sum of 15.5x and 5y must equal 3312, the total takings. Expressed in
mathematical notation, we have

x + y = 234 (2.3)

15.5x + 5y = 3312. (2.4)

Sets of equations such as (2.3) and (2.4) are known as systems of linear equations
or linear systems. It is an important feature of this system, and other systems we
consider in this chapter, that the number of equations is equal to the number of
unknowns to be found.

When the number of equations (and consequently the number of variables in
those equations) becomes large it can be tedious to write the system out in full. In
any case, we need some notation which will allow us to specify an arbitrary linear
system in compact form so that we may conveniently examine ways of solving such
a system. Hence we write linear systems using matrix and vector notation as

Ax = b (2.5)

where A is a matrix, known as the coefficient matrix (or matrix of coefficients),
b is the vector of right-hand sides and x is the vector of unknowns to be determined.
Assuming n (the length of x) unknowns to be determined, b must be an n-column
vector and A an m × n square matrix, although for the time being we only consider
systems with the same number of equations as unknowns, (m = n).

Problem

Write (2.3), (2.4) in matrix–vector form.

20 2 Linear Equations

Solution

We have

Ax = b, where A =
(

1 1
15.5 5

)
, x =

⎧⎪⎪⎩x

y

⎫⎪⎪⎭ , b =
⎧⎪⎪⎩ 234

3312

⎫⎪⎪⎭ .

A great number of electronic, mechanical, economic, manufacturing and natural
processes may be modelled using linear systems in which, as in the above simple
example, the number of unknowns matches the number of equations. If, as some-
times happens, the modelling process results in nonlinear equations (equations in-
volving perhaps squares, exponentials or products of the unknowns) it is often the
case that the iterative techniques involved to solve these systems reduce to finding
the solution of a linear system at each iteration. Hence linear equation solvers have
a wider applicability than might at first appear to be the case.

Since the modelling process either directly or indirectly yields a system of linear
equations, the ability to solve such systems is fundamental. Our interest is in meth-
ods which can be implemented in a computer program and so we must bear in mind
the limitations of computer arithmetic.

Problem

The structure shown in Fig. 2.1 shows a pitched portal frame. Using standard engi-
neering analysis and assuming certain restrictions on the dimensions of the structure
(the details of which need not concern us) it can be shown that the resulting displace-
ments and rotations at the points A, B and C may be related to the acting forces and
moments by a set of nine linear equations in nine unknowns. The equations involve
constants reflecting the nature of the material of the structure.

Writing the displacements and rotations in the ascending sequence x1, x2, . . . , x9

and assigning values to the constants and the external loads (the forces and the

Fig. 2.1 Pitched portal frame

2.2 Linear Systems 21

moments) we might find that in a particular instance the equations take the following
form:

x1 = 0 (2.6)

x2 = 10 (2.7)

2x3 − 10x5 + 3x6 = 5 (2.8)

3x4 − 2x5 + 2x6 − 3x7 = 2 (2.9)

x5 + 5x6 + x7 = 14 (2.10)

3x6 − 4x7 = 17 (2.11)

2x7 = −4 (2.12)

2x8 = 10 (2.13)

x9 = 1. (2.14)

Solution

Although this is quite a large system we can take advantage of its special structure
to obtain a solution fairly easily. From (2.14) that x9 = 1, from (2.13) that x8 = 5,
and from (2.12) that x7 = −2.

To obtain the rest of the solution values we make use of the values that we already
know. Substituting the value of x7 into (2.11) we have 3x6 + 8 = 17 and so x6 = 3.
Now that we know x6 and x7 we can reduce (2.10) to an equation involving x5 only,
to give x5 + 15 − 2 = 14, and so x5 = 1. Similarly we can determine x4 from (2.9)
using 3x4 − 2 + 6 + 6 = 2, to give x4 = −2 2

3 . Finally, to complete the solution we
substitute the known values for x5 and x6 into (2.8) to obtain 2x3 − 10 + 9 = 5 and
conclude that x3 = 3. From (2.7) and (2.6) we have x2 = 10 and x1 = 0 to complete
the solution.

To summarise, we have x1 = 0, x2 = 10, x3 = 3, x4 = −2 2
3 , x5 = 1, x6 = 3,

x7 = −2, x8 = 5 and x9 = 1.

Discussion

The system of equations we have just solved is an example of an upper triangular
system. If we were to write the system in the matrix and vector form Ax = b, A
would be an upper triangular matrix, that is a matrix with zero entries below the
diagonal. Mathematically the matrix A is upper triangular if for all elements aij

aij = 0, i > j.

For systems in which the coefficient matrix is upper triangular the last equation in
the system is easily solved and this value can then be used to solve the penultimate
equation. The results from these last two equations may be used to solve the previous
equation, and so on. In this manner the whole system may be solved. The process of
working backwards to complete the solution is known as backward substitution.

22 2 Linear Equations

2.3 Gaussian Elimination

As part of the process we consider how general linear systems may be solved by
reduction to upper triangular form.

Problem

Find the numbers of adults and concessions at the sporting event (2.3), (2.4) by
solving the system of two equations in two unknowns.

Solution

In subtracting 15.5 times (2.3) from (2.4) we have 1.5y = 91.5, and combining this
with the original first equation we have

x + y = 234 (2.15)

−10.5y = −315 (2.16)

which is in upper triangular form. Solving (2.16) gives y = 30 (concessions) and
substituting this value into (2.15) gives x = 234 − 30 = 204 (adults).

Discussion

The example illustrates an important mechanism for determining the solution to
a system of equations in two unknowns, which may readily be extended to larger
systems. It has two components:

1. Transform the system of equations into an equivalent one (that is, the solution to
the transformed system is mathematically identical to the solution to the original
system) in which the coefficient matrix is upper triangular.

2. Solve the transformed problem using backward substitution.

A linear system may be reduced to upper triangular form by means of successively
subtracting multiples of the first equation from the second, third, fourth and so on,
then repeating the process using multiples of the newly-formed second equation,
and again with the newly-formed third equation, and so on until the penultimate
equation has been used in this way. Having reduced the system to upper triangular
form backward substitution is used to find the solution. This systematic approach,
known as Gaussian elimination, is illustrated further in the following example.

Problem

Solve the following system of four equations in four unknowns

2.3 Gaussian Elimination 23

2x1 + 3x2 + 4x3 − 2x4 = 1 (2.17)

x1 − 2x2 + 4x3 − 3x4 = 2 (2.18)

4x1 + 3x2 − x3 + x4 = 2 (2.19)

3x1 − 4x2 + 2x3 − 2x4 = 5. (2.20)

Solution

As a first step towards an upper triangular system we eliminate x1 from (2.18), (2.19)
and (2.20). To do this we subtract 1/2 times (2.17) from (2.18), 2 times (2.17) from
(2.19), and 3/2 times (2.17) from (2.20). In each case the fraction involved in the
multiplication (the multiplier) is the ratio of two coefficients of the variable being
eliminated from (2.18)–(2.20). The numerator is the coefficient of the variable to
be eliminated and the denominator is the coefficient of that variable in the equation
which is to remain unchanged. As a result of these computations the original system
is transformed into

2x1 + 3x2 + 4x3 − 2x4 = 1 (2.21)

− 7
2x2 + 2x3 − 2x4 = 3

2 (2.22)

− 3x2 − 9x3 + 5x4 = 0 (2.23)

− 17
2 x2 − 4x3 + x4 = 7

2 . (2.24)

To proceed we ignore (2.21) and repeat the process on (2.22)–(2.24). We elimi-
nate x2 from (2.23) and (2.24) by subtracting suitable multiples of (2.22). We take
(−3)/(− 7

2) times (2.22) from (2.23) and (−17)/(−7) times (2.22) from (2.24) to
give (after the removal of common denominators) the system

2x1 + 3x2 + 4x3 − 2x4 = 1 (2.25)

− 7
2x2 + 2x3 − 2x4 = 3

2 (2.26)

− 75
7 x3 + 47

7 x4 = − 9
7 (2.27)

− 62
7 x3 + 41

7 x4 = − 1
7 . (2.28)

Finally we subtract 62/75 times (2.27) from (2.28) to give the system

2x1 + 3x2 + 4x3 − 2x4 = 1 (2.29)

− 7
2x2 + 4x3 − 2x4 = 3

2 (2.30)

− 75
7 x3 + 47

7 x4 = − 9
7 (2.31)

161
525x4 = − 483

525 . (2.32)

We now have an upper triangular system which may be solved by backward substi-
tution. From (2.32) we have x4 = 3. Substituting this value in (2.31) gives x3 = 2.
Substituting the known values for x4 and x3 in (2.30) gives x2 = −1. Finally us-
ing (2.29) we find x1 = 1. The extension of Gaussian elimination to larger systems

24 2 Linear Equations

is straightforward. The aim, as before, is to transform the original system to upper
triangular form which is solved by backward substitution.

Discussion

The process we have described may be summarised in matrix form as pre-
multiplying the coefficient matrix A by a series of lower-triangular matrices to form
an upper-triangular matrix.

We have
⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 − 62
75 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 −3/(7
2) 1 0

0 − 17
7 0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

1 0 0 0

− 1
2 1 0 0

−2 0 1 0

− 3
2 0 0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

2 3 4 −2

1 −2 4 −3

4 3 −1 1

3 −4 2 −2

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

2 3 4 −2

− 7
2 4 −2

− 75
7

47
7

161
525

⎞
⎟⎟⎟⎟⎠

where it can be seen that sub-diagonal entries correspond to the multipliers in the
elimination process. Since the product of lower triangular matrices is also lower
triangular we may write the above as LA = U where L is a lower triangular matrix
and U is upper triangular. Since the inverse of a lower triangular matrix is also lower
triangular multiplying both sides by the inverse of L produces

A = LU

where L is another lower triangular matrix and U is upper triangular. This factori-
sation is generally known as the LU decomposition. If the factorisation is known it
may be used repeatedly to solve the same set of equations for different right hand
sides, as will be shown in Sect. 2.3.3.

2.3.1 Row Interchanges

In certain circumstances, Gaussian elimination fails as we see in the following ex-
ample.

Problem

Solve the system of 4 equations in 4 unknowns

2.3 Gaussian Elimination 25

2x1 − 6x2 + 4x3 − 2x4 = 8 (2.33)

x1 − 3x2 + 4x3 + 3x4 = 6 (2.34)

4x1 + 3x2 − 2x3 + 3x4 = 3 (2.35)

x1 − 4x2 + 3x3 + 3x4 = 9. (2.36)

Solution

To eliminate x1 from (2.34), (2.35) and (2.36) we take multiples 1
2 , 2 and 1

2 of
(2.33) and subtract from (2.34), (2.35) and (2.36) respectively. We now have the
linear system

2x1 − 6x2 + 4x3 − 2x4 = 8

2x3 + 4x4 = 2 (2.37)

15x2 − 10x3 + 7x4 = −13 (2.38)

− x2 + x3 + 4x4 = 5. (2.39)

Since x2 does not appear in (2.37) we are unable to proceed as before. However a
simple re-ordering of the equations enables x2 to appear in the second equation of
the system and this permits further progress. Exchanging (2.37) and (2.38) we have
the system

2x1 − 6x2 + 4x3 − 2x4 = 8

15x2 − 10x3 + 7x4 = −13 (2.40)

2x3 + 4x4 = 2

− x2 + x3 + 4x4 = 5. (2.41)

Resuming the elimination procedure we eliminate x2 from (2.41) by taking a multi-
ple (−1)/15 of (2.40) from (2.41) to give

2x1 − 6x2 + 4x3 − 2x4 = 8

15x2 − 10x3 + 7x4 = −13

2x3 + 4x4 = 2 (2.42)
1
3x3 + 67

15x4 = 62
15 . (2.43)

Finally, to eliminate x3 from (2.43) we take a multiple 1/6 of (2.42) from (2.43). As
a result we now have the linear system

2x1 − 6x2 + 4x3 − 2x4 = 8

15x2 − 10x3 + 7x4 = −13

2x3 + 4x4 = 2
57
15x4 = 57

15 ,

which is an upper triangular system that can be solved by backward substitution to
give the solution x4 = 1, x3 = −1, x2 = −2, and x1 = 1.

26 2 Linear Equations

Table 2.1 Gaussian elimination with row interchanges

Solve the n × n linear system Ax = b by Gaussian elimination

1 Reduce to upper triangular form: For i = 1,2, . . . , n − 1

1.1 Ensure aii �= 0. Exchange rows (including bi) if necessary

1.2 Subtract multiples of row i (including bi) from rows i + 1, i + 2, . . . , n so that the
coefficient of xi is eliminated from those rows

2 Backward substitution: aij and bi are current values of the elements of A and b as the
elimination proceeds

2.1 xn = bn/ann

2.2 For i = n − 1, n − 2, . . . ,1, xi = (bi − ∑n
j=i+1 aij xj)/aii

Discussion

The system (2.33)–(2.34) introduced the complication of a zero appearing as a lead-
ing coefficient (the pivot) in the equation (the pivotal equation) which would nor-
mally be used to eliminate the corresponding unknown from all subsequent equa-
tions. This problem was easily overcome by a re-arrangement which ensured a
non-zero pivot. The method of Gaussian elimination with row interchanges is sum-
marised in Table 2.1.

2.3.2 Partial Pivoting

In the previous section we saw that a re-arrangement of the equations is sometimes
necessary if Gaussian elimination is to yield an upper triangular system. Here we
show that re-arrangements of this form can be useful in other ways.

Up to this point we have used exact arithmetic to solve the equations, even though
at times the fractions involved have been a little cumbersome. In real life of course
we would use a computer to perform the arithmetic. However, a computer does
not normally carry out arithmetic with complete precision. The difference between
accurate and computer arithmetic is known as rounding error.

Unless specified otherwise Matlab uses arithmetic conforming to IEEE1 stan-
dards by which numbers are represented by the formula (−1)s2(e-1023)(1 + f) using
a 64-bit word. This is traditionally known as double precision arithmetic. The sign,
s of the number is held in a 1-bit word, an eleven-bit binary number holds the expo-
nent, e and a fifty-two bit binary number called the mantissa holds the precision, f
of the number which can range from 1 to 2046.

We consider two problems, each of which is a system of two equations in two
unknowns. They are, in fact, the same problem mathematically; all that we have

1Institute of Electrical and Electronics Engineers

2.3 Gaussian Elimination 27

done is to reverse the order of the two equations. The solution can be seen to be
x1 = 1, x2 = 1. To illustrate the effect of rounding error we consider the following
problem.

Problem

Solve the following systems rounding the results of all arithmetic operations to three
significant figures.

System (1):

0.124x1 + 0.537x2 = 0.661 (2.44)

0.234x1 + 0.996x2 = 1.23 (2.45)

System (2):

1.234x1 + 0.996x2 = 1.23 (2.46)

0.124x1 + 0.537x2 = 0.661. (2.47)

Solution

• System (1): In the usual manner we eliminate x2 from (2.45) by subtracting the
appropriate multiple of (2.44). In this case the multiple is 0.234/0.124 which,
rounded to three significant figures, is 1.89. Multiplying 0.537 by 1.89 gives 1.01
and subtracting this from 0.996 gives −0.0140. Similarly for the right-hand side
of the system, 0.661 multiplied by 1.89 is 1.25 and when subtracted from 1.23
gives −0.0200. The system in its upper triangular form is

0.124x1 + 0.537x2 = 0.661 (2.48)

− 0.014x2 = −0.020. (2.49)

In backward substitution, x2 is obtained from 0.020
0.014 to give 1.43 which is used in

(2.48) to give x1 = −0.863. In this case the solution obtained by using arithmetic
which retains three significant figures is nothing like the true solution.

• System (2): We eliminate x2 from (2.47) by subtracting the appropriate mul-
tiple of (2.46). In this case the multiple is 0.124/0.234, which is 0.530 to
three significant figures. Multiplying 0.537 by 0.530 and subtracting from 0.996
gives 0.00900. Multiplying 0.661 by 0.530 and subtracting from 1.23 also gives
0.00900 and so the system in upper triangular form is

0.234x1 + 0.996x2 = 1.23

0.009x2 = 0.009.

By backward substitution we have x2 = 1.00, followed by x1 = 1.00 which is the
exact solution.

28 2 Linear Equations

Discussion

We can infer from these two simple examples that the order in which equations are
presented can have a significant bearing on the accuracy of the computed solution.
The example is a little artificial, given that a modern computer carries out its arith-
metic to many more significant figures than the three we have used here, often as
many as sixteen or more. Nevertheless, for larger systems it may be verified that the
order in which the equations are presented has a bearing on the accuracy of a com-
puter solution obtained using Gaussian elimination. The next example describes a
strategy for rearranging the equations within Gaussian elimination with a view to
reducing the effect of rounding errors on a computed solution. We note in passing
that an LU decomposition which takes account of partial pivoting of a non-singular
matrix A is available in the form PA = LU where L and U are lower and upper
triangular matrices and P is a permutation matrix, a matrix of zeros and ones that in
pre-multiplying A performs the necessary row exchanges. For example exchanging
rows 2 and 3 of a 3 × 3 matrix A may be achieved by pre-multiplying A by the

permutation matrix

(
1 0 0
0 0 1
0 1 0

)
.

Problem

Solve the system (2.33)–(2.36) using row exchanges to minimise pivotal values at
each step of the elimination.

Solution

We recall that in obtaining the previous solution example it was necessary to rear-
range the equations during the reduction to upper triangular form to avoid a zero
pivot. In this example we perform similar rearrangements, not just out of neces-
sity, but also with accuracy in mind. Looking down the first column we see that the
largest (in magnitude) coefficient of x1 occurs in (2.35). We thus re-order the equa-
tions to make this the pivot. This involves exchanging (2.35) and (2.33). We now
have the linear system

4x1 + 3x2 − 2x3 + 3x4 = 3 (2.50)

x1 − 3x2 + 4x3 + 3x4 = 6 (2.51)

2x1 − 6x2 + 4x3 − 2x4 = 8 (2.52)

x1 − 4x2 + 3x3 + 3x4 = 9 (2.53)

and we eliminate x1 from (2.51), (2.52) and (2.53) by subtracting multiples 1
4 , 2

4 and
1
4 of (2.50) from (2.51), (2.52) and (2.53) respectively. Looking back to the system
(2.33)–(2.36) we see that the multipliers without re-arrangement were 1

2 , 2 and 1
2 .

Now they are uniformly smaller. This will prove to be significant. At the end of this,
the first stage, of elimination, the original system is transformed to

2.3 Gaussian Elimination 29

4x1 − 3x2 − 2x3 + 3x4 = 3

− 3 3
4x2 + 4 1

2x3 + 2 1
4x4 = 5 1

4 (2.54)

− 7 1
2x2 + 5x3 − 3 1

2x4 = 6 1
2 (2.55)

− 4 3
4x2 + 3 1

2x3 + 2 1
4x4 = 8 1

4 . (2.56)

Considering (2.54)–(2.56) we see that the largest coefficient of x2 occurs in (2.55).
We exchange (2.55) and (2.54) to obtain

4x1 − 3x2 − 2x3 + 3x4 = 3

− 7 1
2x2 + 5x3 − 3 1

2x4 = 6 1
2 (2.57)

− 3 3
4x2 + 4 1

2x3 + 2 1
4x4 = 5 1

4 (2.58)

− 4 3
4x2 + 3 1

2x3 + 2 1
4x4 = 8 1

4 . (2.59)

To eliminate x2 from (2.58) and (2.59) we take multiples 1
2 and 19

30 of (2.57) and
subtract them from (2.58) and (2.59) respectively. As a result we have the linear
system

4x1 − 3x2 − 2x3 + 3x4 = 3

− 7 1
2x2 + 5x3 − 3 1

2x4 = 6 1
2

2x3 + 4x4 = 2
1
3x3 + 4 7

15x4 = 4 2
15 . (2.60)

No further row interchanges are necessary since the coefficient of x3 having the
largest absolute value is already in its correct place. We eliminate x3 from (2.60)
using the multiplier 1

6 and as a result we have the linear system

4x1 − 3x2 − 2x3 + 3x4 = 3

− 7 1
2x2 + 5x3 − 3 1

2x4 = 6 1
2

2x3 + 4x4 = 2

3 4
5x4 = 3 4

5 .

Solving by backward substitution we obtain x4 = 1.0, x3 = −1.0, x2 = −2.0, and
x1 = 1.0.

Discussion

The point of this example is to illustrate the technique known as partial pivoting.
At each stage of Gaussian elimination the pivotal equation is chosen to maximise
the absolute value of the pivot. Thus the multipliers in the subsequent subtraction
process are reduced (a division by the pivot is involved) so that they are all at most
one in magnitude. Any rounding errors present are less likely to be magnified as
they permeate the rest of the calculation.

The 4 × 4 example of this section was solved on a computer using an imple-
mentation of Gaussian elimination and computer arithmetic based on a 32-bit word

30 2 Linear Equations

Table 2.2 Gaussian elimination with partial pivoting

Solve the n × n linear system Ax = b by Gaussian elimination with partial pivoting

1 Reduce to upper triangular form: For i = 1,2, . . . , n − 1

1.1 Find the j from j = i, i + 1, . . . , n for which |aji | is a maximum

1.2 If i �= j exchange rows i and j (including bi and bj)

1.3 Subtract multiples of row i (including bi) from rows i + 1, i + 2, . . . , n so that the
coefficient of xi is eliminated from those rows

2 Backward substitution: aij and bi are current values of the elements of A and b as the
elimination proceeds

2.1 xn = bn/ann

2.2 For i = n − 1, n − 2, . . . ,1, xi = (bi − ∑n
j=i+1 aij xj)/aii

(equivalent to retaining at least six significant figures). Without partial pivoting
the solution obtained was x1 = 1.00000, x2 = −2.00000, x3 = −0.999999, and
x4 = 1.00000, whereas elimination with pivoting gave the same solution except for
x3 = −1.00000. This may seem to be an insignificant improvement but the example
illustrates how the method works. Even with 64-bit arithmetic it is confirmed by
experience that partial pivoting particularly when used in solving larger systems of
perhaps 10 or more equations is likely to be beneficial. As we will see, the form of
the coefficient matrix can be crucial. For these reasons commercial implementations
of Gaussian elimination always employ partial pivoting. The method is summarised
in Table 2.2.

2.3.3 Multiple Right-Hand Sides

In a modelling process the right-hand side values often correspond to boundary
values which may, for example, be the external loads on a structure or the resources
necessary to fund various activities. As part of the process it is usual to experiment
with different boundary conditions in order to achieve an optimal design. Gaussian
elimination may be used to solve systems having several right-hand sides with little
more effort than that involved in solving for just one set of right-hand side values.

Problem

Find three separate solutions of the system of (2.33)–(2.36) corresponding to three
different right-hand sides.

Writing the system in the form Ax = b we have three different vectors b, namely⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
8
6
3
9

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
2
3

−1
4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1

−6
−3

9

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ .

2.3 Gaussian Elimination 31

The three problems may be expressed in the following compact form

2x1 − 6x2 + 4x3 − 2x4 = 8, 2, 1

x1 − 3x2 + 4x3 + 3x4 = 6, 3,−6

4x1 + 3x2 − 2x3 + 3x4 = 3,−1,−3

x1 − 4x2 + 3x3 + 3x4 = 9, 4, 9.

Solution

We can solve all three equations at once by maintaining not one, but three columns
on the right-hand side. The interchanges required by partial pivoting and the oper-
ations on the coefficient matrix do not depend on the right-hand side values and so
need not be repeated unnecessarily. After the first exchange we have

4x1 + 3x2 − 2x3 + 3x4 = 3,−1,−3

x1 − 3x2 + 4x3 + 3x4 = 6, 3,−6

2x1 − 6x2 + 4x3 − 2x4 = 8, 2, 1

x1 − 4x2 + 3x3 + 3x4 = 9, 4, 9

followed by

4x1 − 3x2 − 2x3 + 3x4 = 3, −1, −3

− 3 3
4x2 + 4 1

2x3 + 2 1
4x4 = 5 1

4 , 3 1
4 , −5 1

4

− 7 1
2x2 + 5x3 − 3 1

2x4 = 6 1
2 , 2 1

2 , 2 1
2

− 4 3
4x2 + 3 1

2x3 + 2 1
4x4 = 8 1

4 , 4 1
4 , 9 3

4 .

Continuing the elimination we obtain

4x1 − 3x2 − 2x3 + 3x4 = 3, −1, −3

− 7 1
2x2 + 5x3 − 3 1

2x4 = 6 1
2 , 2 1

2 , 2 1
2

2x3 + 4x4 = 2, 2, −6 1
2

3 4
5x4 = 3 4

5 , 2 1
3 , 9 1

4 .

Backward substitution is applied to each of the right-hand sides in turn to yield
the required solutions, which are (1,−2,−1,1)T , (−0.2456,−0.7719,−0.2281,

0.6190)T and (−1.4737,−6.8816,−8.1184,2.4342)T (to 4 decimal places).

Discussion

In solving a system of equations with several right-hand sides the reduction to upper
triangular form has been performed once only. This is significant since the compu-
tation involved in the elimination process for larger systems is significantly greater
than the computation involved in backward substitution and hence dominates the
overall effort of obtaining a solution. If the system Ax = b is to be repeatedly solved
for the same A but for different b it makes sense to save and re-use the LU decom-
position of A.

32 2 Linear Equations

2.4 Singular Systems

Not all systems of linear equations have a unique solution. In the case of two equa-
tions in two unknowns we may have the situation whereby the equations may be
represented as parallel lines in which case there is no solution. On the other hand
the representative lines may be coincident in which case every point on the lines
is a solution and so we have an infinity of solutions. These ideas extend to larger
systems. If there is no unique solution then there is either no solution at all or else
there is an infinity of solutions and we would expect Gaussian elimination to break
down at some stage.

Problem

Solve the system

2x1 − 6x2 + 4x3 − 2x4 = 8 (2.61)

x1 − 3x2 + 4x3 + 3x4 = 6 (2.62)

x1 − x2 + 2x3 − 5x4 = 3 (2.63)

x1 − 4x2 + 3x3 + 3x4 = 9. (2.64)

Solution

Applying Gaussian elimination with partial pivoting to the system we first eliminate
x1 to obtain

2x1 − 6x2 + 4x3 − 2x4 = 8

2x3 + 4x4 = 2

2x2 − 4x4 = −1

− x2 + x3 + 4x4 = 5.

Partial pivoting and elimination of x2 gives

2x1 − 6x2 + 4x3 − 2x4 = 8

2x2 − 4x4 = −1

2x3 + 4x4 = 2

x3 + 2x4 = 4 1
2 .

Finally, elimination of x3 gives

2x1 − 6x2 + 4x3 − 2x4 = 8

2x2 − 4x4 = −1

2x3 + 4x4 = 2

0x4 = 3 1
2 .

2.5 Symmetric Positive Definite Systems 33

Clearly we have reached a nonsensical situation which suggests that 0 is equal to
3 1

2 . This contradiction suggests that there is an error or a wrong assumption in the
modelling process which has provided the equations.

Changing the right-hand side of (2.61)–(2.64) to (8,6,3,5.5)T and applying
elimination gives

2x1 − 6x2 + 4x3 − 2x4 = 8

2x2 − 4x4 = −1

2x3 + 4x4 = 2

0x4 = 0

which is more sensible than before, if a little odd. There is no longer any contra-
diction. In effect we are free to choose any value we like for x4 and to employ this
value into the backward substitution process. In the first system we had no solution;
now we have an infinity of solutions.

Discussion

It is possible to check that the rows (as vectors) of the coefficient matrix of the
system (2.61)–(2.64) are linearly dependent. It follows that the columns are also
linearly dependent and vice-versa. Such matrices are said to be singular. A system
for which the coefficient matrix is singular (a singular system) has no unique so-
lution. Further, if for a singular system the right-hand side as a column vector is a
linear combination of the column vectors of the matrix of coefficients then there is
an infinity of solutions, otherwise there are no solutions. In practice however, be-
cause of the limitations of computer arithmetic it may be difficult to determine if a
system is genuinely singular or if it is just close to being singular. In any event if
partial pivoting produces a zero or nearly zero pivot the validity of the model should
be questioned.

2.5 Symmetric Positive Definite Systems

It is not uncommon for matrices which arise in the modelling of physical processes
to be symmetric and positive definite. A matrix A is symmetric and positive definite
if A = AT and xT Ax > 0 for all non-zero vectors x. As an example the symmetric
stiffness matrix which arises in finite element analysis and which may be regarded
as a generalisation of the modulus of elasticity from Hooke’s Law (2.1) is positive
definite. We refer to a linear system in which the coefficient matrix is symmetric
and positive definite as a symmetric positive definite system.

Problem

Solve the 4 × 4 system:

34 2 Linear Equations

16x1 + 3x2 + 4x3 + 2x4 = 25

3x1 + 12x2 + 2x3 − x4 = 16

4x1 + 2x2 + 8x3 − x4 = 13

2x1 − x2 − x3 + 2x4 = 2.

Solution

By Gaussian elimination we have

16x1 + 3x2 + 4x3 + 2x4 = 25 (2.65)

11.4375x2 + 1.25x3 − 1.375x4 = 11.3125

1.25x2 + 7x3 − 1.5x4 = 6.75

− 1.375x2 − 1.5x3 + 1.75x4 = −1.125

then

16x1 + x2 + 4x3 + 2x4 = 25 (2.66)

11.4375x2 + 1.25x3 − 1.375x4 = 11.3125

6.8634x3 − 1.3497x4 = 5.5137

− 1.3497x3 + 1.5847x4 = 0.2350

and finally

16x1 + 3x2 + 4x3 + 2x4 = 25

11.4375x2 + 1.25x3 − 1.375x4 = 11.3125

6.8634x3 − 1.3497x4 = 5.5137

1.3913x4 = 1.3913.

Backward substitution produces x4 = 1, x3 = 1, x2 = 1, x1 = 1.

Discussion

It should be noted that at each stage the size of the pivot cannot be increased by row
interchanges and so partial pivoting is not required. This is a feature of symmetric
positive definite systems. Furthermore it is possible to get by with fewer calcula-
tions. For example in the first reduction the numbers 1.25, −1.375 and −1.5 need
only be calculated once, whilst in the second reduction the number −1.3497 need
only be calculated once. In effect it is sufficient to compute only the entries in the
upper triangular portion of the coefficient matrix as it is transformed. Elements in
the lower triangle are deduced by symmetry arguments. Roughly speaking, we have
halved the workload and halved the storage requirements. In a large system such
economies could be significant.

2.6 Iterative Refinement 35

Although it is easy to test the symmetry of a given matrix, it is not so easy to es-
tablish if a symmetric matrix is positive definite. A symmetric matrix is positive
definite if it diagonally dominant (that is if each diagonal element is larger in ab-
solute value than the sum of the absolute values of the other elements on the same
row). However being diagonally dominant is not a necessary condition for a sym-
metric matrix to be positive definite. Often the only real way to check is to apply
Gaussian elimination. If, at any stage, partial pivoting is necessary then the matrix is
not positive definite. In practice therefore when the modelling process requires the
repeated solution of a symmetric linear system it is advisable to try the system on
a program which assumes that the coefficient matrix is positive definite, but which
flags an error if a non-positive definite condition is detected.

2.6 Iterative Refinement

The effect of rounding error in Gaussian elimination is to yield a computed solution
which is a perturbation of the mathematically correct solution. Partial pivoting may
help to reduce the accumulative effect of these errors, but there is no guarantee
that it will eliminate them entirely. Iterative refinement is a process by which a first
computed solution can sometimes be improved to yield a more accurate solution. In
the following example we illustrate the method by working to limited accuracy and
drawing conclusions that may be applied when using computer arithmetic.

Problem

Solve the 4 × 4 system

0.366x1 + 0.668x2 − 0.731x3 − 0.878x4 = −0.575 (2.67)

0.520x1 + 0.134x2 − 0.330x3 + 0.484x4 = 0.808 (2.68)

0.738x1 − 0.826x2 + 0.194x3 − 0.204x4 = −0.098 (2.69)

0.382x1 − 0.667x2 + 0.270x3 − 0.255x4 = −0.270 (2.70)

using Gaussian elimination.

Solution

The system has the exact solution x1 = 1, x2 = 1, x3 = 1 and x4 = 1. However,
working to just three significant figures, Gaussian elimination with partial pivoting
produces a solution x1 = 1.14, x2 = 1.18, x3 = 1.23 and x4 = 0.993. Substituting
these values back into the left-hand side of the equations and working to three-figure
accuracy produces −0.575, 0.808, −0.0908 and −0.270, which suggests that this
computed solution is accurate. However repeating the substitution and working to
six significant figures produces a slightly different set of values. Subtracting the
three-figure result from the corresponding six-figure result for each equation, gives

36 2 Linear Equations

differences of −0.00950 for (2.67), −0.0176 for (2.68), −0.000688 for (2.69) and
0.00269 for (2.70). These differences are known as residuals. Since these residual
values are small in relation to the coefficients in the equation we can suppose we are
fairly close to the true solution.

More formally, if we were to assume that the true solution differs from our cal-
culated 3-figure solution by amounts δ1, δ2, δ3 and δ4, that is the true solution is
1.14 + δx1, 1.18 + δ2, 1.23 + δ3, 0.993 + δx4, we would have

0.366(1.14 + δ1) + 0.668(1.18 + δ2)

−0.731(1.23 + δ3) − 0.878(0.993 + δ4) = −0.575

0.520(1.14 + δ1) + 0.134(1.18 + δ2)

−0.330(1.23 + δ3) + 0.484(0.993 + δ4) = 0.808

0.738(1.14 + δ1) − 0.826(1.18 + δ2)

+0.194(1.23 + δ3) − 0.204(0.993 + δ4) = −0.098

0.382(1.14 + δ1) − 0.667(1.18 + δ2)

+0.270(1.23 + δ3) − 0.255(0.993 + δ4) = −0.270.

We are now in a position to find the corrections δ1, δ2, δ3 and δ4. Using the calcula-
tions we have already performed to find the residuals we have

0.366δ1 + 0.668δ2 − 0.731δ3 − 0.878δ4 = −0.00950

0.520δ1 + 0.134δ2 − 0.330δ3 + 0.484δ4 = −0.0176

0.738δ1 − 0.826δ2 + 0.194δ3 − 0.204δ4 = −0.000688

0.382δ1 − 0.667δ2 + 0.270δ3 − 0.255δ4 = 0.00269.

Using 3 significant figure arithmetic again we find that Gaussian elimination with
partial pivoting produces a solution δ1 = −0.130, δ2 = −0.166, δ3 = −0.210 and
δ4 = 0.00525, and adding these values to our initial solution gives x1 = 1.01, x2 =
1.01, x3 = 1.02 and x4 = 0.998. Although this is still not completely accurate, it is
slightly better than the previous solution.

Discussion

The example is an illustration of the technique known as iterative refinement. Com-
puter calculations inevitably involve rounding errors which result from performing
arithmetic to a limited accuracy. Iterative refinement is used to try to restore a little
more accuracy to an existing solution. However it does depend upon being able to
calculate the residuals with some accuracy and this will involve using arithmetic
which is more accurate than that of the rest of the calculations. Note that the orig-
inal coefficient matrix is used in finding the improved solution and this can lead
to economies when applied to large systems. The method of iterative refinement as
used with Gaussian elimination is summarised in Table 2.3.

2.7 Ill-Conditioned Systems 37

Table 2.3 Gaussian elimination with iterative refinement

Solve the n × n linear system Ax = b by Gaussian elimination with iterative refinement

1 Set s to 0

2 Solve Ax = b using Gaussian elimination with partial pivoting and add the solution to s

3 Compute the residual r = b − As using a higher accuracy than the rest of the calculation

4 If r is acceptably small then stop, s is the solution otherwise set b = r

5 Repeat from step 2 unless r shows no signs of becoming acceptably small

Iterative refinement could be continued until the residuals stabilise at or very near
to zero. In practice one step of iterative refinement usually suffices. If iterative re-
finement fails to stabilise it is likely that meaningful solutions cannot be obtained
using conventional computing methods. Such systems will be discussed in the fol-
lowing section.

2.7 Ill-Conditioned Systems

Ill-conditioned systems are characterised by solutions which vary dramatically with
small changes to the coefficients of the equations. Ill-conditioned systems pose se-
vere problems and should be avoided at all costs. The presence of an ill-conditioned
system may be detected by making slight changes to the coefficients and noticing
if these produce disproportionate changes in the computed solution. An alternative
method would be to apply iterative refinement as signs of non-convergence would
indicate ill-conditioning. There can be no confidence in the computed solution of
an ill-conditioned system, since the transfer to a computer may well introduce small
distortions in the coefficients which, in addition to the limitations of computer arith-
metic, is likely to produce yet further divergence from the original solution. The
presence of an ill-conditioned system should be taken as a warning that the situation
being modelled is either so inherently unpredictable or unstable as to defy anal-
ysis, or that the modelling process itself is at fault, perhaps through experimental
or observational error not supplying sufficiently accurate information. Examples of
ill-conditioned system are given in Exercises 7 and 8.

2.8 Gauss–Seidel Iteration

Systems of equations which display a regular pattern often occur in modelling phys-
ical processes for example in solving steady state temperature distributions. Linear
approximations to partial derivatives over relatively small intervals are combined
so that they model the differential equations over a whole surface. The resulting
equations not only display a regular pattern they are also sparse in the sense that

38 2 Linear Equations

although the number of equations may be large, possibly hundreds or thousands,
the number of variables in each equation is very much smaller, reflecting the way in
which they have been assembled over small areas. It is perfectly possible to solve
such systems using the elimination techniques considered earlier in this chapter, but
that may cause storage and indexing problems. It would be possible to store a sparse
coefficient matrix in a condensed form by just recording and indexing non-zero el-
ements but the sparse quality would probably be quickly destroyed by Gaussian
elimination. We consider an alternative, iterative approach to solving large sparse
systems.

Problem

Solve the following system of equations using Gauss–Seidel iteration.

6x1 + x2 = 1

x1 + 6x2 + x3 = 1

x2 + 6x3 + x4 = 1
. . .

x8 + 6x9 + x10 = 1

x9 + 6x10 = 1.

Solution

We adopt an iterative approach to obtaining a solution. We start with an initial guess
at the solution and then form a series of further approximations which we hope
eventually leads to a solution. We start by writing the equations as

x1 = 1 − x2

6
(2.71)

x2 = 1 − x1 − x3

6
(2.72)

... (2.73)

x9 = 1 − x7 − x8

6
(2.74)

x10 = 1 − x9

6
. (2.75)

As an initial guess at the solution we set each of x1, x2, . . . , x10 to 1
6 , not an unrea-

sonable choice since this is the solution if we ignore the off-diagonal terms in the
original coefficient matrix.

We have from (2.71)

x1 = 1 − 1
6

6
= 0.1389

2.8 Gauss–Seidel Iteration 39

Table 2.4 Gauss–Seidel iteration, results

Step x1 x2 x3 x4 x5 x6 · · · x10

1 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 · · · 0.1667

2 0.1389 0.1157 0.1196 0.1190 0.1191 0.1190 · · · 0.1468

3 0.1474 0.1222 0.1265 0.1257 0.1259 0.1258 · · · 0.1465

4 0.1463 0.1212 0.1255 0.1248 0.1249 0.1249 · · · 0.1464

5 0.1465 0.1213 0.1256 0.1249 0.1250 0.1250 · · · 0.1464

6 0.1464 0.1213 0.1256 0.1249 0.1250 0.1250 · · · 0.1464

7 0.1464 0.1213 0.1256 0.1249 0.1250 0.1250 · · · 0.1464

Table 2.5 Gauss–Seidel iteration

Solve the n × n sparse linear system Ax = b by Gauss–Seidel iteration

1 Set x to an estimate of the solution

2 For i = 1,2, . . . , n evaluate xi = (bi − ∑n
j=1
j �=i

aij xj)/aii using the most recently found values

of xj

3 Repeat from step 2 until the values xi settle down. If this does not happen abandon the
scheme

and so from (2.72)

x2 = 1 − 0.1389 − 1
6

6
= 0.1157

and we find values for x3, x4, . . . , x10 in a similar manner to give the values shown
in the first line of Table 2.4. Using these as new values for the right-hand sides, in
the second iteration we obtain

x1 = 1 − 0.1157

6
= 0.1474 (2.76)

and so from (2.72)

x2 = 1 − 0.1474 − 0.1196

6
= 0.1222 (2.77)

and we find values for x3, x4, . . . , x10 in a similar manner to give the values shown
in the second line of Table 2.4. After further iterations the values x1, x2, . . . x10 con-
verge to 0.1464, 0.1213, 0.1256, 0.1249, 0.1250, 0.1250, 0.1249, 0.1256, 0.1213
and 0.1464 respectively. A calculation of residuals would confirm that we have a
solution to the equations. The process is known as Gauss–Seidel iteration. The
method is summarised in Table 2.5 in which it is assumed coefficients are stored
in a conventional matrix, although in practice coefficients and variables would not
necessarily be stored in full matrix or vector form.

40 2 Linear Equations

Discussion

Unfortunately it can be readily demonstrated that Gauss–Seidel iteration does not
always converge (see Exercise 9). For systems in which the coefficient matrix is di-
agonally dominant (page 35), then Gauss–Seidel iteration is guaranteed to converge.
This is not to say that non-diagonal systems cannot be solved in this way, it is just
that convergence cannot be guaranteed. For this reason the method would in general
only be applied to large systems, which might otherwise cause the storage problems
already mentioned.

Summary In this chapter we examined what is meant by a linear relationship and
how such a relationship is represented by a linear equation. We looked at Gaussian
elimination for solving systems of such equations and noted that

• Gaussian elimination is essentially a reduction to upper triangular form followed
by backward substitution.

• re-arranging the order in which the equations are presented can affect the accuracy
of the computed solution, led us to the strategy known as partial pivoting.

We also considered special types of linear systems, namely

• singular systems, for which there is no unique solution and which may be identi-
fied by a failure in Gaussian elimination even when partial pivoting is included.

• symmetric positive definite systems, for which we mentioned that more efficient
methods may be used.

• ill-conditioned systems, that are likely to cause problems no matter what compu-
tational methods are used.

• sparse systems for which the Gauss–Seidel iterative method may be used if com-
puter time and storage is at a premium.

Mindful of the errors inherent in computer arithmetic we looked at ways of improv-
ing an existing solution using

• iterative refinement.

although we pointed out that in the case of ill-conditioned systems it might make
matters worse.

Exercises

1. A baker has 2.5 kilos of flour, 3.5 kilos of sugar and 5.3 kilos of fruit with which
to make fruit pies. The baker has utensils to make pies in three sizes—small,
medium and large. Small pies require 30 grams of flour, 20 grams of sugar and
40 grams of fruit. Similarly the requirement for medium size pies is 40, 30 and 60

2.8 Gauss–Seidel Iteration 41

grams respectively, and for large pies 60, 50 and 90 grams. The baker wishes to
use up all the ingredients. Formulate a linear system to decide if this is possible.

Let the number of small, medium and large pies to be made be x, y and z.
Taking into account that 1 kilo = 1000 grams we have

3x + 2y + 4z = 250 (flour to be used)

4x + 3y + 6z = 350 (sugar to be used)

6x + 5y + 9z = 530 (fruit to be used).

If the solution to these equations turns out to consist of whole numbers then the
baker can use up all the ingredients. If some or all of x, y and z were not whole
numbers then the baker is not able to use up all the ingredients, deciding how
many pies of each size to make in order to minimise the quantity of ingredients
left over is the type of problem we look at in Chap. 7.

Assuming the equations are written in the form Ax = b use the following
code to find a solution. The code uses the left-division operator, \ as described
in Sect. 1.4.

A = [3 2 4; 4 3 6; 6 5 9]
b = [250 350 530] '
x = A\b

2. (i) Reduce the following linear system to upper triangular form.

2x1 − x2 − 4x3 = 5

x1 + x2 + 2x3 = 0

6x1 + 3x2 − x3 = −2.5.

Form the matrix of coefficients of the upper triangular system in the matrix U
and the corresponding right-side in the vector r. Use the following Matlab code
to make copies of A and b in U and r respectively. A multiple (the pivot) of row 1
is subtracted from row 2 and row 3, then a multiple (another pivot) of row 2 is
subtracted from row 3.

U = A;
r = b;
for row = 1 : 2;

for i = row + 1 : 3;
pivot=U(i, row)/U(row, row)
U(i, :) = U (i, :) − pivot * U(row, :)
r(i) = r(i) − pivot∗ r(row)

end
end

As something of a programming challenge try modifying the code to handle
larger matrices and to allow partial pivoting and deal with zero pivots.

(ii) Take the solution from part (i) and apply backward substitution to find
a solution to the original linear system. Use the following Matlab code, which

42 2 Linear Equations

assumes that the coefficients of the upper triangular system are stored in the
matrix U and that the modified right hands are stored in r.

x(3) = r(3)/U(3, 3);
for i = 2 : −1 : 1

sum = 0;
for j = i+1 : 3 ;

sum = sum + U(i, j)*x(j);
end;
x(i) = (r(i) − sum)/U (i, i);

end;
x

Check the validity of the solution by evaluating U ∗ x, where x is the solution as
a column vector. All being well this should produce the original b.

3. Matlab has a function lu which provides the LU factorisation of a matrix. Form
the matrix, A of coefficients of the following system in a Matlab program.

x1 + 2x2 + 3x3 + x4 = 8

2x1 + 4x2 − x3 + x4 = 1

x1 + 3x2 − x3 + 2x4 = 1

−3x1 − x2 − 3x3 + 2x4 = −7.

Use the lu command in the form [L U] =lu(A), which returns an upper triangular
U and a (possibly) permuted lower triangular L so that Ax = LUb, where b is
the column vector of right-sides.

Having established matrices L and U we have LUx = b. Writing Ly = b, find
y by using the left-division operator. We now have Ux = y. Find x by using the
left-division operator. Check the result by comparing Ax and b.

Alternatively use the lu command in the form [L U P] = lu(A) so that U is
not permuted and a permutation matrix P is returned. In this case b would be
replaced by Pb in the scheme shown above, and so x could be found by left-
division.

4. As an example of how rounding error can affect the solutions to even relatively
small systems solve the following equations using the Matlab left-division \ op-
erator.

−0.6210x1 0.0956x2 −0.0445x3 0.8747x4 = 5.3814

0.4328x1 −0.0624x2 8.8101x3 −1.0393x4 = −1.0393

−0.0004x1 −0.0621x2 5.3852x3 −0.3897x4 = −0.3897

3.6066x1 0.6536x2 0.8460x3 −0.2000x4 = −0.0005

Use both 64-bit precision (the default option) and then use 32-bit precision by
converting the variables using the single operator, for example B = single(A).
For both cases set format long to show the maximum number of decimal places
for the chosen word length.

2.8 Gauss–Seidel Iteration 43

5. Form an LU factorisation of the following symmetric matrix to show that it is
not positive definite. ⎛

⎜⎜⎝
4 1 −1 2
1 3 −2 −1

−1 −2 1 6
2 −1 6 1

⎞
⎟⎟⎠

Using a little ingenuity we can find a non-zero vector such as xT = (0 1 1 0)

that does not satisfy the requirement xT Ax > 0.
6. Show that the following system has no solution.

2x1 + 3x2 + 4x3 = 2

x1 − 2x2 + 3x3 = 5

3x1 + x2 + 7x3 = 8

Use the LU factorisation as provided by the function lu to show that the matrix of
coefficients is singular. Show by algebraic manipulation that the system does not
have a unique solution. Decide if there is no solution or an infinity of solutions.

7. Solve the following systems of linear equations, one of which is a slight variation
of the other to show that we have a example of an ill-conditioning

0.9740x1 0.7900x2 0.3110x3 = 1.0

−0.6310x1 0.4700x2 0.2510x3 = 0.5

0.4550x1 0.9750x2 0.4250x3 = 0.75

0.9736x1 0.7900x2 0.3110x3 = 1.0

−0.6310x1 0.4700x2 0.2506x3 = 0.5

0.4550x1 0.9746x2 0.4250x3 = 0.75.

8. As an example of severe ill-conditioning consider the Hilbert2 matrix Hn, which
has the form

Hn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1/2 1/3 1/4 . . . 1/n

1/2 1/3 1/4 1/5 . . . 1/(n + 1)

1/3 1/4 1/5 1/6 . . .

1/4 1/5 1/6 1/7 . . .
...

...

1/n 1/(n + 1) . . . 1/(2n − 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Use the Matlab command x = ones(n,1) to generate a column vector x of n

1’s and the command H = hilb(n) to generate the Hilbert matrix Hn of order n.
Form the vector bn = Hnx.

Solve the system Hnx = bn for various n using the left division operator. In
theory x should be (1, . . . ,1), but see what happens. Begin with n = 3 increase
the value with suitable increments up to around n = 18 to show the effects of
ill-conditioning and rounding error. Iterative refinement will not be of any help
in this case.

2David Hilbert, 1862–1943. In 1900 he put forward a list of 23 important unsolved problems some
of which remain unsolved.

44 2 Linear Equations

Fig. 2.2 Branch of a tree

9. Write a Matlab program to verify the results quoted for the Gauss–Seidel prob-
lem of Sect. 2.8. Use the program to show that Gauss–Seidel iteration applied
to the following system with initial estimates of x1, x2, . . . , x10 = 0.5 (or other
estimates which appear close to the solution) does not converge.

1
6x1 + x2 = 1

x1 + 1
6x2 + x3 = 1

x2 + 1
6x3 + x4 = 1

...

x8 + 1
6x9 + x10 = 1

x9 + 1
6x10 = 1.

10. A bird lands on the branch of a tree and takes steps to the left or to the right in a
random manner. If the bird reaches the end of the branch or the tree trunk it flies
away. Assume that the branch has the form shown in Fig. 2.2, namely that it has
a length equal to six steps. What are the probabilities of the bird reaching the end
of the branch from any of the five positions shown in Fig. 2.2. Let the probability
of the bird reaching the end of the branch from a position i steps from the trunk
be Pi , i = 0,1, . . . ,6. P0 = 0 since if the bird is at the tree trunk it flies away,
equally P6 = 1 since the bird is at the end of the branch. For any other position
we have Pi = 1

2 (Pi+1 + Pi−1) for i = 1,2, . . . ,5.
This gives rise to the equations

P1 = 1
2P2

P2 = 1
2 (P3 + P1)

P3 = 1
2 (P4 + P2)

P4 = 1
2 (P5 + P3)

P5 = 1
2 (1 + P4).

2.8 Gauss–Seidel Iteration 45

Set up a Gauss–Seidel iterative scheme in Matlab to solve the problem. Choose
initial estimates such as Pi = 0, i = 1,2, . . . ,5. Confirm that the results are in
line with expectations.

Chapter 3
Nonlinear Equations

Aims In this chapter we look at a variety of methods that can be used to find a root
(or zero, the terms are interchangeable) of a function f (x) or a single variable x,
which is equivalent to solving the equation f (x) = 0. We will also look at a method
for solving systems of nonlinear equations and so we extend the scope of Chap. 2
which only considered systems of linear equations.

We look at the following root-finding methods for a single nonlinear equation

• the bisection method.
• false position.
• the secant method.
• the Newton–Raphson1 method.
• Newton’s method for a system of nonlinear equations.

It should be noted that in general a nonlinear equation will have a number of roots;
for example, if f is polynomial of degree n in x then it has n roots, some of which
may be multiple roots. Further, some, or all, of the roots of a polynomial equation
may be complex. The methods we investigate are designed to locate an individual
real root of a function f (x) within a given range of x values.

Overview The problems involved in finding a root of an equation which models a
nonlinear relationship are more complex than those for linear equations. Indeed it is
not possible to provide a method which can be guaranteed to work for every single
case. For this reason it is as well to be acquainted with more than one method and to
be aware of the strengths and weaknesses of particular methods through theoretical
insight and practical experience. The four methods for a single nonlinear equation
are all of the same basic, iterative, form. Starting with one or more approximations
to a root of the equation f (x) = 0 they generate a sequence that may or may not
converge to a root. The differences lie in

1Joseph Raphson, 1648–1715, English mathematician credited with the independent discovery of
Newton’s method for solving equations numerically.

C. Woodford, C. Phillips, Numerical Methods with Worked Examples: Matlab Edition,
DOI 10.1007/978-94-007-1366-6_3, © Springer Science+Business Media B.V. 2012

47

http://dx.doi.org/10.1007/978-94-007-1366-6_3

48 3 Nonlinear Equations

• the number of starting values.
• the guarantee, or otherwise, of convergence.
• the speed of convergence.
• the cost, in terms of the work to be done per iteration.

Which of the possibly many roots is located by the methods will depend on the
choice of starting position.

Acquired Skills After reading this chapter you will understand the principles un-
derlying iterative root-finding methods. You will know how to compare the theoret-
ical properties of root-finding methods and what these properties mean in practice.
Using this knowledge you will be able to choose an appropriate root-finding method
for the problem at hand.

3.1 Introduction

As an example of a nonlinear equation we consider the Butler–Volmer equation
which in electrochemical processes relates current density to potential. The signif-
icance of these technical terms need not concern us. For our purposes the Butler–
Volmer equation may be expressed as

f (x) = eαx − e−(1−α)x − β. (3.1)

In particular we solve

f (x) = 0 where f (x) = e0.2x − e−0.8x − 2. (3.2)

A graph of this function for x for 0 ≤ x ≤ 4 is shown in Fig. 3.1.

Fig. 3.1 Butler–Volmer
function

3.2 Bisection Method 49

3.2 Bisection Method

The bisection method is the simplest of all the methods for finding a root of a non-
linear equation. We start with an interval containing a root and divide it into a left
and a right half. We decide which of the two halves contains a root and proceed with
a further division of that half. We do this repeatedly until the interval containing a
root is sufficiently narrowed down to meet the level of accuracy required. If we take
the mid-point of the latest interval to be an approximation to a root, we can say that
this is accurate to within ± half the width of the interval.

Problem

Use the method of bisection to find a root of the equation

f (x) = 0 where f (x) = e0.2x − e−0.8x − 2.

Solution

From Fig. 3.1 we know that there is a single root of the equation in the interval
[0,4]. f (0) is negative and f (4) is positive, and since the function is continuous,
as x increases from 0 to 4 at some point f must cross over from being negative to
positive and have the value 0.

At the mid-point of the interval, where x = 2, we find that f (2) = −0.71007. It
follows that there must be a root of the function to the right of x = 2 since f (2) is
negative and f (4) is positive. That is, having started with the interval [0,4] we now
know that there is a root of the function in the reduced interval [2,4].

We now look at [2,4] for which the mid-point is x = 3. Since f (3) is −0.26860,
which is negative, we know there must be a root of the function in the further re-
duced interval [3,4]. Continuing in a similar manner we produce the sequence of
intervals shown in Table 3.1, each of which is known to contain a root of the equa-
tion.

Table 3.1 Sequence of
intervals obtained by
bisection

a b a+b
2 f (a) f (a+b

2) f (b)

0 4 2 −2 −0.71007 0.18478

2 4 3 −0.71007 −0.26860 0.18478

3 4 3.5 −0.26860 −0.04706 0.18478

3.5 4 3.75 −0.04706 0.06721 0.18478

3.5 3.75 3.625 −0.04706 0.00971 0.06721

3.5 3.75 3.625 −0.04706 0.00971 0.06721

3.5 3.625 3.5625 −0.04706 −0.01876 0.00971

3.5625 3.5625 3.59375 −0.01876 −0.00455 0.00971

3.59375 3.625 3.60938 −0.00455 0.00257 0.00971

50 3 Nonlinear Equations

Table 3.2 The bisection
method Solve f (x) = 0 by bisection

1 Find an interval [a, b] in which f (x) = 0

2 Set x∗ to a+b
2

3 Calculate f (x∗)
4 Test for convergence

5 If f (x∗) and f (b) have opposite sign set a to x∗, otherwise
set b to x∗

6 Repeat from step 2

Discussion

We have to decide when to stop the procedure and this will depend upon the problem
under consideration. In terms of absolute values we can deduce from Table 3.1 that
we have a range of x values [3.59375,3.60938] for which f is to within ±0.005
of zero. It is important to distinguish between absolute error, which we have just
described and relative error which measures relative values. In this example the
relative values might be measured as the ratios a−b

a
and f (a)−f (b)

f (a)
. In practice the

level of acceptable error would be decided in advance.
Furthermore in considering finding a root of a function f (x) we have to take

into account a possible imbalance between x and f (x) values. If for example the
function has a very steep slope at the root, the range of x values producing a function
values close to zero could be of a much smaller order of magnitude. Conversely, if
the function is very flat in the region of a root the range of possible x values would
be comparatively large. The bisection method allowing for a choice of absolute or
relative error checking and criteria based on either x and/or f (x) values as the test
for convergence is summarised in Table 3.2.

3.2.1 Finding an Interval Containing a Root

In the case of the function already considered we were fortunate to have available a
graph which could be used to determine an initial interval containing a root. How-
ever if such a graph is not readily available it would be advisable to generate a series
of x and f values to gain a feel for the function and the presence of roots and en-
closing intervals. In the event of a function having multiple roots care should be
taken to choose an interval containing just one root, otherwise the bisection method
(and the other methods to be considered) may yield a value which is inappropriate
to the problem being modelled.

3.3 Rule of False Position 51

Fig. 3.2 Rule of false
position, approximation to the
root

3.3 Rule of False Position

The rule of false position is a version of the bisection method that takes a more
informed approach to reducing the interval containing a root. It is likely therefore to
require a smaller number of iterations.

We reconsider the problem of finding a root of equation

f (x) = 0 where f (x) = e0.2x − e−0.8x − 2

in the interval [0,4]. From Fig. 3.1 it is clear that there is a root closer to 4 than 0.
So rather than simply take the mid-point in order to reduce the interval, we look at a
point which is weighted more towards the likely position of the root. Using Fig. 3.2
we choose the point marked x∗ to be the next approximation to the root rather than
the mid-point. x∗ is the intersection of the straight line (known as the secant) joining
the points (x = 0, y = −2) and (x = 4, y = 0.18478). By similar triangles

x∗

2
= 4 − x∗

0.18478
(3.3)

and so

x∗ = 3.66170. (3.4)

Now f (3.66170) = 0.02651 which is positive and so we deduce that there must
be a root in the interval [0,3.66170]. In this reduced interval we construct a secant
joining the points (x = 0, y = −2) and (x = 3.66170, y = 0.02651) and find by
similar triangles that this cuts the x-axis at a new x∗ given by

x∗

2
= 3.66170 − x∗

0.02651
(3.5)

52 3 Nonlinear Equations

Table 3.3 Results using the
rule of false position a b x∗ f (a) f (x∗) f (b)

0 4 3.66170 −2.0 0.02651 0.18478

0 3.66170 3.61380 −2.0 0.00459 0.02651

Table 3.4 The rule of false
position Solve f (x) = 0 by the rule of false position

1 Find an interval [a, b] in which f (x) = 0

2 Set x∗ to b − f (b) a−b
f (a)−f (b)

3 Calculate f (x∗)
4 Test for convergence

5 If f (x∗) and f (b) have opposite sign set a to x∗, otherwise
set b to x∗

6 Repeat from step 2

and so

x∗ = 3.61380. (3.6)

If, as before, the aim is to find an x such that f (x) is within ±0.01 of zero we are
already there since f (3.61380) = 0.00459. The results are summarised in Table 3.3.
In the more general case where we enclose a root of the function f (x) in the interval
[a, b] we can establish that the secant joining the points (a, f (a)), (b, f (b)) cuts the
x-axis at the point x∗ where

x∗ = b − f (b)
a − b

f (a) − f (b)
. (3.7)

As in the example, the result is established using similar triangles. Although the rule
of false position produces a root in fewer steps than bisection it does not necessarily
produce the relatively small interval containing the root since the progression to the
root may be from one side of the interval. The rule of false position is summarised
in Table 3.4.

3.4 The Secant Method

The secant method uses the same basic formula as the rule of false position for find-
ing a new approximation to the root based on two existing approximations. However
the secant method does not require an initial interval containing the root and to this
extent may be more useful. We reconsider the equation

f (x) = 0 where f (x) = e0.2x − e−0.8x − 2

3.4 The Secant Method 53

Fig. 3.3 Secant method,
approximation to the root

to illustrate the method by choosing two arbitrary values from which to proceed.
For no particular reason we choose x = 5 as the first point and x = 4 as the second
point. We note that initial function values need not be of opposite sign. We have
f (5) = 0.69997 and f (4) = 0.18478. On the basis of Fig. 3.3 the point marked x∗
is likely to be a better approximation to the root.

By similar triangles we have

4 − x∗

0.18478
= 5 − x∗

0.69997
(3.8)

and so

x∗ = 3.64134. (3.9)

Now f (3.64134) = 0.01718 and so we are getting closer to the root. We repeat the
method by discarding the oldest estimate (in this case, x = 5) and retaining the two
latest estimates (x = 4 and x = 3.64134) and then find another, x∗ given by

3.64134 − x∗

0.01718
= 4 − x∗

0.18478
(3.10)

and so

x∗ = 3.60457. (3.11)

If, as before, the aim is to find an x such that f (x) is within ±0.01 of root we are
already there since f (3.60457) = 0.00038. To carry the method one stage further we
discard x = 4 and retain x = 3.64134 and x = 3.60457. The next estimate is x∗ =
3.60373 for which f (3.60373) = 0.0 (to 6 decimal places). The sequence is shown
in Table 3.5. On the evidence presented here, the secant method converges to a root
more quickly than either bisection or the rule of false position. Moreover initial
estimates that are wildly inaccurate may still provide a root. A typical progression

54 3 Nonlinear Equations

Table 3.5 Results using the
secant method a b x∗ f (a) f (b) f (x∗)

5 4 3.64134 0.69997 0.18478 0.01718

4 3.64134 3.60457 0.18478 0.01718 0.00038

3.64134 3.60457 3.60373 0.01718 0.00038 0.00000

Table 3.6 The secant method
Solve f (x) = 0 by the secant method

1 Choose two values a and b

2 Set x∗ to b − f (b) a−b
f (a)−f (b)

3 Calculate f (x∗)
4 Test for convergence

5 Set a to b and b to x∗

6 Repeat from step 2

Fig. 3.4 A typical
progression of secants

of secants indicating the location of a root is shown in Fig. 3.4 and the method
is summarised in Table 3.6. However the method is not guaranteed to converge
towards a root from any pair of starting values and will break down with a potential
division by zero if any secant is parallel to the x-axis, as shown in Fig. 3.5. This latter
difficulty would be overcome by temporarily reverting to the bisection method.

3.5 Newton–Raphson Method 55

Fig. 3.5 Secant method
breaks down

3.5 Newton–Raphson Method

A feature of the secant method is its attempt to follow the graph of the function
using a straight line. The Newton–Raphson method pursues the idea by allowing
the two points of the secant method to merge into one. In so doing it uses a single
point and the tangent to the function at that point to construct a new estimate to the
root. Once again we reconsider the equation

f (x) = 0 where f (x) = e0.2x − e−0.8x − 2

to illustrate the method.
Since we have available an analytic form for f which involves simple exponen-

tials we can readily form an analytic expression for the gradient f ′(x) which can
therefore be used to calculate the tangent to f . We have

f ′(x) = 0.2e0.2x + 0.8e−0.8x. (3.12)

We start with the initial (arbitrary) root estimate x = 4, for which f (4) =
0.18480. From Fig. 3.6 it seems likely that x∗, the point at which the tangent to f at
x = 4 crosses the x axis, will be a closer approximation to the root and this is indeed
the case. By evaluating (3.12) at x = 4 we find that the gradient of the tangent at this
point is 0.47772. This value is equal to the tangent of the angle to the x-axis and so

0.47772 = 0.1848

4 − x∗

and therefore x∗ = 3.61321.
Since f (3.61321) = 0.00432 we have already arrived at a value of x which gives

f to within ±0.01 of root. Generalising the argument it can be shown that if the

56 3 Nonlinear Equations

Fig. 3.6 The
Newton–Raphson method

Table 3.7 The
Newton–Raphson method Solve f (x) = 0 by the Newton–Raphson method

1 Choose a starting point a

2 If f ′(a) �= 0 replace a by a − f (a)
f ′(a)

otherwise

restart using a different a

3 Test for convergence

4 Repeat from step 2

tangent at a to f (x) intercepts the x-axis it does so at the point

x = a − f (a)

f ′(a)
.

This is the basis of the Newton–Raphson method which is summarised in Table 3.7.

Problem

Use the Newton–Raphson method to find a root of the polynomial equation

f (x) = 2x3 − 9x2 + 12x − 6.

Solution

We have f ′(x) = 6x2 −18x +12. If we start at the point x = 0, we have f (0) = −6
and f ′(0) = 12, from which it follows from a graph similar to that of Fig. 3.6 that

3.5 Newton–Raphson Method 57

Table 3.8 Results using the
Newton–Raphson method a f (a) f ′(a) a − f (a)

f ′(a)

0 −6 12 0.5

0.5 −2 4.5 0.94444

0.94444 −1.00960 0.135185 3.81384

3.81384 19.8 30.6 3.16710

3.16710 5.26 15.2 2.82010

2.82010 1.12 8.96 2.69495

2.69495 0.12014 7.07 2.67795

2.67795 0.00206 6.83 2.67765

2.67765 0.00001 6.82

Fig. 3.7 A typical
progression of tangents

the next estimate x∗ of the root is calculated from

12 = 6

x∗ (3.13)

and therefore x∗ = 0.5. The method is repeated from the point x = 0.5 until f (x) is
sufficiently small. The sequence is shown numerically in Table 3.8. The progression
of tangents indicating the location of the root is shown in Fig. 3.7. Notice how in
the final stages the method converges very quickly.

Discussion

It is a feature of the Newton–Raphson method that if it does work it is faster to
converge than any of the methods we have considered so far. The effort involved

58 3 Nonlinear Equations

in calculating the derivative of the function is worthwhile if as in a real-time ap-
plication, a rapid method is required. However, to ensure convergence it may be
necessary to make a good initial estimate of the root. There are two problems which
may arise using Newton–Raphson. It is possible that at some point in the sequence
the tangent could be parallel to the axis, the derivative would be zero and so the
formula would not be valid. Theoretically the method may cycle, the sequence of
points approximating to the root may return to some earlier point but in practice
that would be a very rare occurrence. In either case progress could be made by tem-
porarily reverting to one of the former methods or by varying the current estimate
in order to make progress.

3.6 Comparison of Methods for a Single Equation

We have covered a number of methods for finding a root of a function namely, bi-
section, rule of false position, secant and Newton–Raphson. In making comparisons
between these various schemes it is necessary to take into account

1. the requirement to provide an initial interval
2. the guarantee (or otherwise) that the method will find a root
3. the relative rates at which the methods converge to a solution.

A method might be inappropriate if it requires an inordinate amount of comput-
ing time to reach a solution, particularly in real time applications where a rapid
response might be required. The term order of convergence gives an indication of
the rate at which an iterative process reaches a solution. The order of convergence
is a measure of how the error (the absolute value of the difference between the ap-
proximation and the true solution) decreases as the iteration proceeds. For example,
an iterative method having linear convergence (or order of convergence 1) might
produce a sequence of errors 0.1, 0.5, 0.25, . . . , that is, the error is halved at each it-
eration, whereas a method having quadratic convergence (or order of convergence 2)
might produce a sequence of errors 0.1, 0.01, 0.001, . . . that is, the error is squared
at each iteration. It follows that a method having quadratic convergence generally
converges much faster than a method having linear convergence. The advantages
and disadvantages of each method are summarised in Table 3.9.

Table 3.9 Comparison of methods

Method Initial interval required? Guaranteed to find a root? Order of convergence

Bisection Yes Yes 1

False position Yes Yes between 1 and 1.62

Secant No No 1.62

Newton–Raphson No Yes—if initial estimate is
sufficiently accurate

2

3.7 Newton’s Method for Systems of Nonlinear Equations 59

3.7 Newton’s Method for Systems of Nonlinear Equations

To take matters further we consider nonlinear relationships involving more than one
variable. We restrict our attention to systems of equations having the same number
of equations as unknowns. Systems having an unequal number of equations and
unknowns can be dealt with as an optimisation problem (Chap. 8). We write the
system as

f(x) = 0.

By way of an example we consider the following problem.

Problem

The stress distribution within a metal plate under a uniformly distributed load is
modelled by (3.14) and (3.15). The variables x1 and x2 define the position of a point
within the plate, but the precise details need not concern us.

f1(x1, x2) = cos(2x1) − cos(2x2) − 0.4 (3.14)

f2(x1, x2) = 2(x2 − x1) + sin(2x2) − sin(2x1) − 1.2. (3.15)

The problem is to find values for x1 and x2 such that f1(x1, x2) = f2(x1, x2) = 0.
Although it is possible to extend the secant method to deal with such systems by
using planes in 3-dimensional space rather than secants in 2-dimensional space it is
easier to extend the principles of the Newton–Raphson method into what is known
as Newton’s method.

Solution

As usual we start from some initial approximation to the roots. In this case we
choose x1 = 0.1 and x2 = 0.5. These are values which, given a familiarity with
the problem being modelled, are not unreasonable. In any event f1(0.1,0.5) ≈ 0.04
and f2 ≈ 0.2 and are therefore reasonably close to zero. In dealing with systems
of nonlinear equations it is as well to exercise some care in choosing the initial
approximations since in general the methods for nonlinear systems are not as robust
as those for single equations and may not work for initial approximations too far
from the solution. Given the initial points x1 = 0.1 and x2 = 0.5 we look for a better
approximation x∗

1 and x∗
2 to make f1(x

∗
1 , x∗

2) and f2(x
∗
1 , x∗

2) closer to the root.
If the function f1 is plotted on the axes shown in Fig. 3.8 we have a 3-dimensional

shape at which the point marked A has coordinates (0.1,0.5) in the (x1, x2) plane.
We attempt to follow the shape of the function f1 in the x1 = 0.1 plane by drawing
the tangent AB to f1 at (0.1,0.5). Similarly, we follow the shape in the x2 = 0.5
plane by drawing the tangent AC to f1 at (0.1,0.5). Since we are dealing with a
solid shape, there are many tangents at any particular point. As yet the points B and
C are undefined but we aim to construct a point D in the plane of f1 = 0 such that
CD is parallel to AB, and AC, FG and BD are parallel. The shape ABCD is our
approximation to f1 even though at this stage the point D is not uniquely defined.

60 3 Nonlinear Equations

Fig. 3.8 Newton’s method,
estimation of derivatives of
f (x1, x2)

However, if we repeat the process for f2 and arrange for them both to have the same
D, we can take this point to be the next approximation to the root.

We first consider f1. If we keep x2 constant in f1 it may be regarded as a function
of x1 only and its gradient ∂f1

∂x1
is given by

∂f1

∂x1
= −2 sin(2x1). (3.16)

It follows that for x1 = 0.1, ∂f1
∂x1

= −0.39734 and so by the same argument that we
used in the Newton–Raphson method for equating the gradient with the tangent of
the angle

−0.39734 = FH

0.1 − x∗
1
. (3.17)

Similarly, if we keep x1 constant in f1 it may be regarded as a function of x2 only
and its gradient ∂f1

∂x2
is given by

∂f1

∂x2
= 2 sin(2x2). (3.18)

It follows that for x2 = 0.5, ∂f1
∂x1

= 1.6825 and so

1.6825 = AF

0.5 − x∗
2
. (3.19)

Since AH = AF + FH and AH = f1(0.1,0.5) = 0.03976 we have

0.03976 = −0.39734
(
0.1 − x∗

1

) + 1.6825
(
0.5 − x∗

2

)
. (3.20)

Equation (3.20) is an application of the Mean Value Theorem which states that under
fairly general conditions a function f = f (x1, x2) for which (x∗

1 , x∗
2) is a root may

be approximated by (3.21)

f (x1, x2) = ∂f

∂x1

(
x1 − x∗

1

) + ∂f

∂x2

(
x2 − x∗

2

)
. (3.21)

3.7 Newton’s Method for Systems of Nonlinear Equations 61

Table 3.10 Results using
Newton’s method x1 x2 f1 f2

0.1 0.5 0.03976 0.24280

0.15259 0.48879 −0.00524 0.00108

0.15653 0.49338 −0.00001 −0.00003

The closer (x1, x2) to (x∗
1 , x∗

2) the better the approximation. Writing x∗
1 = x1 + δ1

we have from (3.20)

0.03976 = 0.39734δ1 − 1.6825δ2. (3.22)

Equation (3.22) provides one relationship between x∗
1 and the increment δ1 required

to find x∗
2 . To obtain another, and so determine unique values, we apply the same

arguments to f2. The partial derivatives of f2 are given by (3.23) and (3.24) which
at x1 = 0.1 and x2 = 0.5 evaluate to −3.9601 and 3.0806 respectively.

∂f2

∂x1
= −2 − 2 cos 2x1 (3.23)

∂f2

∂x2
= 2 + 2 cos 2x2. (3.24)

Since f2(0.1,0.5) = 0.24280 applying a similar analysis we have

0.24280 = 3.9601δ1 − 3.0806δ2. (3.25)

Equations (3.22) and (3.25) give the 2 × 2 system:
(

0.39734 − 1.6825
3.9601 − 3.0806

)(
δ1
δ2

)
=

(
0.03976
0.24280

)
.

Solving this system gives δ1 = 0.05259, δ2 = −0.01121 and so x∗
1 = 0.15259 and

x∗
2 = 0.48879. The whole process is repeated using these values to find further ap-

proximations until the values of the functions f1 and f2 at some point are suffi-
ciently small for our purposes. The sequence of approximations is shown in Ta-
ble 3.10. The method we have described is Newton’s method for a 2×2 nonlinear
system and is summarised in Table 3.11. A worked example follows.

Problem

Find a solution to the system of equations:

x cosy + y cosx = 0.9
x siny + y sinx = 0.1.

Solution

We write the equations as f1(x1, x2) = 0 and f2(x1, x2) = 0, where

f1(x1, x2) = x1 cosx2 + x2 cosx1 − 0.9

f2(x1, x2) = x1 sinx2 + x2 sinx1 − 0.1.

62 3 Nonlinear Equations

Table 3.11 Newton’s
method for 2×2 nonlinear
system

Newton’s method for the 2×2 nonlinear system

f1(x1, x2) = 0

f2(x1, x2) = 0

1 Choose a starting point x1, x2

2 Calculate f1(x1, x2) and f2(x1, x2)

3 Test for convergence

4 Calculate the partial derivatives of f1 and f2 at (x1, x2)

5 Solve the 2×2 system

δ1
∂f1
∂x1

− δ2
∂f1
∂x2

= −f1(x1, x2)

δ2
∂f2
∂x1

− δ2
∂f2
∂x2

= −f2(x1, x2)

for δ1 and δ2

6 Set x1 to x1 + δ1, x2 to x2 + δ2

7 Repeat from step 2

The partial derivatives of f1 and f2 are given by

∂f1

∂x1
= cosx2 − x2 sinx1

∂f1

∂x2
= −x1 sinx2 + cosx1

∂f2

∂x1
= sinx2 + x2 cosx1

∂f2

∂x2
= x1 cosx2 + sinx1.

We take x1 = 0 and x2 = 1 as an initial approximation to the solution. This is a
reasonable choice since f1(0,1) = 0.1 and f2(0,1) = −0.1, both values being fairly
close to the root. At the point x1 = 0, x2 = 1 we have

∂f1

∂x1
= 0.5403,

∂f1

∂x2
= 1,

∂f2

∂x1
= 1.8415,

∂f2

∂x2
= 0

and so the increment (δ1, δ2) to be added to the current solution is found by solving
the equations

0.5403δ1 + δ2 = −0.1
1.8415δ1 = 0.1.

This gives δ1 = 0.05430, δ2 = −0.12934 and so the next estimate is x1 = 0.05430,
x2 = 0.87066 at which point f1 = 0.00437 and f2 = −0.01121. Clearly we are
getting closer to a solution. At the point x1 = 0.05430, x2 = 0.87066 we have

∂f1

∂x1
= 0.59707,

∂f1

∂x2
= 0.95700,

∂f2

∂x1
= 1.6341,

∂f2

∂x2
= 0.08927

and so the next approximation to the solution is found by solving the equations

0.59707δ1 + 0.957δ2 = −0.00437

1.6341δ2 + 0.08927δ2 = 0.1121.

3.7 Newton’s Method for Systems of Nonlinear Equations 63

This gives the solution δ1 = 0.00736, δ2 = −0.00915 and so the next estimate is
x1 = 0.06167, x2 = 0.86151 at which point f1 = 0.00030 and f2 = −0.00011. One
more iteration produces a solution x1 = 0.06174 and x2 = 0.86143 which gives f1
and f2 values of order 1.010 − 8.

3.7.1 Higher Order Systems

Newton’s method readily extends to larger systems, although to write out the de-
tails in the way we have done for a 2 × 2 system would be rather cumbersome. To
simplify the detail we use vector notation.

Consider the n × n system of (nonlinear) equations

f1(x1, x2, . . . , xn) = 0

f2(x1, x2, . . . , xn) = 0
...

fn(x1, x2, . . . , xn) = 0.

We introduce the vectors f = (f1, f2, . . . , fn)
T and x = (x1, x2, . . . , xn)

T to write
the equations in the condensed form as f(x) = 0. As a further simplification to the
notation we introduce the Jacobian of a function f. The Jacobian of n functions
f1, f2, . . . , fn, all of n variables x1, x2, . . . , xn is defined to be the n × n matrix
J (x) where the (i, j)th element of J is given by ∂fi

∂xj
. Using this notation, and using

δ to denote the increments δ1, . . . , δn applicable to improve current estimates, x
to the solution, Newton’s method for an n × n nonlinear system is summarised in
Table 3.12. A worked example follows.

Problem

Use Newton’s method to find a solution to the equations

Table 3.12 Newton’s
method for an n × n

nonlinear system

Newton’s method for the n × n nonlinear system
f(x) = 0

1 Choose a starting point x

2 Calculate f(x)

3 Test for convergence

4 Calculate J (x)

5 Solve for x∗ the n × n system
J (x)δ = −f(x)

6 Set x = x + δ

7 Repeat from step 2

64 3 Nonlinear Equations

3 + 2

r2
− 1

8

(3 − 2v)

1 − v
ω2r2 = 4.5

6v − 1

2

v

1 − v
ω2r2 = 2.5

3 − 2

r2
− 1

8

(1 + 2v)

1 − v
ω2r2 = 0.5.

These equations arise in the modelling of stress on a turbine rotor.

Solution

Modifying the notation so that v, ω and r become x1, x2 and x3 respectively, and
introducing f = (f1, f2, f3)

T we solve the system f(x) = 0, where

f1 = 3 + 2

x2
3

− 1

8

(3 − 2x1)

1 − x1
x2

2x2
3 − 4.5

f2 = 6x1 − 1

2

x1

1 − x1
x2

2x2
3 − 2.5

f3 = 3 − 2

x2
3

− 1

8

(1 + 2x1)

1 − x1
x2

2x2
3 − 0.5.

The Jacobian of these functions is given by

J =

⎛

⎜⎜⎜⎜
⎜
⎝

− x2
2x2

3

8(1−x1)
2 − (3−2x1)x2x

2
3

4(1−x1)
− 4

x2
3

− (3−2x1)x
2
2x3

4(1−x1)

6 + x2
2x2

3

2(1−x1)
2 − x1x2x

2
3

1−x1
− x1x

2
2x3

1−x1

− 3x2
2x2

3

8(1−x1)
2 − (1+2x1)x2x

2
3

4(1−x1)
4
x2

3
− (1+2x1)x

2
2x3

4(1−x1)

⎞

⎟⎟⎟⎟
⎟
⎠

.

Starting with estimates x1 = 0.75, x2 = 0.5, x3 = 0.5, we find that

J =
⎛

⎝
−0.1250 −0.0469 −16.1875

6.5000 −0.3750 −0.3750
−0.3750 −0.3125 15.6875

⎞

⎠ .

To find the next estimate we use Gaussian elimination to solve the 3 × 3 linear
system

J(x)δ = −f(x)

where x is the current, to find δ = (−0.1497,2.0952,0.3937) which we add to x to
give the next estimate. The process is repeated until function values f1, f2 and f3

are sufficiently small. Results are shown in Table 3.13.

3.7 Newton’s Method for Systems of Nonlinear Equations 65

Table 3.13 Newtons’
method for a 3 × 3 system Step x1 x2 x3 f1 f2 f3

1 0.7500 0.5000 0.5000 6.4531 1.9063 −5.5781

2 0.6003 2.5952 0.8937 −6.4531 −1.9063 5.5781

3 0.6052 1.0042 1.1290 2.0237 2.9384 3.7066

4 0.5627 0.9790 0.9942 0.6595 −0.1459 −0.0313

5 0.5305 0.9661 1.0025 −0.0159 −0.2666 0.0989
.
.
.

.

.

.

13 0.5001 0.9999 1.0000 0.0001 −0.0007 0.0000

14 0.5000 1.0000 1.0000 0.0000 −0.0003 0.0000

15 0.5000 1.0000 1.0000 0.0000 −0.0001 0.0000

Summary In this chapter we have looked at four methods for finding a root of
a general nonlinear equation f (x) = 0, namely bisection, false position, the secant
method and the Newton–Raphson method. We have seen that the principle differ-
ences between these methods are

• the number of starting values.
– the bisection, false position and secant methods require 2 initial root estimates.
– the Newton–Raphson method requires 1 initial estimate only.

• the guarantee, or otherwise, of convergence.
– the bisection and false position methods give guaranteed convergence.
– the secant method does not give guaranteed convergence.
– the Newton–Raphson method gives guaranteed convergence if the initial esti-

mate is sufficiently close to a root.
• the speed of convergence.

– the bisection method gives the slowest rate of convergence.
– the Newton–Raphson method gives the fastest rate of convergence.
– the convergence rate of the false position and secant methods is between that

of the bisection method and the Newton–Raphson method.
• the cost per iteration.

– the bisection, false position and secant methods involve 1 function evaluation
per iteration.

– the Newton–Raphson method involves 2 function evaluations per iteration
(counting a derivative evaluation as a function evaluation). But it should be
remembered that Newton–Raphson is generally faster to converge and so over-
all should involve fewer function evaluations.

If speed is of the essence (for example in a real time application) the bisection
method may be too slow to be of practical use. Although generally faster than bisec-
tion the non-guaranteed convergence of the secant method is a serious drawback.
If f can be differentiated analytically and function evaluations are not too time
consuming to compute, then the Newton–Raphson method is probably the one to
choose, despite the fact that even here convergence is not guaranteed unless a start
is made sufficiently close to a root.

66 3 Nonlinear Equations

Finally we looked at Newton’s method for systems of equations which we
showed to be an extension of the Newton–Raphson method.

Exercises

1. Write a Matlab program to find
√

2 using the bisection method. Do this by find-
ing a root of the function f (x) = x2 −2 in the interval [1,2]. Aim for an accuracy
of 4 decimal places. Write Matlab code based on the following which shows the
interval containing the root shrinking to a point at which it has length less than
0.00005. The code assumes that the function sq2(x) to evaluate x2 − 2 has been
established in an M-file sq2.m (see Sect. 1.5).

low = 1; % initial lower bound
high = 2; % initial upper bound
while high− low > 0.00005;

mid = (high + low)/2; % mid point of current bounds
if sq2(low)∗sq2(mid) < 0 % solution lies to the left

high = mid;
else % solution lies to the right

low = mid;
end;
s = sprintf('solution lies in [%8.4f,%8.4f]', low, high);
disp(s);

end;

2. Use the following code to plot the function f (x) = x sinx − cosx to show that
it has just one root in the interval [0,π/2].
% construct 50 x-points equally spaced between 0 and pi/2

x = linspace(0, pi/2, 50);
% use element by element multiplication to form x sin(x)

y = x.∗sin(x) - cos(x);
plot(x,y);

Modify the code from question 1 to find the root of f (x) = x sin(x) − cos(s) in
[0,π/2] to an accuracy of four decimal places. Check the result using the Matlab
function fzero. A suitable command would be

solution = fzero(@fsincos, 1.0)

where the function fsincos(x) = x sin(x) − cos(x) is defined in the M-file
fsincos.m. Note how the name of the function, fsincos is passed to fzero using
the @ symbol. The second parameter of fzero supplies a starting estimate of the
solution.

3. Modify the code for the bisection method (question 1) to implement the method
of false position. Replace the variable name mid by a more meaningful name
such as xstar, where xstar is calculated using the (3.7). Modify the condition
for the while loop to terminate. Test the code by finding

√
2 to an accuracy of 4

decimal places.

3.7 Newton’s Method for Systems of Nonlinear Equations 67

4. Use the following code as the basis for writing a Matlab program to find a root
of the function f (x) = 0 using the secant method.

% Secant method for solving f(x)=0
% Assume estimates a and b, the required accuracy eps and function f have
% been defined

while abs(f(xstar)) > eps
xstar = b - f(b)∗(a-b)/(f(a)-f(b));
a = b;
b = xstar;

end;
disp(xstar);

Test the program by finding
√

2 to 4 decimal places using starting estimates (i)
a = 1, b = 2 to find the positive root and (ii) a = −1, b = −2 to find the negative
root.

5. By plotting a suitable graph show that the polynomial 4x3 − 8x2 + 3x − 10
has only one real root. Use the secant program developed in question 4 to find
this root. Display successive approximations to show progress to the solution.
Because of the nature of the function as shown in the plot, progress may be
rather slow for certain initial estimates. For estimates a = −0.5, b = −1 the
method fails, but with a plot to hand this would be an unlikely choice.

Check the solution using the Matlab function roots which finds all the roots of
a polynomial. The input to the function is a vector of coefficients in left to right
order. For the quoted example a Matlab command

roots([4 −8 3 −10])

would be appropriate.
6. Write a Matlab program to find

√
2 using the Newton–Raphson method. As be-

fore do this by finding a root of the function f (x) = x2 − 2. You will see that the
method is equivalent to continually replacing the current estimate x, of

√
2, by a

new estimate (x
2 + 1

x
).

Consider the more general problem of finding the pth root of a number a,
(p, a positive real numbers) by using the Newton–Raphson method to find a root
of the function f (x) = xp − a. Test the program on examples such as 81/3 and
22/5. Compare with the values expressed by Matlab commands.

7. Write a general purpose Matlab function Newton–Raphson to find a root of a
given function f , where f and its derivative f ′ are defined as Matlab functions
in the M-files f.m and fdash.m respectively. The Newton–Raphson function is
to have input parameters estimate, an estimate of the solution, abs the required
absolute accuracy of the solution and limit a limit on the number of iterations.

The following is a suggestion for the form of the function:

function [root] = Newton–Raphson(estimate, eps, limit)
x = estimate;
count = 0;
while diff > eps && count < limit

68 3 Nonlinear Equations

if fdash(x) ∼= 0
root = x - f(x)/fdash(x);
diff = abs(root-x);
x = root;
count = count + 1;

else
% Print a diagnostic message to show why the procedure has failed

s = sprintf('Method fails, zero derivative at %8.4f ', x);
disp(s);
break;

end;

Notice how the break command has been used to return prematurely from the
while loop and in this case return to the calling program.

Test the program using the function of question 5. Notice how Newton–
Raphson generally requires fewer iterations than the Secant method.

8. Write a Matlab program to find a solution to the following system of equations.
Use Newton’s method for a 2 × 2 system following the scheme to verify the
results shown in Sect. 3.7

x1 cosx2 + x2 cosx1 = 0.9

x1 sinx2 + x2 sinx1 = 0.1.

A suitable program might have the form

x = [0 ; 1] % initial estimate of the solution
for i = 1 : 3 % perform three iterations
% form the matrix of coefficients
A = [diff1(x,1) diff1(x,2) ; diff2(x,1) diff2(x,2)];
% right hand side
b = −[f1(x) ; f2(x)]
d = A\b; % solve the equations
x = x + d % next estimate

end;

Matlab provides the function fsolve to find a solution of a system of non-linear
equations. The function provides many options but for this example the following
program would be appropriate.

x0 = [0 ; 1]; % initial estimate
options=optimset('Display','iter'); % options to display the iterative process
[x] = fsolve(@sys,x0,options) % solution returned in vector x

where it is assumed that the system of equations is defined as the function sys in
the Matlab M-file sys.m as follows

function eqns = sys(x)
eqns = [x(1)∗cos(x(2)) + x(2)∗cos(x(1)) −0.9;

x(1)∗sin(x(2)) + x(2)∗sin(x(1)) −0.1];

3.7 Newton’s Method for Systems of Nonlinear Equations 69

9. Write a Matlab program to find a solution to the following system of equations.
Use Newton’s method for an n × n system following the scheme shown in Ta-
ble 3.12.

4x2
1 + 2x2 = 4

x1 + 2x2
2 + 2x3 = 4

x2 + 2x2
3 = 4.

Alternatively use the Matlab function fsolve as described in the previous question
with the equations stored in column vector form as shown below.

% storing the equations in column vector eqns:
eqns = [4∗x(1)∧2 + 2∗x(2) - 4;

x(1) + 2∗x(2)∧2 + 2∗x(3) - 4;
x(2) + 2∗x(3)∧2 - 4].

Chapter 4
Curve Fitting

Aims In this chapter we look at ways of fitting a smooth curve to supplied data
points. That is, given a set of pairs of values (xi, yi), we construct a continuous
function y = f (x) that in some sense represents an underlying function implied
by the data points. Having produced such an approximating function we could for
example, estimate a value for f (x) where x is not one of the xi .

Overview Initially we consider using a straight line as the approximating func-
tion. We then consider using polynomials as approximating functions and how we
might find appropriate values for polynomial coefficients. Finally we consider using
more general functions for approximating purposes and in so doing introduce the
method of least squares approximation. In developing the various methods we take
account of whether the approximating function, f (x) is required to fit the data ex-
actly or not. It may be possible to produce a simpler, smoother approximation and
one more amenable to further analysis and application by allowing a more approxi-
mate fit to the data. In practice this is not an inappropriate approach as data collected
from observation or experiment may contain error or may have limited accuracy. In
producing an underlying approximation having such desirable features we may be
improving the accuracy of the data and possibly identifying and eradicating error.

Acquired Skills After reading this chapter you will understand how data may
be represented by a function which may then be used to approximate in-between
and beyond the given data. You will be able to assess the type of function required,
whether linear, polynomial or other, in a given situation. You will be able to con-
struct the function, choosing from one of a number of methods appropriate to the
problem under consideration.

4.1 Introduction

Curve fitting is the process whereby a continuous function is constructed in such
a way that it represents supplied data. The main problem is that of deciding what

C. Woodford, C. Phillips, Numerical Methods with Worked Examples: Matlab Edition,
DOI 10.1007/978-94-007-1366-6_4, © Springer Science+Business Media B.V. 2012

71

http://dx.doi.org/10.1007/978-94-007-1366-6_4

72 4 Curve Fitting

form the continuous function should take. A linear function may be suitable for the
measurement of temperature, but not for measuring gas volume against pressure.
For the latter we find that a polynomial is a more suitable function. It may be tempt-
ing to assume that in general a higher order polynomial is likely to offer a better
approximation than a polynomial of lower order, but this is not necessarily so. In-
deed, the converse may apply. However, rather than discard polynomials entirely,
we show how they can be combined in a piecewise manner to form good approxi-
mating functions. Such functions are known as spline functions. We begin by using
straight line (linear approximation) to fit exactly to given data.

4.2 Linear Interpolation

The temperature of a liquid can be determined by reading a non-digital mercury
thermometer. The length of the mercury column may well coincide with one of the
calibration points, but more typically it will lie somewhere between two such points
(a lower and an upper bound).

Problem

How might we measure temperatures using a non-digital mercury thermometer
which is marked at 10° intervals in the range 0° to 100°?

Solution

We estimate the length of the mercury column above the lower point as a fraction
of the distance between the lower point and the upper point. The temperature of the
liquid is assumed to be the value at the lower of the two points plus the fraction
times the interval between two calibrations (10°).

A graphical representation of this process (Fig. 4.1) is an x-y plot in which the
y-axis represents the length of the mercury column and the x-axis represents tem-
perature. At the calibration points (temperatures in the range 0° to 100° in steps of
10°) we plot the known values of the length of the mercury column on a graph.
Assuming suitable consistency conditions are satisfied, such as the cross-section of
the column is constant throughout the scale portion of the thermometer, the rela-
tionship should be linear and we should therefore be able to draw a straight line that
(to within the limits of experimental accuracy) links all of the points. Then for any
known length of the mercury column we simply draw a horizontal line across from
the appropriate point on the y-axis, and where this meets our straight line we draw a
vertical line; the point at which this line crosses the x-axis defines the temperature.
In this case the fitted curve (albeit a straight line) is a representation of the data sup-
plied as lengths of the mercury column (the function values) at temperatures (the
independent variable) in the range 0° to 100° in steps of 10°.

4.2 Linear Interpolation 73

Fig. 4.1 Length of mercury
column against temperature

Discussion

There are a number of interesting points to note. Since we are dealing with a straight
line it is possible to read off values on the y-axis which correspond to values on the
x-axis. Similarly it is possible to read off values on the x-axis which correspond to
values on the y-axis. This process known is as inverse interpolation.

It is perfectly possible to extend the straight line and perform interpolation and
inverse interpolation for values of the temperature and length of the mercury column
that lie outside of the range of values supplied as data. The process is known as
extrapolation, which can be a risky proposition. Consider what would happen if
the independent variable were a time variable. Whereas drawing information from
times past might be a fairly reliable activity, predicting the future is a very different
matter as many have found to their cost.

The measurement of temperature using our hypothetical thermometer is an ex-
ample of linear interpolation, in that the curve fitted to the data is a straight line.
We now consider another problem (which we will subsequently refer to as the gas
problem) and discuss the question of deciding the suitability, or otherwise, of linear
interpolation for a given set of data.

Problem

From a set of experiments the values in Table 4.1 have been obtained relating the
volume of a gas, y to pressure, x. The aim is to determine from this data volumes of
the gas at non-tabulated pressure results and an estimate of the underlying function
of the form shown in Fig. 4.2.

74 4 Curve Fitting

Table 4.1 Volume of gas in
relation to pressure y 1.62 1.00 0.75 0.62 0.52 0.46

x 0.5 1.0 1.5 2.0 2.5 3.0

Fig. 4.2 Graph of gas
volume against pressure

Solution

As with the example of the thermometer, we assume that between any two tabulated
points the volume versus pressure graph behaves linearly. Thus, for example, if we
are interested in determining the volume at pressure x = 1.75, then since 1.75 is
mid-way between the tabulation points 1.5 and 2.0, then the volume is, approxi-
mately, mid-way between the observations 0.75 and 0.62, and we deduce a value of
0.685. In general, to compute a volume ŷ corresponding to the pressure x̂, we find
the i such that xi ≤ x̂ ≤ xi+1, where x0 = 0.5, x1 = 1.0, . . . , x5 = 3.0. If we use yi

to denote the volume corresponding to pressure xi , then our estimate of the volume
ŷ corresponding to pressure x̂ is given by

ŷ = yi + x̂ − xi

xi+1 − xi

(yi+1 − yi). (4.1)

Discussion

Strictly speaking, we have described piecewise linear interpolation. Rather than
compute a single straight-line approximation that goes through all the data points
we produce a sequence of approximations, with each approximation passing through
two consecutive data points. We are not interested in any of these approximations
outside of its range. For an appropriate problem it should be possible, in theory, to
obtain the form of a single straight line that passes through all the data points (our

4.2 Linear Interpolation 75

thermometer problem can be classified as an appropriate problem). In practice the
situation is less clear; there may well be observational error in the data.

4.2.1 Differences

The accuracy of piecewise linear interpolation will depend on the accuracy of the
supplied data and that the relationship between dependent and independent variables
is linear. The validity or otherwise of the latter can be deduced by forming what are
known as divided differences (or just differences), and this in turn provides the
route to alternative methods of solution. We illustrate the method by constructing a
table of differences for the following example.

In an experiment designed to demonstrate the relationship between time and the
average number of goals scored by a football club per game, a set of results over
a playing season was obtained and summarised in Table 4.2. We might deduce that
the average number of goals scored after 45 minutes is 0.8 + 45−40

50−40 (1.0 − 0.8) =
0.9, provided that the relationship between time and goals scored is linear but that
is yet to be established. Let the function values (average number of goals) be yi

corresponding to the points (time duration) xi . Then the divided difference involving
the two consecutive values yi+1 and yi is simply the difference yi+1 −yi divided by
xi+1 − xi . Divided differences corresponding to the data of Table 4.2 are shown in
the third column of Table 4.3; we observe that they all have the same value (0.02).
The divided differences themselves can be regarded as y-values, and hence we can
construct another set of differences (second differences), shown in the fourth column
of Table 4.3. Note that in order to produce these second differences we must fan back
to the first column to determine the divisor. Hence, for example, the first entry in the
final column is found as 0.2−0.2

20−0 . Since the first differences are identical, the second
differences are all zero (and so here the actual form of the divisor is not important).

To realise the importance of the difference table, we know from Taylor’s The-
orem1 that the first derivative of a function can be approximated by the differ-
ence between two function values divided by the difference between values of the
points at which those function values were obtained. Obtaining a set of values in
this way, it follows that second derivative approximations can be obtained by form-
ing divided differences of first divided differences. If these second differences are

Table 4.2 Average number of goals scored per game

Goals 0.0 0.20 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Play in minutes 0 10 20 30 40 50 60 70 80 90

1Brook Taylor 1685–1731, published his theorem in 1715 although others were able to make sim-
ilar claims. The theorem began to carry his name some fifty years later. He somewhat aggressively
promoted Newton’s work over that of Leibniz and other European mathematicians.

76 4 Curve Fitting

Table 4.3 Differences for goals against time

Duration of play Av. no. goals 1st differences 2nd differences

0 0.00
0.02

10 0.2 0.0
0.02

20 0.4 0.0
0.02

30 0.6 0.0
0.02

40 0.8 0.0
0.02

50 1.0 0.0
0.02

60 1.2 0.0
0.02

70 1.4 0.0
0.02

80 1.6 0.0
0.02

90 1.8

Table 4.4 Differences for volume against pressure

Pressure Volume Differences
1st 2nd 3rd 4th 5th

0.5 1.62
−1.24

1.0 1.00 0.74
−0.50 −0.333333

1.5 0.75 0.24 0.106667
−0.26 −1.20 −0.016

2.0 0.62 0.06 0.066667
−0.20 0.133333

2.5 0.52 0.08
−0.12

3.0 0.46

zero (and it follows that all further differences must also be zero), then the sugges-
tion is that the data has been sampled from a function having zero second deriva-
tives (that is, a straight line) and so is best represented by a straight line. How-
ever the validity of such a conclusion will depend on the frequency of the sampling
points.

If we consider the data relating to the gas problem (Table 4.1) we can form first,
second and other divided differences to form the results shown in Table 4.4. From
the comments we made concerning Table 4.3 we conclude that a single straight
line cannot be found which exactly fits all the data of our gas problem. However

4.3 Polynomial Interpolation 77

in constructing Table 4.4 we have computed additional information which tells us
something about the curvature of the underlying function represented by the data
values, which we are able to exploit.

4.3 Polynomial Interpolation

In the previous section we saw that straight line approximation is not sufficient
in all cases. In general unless we have good reasons to do otherwise, we let the
approximating function take the form of a polynomial in the independent variable.
The aim therefore is to choose the polynomial coefficients appropriately.

As a first step we consider the case of polynomial interpolation. If the supplied
data is given in the form of n + 1 values yi , i = 0,1, . . . , n, corresponding to values
xi, i = 0,1, . . . , n, we choose an approximating polynomial pn(x) of degree n so
that

pn(xi) = yi, i = 0,1, . . . , n. (4.2)

pn(x) has n + 1 (as yet) unknown coefficients. Since in (4.2) we have the same
number of equations as unknowns, in principle we may solve the system using the
techniques outlined in Chap. 1. Assuming the xi are unique, then it can be shown
that the solution itself is unique. The coefficient matrix is non-singular. In practice
a more indirect approach is usually taken, and we see that it is sometimes the case
that an explicit expression for pn(x) is not derived.

4.3.1 Newton Interpolation

We remarked in Sect. 4.2 that a simple way of estimating non-tabulated values is
to employ linear interpolation, as represented by formula (4.1). In Table 4.4 we
evaluate the factors (yi+1 − yi)/(xi+1 − xi) which appear in this formula. In order
to present a general form for linear interpolation we introduce the notation

y[xi, xi+1] = yi+1 − yi

xi+1 − xi

(4.3)

so that (4.1) becomes ŷ = yi + (x̂ − xi)y[xi, xi+1]. In effect, we have the straight
line

p1(x) = yi + (x − xi)y[xi, xi+1] (4.4)

that passes through the pair of coordinates (xi, yi) and (xi+1, yi+1), and that evalu-
ating this expression (which may be regarded as a polynomial of degree 1) at some
point x̂ lying between xi and xi+1 gives an approximation to the corresponding
value of y.

Extending the notation of (4.3) we write

y[xi, xi+1, xi+2] = y[xi+1, xi+2] − y[xi, xi+1]
xi+2 − xi

. (4.5)

78 4 Curve Fitting

For the gas problem (with i = 0,1,2,3) (4.5) produces the values in the column of
second divided differences in Table 4.4. It is not difficult to show that the quadratic
polynomial

p2(x) = yi + (x − xi)y[xi, xi+1] + (x − xi)(x − xi+1)y[xi, xi+1, xi+2] (4.6)

passes through each of the coordinates (xi, yi), (xi+1, yi+1) and (xi+2, yi+2). That
it passes through the first two of these points follows immediately from our previous
considerations (the first two terms are just the right-hand side of (4.4) and the final
term on the right-hand side of (4.6) vanishes at xi and xi+1). The verification of
interpolation at the third point requires some algebraic manipulation.

We can extend the argument further, and form the kth divided differences as

y[xi, xi+1, . . . , xi+k] = y[xi+1, xi+2, . . . , xi+k] − y[xi, xi+1, . . . , xi+k−1]
xi+k − xi

(4.7)

and it can then be established that the polynomial (the Newton interpolating poly-
nomial)

pk(x) = yi

+ (x − xi)y[xi, xi+1]
+ (x − xi)(x − xi+1)y[xi, xi+1,xi+2]
+ · · ·
+ (x − xi)(x − xi+1) · · · (x − xi+k−1)y[xi, xi+1, . . . , xi+k] (4.8)

passes through each of the coordinates (xi, yi), (xi+1, yi+1), . . . , (xk, yk). Evaluat-
ing this polynomial at some point x̂ between xi and xi+k then gives an approxima-
tion to y(x̂).

Problem

Find the polynomial (the Newton interpolating polynomial) which interpolates the
data given in Table 4.1 (the gas problem). Use this polynomial to estimate the vol-
ume of gas at pressure 1.75.

Solution

We have 6 pairs of data (xi, yi), i = 0,1, . . . ,5. Using (4.8) and the appropriate
values from Table 4.4 we may write the interpolating polynomial as

p5(x) = 1.62

+ (x − 0.5)(−1.24)

+ (x − 0.5)(x − 1.0)(0.74)

+ (x − 0.5)(x − 1.0)(x − 1.5)(−0.333333)

+ (x − 0.5)(x − 1.0)(x − 1.5)(x − 2.0)(0.106667)

+ (x − 0.5)(x − 1.0)(x − 1.5)(x − 2.0)(x − 2.5)(−0.016).

4.3 Polynomial Interpolation 79

It can be verified that this polynomial interpolates the data. Evaluating p5(1.75)

gives 0.678672, the estimated volume at pressure 1.75.

In general if we have n + 1 coordinates, divided differences may be used to deter-
mine the coefficients in a polynomial of degree n, which passes through all of the
points. Given the uniqueness property this polynomial must be identical to the one
that we would have obtained using the direct approach of Sect. 4.3 although com-
puting round-off error may produce discrepancies. It may be noticed that it is easy
to extend the approximating polynomial if more data points are added to the original
set as we will see in the following problem.

Problem

Suppose, for example, in our gas problem that the volume y = 0.42 of a gas at
pressure x = 3.5 is made available in addition to the data shown in Table 4.1. Use
this information to estimate y at x = 1.75.

Solution

We can immediately compute a diagonal of differences to be added to the bottom
of Table 4.4 to obtain the values shown in Table 4.5. The addition of a data point
means that we now have differences up to order 6, and our previous approximation
to y(1.75) is modified by the addition of the term

1.25 × 0.75 × 0.25 × (−0.25) × (−0.75) × (−1.25) × (−0.006222) = 0.000342

to give a potentially more accurate approximation of y(1.75) = 0.678965. We can-
not categorically say that this is a more accurate approximation as there may be

Table 4.5 Additional differences for the gas problem

Pressure Volume Differences
1st 2nd · · · 5th 6th

0.5 1.62
−1.24

1.0 1.00 0.74
−0.50

1.5 0.75 0.24 · · ·
−0.26 −0.016

2.0 0.62 0.06 −0.006222
−0.20 −0.03467

2.5 0.52 0.08 · · ·
−0.12

3.0 0.46 0.04
−0.08

3.5 0.42

80 4 Curve Fitting

local behaviour around the pressure at point 1.75 which is not reflected in the
data.

4.3.2 Neville Interpolation

In the previous section we observed that it is possible to construct a polynomial,
pn(x), of degree n which passes through a sequence of n + 1 coordinates. Having
obtained an explicit form for the polynomial, an interpolated value can then be ob-
tained at any required point, and this process can clearly be applied over and over
again.

Neville2 interpolation is an alternative approach that does not yield an explicit
form for the interpolating polynomial. Neville’s table yields a single interpolated
value, and the table has to be completely reconstructed if interpolation at some other
point is required. The method is illustrated in the following problem.

Problem

Use Neville interpolation on the gas problem to estimate a value for y(1.75) from
the data supplied in Table 4.1.

Solution

For Neville interpolation a table of the form shown in Table 4.6 is constructed.
Consider the following rearrangement of the equation for linear interpolation (4.1)

ŷ = (x̂ − xi)yi+1 − (x̂ − xi+1)yi

xi+1 − xi

, i = 0,1, . . . ,5. (4.9)

This formula defines the way in which the values shown in the third column of
Table 4.6 (labelled Linear) have been calculated. Setting x̂ = 1.75 we have for i = 0,
((1.75 − 0.5) × 1.00 − (1.75 − 1.0) × 1.62)/(1.0 − 0.5) = 0.07. Similarly, setting
i = 1 we find a value 0.625, and so on up to values corresponding to i = 5.

Each entry in the Linear column is an estimate of y(1.75). Only the third is
an interpolated approximation since linear interpolation has been performed using
points which bracket x̂. All remaining estimates are based on extrapolated values.

To complete the table we repeat the process using values in one column to pro-
ceed to the next. The fourth column of values (labelled Quadratic) is obtained from
the third column (and the xi), the fifth column (labelled Cubic) from the fourth col-
umn, and so on. The xi+1 in (4.9) is taken to be the x value on the same row as
the element to be computed. The appropriate xi value is found by tracking back

2E.H. Neville, 1889–1961, among many other achievements instrumental in bringing wonder math-
ematician Ramanujan to Cambridge to study with the eminent pure mathematician G.H. Hardy.

4.3 Polynomial Interpolation 81

Table 4.6 Interpolated values for Neville’s algorithm

Pressure Volume Linear Quadratic Cubic Quartic Quintic

0.5 1.62

1.0 1.00 0.070

1.5 0.75 0.625 0.76375

2.0 0.62 0.685 0.67000 0.685625

2.5 0.52 0.670 0.68125 0.675625 0.679375

3.0 0.46 0.610 0.68500 0.681875 0.677969 0.678672

Table 4.7 Additional row for Neville’s table

x y 1 2 3 4 5 6

3.5 0.43 0.535 0.66625 0.688125 0.682656 0.679375 0.678965

diagonally from the position of the value to be computed to the function value in
the second column. The corresponding x-value in the first column is the one that is
required.

For example, the value in row 6, column 5 (0.681875) is calculated using the
values in column 4, rows 5 and 6 (0.68125 and 0.68500), and the values in column
1 in rows 3 and 6 (1.5 and 3.0) to give ((1.75 − 1.5) × 0.68500 − (1.75 − 3.0) ×
0.68125)/(3.0 − 1.5).

The value in the final column (labelled Quintic) gives the interpolated value based
on all of the data. Therefore by Neville interpolation we have the estimate y(1.75) =
0.678672, the same value obtained using Newton’s method.

Discussion

Mathematically speaking, the uniqueness condition says that the value we obtain by
this approach is identical to the one we would have obtained by calculating the poly-
nomial coefficients via the solution of a system of equations or Newton’s method,
and then evaluating either of those polynomials at x = 1.75 although rounding error
in computing may introduce discrepancies.

As with Newton interpolation, the table associated with Neville interpolation can
be readily extended by the addition of one or more data points. For example, if, as
before, we include the additional point (3.5,0.43), then the effect is to add a row to
the bottom of Table 4.6 with contents given in Table 4.7.

4.3.3 A Comparison of Newton and Neville Interpolation

To simplify the discussion we introduce a labelling for the entries in the Neville
table of differences. The entries for n = 5 in relation to finding an approximation
for ŷ = y(x̂), x̂ = 1.75 are shown in Table 4.8.

82 4 Curve Fitting

Table 4.8 Labelling of interpolated values for Neville’s algorithm

x y Linear Quadratic Cubic Quartic Quintic

x0 y0 = P00

x1 y1 = P10 P11

x2 y2 = P20 P21 P22

x3 y3 = P30 P31 P32 P33

x4 y4 = P40 P41 P42 P43 P44

x5 y5 = P50 P51 P52 P53 P54 P55

Neville’s algorithm, as we have presented it, could be adapted to yield an explicit
form for an approximating polynomial, but the entries in the difference table need
to be polynomials, rather than just numbers. For example, the entries in the first
column would be linear polynomials, rather than the values of those polynomials
evaluated at an interpolation point, as given in Table 4.6. From (4.9) we deduce that
the first entry in this column would be

P11(x) = (x − x0)y1 − (x − x1)y0

x1 − x0

whilst the second entry (P21(x)) would be

P21(x) = (x − x1)y2 − (x − x2)y1

x2 − x1
.

Looking to the second column, it follows that the first entry would be computed
as

P22(x) = (x − x0)P21(x) − (x − x2)P11(x)

x2 − x0
(4.10)

and it is clear that this must be a quadratic polynomial. Further, substituting xi ,
i = 1,2,3 for x in (4.10) it can be seen that P22(xi) = yi . When evaluated at the
point x̂, this polynomial will give the value P22 = 0.76375 of Table 4.6.

It is easy to verify that all of the entries in the column headed ‘Quadratic’ in
Table 4.6 are based on quadratic interpolation, in the same way that P22(x̂) = P22.
Similarly, it can be easily shown that entries in subsequent columns are based on cu-
bic, quartic and quintic interpolation. It is not surprising therefore, that the potential
most accurate result produced by Neville interpolation is identical to that obtained
using Newton interpolation.

Mathematically there is nothing to choose between Neville and Newton interpo-
lation, but the two methods have different computational characteristics. If a single
interpolated value only is required then Neville interpolation will involve consider-
ably fewer arithmetic operations than forming and then evaluating the interpolation
polynomial using Newton’s divided difference method. If several interpolated val-
ues are required then forming the interpolation polynomial and evaluating it is likely
to be more effective than repeatedly constructing in full the table of Neville’s algo-
rithm. Further, the form of the polynomial provided by Newton’s method is cheaper
to evaluate than that provided by Neville interpolation.

4.3 Polynomial Interpolation 83

4.3.4 Spline Interpolation

Interpolating a set of points by a polynomial is, intuitively, an attractive proposition.
We would hope that as the number of points increases and, as a consequence, the
order of the polynomial increases, the accuracy of an interpolated value obtained
will also increase. Unfortunately there is no guarantee of this. Further, the compu-
tational cost of constructing and evaluating high-order polynomial approximations
is not inconsiderable. Even if the polynomial is not formed explicitly, as in Neville
interpolation, the number of arithmetic operations involved in determining an inter-
polated value is still high. Hence there are good mathematical and computational
reasons for having a low order of the approximating polynomial.

Even by eye, it is clear that it is not possible to fit a single straight line through all
of the data of our gas problem, which was verified mathematically by constructing a
divided difference table (Table 4.4) and observing that all second divided differences
are non-zero. However, in Sect. 4.3.2 we observed that it is possible to construct a
table of polynomials in which all the Pi0(x) are linear interpolants, the suffix i in-
dicating the pair of points that the straight line passes through. For our gas problem
this situation is illustrated in Fig. 4.3. The behaviour of Pi0 outside the range xi to
xi+1 is unimportant, we are only concerned with approximating in this interval. Us-
ing these linear interpolants we can define a piecewise linear approximation p1(x)

as

p1(x) = Pi0(x), where x lies between xi and xi+1.

Since each Pi0 passes through the coordinates that define its range of interest, we
have a guarantee that p1(x) is continuous throughout the range 0.5 to 3.0. However,

Fig. 4.3 Piecewise linear
approximation

84 4 Curve Fitting

there is a change in the value of the slope of p1(x) at each of the internal interpola-
tion points (the points 1.0, 1.5, 2.0 and 2.5), as indicated by the different values in
the column of second differences in Table 4.4.

Piecewise linear interpolation is of limited use as it yields only a crude approx-
imation to the data. Consideration of the Neville table, with polynomials being
produced rather than interpolated values, suggests a simple way of increasing the
order of polynomial approximation. P20(x) will be a polynomial interpolating the
data points (0.5,1.62), (1.0,1.00) and (1.5,0.75), P21(x) interpolates at the points
(1.0,1.00), (1.5,0.75) and (2.0,0.62), and so on. We therefore have a sequence of
quadratics and can define a piecewise quadratic polynomial p2(x) as being defined
by one of the P2i (x), depending on within which of the intervals x lies. We have
a slight problem here, in that for all but the first and last intervals there is a choice
between two quadratics (and the form of these quadratics will be different). This
dilemma can be avoided by taking the first, third, fifth, etc., but for our gas problem
this simply replaces one problem with another. P22(x) and P42(x) can be used to
define p2(x) within 0.5 to 1.5 and 1.5 to 2.5 respectively, but what about 2.5 to 3.0?
Further, whilst we have upped the degree of the approximating polynomial by one
(from linear to quadratic), the discontinuity of the first (and, now, second) derivative
remains, so it is not as smooth as maybe we would like.

An alternative approach which increases the degree of polynomial approxima-
tion and also improves the continuity characteristics is based on the use of splines.
Piecewise linear interpolation is, in fact, a simple example of spline3 approxima-
tion. Within each interval we have a local approximating polynomial and the overall
approximation is defined as the aggregate of these individual approximations. For
each local polynomial of degree n, n + 1 polynomial coefficients will need to be
defined. Suppose that we choose n = 3 (cubic spline interpolation). We look for a
piecewise cubic approximation p3(x) such that

p3(x) = p3,i (x), if x lies between xi and xi+1

where p3,i (x) is an approximating cubic between xi and xi+1.

Problem

Use spline interpolation on the gas problem. In particular estimate y(1.75).

Solution

In the first interval we wish to determine values for the coefficients a0, b0, c0 and
d0 in a cubic polynomial p3,0(x) ≡ a0 + b0x + c0x

2 + d0x
3 such that p3,0(x) is the

approximating polynomial between x = 0.5 and x = 1.0. For p3,0(x) to interpolate
the data, we require p3,0(0.5) = 1.62 and p3,1(1.0) = 1.00. This leaves two further
equations to be derived so that p3,0(x) is uniquely determined. Similar arguments
apply to p3,1(x) ≡ a1 + b1x + c1x

2 + d1x
3, the form of p3(x) between 1.0 and 1.5,

3Spline: literally, a flexible strip of wood, metal or rubber.

4.3 Polynomial Interpolation 85

Table 4.9 Cubic spline
coefficients i Interval ai bi ci di

0 [0.5,1.0] 2.24 −0.88 −1.09 0.73

1 [1.0,1.5] 3.64 −5.09 3.12 −0.68

2 [1.5,2.0] 1.43 −0.67 0.17 −0.02

3 [2.0,2.5] 0.91 0.12 −0.22 0.04

4 [2.5,3.0] 2.73 −2.07 0.65 −0.07

and so on. In total we have 5 separate cubics, giving a total of 5×4 = 20 unknowns,
with 5 × 2 = 10 equations arising from interpolation conditions, leaving 20 − 10 =
10 still to find. Interpolation ensures continuity of p3(x), but says nothing about the
derivatives of p3(x). Hence we derive further equations by forcing continuity of the
first two derivatives of p3(x) at each of the internal points. For example, to ensure
continuity of the first two derivatives at x = 1.0, we impose the conditions

b0 + 2c0(1.0) + 3d0(1.0)2 = b1 + 2c1(1.0) + 3d1(1.0)2

2c0 + 6d0(1.0) = 2c1 + 6d1(1.0).

It follows that we have two extra conditions at each of the four internal points, a total
of 4 × 2 = 8 equations, leaving us still 2 short. The specification of the remaining
two conditions is a little arbitrary; a common choice is that the second derivative of
the first cubic is zero at x = 0.5, and the second derivative of the last cubic is zero
at x = 3.0. We now have a set of 20 equations in 20 unknowns to be solved for the
polynomial coefficients. Interpolation is achieved by evaluation of the appropriate
cubic at the specified point.

Cubic spline interpolation used on the gas problem with zero second deriva-
tives imposed at the two end points produces the polynomial coefficients shown
in Table 4.9. Evaluating the third of these polynomials at the point x = 1.75 gives
y(1.75) = 0.6812. This value is comparable with that obtained by Newton’s method,
which was confirmed using Neville.

Discussion

We cannot say that cubic spline interpolation gives a better approximation than any
other of the methods considered here. A good deal depends on the accuracy of the
data and the underlying function to which we are trying to match our approximat-
ing straight lines and polynomials. Nevertheless spline interpolation has been used
successfully in a wide variety of application areas4.

4The use of splines began with the actuarial profession in the late 19th Century. What were then
described as osculating (kissing) curves were more prosaically named spline functions when nu-
merical analysts became involved in the 1940’s.

86 4 Curve Fitting

4.4 Least Squares Approximation

The final form of approximation we consider has little in common with what has
gone before. The distinguishing feature here is that the straight line, or polynomial,
or whatever other form we choose, may not pass through any of the data points,
let alone all of them. The use of such an approximation is particularly appropriate
when it is known that there may be significant errors in the data; to force a curve
exactly through the data when it is known that the data is inexact clearly does not
make much sense. Further, we can keep the order of the polynomial low even when
the number of data points is high, which as we observed in the previous section was
desirable.

4.4.1 Least Squares Straight Line Approximation

Returning yet again to the gas problem, if we try to construct a straight line p1 =
a + bx which exactly fits all the data we have the following system of equations

a + b(0.5) = 1.62

a + b(1.0) = 1.00

a + b(1.5) = 0.75

a + b(2.0) = 0.62

a + b(2.5) = 0.52

a + b(3.0) = 0.46.

This is an overdetermined system of equations in that we have more equations than
unknowns. Since we cannot satisfy all of the equations at once we compromise and
look for a solution in which all of the equations are satisfied approximately. One way
of ensuring this is to minimise the sum of the squares of the differences (or residu-
als) between supplied values of the dependent variable (the y-values) and the values
predicted by the approximation. Although other definitions of what constitutes a
good fit are possible, the least squares approximation has some useful mathematical
properties which makes it relatively easy to compute.

Problem

Fit a least squares straight line to the data of the gas problem. In particular estimate
y(1.75).

Solution

We find values of a and b such that

4.4 Least Squares Approximation 87

S(a, b) = (a + b(0.5) − 1.62)2

+ (a + b(1.0) − 1.00)2

+ (a + b(1.5) − 0.75)2

+ (a + b(2.0) − 0.62)2

+ (a + b(2.5) − 0.52)2

+ (a + b(3.0) − 0.46)2

is made as small as possible.
Partial derivatives of S with respect to a and b must be zero for a local minimum

and so we have

∂S(a, b)/∂a = 2(a + b(0.5) − 1.62)

+ 2(a + b(1.0) − 1.00)

+ 2(a + b(1.5) − 0.75)

+ 2(a + b(2.0) − 0.62)

+ 2(a + b(2.5) − 0.52)

+ 2(a + b(3.0) − 0.46) = 0

and ∂S(a, b)/∂b = 2(0.5)(a + b(0.5) − 1.62)

+ 2(1.0)(a + b(1.0) − 1.00)

+ 2(1.5)(a + b(1.5) − 0.75)

+ 2(2.0)(a + b(2.0) − 0.62)

+ 2(2.5)(a + b(2.5) − 0.52)

+ 2(3.0)(a + b(3.0) − 0.46) = 0.

From the two equations we have

6a + 10.5b = 4.97 (4.11)

10.5a + 22.75b = 6.855. (4.12)

This set of two equations in two unknowns has a solution a = 1.565333 and b =
−0.421143, and so the approximating straight line is y = 1.565333 − 0.421143x

(see Fig. 4.4).

Discussion

Equations (4.11) and (4.12) may be written in the form

an + bSx = Sy (4.13)

aSx + bSxx = Sxy (4.14)

88 4 Curve Fitting

Table 4.10 Gas problem, linear least squares values and residuals

y 1.62 1.00 0.75 0.62 0.52 0.46

x 0.5 1.0 1.5 2.0 2.5 3.0

least squares values 1.3548 1.1442 0.9336 0.7230 0.5125 0.3019

residuals 0.2652 −0.1442 −0.1836 −0.1030 0.0075 0.1581

Fig. 4.4 Least squares linear
approximation

where Sx = ∑n
i=0 xi , Sy = ∑n

i=0 yi , Sxx = ∑n
i=0 x2

i and Sxy = ∑n
i=0 xiyi and for

this example n = 5. These equations are known as the normal equations. They
provide a ready means of finding the least squares straight line approximation y =
a + bx to n data points (xi, yi), i = 0,1, . . . , n.

If the straight line is evaluated at each of the points xi and the result subtracted
from the corresponding yi then we have values that indicate the amount by which the
straight line fails to interpolate the given data. The results are given in Table 4.10. It
can be seen that none of these values (residuals) is zero, and hence the approximat-
ing straight line does not actually pass through any of the given data points. Sub-
stituting x = 1.75 into our solution we obtain the approximation y(1.5) = 0.8283,
which is out of line with Newton’s and Neville’s estimates of 0.6787 and the cubic
spline estimate 0.6812. Moreover the sum of the squares of the residuals is 0.16053
which is not sufficiently close to zero to suggest that the data can be accurately rep-
resented by a straight line. Figure 4.4, which is a representation of the best we can
do using a least-squares straight line fit is further confirmation.

4.4 Least Squares Approximation 89

4.4.2 Least Squares Polynomial Approximation

To generalise our discussion of least squares approximation we consider the poly-
nomial approximation pm(x), of degree m, which we wish to fit to the n + 1 data
points (xi, yi). We assume that n is larger than m.

We cannot hope to satisfy (4.15) exactly, so as with the straight line approxima-
tion we aim to minimise the sum of squares of residuals.

pm(xi) = yi, i = 0,1, . . . , n (4.15)

where

pm(x) = α0 + α1x + α2x
2 + · · · + αmxm. (4.16)

We choose the αi so that S(α) = ∑n
i=0 r2

i , where ri = pm(xi) − yi , is a minimum,
which means we must have

∂S(α)

∂αi

= 0, i = 0,1, . . . ,m.

Problem

Fit a least squares quadratic to the data of the gas problem.In particular estimate
y(1.75).

Solution

We look for a polynomial p2(x) = α0 +α1x +α2x
2 where α0, α1 and α2 are chosen

so that
∑5

i=0 (α0 + α1xi + α2x
2
i − yi)

2
is a minimum. Differentiating with respect

to α0, α1 and α2 gives the three equations

5∑

i=0

(
α0 + α1xi + α2x

2
i

) = 0 (4.17)

5∑

i=0

xi

(
α0 + α1xi + α2x

2
i

) = 0 (4.18)

5∑

i=0

x2
i

(
α0 + α1xi + α2x

2
i

) = 0. (4.19)

Inserting values for xi and gathering coefficients leads to a 3 × 3 symmetric system
of linear equations, namely

6.0α0 + 10.5α1 + 22.75α2 = 4.97 (4.20)

10.5α0 + 22.75α1 + 55.125α2 = 6.855 (4.21)

22.75α0 + 55.125α1 + 142.1875α2 = 12.9625. (4.22)

90 4 Curve Fitting

Gaussian elimination gives the solution α0 = 2.1320, α1 = −1.2711 and α2 =
0.2429 and so the approximating quadratic is 2.1320 − 1.2711x + 0.2429x2.

Equations (4.20)–(4.22) are the normal equations for least squares quadratic ap-
proximation. Extending the notation used for the linear case ((4.13) and (4.14)) we
may write

α0n +α1Sx +α2Sxx = Sy

α0Sx +α1Sxx +α2Sxxx = Sxy

α0Sxx +α1Sxxx +α2Sxxxx = Sxxy.

The pattern extends to higher order polynomials, but generally normal equations are
written in the form

XT Xc = XT y

which for the example above would be

X =

⎛

⎜
⎜
⎜
⎝

1 x0 x2
0

1 x1 x2
1

...

1 x5 x2
5

⎞

⎟
⎟
⎟
⎠

, c =
⎛

⎝
α0
α1
α2

⎞

⎠ , y =

⎛

⎜
⎜
⎜
⎝

y0
y1
...

y5

⎞

⎟
⎟
⎟
⎠

with data values x0 = 0.5, x1 = 1, . . . , x5 = 3.0, y0 = 1.62, y1 = 1, . . . , y5 = 0.46.

Discussion

The residuals for this approximation are shown in Table 4.11. As might be expected
in nearly all cases there is an improvement over linear approximation (Table 4.10).
Substituting x = 1.75 in the approximating quadratic we obtain the approximation
y(1.75) = 0.6512. This value is an improvement on the linear least squares esti-
mate of 0.8283 but still not quite in agreement with earlier estimates obtained using
Newton’s method, Neville interpolation and a cubic spline (0.678965, 0.678672,
and 0.6812 respectively). The sum of the squares of residuals has been reduced
from 0.16053 to 0.229. A least squares cubic polynomial may or may not obtain
better accuracy but there is a limit as to how far the degree may be raised before the
method becomes unstable and possibly produces an approximating function which
oscillates wildly between the data points. Such a function could not be considered
as being representative of the underlying function. In the case of the gas problem it
may be that a least squares fit based on a function other than a polynomial is more
appropriate. Such a function may be found by investigating the theory underlying
the relation between gas and pressure or by trial and error. Approximation using the

Table 4.11 Gas problem, quadratic least squares values and residuals

y 1.62 1.00 0.75 0.62 0.52 0.46

x 0.5 1.0 1.5 2.0 2.5 3.0

quadratic least squares values 1.5571 1.1037 0.7717 0.5611 0.4720 0.5043

residuals 0.0629 −0.1037 −0.0217 0.0589 0.0480 −0.0443

4.4 Least Squares Approximation 91

least squares method is not restricted to straight lines or polynomials. Exercise 7 is
one such example. The least squares method can also be used in fitting spline curves
to what may be inaccurate data. In order to produce a smoothing effect we allow ap-
proximate but controlled interpolation by minimising least squares differences in
higher derivatives where the spline curves meet.

Summary In this chapter we have looked at the approximation of a set of data
points using a polynomial. There are two distinct possibilities here:

• determine (an explicit or implicit expression for) a polynomial that passes through
all the data points (interpolation).

• determine a polynomial that may not pass through any of the data points but in
some sense is a best fit.

Polynomial interpolation can conveniently be further subdivided into

• determine a polynomial interpolant with all derivatives continuous.
• determine a polynomial interpolant with only some derivatives continuous.

We have also indicated that polynomials are not the only choice. The least squares
method may be used in conjunction with other functions. Where possible the choice
should be guided by an understanding of the underlying model.

Exercises

1. Table 4.12 gives observed values of Young’s modulus measured at various tem-
peratures for a particular stainless steel. Use the code as part of a larger program
to verify the values in Table 4.13, which show that the relation between Temper-
ature and Young’s modulus is near enough linear for practical purposes.

T = [0:100:600]
Y = [200 190 185 178 170 160 150]
% loop to find first differences
for i = 1 : 6

diff1(i) = (Y(i+1) − Y(i))/100; % store the first differences in diff1
end;
diff1
% loop to find the second differences

Establish the normal equations for finding the coefficients a and b in the least
squares straight line approximation

Y = a + bT

Table 4.12 Young’s Modulus in relation to temperature

T : Temperature (Centigrade) 0 100 200 300 400 500 600

Y : Young’s modulus ×10−3 200 190 185 178 170 160 150

92 4 Curve Fitting

Table 4.13 Differences for
Young’s Modulus against
temperature

T Y 1st differences 2nd differences

0 0
−0.1

100 190 0.003
−0.05

200 185 −0.001
−0.07

300 178 0
−0.08

400 170 −0.001
−0.1

500 160 0
−0.1

600 150

Table 4.14 Young’s
Modulus, least squares
straight line approximation

T Y Least squares value

0 200 200.2500

100 190 192.2143

200 185 184.1786

300 178 176.1429

400 170 168.1071

500 160 160.0714

600 150 152.0357

to the given data, where Y is the Young’s modulus (×10−3) at temperature T .
You may find it helpful to use Matlab expressions of the form sum(T) to sum the
elements of a vector (or matrix) T and the .∗ operator for element by multiplica-
tion of vectors. Transposition to either row or column form may be necessary to
achieve compatibility. Solve the normal equations using the back division oper-
ator \ to show that the approximating straight line is

Y = 200.25 − 0.0804T . (4.23)

Verify the results shown in Table 4.14.
This exercise is an example of linear regression, which is a special case of

polynomial regression for which Matlab provides a function polyfit. Enter the
command polyfit(T ,Y,1) to check the values of b and a shown above (they will
appear in this order).

2. Construct the 20 linear equations of the form Ax = b to fit a cubic spline to the
gas data as discussed in Sect. 4.3.4. An example of how the equations might
begin to be established is shown below. In the interests of clarity leading and
trailing zeros on the rows of the coefficient matrix A have been omitted. Solve
the system using the Matlab left-division operator and so provide the coefficients
of the five interpolating cubic polynomials as shown in Table 4.9. Although a
20 × 20 matrix to store a sparse matrix may be not the most efficient use of

4.4 Least Squares Approximation 93

resources as there are other methods for calculating cubic splines; this exercise
is aimed at a primary understanding of spline interpolation.
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

First cubic spline. y = 1.62, x = 0.5
1.0 0.5 0.25 0.125 . . .

First cubic spline. y = 1.0, x = 1.0
1.0 1.0 1.0 1.0
First and second cubic splines. Equal 1st derivatives at x = 1.0

−1.0 −2.0 −3.0 0.0 1.0 2.0 3.0
First and second cubic splines. Equal 2nd derivatives at x = 1.0

−2.0 −6.0 0.0 0.0 2.0 6.0 . . .

First cubic spline. 2nd. derivative zero at x=0.5
2.0 3.0

Second cubic spline. y = 1.0, x = 1.0
1.0 1.0 1.0 1.0

Second cubic spline. y = 0.75, x = 1.5
1.0 1.5 2.25 3.375 . . .

Second and third cubic splines. Equal 1st derivatives at x = 1.5
−1.0 −3.0 −6.75 0.0 1.0 3.0 6.75

Second and third cubic splines. Equal 2nd derivatives at x = 1.5
−2.0 −9.0 0.0 0.0 2.0 9.0

...
...

...
...

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a0

a1

a2

a3

b0

b1

b2

b3

c0
...

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1.62

1.0

0

0

0

1.0

0.75

0

0
...

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

3. Plot the five interpolating cubic polynomials found in question 2 to show the
smooth nature of the spline. An outline of the program is shown below. The
program assumes that the coefficients of the cubic polynomials, as shown in
Table 4.9 have been stored in the 5 × 4 matrix C. The program uses the Matlab
function polyval to evaluate a polynomial at a given point.

for i = 1 : 5;
% Choose 20 equally spaced points in each interval, i

xvalues = linspace(x(i), x(i+1), 20);
% Evaluate the polynomial at each point in the interval, i
% polyval expects a vector of coefficients in descending
% order, beginning with the coefficient of the highest power
poly = C(i, :); % select row i of C
yvalues = polyval(poly, xvalues);
plot (xvalues, yvalues);
% After plotting the first interval, plot the rest on the same graph using
% the hold function
if interval == 1;

hold;
end;

end;

For full details of the functions provided by Matlab for the construction and
visualisation of splines refer to the Spline Toolbox.

4. Write a Matlab program to determine the coefficients of the Newton interpolat-
ing polynomial for the gas problem as discussed in Sect. 4.3.1. Consider using

94 4 Curve Fitting

a matrix whose (i, j) entry is to contain the value y[xi, . . . , xi+j] as given by
formula (4.3). A series of single loops, of the form

for i = 1 : 5;
diff(1, i) = (y(i+1)−y(i))/(x(i+1) −x(i));

end ;
for i = 1 : 4;

diff(2, i) = (diff(1, i+1)−diff(1 ,i))/(x(i+2) −x(i));
end ;
...

...

would solve the problem. However a major part of this scheme may be condensed
by using nested loops (as shown below) following the first of the loops shown
above.

for j=2 : 5;
for i = 1 : 6−j;

diff(j, i) = (diff(j−1, i+1) - diff(j−1, i)) /(x(i+j)− x(i));
end;

end;

The elements of diff(1,5), diff(2,4), diff(3,3), diff(4,2), diff(5,1), . . . will contain
the coefficients which appear in the solution given on page 78.

5. Plot the Newton interpolating polynomial p(x), which was found in the previous
question. Use the following code which generates y-axis values for 40 equally
spaced x-axis values in the range [0.5,3.0].

xaxis = linspace(0.5, 3.0, 40);
% evaluate the polynomial, pval at each point in the range
% using the scheme shown in Sect. 4.3.1
for i = 1 : 40

pval= 1.62; xdiff = 1;
for j = 1 : 5
% use x (pressure data) from the previous question
xdiff = xdiff∗(xaxis(i) − x(j));
% use diff values from the previous question
pval = pval+ xdiff∗diff(j, 1);

end;
yaxis(i) = pval;

end;

As a further exercise plot the same polynomial over an extended range for ex-
ample, 0 ≤ xaxis ≤ 5. Decide if the polynomial could be used for extrapolation
based on the given data.

6. The following Matlab code will produce the values in the linear column of Ta-
ble 4.6 using those in the Volume column. xstar (= 1.75) is the Pressure at which
an estimate of the Volume is desired using the data of the gas problem.

4.4 Least Squares Approximation 95

x = 0.5 : 0.5 : 3.0;
P(: , 1) = [1.62 1 0.75 0.62 0.52 0.46]';
xstar = 1.75;
% Calculate the 'linear' column in Table 4.6
for i = 2 : 6;

P(i, 2) = ((xstar−x(i−1))*P(i, 1)−(xstar − x(i))*P(i−1, 1)) /(x(i)−x(i−1));
end;
P

Continue the program by writing a further series of loops to complete the lower
triangular matrix P of entries shown in Table 4.6.

7. The Michaelis–Menten equation occurs in Chemical Kinetics and has the form

v(x) = ax

b + x
. (4.24)

Determine the coefficients a and b so that (4.24) is a least squares approximation
to the following data obtained in an experiment to measure velocity (v) of an
enzymed–catalysed reaction at various concentrations (x) (see Table 4.15).

If we were to carry out the instruction in the chapter to the letter we would
minimise the sum of squares S given by

S =
7∑

i=0

(

vi − axi

b + xi

)2

where xi and vi , i = 0,1, . . . ,7 are the given data points. However in this case
setting partial derivatives ∂S

∂a
and ∂S

∂b
to zero results in non-linear equations for

a and b. We could use the methods of Chap. 3 but we prefer to avoid potential
difficulties by minimising the function P given by

P =
7∑

i=0

(
vi(b + xi) − axi

)2
.

We have

∂P

∂a
= −2

7∑

i=0

(
vi(b + xi) − axi

)
xi

∂P

∂b
= 2

7∑

i=0

(
vi(b + xi) − axi

)
vi

and so equating derivatives to zero gives

Table 4.15 Michaelis–Menten, data

x 0.197 0.139 0.068 0.0427 0.027 0.015 0.009 0.008

v 21.5 21 19 16.5 14.5 11 8.5 7

96 4 Curve Fitting

Table 4.16
Michaelis–Menten, least
squares approximation

xi vi Least squares value

0.197 21.5 21.56

0.139 21.0 20.89

0.068 19.0 18.80

0.043 16.5 16.84

0.027 14.5 14.49

0.015 11.0 11.11

0.009 8.5 8.23

0.008 7.0 7.61

a

7∑

i=0

x2
i − b

7∑

i=0

xivi =
7∑

i=0

vix
2
i

a

7∑

i=0

xivi − b

7∑

i=0

v2
i =

7∑

i=0

v2
i xi .

Having established data vectors x and v use the following Matlab commands

A= [x ∗ x' −x ∗ v'; x ∗ v' −v ∗ v']
rhs =[v ∗ (x .∗ x)'; (v .∗ v) ∗ x']
sol = A\rhs;

to establish the normal equations

0.06577a − 9.83401b = 1.37226

9.8401a − 1989b = 197.069.

Solve this system using back-division and using the a and b values in (4.24).
Check the validity of the approximation either by plotting the function or tabu-
lating the result (as shown in Table 4.16).

Chapter 5
Numerical Integration

Aims In this chapter we look at ways of calculating an approximation to a def-
inite integral of a real-valued function of a single variable, f (x) (the integrand).
Sometimes integration can be achieved using standard formulae, possibly after some
manipulation to express the integral in a particular form. However, often standard
formulae cannot be used (for example, the function may be known at a discrete set
of points only) and so it is necessary to resort to numerical techniques. The points
at which the integrand is to be evaluated are known as grid points or mesh points,
although the terms data points or just points may also be used. The terms grid or
mesh are equivalent and generally refer to a collection or division of an interval into
grid points or mesh points.

Overview All the methods that we look at involve approximating an integral with
a weighted sum of evaluations of the integrand. The methods differ in some or all
of the following aspects:

• the spacing of the points at which the integrand is evaluated.
• the weights associated with the function evaluations.
• the accuracy that a method achieves for a given number of function evaluations.
• the convergence characteristics of the method (how the approximation improves

with the addition of new function values).

In particular we look at

• the trapezium rule.
• Simpson’s rule.
• Newton–Cotes rules.
• Gaussian quadrature.
• adaptive quadrature.

Acquired Skills After reading this chapter you will be able to estimate values of
definite integrals of a wide range of functions. Although the methods which you will
have at your disposal will give an approximate result, you will nevertheless be able
to judge the level of accuracy. Furthermore, you will be able to make an informed
choice of method to use in any given application.

C. Woodford, C. Phillips, Numerical Methods with Worked Examples: Matlab Edition,
DOI 10.1007/978-94-007-1366-6_5, © Springer Science+Business Media B.V. 2012

97

http://dx.doi.org/10.1007/978-94-007-1366-6_5

98 5 Numerical Integration

5.1 Introduction

A number of standard formulae are available for evaluating, analytically, definite
integrals. A particular example is provided by

∫ b

a

xk dx =
[

xk+1

k + 1

]b

a

= 1

k + 1

[
bk+1 − ak+1]

so that, for example,
∫ 1

0 x dx = 1
2 . In addition, there are a number of standard tech-

niques for manipulating an integral so that it matches one of these formulae. A
particular case in point is the technique of integration by parts:

∫ b

a

u(x)
dv(x)

dx
dx = [

u(x)v(x)
]b
a
−

∫ b

a

v(x)
du(x)

dx
dx

which can be used, for example, to derive the result
∫ 1

0
xex dx = xex

∣∣1
0−

∫ 1

0
ex dx = e − e + 1 = 1.

However, practical problems often involve an integrand (the function to be in-
tegrated) for which there is no known analytic form. The integral

∫
e−t2

dt is an
example. On the other hand integrals may arise which involve an integrand requir-
ing considerable effort to reduce to standard form and so a numerical approximation
may be more practical. Other practical problems involve integrands for which val-
ues are only available at a number of discrete points. In this chapter we look at ways
of dealing with all such problems. The first group of methods we investigate are
known as the Newton–Cotes rules and include the trapezium rule, Simpson’s rule
and higher order rules, based on evaluating the integrand at equally-spaced points.
If there is no restriction on the points at which the integrand may be evaluated, then
other methods such as Gaussian quadrature may be more suitable.

5.2 Integration of Tabulated Functions

To illustrate the methods for dealing with functions for which values are only avail-
able at a number of points we consider the following problem.

Problem

A company has a contract to build a ship, the cost of which will be a function of,
amongst other things, the surface area of the deck. The deck is symmetric about
a line drawn from the tip of the bow to the tip of the stern (Fig. 5.1) and so it
is sufficient to determine the area of one half of the deck and then to double the
result. The ship is 235 metres long. Table 5.1 gives half-breadths (distances from
the middle of the deck to the edge) at various grid points along the centre line, as
measured from a draughtsman’s drawing of the proposed vessel. Grid points are

5.2 Integration of Tabulated Functions 99

Fig. 5.1 Plan view of deck

Table 5.1 Half-breadths of
the ship Grid point Half-breadth Grid point Half-breadth

0 0 6 16.36

1 3.09 7 16.23

2 8.74 8 13.98

3 14.10 9 6.84

4 16.26 10 0

5 16.36

measured at intervals of 23.5 metres. Given this information the problem, which we
subsequently refer to as the ship builder’s problem, is to find the surface area of the
deck.

5.2.1 The Trapezium Rule

The data in Table 5.1 gives some idea of the shape of the ship but is incomplete since
the precise form of the hull between any two grid points is not defined. However, it is
reasonable to assume that the shape is fairly regular and that whilst some curvature
is likely, this is so gradual that, as a first approximation, a straight edge may be
assumed. This is the basis of the trapezium rule.

Problem

Solve the ship builder’s problem using the trapezium rule.

Solution

The area between grid points 0 and 1 and between grid points 9 and 10 is found
by using the formula for the area of a triangle, and the area between grid points 1
and 2, 2 and 3, and so on up to 8 and 9 is found by using the formula for the area
of a trapezium, namely area of a trapezium = half the sum of the parallel sides ×
the distance between them.

For example, the area between grid points 4 and 5 is given by 16.26+16.36
2 ×23.5 =

383.25 m2. To determine the whole surface area we simply sum the areas between
consecutive grid points. The calculations (without the units) are shown in Table 5.2.
The total area (of one half of the deck) is found to be 2631.06 m2.

100 5 Numerical Integration

Table 5.2 Area of the half
deck Grid points Area between grid points

0, 1 3.09
2 × 23.5 = 36.31

1, 2 3.09+8.74
2 × 23.5 = 139.00

2, 3 8.74+14.10
2 × 23.5 = 268.37

3, 4 14.10+16.26
2 × 23.5 = 356.73

4, 5 16.26+16.36
2 × 23.5 = 383.29

5, 6 16.36+16.36
2 × 23.5 = 384.46

6, 7 16.36+16.23
2 × 23.5 = 382.93

7, 8 16.23+13.98
2 × 23.5 = 354.97

8, 9 13.98+6.84
2 × 23.5 = 244.64

9, 10 6.84
2 × 23.5 = 80.37

Total area = 2631.06

Discussion

To summarise this approach mathematically we regard Fig. 5.1 as a graph, with the
x-axis running along the middle of the ship, and grid points along the x-axis. The
y-axis then represents half-breadths. We let xi : i = 0,1, . . . ,10 represent points at
which half-breadths fi are known, so that, for example, x2 = 47 m and f2 = 8.74 m.
We let hi be the distance between points xi and xi+1 (in this example hi = 23.5,
i = 0,1, . . . ,9). Further, we let Ai be the area of the trapezium defined by the sides
parallel to the y-axis starting at the points xi and xi+1 on the x-axis. Then we have
the formula

Ai = hi (fi + fi+1) /2 (5.1)

so that, for example, A4 = 383.29 m2. Hence

Total area =
9∑

i=0

Ai (5.2)

which is valid even though two of the trapezia have one side of zero length (that is,
the trapezia are triangles).

We can see from Table 5.2 that in the total sum each of the half-breadths corre-
sponding to an internal section (that is, a section other than x0 and x10) is counted
twice. Further, if all spacings hi have the same value, h we have the alternative
formula

Total area = h

2

(
f0 + 2

9∑
i=1

fi + f10

)
. (5.3)

This formula is often written as

Total area = h

n∑
i=0

′′fi, (5.4)

5.2 Integration of Tabulated Functions 101

where the double prime on the summation sign means that the first and last terms
are to be halved.

5.2.2 Quadrature Rules

In the example above the triangles and trapezia are known as panels. Formulas such
as (5.1) which are based on the areas of panels are known as quadrature rules.
When a quadrature rule is derived by combining several simple rules, as in (5.2),
(5.3) or (5.4), we refer to a composite (quadrature) rule. In general, a composite
rule based on n + 1 points takes the form

Total area =
n∑

i=0

wifi. (5.5)

We refer to such rules, which are a linear combination of a set of observations fi

in which the wi are the weights, as n-point (counting from zero), or n-panel, rules.
The two-point rule (5.1) which determines the area of a trapezium is understandably
called the trapezium rule. For the composite trapezium rule the weights in (5.5) are
given by w0 = wn = h/2 and wi = h for i �= 0 or n. Note that the term composite
trapezium rule is often abbreviated to trapezium rule.

The first solution to the ship builder’s problem made the assumption that it was
safe to approximate the shape of the hull by straight lines. This seems reasonable,
particularly in the middle section, but it is less defensible at the bow and stern.

To improve the situation (without any justification, at the moment) we employ a
formula similar to (5.3), but change the weighting. This forms the basis of Simpson’s
Rule1 which we illustrate in the following problem.

5.2.3 Simpson’s Rule

Problem

Solve the ship builder’s problem using Simpson’s rule.

Solution

This time the end grid points are given a weight of h
3 , the odd-numbered internal

grid points are given a weight of 4h
3 , whilst the even-numbered internal grid points

1The rule is attributed to Thomas Simpson 1710–1761, mathematician and fellow of the Royal
Society, but it was in use a hundred years earlier. Known as the Oracle of Nuneaton he was forced
to flee to Derby after dressing up as the Devil.

102 5 Numerical Integration

are given a weight of 2h
3 , to give the formula

Total area = h

3

(
f0 + 4

5∑
i=1

f2i−1 + 2
4∑

i=1

f2i + f10

)
. (5.6)

We then have an estimate of the total area of 2641.09 m2, which we suggest is likely
to be more accurate than that given by the trapezium rule.

Discussion

Now for a partial justification of Simpson’s rule (a more comprehensive justification
is given in the next section). In the previous subsection the ten-panel composite
rule (5.3) was derived from the one-panel rule (5.1). Similarly, the composite rule
(5.6) can be obtained by accumulating a sequence of 5 partial results. We group
the grid points into sets of 3, to obtain (0,1,2), (2,3,4), and so on. Then for each
group we compute an area estimate using the weighting h

3 , 4h
3 and h

3 . It is the ratio
1 : 4 : 1 which is important; the factor 1

3 is there to ensure that the final calculation
is scaled correctly. The ratio 1 : 4 : 1 ensures that the formula is accurate not only
for linear functions (which was the case for the trapezium rule) but (as we will
see) also for quadratic and cubic polynomials and so in general is likely to provide
greater accuracy. When partial results are combined to form a composite rule the
ratio becomes 1 : 4 : 2 : · · · : 4 : 2 : 4 : 1, as in (5.6).

5.2.4 Integration from Irregularly-Spaced Data

The rules that we have used so far have been based on the assumption that the
data supplied represents the outline of the hull to a reasonable degree of accuracy.
Near the centre of the ship we can expect the shape between grid points to be fairly
flat, and so the trapezium rule estimates based on the information supplied will be
adequate. Near the bow and stern we would expect more curvature which, as we will
see later, is something Simpson’s rule attempts to reflect. An alternative approach is
to increase the amount of information available in those regions where the curvature
is most pronounced.

Problem

In order that the cost of production can be more accurately determined, the ship
building company have supplied additional information in which an extra two
equally spaced points have been introduced between grid points 0 and 1, 1 and 2, 8
and 9, and 9 and 10, and mid-points between grid points 2 and 3, 3 and 4, 6 and 7,
and 7 and 8. Unfortunately the figures supplied by the ship building company, given
in Table 5.3, failed to include the data for the point 0.25.

5.2 Integration of Tabulated Functions 103

Table 5.3 Additional
half-breadths Section Half-breadth Section Half-breadth

0.5 1.05 7.5 15.56

0.75 1.97 8.25 12.68

1.25 4.33 8.5 11.01

1.5 5.74 8.75 9.06

1.75 7.22 9.25 4.56

2.5 11.73 9.5 2.34

3.5 15.57 9.75 0.40

6.5 16.36

Solution

Clearly, we can employ the trapezium rule between any two consecutive points pro-
vided that we take account of the fact that some are distance 23.5 m apart, others
23.5

2 m apart, and yet others 23.5
4 m apart. Alternatively, formula (5.5) can be used

with appropriate values given to points and weights to reflect the use of this rule.
Whichever way we do it, the result is that the area is computed as 2625.77 m2.

Determining a Simpson’s rule approximation using this new information presents
more of a problem. We recall that the rule requires points to be grouped into sets
of three which are equally spaced. Hence, we can form groups such as (4,5,6),
(6,6.5,7), (9,9.25,9.5) and (9.5,9.75,10) and then apply Simpson’s rule to each
group. In each group we use the formula

Ai = h

3
(f2i + 4f2i+1 + f2i+2) (5.7)

where Ai is the area defined between grid points x2i and x2i+2 having a mid-point
x2i+1 and corresponding half-breadths f2i , f2i+1 and f2i+2, and with h = x2i+1 −
x2i = x2i+2 − x2i+1.

Unfortunately, since data for the quarter-Section 0.25 was not supplied, by the
time we have used (0.5,0.75,1.0), (1.0,1.25,1.5), (1.5,1.75,2.0), (2.0,2.5,3.0),
. . ., (8.0,8.25,8.5), (8.5,8.75,9.0), (9.0,9.25,9.5), (9.5,9.75,10.0) we have a pair
of points, namely (0,0.5), left over. There are various possible solutions to this prob-
lem. We could, for example, simply use the trapezium rule to approximate the area
between these two points, but this is less than ideal since, as we shall see in the
next section, the trapezium rule tends to produce a less accurate integral approxima-
tion than Simpson’s rule. Since we are summing a number of results, the increased
accuracy of Simpson’s rule would be nullified.

A better, and potentially more accurate, alternative is to employ the formula

Ai = h

12
(5fi + 8fi+1 − fi+2) (5.8)

for determining the area of the hull between any two points xi and xi+1, with
xi+2 − xi+1 = xi+1 − xi = h. It can be shown that formula (5.8), which uses a

104 5 Numerical Integration

value external to the interval in question, has an accuracy closer to Simpson’s rule
than the trapezium rule.

If, in addition to the conventional Simpson’s rule, the points (0,0.5,1) are used
in (5.8) we obtain an area estimate for the half deck of 2631.06 m2, which we expect
to be the most accurate so far.

5.3 Integration of Functions

We now generalise our earlier observations and produce quadrature rules for finding
the areas bounded by a function f (x), the x-axis, and two lines parallel to the y-axis.
In particular we reintroduce, in a more formal manner, the trapezium and Simpson’s
rules outlined in the previous section and justify some of the statements we have
previously made about these formulae.

5.3.1 Analytic vs. Numerical Integration

Inevitably, there are some integrals which are impossible, or at best difficult, to
evaluate analytically, and we are then obliged to employ an appropriate numerical
technique which produces an integral estimate. In fact nearly all the integrals likely
to be met in the course of solving practical problems are of this form. The basis of
these techniques is the implicit construction of a function f̂ (x) which approximates
f (x) and can be easily integrated. This usually involves a discretisation using a set
of grid points {xi : i = 0,1, . . . , n}, with xi < xi+1, at which values fi = f (xi) are
known or can be calculated. The integral estimate then takes the form of a quadrature
rule (5.5).

In this section we are concerned with the evaluation of the integral of f over the
interval [a, b], written

∫ b

a
f (x) dx. We assume that f (x) is a continuous function

of the independent variable x and that we are able to evaluate f (x) (the integrand)
at any point in [a, b]. We assume that x0 = a, xn = b, and that, unless otherwise
stated, all grid points are equally spaced, distance h apart.

5.3.2 The Trapezium Rule (Again)

One of the simplest forms of quadrature rule is based on the approximation of f

within each subinterval [xi, xi+1] by a straight line; that is, within [xi, xi+1] we
have

f̂ (x) = − 1

h
(x − xi+1)fi + 1

h
(x − xi)fi+1 (5.9)

where h = xi+1 − xi and i = 0,1, . . . , n − 1.

5.3 Integration of Functions 105

The fact that f̂ (xi) = fi and f̂ (xi+1) = fi+1 can be readily verified by substitut-
ing xi and xi+1 in turn into (5.9). We say that f̂ (x) interpolates f (x) at the points
xi and xi+1. Because of its straight-line form, f̂ (x) is referred to as the linear inter-
polant and the form given here is equivalent to that given by (4.1) of Chap. 4 with
f replacing y and x replacing x̂.

Since x0 = a and xn = b, we have

∫ b

a

f (x) dx =
n−1∑
i=0

∫ xi+1

xi

f (x) dx.

But ∫ xi+1

xi

f (x) dx

∫ xi+1

xi

f̂ (x) dx

= − 1

h

∫ xi+1

xi

(x − xi+1)fi dx + 1

h

∫ xi+1

xi

(x − xi)fi+1 dx.

Now ∫ xi+1

xi

(x − xi+1)fi dx = fi

∫ 0

−h

x dx = −h2

2
fi

and similarly
∫ xi+1

xi

(x − xi)fi+1 dx = fi+1

∫ h

0
x dx = h2

2
fi+1.

Hence we have replaced an integral that, in principle, we were unable to perform
analytically by the sum of two integrals which are readily determined analytically.
Hence we obtain the approximation∫ xi+1

xi

f (x) dx ≈ h

2
(fi + fi+1)

which compares with (5.1).
Summing over all the grid points we have

∫ b

a

f (x) dx ≈ h

n∑
i=0

′′fi.

It can be shown that if Ii represents the true integral and Ri the approximation
over a single panel [xi, xi+1], then the error, Ei = Ii − Ri is given by

Ei = −h3

12
f ′′(ηi) (5.10)

where ηi is some (unknown) point between xi and xi+1.
The proof depends on writing the difference between f (x) and the linear inter-

polant f̂ (x) as

f (x) − f̂ (x) = (x − xi)(x − xi+1)

2
f ′′(ϒ)

106 5 Numerical Integration

where ϒ is some point in [xi, xi+1]. The error of the interpolation, Ei is given by

Ei =
∫ xi+1

xi

(x − xi)(x − xi+1)

2
f ′′(ϒ)dx.

This integral cannot be evaluated directly since ϒ is a function but we can use the
second mean value theorem for integrals to show

Ei = f ′′(ηi)

2

∫ xi+1

xi

(x − xi)(x − xi+1) dx

where ηi is in the range [xi, xi+1] and so by carrying out the integration we have
(5.10).

For the composite rule R, the error, E = I − R, where I is the true integral over
[a, b], consists of the sum of individual one-panel errors of the form (5.10). This
can be simplified to

E = −h2

12
(b − a)f ′′(η) (5.11)

where η is some point in [a, b]. The result is interesting. The second derivative of a
straight line function is zero, but for a quadratic it is non-zero; hence the trapezium
rule integrates a straight line exactly (as we would expect) but not a quadratic. The
other point to note is that since E is proportional to h2 then a reduction in the mesh
spacing by a factor of 2 (i.e. doubling the number of panels) should, theoretically,
reduce the error by a factor of 4 (although this argument only holds for sufficiently
smooth functions).

5.3.3 Simpson’s Rule (Again)

Simpson’s rule follows in a similar way, using approximation by quadratics instead
of approximation by straight lines (cf. Sect. 5.2.3). We expect such an approximation
to be more accurate since it allows for a certain amount of curvature. We take an odd
number of grid points {xi : i = 0,1, . . . ,2n} (and hence even number of panels)
with x0 = a and x2n = b.

We require an approximating quadratic f̂ (x) such that f (xj) = f̂ (xj) for j =
2i,2i +1,2i +2, i = 0,1, . . . , n−1 and for this it is convenient to use the Lagrange
interpolation formula namely,

f̂ (x) = 1

2h2

(
(x − x2i+1)(x − x2i+2)f2i − 2(x − x2i)(x − x2i+2)f2i+1

+ (x − x2i)(x − x2i+1)f2i+2
)

(5.12)

which is Newton’s interpolating quadratic, (4.5) Chap. 4, in a different form. We
then make the approximation

5.3 Integration of Functions 107

∫ x2i+2

x2i

f (x) dx ≈
∫ x2i+2

x2i

f̂ (x) dx.

To integrate (5.12) we follow the pattern set by our analysis of the trapezium rule.
We have ∫ x2i+2

x2i

(x − x2i+1)(x − x2i+2) dx =
∫ h

−h

x(x − h)dx

=
[
x3

3
− h

x2

2

]h

−h

= 2h3

3
.

Similarly ∫ x2i+2

x2i

(x − x2i)(x − x2i+2) dx = −4h3

3
(5.13)

and ∫ x2i+2

x2i

(x − x2i)(x − x2i−1) dx = 2h3

3
. (5.14)

Aggregating these results we obtain the approximating rule∫ x2i+2

x2i

f (x) ≈ h

3
(f2i + 4f2i+1 + f2i+2) . (5.15)

Summing all approximations of this form we have

∫ b

a

f (x) dx =
n−1∑
i=0

∫ x2i+2

x2i

f (x) dx

= h

3

(
f (a) + 4

n−1∑
i=1

f (x2i−1) + 2
n−1∑
i=1

f (x2i) + f (b)

)
.

As with the trapezium rule it is possible to obtain an expression for the error in the
Simpson’s integration rule.

We have that for a single application

E = −h5f (iv)(η)

2880
(5.16)

and for the composite rule

E = −h4f (iv)(η)

180
(b − a) (5.17)

where η is some unknown point between a and b.
Since the fourth derivative of a cubic polynomial is identically zero, we have

a rule that despite being constructed to integrate a quadratic, Simpson’s rule will
integrate a cubic exactly.

108 5 Numerical Integration

Table 5.4 Projected sales
using the trapezium rule Number of grid points Sales Error

33 810 096 6531

65 805 199 1634

129 803 973 408

257 803 666 101

513 803 590 25

1025 803 571 6

2049 803 566 1

4097 803 565 0

Since E is proportional to h4, a halving of the mesh spacing will, theoretically,
reduce the error by a factor of 16. For most integrals, therefore, we would expect
Simpson’s rule to give a much better approximation than the trapezium rule, and we
give an example of such behaviour in the next section.

Before leaving this section we provide a justification for formula (5.8). The
rule is derived by integrating the Lagrange interpolation formula (5.12) over a sin-
gle panel [xi, xi+1] (rather than over two panels as in Simpson’s rule). This rule
does not have the same accuracy as Simpson’s rule. A single application gives
E ∝ h4f (iii)(η) for some η; that is, the rule does not integrate a cubic exactly. How-
ever, the rule is potentially more accurate than the trapezium rule and hence is to be
preferred.

Finally we use the following problem, henceforth to be referred to as the Sales
problem, to compare Simpson’s rule and the trapezium rule.

Problem

A manufacturing Company is about to launch its new product. After extensive mar-
ket research the company has forecast that, using suitable promotion strategies, over
the next year world-wide sales will grow exponentially; starting at day 0, sales on
day x will be ex/36.5 − 1. The company wants to know what the total sales will be
over the first year.

Solution

Although the problem has been described in discrete form (that is, sales per day)
we can regard it as a continuous problem in which we need to determine I , the area
under the graph of f (x) = ex/36.5 − 1 over the interval [0,365]. This is a simple
integration which can be performed analytically;

∫
(ex/36.5 −1) dx = 36.5ex/36.5 −x

and so I = 36.5(e10 − e0) − 365 ≈ 803 565 to the nearest whole number.
Table 5.4 gives results for trapezium rule estimates to the integral (again, to the

nearest whole number) using various numbers of grid points. Table 5.5 shows equiv-
alent results obtained using Simpson’s rule.

5.4 Higher Order Rules 109

Table 5.5 Projected sales
using Simpson’s rule Number of grid points Sales Error

9 812 727 9162

17 804 215 650

33 803 606 41

65 803 567 2

129 803 565 0

Discussion

Since we know the true answer we can compute the actual error in the approximation
rules. For the trapezium rule the reduction in the error by a factor of roughly four
when the number of intervals is doubled is clearly demonstrated in Table 5.4. For
Simpson’s rule the results (Table 5.5) exhibit a reduction in the error by a factor
of about 16 when the number of intervals is doubled. Tables 5.4 and 5.5 also show
just how more accurate Simpson’s rule is compared to the trapezium rule for all
numbers of intervals. Another way of expressing this is that Simpson’s rule can
yield the same accuracy as the trapezium rule using far fewer grid points. If we
take the number of function evaluations required to compute an approximation as
a measure of the efficiency of the two methods, then clearly Simpson’s rule is the
more efficient.

5.4 Higher Order Rules

We have established a pattern of approximation by a straight line followed by ap-
proximation by a quadratic. This is a concept which is easy to extend to approxima-
tions by a cubic, a quartic and still higher orders. It might be thought that this leads
to improved quadrature rules, but unfortunately this is not necessarily so. If we use
a cubic f̂ (x) for approximation purposes, so that f (xi) = f̂ (xi) for i = 0,1,2,3,
we obtain the (three-eighths) formula∫ x3

x0

f (x)dx ≈ 3h

8

(
f (x0) + 3f (x1) + 3f (x2) + f (x3)

)
. (5.18)

It transpires that the error, E in using the three-eighths over an interval [a, b] is pro-
portional to (b − a)5f (iv), and so the rule is no better than Simpson’s rule (although
we might employ it, in conjunction with the composite Simpson’s rule, if we were
given an even number of grid points).

The type of rules we have been investigating are collectively known as Newton–
Cotes2 rules. However there are good numerical reasons why extending the

2Roger Cotes, 1682–1716. Mathematician and Astronomer who worked closely with Newton.
However there was some doubt as to his commitment. According to fellow astronomer Halley
he missed a total eclipse being ‘opprest by too much company’.

110 5 Numerical Integration

Newton–Cotes type rules that we have been investigating is not necessarily pro-
ductive. Using approximating polynomials of higher and higher order does not nec-
essarily improve the corresponding quadrature rule approximation to the integral.
The weights become large and alternate in sign, leading to potential problems with
rounding error. Further, even if we were able to employ exact arithmetic, there is no
guarantee that a sequence of Newton–Cotes approximations of increasing order will
converge to the true integral. It is rare, therefore, that one is ever tempted to use any
rule of the form considered here other than those we have defined. Simpson’s rule
or the three-eighths rule is about as far as we would go. If high accuracy is required
then it is best to use a low order rule and reduce the mesh spacing and/or switch to
a rule for which the grid points are not equally spaced.

5.5 Gaussian Quadrature

The rules we have considered so far have all been based on a set of grid points
which are equally spaced, but there is no particularly good reason for this (other
than this may be the only form of data available). If the integrand can be sampled
at any point within [a, b] there are better choices for the xi . We assume, without
loss of generality, that [a, b] = [−1,1]. It is a simple matter to employ a linear
transformation to map any other interval onto [−1,1]; for x ∈ [a, b] we form t =
(2x − a − b)/(b − a) and then t ∈ [−1,1]. Hence

∫ b

a
f (x) dx = b−a

2

∫ 1
−1 f (((b −

a)t + a + b)/2) dt .
In the formula

∑n
i=0 wifi , first seen as (5.5), we now choose n and the points

and weights according to Table 5.6. These values ensure that a rule with n points
integrates exactly a polynomial of degree 2n−1 (as opposed to n for n odd and n+1
for n even, as is the case with a Newton–Cotes rule). There is no simple relationship
between the error and the mesh spacing since the latter is no longer constant. It
can be observed that the points are distributed symmetrically about [−1,1] (and the
weights are similarly distributed) and that, apart from 0, no two rules share common
grid points. Further, all weights for all Gaussian quadrature formulas are positive.

It may be shown that the Gauss points are the roots of the Legendre polynomials
Pn(x) which are defined by the three-term recurrence relation

Pn+1(x) = 2n + 1

n + 1
xPn(x) − n

n + 1
Pn−1(x) (5.19)

with P0(x) = 1 and P1(x) = x. Using (5.19) we have that P2(x) = 3
2x2 − 1

2 =
1
2 (3x2 − 1). The roots of P2(x) are, therefore, ± 1√

3
= ±0.5773502692.

Having established the Gauss points corresponding weights are determined by
the following system of equations.

∫ 1

−1
xj dx = 1

j + 1

[
xj+1]1

−1 =
n∑

i=0

wixi
j , j = 0,1, . . . ,2n − 1. (5.20)

5.5 Gaussian Quadrature 111

Table 5.6 Gauss points and
weights for [−1,1] Number of grid points Points Weights

2 ±0.5773502692 1.0

3 ±0.7745966692 0.5555555556

0.0 0.8888888889

4 ±0.8611363116 0.3478548451

±0.3399810436 0.6521451549

5 ±0.9061798459 0.2369268850

±0.5384693101 0.4786286705

0.0 0.5688888889

This system ensures that weights are chosen so that the Gauss rule integrates a
polynomial of degree 2n − 1 exactly. Although the system of equations (5.20) is
linear in the weights, it is nonlinear in the points, and so a nonlinear solver, such as
Newton’s method (Chap. 2) must be used.

Problem

Solve the Sales problem using Gaussian quadrature.

Solution

Transforming the range of integration from [0,365] to [−1,−1] using the substitu-
tion t = (2x − 365)/365 we have

∫ 365

0

(
ex/36.5 − 1

)
dx = 365

2

∫ 1

−1

(
e5(1+t) − 1

)
dt.

Applying the Gaussian five-point rule we use the formula

I = 365

2

4∑
0

wi

(
e5(1+ti) − 1

)

to find an estimate, I of the integral. The ti and wi are the Gauss points and cor-
responding weights for five grid points shown in Table 5.6. The result is shown in
Table 5.7.

By way of comparison we also produce an estimate based on dividing the range
[0,365] into [0,365/2] and [365/2,365] producing and then adding estimates of the
integral over each range. Following transformations to the range [−1,1] the relevant
integrals are

365

4

∫ 1

−1

(
e2.5(1+t) − 1

)
dt and

365

4

∫ 1

−1

(
e2.5(3+t) − 1

)
dt.

Using a Gaussian five-point rule in each range we obtain the further result shown
in Table 5.7. The increase in accuracy for a given number of function evaluations

112 5 Numerical Integration

Table 5.7 Projected sales
using Gaussian quadrature Number of Gauss points Sales Error

5 803 210 355

10 803 563 2

over both the trapezium rule and Simpson’s rule (Tables 5.4 and 5.5) approximations
becomes evident.

5.6 Adaptive Quadrature

Our approach to quadrature has so far been one of selecting an appropriate rule and
then choosing enough grid points to ensure that the integral estimate so obtained
is sufficiently accurate. Unfortunately we have, as yet, no mechanism for deciding
just how many points are required to yield the required accuracy. This number will
depend critically on the form of the integrand; if it oscillates rapidly over [a, b], then
a large number of points will be required; if it varies only very slowly, then we can
make do with a small number of points. We need a measure of this variation which
can be used to concentrate the points at appropriate sub-regions in [a, b].

The strategy, which may be applied to any of the quadrature rules considered
previously, may be expressed in general terms as

1. Obtain a first integral approximation R1 using n + 1 grid points.
2. Obtain a second integral approximation, R2, using 2n + 1 grid points.
3. Using R1 and R2 obtain an estimate of the error in R1.
4. If the error estimate is small enough accept R1 (or R2).
5. Otherwise split [a, b] into two equal subintervals and repeat the above process

over each.

This is a recursive definition; the strategy is defined in terms of itself. We illustrate
the method by applying it to the trapezium rule.

Problem

Use the trapezium rule in an adaptive manner to estimate
∫ 1

0 ex dx, for which the
exact integral is e − 1, (1.718282).

Solution

We obtain a first approximation to the integral I using the one-panel trapezium rule.
This leads to the approximation, R1 with error E1 where

R1 = 1

2

(
e0 + e1) = 1.8591. (5.21)

5.6 Adaptive Quadrature 113

Table 5.8 Adaptive trapezium method

Original interval
and sub-intervals

Estimate Error
(absolute values)

Current eps Eps less
than 0.01

0 . . . 1 1.7189 0.140280 0.01 No

0 . . . 0.5 0.6487 0.013445 0.005 No

0 . . . 0.25 0.2840✓ 0.001477 0.0025 Yes

0.25 . . . 0.5 0.3647✓ 0.001897 0.0025 Yes

0.5 . . . 1 1.0696 0.022167 0.005 No

0.5 . . . 0.75 0.4683✓ 0.002436 0.0025 Yes

0.75 . . . 1 0.6013 0.003128 0.0025 No

0.75 . . . 0.875 0.2819✓ 0.000367 0.00125 Yes

0.875 . . . 1 0.3194✓ 0.000416 0.00125 Yes

Sum of ✓ estimates 1.7183

Using the two-panel trapezium rule gives a further approximation, R2 with error E2.

R2 = 1

4

(
e0 + 2e0.5 + e1) = 1.7539. (5.22)

We know from (5.10) that the error, E1 in the approximation R1 is given by

E1 = I − R1 = kh3 (5.23)

where k has a value which depends on the value of the second derivative of the
integrand at some point in [0,1]. In this first approximation h = 1, but we will
continue to use the variable name h to illustrate the general method. In considering
further approximations to I we make the simplifying assumption that the second
derivative of the integrand is constant over the range of integration and so we have
two contributions to the error term, each with half the interval spacing to give

E2 = I − R2 = 2k(h/2)3. (5.24)

Eliminating k from (5.23) and (5.24) we obtain

I = 1

3
(4R2 − R1) (5.25)

which in the example we are using gives I = 1.7189 which is closer to the accurate
integral (1.7182) than the previous estimate. In practice it is the error estimates that
are of interest and eliminating I from (5.23) and (5.24) gives kh3 = 4

3 (R2 − R1) =
−0.1403.

In order to integrate over an interval [a, b] we continually subdivide intervals in
which the error term is greater than a predefined tolerance. If the overall tolerance
was set to eps, tolerances within each subdivided interval would be successively
halved. The final result would be formed by adding the results from each subinterval.

Table 5.8 illustrates the procedure using the current example with eps set to
0.01. Adding the estimates for the ‘Yes’ rows, the ticked ✓ estimates for intervals
[0,0.25], [0.25,0.5], [0.5,0.75], [0.75,0.875] and [0.875,1], gives a total estimate

114 5 Numerical Integration

of 1.7183 for the integral, which is correct to the accuracy shown. The adaptive
method applies equally to other composite rules. Matlab implements the adaptive
version of Simpson’s method in the quad function.

Summary Whilst some integration problems that arise in practice may be solved
using analytic techniques, it is often the case that some numerical method has to
be used to derive an approximate solution. Knowing that a numerical solution is
expressed in terms of an integration rule, which is a weighted sum of evaluations of
the integrand, two questions arise:

• Which rule should be used?
• How many function evaluations will the rule involve?

We have the following rules

• Newton–Cotes rules.
– the trapezium rule.
– Simpson’s rule.

• Gauss rules.

In general, for the same number of function evaluations we can expect Simpson’s
rule to give a better approximation than the trapezium rule, and a 3-point Gauss rule
to give even better results again. It will always be possible to construct integrands
for which these conclusions are not true, but that should not act a deterrent unless
there is evidence to show that the task in hand is not feasible. Increasing the number
of points in a rule may give improved accuracy. When choosing the number of
function evaluations consideration must be given to the accuracy required. Adaptive
quadrature is a technique for choosing this number automatically and is therefore
often the more attractive proposition.

Exercises

1. Write a Matlab function trap with the heading

function[defintegral] = trap(x, f,n)

to implement the trapezium rule. The function is to return an approximation
to the integral of the function f(x) over the range [a, b] based on n equally
spaced grid points stored in the vector x with x(1) = a, x(n) = b and with
corresponding function values stored in the vector f. Use a for loop within the
trap function to evaluate the sum shown as (5.4).

Establish the code in an M-file trap.m and test the function using a program
to compute a standard integral, for example

x = linspace(0, 1, 2);
y = x;
integ = trap(x, y, 4)

5.6 Adaptive Quadrature 115

which returns in variable integ the Trapezium approximation (in this case an
accurate evaluation) to

∫ 1
0 x dx based on 2 grid points.

2. Evaluate
∫ 1

0 x2 dx using function trap from the previous question with different
numbers of grid points. In each case calculate the difference between the correct
value (1/3) and the estimated value. Confirm that the difference is as predicted
by (5.11). Use the formula to predict (and confirm by running the program) that
a mesh of 14 points would be required for absolute error of less than 0.001.

3. Modify the Matlab code for trap to produce a function Simpson with a similar
heading. Use a formula based on a more general form of (5.6) to implement the
method. Assume an odd number of grid points. Ensure that the input parameter
n is an odd number by using the Matlab function floor, which rounds down to
the nearest integer. Use separate loops for the odd and even sums.

function [integral] = Simpson(x, f, n)
% Assume function values for the range of integration are stored in
% equally spaced values x(i), y(i) i=1..n where is an odd number
% if n is even print an error message and return to the calling program

if 2∗ floor(n/2) == n;
disp('Error:number of grid points must be odd');
return;

else
%
% Insert the Simpson code
%

end;

Use the function Simpson to show that
∫ 1

0 x2 dx and also
∫ 1

0 x3 dx are evaluated

correctly and that the error in evaluating
∫ 1

0 x4 dx are all as predicted by (5.17).
4. Compare the rates at which the Simpson’s rule and the trapezium rule converge

to an estimate of ∫ 1

0

1

1 + x2
dx

with increasing number of grid points. The accurate value is π/4.
Note that as with element by element multiplication using the .* dot–

asterisk operator, Matlab provides a corresponding element by element division
operator ./ dot–slash operator and so an x, y mesh of n evenly spaced points
spanning the interval [0,1] may be generated using the following commands:

x = linspace(0, 1, n);
y = 1 ./ sqrt(1 + x.∗x);

Use the Matlab commands trapz to apply the trapezium rule and quad based on
Simpson’s rule to check the results from your own routines. For the example
above, assuming x and y and a function f (x) to evaluate 1/(1 + x2) were
already defined, suitable commands would be

116 5 Numerical Integration

trapz(x, y)
quad(@f,0,1) % use the @ prefix to pass a function name as a parameter

In general trapz(x, y) integrates y values over corresponding x values and
quad(@f,a, b) integrates the function f between the limits a and b. By default
quad approximates to within an accuracy of 1.0e−6 and requires the function
f = f (x) = 1/(1 + x2), where x is the vector of data points, to be defined in
an M-file with corresponding name f.m

5. Write a Matlab function with the heading function[points] = Gmesh(n) to gen-
erate the n roots of the Legendre Polynomial Pn−1(x). Using recurrence rela-
tion (5.19) we have P0 = 1, P1 = x and P2 = 1

2 (3 ∗ x2 − 1) and so since we
are writing the coefficients of the first three Legendre Polynomials as Matlab
vectors for use in the function roots to find the roots, we have

p = [1];
q = [1 0];
r = (3/2)∗ [q 0] - (1/2)∗[0 0 p];

It would be possible to continue in this way using a new variable name at each
step. Using a matrix is a possibility but there are complications in that each
row regarded as a vector would have one more element that the one before.
A convenient option is provided by the cell structure (question 1 of Sect. 1.15.2)
as shown below:

p(1) = {[1]}
p(2) ={[1 0]};

Using (5.19) and noting that we are storing the coefficients of the ith polynomial
in p(n) we have the Matlab expression

p(i + 2) = {((2 ∗ i + 1)/(i + 1)) ∗ [p{i + 1} 0] − (i/(i + 1)) ∗ [0 0 p{i}]};
which may be incorporated in a for loop (from 1 to n − 2) within the function
Gmesh. The final action of Gmesh would be to call roots with input parameter
{p} to find the roots of p(n). Test the function against the values shown in
Table 5.6.

6. Write a program to calculate the weights corresponding to the relative Gauss
points. Equation (5.20) shows that for the first two Legendre Polynomials, P1
and P2 the linear systems to be solved are:

w1 + w2 = 2
w1 + w1x2 = 0
(x1 = 0.5774, x2 = −0.5774)

w1 + w2 + w3 = 2
w1x1 + w2x2 + w3x3 = 0
w1x1 + w2x

2
2 + w3x

2
3 = 2

3
(x1 = 0, x2 = 0.7746, x3 = −0.7746).

In deriving the second system from formula (5.20), note that 00 = 1. It follows
that in the second example the leading coefficient of the first equation in this
example will be one (and not zero). The general pattern for forming a general
n × n system may be deduced. In forming the coefficient matrix, the Matlab
operator .∧ for raising the elements of a vector (or matrix) to a given power (for

5.6 Adaptive Quadrature 117

example v = v. ∧ 2 or e = g. ∧ j) may be useful. Test the program against the
values shown in Table 5.6.

7. Use the Gauss 5-point rule to estimate the integral I = ∫ π
2

0 sinx dx. In order
to use the rule transform the range of integration from [0,π/2] to [−1,+1] by
making the substitution

t = −1 + 4

π
x

so that when x = 0, t = −1 and when x = π
2 , t = +1. We now have

I = π

4

∫ +1

−1
sin

π

4
(t + 1) dt.

Use the Gauss 5-point rule

I = π

4

4∑
i=0

wi sin
π

4
(pi + 1)

where pi and wi , i = 1, . . . ,5 are the Gauss points. The accurate value, which
may be found analytically is 1.0.

8. Modify the function trap developed earlier to produce a new function Etrap
which for a given function f returns an estimate of the integral

∫ b

a
f (x) dx using

the trapezium rule and in the notation of Sect. 5.6 the error quantity kh3. The
estimates are to be based on using just 2 and 3 grid points as described in the
solution to the problem shown in Sect. 5.8.

Use the following heading for the function

function[integral, error] = Etrap(a, b, f)

and store the program in a file Etrap.m. The program will need to call the orig-
inal trap function first with parameter n set to 2 and again with n = 3.

Test the program using the example quoted in Sect. 5.6 and a command such
as Etrap(0,1,@exp) or [int, err] = Etrap(0,1,@exp); to return the values for
the estimated integral and the estimated error in variables int and err respec-
tively.

9. As an introduction to the next question. Write a function fact with heading

function[Factorial] = fact(n)

to evaluate the factorial of an integer n, usually denoted by n! Use the principle
of recursion by which a function is evaluated by repeatedly evaluating simpler
versions of itself until a stage is reached (a stopping condition) at which a value
of the function is known. For this example a stopping condition would be 1! = 1.
Following the header, a single statement of the following form will suffice

if n== 1;
Factorial = 1; % stopping condition

else
Factorial = n ∗ fact(n-1);

118 5 Numerical Integration

10. Write a Matlab function Atrap which for a given function f uses Adaptive
Quadrature based on the Trapezium Rule to return an estimate of the integral∫ b

a
f (x) dx to within a prescribed accuracy eps. Use the following heading for

the function

function[integral] = Atrap(a, b, f, eps)

and base the program on the following recursive scheme:

% estimate the integral over the range [a, b] using Etrap (question 8)
[i e] = Etrap (a, b, f); % (for example)

% is the absolute value of the estimated error returned by Etrap less than eps?
% if it is

integral = i; % the stopping condition
% if not, halve the interval, halve the required accuracy and try again,
% by treating the two
% intervals separately. Keep on doing this as long as is necessary.

eps = eps/2;
integral = Atrap(a, (a+b)/2, f, eps)+ Atrap((a+b)/2, b, f, eps);

Test the program against standard integrals with known values, for example use
the command

Atrap(0,1,@exp,1.0e-006)

to validate the results shown in Table 5.8. You may like to check the progress of
the recursion by inserting statements to display the intervals and to show how
they are subdivided to achieve the required accuracy.

Chapter 6
Numerical Differentiation

Aims In this chapter we look at numerical methods for estimating derivatives
of a function f = f (x). We establish formulae for evaluating f ′(x) and higher
derivatives for any value of x.

Overview The methods of this chapter are not intended to be used on a func-
tion for which values are only available at specific points. Although the underlying
function in question may be analytic, the methods assume that we can provide func-
tion values wherever we are asked to do so. If the precise form of the function is not
known it is better to construct an approximation using the method of least squares or
to construct a spline approximation in the manner discussed in Chap. 4 and use the
resulting function to estimate derivatives. In this way a global view of the function
is taken and so is likely to produce more accurate estimates than a method which
relies on piecemeal interpolation to supply individual values.

We point out that the methods of this chapter are also not intended to be used
where expressions for derivatives may be obtained without too much difficulty us-
ing the rules of differential calculus. However the functions we use in illustrating
the methods will be mainly of this type as they are useful for verification purposes.
Of course, any analytic function may be differentiated, but in some cases, for exam-
ple in the case of complicated rationals, the actual differentiation is not for the faint
hearted. In any event Matlab has facilities for displaying derivatives in symbolic
(algebraic) form, which will be explained in an end-of-chapter exercise. Estimates
for derivatives are often required in solving differential equations for which an an-
alytic solution is not available. If a numerical solution is therefore the only option,
progress to a solution may be made by replacing derivatives by estimates based on
function values

The methods to be described fall into two classes. On the one hand we derive
formulae based on function values in the vicinity of the point at which we wish to
estimate the derivative. In this context we derive two, three and five-point formulae
based on two, three and five local points respectively. Our second approach is to
transform the problem of estimating the derivative into that of estimating the value
of an integral, a problem that has already been considered in Chap. 5.

C. Woodford, C. Phillips, Numerical Methods with Worked Examples: Matlab Edition,
DOI 10.1007/978-94-007-1366-6_6, © Springer Science+Business Media B.V. 2012

119

http://dx.doi.org/10.1007/978-94-007-1366-6_6

120 6 Numerical Differentiation

Acquired Skills After reading this chapter you will be able to

• recognise the circumstances in which numerical differentiation rather than ana-
lytic differentiation may be usefully applied.

• understand how two, three and five-point formulae are derived.
• apply two, three and five-point formulae to finding estimates of first and higher

order derivatives.
• understand how Cauchy’s theorem can be used to transform the problem of esti-

mating derivatives into that of estimating an integral from which we may obtain
estimates for first and higher order derivatives.

6.1 Introduction

As is often the case in numerical analysis we take Taylor’s theorem as our starting
point. For a function f which is continuous and has continuous derivatives in an
interval [a, b] for any points x and x + h in that interval, we have formulae such as

f (x + h) = f (x) + hf ′(x) + R1 (6.1)

f (x + h) = f (x) + hf ′(x) + h2

2! f ′′(x) + R2 (6.2)

...
...

f (x + h) = f (x) + hf ′(x) + h2

2! f ′′(x) + · · · + hm

m! f
(m)(x) + Rm. (6.3)

In each case the remainder term Ri depends on the next higher derivative. In partic-
ular

Rm = hm+1

(m + 1)!f
(m+1)(ψm) (6.4)

where ψm is some point in the interval (x, x + h).

6.2 Two-Point Formula

We can use expressions (6.1)–(6.3) to provide formulae for numerical differentia-
tion. For example the expression (6.1) may be written in the form

f ′(x) = f (x + h) − f (x)

h
− 1

h
R1 (6.5)

which leads to the approximation

f ′(x) ≈ f (x + h) − f (x)

h
. (6.6)

The approximation (6.6) is known as a two-point formula, since it uses function
values at two points to estimate the derivative.

6.2 Two-Point Formula 121

Table 6.1 Estimates of f ′(0)

for f (x) = sin(x)
n f ′(0) Error

1 0.9589 0.0411

2 0.9896 0.0104

3 0.9974 0.0026

4 0.9993 0.0007

5 0.9998 0.0002

6 1.0000 0.0000

7 1.0000 0.0000

Problem

For f (x) = sin(x) estimate f ′(x) at x = 0.

Solution

In using (6.6) we have no indication as to an appropriate value for h other than it
should be small to reduce the remainder term R1. Accordingly we start with h =
0.5 and successively half the value until a consistent value for f ′ is found. Putting
x = 0 in (6.6) we obtain the results (see Table 6.1) for successive values of h, where
h = 1

2n , n = 1,2,

Discussion

The results show that (to four decimal places) the value of the derivative, f ′(0)

is 1.0000 and so the numerical approximation agrees with the analytical result
(f ′(0) = cos(0) = 1). For f (x) = sinx, f ′′(x) = − sinx and so |f ′′(x)| ≤ 1. This
implies that the remainder term R1, which can be found from (6.4) with m = 1, is at
most h

2 whatever the value of ψ1, which in turn guarantees the accuracy of the esti-

mate for sufficiently small h. Furthermore the error, namely R1
h

(the absolute value
is shown) is halved as h is halved. This is a result to be expected from (6.4). Even
though in this case the final value h may appear to be small, even smaller values
may be necessary as the following example shows.

Problem

For f (x) = x5 estimate f ′(x) at x = 2.

Solution

Using (6.6) we obtain the results in Table 6.2.

122 6 Numerical Differentiation

Table 6.2 Estimates of f ′(2)

for f (x) = x5 n f ′(2) Error

1 131.3 51.3

2 102.7 22.7

3 90.65 10.65

4 85.16 5.16
.
.
.

.

.

.
.
.
.

13 80.01 0.01

14 80.00 0.00

15 80.00 0.00

Discussion

In this case f ′′(x) = 20x3 which can become quite large for |x| > 1. It follows
that the remainder term is no longer exclusively controlled by the size of h and the
guarantee which we had for f (x) = sin(x) no longer applies. The sequence above
indicates that we need to choose a much smaller value of h (2−15) in order to achieve
a reliable estimate. Again it can be seen that the error, for which the absolute value
is shown, decreases linearly with h.

In theory it seems that as long as the second derivative is bounded we could use
the two-point formula (6.6) to estimate the first derivative of any function f (x)

provided we make h sufficiently small. However, given the way that computing
systems perform their arithmetic it is not always possible to do this. In attempting
to evaluate

f (x + h) − f (x)

h

for a given x and h, where h is small, we may be asking the computer to divide
one small number by another. Inevitably these numbers will be subject to error and
when they are close to rounding error we will have problems. For example, what

in theory may be 10−6

10−7 , namely 10, might be distorted to 10−6−10−8

10−7+10−8 and computed
as 9. For this reason we would avoid the two-point formula if it became apparent
that such a situation might occur.

6.3 Three- and Five-Point Formulae

From (6.2) we have

f (x + h) = f (x) + hf ′(x) + h2

2! f ′′(x) + h3

3! f ′′′(ξ) (6.7)

6.3 Three- and Five-Point Formulae 123

and

f (x − h) = f (x) − hf ′(x) + h2

2! f ′′(x) − h3

3! f ′′′(η) (6.8)

where ξ is some point in (x, x + h) and η is some point in (x − h,x). Subtracting
(6.8) from (6.7) to remove the unwanted second derivative, we have

f ′(x) = f (x + h) − f (x − h)

2h
+ h2

12

(
f ′′′(ξ) + f ′′′(η)

)
(6.9)

and so we have the approximation

f ′(x) ≈ f (x + h) − f (x − h)

2h
. (6.10)

The approximation (6.10) is known as a three-point formula, even though the mid-
point f (x) is missing. There are three-point formulae which explicitly involve three
points, but these tend to be slightly less accurate than the one we have given here.
Assuming the third derivative to be bounded, the error in the approximation is of
order h2, which is one order higher than for the two-point formula and hopefully
should lessen the need for very small h values.

Problem

Consider the function f (x) = x2 sin(1/x), x �= 0 and f (0) = 0. Obtain estimates
for f ′(x) at x = 0.1 using a two-point formula and a three-point formula.

Solution

We use (6.6) and (6.10). As in the previous example we begin with h = 0.5 and then
successively halve the value until consistent values for f ′ are found. We obtain the
results in Table 6.3 for successive values of h, where h = 1

2n , n = 1,2, Both
formulae produce the value of the derivative, correct to four decimal places.

Discussion

This example illustrates that we can expect more rapid convergence if we base the
estimate of the derivative on a larger number of points. Roughly speaking, the error
in using the two-point formula decreases by a factor of 1/2 in the later stages as h

is halved, whereas for the three-point formula the error decreases by a factor 1/4.

By using Taylor’s theorem we can produce formulae for estimating f ′(x) using any
number of nearby points, such as x, x + h, x + 2h, x − h, and so on, for a suitably
small h. All such formulae may be derived in the same way as (6.10) but rather than
produce formulae just for the sake of it we quote one particular five-point formula
which is considered to be very useful.

f ′(x) ≈ 1

12h

(
f (x − 2h) − 8f (x − h) + 8f (x + h) − f (x + 2h)

)
. (6.11)

124 6 Numerical Differentiation

Table 6.3 Estimates of f ′(0.1) for f (x) = x2 sin(1/x)

f ′(0.1)

n Two-point formula Error Three-point formula Error

1 0.7267 0.0027 0.4541 0.2762

2 0.1593 0.5710 0.0856 0.6447
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

10 0.7632 0.0329 0.7289 0.0013

11 0.7470 0.0168 0.7299 0.0003

12 0.7387 0.0085 0.7302 0.0001

13 0.7345 0.0043 0.7302 0.0000

14 0.7324 0.0021 0.7302 0.0000
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

18 0.7304 0.0001

19 0.7303 0.0001

20 0.7303 0.0000

21 0.7303 0.0000

The remainder term in (6.11) is proportional to h4 and the value of the fifth deriva-
tive at some point in the range (x − 2h,x + 2h) and so, all being well, the approx-
imation should offer better prospects for convergence than the two and three point
formulae. Rapid convergence offers a better hope of avoiding the very small values
of h, which we know can cause trouble.

Problem

Using the previous example f (x) = x2 sin(1/x), x �= 0 and f (0) = 0, calculate
estimates for f ′(x) at x = 0.1 using the five-point formula (6.11).

Solution

As before we choose h = 1
2n , n = 1,2, . . . and obtain the results in Table 6.4.

Discussion

The value −0.0372 of the second line of the table is somewhat surprising and serves
as a warning that formulae for numerical differentiation should not be applied in iso-
lation but rather as part of an iteration. As expected the five-point formula converges
more rapidly than the three-point formula. However, at each step the five-point for-
mula uses twice as many function evaluations as the three-point formula. As already
indicated this is about as far as we intend to go. For most practical applications es-
timates of first derivatives may be obtained by using a two-point formula with suf-
ficiently small h. However, if that value of h becomes too small for the system to

6.4 Higher Order Derivatives 125

Table 6.4 Further estimates
of f ′(0.1) for
f (x) = x2 sin(1/x)

f ′(0.1)

n Five-point formula

1 0.3254

2 −0.0372
.
.
.

.

.

.

9 0.7302

10 0.7303

11 0.7303

perform reasonably accurate calculations we would opt for a three-point formula,
with possibly a five-point formula as a last resort.

6.4 Higher Order Derivatives

We could use Taylor’s theorem to derive formulae for higher derivatives but instead
we use the formulae we have already obtained. For example, from (6.6) we have

f ′′(x) ≈ f ′(x + h) − f ′(x)

h

and in conjunction with the original (6.6) this provides a means of estimating f ′′(x).
We can use the same method to estimate f ′′′(x) and even higher derivatives.

Similarly we may use the more accurate three-point formula (6.10) to obtain

f ′′(x) ≈ f ′(x + h) − f ′(x − h)

2h
. (6.12)

A further application of (6.10) produces f ′′(x) in terms of f (x) as can be seen in
the following example.

Problem

Given f (x) = x5 use the formula (6.12) to estimate f ′′(1).

Solution

From (6.12) with h = 0.5 we have

f ′′(1) ≈ f ′(1.5) − f ′(0.5). (6.13)

126 6 Numerical Differentiation

Table 6.5 Estimates of
f ′′(1) for f (x) = x5 f ′′(0.1)

n Three-point formula

1 30

2 22.5
.
.
.

.

.

.

6 20.01

7 20.00

8 20.00

Using (6.10) to estimate f ′(1.5) and f ′(0.5) we have (with h = 0.5)

f ′(1.5) ≈ f (2) − f (1)

= 31

f ′(0.5) ≈ f (1) − f (0)

= 1.

Substituting these results in (6.13) gives f ′′(1) ≈ 30. As before we halve the value
of h (h = 1

2n , n = 1,2, . . .) and repeat the calculation and continue in this man-
ner until a consistent result emerges. The results are summarised in Table 6.5. We
conclude that f ′′(1) = 20.00, which is the expected result.

Discussion

The approximation used in solving this problem may be derived more formally.
Substituting for f ′(x) from (6.10) in (6.12) we have

f ′′(x) ≈ f ′(x + h) − f ′(x − h)

2h

≈ f (x + 2h) − 2f (x) + f (x − 2h)

4h2
. (6.14)

It is usual to write (6.14) in the form

f ′′(x) ≈ f (x + h) − 2f (x) + f (x − h)

h2
. (6.15)

This approximation may also be obtained directly from Taylor’s theorem.

6.4.1 Error Analysis

It should be appreciated that in estimating second derivatives using (6.12), and using
the same h, we are dividing by h2 rather than h, as was the case with the first

6.4 Higher Order Derivatives 127

derivative. In the case of third, fourth and higher derivatives we are dividing by h3,
h4 and so on. Moreover as we use a formula such as (6.12) to progress from one
order of derivative to the next we lose an order of accuracy since the original error
term is also divided by h. Given the previous warnings regarding h there is even
more danger in allowing h to become too small when estimating higher derivatives.
It has to be emphasised that although in theory a smaller h should lead to greater
accuracy, in practice this is not necessarily so.

Problem

Use the five-point formula (6.11) to estimate the first five derivatives of the following
function f (x) at x = 0

f (x) = ex

sin3 x + cos3 x
.

This function is often used for test purposes since it is awkward to differentiate by
hand and therefore represents the class of functions which we might well choose
to differentiate numerically. Also it can be shown that f (v)(0) = −164, which is a
useful benchmark.

Solution

From (6.11) with h = 0.5 we have

f ′(0) = 1

6

(
f (−1) − 8f (−0.5) + 8f (0.5) − f (1)

)

= 0.6258.

To estimate f ′′(0), using the same value of h we again use (6.11) but in the form

f ′′(0) = 1

6

(
f ′(−1) − 8f ′(−0.5) + 8f ′(0.5) − f ′(1)

)
. (6.16)

The values of f ′ necessary to evaluate (6.16) are found by applying (6.11) in its
original form. As can be seen this is quite a lengthy process, particularly by the
time we reach f (v). However, the use of recursion reduces the programming effort
considerably.

As usual we halve the value of h (h = 1
2n , n = 1,2, . . .) and repeat the calcula-

tion and continue in this manner until a consistent result emerges. The results are
summarised in Table 6.6.

Discussion

We conclude that f ′(0) = 1, f ′′(0) = 4, f ′′′(0) = 4 and f (iv)(0) = 28. As for
f (v)(0) we cannot be so sure. The results do not settle down in the manner of the
lower derivatives and it is with less certainty that we deduce the result to be ap-
proximately −164. Letting the calculation proceed with smaller and smaller values
of h would not help. We would find that the estimates become larger and larger

128 6 Numerical Differentiation

Table 6.6 Estimates of high derivatives of f (x) = ex/(sin3 + cos3 x) at x = 0

n f ′(0) f ′′(0) f ′′′(0) f (iv)(0) f (v)(0)

1 0.6258 1.1089 −3.0587 80.3000 −50.6253

2 1.0391 −4.0883 −103.4769 307.0102 4025.6974

3 1.0015 3.9993 4.9547 310.3380 13035.8616

4 1.0001 3.9999 4.0209 27.8954 −161.7975

5 1.0000 4.0000 4.0013 27.9938 −163.8619

6 1.0000 4.0000 4.0001 27.9996 −163.9914

7 4.0000 28.0000 −163.9995

8 4.0000 28.0000 −164.0000

as the computational inaccuracies begin to dominate. It seems that for this particu-
lar function we have pushed our methods to the limit in attempting to estimate the
fifth derivative. Any attempt to calculate higher derivatives for this and similarly-
complicated functions may produce estimates which do not converge.

Although it might be possible to derive estimates for higher and higher deriva-
tives we have reached the end of the road as far as the present approach is concerned.
We have provided reliable methods for estimating low-order derivatives which in
all probability is all that will be required in practice. It is difficult to imagine a
modelling situation requiring fourth and fifth, let alone sixth or even higher deriva-
tives! However, the problem is not impossible and we indicate a method based on
Cauchy’s theorem using complex variables.

6.5 Cauchy’s Theorem

Cauchy’s theorem states that

f (n)(ψ)

n! = 1

2πi

∫

C

f (z)

(z − ψ)n+1
dz, n = 1,2, . . . (6.17)

where f (z) is differentiable in a neighbourhood which includes a closed contour C

which surrounds the point ψ .
Using results from the theory of complex variables, the details of which need not

concern us, we can show that (6.17) may be transformed to

f (n)(ψ)

n! = 2

rn

∫ 1

0
f

(
re2πit + ψ

)
cos(2πnt) dt, n = 1,2, . . . (6.18)

where we disregard the imaginary part of the integrand, and where r is the radius
of a circle, centre ψ in which f (z) is analytic in the complex plane. We can say
that a function f (z) will be analytic if it can be differentiated and the value of
the differential does not tend to infinity. However, this still leaves the problem of
deciding upon a suitable value for r when using (6.18). We show in the following
examples how this difficulty may be overcome.

6.5 Cauchy’s Theorem 129

Table 6.7 Cauchy estimates
of f ′(0) for
f (x) = ex/(sin3 + cos3 x)

f ′(0)

r Estimate using Cauchy

1.0 1.0

0.5 1.0

0.1 1.0

Problem

For f (x) = sin(x) estimate f ′(x) at x = 0 using Cauchy’s theorem.

Solution

In this example ψ = and n = 1 and so making the substitutions as in (6.18) we have

f ′(0) = 2

r

∫ 1

0
sin

(
re2πit

)
cos(2πt) dt. (6.19)

Initially we set r = 1 and evaluate the integral using Simpson’s rule (based on 51
grid points). When evaluating the integrand we separate the real and imaginary
parts, and discard the latter. We obtain the results in Table 6.7. Further subdivision
does not change the results, which suggests that we are already inside a circle, centre
z = 0 in which f (z) = sin(z) is analytic in the complex plane. We therefore accept
the estimate f ′(0) = 1.0, which is also the correct value. In this particular case, since
f (z) = sin z is analytic everywhere in the complex plane it is hardly surprising that
we readily find a suitable r . The next problem repeats an earlier example.

Problem

Use Cauchy’s theorem to estimate the first five derivatives of f = f (x) at x = 0,
where

f (x) = ex

sin3 x + cos3 x
.

Solution

Making the appropriate substitutions as in (6.18) we have

f (n)(0)

n! = 2

rn

∫ 1

0

ere2πit

sin3(re2πit) + cos3(re2πit)
cos(2πnt) dt, n = 1,2, . . . ,10.

(6.20)

As before we initially set r = 1 and then make reductions. The results shown in
Table 6.8 agree with our previous results and those that may be obtained by direct
differentiation. The integration was performed using an adaptive implementation of
Simpson’s method as implemented by Matlab in the function quad with tolerance
set to 10−10.

130 6 Numerical Differentiation

Table 6.8 Cauchy estimates
of high derivatives of
f (x) = ex/(sin3 + cos3 x) at
x = 0

r f ′(0) f ′′(0) f ′′′(0) f (iv)(0) f (v)

1.0 1.5634 2.7751 8.1846 8.2401 −44.3003

0.5 1.0000 4.0000 4.0000 28.0000 −164.0000

0.25 1.0000 4.0000 4.0000 28.0000 −164.0000

Table 6.9 Cauchy estimates of higher derivatives

r f (vi)(0) f (vii)(0) f (viii)(0) f (xi)(0) f (x)(0)

1.0 −821.7125 −5639.8581 −30559.4056 26369.1145 2621923.0835

0.5 64.0000 −13376.0000 47248.0000 −858224.0000 13829823.9999

0.25 64.0000 −13376.0000 47248.0000 −858224.0001 13829824.0049

0.125 64.0000 −13376.0001 47247.9994 −858206.0423 13829824.9559

0.0625 63.9999 −13375.9982 47248.3478 −858247.0216 13817427.3193

Discussion

The results for higher derivatives are tabulated in Table 6.9 and show that care has
to be taken when deciding on a suitable value of r for the radius of circle centred on
the point at which we require the derivative. In theory r set to some very small value
would suffice unless the derivative does not exist or is infinite at or near the point in
question, in which case we could not expect an answer. However, computationally
this is not always feasible since at some stage we are dividing by rn. For small r

rounding error could lead to a loss in accuracy. The results in the table above show
this effect. However, the method is a good one and given appropriate software it is
recommended for the estimation of higher derivatives.

Summary In this chapter we have considered two classes of numerical method
for the estimation of derivatives of a function. We began by using Taylor’s theorem
to derive two, three and five-point formulae for the evaluation of the first derivative
of a function f = f (x) at any point x. All such formulae involve the use of a pa-
rameter h to determine points adjacent to x at which function values are required.
We showed by example that the choice of h is quite crucial and for this reason it is
recommended that estimates using more than one value of h should be obtained be-
fore any final decision can be made. Having established formulae for f ′(x) in terms
of values of f (x) we showed how the same formulae can be used in a recursive
manner to obtain estimates of f ′′(x) and higher derivatives.

We indicated the limitations of two, three andfive-point formulae when it comes
to obtaining higher derivatives of complicated functions, but rather than produce
seven-point, nine-point and even higher order formulae we presented an alterna-
tive approach based on Cauchy’s theorem. Although Cauchy’s theorem involves the
use of complex numbers and we had to assume that computer software is in place

6.5 Cauchy’s Theorem 131

Table 6.10 Exercise 1 results
n f ′′(0.1)

1 0.4537

2 1.5823

3 −0.8171

4 −3.7819

5 10.014
.
.
.

.

.

.

9 70.108

10 70.096

11 70.096

to perform complex arithmetic, the method has its attractions. In transforming the
problem to that of evaluating an integral we were able to use the well-established
methods of Chap. 5. The main problem is to find a circle in the complex plane cen-
tred on the point in question within which the function is analytic. Our approach
was to perform the integration using a number of radii r until we could be sure that
we were obtaining results within such a circle.

Although the use of Cauchy’s theorem is more cumbersome to implement it
would appear to offer better estimates in the case of higher derivatives. If just first or
second derivatives are required the use of two, three and five-point formulae is rec-
ommended, with the five-point formula being the best option for fast convergence.

Exercises

1. Write a Matlab program to estimate f ′′(0.1) for f (x) = x2 sin 1
x

using the five-
point formula in the form

f ′′(x) = 1

12h

(
f ′(x − 2h) − 8f ′(x − h) + 8f ′(x + h) − f ′(x + 2h)

)

using the five-point formula (6.11) to evaluate values of f required in the above.
Two functions, held in their respective M-files could be used, a function to eval-
uate f ′(x) that uses another to evaluate f (x). Verify that results similar to re-
sults in Table 6.10 are obtained for successively smaller values of h (h = 1

2n ,
n = 1,2, . . .). In this example it has been necessary to reduce h to very small
proportions in order to achieve a reliable estimate. The remainder term in the
Taylor series approximation which underlies formula (6.10) depends on h and
on the value of third derivative of the function close to the point (0.1) in ques-
tion. Since the value of the third derivative is of order 104, the value of h has
to be reduced considerably from an initial 0.5 to compensate and so produce an
acceptable remainder (error) term.

2. It can be shown that the two-point formula (6.6) is exact for linear functions in
that the formula when applied to functions such as f (x) = ax + b gives accurate
results whatever the value of the step-length h. Similarly the three-point formula

132 6 Numerical Differentiation

(6.10) is exact for quadratic polynomials and the five-point formula (6.11) is ex-
act for quartic polynomials. Write a program to check these statements by eval-
uating f ′(x) for (i) a linear function using the two-step formula, (ii) a quadratic
polynomial using the three-step formula and (iii) a quartic polynomial using the
five-point formulae. In each case use arbitrary values for x, step-length h and for
function coefficients.

3. It is possible to produce formulae for estimating derivatives based on values to
one side of the point in question. Using techniques similar to those we have
already discussed it can be shown that

f ′(x) ≈ −3f (x) + 4f (x + h) − f (x + 2h)

2h

and

f ′(x) ≈ −25f (x) + 48f (x + h) − 36f (x + 2h) + 16f (x + 3h) − 3f (x + 4h)

12h

are alternative three- and five-point formulae. Show by experiment that in general
these formulae are not quite as effective as their more balanced counterparts
(6.10) and (6.11) and so should only be used when values of the function f are
not available at one side or the other of the point in question.

4. This exercise aims to estimate the derivatives of

f (x) = ex

sin3 x + cos3 x

at x = 0 and so confirm the results quoted in the chapter.
(i) Write a Matlab function chy with heading

function [chyval] = chy(t)

to evaluate the integrand of (6.20) for any given value of t and constant values r

and n. Note that Matlab has facilities for handling complex (imaginary) numbers
including arithmetic involving combinations of real and complex numbers. In
general the complex number a + ib (a, b real) may be written as complex (a, b)
or a + bi (it is important to place i next to b and to separate the sign). The usual
arithmetic operations apply.

The variables r and n, are to be declared as global since they are to be given
values from the program which will use chy and so the function might have the
form

function[chyval] = chy(t)
global n r;
c= r ∗ exp(2∗pi∗complex(0, 1) ∗ t);
% using the .∗ and .∧ element by element multiplication and
% exponentiation operators
chyval = exp(c).∗cos(2∗pi∗n∗t) ./ (sin(c).∧ 3 + cos(c).∧3);

Having stored the function in an M-file chy, test the function using the program

6.5 Cauchy’s Theorem 133

global n r
r = 1; n =1;
chy(0.5);

to confirm that
(

eeπi

sin3(eπi) + cos3(eπi)

)
cos(π) = 0.8397.

(ii) Evaluate the integral

f (n)(0)

n! = 2

rn

∫ 1

0

(
ere2πit

sin3(eπi) + cos3(eπi)

)
cos(2πnt) dt, n = 1,2, . . . ,10

using the Matlab function quad with tolerance 1.0e-11. Express the real part of
the integrand using the function real as in the following code

c= r∗ exp(2∗pi∗complex(0, 1)∗t);
% Recover the real part of a complex number
rp = real (exp(c).∗cos(2∗pi∗n∗t) ./ (sin(c) .∧ 3 + cos(c) .∧3))

5. The Matlab Symbolic Math Toolbox provides tools for solving and manipulating
symbolic (i.e. algebraic) expressions, including the function diff for differentiat-
ing. Use the following program to evaluate symbolically the first, second, third,
fourth and fifth derivatives of the function f at the point x = 0.

syms f d x; % declare f d and x to be symbolic variables
f = exp(x)/(sin(x)∧3 + cos(x)∧3);
x = 0;
d = diff(f); % differentiate f symbolically
eval(d) % evaluate the first differential at x = 0
for i = 1 : 4

d = diff(d) % evaluate next differential from the one before
eval(d) % evaluate at x = 0

end;

The symbolic expressions for the derivatives may be seen by removing the trail-
ing semi-colons but not surprisingly they are quite lengthy. The function ezplot
is available for plotting symbolic expressions. Enter the command help ezplot for
further details.

Chapter 7
Linear Programming

Aims In this chapter we

• explain what is meant by a linear programming problem.
• show how linear programming problems arise in the real-world.
• show how a simple linear programming problem may be solved by graphical

methods

and then, taking the lead from this graphical approach, devise

• the simplex method for solving linear programming problems.

Finally we consider

• the ‘travelling salesman problem’ as it is traditionally known: deciding the short-
est route through a number of cities

and

• the ‘machine scheduling problem’: completing in the shortest possible time a
series of processes competing for shared resources.

Overview Linear programming is concerned with finding the maximum value of
a real-valued linear function f of a number of variables. We may also be asked to
find the minimum value of f , but this is equivalent to finding the maximum value of
−f and so there is no additional problem. Such a linear function might, for example,
be given by f = f (x1, x2), where f = x1 + 2x2, although in practice many more
variables are usually involved. The function in question is known as the objective
function. Additionally, the dependent variables (x1, x2 in the case quoted above),
are required to satisfy a number of linear relations, known as constraints. Thus a
linear programming problem might be to find values of x1, x2 that

maximise z = x1 + 2x2
subject to 3x1 + 2x2 ≤ 5

x1 + 3x2 ≤ 6
x1, x2 ≥ 0.

C. Woodford, C. Phillips, Numerical Methods with Worked Examples: Matlab Edition,
DOI 10.1007/978-94-007-1366-6_7, © Springer Science+Business Media B.V. 2012

135

http://dx.doi.org/10.1007/978-94-007-1366-6_7

136 7 Linear Programming

The solution to a linear programming problem is known as the optimal solution.
We may further impose the condition that some or all of the variables may only take
integer values at the optimal solution. This leads to a branch of linear programming
known as integer programming, or mixed integer programming (if not all vari-
ables are so constrained). A byproduct of integer programming enables us to model
the decision making process when faced with alternative strategies in the search for
an optimum solution.

It is worth remarking that the term linear programming has no connection with
computer programming as such. Linear programming began life in earnest during
World War II when it was used by the military in making decisions regarding the
optimum deployment of equipment and supplies.

Acquired Skills After reading this chapter and completing the exercises you will
be able to

• recognise if a problem is suitable for linear programming.
• model the problem in a standard form.
• solve a two variable problem using graphical methods.
• use the simplex method to solve a more general problem.
• use the branch and bound method to solve an integer programming problem (and

a mixed integer programming problem).
• set up linear programming models incorporating decision making.

7.1 Introduction

Problems from the real world rarely present themselves in a form which is immedi-
ately amenable to linear programming. It is often the case that simplifications have
to be made in order that the objective function and the constraints may be repre-
sented as linear functions. Even if a problem is recognised as being suitable for
linear programming, data must be collected and tabulated. The skill in successful
linear programming lies in the modelling of the problem and in the interpretation
of the consequent solution. The calculations involved in finding the solution to a
linear programming problem follow a well-defined path, which may be best left to
a computer.

7.2 Forming a Linear Programming Problem

By way of an example we consider a problem that we refer to as the garment factory
problem. Although only two variables are involved, it is indicative of the way in
which larger problems are modelled.

7.2 Forming a Linear Programming Problem 137

Table 7.1 Data from the
garment factory All-weather Luxury-lined Time available

Cutting 8 5 42

Sewing 3 16 60

Packing 5 6 32

Profit 500 400

Problem

A garment factory produces two types of raincoat, the all-weather and the luxury-
lined. The work involves three processes namely, cutting the material, sewing, and
packing. The raincoats are made in batches but because of local conditions (avail-
ability of qualified staff, etc.) the number of hours available for each process is
limited. In particular 42 hours are available for cutting, 60 hours for sewing and 32
hours for packing. Moreover the time taken to complete each process varies accord-
ing to the type of raincoat. The material for a batch of all-weather raincoats takes
8 hours to cut whereas for a batch of luxury-lined only 5 hours are required. The
figures for sewing a batch of all-weather raincoats and a batch of luxury-lined are
3 hours and 16 hours respectively. Similarly the figures for packing all-weather and
luxury-lined are 5 hours and 6 hours respectively. The profit to be made on a batch
of all-weather raincoats is £500 and on a batch of luxury-lined is £400.

The factory owner wants to know how best to use the resources available in
order to maximise the daily profit. Formulate this problem as a linear programming
problem. Assume that all workers are paid the same, whether they are working or
not, that raw material costs and overheads are the same whatever the process, and
that the factory can sell all that it produces.

Solution

To formulate the linear relationships of the problem we tabulate the data as dimen-
sionless quantities (Table 7.1) and assign variables to the quantities involved.

Let x1 be the number of batches of all-weather raincoats that the factory produces
in a day and x2 be the corresponding number of luxury-lined. The objective function
z, in this case the profit to be made, is then given by

z = 500x1 + 400x2.

The constraints arise from the time available for cutting, sewing and packing. Taking
each of these activities in turn we have

8x1 + 5x2 ≤ 42 (cutting) (7.1)

3x1 + 16x2 ≤ 60 (sewing) (7.2)

5x1 + 6x2 ≤ 32 (packing). (7.3)

The first of these inequalities expresses the fact that the total time taken to cut the
material for x1 batches of all-weather raincoats (8x1 hours) plus the time for cutting

138 7 Linear Programming

the material for x2 batches of luxury-lined raincoats (5x2 hours) must not exceed 42
hours. The other two inequalities are constructed on similar lines. We also add the
so-called trivial constraints

x1 ≥ 0 (7.4)

x2 ≥ 0 (7.5)

since we are not interested in negative values.

Discussion

We now have a linear programming problem since the objective function and the
constraints are linear relationships. It remains to find values x1 and x2 which max-
imise z. In suitably small linear programming problems a graphical method of solu-
tion may be employed as shown in the following problem.

Problem

Solve the garment factory problem using a graphical approach.

Solution

Since the solution which maximises z must satisfy the constraints (7.1)–(7.5) we
know that the optimal solution must lie within the area bounded by the lines

8x1 + 5x2 = 42

3x1 + 16x2 = 60

5x1 + 6x2 = 32

and the x1 and x2 axes. The area in which the solution must lie is known as the
feasible region and this is shown as the shaded region of Fig. 7.1.

Having established the feasible region we find the optimal solution by observing
how the value of the objective z, given by z = 500x1 + 400x2, changes value across
the region for varying x1 and x2. Figure 7.1 shows lines corresponding to z = 2000
and z = 4000. The first line crosses the feasible region, the other does not. If we
were to draw lines corresponding to z = 2000, z = 2100, z = 2200 and so on, we
would be drawing lines parallel to z = 2000 that gradually move in the direction of
z = 4000. At some point we would be about to leave the feasible region and this
defines the solution we are looking for. The (x1, x2) coordinates of the point that
the line touches the feasible region is the optimal solution since we have found the
maximum possible value of z consistent with the constraints. It is clear from Fig. 7.1
that A is the point in question and either by reading the point from the graph or (more
accurately) solving the equations

8x1 + 5x2 = 42

5x1 + 6x2 = 32

7.2 Forming a Linear Programming Problem 139

Fig. 7.1 Feasible region for
the garment factory problem

we find that the optimal solution is x1 = 4, x2 = 2 and the corresponding value of z

is 2800. Therefore in order to maximise profit the garment factory should produce 4
batches of all-weather raincoats and 2 batches of luxury-lined raincoats every day.

Discussion

This problem raises a number of issues in relation to its formulation, its solution and
the method by which the solution is obtained.

As it has been presented here the problem bears only a passing resemblance to
the real-world situation. In practice it is likely that there will be a number of different
pay grades and a number of products. The cost of raw materials and the overheads
for different products will not be the same. There may be limits to the number of
garments of a particular type that can be sold. These and many other considerations
may affect the overall profit. The number of variables involved in a realistic model of
a real-world situation can become very large indeed. Problems involving thousands
of variables are not uncommon. But if all the various constraints can be expressed
as linear relationships and there is no inherent contradiction in the way the problem
is constructed, we can use linear programming to find the optimal solution.

It will not have gone unnoticed that we obtained an integer solution, to the gar-
ment factory problem, namely 4 batches of all-weather raincoats and 2 batches of
luxury-lined. If the solution had not arrived as whole numbers it might not have been
as useful. For various reasons it might not be possible to resume work the following
day on an incomplete batch. Even if this were possible we would have to consider
the worth of our solution in relation to its impact on subsequent production. If an

140 7 Linear Programming

integer solution is the only one that is acceptable we can force the issue by using
integer programming, which is to be discussed later in the chapter.

Given the way in which we found the solution to our problem, by moving a straight
line across the feasible region, it is to be expected that the solution is found at a
corner (or vertex) of the feasible region. This principle extends to more complex
problems. If we have a problem involving three variables we would have a feasible
region in the form of a three-dimensional shape made up of flat (two-dimensional)
surfaces. If this is the case we can imagine the objective function as a plane moving
through the polyhedral figure and reaching its maximum value at a vertex. We have
theorems which state that if the feasible region of a linear programming problem
is bounded then the feasible region has a polyhedral shape and that if a linear pro-
gramming problem has an optimal solution then the optimal solution is found at a
vertex of the feasible region.

It might appear to be a simple matter to evaluate the objective at every feasible
vertex and note where the highest value of the objective occurs. However, whilst
such an approach would work for small problems, it becomes totally impractical
for larger problems. Even to identify the feasible region of a linear programming
problem having just 16 problem variables and subject to 20 non-trivial constraints
would involve examining the 7,000 million or so points at which both trivial and
non-trivial constraints intersect. In any event such a problem is very small by linear
programming standards. Clearly a more subtle approach is required.

However, the graphical approach has served to indicate the way ahead using a
method based on the vertices of the feasible region. In the following we adopt an
algebraic approach, but in order to do this we require linear programming problems
to be expressed in a common form.

7.3 Standard Form

For a linear programming problem involving n variables x1, x2, . . . , xn we may
write the objective z as

z = c1x1 + c2x2 + · · · + cnxn.

In the language of linear programming the variables x1, x2, . . . , xn are known as
problem variables and the coefficients c1, c2, . . . , cn are known as costs. Since the
problem of maximising z is the same as that of minimising −z we assume as a first
step towards standard form that the problem is always one of finding a set of values
of the problem variables which maximises the objective. If necessary we replace
each ci by −ci and ignore any fixed price (constant overhead) costs.

As a further step towards standardisation we express all constraints (other than
the trivial constraints) using the ≤ sign. Again, this may be achieved by changing
signs of the appropriate coefficients.

7.4 Canonical Form 141

It follows that any linear programming problem may be expressed in the form

maximise z = c1x1 + c2x2 + · · · + cnxn

subject to c11x1 + c12x2 + · · · + c1nxn ≤ b1
c21x1 + c22x2 + · · · + c2nxn ≤ b2
...

...

cm1x1 + cm2x2 + · · · + cmnxn ≤ bm

x1, x2, . . . , xn ≥ 0

which is known as the standard form.

Problem

Write the following linear programming problem in standard form

minimise −x1 + 3x2 − 4x3
subject to 2x1 + 4x3 ≤ 4

x1 + x2 − 5x3 ≥ 4
2x2 − x3 ≥ 2

x1, x2, x3 ≥ 0.

Solution

By a judicious change of signs we can rearrange the problem to

maximise x1 − 3x2 + 4x3
subject to 2x1 + 4x3 ≤ 4

−x1 − x2 + 5x3 ≤ 4
−2x2 + x3 ≤ 2

x1, x2, x3 ≥ 0.

7.4 Canonical Form

From standard form we move to what proves to be the more useful canonical form.
We write the non-trivial constraints as equalities. This is achieved by the introduc-
tion of extra variables, known as slack variables, which are constrained to be ≥ 0.
For example, a constraint such as

2x1 + 4x3 ≤ 4

may be re-written as

2x1 + 4x3 + x4 = 4

x4 ≥ 0

by the introduction of the slack variable x4. The subscript 4 is chosen as being the
next available following the sequence of subscripts already allocated.

142 7 Linear Programming

Problem

Transform the following linear programming problem from standard form to canon-
ical form

maximise x1 − 3x2 + 4x3
subject to 2x1 + 4x3 ≤ 4

−x1 − x2 + 5x3 ≤ 4
−2x2 + x3 ≤ 2

x1, x2, x3 ≥ 0.

Solution

Introducing slack variables x4, x5 and x6 (variables x1, x2 and x3 are already in use)
we have

maximise x1 − 3x2 + 4x3
subject to 2x1 + 4x3 + x4 = 4

−x1 − x2 + 5x3 + x5 = 4
−2x2 + x3 + x6 = 2

x1, x2, . . . , x6 ≥ 0.

7.5 The Simplex Method

The simplex method is based on an earlier observation, namely that if a problem
has an optimal solution then that solution occurs at a vertex of the feasible region
(a feasible vertex). We assume that the problem is stated in canonical form.

The simplex method chooses a feasible vertex as a starting point and from this
determines an edge of the feasible region along which to move to the next feasible
vertex. The decision is based on which move maximises the increase in the current
value of the objective. Another similar decision is made at the next vertex and the
process is repeated until a vertex is reached at which no further increase is possible.
If the feasible region is bounded, and this is true of the type of problem in which
variables are not allowed to take infinite values, we have a theorem which states that
a local optimum is in fact a global optimum. To use a mountaineering analogy, if
we go on climbing and reach a point at which we cannot climb any further, then
we are assured that the point is the peak of the whole range. The theorem tells
us that we are climbing in a mountain range that has only one peak. We use the
garment factory problem to illustrate how the decision is made at each vertex along
the route.

Problem

Write the garment factory problem in canonical form. Construct the feasible region
using the intersection of trivial and non-trivial constraints. Identify the feasible and
non-feasible vertices.

7.5 The Simplex Method 143

Fig. 7.2 The garment factory
problem: problem variables
and slack variables

Solution

In canonical form the problem becomes

maximise z = 500x1 + 400x2
subject to 8x1 + 5x2 + x3 = 42

3x1 + 16x2 + x4 = 60
5x1 + 6x2 + x5 = 32

x1, x2, . . . , x5 ≥ 0.

In addition to x1 = 0 and x2 = 0, we use x3 = 0, x4 = 0 and x5 = 0 to
identify the feasible region. From Fig. 7.2 it can be seen that the intersection
of any pair of lines such as (x1 = 0 and x2 = 0), or (x2 = 0 and x4 = 0), or
(x1 = 0 and x3 = 0) determines a point which may or may not be a feasible
vertex. In Fig. 7.2 point A, the intersection of x3 = 0 and x5 = 0, is a feasi-
ble vertex, whereas point Z, the intersection of x2 = 0 and x5 = 0 is not a fea-
sible vertex. Thus vertices A, B, C, D, E are feasible and vertices X, Y, Z and
the intersections of x1 = 0 and x3 = 0, and of x2 = 0 and x4 = 0 are non-
feasible.

Discussion

Consideration of Fig. 7.2 shows that each feasible vertex is defined by 2 variables
which are zero and 3 which are non-zero. In a more general problem involving n

problem variables and m slack variables, each feasible vertex can be defined by
setting n of the variables to zero. The n variables in question might be a mixture
of problem variables and slack variables. Variables which are set to zero to define
a vertex are known as non-basic variables. The remaining non-zero variables are

144 7 Linear Programming

Table 7.2 Feasible vertices
of the garment factory
problem

Vertex Basic variables Non-basic variables

A x1, x2, x4 x3, x5

B x1, x4, x5 x2, x3

C x3, x4, x5 x1, x2

D x2, x3, x5 x1, x4

E x1, x2, x3 x4, x5

known as basic variables. Furthermore, the set of values of the variables (both
problem variables and slack variables) at a feasible vertex is known as a basic fea-
sible solution. Table 7.2 shows which variables are basic and which are non-basic,
at the feasible vertices A, B, . . . , E. It can be seen that moving along an edge of
the feasible region from one vertex to the next is equivalent to making a non-basic
variable become basic and making a basic variable become non-basic. A feature of
the simplex method is the shuffling of variables between the basic and non-basic
sets.

It is usual to start with the all slack solution, that is the point defined by setting all
problem variables to zero. If this point is a feasible vertex then we may proceed. If
not we have to look elsewhere for a feasible vertex with which to start the method.

We are now in a position to state the simplex method using terms we have intro-
duced.

• Find a basic feasible solution.
• Consider the possible routes along the edges of the feasible region to nearby ver-

tices. Choose the route which produces the greatest increase in the objective func-
tion. If no such route exists we have an optimal solution and the method termi-
nates.

• Move along the chosen route to the next vertex and repeat the previous step.

The following problem indicates how these steps are carried out.

Problem

Use the simplex method to find a solution to the garment factory problem.

Solution

For convenience we repeat the canonical form of the problem namely, maximise
z = 500x1 + 400x2 subject to

8x1 + 5x2 + x3 = 42 (7.6)

3x1 + 16x2 + x4 = 60 (7.7)

5x1 + 6x2 + x5 = 32 (7.8)

x1, x2, . . . , x5 ≥ 0. (7.9)

7.5 The Simplex Method 145

We start with the all-slack solution, that is x1 = 0 and x2 = 0, a point which from
Fig. 7.2 can be seen to be a feasible solution. In the absence of such a diagram we
set x1 and x2 to zero in (7.6)–(7.8) and find that x3, x4 and x5 take the values 42,
60 and 32 respectively. These values are positive and so none of the constraints of
is violated. We therefore have a basic feasible solution.

It is clear that increasing x1 (from zero) is going to make for a greater increase
in the objective z than a corresponding increase in x2. In short, we look for the non-
basic variable with the largest positive coefficient in the objective function. Accord-
ingly we let x1 become non-zero, that is we make x1 a basic variable and determine
which current basic variable should become non-basic.

Equations (7.6)–(7.8) may be re-written as

x3 = 42 − 8x1 − 5x2

x4 = 60 − 3x1 − 16x2

x5 = 32 − 5x1 − 6x2.

By comparing the ratios 42/8, 60/3 and 32/5 (the constant term divided by the
coefficient of x1) and noting that 42/8 is the smallest of these, it can be seen that as
x1 increases from zero (and x2 remains zero), the first of x3, x4 and x5 (the non-basic
variables) to become zero is x3. Therefore having let x1 become basic, x3 becomes
non-basic. We have therefore moved along the edge from C to B in Fig. 7.2.

We repeat the procedure at B. We have to decide which of the non-basic variables
becoming non-zero will have the greater effect on the objective z. We have

z = 500x1 + 400x2

which in terms of the non-basic variables (now x2 and x3) becomes

z = 500(42 − 5x2 − x3)/8 + 400x2

= 2625 + 87.5x2 − 62.5x3. (7.10)

It follows that x2 should become a basic variable, as x2 becoming non-zero has
greater effect on increasing z than x3 becoming non-zero. In fact, because the co-
efficient of x3 is negative we can exclude it from consideration. To decide which
of the basic variables at B should become non-basic we re-write (7.6)–(7.8), with
the basic variables gathered on the left-hand side. Since x3 is to remain non-basic
(zero), we have

x1 = (42 − 5x2)/8 (7.11)

3x1 + x4 = 60 − 16x2 (7.12)

5x1 + x5 = 32 − 6x2. (7.13)

Using (7.11) in (7.12) and (7.13) we have

x4 = (354 − 113x2)/8
x5 = (46 − 23x2)/8.

(7.14)

146 7 Linear Programming

Of the ratios 42/5, 354/113 and 46/23, the smallest is 46/23 and so x5 is the first
variable to become zero as x2 increases from zero. We choose the smallest value so
that all the variables remain non-negative. We therefore make x5 non-basic, which
in addition to having made x2 basic moves us from point B to point A.

We repeat the procedure at A. Once again we look at the objective in terms of the
non-basic variables (now x3 and x5). Using (7.10) and (7.14) we have

z = 2625 − 87.5(8x5 − 46)/23 − 62.5x3

= 2800 − 62.5x3 − (700/23)x5.

We are now in the interesting position of being unable to increase the value of the
objective since either x3 or x5 increasing from zero has a negative effect. We con-
clude that we are at the optimal solution, namely z = 2800. Putting x3 = 0 and
x5 = 0 in the constraint equations gives

8x1 + 5x2 = 42

5x1 + 6x2 = 32.

Solving, we find that x1 = 4 and x2 = 2. This is the same solution that we obtained
by graphical means.

Discussion

In this particular example we worked our way through the simplex method in a
rather ad hoc, manner dealing with problems as they arose. Further problems may
arise if one or more of the variables in a basic solution is zero. We may cycle round
a sequence of vertices without increasing the value of the objective function.

Since linear programming problems often involve thousands of variables consider-
able effort has been invested into making computer programs for linear program-
ming as efficient as possible. The most popular version is known as the revised
simplex method which, with very little extra effort, simultaneously solves a lin-
ear programming problem (known as the dual) similar to the original in addition
to the original (known as the primal) and in so doing provides some indication at
each stage as to how far we are from the optimal solution and how susceptible the
optimal solution is to changes in the data.

7.5.1 Starting the Simplex Method

As already indicated, if the all-slack solution is feasible then this is an obvious
choice with which to start the simplex method. If the all-slack solution is not feasible
we must look elsewhere. Though possible for smaller problems, randomly selecting
variables to be non-basic (zero) could be too time consuming if applied to larger

7.5 The Simplex Method 147

Fig. 7.3 Feasible region for
the revised garment factory
problem

problems. The next problem, a variation on the garment factory problem, illustrates
a more sophisticated technique. By choice of a suitable objective we let the simplex
method itself find a basic feasible solution.

Problem

In addition to existing constraints the garment factory is required to produce at least
one batch of all-weather raincoats per day. Find a basic feasible solution to this
problem.

Solution

Using the previous notation we add the constraint x1 ≥ 1 and so the problem has the
canonical form

maximise z = 500x1 + 400x2
subject to 8x1 + 5x2 +x3 = 42

3x1 +16x2 +x4 = 60
5x1 + 6x2 +x5 = 32
x1 −x6 = 1

x1, x2, . . . , x6 ≥ 0.

The feasible region is shown in Fig. 7.3. The all-slack solution found by setting
the problem variables (x1 and x2) to zero no longer gives a feasible vertex. Not only
can it be seen from Fig. 7.3 that point C is outside the feasible region, but also x1 = 0
implies x6 = −1, which breaks the constraint x6 ≥ 0.

Undaunted we start with the all-slack solution but temporarily replace the orig-
inal objective by what is known as a pseudo objective z′. The pseudo objective is

148 7 Linear Programming

chosen with the aim of increasing the value of x6 and hopefully making it positive.
We use the simplex method with the objective z′ given by z′ = x6 and the original
constraints.

We have z′ = x6 = x1 − 1 and so choosing x1 rather than x2 to become non-
zero from the list of non-basic variables (x1, x2) has the greater effect on z′. So x1
becomes a basic variable. The basic variables are currently x3, x4, x5 and x6, so
keeping x2 zero we have

x3 = 42 − 8x1

x4 = 60 − 3x1

x5 = 32 − 5x1

x6 = −1 + x1.

As x1 increases from zero it is clear that x6 will be the first variable to become
zero, and so x6 becomes non-basic. We now have x2 = 0 and x6 = 0, from which it
follows that x1 = 1, x3 = 34, x4 = 57 and x5 = 27. This is a basic feasible solution
to the original problem and so it can be used to start the simplex method proper.

Discussion

In effect one step of the simplex method using the pseudo objective has taken us
from point C to point Y in Fig. 7.3. If this had not been a feasible vertex we would
have tried another step but with a different pseudo objective; in such a case the
pseudo objective would be the sum of all the negative variables. If the original linear
programming problem involves equality constraints the following problem shows
how to overcome this particular difficulty.

Problem

In addition to the original constraints the garment factory is required to produce
exactly 6 batches of coats per day. The requirement that at least one batch of all-
weather raincoats be produced no longer applies. Find a basic feasible solution.

Solution

The problem has the canonical form

maximise z = 500x1 + 400x2
subject to 8x1 + 5x2 +x3 = 42

3x1 +16x2 +x4 = 60
5x1 + 6x2 +x5 = 32
x1 + x2 +x6 = 6

x1, x2, . . . , x5 ≥ 0, x6 = 0.

In addition to the usual slack variables we introduce a so-called artificial variable
x6. The variable is artificial in the sense that, unlike the problem variables and the

7.6 Integer Programming 149

slack variables, it is required to be zero. As with the previous problem an all-slack
solution is not possible since setting the problem variables (x1 and x2) to zero im-
plies x6 = 6 which breaks the constraint x6 = 0.

Since we wish to reduce the value of x6 (to zero) we use one step of the simplex
method with the objective z′ given by z′ = −x6 and the original constraints. Thus
we are seeking to maximise −x6, which is to minimise x6.

We have

z′ = −x6

= x1 + x2 − 6

and so we choose x1 to become a basic variable. In this case we could have equally
well chosen x2. The basic variables are currently x3, x4, x5 and x6, so keeping x2

zero we have

x3 = 42 − 8x1

x4 = 60 − 3x1

x5 = 32 − 5x1

x6 = 6 − x1.

As x1 increases from zero it is clear that x3 will be the first variable to become
zero, and so x3 becomes non-basic. We now have x2 = 0 and x3 = 0, from which it
follows that x1 = 6, x4 = 42, x5 = 2 and x6 = 0. None of the constraints are violated
and so we have a basic feasible solution with which to start the simplex method.

Discussion

In general, if the all-slack solution cannot be used to start the simplex method be-
cause it is not a basic feasible solution, we look for a basic feasible solution using
the pseudo objective

∑

xi<0

xi −
∑

xi>0
xi artificial

xi.

7.6 Integer Programming

We reconsider the original garment factory problem but simplified to the extent that
just two processes are involved, namely cutting and sewing. However we add the
constraint that only complete batches of raincoats can be manufactured in any one
day. Once again we look for the most profitable manufacturing strategy.

150 7 Linear Programming

Fig. 7.4 Feasible region for
the integer garment problem

The canonical form of this latest version of the problem, which we refer to as the
integer garment problem, is

maximise z = 500x1 + 400x2
subject to 8x1 + 5x2 + x3 = 42

3x1 + 16x2 + x4 = 60
x1, x2, x3, x4 ≥ 0 and integer.

The problem as stated is an example of an integer programming problem. If x1

and x2 were not required to be integer, the optimal solution would be given by the
intersection of

8x1 + 5x2 = 42

and 3x1 + 16x2 = 60

namely, x1 = 3.3 and x2 = 3.1, values which may be either calculated directly or
read from Fig. 7.4. Since x1 and x2 are required to be integer it might seem ap-
propriate to take the nearest whole number values as the solution, namely, x1 = 3
and x2 = 3 which gives a z value of 2700. However this is not the optimal solution.
Setting x1 = 4 and x2 = 2, which is acceptable since this keeps x3 and x4 positive,
gives z a higher value of 2800. Clearly an alternative strategy is required.

The feasible region for the integer garment problem is shown in Fig. 7.4 and con-
sists of a number of discrete points. This type of discrete region is in contrast to the
feasible regions of general problems, which we refer to as continuous problems,
in which variables may take both integer and non-integer values. We solve integer
programming problems by the branch and bound method. By solving a number
of continuous problems the method aims to reduce the feasible region to that of

7.6 Integer Programming 151

sub-regions containing a feasible solution, one or more of which will be an optimal
solution. It should be noted that a solution to an integer programming problem is
not necessarily unique.

7.6.1 The Branch and Bound Method

Given an integer programming problem, we begin by solving the corresponding
continuous problem by the simplex method. If we obtain an all-integer solution
then we have solved the problem. If, however, one or more of the variables of the
optimal solution does not have an integer value then we choose one such variable on
which to branch. That is we form two further problems with a view to splitting the
feasible region into two sub-regions. For example, in the integer garment problem,
having solved the initial continuous problem and found that x1 is not integer at the
solution, we could decide to branch on x1. In this case we have a solution x1 = 3.3,
so to progress towards an all-integer solution we seek to reduce the feasible region
by solving two further (continuous) problems, the original continuous problem with
the added constraint (an added bound) x1 ≤ 3 and the original continuous problem
with the added constraint x1 ≥ 4. Hence the name branch and bound. The pro-
cess continues until no further progress can be made along a particular branch or
because it becomes apparent that further progress would not offer any improvement
on existing solutions. The following example illustrates the method.

Problem

Solve the reduced integer garment problem by the branch and bound method, that
is

maximise z = 500x1 + 400x2
subject to 8x1 + 5x2 ≤ 42

3x1 + 16x2 ≤ 60
x1, x2 ≥ 0, x1, x2 integer.

Solution

The solution to the associated continuous problem, which we refer to as Problem
(1) is, as we have already seen, x1 = 3.3, x2 = 3.1. We branch on x1 and form the
following two sub-problems:

Problem (1.1)

maximise z = 500x1 + 400x2
subject to 8x1 + 5x2 ≤ 42

3x1 + 16x2 ≤ 60
x1 ≤ 3

x1, x2 ≥ 0, x1, x2 integer

Problem (1.2)

maximise z = 500x1 + 400x2
subject to 8x1 + 5x2 ≤ 42

3x1 + 16x2 ≤ 60
x1 ≥ 4

x1, x2 ≥ 0, x1, x2 integer.

152 7 Linear Programming

Fig. 7.5 Feasible region for
Problem (1.1)

The feasible region for Problem (1.1) is shown in Fig. 7.5. Solving by the simplex
method gives the solution x1 = 3, x2 = 3.19. This is not an integer solution so we
branch on the offending variable x2. This gives rise to two further sub-problems:

Problem (1.1.1)

maximise z = 500x1 + 400x2
subject to 8x1 + 5x2 ≤ 42

3x1 + 16x2 ≤ 60
x1 ≤ 3
x2 ≤ 3

x1, x2 ≥ 0, x1, x2 integer

Problem (1.1.2)

maximise z = 500x1 + 400x2
subject to 8x1 + 5x2 ≤ 42

3x1 + 16x2 ≤ 60
x1 ≤ 3
x2 ≥ 4

x1, x2 ≥ 0, x1, x2 integer.

Solving Problem (1.1.1) by the simplex method gives the solution x1 = x2 = 3 and
a value of 2700 for the objective. This is an integer solution and so is a contender for
the solution to the integer integer garment problem. There is nothing to be gained
in subdividing Problem (1.1.1) any further since this would be to look for integer
solutions in a feasible region fully contained within the feasible region for Problem
(1.1.1). Such solutions could only give a value of the objective less than that already
obtained. Accordingly we look at problem (1.1.2). This is an infeasible problem,
that is a problem without a solution, since x2 ≥ 4 and the constraint 3x1 +16x2 ≤ 60
imply x1 < 0, which is not allowed.

Having exhausted the possibilities on the left-hand side of the tree of Fig. 7.6,
we turn our attention to the right-hand side and Problem (1.2). This has the solution
x1 = 4, x2 = 2 and a value of 2800 for the objective. For reasons already stated
in connection with Problem (1.1.1), there is no point in going any further. Of the
(two) integer solutions we have found Problem (1.2) gives the higher value for the
objective and so a solution to the integer integer garment problem has been found.

7.7 Decision Problems 153

Fig. 7.6 Integer garment
problem, branch and bound
method

Discussion

The branch and bound method does not offer a unique route to a solution. For ex-
ample, we could have formed two new problems by branching on x2 rather than x1.
In this case we would have produced a different tree but would have ultimately
found a solution though not necessarily the same as found by branching first on
x1. If we had initially branched on x2, there would have been no need to progress
beyond what we have labelled Problem (1.1) in Fig. 7.6, since at this point the ob-
jective is less than 2800. In general the advice is to branch on the variable having
greatest influence on the objective as this is found to offer a quicker route to a solu-
tion.

7.7 Decision Problems

We consider a different kind of business model for the garment factory, which is
deciding whether to concentrate production on just one type of raincoat. If as before
x1 represents the number of batches of all-weather raincoats and x2 the number of
luxury-lined, we add the following constraints to earlier linear programming mod-
els

x1 ≤ 1000d

x2 ≤ 1000(1 − d)

d ≤ 1

d ≥ 0, d integer.

(7.15)

154 7 Linear Programming

Table 7.3 Car hire company, model data

Auto. gears Sun roof Child seat Hatch-back CD Route finder Immobiliser

Model 1 Yes No Yes No Yes No No

Model 2 Yes No No Yes No Yes No

Model 3 No Yes Yes No No Yes No

Model 4 No No No Yes No Yes Yes

Model 5 Yes Yes No No No No Yes

Model 6 Yes No No No Yes Yes No

Here d is a decision variable. A decision variable is a problem variable con-
strained to take either the value 0 or 1. The number 1000 is somewhat arbi-
trary; any number as large or larger than the greater of the possible x1 and
x2 values will do. If d takes the value 1 in the optimal solution this indicates
that all-weather raincoats are to be made, if d takes the value 0 this indicates
luxury-lined are to be made. Examples of the use of decision variables fol-
low.

Problem

A car hire company offers a number of models to its customers. As can be seen from
Table 7.3, not all models have the same features. The car hire company wishes to
reduce the number of models available to the minimum while retaining sufficient
models to offer at least one car having at least one of the current seven features
on offer. Formulate the problem the company faces as a linear programming prob-
lem.

Solution

We use decision variables d1, d2, . . . , d6. di = 1 indicates that model i is to be re-
tained; di = 0 indicates that model i is not to be retained. The objective z which we
seek to minimise is the number of models, therefore

z = d1 + d2 + d3 + d4 + d5 + d6.

The requirement that at least one model is available with automatic gears may be
expressed as

d1 + d2 + d5 + d6 ≥ 1

since only models 1,2,5 and 6 have this feature. Similar expressions apply to the
other features, so we have

7.8 The Travelling Salesman Problem 155

minimise z = d1 + d2 + d3 + d4 + d5 + d6
subject to d1 + d2 + d5 + d6 ≥ 1 Auto. gears

d3 + d5 ≥ 1 Sun roof
d1 + d3 ≥ 1 Child seat
d2 + d4 ≥ 1 Hatch-back
d1 + d6 ≥ 1 CD

d2 + d3 + d4 + d6 ≥ 1 Route finder
d4 + d5 ≥ 1 Immobiliser

d1, d2, . . . , d6 ≥ 0
d1, d2, . . . , d6 ≤ 1

d1, d2, . . . , d6 integer.

A computer solution to this integer programming problem is discussed in Exer-
cise 8.

7.8 The Travelling Salesman Problem

As a further example of how the skill in successful linear programming lies in the
modelling of the problem rather than applying the standard method of solution, we
consider one of the most famous of all problems, known as the travelling salesman
problem. The problem was originally stated in terms of a salesman having to visit a
number of cities and wishing to devise a route to minimise travel costs. We consider
a particular example. A van driver is based in Manchester with deliveries to make
to depots in Leeds, Stoke, Liverpool and Preston. The van driver wishes to devise
a round trip which is the shortest possible. The relevant distances are shown in
Table 7.4.

To simplify matters we identify the five locations Manchester, Leeds, Stoke, Liv-
erpool and Preston by the numbers 1,2, . . . ,5 respectively. We introduce decision
variables dij to indicate whether or not on leaving i the next stop is j . For example
we take d12 = 1 to mean that the driver travels directly from Manchester to Leeds,
on the other hand d12 = 0 means that the route from Manchester to Leeds is not
direct. Similarly, d42 = 1 implies that the route from Liverpool to Leeds is direct,
but is indirect if d42 = 0. Note that dij has a different meaning from dji .

Table 7.4 Distances (miles)
Leeds Stoke Liverpool Preston

Manchester 44 45 35 32

Leeds 93 72 68

Stoke 57 66

Liverpool 36

156 7 Linear Programming

The objective z which we are seeking to minimise is given by

z =
5∑

i,j=1
i �=j

mij dij

where mij is the distance between depots i and j , as shown in the table above.
Now for the constraints. The solution is to take just one route out of Manchester

and this may be expressed as

d12 + d13 + d14 + d15 = 1.

Similarly, having made the first call, wherever that happens to be, we require just
one route out. This applies to each of the other locations and so we also have

d21 + d23 + d24 + d25 = 1

d31 + d32 + d34 + d35 = 1

d41 + d42 + d43 + d45 = 1

d51 + d52 + d53 + d54 = 1.

So far so good, but this is not a complete model. We do not allow solutions which
include visiting the same depot twice on the grounds that a circular route is bound to
be more direct. In order to exclude combinations such as Manchester to Liverpool
(d14 = 1) and Preston to Liverpool (d54 = 1) we need to specify that in addition to
just one route leading out, each location has just one route leading in. We have

d21 + d31 + d41 + d51 = 1

d12 + d32 + d42 + d52 = 1

d13 + d23 + d43 + d53 = 1

d14 + d24 + d34 + d54 = 1

d15 + d25 + d35 + d45 = 1.

In addition we have

dij ≥ 0, dij ≤ 1, dij integer.

A computer solution is discussed in Exercise 9.

7.9 The Machine Scheduling Problem

As a final example of forming a linear programming model we consider a machine
scheduling problem. In general this is concerned with allocating machines, or pro-
cesses, as part of a larger process in such a way that the total work in hand may
be completed as quickly as possible. To illustrate the technique we consider the
following problem.

7.9 The Machine Scheduling Problem 157

Table 7.5 Paint shop process
times Car Van

Clean 13 11

Spray 10 22

Dry 6 9

Problem

A paint shop uses three processes, namely cleaning, spraying and drying (in that
order), to re-paint cars and vans. The facilities of the paint shop are limited in that
only one vehicle can be cleaned at any one time, and a similar restriction applies
to spraying and drying. The time taken (in minutes) for each process is shown in
Table 7.5. The paint shop has an order to paint 2 cars and a van and wishes to
organise the work so that it can be completed in the shortest time possible. Formulate
the decision as to how to organise the work as a linear programming problem.

Solution

To simplify matters we refer to the two cars as items 1 and 2 and the van as item 3.
The processes of cleaning, spraying and drying are referred to as processes 1, 2 and
3 respectively. We assume that time is measured from zero and the time at which
item i starts process j is given by tij .

Since spraying follows cleaning, we have

t12 ≥ t11 + 13

t22 ≥ t21 + 13

t32 ≥ t31 + 11

and since drying follows spraying, we have

t13 ≥ t12 + 10

t23 ≥ t22 + 10

t33 ≥ t32 + 22.

We assume that car 1 (item 1) takes precedence over car 2 (item 2). Since both items
are essentially the same, this will not affect the final outcome. Therefore, we have

t11 + 13 ≤ t21

t12 + 10 ≤ t22

t13 + 6 ≤ t23.

To model the decision as to the order in which vehicles are to be processed we
introduce decision variables dijk . We take dijk = 1 to mean that for process i, item
j is processed before item k and that dijk = 0 means otherwise.

158 7 Linear Programming

If, for example, item 1 is to go through process 1 before item 3, that is if the first
car is to be cleaned before the van, we have

t11 + 13 ≤ t31 and d113 = 1, d131 = 0.

If this were not the case, we would have

t31 + 11 ≤ t11 and d131 = 1, d113 = 0.

These two constraints may be written as

t11 + 13 ≤ t31 + 1000(1 − d113)

t31 + 11 ≤ t11 + 1000d113.

This device neatly expresses the either–or condition in a manner similar to that
shown in (7.15). If, for example, d113 = 1, the second of the constraints is automati-
cally satisfied no matter what the values of t31 and t11 (within reason) and so has no
impact. The constraint has been placed well outside the feasible region. Similarly,
if d113 = 0 the first constraint becomes redundant and the second takes effect. Note
that there is now no need for a separate variable d131.

We can write similar expressions by regarding items 2 and 3 for process 1:

t21 + 13 ≤ t31 + 1000(1 − d123)

t31 + 11 ≤ t21 + 1000d123.

Similar expressions apply to the other processes. For process 2

t12 + 10 ≤ t32 + 1000(1 − d213)

t32 + 22 ≤ t12 + 1000d213

t22 + 10 ≤ t32 + 1000(1 − d223)

t32 + 22 ≤ t22 + 1000d223

and for process 3

t13 + 6 ≤ t33 + 1000(1 − d313)

t33 + 9 ≤ t13 + 1000d313

t23 + 6 ≤ t33 + 1000(1 − d323)

t33 + 9 ≤ t23 + 1000d323.

To complete the specification of the constraints we have for relevant i and j

tij ≥ 0

di13, di23 ≥ 0, di13, di23 ≤ 1

di13, di23 integer.

We now consider the objective z. We are looking to complete all three processes
for all three items in as short a time as possible, so we are looking to minimise
whatever happens to be the greater value of t23 + 6 and t33 + 9, the times at which

7.9 The Machine Scheduling Problem 159

Table 7.6 Paint shop
optimum schedule Starting times

car 1 car 2 van

clean 17 30 0

spray 33 43 11

dry 43 53 33

the second car and the van have completed the final process. We know that by this
time the first car will have been through the system. To avoid having to specify z

directly we state the problem as

minimise z

subject to z ≥ t23 + 6
z ≥ t33 + 9

and constraints already stated.

Discussion

Solving by the simplex method with branch and bound gives a value of 59 for the
objective. There are a number of possible tij values, a particular solution is shown in
Table 7.6. The van is the first vehicle to be cleaned, followed by car 1 and then car 2.
For each process the order of the vehicles is the same. This particular solution leaves
the cleaning process idle from time t = 11 to time t = 17. Whilst this does not affect
the eventual outcome it may not be the solution we would wish to implement. We
might prefer to operate the cleaning process continually until time t = 36. In general
such requirements would be modelled by means of additional constraints.

Summary In this chapter we have shown how linear programming can be used
to solve problems which might arise in the business and economic world. For this
reason the term Operations Research is often used to describe the application of
linear programming techniques. We saw how a simple graphical approach could
be applied to a problem involving two variables and used this as a basis for form-
ing a more powerful algebraic method which culminated in the simplex method.
To achieve this we defined a canonical form for linear programming problems and
showed how problems could be presented in this form, if necessary by introduc-
ing slack variables. We showed how the simplex method could be regarded as a
progression from feasible vertex to feasible vertex and that the all-slack solution,
provided it is feasible, is a convenient starting point. In the event of this not being
the case, we showed how a feasible vertex could be found by means of a pseudo
objective.

We identified the need for integer solutions and this led to the branch and bound
method, which effectively uses the simplex method repeatedly until the feasible
region is reduced to the point at which further investigation is unnecessary.

160 7 Linear Programming

Fig. 7.7 Feasible region for Exercise 1

Finally we showed how linear programming can model the decision-making pro-
cess through the use of decision variables. This is an area which offers scope for
considerable ingenuity in the modelling process and as such may present more
problems than simply applying the solution process. In this context we examined
the travelling salesman problem and the machine scheduling problem.

Exercises

1. Sketch or use Matlab to produce a diagram to confirm Fig. 7.7 is the feasible
region for the following linear programming problem.

maximise z = 5x + 2y

subject to x + y ≤ 15
4x + 9y ≤ 80

4x − y ≥ 0
and x, y ≥ 0.

A Matlab program based on the following scheme would be appropriate

% draw the line y = 4x using 100 equally spaced x values in the range
x = linspace(0, 20, 100);
pc set the axis limits
axis ([0 20 0 10]);
y = 4∗x;

7.9 The Machine Scheduling Problem 161

plot(x, y);
% hold the plot for the next line, y = 15 - x
hold;
y = 15−x;
% use the same x-axis range
axis ([0 20 0 20]);
plot(x, y);
% plot remaining lines similarly
. . .

. . .

% use a different colour (red) for z = 10
plot(x, y, 'r');
% annotate the graph using the cross-hairs to position the text
gtext('feasible region')
gtext('z = 10')
% axes labels, titles and other annotations may be added interactively
% using the drop-down menu under the Insert option on the resulting
% Figure menu

As a line parallel to z = 10 moves across the feasible region it can be seen that
the maximum value of z will be reached at the intersection of x + y = 15 and
y = 0. The solution is therefore x = 15, y = 0, at which point z = 75.

The solution may also be obtained using the Matlab function linprog with
a parameter list (f,A,b) which finds the solution to the linear programming
problem

minimise f (x) subject to Ax ≤ b.

A sequence of commands appropriate to the current example would be

f = [−5 −2]
A = [1 1; 4 9; −4 1; −1 0; 0 −1]
b = [15 80 0 0 0]
x = linprog(f, A, b);

Note that the problem has to be re-stated as a minimisation problem in standard
form. In particular the requirements x >= 0 and y >= 0 become −x <= 0 and
−y <= 0 respectively.

2. Consider the following linear programming problems, all of which are unusual
in some way. Sketch or use Matlab to illustrate each problem. Identify cases for
which the feasible region is not bounded or does not exist and any redundant
constraints. Find the solutions, if they exist either directly from the plots or by
using linprog. If you intend to produce one or more of the examples in the same
session use the command figure to start a new figure while retaining an existing
figure.

162 7 Linear Programming

maximise z = x + y minimise z = 5y − x

subject to 5x + y ≥ 20 subject to x − 3y ≥ 1
5x + 2y ≥ 40 x + 2y ≥ 3

18x − 5y ≤ 90 2x + y ≥ 4
and x, y ≥ 0. and x, y ≥ 0.

minimise z = 3x − 2y maximise z = 10x + 3y

subject to x − 2y ≥ 2 subject to y − x ≤ 1
2y − 5x ≥ 10 3x + y ≥ 3

and x, y ≥ 0. 3y − x ≤ 2
3x + 4y ≤ 12

and x, y ≥ 0.

3. A factory produces two types of bed, the Sleep-eezy and the Ortho. The beds
are made of fabric, wood and metal. The amount of each material (in appropri-
ate units) which is available for the daily production run is shown in Table 7.7.
Table 7.7 also shows the quantity of material required for each model and the
retail value of each bed. The factory can sell everything that it produces. Assum-
ing that the aim is to maximise the value of retail sales. Denoting the number
of Sleep-eezy beds to be made by x and the number of Ortho beds by y, the
objective function z, the total retail value, is given by

z = 200x + 400y.

The constraints arise from the material available. Taking each in turn we have

5x + 12y ≤ 120 (fabric) (7.16)

10x + 7y ≤ 140 (metal) (7.17)

12x + 15y ≤ 180 (wood) (7.18)

and in addition x, y ≥ 0. Sketch or use Matlab to produce a diagram to confirm
Fig. 7.8 is the feasible region for the following linear programming problem. Use
either the diagram or Matlab to decide how many beds of each type should be
made each day in order to maximise retail value. As a line parallel to z = 1600
moves across the feasible region it can be seen that the maximum value of z will
be reached at the intersection of 12x + 15y = 180 and 5x + 12y = 120. The
solution by inspection, or solving the equations, is found to be x = 5.2, y = 7.8,
at which point z = 4173.9. Whether such a fractional solution is helpful to the
company is another matter (see below).

Table 7.7 Exercise 3, data
Availability Sleep-eezy Ortho

Fabric 120 5 12

Metal 140 10 7

Wood 180 12 15

Retail value (£) 200 400

7.9 The Machine Scheduling Problem 163

Fig. 7.8 Feasible region for
Exercise 3

4. Reconsider the previous exercise but with the added restriction that once started
a bed must be completed within the daily production run. The problem is now an
integer programming problem.

The solution to the continuous problem was found to be x = 5.2, y = 7.8.
Branching on y since this variable has the greater effect on the objective produces
two sub-problems, namely

maximise z = 200x + 400y maximise z = 200x + 400y

subject to 5x + 12y ≤ 120 subject to 5x + 12y ≤ 120
10x + 7y ≤ 140 10x + 7y ≤ 140

12x + 15y ≤ 180 12x + 15y ≤ 180
y ≤ 7 y ≥ 8

and x, y ≥ 0. and x, y ≥ 0.

Solve these problems using the Matlab function linprog using a command of the
form [sol val] = linprog(f,A,b). On exit vector sol will hold the values of the
problem variables, val will hold the value of the objective.

Verify that the solutions to the problems are (x = 6.25, y = 7) and (x = 4.8,
y = 8) with objectives 4050 and 4160 (allowing for changes of sign because of
having to state the problem as a minimisation).

Branch on x in the first of these solutions, and consider the further two sub-
problems (x ≤ 6, y ≤ 7) and (x ≥ 7, y ≤ 7). Show the first produces an all-integer
solution (x = 6, y = 7) with objectives 4000 and that the second produces a
solution with a smaller objective. There is therefore no need to proceed further
down this particular route, the current objective (4000) cannot be equalled or
exceeded.

164 7 Linear Programming

Table 7.8 Exercise 4, branch
and bound progress Solutions Extra constraints

x y z

5.2 7.8 4174

6.25 7 4050 y ≤ 7

6 7 4000 x ≤ 6, y ≤ 7

(z will be ≤ 4000 on this branch)

7 6.4 3960 x ≥ 7, y ≤ 7

(z will be ≤ 3960 on this branch)

4.8 8 4160 y ≥ 8

4 8 4000 x ≤ 4, y ≥ 8

(z will be ≤ 4000 on this branch)

no solution x ≥ 5, y ≥ 8

(and no more solutions on this branch)

Proceed in similar manner down the y ≥ 8 route until further integer solutions
are found, or further progress is either unnecessary or not possible. Obtain the
results shown in Table 7.8, which confirm that the objective 4000 is an optimum
solution to the problem and that in addition to the solution for x = 6, y = 7 there
is also solution x = 4, y = 8 producing the same optimum. Note that the table
does not exclude the possibility of further solutions. An initial branch on y rather
than x would have found a further solution x = 2, y = 9.

5. Matlab provides the function bintprog for solving the binary integer program-
ming problem

minimise f (x) subject to Ax ≤ b

where the elements of X are binary integers, i.e., 0’s or 1’s. The relevant com-
mand is X = bintprog(f,A,b).

Use bintprog to find a solution to the previous question, writing variables
x and y as strings of four binary digits (four being quite sufficient since both
variables x and y < 15). Use the following Matlab program

u = [1 2 4 8] % Binary units
A = [5∗u 12∗u ; 10∗u 7∗u; 12∗u 15∗u] % Converting binary x and y

% to decimal
f = [−200*u −400*u] % Re-state as a minimisation problem
b = [120: 140; 180]
sol = bintprog(f , A , b)

to show that on completion sol will hold a binary string corresponding to two
decimal numbers 4 and 8, which was one of the solutions found in the previous
question.

7.9 The Machine Scheduling Problem 165

6. The all-slack solution to the following linear programming problem is not feasi-
ble, since setting the problem variables contravenes the constraints.

minimise z = 3x2 − x1 − 4x3
subject to 2x1 + 4x3 ≤ 4

x1 + x2 + x3 = 3
2x2 − x3 ≥ 2

and x1, x2, x3 ≥ 0.

However by writing the problem in canonical form and introducing slack vari-
ables x4, x6 and an artificial variable x5 a basic feasible solution may be found
with which to start the simplex method. We have

2x1 + 4x3 + x4 = 4

x1 + x2 + x3 + x5 = 3

−2x2 + x3 + x6 = −2

x5 = 0

x1, x2, x3, x4, x6 ≥ 0.

Setting the problem variables (x1, x2, x3) to zero produces x4 = 4, x5 = 3 and
x6 = −2 which contravenes the constraints. In order to reduce x5 (to zero) and
increase x6 (to a non-negative value) minimise the pseudo objective z = x5 − x6.
The Matlab function linprog has an extended form X = linprog(f, A, b, Aeq, beq)
which as before uses A and b for the ≤ constraints and a second pair Aeq , beq for
the equality constraints. Use the following sequence to find a feasible solution.

% equality constraints
Aequals = [2 0 4 1 0 0; 1 1 1 0 1 0; 0 −2 1 0 0 1; 0 0 0 0 1 0]
equals = [4 3 −2 0]
% inequality constraints, all ≥ 0 except x(5)
A = eye(6); % eye returns a unit diagonal matrix, in this case 6 × 6
A = −A; A(5, 5) = 0
b = zeros(6,1) % zeros returns a zero matrix, in this case 6 rows, 1 columns
% objective, minimise x(5) − x(6)
f = [0 0 0 0 1 −1]
X = linprog(f, A, b, Aequals, equals)

7. Consider once again the bed-making factory of Exercise 4. Following market
surveys the factory is considering switching production from its Ortho model to
a new Rest-Rite model. Whereas the material figures for Ortho were 12, 7 and 15,
the corresponding figures for the Rest-Rite are 12 (unchanged), 16 and 10, and
the retail value is £550. Assuming that it is not feasible to make incomplete beds
the decision whether or not to switch production can be modelled as follows:

Let d be the decision variable defined by

d = 1 : switch from Ortho to Rest-Rite

d = 0 : stay with Ortho.

166 7 Linear Programming

Let x1 denote the number of Sleep-eezy beds to be made, x2 the number of
Ortho beds, x3 the number of Rest-Rite beds and let z denote total retail value.
The linear programming problem becomes

maximise z = 200x1 + 400x2 + 450x3
subject to 5x1 + 12x2 + 12x3 ≤ 120

10x1 + 7x2 + 16x3 ≤ 140
12x1 + 15x2 + 10x3 ≤ 180

x2 ≤ 16(1 − d)

x3 ≤ 16d

d ≤ 1
x1, x2, x3, d ≥ 0, x1, x2, x3, d integer.

The number 16 is chosen as being larger than any possible value of the problem
variables. Solve the problem using bintprog as explained in question 5 and illus-
trated below. Use a Matlab program of similar form, to that shown below. Noting
that the decision variable d is already in single digit binary form, represent each
of the problem variables, x1, x2 and x3 as strings of four binary digits.

u = [1 2 4 8];
% Use the continuation mark . . . for multi-line input
A = [5*u 12*u 12*u 0; 10*u 7*u 16*u 0; 12*u 15*u 10*u 0; . . .

0*u 1*u 0*u 16; 0*u 0*u 1*u −16];
b = [120; 140; 180; 16; 0];
f = [−200*u −400*u −550*u 0];
x = bintprog(f, A, b)

Deduce that the factory should make the switch and that retail value may be
increased by £600.

8. Use bintprog to solve the car hire company problem discussed in the problem of
Sect. 7.7. In this example all the variables are binary and so there is no need for
coversions to and from decimal. You may find the d1 = 1, d2 = 1, d3 = 0, d4 = 0,
d5 = 1, d6 = 0, indicating that models 3, 4 and 6 are no longer required. In this
example there are three other solutions, which could be found on the branch and
bound tree.

9. Use bintprog to solve the travelling salesman problem of Sect. 7.7. The problem
has 25 variables dij which may be represented by a single vector in which the
variables are held in the order

d1,1, d1,2, . . . , d1,5, d2,1, d2,2, . . . , d2,5, d3,1, . . .

The problem as stated has no inequality constraints, the absence of which may
be indicated by entries [] in the appropriate positions in the extended parameter
list of bintprog. Typically a command would be of the form

[X value] = bintprog(z, [], [], A, b);

which returns the solution variables in X and the value of the objective z at the
solution in value. In this example the matrix of constraints has 10 rows and 25

7.9 The Machine Scheduling Problem 167

columns. The task of entering all 250 entries in A may be simplified by not-
ing that vector entries may be used to enter a particular sequence of values, but
whichever way is chosen the task of entering the data correctly is not to be under
estimated.

You may find that the program produces the solution

d12 = 1, d21 = 1, d35 = 1, d43 = 1, d54 = 1

which represents Manchester–Leeds–Manchester, and in a separate loop, Stoke–
Preston–Liverpool–Stoke. Clearly this is not acceptable and so we re-solve the
problem with the added (inequality) constraint

d13 + d14 + d15 + d23 + d24 + d25 ≥ 1

which has the effect of forcing at least one direct link between Manchester or
Leeds and Stoke, Liverpool or Preston.

This added constraint produces a solution

d12 = 1, d25 = 1, d31 = 1, d43 = 1, d54 = 1

which either way round is an optimal route, namely Manchester–Leeds–Preston–
Liverpool–Stoke–Manchester, a total distance of 250 miles.

Chapter 8
Optimisation

Aims In this chapter we look at methods for finding the maximum (or minimum)
of a function of one or more variables, possibly subject to constraints. In so doing
we generalise the linear problems of Chap. 7.

In particular we

• explain how we can regard the problem as one of minimisation.
• distinguish between local and global minima.
• describe the simple grid search and the golden section search methods for func-

tions of a single variable.
• describe the method of steepest descent and a rank-one method for unconstrained

problems involving functions of several variables.
• describe penalty function methods for constrained problems.

Overview Optimisation is concerned with finding a local maximum or minimum
of a function of several variables f (x) ≡ f (x1, x2, . . . , xn). We examine methods
for both unconstrained problems, in which the independent variables are free to
take any values, and constrained problems in which the independent variables are
constrained in some manner. We may have simple bounds such as 0 ≤ x1 ≤ 1 and
x2 ≥ 4, linear constraints as in linear programming problems, or more complicated
nonlinear constraints such as x2

1 +x2 ≤ 1.5, where x1 and x2 are independent vari-
ables. Unlike the linear problems of Chap. 7 it is not possible to give all embracing
methods with guarantees to solve a wide class of problems. The general problem
we investigate in this chapter is altogether more complex and for this reason we
approach the topic by describing methods for

• unconstrained problems
• constrained problems.
• methods for functions of a single variable
• methods for functions of several variables.

Acquired Skills After reading this chapter and completing the exercises you will
be able to

C. Woodford, C. Phillips, Numerical Methods with Worked Examples: Matlab Edition,
DOI 10.1007/978-94-007-1366-6_8, © Springer Science+Business Media B.V. 2012

169

http://dx.doi.org/10.1007/978-94-007-1366-6_8

170 8 Optimisation

• formulate an optimisation problem as a minimisation problem.
• decide when to use and how to apply the grid search and golden section search

methods.
• decide when to use and how to apply the method of steepest descent and a rank-

one method, and have some idea as to how a rank-two method might be formu-
lated.

• understand what is meant by a penalty function.
• find the Lagrangian of a constrained problem.
• use the multiplier penalty function method on a Lagrangian to find a solution to a

constrained problem.

8.1 Introduction

Although we look at methods for finding optimal values we simplify the discussion
by assuming that we are trying to find minimum, as opposed to maximum, values.
This is the opposite situation to linear programming, where unless otherwise stated
it is assumed that we are aiming to find a maximum. However, by the reasoning
given in the overview of Chap. 7 neither case is restrictive since if we are required
to find the maximum value of a function f , we can do so by finding the minimum
value of −f and vice versa.

Consideration of what we mean by a local minimum and a global minimum
leads to the distinction between a local minimum as a minimum with respect to
a local region, whereas a global minimum is the minimum of all local minima.
The methods we describe will only provide a local minimum. To decide if such a
minimum is a global minimum is a separate issue. In practice we look for clues in the
general shape of the function. Figure 8.1 shows a function, f (x) of a single variable

Fig. 8.1 Local and global
minima

8.2 Grid Searching Methods 171

having a local minimum and what appears to be a global minimum, although more
evidence from ranges of x not shown might be needed to decide if this is indeed the
case.

8.2 Grid Searching Methods

We begin by considering methods for finding a local minimum of a function of a
single variable based on searching a given interval. We assume that we are given an
interval [a, b] in which a local minimum exists. The methods we describe are based
on dividing this interval into smaller sub-intervals. By comparing function values
at the end-points of each sub-interval we decide which sub-interval contains a local
minimum. This narrowing down process is repeated until f and/or x at the local
minimum are found to the required accuracy.

8.2.1 Simple Grid Search

We choose to divide the current interval containing the minimum into a further four
sub-intervals of equal length. There are other possibilities, but this particular choice
is both easy to implement and reasonably efficient in terms of the number of function
evaluations required. The method is illustrated in the following problem.

Problem

In the piston arrangement shown in Fig. 8.2 it can be shown that the rate of change
of x with respect to θ is given by

dx

dθ
= r sin θ + r2 sin 2θ

2
√

l2 − r2 sin2 θ
.

Using a simple grid search find the maximum value of dx
dθ

for θ in the interval [0,π].
Find a solution correct to 5 decimal places. Assume r = 1 and l = 3.

Solution

We convert the problem to one of minimisation. Introducing f = − dx
dθ

we look for
a minimum of f = f (θ) for θ in the interval [0,π].

Fig. 8.2 Piston

172 8 Optimisation

Evaluating f at five equally-spaced points in the interval [0,π] including the end
points, we have

θ 0 0.78540 1.57080 2.35619 3.14159
f (θ) 0 −0.87861 −1 −0.53561 0

The interval containing a minimum can be reduced to [0.78540,2.35619]. Perform-
ing a further sub-division we have

θ 0.78540 1.17810 1.57080 1.96350 2.35619
f (θ) −0.87861 −1.04775 −1 −0.80001 −0.53561

Note that this second step just involves two new function evaluations, since we al-
ready have f (θ) at the two end points and at the middle point θ = 1.57080. The
interval can now be reduced to [0.78540,1.57080], from which another set of eval-
uations produces

θ 0.78540 0.98175 1.17810 1.37445 1.57080
f (θ) −0.87861 −0.99173 −1.04775 −1.04827 −1

Proceeding in this way, after a further 6 iterations we obtain

θ 1.27014 1.27320 1.27627 1.27934 1.28241
f (θ) −1.05461 −1.05463 −1.05464 −1.05464 −1.05462

indicating that f has a local minimum of −1.05464 (to 5 decimal places) at some
point in the interval [1.27320,1.27934].

It so happens that in this example the values of the function are the first to con-
verge to the required accuracy. To pinpoint the position of the minimum to a similar
accuracy we continue to narrow the interval. Following a further 9 iterations we find

θ 1.27715 1.27715 1.27715 1.27715 1.27715
f (θ) −1.05464 −1.05464 −1.05464 −1.05464 −1.05464

indicating that the local minimum is at θ = 1.27715 (to 5 decimal places). In con-
clusion, we have dx

dθ
reaching a maximum value of 1.05464 for θ = 1.27715, (ap-

proximately 73°).

Discussion

The details of the simple grid search are specified in Table 8.1. The method is not
dissimilar to the bisection method of Chap. 3 in which we also successively halve the
interval at each step. In the grid search the interval containing the local minimum is
halved after 2 function evaluations. However we can do better than this. In real time
applications in which the function is time consuming to evaluate such considerations
can be important.

8.2 Grid Searching Methods 173

Table 8.1 Simple grid search

Find a local minimum of f (x) in the interval [a, b] using a simple grid search

1 Locate an interval [a, b] containing a minimum

2 Evaluate function values at the points a, (a + b)/4, (a + b)/2, 3(a + b)/4, b two of which
will be already known from the previous iteration

3 Find three consecutive points that form a sub-interval containing a minimum. Set a and b

to the end points of the sub-interval

4 Test for convergence

5 Repeat from step 2

Fig. 8.3 Golden section
search

8.2.2 Golden Section Search

In terms of reducing the number of function evaluations the golden section search,
which divides the current interval in the ratio 1−γ : γ , where γ satisfies γ 2 +γ = 1
(γ ≈ 0.618) is a more efficient method. A typical sequence is shown in Fig. 8.3
which assumes that on consideration of the divided interval [A,C] the local mini-
mum is found to lie in the sub-interval [A,B]. The ratio 1 − γ : γ , which is used
intuitively by architects and artists, is considered to be aesthetically pleasing, hence
the term golden section. The performance of the method is illustrated using the pre-
vious problem.

Problem

Use the golden section search to find a minimum value of f = f (θ) for θ in the
interval [0,π], where

f (θ) = − sin θ − sin 2θ

2
√

9 − sin2 θ
.

Find a solution correct to 5 decimal places for both θ and f (θ).

Solution

Dividing the interval [0,π] by golden section we have intermediate points π × (1 −
γ) and π × γ , that is 1.19998 and 1.94161 respectively. Evaluating the function at

174 8 Optimisation

Table 8.2 Golden section search

Find a local minimum of f (x) in the interval [a, b] using the golden section search

1 Locate an interval [a, b] containing a minimum of f

2 Evaluate function values at the points a, a + (1 − γ)(b − a), a + γ (b − a), b three of
which will be already known from the previous iterations

3 Find three consecutive points that form a sub-interval containing a minimum. Set a and b

to the end points of the sub-interval

4 Test for convergence

5 Repeat from step 2

these points and the end points, we have

θ 0 1.19998 1.94161 3.14159
f (θ) 0 −1.05048 −0.81359 0

The interval containing a minimum can be reduced to [0,1.94161]. Dividing this
interval in golden section we have intermediate points 0.74163 and 1.19998. It is a
feature of division by golden section, which may be verified analytically, that one
point is retained in successive divisions. From just one further function evaluation
we obtain

θ 0 0.74163 1.19998 1.94161
f (θ) 0 −0.84589 −1.05048 −0.81359

The interval containing the minimum has now been reduced to [0.74163,1.94161].
Repeating the process we obtain

θ 0.74163 1.19998 1.48326 1.94161
f (θ) −0.84589 −1.05048 −1.02695 −0.81359

and after a further 10 iterations

θ 1.27288 1.27661 1.27891 1.28264
f (θ) −1.05463 −1.05464 −1.05464 −1.05462

indicating that the minimum value of f is −1.05464 (to 5 decimal places). A further
13 iterations show that this minimum value is found at θ = 1.27715 (to 5 decimal
places).

Discussion

The details of the golden section search are specified in Table 8.2. At each step
the interval containing the local minimum is reduced by a factor of 0.6 after one
function evaluation. Two function evaluations give a reduction by a factor of 0.4
(i.e. 0.6 × 0.6), which is an improvement on the simple grid search as this gives a
reduction of 0.5 after two function evaluations. Since function evaluations are likely
to be the most time consuming part of either method the golden section search is to
be recommended.

8.3 Unconstrained Optimisation 175

8.3 Unconstrained Optimisation

We now turn our attention to functions of more than one variable. Grid searching
methods will not be considered as we have already discussed methods for a single
variable. The extension from functions of a single variable to functions of more than
one variable follows quite naturally, if a little cumbersome to implement. Instead we
look at methods which take a more informed and therefore more direct route to a
minimum. If for example, we are looking for a local minimum of a function of two
variables the problem may be visualised as that of finding a low point of a mountain
range. As with the one-dimensional problem considered in the previous section a
local minimum is not necessarily a global minimum. Although problems involving
functions of more than two variables are more difficult to visualise, the mountain
range model does suggest a general strategy.

The methods we describe are based on the following strategy

1. Select a starting point.
2. Choose a direction in which to search.
3. Find a local minimum in this direction.
4. Move to this point.
5. If this seems to be the local minimum then stop, otherwise repeat from step 2.

The details of step 2 vary from method to method, but the other steps remain
the same. We can think of the strategy in terms of a walker zig-zagging down
a hillside in an attempt to reach the bottom of the valley. The situation is repre-
sented in Fig. 8.4. The curved lines represent contours, that is, lines of equal values
of f .

Fig. 8.4 Search for a local
minimum

176 8 Optimisation

8.3.1 The Method of Steepest Descent

In the method of steepest descent we take the direction of search to be in the direc-
tion of the steepest downhill slope. In terms of the walker standing on the hillside
and looking for the bottom of the valley this would seem to be a sensible line to take,
at least in the short term. Admittedly the analogy breaks down if the walker is guided
to walk off the edge of a cliff, but we assume that the function we are trying to min-
imise is reasonably smooth. Given f = f (x, y) the slope of f has components ∂f

∂x

and ∂f
∂y

. It follows that the direction of steepest downhill slope at the point (a, b) is

given by the vector in the opposite direction, namely −∇f , where ∇f = (
∂f
∂x

,
∂f
∂y

)

evaluated at the point (a, b). The method is illustrated by the following problem.

Problem

The perimeter P of the trapezium shown in Fig. 8.5 may be expressed in terms of
the lengths of two sides x, y and the area A by the formula

P(x, y) = x + y +
√(

4A

x + y

)2

+ (y − x)2.

Use the method of steepest descent to find the values x and y which minimise P for
A = 1

4 .

Solution

We proceed with the method of steepest descent using the general strategy outlined
in Sect. 8.3.

1. Select a starting point.
We choose x = 0.25 and y = 1.0, since A = 0.25 suggests that values for x

and y of similar size are appropriate.

Fig. 8.5 Trapezium

8.3 Unconstrained Optimisation 177

Table 8.3 Steepest descent
search for a minimum of
P (x, y)

Step x y P (x, y) ∂P
∂x

∂P
∂y

1 0.2500 1.0000 2.3466 −0.1508 1.2170

2 0.3037 0.5667 2.0490 −0.5097 −0.0634

3 0.4632 0.5866 2.0103 −0.0285 0.2285

4 0.4732 0.5062 2.0010 −0.0743 −0.0096

5 0.4959 0.5092 2.0001 −0.0031 0.0235

6 0.4971 0.5006 2.0000 −0.0082 −0.0012

7 0.4996 0.5010 2.0000 −0.0004 0.0024

8 0.4997 0.5002 2.0000 −0.0008 0.0002

9 0.5002 0.5001 2.0000 0.0006 0.0003

10 0.5001 0.5000 2.0000 0.0002 0.0000

11 0.5000 0.5000 2.0000 0.0001 −0.0000

2. Choose a direction in which to search.
The partial derivatives of P are given by

∂P

∂x
= 1 − (1

x+y
)
3 + (y − x)

√
(1
x+y

)2 + (y − x)2
and

∂P

∂y
= 1 − (1

x+y
)
3 − (y − x)

√
(1
x+y

)2 + (y − x)2
.

At the point x = 0.25 and y = 1 these derivatives evaluate to −0.150845 and
1.21704 respectively. The direction of search is therefore (0.150845,−1.21704).

3. Find a local minimum in this direction.
A line through the point x = 0.25, y = 1 in the direction (0.150845,−1.21704)

may be expressed in the form

x = 0.25 + 0.150845t (8.1)

y = 1 − 1.21704t. (8.2)

Using the golden section search we find a local minimum at t = −0.3560.
4. Move to this point

We now have

x = 0.25 + 0.1508 × 0.35560 = 0.3037

y = 1 − 1.2170 × 0.35560 = 0.5667

as new estimates for the local minimum of P .
5. If this seems to be the local minimum then stop, otherwise repeat from step 2.

At a local minimum we expect the partial derivatives of P to be zero, or
very near to zero. However at x = 0.3037 and y = 0.5667, ∂P

∂x
= −0.5097 and

∂P
∂y

= −0.0634 so it seems there is still some way to go. Accordingly we return
to step 2 with these new values for x and y.

The sequence of results is summarised in Table 8.3, from which it can be seen that
the iteration is terminated when the partial derivatives are less than 0.000005 in

178 8 Optimisation

Table 8.4 Method of steepest descent

Find a local minimum of f (x), x = (x1, x2, . . . , xn) using the method of steepest descent

1 Select a starting point a

2 Evaluate the direction of search, −∇f a = (
∂f
∂x1

,
∂f
∂x2

, . . . ,
∂f
∂xn

)
x=a

3 Use the golden section search (or other method) to find a value of t to make a − t∇f a a
local minimum

4 Use the value of t at the local minimum (b) in direction s from a, where s = −∇f a

5 Test for convergence. Stop if the partial derivatives are sufficiently small and/or little or no
difference in a and b

6 Replace a by b and repeat from step 2

magnitude, at which point x = 0.5, y = 0.5 and the value of the objective function
P is 2. The trapezium becomes a rhombus.

Discussion

The method of steepest descent as described here may be generalised to deal with
functions of more than two variables. The details are summarised in Table 8.4. Step 2
involves calculating derivatives. This may be achieved by supplying analytic deriva-
tives as we did in the trapezium problem. However if such analytic expressions are
not available, estimates may be provided using the techniques of Chap. 6.

Step 3 involves searching for the local minimum of a function of a single variable.
In the problem regarding the trapezium we chose the interval [−1,1] and in general
without prior investigation this should prove to be satisfactory. This interval could
be widened in particular cases if no local minimum is forthcoming (see Exercise 1).

There are two tests for convergence shown in Table 8.4. If the sequence of esti-
mates for the minimum shows little or no change, there is clearly no point in con-
tinuing. If at the same time the partial derivatives are all close to zero, we can be
confident of having found a local minimum. If, however, not all derivatives are zero
this might indicate that we are at some more exotic form of local minimum such as
a saddle point, in hill climbing term we might be high on a ridge.

8.3.2 A Rank-One Method

The method of steepest descent is adequate but we can do better in terms of reducing
the number of iterations. We achieve this by taking a broader view of the function.
Whereas the method of steepest descent takes into account the first derivative of the
function, a rank-one method takes into account first and second derivatives and
in so doing attempts to follow the overall trend of the function rather than being
preoccupied with the immediate local gradient.

8.3 Unconstrained Optimisation 179

We assume that we are at the point x = a, y = b in our search for a local
minimum of the function f = f (x, y) and that in accordance with the strategy of
Sect. 8.3 we search for a local minimum in the as yet unspecified direction (s1, s2).
Using (8.1) and (8.2) as the model we write

x = a + ts1

y = b + ts2

in a Taylor series expansion of f (x, y). For sufficiently small t we have

f (a + ts1, b + ts2) = f (a, b) + t

(
s1

∂f

∂x
+ s2

∂f

∂y

)

+ t2

2

(
s2

1
∂2f

∂x2
+ 2s1s2

∂2f

∂x∂y
+ s2

2
∂2f

∂y2

)
+ higher order terms

where all derivatives are evaluated at x = a, y = b. Our aim is to find values x, y

such that f (x, y) is less than f (a, b). If we choose s1 and s2 so that

s1
∂2f

∂x2
+ s2

∂2f

∂x∂y
= −∂f

∂x
(8.3)

s1
∂2f

∂x∂y
+ s2

∂2f

∂y2
= −∂f

∂y
(8.4)

it follows that

f (x, y) = f (a, b)

+1

2

[
(1 − t)2 − 1

](
s2

1
∂2f

∂x2
+ 2s1s2

∂2f

∂x∂y
+ s2

2
∂2f

∂y2

)
.

Therefore if |t | < 1 and (s2
1

∂2f

∂x2 + 2s1s2
∂2f
∂x∂y

+ s2
2

∂2f

∂y2) > 0 then f (x, y) < f (a, b).
It is easy enough to ensure the first of these conditions by not wandering too far
from the current estimate. The second condition is automatically satisfied at a local
minimum, so there is reason to suppose that it will be satisfied if we are not too
far away. Together the conditions suggest that f (x, y) < f (a, b) for (x, y) local to
(a, b) and so we have a local minimum.

Problem

Use a rank-one method to find values x and y which minimise P = P(x, y), where

P = x + y +
√(

1

x + y

)2

+ (y − x)2.

Solution

This is the problem solved earlier using the method of steepest descent. As with
steepest descent we follow the general strategy of Sect. 8.3.

180 8 Optimisation

Table 8.5 Estimation of
second partial derivative of
P (x, y)

n (h = 1
2n) ∂2P

∂x2

1 0.788516

2 0.803356
.
.
.

.

.

.

9 0.824509

10 0.824605

1. Select a starting point.
As before we begin at the point x = (0.25,1.0)T .

2. Choose a direction in which to search.
As we have already seen, at the point x = 0.25 and y = 1 we have ∂P

∂x
=

−0.150845 and ∂P
∂y

= 1.21704. Equations (8.3) and (8.4) require second partial
derivatives but rather than face the challenge of carrying out further analytic

differentiation we use a numerical method from Chap. 6. For example, ∂2P

∂x2 can
be found by evaluating

(∂P
∂x

)0.25+h,1.0 − (∂P
∂x

)0.25,1.0

h

and reducing h until a consistent result appears. We find components (see Ta-
ble 8.5) at which point the difference between the latest estimates is less than
1.0 × 10−4.

By similar means we find estimates 0.43636 for ∂2P
∂x∂y

and 1.98948 for ∂2P

∂y2 .
We have

0.82461s1 + 0.43636s2 = 0.150845

0.43636s2 + 1.98948s2 = −1.21704

from which we find s1 = 0.573166, s2 = −0.737451.
3. Find a local minimum in this direction.

We find that P = P(t) = (0.25 + 0.573166t,1 − 0.737451t) has a local mini-
mum at t = 0.592808.

4. Move to this point.
We now have

x = 0.25 + 0.150845 × 0.592808 = 0.589777

y = 1 − 1.21704 × 0.592808 = 0.562833

as new estimates for a local minimum of P .
5. If this seems to be a local minimum then stop, otherwise repeat from step 2.

The first partial derivatives of P (0.278681 and 0.216599) are not zero and so
we repeat from step 2.

8.3 Unconstrained Optimisation 181

Table 8.6 Rank-one search
for a minimum of P (x, y)

using a linear equation solver

x y P (x, y) ∂P
∂x

∂P
∂y

1 0.25000 1.00000 2.34659 −0.15084 1.21704

2 0.58978 0.56283 2.02062 0.27868 0.21660

3 0.50408 0.49539 2.00004 0.00765 −0.00972

4 0.50001 0.50001 2.00000 0.00004 0.00003

5 0.50000 0.50000 2.00000 0.00000 0.00000

The sequence of results is summarised in Table 8.6 from which it can be seen that
the iteration is terminated when the partial derivatives are zero (to 5 decimal places),
at which point x = 0.5, y = 0.5 and the value of the objective function P is 2. This
compares with the result obtained by the method of steepest descent.

It is clear that the rank-one method has found the same local minimum of P =
P(x, y) in fewer iterations than the method of steepest descent. For most functions
this is generally the case and so the extra computation involved in the rank-one
method is deemed to be worthwhile.

8.3.3 Generalised Rank-One Method

Having considered the rank one method for finding a local minimum of a function
of two variables we move on to the general case. We formulate the method and in
so doing provide a more economical method. Extending (8.3) and (8.4) to deal with
n functions f1, . . . , fn of n variables x1, . . . , xn we have

⎛

⎜⎜⎜⎜⎜⎜
⎝

∂2f

∂x2
1

∂2f
∂x1∂x2

∂2f
∂x1∂x3

· · ·
∂2f

∂x1∂x2

∂2f

∂x2
2

∂2f
∂x2∂x3

· · ·
∂2f

∂x1∂x3

∂2f
∂x2∂x3

∂2f

∂x2
3

· · ·
...

...
...

. . .

⎞

⎟⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜⎜
⎝

s1

s2

s3

...

⎞

⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜
⎝

− ∂f
∂x1

− ∂f
∂x2

− ∂f
∂x3

...

⎞

⎟⎟⎟⎟⎟
⎠

.

Writing the above in matrix terms we have

Gs = −∇f .

As an alternative to solving this linear system of equations in order to find the direc-
tion of search s we use the approximation

s = −H∇f (8.5)

where H is as yet unspecified, but is chosen in such a way that it may be expected
to converge towards the inverse of G as the search for the local minimum of f

proceeds. This may be an unnecessary complication for a 2×2 system and similarly
small systems, but if we are dealing with larger systems we replace finding a solution

182 8 Optimisation

Table 8.7 Rank-one method, without a linear equation solver

Find a local minimum of f (x), x = (x1, x2, . . . , xn) using a rank-one method

1 Select a starting point a and let H be the identity matrix

2 Evaluate ∇f a = (
∂f
∂x1

,
∂f
∂x2

, . . . ,
∂f
∂xn

)a

3 Test for convergence, depending on the problem. Stop if the partial derivatives are
sufficiently small and/or little or no difference in a and b

4 Search for a local minimum, (b) in direction s from a, where s = −H∇f a

5 Replace H by H + E where E = αuuT ,u = (b − a) − H(∇b − ∇a) and
α = 1/(uT (∇b − ∇a)). Replace a by b

6 Repeat from step 2

to a system of tens or perhaps hundreds of linear equations by the simpler matrix–
vector multiplication, (8.5).

There are many choices for H, but typically the rank-one method initially sets H
to I, the identity matrix, and with each iteration adds an increment E, where E is a
matrix of the form

E = αuuT . (8.6)

The matrix E is said to be of rank-one since it has one linearly independent column
(every column is a multiple of any one of the others), hence the name rank-one
method.

Now for the choice of how H is to be incremented. We recall from Chap. 6
that given a function f = f (x) we may make the approximation f ′′(x) = (f ′(b) −
f ′(a))/(b − a) for x in the interval [a, b]. This result generalises to functions of
several variables to give the approximation

G(b − a) = ∇b − ∇a.

It follows that if we have an estimate a for the minimum and the search direction
leads to an estimate b and in so doing H takes a new value H + E we have

(H + E)(b − a) = ∇b − ∇a.

Equating H + E to G−1 we have

b − a = (H + E)(∇b − ∇a)

= (H + αuuT)(∇b − ∇a)

which we can satisfy by choosing α and u so that

u = (b − a) − H(∇b − ∇a) (8.7)

αuT (∇b − ∇a) = 1. (8.8)

We now have our algorithm for updating H at each step of the iteration. The rank-
one method is summarised in Table 8.7.

In conclusion we note that although the method works well, particularly if the
iteration is started with a good estimate of the solution, it cannot be guaranteed to

8.3 Unconstrained Optimisation 183

converge. A method based on incrementing H by a rank two matrix, E constructed
so as to ensure the search for a minimum proceeds in a downhill manner is more
likely to converge.

Problem

Use the generalised rank-one method to find values x and y which minimise P =
P(x, y), where

P = x + y +
√(

1

x + y

)2

+ (y − x)2.

Solution

This is the problem solved earlier by the method of steepest descent and our first
rank-one method. We use the generalised rank-one method to illustrate how the
iteration proceeds without having to solve a set of linear equations at each step.

1. Select a starting point.
As before we begin at the point x = (0.25,1.0)T . We take H to be the matrix(

1 0
0 1

)
. Since at this stage we have no idea of the value of H at the minimum

point, the choice of the identity matrix would seem to be as good a starting point
as any other.

2. Choose a direction in which to search.
As we have already seen, at the point x = 0.25 and y = 1 we have ∂P

∂x
=

−0.150845 and ∂P
∂y

= 1.21704, and so from (8.5) the search direction s =
(s1, s2)

T is given by
(

s1
s2

)
= −

(
1 0
0 1

)(−0.150845
1.21704

)
.

The direction of search is therefore (0.150845,−1.21704)T , which, given the
particular starting choice for H, is the same as for steepest descent.

3. Find a local minimum in this direction.
As before we find that P̃ (0.25 + 0.150845t,1 − 1.21704t) has a local mini-

mum at t = 0.355955.
4. Move to this point.

We now have

x = 0.25 + 0.150845 × 0.355955 = 0.303694

y = 1 − 1.21704 × 0.355955 = 0.566789

as new estimates for a local minimum of P .
5. If this seems to be a local minimum then stop, otherwise repeat from step 2.

The partial derivatives of P (−0.50965 and −0.06317) are not zero and so
we repeat from step 2 after completing the following step

184 8 Optimisation

Table 8.8 Rank-one search
for a minimum of P (x, y)

without a linear equation
solver

x y P (x, y) ∂P
∂x

∂P
∂y

1 0.25000 1.00000 2.34659 −0.15084 1.21704

2 0.30369 0.56681 2.04901 −0.50961 −0.0608

3 0.49944 0.51194 2.00021 0.00982 0.03509

4 0.50176 0.49973 2.00000 0.00500 0.00095

5 0.49994 0.49998 2.00000 −0.00001 0.00005

6 0.50000 0.50000 2.00000 0.00000 0.00000

6. Update H
Using (8.7) to find u and (8.8) to find α we have

�x =
(

0.303694 − 0.25
0.566789 − 1.0

)
=

(
0.053694

−0.433211

)

and since ∂P
∂x

and ∂P
∂y

at x = 0.25, y = 1.0 are respectively −0.150845 and
1.21704 we have

�f ′ =
(−0.509648 + 0.150845

−0.063168 − 1.21704

)
=

(−0.35880
−1.28021

)
.

Therefore
(

u1
u2

)
= −

(
0.053694

−0.433211

)
−

(
1 0
0 1

)(−0.35880
−1.28021

)
.

Thus u1 = 0.41250, u2 = 0.84699, and so by (8.8)

α = 1

[(0.41250,0.84699) ∗ (−0.35880,−1.28021)T]
= −0.81147.

Using these values we have a new H given by

H =
(

1 0
0 1

)
+ 0.81147

(
0.412502 0.41250 × 0.84699

0.41250 × 0.84699 0.846992

)

and so we continue from step 2.

The sequence of results is summarised in Table 8.8 from which it can be seen that
the iteration is terminated when the partial derivatives are zero (to 5 decimal places)
at which point x = 0.5, y = 0.5 and the value of the objective function P is 2. This
compares well with previous results. The economies achieved in not having to solve
a system of linear equations at each step outweighs the cost of the extra iteration.

8.4 Constrained Optimisation

We now turn our attention to finding the local minimum of a function for which the
variables are constrained. The problem is not unlike that of the linear programming

8.4 Constrained Optimisation 185

of Chap. 7 although we now expect to deal with a nonlinear objective and allow for
nonlinear constraints.

8.4.1 Minimisation by Use of a Simple Penalty Function

We consider a simplification in which the constraints on the objective are all equal-
ities. We begin with a problem having just one equality constraint and introduce the
penalty function method. It might be possible in such simple cases to eliminate
one of the variables and solve the problem analytically. However, practical prob-
lems rarely present themselves in this manner and so we look for a more general
method.

Problem

Find a local minimum of f = f (x, y) where

f (x, y) = x2 + xy − 1

subject to

x + y2 − 2 = 0

using a simple penalty function method.

Solution

We solve the problem by finding a local minimum of a new function f̂ = f̂ (x, y)

where

f̂ (x, y) = x2 + xy − 1 + σ
(
x + y2 − 2

)2
.

In this case (x + y2 − 2)
2

is referred to as the penalty function since it is a measure
of by how much the constraint on the problem is not satisfied. The hope is that in
minimising f̂ we will also be minimising the penalty function (to zero). Using the
rank-one method of Sect. 8.3.2 with starting values x = 1, y = 1 and σ = 1 we find
that f̂ has a local minimum at x = −1.03739, y = 1.78403 and that the value of the
penalty function is 0.02113.

Since the penalty function is not quite zero, we repeat but with a new f̂ (x, y)

defined by

f̂ (x, y) = x2 + xy − 1 + σ
(
x + y2 − 2

)2
, σ = 10,

in the hope that the value of the penalty function at the minimum will be smaller
to minimise the effect of the factor 10. This time we find a local minimum at x =
−1.01645, y = 1.74099 and that the penalty function has a value of order 10−4. We
are therefore getting close to a zero penalty.

186 8 Optimisation

Table 8.9 Simple penalty function method, results

Local minimum of f (x, y) = x2 + xy − 1 + σ(x + y2 − 2)
2

for various σ

σ Values at the minimum for a given σ

x y f (x, y) (x + y2 − 2)2

1 −1.0374 1.7840 −1.7534 0.2 × 10−1

10 −1.0165 1.7410 −1.7343 0.2 × 10−3

100 −1.0143 1.7366 −1.7324 0.2 × 10−5

1000 −1.0141 1.7362 −1.7322 0.2 × 10−7

10000 −1.0141 1.7361 −1.7322 0.2 × 10−9

Table 8.10 Simple penalty function method

Find a local minimum of f (x1, x2, . . . , xn) subject to the m constraints

c1(x1, x2, . . . , xn) = 0
. . .

cm(x1, x2, . . . , xn) = 0

1 Set σ = 1

2 Find a local minimum of f + σ
∑m

i=1 c2
i

3 Increase sigma and find another local minimum

4 Test for convergence

5 Repeat from step 3

We repeat the process, increasing σ until the value of the penalty function is
sufficiently close to zero. We approach the solution in this tentative manner since
we do not know in advance how large a coefficient will prove to be effective. The
results are shown in Table 8.9 from which we conclude that subject to the constraint
x + y2 − 2 = 0, f (x, y) = x2 + xy − 1 has a local minimum at x = −1.01408,
y = 1.73611 and that the value of f at this point is −1.73220. Higher values of the
penalty coefficient σ introduce numerical difficulties into the computation.

Discussion

The simple penalty function method may be extended to functions of more than two
variables and to problems involving more than one equality constraint. Table 8.10
has the details. However the method is not guaranteed to succeed in all cases. Ta-
ble 8.9 indicates that the theoretical values of σ necessary to achieve convergence
may become large and cause problems for computer solutions, in practice some
experimentation may be necessary. In this example we have managed to solve the
problem but this will not always be the case. Nevertheless the principle is a use-
ful one which we can apply effectively to a modified form of the function and its
equality constraints, as shown in the next section.

8.4 Constrained Optimisation 187

Table 8.11 Search for
minimum of f (μ), secant
method first step

μ Minimum L(x, y,μ) x + y2 − 2

x y L

0.4 −0.5333 0.6666 −1.9067 −2.0889

0.3 −0.9000 1.5000 −1.7350 −0.6500

8.4.2 Minimisation Using the Lagrangian

We return to the previous problem of finding a local minimum of

f (x, y) = x2 + xy − 1

subject to

x + y2 − 2 = 0.

The Lagrangian of this problem is defined to be the function L = L(x, y,μ) where

L(x, y,μ) = x2 + xy − 1 + μ
(
x + y2 − 2

)

and where μ is known as a Lagrange multiplier. The Lagrangian bears a similarity
to the penalty function of the previous section and has a very useful property which
is shown in the following example.

Problem

Find a value μ for which a local minimum (x, y) of the Lagrangian

L(x, y,μ) = x2 + xy − 1 + μ
(
x + y2 − 2

)

is such that x + y2 − 2 is zero.

Solution

We can regard this problem as finding a root of the function, f = f (μ) which for
a given μ returns the value x + y2 − 2 where x and y minimise the Lagrangian
function quoted above.

We use the secant method of Chap. 3 to determine the sequence of μ values and a
rank-one method (for example) to find a local minimum of L(x, y,μ) for a given μ.
The secant method requires two initial estimates which quite arbitrarily we chose to
be 0.4 and 0.3 and obtain the results in Table 8.11. We take a secant step as shown
in Table 3.6 namely,

μ = 0.4 − (−2.0889)(0.3 − 0.4)

0.65 − (−2.08889)
(8.9)

= 0.2548 (8.10)

188 8 Optimisation

Table 8.12 Search for minimum of f (μ), secant method continued

μ Minimum L(x, y,μ) x + y2 − 2 x2 + xy − 1

x y L

0.2548 −6.7291 13.2033 −2.3670 165.5991 −44.5658

0.2998 −0.9021 1.5045 −1.7349 −0.6387 −1.5434

0.2997 −0.9042 1.5088 −1.7348 −0.6279 −1.5466

0.2897 −1.0578 1.8259 −1.7325 0.2762 −1.8125

0.2927 −1.0030 1.7133 −1.7322 −0.0676 −1.7124

0.2921 −1.0131 1.7342 −1.7322 −0.0058 −1.7305

0.2921 −1.0141 1.7362 −1.7322 0.0002 −1.7323

0.2921 −1.0141 1.7361 −1.7322 0.0000 −1.7322

to find a new value for μ in order to drive down the value of x + y2 − 2 to zero.
Table 8.12 shows this latest estimate to be wide of the mark but it can be seen

from the table of values of x2 + y2 − 2 that the secant method recovers. The results
are interesting. We have found an x and y which as confirmed by earlier results is
a local minimum of the function f (x, y) = x2 + xy − 1 subject to the constraint
x + y2 − 2 = 0.

8.4.3 The Multiplier Function Method

The result from the example generalises. It can be confirmed analytically that
f (x, y) subject to a constraint has the same local minimum as its Lagrangian for
a particular multiplier μ. In the next problem we exploit this property by finding a
local constrained minimum of f by applying the simple penalty function method
of Sect. 8.4.1 to the Lagrangian. The immediate problem is that of choosing an ap-
propriate value of μ, but we are able to work towards it in an iterative manner. The
whole process is known as the multiplier penalty function method and is illustrated
in the following problem.

Problem

Find a local minimum of f = f (x, y) where

f (x, y) = x2 + xy − 1

subject to

x + y2 − 2 = 0

using the multiplier penalty function method.

8.4 Constrained Optimisation 189

Solution

We look for local minima of

x2 + xy − 1 + μ
(
x + y2 − 2

) + σ
(
x + y2 − 2

)2
(8.11)

for increasing σ .
We begin by setting σ = 1 and μ = 0. Using the rank-one method on (8.11) we

obtain a local minimum at x = −1.03573 and y = 1.78357.
At a local minimum partial derivatives of the Lagrangian with respect to x and y

should be zero and so if μmin is the μ we are looking for we have

2x + y + μmin = 0

x + 2μminy = 0.

But from (8.11) the partial derivatives with respect to x and y corresponding to the
current μ, μcurrent, are given by

2x + y + μcurrent + 2σ
(
x + y2 − 2

) = 0

x + 2μcurrenty + 4σy
(
x + y2 − 2

) = 0

and so we iterate towards μmin using the rule

μnext = μcurrent + 2σ
(
x + y2 − 2

)
(8.12)

where x + y2 − 2 (the constraint) is evaluated at the current minimum.
Using (8.12) the next value of μ is given by −0.28955. and applying the rank-

one method to (8.11) with σ = 1 and μ = −0.28955 we obtain a local minimum at
x = −1.03739, y = 1.78403. From (8.12) the next value of μ is found to be 0.29074
and so the process continues for σ = 1 until we converge on the value of 0.29206
for μmin.

The next step is to repeat the whole process with σ = 10. The results are shown
in Table 8.13, from which it can be seen that no further increase in σ is necessary.

Table 8.13 Multiplier penalty function search for a minimum

Local minimum of x2 + xy − 1 + μ(x + y2 − 2) + σ(x + y2 − 2)
2

σ μ Values at the minimum for given σ and μ

x y f (x, y) (x + y2 − 2)
2

1 0 −1.03739 1.78403 −1.75342 2.1e-2

1 0.29074 −1.01419 1.73633 −1.73220 4.3e-7

1 0.29205 −1.01408 1.73611 −1.73220 9.5e-12

1 0.29206 −1.01408 1.73611 −1.73220 2.8e-16

10 0.29206 −1.01408 1.73611 −1.73220 1.5e-15

10 0.29206 −1.01408 1.73611 −1.73220 2.9e-19

190 8 Optimisation

Table 8.14 Multiplier penalty function method

Find a local minimum of f (x1, x2, . . . , xn) subject to the m constraints

c1(x1, x2, . . . , xn) = 0
. . .

cm(x1, x2, . . . , xn) = 0

1 Set σ = 1, μi = 0 (i = 1, . . . ,m)

2 Find a local minimum of f + ∑m
i=1 μici + σ

∑m
i=1 c2

i

3 Replace μi by μi + 2σci , where the ci are evaluated at the minimum Find another local
minimum

4 If the differences between successive minima are not sufficiently small then repeat from
step 3

5 Increase σ and repeat from step 2

6 If the differences between successive minima are sufficiently small then stop

7 Repeat from step 3

Discussion

The multiplier penalty function method may be extended to functions of more than
two variables and subject to more than one equality constraint. Table 8.14 has the
details. The advantage of the method is that it generally avoids the problems of large
σ values which are often found when using the simple penalty function method on
the function to be minimised rather than its Lagrangian. A comparison of Tables 8.9
and 8.13 show how the multiplier penalty function method may avoid the problem
of having to use very large σ values.

Summary In this chapter we have looked at ways of finding a local minimum
of a function of one or more variables possibly subject to constraints. We began by
considering what is meant by a local minimum and in particular established that
finding a minimum is essentially the same problem as finding a maximum.

We first considered the simplest problem of all, namely that of finding a local
minimum of a function of a single variable for which we used methods based on
dividing a given interval. On grounds of efficiency and reliability the golden section
search is the recommended method.

We then moved on to the problem of finding a local minimum of a function of
several variables. We established a search strategy within which different choices for
the direction of search give rise to different methods. We considered the method of
steepest descent and a rank-one method, and whilst advocating the rank-one method
it was realised that a rank-two method might be better. All the methods involve
repeated searches in a given direction for which the golden section method is used.

Finally we considered the problem of finding a local minimum of a function of
several variables subject to one or more constraints. We showed that it is possible to

8.4 Constrained Optimisation 191

achieve this by means of a simple penalty function although using a penalty function
applied to the Lagrangian, the so called multiplier penalty function method, is likely
to be more reliable. Whatever the method the problem was solved by reducing the
constrained problem to a series of unconstrained problems for which we had already
established a rank-one solution method.

Exercises

1. Write a Matlab function with a heading such as

function[pos min] = golden(@f,a, b, eps)

to find the minimum of a function f (specified in an M-file f.m) of a single vari-
able in the range [a, b] using the Golden Section Search. The search is to be
continued until the absolute difference of successive approximations to the min-
imum position is less than eps. The outputs shown as pos and min are to contain
the position of the minimum and its value. An optional third output parameter
might be included to signal success or failure to find a minimum. Further op-
tions might include parameters to allow function values and relative values to
control the iteration. Test the function using examples quoted in the chapter and
on examples of your own choosing.

As an added feature arrange for the golden function to extend the range [a, b]
by 50% at either the upper or lower end if the function values at a, b and the two
intermediate points are in ascending or descending order. In such cases it would
appear that the function does have a local minimum (or maximum) within the
given range. This feature will be useful when the golden function is to be used as
part of programs which implement optimisation routines involving line searches
in which the search interval is not predetermined. Assuming an initial search
interval of [−1,1], allowing for expansion is usually found to be successful.

2. Matlab provides a function fminsearch to find an unconstrained local minimum
of a function, starting from a supplied point and continuing within prescribed
convergence criteria until either a satisfactory solution is found or the search is
abandoned. Taking default options the following command would find a local
minimum of a function f defined in the M-file f.m. using the value stored in the
variable init as the starting point.

[pos min] = fminsearch(@fn, init)

Default options may be overwritten using the optimset function as shown below.

% Termination tolerances for x and f(x) values
options = optimset('TolX',1e-5, 'TolF', 1e-6);
[pos min] = fminsearch(@fn, init, options)

Use fminsearch to verify results from the previous question and any of the exam-
ples quoted in the chapter.

3. Write a function Pline with parameter t to evaluate the function P given by

P(x, y) = x + y +
√(

1

x + y

)2

+ (y − x)2

192 8 Optimisation

for (x, y) values given by x = a + λ1t , y = b + λ2. Make a, b and the λ’s avail-
able to Pline by separate global variables (see page 132 or the example below).

Use the function golden (from question 1) with Pline as a parameter to verify
that a line through the point (0.25,1) in the direction (0.15084,−1.21704) finds
a local minimum P of 2.0490 for t = −0.3560 and so confirm the result quoted
in Table 8.3.

4. Write a program to implement the method of Steepest Descent applied to the
function, P specified in the previous question with a view to verifying results
from the problem quoted in Table 8.3. Follow the scheme outlined in Table 8.4.
The function P should be defined in a separate M-file to return the values of the
function P(x, y) and its partial derivatives ∂P

∂x
and ∂P

∂y
for any (x, y). Use the

function golden with function Pline (from the previous) as a parameter to do the
line searches for a minimum position.

% Global variables to be similarly defined in function Pline
global est grad;

% initial estimate of minimum position
est = [0.25 1];

% loop until the norm (size) of the increment
% to the current estimate is sufficiently small

while norm(increment) > 0.1e-5
% obtain current function value and partial derivatives

[f grad] = P(est);
% monitor progress

s = sprintf('%8.4f ', est, f, grad);
disp(s)

% find the minimum along a line through a in direction -grad(a)
grad = −grad
[tvalue min] = golden (@Pline, −1, 1, 0.1e-7);
increment = −tvalue∗grad;
est = est + tvalue∗grad;

end

As an optional extra save successive estimates and so plot the progress of the
search. Use the command axis ([0 1 0 1]) after the plot command to ensure equal
scaling and observe that the minimum is approached in an orthogonal staircase
manner, which is a feature of the method of steepest descent.

5. Modify the program from the previous question to implement the rank-one
method, which does not require the solution of a set of linear equations. Use
the method on the same function P(x,y). Follow the scheme outlined in Table 8.7
providing a replacement for function Pline, which has access to the matrix H.
This will require an additional global variable to be declared in the new Pline
function and in the main rank-one program H should be initialised to the 2 × 2
identity matrix. Verify the results shown in Table 8.8.

6. Use the program from question 5 to write the rank1 method as a general purpose
function with the heading

function[position value] = rank1(fun, estimate)

8.4 Constrained Optimisation 193

where input parameter fun is the name of the function to be minimised and its
partial derivatives. The function would be stored in a Matlab M-file with the
name fun.m and supplied in the form @name when calling the function. The
second parameter, estimate supplies an estimate of the minimum position. The
actual position of the minimum and the value at the minimum are to be returned
via output parameters position and value.

Test the program by using the function to verify the results shown in
Sect. 8.4.1, which uses a simple penalty function to minimise a function subject
to a constraint. Assuming the function f (x, y) = x2 + xy − 1 + σ(x + y2 − 2)2

has been established as fxy in the Matlab-M file fxy.m with variable σ as global
variable, the program might take the form

estimate = [1 1];
global sigma % sigma is also declared global in the M-file fxy.m
for i = 1:5;

sigma = 10∧(i-1);
[minpoint minvalue] = rank1(@fxy, estimate);
% monitor progress
s = sprintf('%12d %10.5f %10.5f %10.5f', sigma, minpoint, minvalue);
disp(s)

end

Ensure that the rank1 function may be written to deal with functions of any
number n of variables using the heading quoted above. The value of n need
not be passed as a parameter, it may be deduced internally from the size of the
estimate vector using the command [n m] = size(estimate); which returns the
number of rows, n and the number of columns, m. However to allow for either
row or column orderings the command n = max(size(estimate)); would be used
to find n. A unit matrix H of order n may be established using the eye command,
H = eye(n);

7. Consider the problem of finding a local minimum of the function

f (x1, x2, x3) = x4
1 + x2 + x3

subject to the constraints

x1 + 3x2
2 + 2x3 − 1 = 0

3x1 − x2 + 4x3 − 2 = 0.

Using the multiplier function method the function to be minimised is

x4
1 + x2 + x3

+μ1
(
x1 + 3x2

2 + 2x3 − 1
) + μ2(3x1 − x2 + 4x3 − 2)

+σ
(
(x1 + x2 + 2x3 − 4)2 + (x1 + x2

2 + x3 − 3)
2)

.

Write a program using either the rank1 function or the Matlab supplied function
fminsearch to implement the multiplier function method as shown in Table 8.14.
Table 8.15 indicates the results to be expected by setting the initial estimate of
the minimum point as = (1,1,1) and terminating the searches (stage 4) of the

194 8 Optimisation

Table 8.15 Exercise 7, results

Estimate of minimum position and value for various σ

σ μ1 μ2 x1 x2 x3 f (x1, x2, x3)

2 0.3530 −0.4264 0.6838 −0.6740 −0.1814 −0.6367

4 0.3530 −0.4262 0.6838 −0.6740 −0.1814 −0.6367

8 0.3526 −0.4265 0.6838 −0.6740 −0.1813 −0.6367

16 0.3526 −0.4253 0.6838 −0.6740 −0.1814 −0.6367

32 0.3526 −0.4270 0.6838 −0.6740 −0.1814 −0.6367

64 0.3531 −0.4274 0.6839 −0.6740 −0.1814 −0.6367

Table 8.16 Exercise 8, data
x 0 1 2 3 4 5 6 7

f (x) 2.5 1.7 1.3 1 0.8 0.6 0.4 0.2

Table 8.17 Exercise 8,
results α β f (α,β)

∂f
∂α

∂f
∂β

2.5 1 3.40330 −0.95939 3.80071

2.66753 0.33632 0.10160 0.57649 0.14353

2.60275 0.30911 0.08016 0.62894 −1.49994

2.44234 0.30395 0.03339 −0.00097 0.03059

2.44110 0.30344 0.03338 −0.00022 0.00054

2.44115 0.30344 0.03338 0 0

method as shown in Table 8.14 when the norm of the vector of difference of two
consecutive estimates is less than 1.0e-7. It was found that more stringent tests
would not produce convergence. It can be seen that we can be fairly confident of
the results to three (and very nearly four decimal places). Further progress might
be possible with some fine tuning of the program.

8. Find α and β so that the function f (x) = αe−βx fits (in the least squares sense
of Chap. 4) the data (Table 8.16) using the rank1 function. The problem is one
of finding α and β which minimise the function

f (α,β) =
7∑

i=0

[
αe−βxi − f (xi)

]2

where the xi and f (xi) are the data. Show that by taking 2.5 for α and 1 for
β as estimates, the function rank1 takes the route (Table 8.17) (or similar) to a
solution. Plot the data points and on the same graph as αe−βx (with α and β

as found by rank1) to give an indication of the accuracy of this approximating
function.

8.4 Constrained Optimisation 195

9. Find a solution to the following system of nonlinear equations using an opti-
misation technique. The same problem was solved in Chap. 3 using Newton’s
method.

x cosy + y cosx = 0.9

x siny + y sinx = 0.1.

Chapter 9
Ordinary Differential Equations

Aims In this chapter we look at a variety of numerical methods for solving ordi-
nary differential equations. The aim is to produce solutions in the form of a table
showing the values taken by the dependent variable for values of the one or more
independent variables over given intervals.

Overview We distinguish two types of problem, namely

• the initial-value problem, in which the solution is required to meet prescribed
conditions at one end of the interval.

• the boundary-value problem, in which the solution is required to meet conditions
at both ends.

We start with the initial-value problem in the context of an equation of a very
simple form known as a first-order equation and consider Euler’s method as an
introduction to the more powerful Runge–Kutta1 methods. Both Euler and Runge–
Kutta methods adopt a step-by-step approach in that the solution for the current
value of the independent variable is advanced by an incremented value of the de-
pendent variable. Typically we progress from a solution at x to a solution at x + h

until the whole range is covered. We show how more complicated equations may be
reduced to a system of first-order equations to be solved by the same methods and so
be in a position to solve the initial-value problem for any ordinary differential equa-
tion. We move on to consider the boundary-value problem for which we use either
Runge–Kutta, varying the initial conditions until a solution which meets boundary
conditions is found, or a method based on approximating the differential equation
across the whole interval using approximations to the derivatives of the type dis-
cussed in Chap. 6. Throughout the chapter we compare the relative merits of the
methods and conclude with a discussion of factors influencing the accuracy of the
whole process of finding a numerical solutions to ordinary differential equations.

1Martin Kutta, engineer and mathematician, 1867–1944 introduced the method in his PhD thesis
(1900), which was developed further by Carl Runge, physicist and mathematician, 1856–1927.

C. Woodford, C. Phillips, Numerical Methods with Worked Examples: Matlab Edition,
DOI 10.1007/978-94-007-1366-6_9, © Springer Science+Business Media B.V. 2012

197

http://dx.doi.org/10.1007/978-94-007-1366-6_9

198 9 Ordinary Differential Equations

Acquired Skills After reading this chapter you will be able to decide if a given
ordinary differential equation is an initial-value problem or a boundary-value prob-
lem. For the initial-value problem you will be able to use a Runge–Kutta method,
if necessary reducing the original equation to a series of first-order equations. For
the boundary-value problem you will be able to use what are known as shooting or
garden hose methods to raise or lower initial estimates in order to find a solution, or
use a method based on covering the area of interest with a grid of points.

9.1 Introduction

An ordinary differential equation is an equation involving variables and the ordinary
(as opposed to partial) derivatives of some or all of those variables. Derivatives
represent rates of changes and so differential equations often occur in the modelling
of physical processes.

As was the case with integrals (Chap. 5) many of the differential equations which
arise in practice do not have an analytic solution. Given an equation such as

dy

dx
= f (x, y) (9.1)

for a particular f (x, y) we may not be able to write the relationship between y and x

in an aesthetically pleasing and convenient form such as y = x2 or y = sinx +cosx.
The equation

v
dv

dx
= −g (9.2)

which models the downward velocity v of an object falling under gravity has the
analytic solution

v2 = C − 2gx (9.3)

where x is the height above ground, C is a constant to be determined and g is the
gravitational constant. If we are modelling free-fall from a height H , then v(H) = 0
and so C = 2gH . On the other hand the equation

dy

dx
+ siny = 1 + sinx (9.4)

which arises in the modelling of the fast-switching Josephson junctions of semi-
conductors does not have an analytic solution. If there is no analytic solution to the
differential equation, or if the analytic solution does exist but is not apparent, we
use a numerical method to provide a solution. In the case of an equation such as
(9.4) we look to produce a table of y values corresponding to x values belonging to
a given range.

The equations which we have quoted are all examples of first-order equations
since only a first derivative is involved. The equation

d2θ

dt2
+ g

l
θ = 0 (9.5)

9.1 Introduction 199

which models the motion of a pendulum, is an example of a second-order equation.
The order of a differential equation is defined by the order of the highest derivative.

In general, the solution to an nth-order differential equation contains n arbitrary
constants which may be determined by requiring the solution to satisfy n indepen-
dent conditions particular to the application. We have already seen an example of
this in the first-order equation (9.2) and its solution (9.3). If the solution is analytic
the arbitrary constants will be apparent, but even if an analytic solution does not
exist, we are still required to provide sufficient independent conditions to determine
the solution uniquely.

As a further example consider the second-order equation (9.5) which has the
analytic solution

θ = A cosωt + B sinωt

where ω =
√

g
l

and A and B are constants to be determined. θ represents the angle

through which the pendulum swings, l is the length of the pendulum and t is the
measure of time. A and B may be uniquely determined by requiring the solution
to satisfy the two conditions θ(0) = θ0 and dθ

dt
(0) = θ1, where θ0 and θ1 are known

values. These conditions model the release of the pendulum from angle θ0 with
angular velocity θ1.

The problem of the falling body and the pendulum which we have just described
are examples of an initial-value problem. An initial-value problem is a differential
equation for which conditions relating to initial values of the independent variable
are attached. As an initial-value problem (9.5) might be stated as

d2θ

dt2
+ g

l
θ = 0, θ(0) = θ0,

dθ

dt
(0) = θ1.

The same equation (9.5) may be used to model the buckling of a rod. Using a dif-
ferent notation we have

d2y

dx2
+ Ky = 0 (9.6)

where x is measured along the rod, y is the lateral displacement and K is a con-
stant related to the material properties of the rod. In this case the solution might
be uniquely determined by requiring y(0) = 0 and y(L) = 0. These conditions are
appropriate to a model of a beam of length L which is clamped at both ends. We
now have what is known as a boundary-value problem. A boundary-value problem
is a differential equation for which conditions relating to values of the independent
variable at more than one point are attached. As a boundary-value problem (9.6)
might be stated as

d2y

dx2
+ Ky = 0, y(0) = 0, y(L) = 0. (9.7)

200 9 Ordinary Differential Equations

9.2 First-Order Equations

We begin by studying methods for finding solutions of first-order equations. Such
equations are necessarily initial-value problems since only one condition, usually
referred to as an initial condition, is required for a unique solution. Our problem in
general terms may be stated as the initial-value problem

dy

dx
= f (x, y), y(x0) = y0. (9.8)

9.2.1 Euler’s Method

Euler’s method is based on the approximation of dy/dx at x by (f (x + h) −
f (x))/h, where h (the step-length) is some suitably small value. This formula,
which we employed in Sect. 6.2, is used in (9.8) to compute y at x + h given y

at x and so from an initial starting point the solution may be advanced through a
given interval. The method is illustrated in the following problem.

Problem

Solve the following differential equation using Euler’s method.

dy

dx
= 3x − y + 8, y(0) = 3.

Compute the solution from 0 to 0.5 using a step-length of 0.1. Compare this solution
with the analytic solution, y = 3x − 2e−x + 5.

This initial-value problem is an example of a type which can occur in the mod-
elling of changes in the population, y of a group of people, atomic particles, bacteria
or whatever over time, x. In this example we assume that the population increases
with respect to time but that this increase is countered with a decrease proportional
to the size of the population. The rates of increase and decrease are 3x + 8 and −y

respectively.
We assume that the model has been formed so that the solution measures the

population in appropriate multiples, and that overall the population is sufficiently
large to allow the use of real numbers with a fractional part, rather than whole integer
numbers.

Solution

Euler’s method advances the solution from x to x + h using the approximation

y(x + h) ≈ y(x) + h
dy

dx

∣∣∣∣
x

(9.9)

9.2 First-Order Equations 201

Table 9.1 Euler’s method, step-length 0.1

x y value by Euler’s method Correct y value Error (absolute value)

0 3 3 0

0.1 3.5 3.49033 0.00967

0.2 3.98 3.96254 0.01746

0.3 4.442 4.41836 0.02364

0.4 4.8878 4.85936 0.02844

0.5 5.31902 5.28694 0.03208

Table 9.2 Euler’s method,
variable step-lengths n (h = 0.1/2n) y(0.5) Euler’s method Error (absolute value)

0 5.31902 0.03208

1 5.30253 0.01559

2 5.29462 0.00769

3 5.29076 0.00382
.
.
.

.

.

.
.
.
.

11 5.28700 0.00006

12 5.28697 0.00003

13 5.28695 0.00001

14 5.28695 0.00001

and so for the current problem

y(x + h) ≈ y(x) + h
(
3x − y(x) + 8

)
. (9.10)

We use the notation xi , i = 0,1, . . . ,5 to denote the x values 0,0.1, . . . ,0.5 and let
yi denote the approximation to y(xi). In this notation (9.10) becomes

yi+1 = yi + h(3xi − yi + 8). (9.11)

Using the initial conditions x0 = 0, y0 = 3 with h = 0.1 in (9.11) we have y1 = 3.5.
Using (9.11) again to calculate y2 from y1, we have y2 = 3.98. Continuing in this
way we eventually reach y5. The results are shown in Table 9.1 where the error term
is defined to be the difference between the value predicted by Euler’s method and
the correct value.

Discussion

It is evident from Table 9.1 that the error in the values predicted by Euler’s method
increase as the value of x increases. Although it may be proved analytically that
errors do not get wildly out of hand, even so a step-length of 0.1 clearly is not giving
very good accuracy. We can successively decrease the value of the step-length h

until consistent values are obtained. Table 9.2 shows the results obtained for y at

202 9 Ordinary Differential Equations

x = 0.5 by successively halving h. Having obtained agreement for two successive
values of h we would normally stop the calculation at this point and assume we
have a valid result. It can be seen from the table that as h decreases linearly so does
the error. This may be proved by analysis and so we may expect to obtain more and
more accuracy using a smaller and smaller step-length. However, decreasing the
step-length increases the number of arithmetic calculations and may mean that we
are dealing with very small numbers, all of which is liable to increase the error in
the computation. Indeed our calculations, shown in the table above, could lead us to
accept a value of 5.28695 when the true value is 5.28694. In this case the difference
may not matter very much, but in practice could be significant.

Although Euler’s method may not be sufficiently accurate for some problems, the
underlying idea is a good one and can be used to good effect in forming the more
powerful Runge–Kutta methods.

9.2.2 Runge–Kutta Methods

Euler’s method for solving the initial-value problem (9.8) advances the solution
from x to x +h using the approximating formula (9.9). As an alternative we use the
same formula but with the derivative y′ evaluated at the mid-point of x and x +h. It
is envisaged that the derivative at the mid-point is more representative of the varying
derivative across the range. The approximating formula becomes

y(x + h) ≈ y(x) + hy′
(

x + h

2

)
.

This approximation is the basis of the Runge–Kutta method, which is illustrated in
the following problem.

Problem

Solve the initial-value problem

dy

dx
= 3x − y + 8, y(0) = 3

using the simple Runge–Kutta method. Compute the solution from 0 to 0.5 using
a step-length of 0.1. This is the same problem we used to illustrate Euler’s method
and is one to which we will return.

Solution

The method advances the solution from x to x + h using an increment given by

hy′
(

x + h

2

)
= hf

(
x + h

2
, y

(
x + h

2

))
where f (x, y) = 3x − y + 8.

9.2 First-Order Equations 203

Table 9.3 Simple Runge–Kutta, step-length 0.1

x y value by simple Runge–Kutta Correct y value Error (absolute value)

0 3.00000 3.00000 0

0.1 3.49000 3.49033 0.00033

0.2 3.96195 3.96254 0.00059

0.3 4.41756 4.41836 0.00080

0.4 4.85840 4.85936 0.00096

0.5 5.28585 5.28694 0.00109

Table 9.4 Simpe Runge–Kutta, variable step-lengths

n (h = 0.1
2n) y(0.5) by simple Runge–Kutta Error (absolute value) Error /h2

0 5.28585 0.00109 0.10902

1 5.28668 0.00026 0.10497

2 5.28687 0.00006 0.10301

3 5.28692 0.00002 0.10204

4 5.28693 0.00001 0.10156

5 5.28694 0.00000 0.10133

6 5.28694 0.00000 0.10121

Using

y

(
x + h

2

)
= y(x) + h

2
y′(x)

the increment becomes

h

(
3

(
x + h

2

)
−

(
y + h

2
(3x − y + 8)

)
+8

)
.

Starting with x = 0, y = 3 we obtain the results shown in Table 9.3.

Discussion

Clearly even at this early stage the simple Runge–Kutta method is more accurate
than Euler’s method. Repeating the calculations with successively decreasing values
of the step-length h we have the results in Table 9.4. Whereas the results using
Euler’s method show a linearly decreasing error with linearly decreasing step-length
h, in this case the errors decrease more rapidly. The final column indicates that
the ratio of the error to h2 is approximately constant. This confirms the theoretical
result obtained by expanding the simple Runge–Kutta formula as a Taylor series that
errors are likely to decrease in proportion to h2. This is quadratic or second-order
convergence. For this reason the simple Runge–Kutta method we have described is
known as the second-order Runge–Kutta method and is the name that we use from
now on. Euler’s method has only linear or first-order convergence. Although for a

204 9 Ordinary Differential Equations

given step-length the second-order Runge–Kutta method involves more calculation
than Euler’s method it is generally preferred because it has second-order, as opposed
to linear, convergence.

9.2.3 Fourth-Order Runge–Kutta

With a little analysis it can be shown that the approximation

y(x + h) ≈ y(x) + hy′
(

x + h

2

)

which forms the basis of the second-order Runge–Kutta method may be re-stated
with similar accuracy as

y(x + h) ≈ y(x) + h
dy

dx
+ h2

2

d2y

dx2

which will be recognised from the Taylor series expansion of y(x + h). It is this
level of agreement which establishes the theoretical validity of the second-order
Runge–Kutta method.

Stated formally the second-order Runge–Kutta method advances the solution to
the first-order differential equation y′(x) = f (x, y) from y(x) to y(x + h) using

y(x + h) = y(x) + k2

where

k1 = hf (x, y)

k2 = hf

(
x + 1

2
h,y + 1

2
k1

)
.

However, with a little more effort we can do better by producing approximations
that correspond as closely as possible to the Taylor series. We include derivatives
evaluated at more points in the interval, [x, x + h] and so produce more and more
accurate Runge–Kutta methods.

The fourth-order Runge–Kutta method is probably the most widely used. The
formula given below agrees with the Taylor series up to and including terms of
order h4 and may be used for advancing the solution from y(x) to y(x + h) using

y(x + h) = y(x) + 1

6
(k1 + 2k2 + 2k3 + k4) (9.12)

where

k1 = hf (x, y)

k2 = hf

(
x + 1

2
h,y + 1

2
k1

)

k3 = hf

(
x + 1

2
h,y + 1

2
k2

)

k4 = hf (x + h,y + k3).

9.2 First-Order Equations 205

Problem

Apply the fourth-order Runge–Kutta method to the initial-value problem

dy

dx
= 3x − y + 8, y(0) = 3

using a step-length of 0.1.

Solution

Using the scheme shown above, we obtain the results in Table 9.5.

Discussion

The results are clearly more accurate than anything achieved previously. Repeating
the calculations with successively decreasing values of the step-length h in a search
for greater accuracy we obtain the results in Table 9.6. The almost constant nature
of the ratio shown in the final column confirms that for a given step-length h the
error in each estimated value is of order h4. We must be aware that in applying any
of the methods described in this chapter there is an accumulation of error during any
computation. This error will result from truncation error and from rounding error.
Truncation error is the error resulting from making approximations, for example
by truncating the Taylor series expansion. Rounding error is the error incurred in
the course of the, often numerous, arithmetic operations involved in applying any
numerical method.

Table 9.5 Fourth-order Runge–Kutta, step-length 0.1

x y by Runge–Kutta Correct value y Error (absolute value)

0 3 3 0

0.1 3.49033 3.49033 0.16 × 10−6

0.2 3.96254 3.96254 0.30 × 10−6

0.3 4.41836 4.41836 0.40 × 10−6

0.4 4.85936 4.85936 0.49 × 10−6

0.5 5.28694 5.28694

Table 9.6 Fourth-order Runge–Kutta, variable step-lengths

n (h = 0.1
2n) Error at x = 0.5 (absolute value) Error /h4

0 0.55 × 10−6 0.55 × 10−2

1 0.33 × 10−7 0.53 × 10−2

2 0.20 × 10−8 0.52 × 10−2

3 0.12 × 10−9 0.51 × 10−2

206 9 Ordinary Differential Equations

All the methods we describe involve choosing an appropriate step-length, h. If we
were progressively to decrease h, possibly by a factor of 0.5, and reach a situation
at which solutions for successive values of h are in agreement to a certain accuracy,
we would argue that accumulated error is not making a significant contribution and
that we have a solution to the accuracy implied.

9.2.4 Systems of First-Order Equations

The methods for solving the initial-value problem for a single first-order equation
are applicable to systems of first-order equations. Assuming we have values for all
the dependent variables at the same initial value of the independent variable, we
advance the solution for all the dependent variables at each step of the independent
variable. We illustrate the process using the Runge–Kutta method.

Problem

Solve the equations

dw

dx
= sinx + y

dy

dx
= −w + cosx

for values of x in the interval [0,0.5]. The initial conditions are w(0) = 0 and
y(0) = 0. Use the fourth-order Runge–Kutta method with a step-length of 0.1.
Compare the computed solution with the analytic solution, which is w = x sinx,
y = x cosx.

Solution

The solutions for each equation are simultaneously advanced from the initial condi-
tions. Using the fourth-order Runge–Kutta method we have

wn+1 = wn + 1

6
(k1 + 2k2 + 2k3 + k4) (9.13)

yn+1 = yn + 1

6
(k1 + 2k2 + 2k3 + k4) (9.14)

where in the case of (9.13)

k1 = hf (xn, yn)

k2 = hf

(
xn + 1

2
h,yn + 1

2
k1

)

k3 = hf

(
xn + 1

2
h,yn + 1

2
k2

)

k4 = hf (xn + h,yn + k3)

9.2 First-Order Equations 207

Table 9.7 Fourth-order
Runge–Kutta, system of
equations

x w y

0 0 0

0.1 0.00998 0.09950

0.2 0.03973 0.19601

0.3 0.08866 0.28660

0.4 0.15577 0.36842

0.5 0.23971 0.43879

with f (x, y) = sinx + y. In the case of (9.14) we have

k1 = hf (xn,wn)

k2 = hf

(
xn + 1

2
h,wn + 1

2
k1

)

k3 = hf

(
xn + 1

2
h,wn + 1

2
k2

)

k4 = hf (xn + h,wn + k3)

with f (x,w) = −w + cosx.
Using this system we eventually obtain the results in Table 9.7 and these values

are correct to the number of decimal places shown.

9.2.5 Higher Order Equations

So far we have only considered first-order equations of the form dy
dx

= f (x, y). Not
all the equations we are likely to meet in practice will be of this form, but we can
reduce most higher order equations to a system of first-order equations.

For example the second-order equation

r
d2t

dr2
+ dt

dr
= 0

may be reduced to a system of first-order equations by introducing a new variable
z = z(r), where z = dt

dr
.

We have

r
dz

dr
+ z = 0
dt

dr
= z.

(9.15)

The method extends to higher orders. For example an equation involving d3y

dx3 could

be reduced by introducing two new variables z and w, with z = dy
dx

and w = dz
dx

. We
are now in a position to attempt the solution of solving the initial-value problem for
equations of any order.

208 9 Ordinary Differential Equations

9.3 Boundary Value Problems

We consider problems for which the solution is required to meet specified condi-
tions at both ends of a range. Two methods are presented, a method that for obvious
reasons is known as the shooting or garden-hose method and a method which ap-
proximates derivatives over the range using difference equations.

9.3.1 Shooting Method

Anyone who has used a garden hose, or has tried to hit any kind of target will know
that there is a trial and error element involved. First attempts will either overshoot
the target or fall short. However, this effort is not wasted since it usually gives an
indication as to whether to raise or lower the aim. A similar scheme may be applied
to boundary-value problems. We form an initial-value problem, which we solve by
one of the methods described earlier, by assuming a set of initial conditions and see
where the solution leads. We then vary the initial conditions until we hit the target
at the other end. The following problem illustrates the method.

Problem

The following equation is an example of a type which arises in the modelling of the
temperature, y of a cooling fin at distance x from a base position.

d2y

dx2
= 2y.

Find a solution using the shooting method which satisfies y = 1 at x = 0 and
dy/dx = 0 at x = 1. Tabulate the solution at the points 0.1,0.2, . . . ,1. Compare
the result with analytic solution namely,

c1e
√

2x + c2e
−√

2x

where for this example, c1 = 0.05581 and c2 = 0.94419.

Solution

Writing z = dy/dx this second-order equation may be written as a system of first-
order equations, namely

dz

dx
= 2y

dy

dx
= z

where y = y(x) and z = z(x) are such that y(0) = 1 and z(1) = 0.

9.3 Boundary Value Problems 209

Table 9.8 Boundary value problem, solution using shooting method

x Predicted y Predicted z (= dy/dx) Correct y Correct z

0.0 1.00000 −1.25643 1.00000 −1.25637

0.2 0.78559 −0.90162 0.78563 −0.90160

0.4 0.63447 −0.61944 0.63453 −0.61945

0.6 0.53446 −0.38716 0.53453 −0.38718

0.8 0.47750 −0.18608 0.47758 −0.18610

1.0 0.45901 0.00000 0.45910 0.00000

We use the method of Sect. 9.2.4 with z(0) = 0 as an initial shot and see how
close we get to the target. This leads to z(1) = 2.73672, which is too high. Lowering
our sights, we try z(0) = −2, which leads to −1.61962 (too low). Rather than carry
on in a haphazard manner, alternately raising and lowering z(0) until we hit z(1) = 0
we take a secant approximation regarding z(1) as a function of z(0). Using the
formula from Table 3.6 we have as our next estimate

−2 + 1.61962

(
2

2.73672 + 1.61962

)
= −1.25643.

Using z(0) = −1.2564 yields the solution z(1) = 0. In all cases a step length of
0.0001 was used. Table 9.8 shows the solution at the required points.

In this case just one application of the secant formula has produced a solution that
is generally correct to three decimal places. However more complicated equations
may require several applications.

Discussion

The shooting method works well if there is just one unknown initial value, but its
extension to equations where a number of initial values have to be determined is
more problematical. In the same way that the shooting method may be implemented
as finding the zero of a function of one variable, so too a problem involving finding
several initial values could be regarded as finding a zero of a function of several
variables. An alternative method, which approximates the differential equation by a
system of linear equations, follows.

9.3.2 Difference Equations

In Chap. 6 we produced a number of formulae for approximating the derivatives
of a function in terms of function values. We can make use of these formulae to
reduce a differential equation to a set of approximations defined at points in the
range of interest. The boundary conditions will be contained in the equations at
each end of the range. If the boundary-value problem is linear, that is if there are no

210 9 Ordinary Differential Equations

terms involving products of derivatives, we have a system of linear equations. We
may solve the linear system by Gaussian elimination and so solve the differential
equation in one fell swoop. By way of an example we use the previous cooling fin
problem which is an example of a linear boundary-value problem.

Problem

Solve

d2y

dx2
= 2y (9.16)

over the interval [0,1], where y(0) = 1 and dy
dx

(1) = 0, using difference equations.

Solution

Initially we take a step-length of 0.1 to divide the x interval [0,1] into 10 equal
sub-intervals. Labelling the points xi, i = 0, . . . ,10 and using the approximation to
the second derivative, ((6.15), Chap. 6) we have

y′′(x) = y(x + h) − 2y(x) + y(x − h)

h2
.

In this example y′′ = 2y, y0 = 1 and so

2yi = yi+1 − 2yi + yi−1

h2
, i = 1, . . . ,9, y0 = 1.

The remaining equation of the ten we need to be able to find the 10 unknowns yi ,
is supplied by substituting h = −0.1 and the boundary condition y′(1) = 0 in the
truncated Taylor series (6.2) to give

y9 = y10 + h2y10.

Putting h = 0.1 we have:

−2.02y1 + y2 = −1

y1 − 2.02y2 + y3 = 0

y2 − 2.02y3 + y4 = 0

. . .
. . .

y8 − 2.02y9 + y10 = 0

y9 − 1.01y10 = 0.

A similar system, though one involving more equations may be constructed for
shorter step-lengths. The results from solving such systems are shown in Table 9.9.

The results show that we are converging to a solution and this may be confirmed
by comparing with the analytic solution given in the previous problem.

9.3 Boundary Value Problems 211

Table 9.9 Boundary value
problem, solution using
difference equations

x y(x) solutions to y′′(x) = 2y, various step-lengths

0.1 0.05 0.025 0.0125

0.1 0.8841 0.8840 0.8840 0.8840

0.2 0.7859 0.7857 0.7856 0.7856

0.3 0.7033 0.7031 0.7031 0.7030

0.4 0.6349 0.6346 0.6346 0.6345

0.5 0.5791 0.5788 0.5788 0.5787

0.6 0.5350 0.5346 0.5346 0.5345

0.7 0.5015 0.5012 0.5011 0.5010

0.8 0.4781 0.4777 0.4776 0.4776

0.9 0.4642 0.4638 0.4637 0.4637

1.0 0.4596 0.4592 0.4591 0.4591

Discussion

The system of linear equations arising from using difference equations to approxi-
mate a systems of linear differential equations may generally be written as a banded
linear system, a system in which the non-zero elements are clustered around the
main diagonal of the system matrix. As the step-length decreases the number of
equations increases and such systems become sparse. As we have seen in Chap. 2
more economical methods than Gaussian elimination are available for their solu-
tion. However in this particular example Gaussian elimination does not cause any
problems. More complicated boundary-value problems may be solved using similar
approximations to the derivatives. However, if the resulting system of equations is
nonlinear, iterative methods of the type described in Chap. 3 would be used to find
a solution.

Summary In this chapter we have considered numerical methods for solving or-
dinary differential equations. You will have seen that there are two classes of prob-
lem, the initial-value problem and the boundary-value problem. Within the context
of the initial-value problem we established methods for single first-order differential
equations. We showed that higher order equations can be reduced to systems of first-
order equations which can be solved by extending the methods already established
for a single equation.

For the initial-value problem we considered the following methods and con-
cluded that:

• Euler is stable in the sense that errors grow linearly from step to step, but may
need a large number of steps.

• Runge–Kutta is more accurate than Euler and as such is generally preferred.

For the boundary-value problem we considered reducing the problem to a series of
initial-value problems by means of the shooting method. We also used difference
equations to discretise the whole interval. We concluded that:

212 9 Ordinary Differential Equations

• Shooting methods work well if just one initial condition is unknown.
• Difference equations are preferred if more than one initial condition is unknown.

Exercises

1. Write a Matlab program to implement Euler’s method to verify the results quoted
in Sect. 9.2.1.

2. Write a Matlab function RK2 with heading

ynext = function RK2(f n, x, y,h)

to advance the solution to the first-order differential equation dy/dx = f n(x, y)

from a solution at (x, y) to a solution at (x = x + h) using the simple (second-
order) Runge–Kutta method.

Assuming that the function f n(x, y) has been defined in a Matlab-M file
f n.m the function would be called from a main program using a command such
as y2 = RK2(@fn, x1, y1,h).

Use the function to verify the results quoted in the chapter for

dy

dx
= 3x − y + 8, y(0) = 3.

3. (i) Create a function RK4 with similar heading to RK2 to implement the fourth-
order Runge–Kutta method. Test RK4 using the results quoted for the equation
shown above.

(ii) Under certain conditions, taking into account gravity and air resistance,
the speed v at time t of a projectile fired vertically into the air may be modelled
by a first-order differential equation of the form

dv

dt
= −9.81 − 0.2v2

by taking into account the force due to gravity and air resistance. If the pro-
jectile is fired upwards with speed v = 10 show that the fourth-order Runge–
Kutta method with a step length of 0.5 produces the results shown in Table 9.10.
Though possible, extending the range much beyond t = 0.6 would not be mean-
ingful since the projectile is about to reach zero velocity, at which point it falls
to earth and a different model applies. Repeat the calculation with step-length
0.01 to suggest we have accuracy to 2 decimal places.

4. Use the function RK4 to solve the following simultaneous equations

dw

dx
= sinx + y

dy

dx
= −w + cosx

using the method described in Sect. 9.2.4. Advance the solutions for w and y

simultaneously using commands of the form

w = RK4(@fxy, x, y, h);
y = RK4(@fwx, x , w, h);

9.3 Boundary Value Problems 213

Table 9.10 Exercise 3,
results t v

0 10

0.1 7.50

0.2 5.66

0.3 4.19

0.4 2.96

0.5 1.86

0.6 0.84

Table 9.11 Exercise 4,
results x w y

0.1 0.00517 0.09500

0.2 0.03078 0.18855

0.3 0.07654 0.27777

0.4 0.14171 0.35981

0.5 0.22520 0.43195

where f xy = f (x, y) and f wx = f (x,w) are functions to evaluate dw/dx and
dy/dx respectively and are defined in their separate Matlab-M files, fxy.m and
fwx.m.

Using h = 0.1 as an initial estimate for the required step-length, the results
are obtained in Table 9.11. Reduce the step-lengths by a factor of 10 until the
results correspond to those shown in Sect. 9.2.4.

5. Among many functions for solving differential equations Matlab provides func-
tion ode45 for solving systems of first-order (non-stiff)2 differential equations of
the form

dy1

dx
= f1(x, y1, y2, . . . , yn)

dy2

dx
= f2(x, y1, y2, . . . , yn)

... = ...
dyn

dx
= fn(x, y1, y2, . . . , yn).

Taking the default settings a command to ode45 has the form

[X,Y]= ode45(functions, range, initialvalues)

2Differential equations which are ill-conditioned in that solutions are highly sensitive to small
changes in the coefficients or boundary conditions are known as stiff equations and require special
consideration.

214 9 Ordinary Differential Equations

where range is a vector holding the range of points of the range of x values for
which a solution is required (typically [a b]) or a set of specific points ([a :
increment : b]) and initialvalues is an n-element vector containing initial values
y1, . . . , yn of the dependent variables. The parameter functions is the name of
the function, which has two parameters x and y. For any value of x and a list
of corresponding values y1, . . . , yn stored as elements of the n-element vector y

functions returns an n-element vector of derivatives dyi/dx.
Use ode45 to solve the equations of question 4 and so verify the results quoted

in Sect. 9.2.4. Identifying x as the independent vector and w and y as dependent
vectors a suitable command could be

[x,wyvec]= ode45(@sincos, [0 : 0.1 : 0.5], [0 0]);
where sincos is the name of the M-file containing

function dy = sincos(x, y)
dy = [sin(x) + y(2); −y(1) + cos(x)];

The function returns w and y values (in that order) for corresponding x values in
the 2-column vector wyvec.

6. Verify the results shown for the problem discussed in Sect. 9.3.1 using either the
Matlab provided function ode45 or your own RK4 with step-length 0.00001.

7. Write a Matlab program to verify the results quoted for the example of the use
of difference equations quoted in Sect. 9.3.2. This will be mainly an exercise in
matrix manipulation. The program should be written to handle an arbitrary step-
length h, which will determine the size of a coefficient matrix, A and a column
vector, b of right-sides. Use Matlab functions ones, diag, zeros and the back-slash
operator as shown in the program segment below, which would be appropriate
for building the coefficient matrix given n equations and step-length h.

% column vector of n 1’s
v = ones(n, 1);

% row vector of n−1 1’s
w = ones(1, n−1);

% place −2 + h∧2 on the main diagonal
% place 1’s on the diagonals above and below the main diagonal

A = diag(w, −1) + diag(−2∗(1+h∧2)∗v, 0) + diag(w, 1);
% build the right hand side column vector

b = zeros(n, 1);
% modify A and b to allow for the boundary conditions

A(n, n) = −(1+h∧2);
b(1) = −1;

% solve the equations
x = A\b;

Chapter 10
Eigenvalues and Eigenvectors

Aims In this chapter we investigate methods for determining some, or all, of the
eigenvalues and eigenvectors1 of a square matrix A.

Overview It is convenient to divide methods for determining eigenvalues and
eigenvectors into those which either

• locate a single eigenvalue/eigenvector pair

or

• determine all eigenvalues and eigenvectors.

We show how eigenvalues may be found using the characteristic polynomial and
how the power method locates a single eigenvalue/eigenvector pair. We also show
how eigenvalues can be found by transforming a general matrix into upper triangular
form. Having shown how an eigenvector corresponding to a given eigenvalue may
be found we are in a position to find all the eigenvalues and eigenvectors of a matrix.

Acquired Skills After reading this chapter you will

• understand the significance of eigenvalues and eigenvectors.
• know how to use methods for locating a single eigenvalue/eigenvector pair.
• know how to use a method for locating all eigenvalue/eigenvector pairs.
• have an appreciation of what is known in the literature as The Eigenvalue problem.

10.1 Introduction

Eigenvalues and eigenvectors occur in the study of differential equations which are
used in modelling vibrational problems in science and engineering. Examples of

1The word eigen translates from the German as own, intrinsic or inherent.

C. Woodford, C. Phillips, Numerical Methods with Worked Examples: Matlab Edition,
DOI 10.1007/978-94-007-1366-6_10, © Springer Science+Business Media B.V. 2012

215

http://dx.doi.org/10.1007/978-94-007-1366-6_10

216 10 Eigenvalues and Eigenvectors

such problems include the vibration of everything from springs and simple pendu-
lums to bridges and aeroplanes, and from the vibration of musical instruments to
those of radio waves. It transpires that the solutions to such differential equations
may be expressed as combinations of basic solutions each of which corresponds to
a natural vibration of the system. Each basic solution corresponds to a particular
eigenvalue of a matrix associated with the differential equation, and this connection
is exploited in finding the general solution.

The natural vibrations of a structure are the vibrations at which the structure res-
onates and as a result may self destruct. Soldiers do not march in time when crossing
a bridge for fear of accidentally marching in time with its natural vibration and so
amplifying the effect and bringing down the bridge. Opera singers can achieve a
similar effect by singing in the vicinity of wine glasses. It is possible to split a piece
of paper by blowing on it and causing it to vibrate at a certain level. Design engi-
neers must ensure that under normal usage vibrations at levels close to the natural
vibrations of the structure, whether it be an aircraft wing, a suspension bridge or a
machine component, do not occur.

Given an n×n matrix, A we aim to find one or more values for λ (an eigenvalue)
and corresponding vector x (an eigenvector) defined by the relation

Ax = λx.

Problem

Verify that x = (1,2,1) is an eigenvector of the matrix

A =
⎛
⎝

2 1 −1
4 −3 8
1 0 2

⎞
⎠

with corresponding eigenvalue 3.

Solution

Multiplying x by A and comparing with 3x gives the required result.
We have

Ax =
⎛
⎝

2 1 −1
4 −3 8
1 0 2

⎞
⎠

⎛
⎝

1
2
1

⎞
⎠ =

⎛
⎝

3
6
3

⎞
⎠ = 3

⎛
⎝

1
2
1

⎞
⎠ .

Problem

Suppose that 3 is known to be an eigenvalue of the matrix, A of the previous prob-
lem. Find the corresponding eigenvector.

10.2 The Characteristic Polynomial 217

Solution

We solve the system of equations Ax = 3x. Letting x = (x1, x2, x3) we have

2x1 + x2 − x3 = 3x1

4x1 − 3x2 + 8x3 = 3x2

x1 + 2x3 = 3x3

and so

−x1 + x2 − x3 = 0

4x1 − 6x2 + 8x3 = 0

x1 − x3 = 0.

Gaussian elimination produces the upper triangular system

−x1 + x2 − x3 = 0

−2x2 + 4x3 = 0

0x3 = 0.

Thus there is no unique solution and so we are free to set one of the variables
to whatever we choose. Letting x3 = 1, we have x2 = 2 and x1 = 1 from back-
substitution.

Discussion

We have shown in this example that eigenvectors are not unique. By setting x3
to any constant we can show that any multiple of (1,2,1) is an eigenvector of A
corresponding to the eigenvalue 3.

For any vector v the normalised form is defined to be v/norm(v) and so the
norm of a normalised vector is 1. Being able to assume that vectors (and in particular
eigenvectors) are presented in normalised form can sometimes simplify subsequent
discussion.

10.2 The Characteristic Polynomial

We may write Ax = λx in the form

(A − λI)x = 0

where, as before, x is the eigenvector corresponding to an eigenvalue λ of the matrix
A of order n and I is the identity matrix of order n. The determinant of the matrix
A − λI is a polynomial in λ and is known as the characteristic polynomial. The
characteristic polynomial provides a means of identifying eigenvalues.

218 10 Eigenvalues and Eigenvectors

Problem

Use the characteristic polynomial to find the eigenvalues of the matrix

A =
(

4 1
−5 −2

)
.

Solution

The characteristic polynomial, p(λ) is given by the determinant of the matrix
(

4 − λ 1
−5 −2 − λ

)
.

Therefore

p(λ) = (4 − λ)(−2 − λ) + 5

= λ2 − 2λ − 3

= (λ − 3)(λ + 1).

Since the system of equations, Ax = λx does not have a unique solution, the coeffi-
cient matrix, A is singular, and so columns (and rows) are linearly dependent which
is equivalent to the determinant being zero. Setting p(λ) = 0 we have eigenvalues,
λ = 3 and λ = −1.

Discussion

In principle we have shown a method for locating eigenvalues, although the cost
of forming p and then using an appropriate root-finding technique from Chap. 3
might be prohibitively time consuming for large matrices. The characteristic poly-
nomial can be used to determine all the eigenvalues but information as to eigenvec-
tors would have to be found by solving the appropriate linear system. Note that the
characteristic polynomial indicates that an n × n matrix has n eigenvalues and so it
is possible that some eigenvalues may be identical and some may occur as complex
conjugate pairs.

10.3 The Power Method

We present a method that can be used to find the largest eigenvalue of a matrix and
the corresponding eigenvector. Essentially the same method may be applied to find
the smallest eigenvalue and corresponding eigenvector. The method is explained
using the example below. We use the terms largest and smallest to mean largest and
smallest in absolute value.

10.3 The Power Method 219

Table 10.1 Power method,
largest eigenvalue xi ηi+1

1.0000 1.0000 1.0000 9.0000

0.2222 1.0000 0.3333 1.1111

1.0000 0.500 0.8000 8.9000

0.1910 1.0000 0.2921 1.08999
.
.
.

.

.

.

−0.1775 1.000 0.0326 −3.4495

−0.1775 1.000 0.0326 −3.4495

Problem

Find the largest eigenvalue of the matrix,

A =
⎛
⎝

2 1 −1
4 −3 8
1 0 2

⎞
⎠ .

Solution

We look for the largest λ and corresponding x to satisfy

Ax = λx.

We approach a solution in an iterative manner by producing a sequence of vectors
xi , i = 1,2, . . . using the formula

ηi+1 = Largest(Axi)

xi+1 = 1

ηi+1
Axi , i = 1,2, . . . ,

(10.1)

where x1 is any non-zero vector and Largest(x) denotes the element of largest
absolute value of a vector x. In the absence of any other information we start
with x1 = (1,1,1). The method is slow to converge but eventually we have the
results in Table 10.1. We conclude that to the accuracy shown the largest eigen-
value is 3.4495 and that the corresponding eigenvector (in unnormalised form) is
(−0.1775 1.0000 0.0326). This result may be confirmed by finding the roots of the
characteristic equation (Exercise 1). Theoretical justification for the general case
follows.

10.3.1 Power Method, Theory

We show that the eigenvectors of a matrix corresponding to distinct eigenvalues are
linearly independent, a result that will be needed later. The proof is by contradiction.

220 10 Eigenvalues and Eigenvectors

We assume the eigenvectors of the matrix are linearly dependent and show that this
leads to a contradiction.

Suppose that the n × n matrix A has distinct eigenvalues λ1, λ2, . . . , λm with
corresponding eigenvectors x1,x2, . . . ,xm. We know from the degree of the charac-
teristic polynomial that m must be ≤ n. If xk is the first of the eigenvectors to be a
linear combination of the eigenvectors x1,x2, . . . ,xk−1 we have

xk =
k−1∑
i=1

αixi (10.2)

where not all the αi are zero. By pre-multiplying both sides of (10.2) by A we find
that this implies

Axk =
k−1∑
i=1

αi(λk − λi)xi = 0. (10.3)

Since the terms λk − λi in the above are not all zero (10.3) shows that xk is
not the first of the eigenvectors to be a linear combination of the eigenvectors
x1,x2, . . . ,xk−1. This contradiction provides the required result, which we use to
establish the validity of (10.1).

We assume that we have an n × n matrix A with distinct n eigenvalues, which as
we have seen will have corresponding eigenvectors ξi , i = 1, . . . , n that are linearly
independent. We also assume that the eigenvectors and eigenvalues λi are ordered
so that

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|.
Since the eigenvectors of A are linearly independent for any vector x of the same
dimension we have

x =
n∑

i=1

αiξi

where the αi are constants and the ξi are the eigenvectors of A with corresponding
eigenvalues λi . We make the further assumptions that α1 �= 0 and that the eigen-
values are real (not complex). It may appear that we are making a number of as-
sumptions but the procedure may be modified to deal with more general situations.
It follows that

Ax =
n∑

i=1

Aαiξi =
n∑

i=1

αiλiξi

and so

Akx =
n∑

i=1

αiλ
k
i ξi = λk

1

n∑
i=1

αi

(
λi

λ1

)k

ξi .

Going to the limit and noting that ξ1 is the eigenvalue of largest absolute value

lim
k→∞ Akx = lim

k→∞α1λ
k
1ξ1

10.3 The Power Method 221

and so taking largest values

lim
k→∞

Largest(Ak+1x)

Largest(Akx)
= lim

k→∞
λk+1

1

λk
1

= λ1.

We can connect this results with the sequence (10.1), which generates a sequence ηi

η3 = Largest(A2x1)

Largest(Ax1)
, η4 = Largest(A3x1)

Largest(A2x1)
, . . . , ηk+1 = Largest(Akx1)

Largest(Ak−1x1)

and confirms that η → λ1, whatever the value of x1.
We may use the same technique to find the smallest eigenvalue of a matrix. For

any eigenvalue λ and corresponding eigenvector x of a matrix A we have

Ax = λx and so
1

λ
x = A−1x.

In particular, if λ is the smallest eigenvalue of A, then it is the largest eigenvalue
of the inverse, A−1. The corresponding eigenvector is the same in each case. If we
apply the power method to finding the largest eigenvalue of A−1 we would approach
a solution in an iterative manner by producing a sequence of vectors xi , i = 1,2, . . .

using the formula

A−1xi = λixi+1, i = 1,2, (10.4)

However, rather than calculate A−1 directly, we use the following form.

λiAxi+1 = xi , i = 1,2, (10.5)

Starting with an arbitrary x1 at each step we would solve the linear system

Axi+1 = 1

λi

xi , i = 1,2, . . .

where λi is the element of largest absolute value of the vector xi . The method is
illustrated in the following problem.

Problem

Find the smallest eigenvalue of the matrix A given by

A =
⎛
⎝

2 1 −1
4 −3 8
1 0 2

⎞
⎠ .

Solution

Starting with x1 = (1,1,1) and setting λi to the value of the maximum element
of xi , we solve the linear system (10.5) at each step to find xi+1 to give the re-
sults shown in Table 10.2. However if the linear system is solved at the first step

222 10 Eigenvalues and Eigenvectors

Table 10.2 Power method,
smallest eigenvalue xi λi+1

1.0000 1.0000 1.0000 1.0000

0.2000 1.0000 0.4000 1.0000

0.0800 0.2000 0.1600 0.2000

0.0267 0.7333 0.3867 0.7333
.
.
.

.

.

.

−0.2914 0.6898 0.5294 0.6899

−0.2914 0.6899 0.5294 0.6899

by Gaussian Elimination we can avoid unnecessary repetition by saving the LU de-
composition (page 24) of A for use in subsequent steps. We conclude that the largest
eigenvalue of A−1 is 0.6899 and so the smallest eigenvalue of A is 1/0.6899 namely
1.4495. The corresponding unnormalised eigenvector is (−0.2914 0.6899 0.5294)

or (−0.3178 0.7522 0.5773) in normalised form.

Discussion

A similar method may be used to find the eigenvalue of a matrix closest to some
given number. For example to find the eigenvalue of a matrix A closest to 10 we
would look for the smallest eigenvalue of A − 10I, where I is the identity matrix
and provided that A satisfies conditions already stated for the power method. For
any eigenvalue, λ of A − 10I it follows that λ + 10 is an eigenvalue of A.

This completes the discussion of methods for finding individual eigenvalues. We
could find all the eigenvalues of a given matrix by fishing around to find the eigen-
values nearest to a succession of estimates until all the eigenvalues had been iso-
lated. However as an alternative to such a haphazard approach we consider a direct
method for finding all eigenvalues simultaneously.

10.4 Eigenvalues of Special Matrices

We point the way to establishing a method to find all the eigenvalues and eigenvec-
tors of a general matrix by considering two special cases.

10.4.1 Eigenvalues, Diagonal Matrix

Consider the matrix A given by

A =
⎛
⎝

2 0 0
0 −3 0
0 0 7

⎞
⎠ .

10.5 A Simple QR Method 223

The characteristic polynomial, p(λ) for A is given by

p(λ) = (λ − 2)(λ + 3)(λ − 7).

The roots of p(λ) are clearly 2, −3 and 7 and so we have the eigenvalues. The
corresponding eigenvectors are (1,0,0), (0,1,0) and (0,0,1).

The result generalises. The eigenvalues of an n × n diagonal matrix are the di-
agonal elements. The corresponding eigenvectors are the columns of the identity
matrix of order n namely, (1,0, . . . ,0), (0,1,0, . . . ,0), . . . , (0,0, . . . ,0,1).

10.4.2 Eigenvalues, Upper Triangular Matrix

Consider the matrix A given by

A =
⎛
⎝

2 2 1
0 −3 4
0 0 7

⎞
⎠ .

The characteristic polynomial, p(λ) for A is given by the determinant

p(λ) =
∣∣∣∣∣∣
2 − λ 2 1

0 −3 − λ 4
0 0 7 − λ

∣∣∣∣∣∣

and so the eigenvalues are the diagonal elements, 2, −3 and 7, as for a diagonal
matrix. The result generalises to upper triangular matrices of any order.

10.5 A Simple QR Method

Since we have a method for finding the eigenvalues (and hence the eigenvectors)
of upper triangular matrices, we aim to transform more general matrices into this
form in such a way that we do not lose track of the original eigenvalues. If λ is an
eigenvalue of A with corresponding eigenvector x we have for any matrix R

RAx = λRx. (10.6)

Furthermore
(
RAR−1)Rx = λRx

and so RAR−1 has the same eigenvalues as A but with corresponding eigenvectors
Rx, where x is an eigenvector of A. Such a transformation of A to RAR−1 is known
as a similarity transformation. If we can make a similarity transformation of A to
upper triangular form, the eigenvalues of the upper triangular matrix, namely the
values of the diagonal elements, will be the eigenvalues of A. The eigenvectors of
A can be recovered from those of RAR−1.

224 10 Eigenvalues and Eigenvectors

Problem

Find the eigenvalues of the matrix A given by

A =

⎛
⎜⎜⎝

4 −1 2 1
1 1 6 3
0 0 −3 4
0 0 0 7

⎞
⎟⎟⎠ (10.7)

by making a similarity transformation to upper triangular form.

Solution

But for the presence of coefficient 1 at position (2,1) the matrix A would already be
in upper triangular form. Accordingly we aim for a zero coefficient at this position
by pre-multiplying A by the matrix Q1 given by

Q1 =

⎛
⎜⎜⎝

c s 0 0
−s c 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

for suitable c and s. Multiplying, we have

Q1A =

⎛
⎜⎜⎝

4c + s −c + s 0 0
−4s + c s + c 0 0

0 0 −3 4
0 0 0 7

⎞
⎟⎟⎠

and so values of the existing zeros below the diagonal are not affected. To reduce
the coefficient in position (2,1) to zero we require

−4s + c = 0.

In addition to we choose c and s to satisfy

c2 + s2 = 1.

Substituting for s produces the solution c = 0.9701, s = 0.2425. Since we have
chosen c2 + s2 = 1 it follows that QQT = I (the identity matrix) and so the inverse
of Q is given by Q−1 = QT . Having an immediate expression for the inverse saves
a lot of work.

Using

Q =

⎛
⎜⎜⎝

0.9701 0.2425 0 0
−0.2425 0.9701 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

we have

Q1AQ−1
1 =

⎛
⎜⎜⎝

3.8235 −1.7059 3.3955 1.6977
0.2941 1.1765 5.3358 2.6679

0 0 −3 4
0 0 0 7

⎞
⎟⎟⎠ .

10.5 A Simple QR Method 225

This is not upper triangular. If it was we would have solved the problem, but it is
closer to being upper triangular than A so we repeat the procedure on Q1AQ−1

1
which we note still has the same eigenvalues as A.

Repeating the process again (and again), recalculating the constants c and s we
obtain a sequence of matrices

Q2Q1AQ−1
1 Q−1

2 =

⎛
⎜⎜⎝

3.7000 −1.9000 3.7947 1.8974
0.1000 1.3000 5.0596 2.5298

0 0 −3 4
0 0 0 7

⎞
⎟⎟⎠

and

Q3Q2Q1AQ−1
1 Q−1

2 Q−1
3 =

⎛
⎜⎜⎝

3.6496 −1.9635 3.9300 1.9650
0.0365 1.3504 4.9553 2.4776

0 0 −3 4
0 0 0 7

⎞
⎟⎟⎠

and so on, eventually leading to
⎛
⎜⎜⎝

3.6180 −2.0000 4.0092 2.0046
0.0000 1.3820 4.8914 2.4457

0 0 −3 4
0 0 0 7

⎞
⎟⎟⎠ .

Reading the diagonal values it follows that within the limits of the computation the
eigenvalues of the original matrix A are 3.6180, 1.3820, −3 and 7.

In this problem it was only necessary to reduce one element to zero. In the next
problem look to extend the method to the general case of more than one non-zero
below the diagonal.

Problem

Find the eigenvalues of the matrix A given by

A =

⎛
⎜⎜⎝

3 5 −4 4
−1 −3 1 −4
4 −2 3 5
3 −5 5 4

⎞
⎟⎟⎠ .

Solution

In the previous problem it was necessary to reduce one element to zero namely,
the element at position (2,1) in the matrix. We did this by pre-multiplying A by a

matrix Q formed from the unit diagonal matrix on which a 2 × 2 matrix
(

c s
−s c

)

with appropriate values for c and s was superimposed with bottom left-hand corner
at position (2,1). The method was repeated until we found a matrix Q such that
QAQ−1 was upper-triangular.

226 10 Eigenvalues and Eigenvectors

The position of the 2 × 2 matrix was chosen so that the pre-multiplying would
not change any of the elements below the diagonal that were already zero. In this
problem we must be careful to do the same. We work up the columns below the
diagonal of A reducing elements to zero, one by one at positions (4,1), (3,1), (2,1),
(4,2), (3,2) and (4,3) by superimposing the 2 × 2 matrix with appropriate c and s

with the bottom left-corner at positions (4,3), (3,2), (2,1), (4,3), (3,2) and (4,3).
A pattern for the general case may be inferred. As before the aim is to produce a
similarity transformation of A to upper-triangular form, from which we may read
the eigenvalues.

On first iteration we have the sequence
⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0.8 0.6
0 0 −0.6 0.8

⎞
⎟⎟⎠

⎛
⎜⎜⎝

3 5 −4 4
−1 −3 1 −4
4 −2 3 5
3 −5 5 4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

3 5 −4 4
−1 −3 1 −4
5 −4.6 5.4 6.4
0 −2.8 2.2 0.2

⎞
⎟⎟⎠

and then
⎛
⎜⎜⎝

1 0 0 0
0 −0.1961 0.9806 0
0 −0.9806 −0.1961 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

3 5 −4 4
−1 −3 1 −4
5 −4.6 5.4 6.4
0 −2.8 2.2 0.2

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

3 5 −4 4
5.0990 −3.9223 5.0990 7.0602

0 3.8439 −2.0396 2.6672
0 −2.8 2.2 0.2

⎞
⎟⎟⎠

and so on until all elements below the diagonal to reduce to zero and we have a
sequence

Q6Q5 · · ·Q1A =

⎛
⎜⎜⎝

5.9161 −0.8452 2.3664 8.1135
0 −7.8921 6.5888 −1.1223
0 0 −1.4097 −2.2661
0 0 0 −0.8812

⎞
⎟⎟⎠ .

However

Q6Q5 · · ·Q1AQ−1
1 Q−1

2 · · ·Q−1
6 =

⎛
⎜⎜⎝

8.8571 0.7221 1.8162 −4.9874
5.2198 −2.6003 −7.8341 3.4025

−2.1022 −1.5678 0.1808 0.4609
−0.4469 −0.5104 −0.0103 0.5623

⎞
⎟⎟⎠

is not upper triangular though it appears to be a step in the right direction. We repeat
the procedure taking this matrix as the next to be transformed.

Starting with the original matrix A, the matrices at the end of each step of the
process eventually converge to upper triangular form. The diagonal elements of
which are shown in Table 10.3. We conclude that the eigenvalues of A are 9.1390,
−4.8001, 2 and 0.6611, to the accuracy shown.

10.5 A Simple QR Method 227

Table 10.3 Eigenvalues,
simple QR method Diagonal elements

8.8571 −2.6003 0.1808 0.5623

9.2761 −5.0723 2.3788 0.4174

9.3774 −4.7131 1.7347 0.6011

9.0837 −4.8242 2.1016 0.6388

9.1839 −4.7996 1.9616 0.6541

9.1188 −4.7962 2.0187 0.6587

9.1504 −4.8041 1.9934 0.6603
.
.
.

.

.

.

9.1391 −4.8002 2.0000 0.6611

9.1390 −4.8001 2.0000 0.6611

9.1390 −4.8001 2.0000 0.6611

Table 10.4 Simple QR method

Step 1 Find a matrix Q such that QA is upper triangular

Step 2 If QAQ−1 is upper triangular then stop. The elements of the diagonal are the eigenvalues

Step 3 Repeat from step 1

Discussion

The method we have described for finding the eigenvalues of a general matrix may
be formalised as shown in Table 10.4. The QR method was invented by Francis2 in
1961 who used the terms Q and R, hence the name. The version we have described
is a simplified version, which though theoretically sound can be slow to converge
and may be defeated by rounding error. Problems involving matrices having equal
or complex eigenvalues have not been considered. Over time a great deal of work
has been done to improve QR, which is one of the most widely used and important
methods of numerical computation.

Summary In this chapter we have considered the practical importance of The
Eigenvalue problem in science and engineering. We have shown the need for calcu-
lating eigenvalues, which may be achieved in a number of ways. For finding single
eigenvalues we described the characteristic polynomial and the power method. Hav-
ing found an eigenvalue we showed how the corresponding eigenvector could be
found by solving a linear system. We showed how eigenvectors may be expressed
in normalised form.

2John G.F. Francis, English computer scientist (1934–). Working independently Russian mathe-
matician Vera Kublanovskaya also proposed the method in the same year.

228 10 Eigenvalues and Eigenvectors

To introduce the simple QR method for finding all the eigenvalues of a matrix
we considered two special cases. We showed how the eigenvalues of a diagonal
matrix and an upper triangular matrix could be found from the diagonal elements.
This suggested a means for obtaining the eigenvalues of a more general matrix. We
effected a transformation (a similarity transformation) to upper triangular form so
that original eigenvalues were preserved. We indicated that our simple QR method
could be made more efficient but that it did contain the essential ingredients of the
more powerful methods which are currently available.

Exercises

1. Either by writing your own function or by using the Matlab function poly create
the coefficients of the characteristic polynomial of the matrix

A =
⎛
⎝

2 1 −1
4 −3 8
1 0 2

⎞
⎠ .

We have seen that the matrix has an eigenvalue 3 (page 216). Use the charac-
teristic equation to find the remaining eigenvalues either directly or by using the
Matlab function roots.

A suitable sequence of commands would be

A = [2 1 −1; 4 −3 8; 1 0 2];
p = poly(A); % get the coefficients of the characteristic polynomial
ev = roots(p); % store the roots (the eigenvalues) in the vector ev

Verify that the eigenvalues are in agreement with the results given in the chapter.
2. Find the (normalised) eigenvector corresponding to each of the eigenvalues

found in question 1 by considering the solutions to Ax = λx, for a given λ.
Start by writing the equation in the form Bx = 0, where B = A − λI and I is
the identity matrix.

Use Matlab function lu to find the LU decomposition of B and consider the
linear system LUx = 0, which reduces to the upper triangular system Ux = 0.
Verify that for λ = 5 we have the system

4x1 − 2x2 + 8x3 = 0

−0.5x2 + 5x3 = 0

0x3 = 0.

As might be expected this is an indeterminate system (we could set x3 to any
number) since any eigenvalue corresponding to a given eigenvector is a multiple
of the normalised eigenvector. In order to proceed to a solution modify the last
equation to x3 = 1 and proceed to a solution using the Matlab left division oper-
ator. Verify that the solution is x = (3,10,1) and so the normalised eigenvector
corresponding to eigenvalue 5 (x/norm(x)) is (0.2860,0.9535,0.0953).

Verify that the method works equally well for complex eigenvalues and eigen-
vectors using exactly the same program.

10.5 A Simple QR Method 229

Answers may also be verified using the Matlab supplied function eig for find-
ing eigenvalues and eigenvectors. For a given matrix A, the command [v, e] =
eig(A) would produce a matrix, v whose columns are eigenvectors of A and a
diagonal matrix, e of corresponding eigenvalues.

3. Write a program to implement the power method. Make two versions, one for
the largest eigenvalue and another for the smallest (in absolute values). Use the
programs to verify the results shown in Sect. 10.3. In addition use one of the
programs to find the eigenvalue of

A =
⎛
⎝

2 1 −1
4 −3 8
1 0 2

⎞
⎠

closest to −0.5.
4. (i) Write a program to apply the simple QR method to the first problem of

Sect. 10.5. Build the sequence Q1AQ−1
1 ,Q2Q1AQ−1

1 Q−1
2 , . . . with each iter-

ation until the absolute value of element (2,1) of the matrix QAQ−1 where
Q = Qn · · ·Q2Q1, for some n is less than 1.0e-6.

Having completed the code for Step 1 of the QR method, Step 2 follows by
wrapping Step 1 in a while loop. Assuming A has been established the program
might take the following form

while abs(A(2, 1)) > 1.0e-6;
% solve -A(1, 1)∗s + A(2, 1)∗c = 0; s∧ 2 + c∧2 = 1;
s = 1/sqrt(1 + (A(1, 1)/A(2, 1))∧2);
c = s ∗(A(1, 1)/A(2, 1));
Q = [c s 0 0; −s c 0 0; 0 0 1 0; 0 0 0 1];
A = Q∗A∗Q'; % inverse Q = Q'

end;

(ii) Find the normalised eigenvectors corresponding to the eigenvalues found in
part(i) using the method of question 1.

Note that Matlab supplies a function qr to provide the QR factorisation of a
matrix. For example a command of the form [Q R] = qr(A); would for a given
matrix A return a unitary Q (a matrix such that Q−1 = QT) and upper triangular
matrix R such that QR = A. However when applied to the examples quoted in the
chapter the function takes a slightly different route in that the signs of variables
c and s (using the notation of the chapter) are reversed, in solving for c and s the
negative square root is chosen.

5. Extend the program of question 4(i) to apply the QR method to the second prob-
lem of Sect. 10.5. You might find it easier to repeat similar code from the previous
question, cutting and pasting with a little editing to make separate code for each
of the six elements to be reduced to zero. Having spotted the pattern you might
then try to shorten the program by using suitable loops to calculate c and s (using
the notation of the main text) and position the c and s sub-matrix automatically.
Use the norm of the vector of diagonal elements of QAQ−1 at the end of step 1
as the test for convergence.

Chapter 11
Statistics

Aims This chapter aims to

• introduce the statistical concepts which are frequently used whenever data, and
the results of processing that data, are discussed.

• discuss how computers can generate data to be used for test and simulation pur-
poses.

Overview We give formal definitions of a number of statistical terms, such as
standard deviation and correlation, which are in every-day use and illustrate their
relevance by way of examples. We quote a number of formulae connecting the var-
ious terms.

We reconsider the fitting of a least squares straight line to data, first discussed in
Chap. 4. We show how the results from this method may be presented in such a way
that we have a statistical estimate as to the accuracy of fit.

Finally, we discuss the production of random numbers. We establish the need for
such values and how they might be generated. In so doing we question what we
mean by a random number and suggest ways for testing how a sequence of numbers
may be regarded as being a random selection. As a by-product of random number
generation we propose a method for integration to add to those of Chap. 5.

Acquired Skills After reading this chapter you will

• understand what is meant by a number of statistical terms including random
variable, stochastic variable, histogram, frequency, frequency distribution, nor-
mal distribution, uniform distribution, expected value, average, mean, variance,
standard deviation, unbiased statistic, covariance, correlation, correlation coef-
ficient, confidence interval, random number and pseudo-random number.

You will also be able to

• calculate the mean and standard deviation of a set of numbers and by calculating
correlation coefficients be able to decide if different sets of numbers are related.

• understand the relevance of Chebyshev’s theorem to the mean and standard devi-
ation of a set of numbers.

C. Woodford, C. Phillips, Numerical Methods with Worked Examples: Matlab Edition,
DOI 10.1007/978-94-007-1366-6_11, © Springer Science+Business Media B.V. 2012

231

http://dx.doi.org/10.1007/978-94-007-1366-6_11

232 11 Statistics

• supply confidence intervals to the values of coefficients resulting from the least
squares straight line approximation to given data.

• generate random numbers to meet the needs of any particular application.
• use the Monte Carlo method for numerical integration.

11.1 Introduction

There is no doubt that scientists, engineers, economists, sociologists and indeed
anyone called upon to interpret data in either a professional or personal capacity
(a definition which encompasses practically the whole population) should have a
working knowledge of statistics. Whilst not necessarily agreeing wholeheartedly
with the popular sentiment that there are lies, damned lies and statistics, at the very
least we should be equipped to appraise critically the comments of politicians and
others who would seek to influence us by the use (and misuse) of statistics.

Statistics is too large a subject to be taught as part of a conventional numerical
methods course and for that reason is often omitted completely. What follows only
skims the surface and in order to cover a reasonable amount of ground a good deal
of mathematical detail has been omitted.

11.2 Statistical Terms

11.2.1 Random Variable

Any quantity which varies from one repetition of a process to the next is said to be a
random or stochastic variable. An example of a random variable is the first number
to be called in a lottery draw. Another example would be the mid-temperature in
central London.

11.2.2 Frequency Distribution

A diagram such as Fig. 11.1, which shows the number of students having Computing
marks within a given range, is known as a histogram. A histogram is a series of
rectangles which show the number of times (or frequency) that a particular event
(examination mark, height, weight, temperature, or whatever) occurs. The width of
each rectangle is proportional to a range of values and the height is proportional to
the frequency within that range.

Alternatively we could use a graph to record a series of points to show the fre-
quency of a particular event. The curve which is formed by linking the sequence
of points is known as a frequency distribution. A frequency distribution having the

11.2 Statistical Terms 233

Fig. 11.1 Examination
marks

Fig. 11.2 Normal
distribution

familiar well-balanced bell shape (Fig. 11.2) is known as a normal distribution. The
normal distribution is a good model for the observed frequencies of many animal
and human characteristics, psychological measurements, physical phenomena and
the outcomes of economic and sociological activities and as such has a prominent
role in statistics.

234 11 Statistics

11.2.3 Expected Value, Average and Mean

The expected value of a random variable is defined to be its average value. However,
in statistics the term mean is preferred to average, and so we use this term hence-
forth. We use E(x) to denote the expected value of a random variable x. Thus if x

is observed to take values x1, x2, . . . , xn we have

E(x) = 1

n

n∑

i=1

xi.

We can extend the definition to define the expected value of a continuous function
f (x) over an interval [a, b]. We divide the interval into n equal sections [xi, xi+1]
(x1 = a, xn+1 = b) and approximate the area under the curve by the sum of the areas
of the rectangles of height f (xi) and width b−a

n
. This is a simpler approximation

than that inherent in the trapezium rule of Chap. 5 but it serves our purpose. We
have

b − a

n

n∑

i=1

f (xi) ≈
∫ b

a

f (x) dx

and so in the limit as n tends to infinity

E
(
f (x)

) = 1

b − a

∫ b

a

f (x) dx. (11.1)

11.2.4 Variance and Standard Deviation

The expected value of a random variable does not necessarily indicate how the
values are dispersed. For example, a set of examination marks which are bunched
around the 50% level may have the same average as marks which are more widely
dispersed. Quite different conclusions might be drawn from the two sets of results.
We introduce variance and standard deviation as measures of the dispersion of a set
of values taken by a random variable.

If x is a single random variable having an expected value E(x), the variance,
Var(x), of x is defined by

Var(x) = E
([

x − E(x)
]2)

.

The definition of variance extends to a set of variables x1, x2, . . . xn, with mean value
E(x) and is usually symbolised by σ 2, where

σ 2 = 1

n

n∑

i=1

(
xi − E(x)

)2
.

11.2 Statistical Terms 235

The standard deviation is defined to be the square root of the variance and so vari-
ance is often denoted by σ 2 and standard deviation by σ .

However standard deviation is invariably computed according to the formula

σ =
√√√√ 1

n − 1

n∑

i=1

([
xi − E(x)

]2)
. (11.2)

There is a somewhat tortuous statistical justification for using n − 1 rather than
n based on the following, which may be tested by experiment to provide a more
reliable estimate. The formula is based on the values x1, x2, . . . , xn which are often
just a sample of all possible values. For example the xi values may result from a
survey of journey times to work which would have probably been based on a sample
group of employees. In this case E(x) in the formula is based on just a selection of
all possible xi values and so is not an independent variable. This restriction reduces
the degrees of freedom inherent in the equation from n to n − 1.

The standard deviation indicates where the values of a frequency distribution are
located in relation to the mean. According to Chebyshev’s theorem at least 75%
of values will fall within ±2 times the standard deviation of the mean and at least
89% will fall within ±3 times the standard deviation of the mean. For a normal
distribution the proportions of variables falling within 1, 2 and 3 standard deviations
are respectively 68%, 95% and 99%.

Problem

Find the mean and standard deviation of the sets of examination (see Table 11.1)
marks from the same group of students. The marks are given in order of student
name. Histograms were shown in Fig. 11.1. Verify that Chebyshev’s theorem holds.

Solution

The mean, Ep , for Programming is given by

Ep = (41 + 42 + 48 + 47 + 49 + 49 + 50 + 52 + 52

+ 14 + 34 + 35 + 37 + 55 + 60 + 67 + 29 + 63)/18

= 45.8.

Table 11.1 Examination marks

Programming

41 42 48 47 49 49 50 52 52 14 34 35 37 55 60 67 29 63

Engineering Design

15 21 22 30 33 37 39 43 43 47 50 56 60 63 67 70 76 79

236 11 Statistics

Table 11.2 Examination marks, Chebyshev analysis

Range No. of marks in the range No. of marks as a percentage

Ep ± 2σp (20.8,70.8) 17 94.4% (> 75%)

Ee ± 2σe (9.8,84.7) 18 100% (> 75%)

In this example we have an accurate evaluation of Ep since we are using results
from the whole group. No estimates are used and so we use n rather than n − 1 in
the denominator of the formula for variance, (11.2).

The standard deviation, σp , for Programming is given by

σp = √([
(41 − 45.8)2 + (42 − 45.8)2 + · · · + (63 − 45.8)2]/18

)

= 12.5.

The corresponding figures for Engineering design are Ee = 47.3 and σe = 9.8. If
we look at the number of marks within ±2 times the standard deviation of the mean
(see Table 11.2) we find that Chebyshev’s theorem holds.

Discussion

It is clear from the histograms shown in Fig. 11.1 that for Programming more stu-
dents are bunched around the mean than for Engineering Design. This is reflected in
the very different values of the standard deviations. The greater standard deviation
for Engineering Design indicates the greater spread of marks. Although the two sets
of marks have similar mean values this does not fully describe the situation.

11.2.5 Covariance and Correlation

If two sets of random variables x and y are being recorded we define their joint
variance, or covariance, to be Cov(x, y), where

Cov(x, y) = E
[(

x − E(x)
)(

y − E(y)
)]

.

The formula may be justified by considering the values taken by two random vari-
ables x and y. If for example, x1 and y1 vary in the same direction from the respec-
tive means E(x) and E(y), they will be contributing a positive product to the sum
of terms

n∑

i=1

(
xi − E(x)

)(
yi − E(x)

)

the larger the magnitude of the product, the stronger the relationship in that partic-
ular instance. On the other hand if xi and yi vary in opposite directions from their
respective means a negative quantity is contributed. If each instance of x, xi behaved

11.2 Statistical Terms 237

in exactly the same way as the corresponding instance yi we would have complete
agreement and so the expected value of (x −E(x))(y −E(y)) would be the positive
value of

√
Var(x)Var(y) on the other hand the complete opposite would produce the

negative value. Accordingly we construct a correlation coefficient ρ, where

ρ = Cov(x, y)√
Var(x)Var(y)

as a measure of the joint variability of random variables x and y. The coefficient
ρ may take values between ±1. We speak of variables being highly correlated, or
on the other hand of being uncorrelated, depending on the value of their correlation
coefficient ρ.

A value approaching +1 corresponds to the case where the joint variability is
high. It can be imagined that there is a high correlation between certain life styles
and respiratory and other diseases. On the other hand there would seem to be little
correlation between the rainfall in Lancashire and the number of delays on the Lon-
don Underground and so a correlation coefficient closer to zero might be expected.
A correlation coefficient approaching −1 suggests an inverse relationship. A possi-
ble example might be the number of umbrellas purchased in a holiday resort in any
one week against the volume of sun tan lotion. As one goes up, the other is expected
to go down. However, it should be emphasised that a coefficient correlation nearing
±1 does not necessarily imply cause and effect. The whole theory is based on in-
stances of comparable data. Consideration must be given to the quantity and quality
of data, the order in which data is compared and to the possibility of coincidence.

Problem

In addition to the previous examination marks consider the marks attained in Fluid
Mechanics by the same class. As before the marks are given in order of student
name (Table 11.3). Calculate the correlation coefficients for all possible pairings of
marks for Programming, Engineering Design and Fluid Mechanics.

Solution

The mean and standard deviation for Fluid Mechanics are found to be 55.6 and 18.6
respectively.

The covariance, Cov(f,p), of the marks for Fluid Mechanics and Programming
is found from

Table 11.3 Further examination marks

Fluid Mechanics

11 22 38 39 42 51 54 57 60 66 67 68 73 78 76 80 55 63

238 11 Statistics

Table 11.4 Further
examination marks,
correlation coefficients

Programming Engineering Design

Engineering Design 0.18 –

Fluid Mechanics 0.16 0.83

Fig. 11.3 Fluid Mechanics
marks

Cov(f,p) = [
(11 − 55.6)(41 − 45.8) + (22 − 55.6)(42 − 45.8) + · · ·
+ (63 − 55.6)(63 − 45.8)

]
/18

= 36.2.

Thus the product (11−55.6)(41−45.8) is the contribution to the sum from the first
student, (22 − 55.6)(42 − 45.8) from the second, and so on. It is important that the
ordering is preserved in order to compare the variability of the examination marks
across the class, taking into account how each student performs individually. The
correlation coefficient, ρ, of the marks for Fluid Mechanics and Programming is
now given by

ρ = 38.37

12.5 × 18.6
(11.3)

= 0.16. (11.4)

Similar calculations for the other pairings produce correlation coefficients are shown
in Table 11.4.

Discussion

The table of correlation coefficients shows a relatively high degree of correlation be-
tween the marks for Engineering Design and Fluid Mechanics, which is borne out
by the histograms in Figs. 11.1 and 11.3. There is a similarity in the profile of the
two sets of marks. However this similarity does not necessarily imply that a particu-
lar student is likely to have performed similarly in each examination. The similarity

11.3 Least Squares Analysis 239

may not extend beyond the nature of the examination itself. On the other hand the
correlation coefficients between the marks for Programming and the other exami-
nations are low, indicating that as a whole they have little in common. Again this is
borne out by consideration of the histograms. Other things being equal perhaps the
Programming examination was quite different in character from the other two. The
door to speculation is open.

11.3 Least Squares Analysis

We return to the problem of fitting a straight line to a given set of data using the
method of least squares first discussed in Chap. 4.

Given data (xi, yi), i = 1, . . . , n the aim is to find coefficients a and b such that
the straight line ŷ = a + bx, often referred to as the regression line, approximates
the data in a least squares sense. In general the data which we present to a least
squares program will be subject to error.

In order to measure the reliability of the approximating straight line we use a
measure known as the standard error estimate, SEE defined by

SEE =
√∑n

i=1(yi − ŷi)2

n − 2

where ŷi are the approximations to the data values yi calculated using the regression
line ŷi = a + bxi , i = 1, . . . , n.

Standard deviation was used to measure dispersion about a mean value. The stan-
dard error estimate is a measure of dispersion (or scatter) around the regression line.
As with standard deviation we take account of the number of degrees of freedom
when using standard error estimates. In this case the expression is constrained by
the equations for a and b, which are estimates for the actual (and unknown) linear
relationship between the variables x and y. The number of degrees of freedom is
reduced by two and so n − 2 appears in the denominator.

Problem

Fit a regression line (i.e. a least squares linear approximation) to the data given
in Table 11.5 using the results from (Chap. 4, question 1) find the standard error
estimate. Identify the data points which lie within 1, 2 and 3 standard errors of the
regression line.

Table 11.5 Young’s
Modulus, data t 0 100 200 300 400 500 600

y 200 190 185 178 170 160 150

240 11 Statistics

Table 11.6 Young’s
Modulus data, regression line
approximations

t y ŷ

0 200 200.2500

100 190 192.2143

200 185 184.1786

300 178 176.1429

400 170 168.1071

500 160 160.0714

600 150 152.0357

Fig. 11.4 Regression line

Solution

From previous results we know that the regression line is given by y = 200.25 −
0.0804t . Approximations ŷ to data values y at respective t values are shown in
Table 11.6. It follows that the standard error of the estimate SEE is given by

SEE =
√

1

5
(200.2500 − 200)2 + · · · + (152.0357 − 150)2

= 1.8342

The positions of the data points values (xi, yi) are shown in Fig. 11.4. The re-
sults show that the data points are distributed around the regression line. As can be
seen from Table 11.7 all the points are within ±2 standard error estimates of the
regression line. Since 3/7 (43%) rather than 68% are within ± one SEE the distri-
bution is not quite normal, which may suggest that providing all data is collected
under similar conditions further data readings are required for a more accurate fore-
cast. Intervals within which we are able to quantify error estimates are known as
confidence intervals.

11.4 Random Numbers 241

Table 11.7 Youngs’s
Modulus data, Chebyshev
analysis

y ŷ |ŷ − y| ≤
±1.8342 ±2 ∗ 1.8342

200 200.2500 ✔ ✔

190 192.2143 ✔

185 184.1786 ✔ ✔

178 176.1429 ✔

170 168.1071 ✔

160 160.0714 ✔ ✔

150 152.0357 ✔

Discussion

If it is the case that the underlying relationship to which a set of data approximates
is linear a further calculation may be made. If we are able to assume that data is col-
lected in such a way that errors are distributed normally with constant variance it is
possible to show that σb the standard deviation of the coefficient b, in the regression
line, ŷ = a + bx is given by

σb = SEE√
Sxx − n(E(Sx))2

where Sxx is the sum of squares of the xi values and E(Sx) is the mean value of the
sum of the n Sxi values. If applied to the example above the formula would produce
σb = 0.0035, which normally would give some indication of the range within which
the gradient of the line representing the accurate linear relationship lies.

11.4 Random Numbers

We consider how we might generate a sequence of random numbers, which is useful
for a number of reasons.

• Simulation As part of the modelling process computers are often used to sim-
ulate situations in which events may happen and which may happen to a varying
degree. Flight simulators, road traffic models, economic forecasts, models of in-
dustrial and scientific processes and video games are all examples in which a
computer program is required to produce events in a random manner in order
to simulate the chance events and varying conditions, which happen in everyday
life.

• Testing Testing is one of the vital stages in the production of software. Al-
though it is usual to design systematic test data with the intention of tracking
every possible route through a program it is all too easy to overlook situations
which the user rather than the software designer might encounter. One way of
testing for the unpredictable is to produce test data containing a random element.

242 11 Statistics

• Numerical methods There are problems which may be solved by Monte Carlo
methods which build a solution based on a number of random evaluations. We
look at one such method for numerical integration.

11.4.1 Generating Random Numbers

Short of attaching a coin tossing device to the computer the only feasible way of
generating random numbers is by means of software based on mathematical for-
mulae. Since numbers which are related by a formula can no longer be regarded
as being truly random, the term pseudo-random number is introduced, although the
pseudo part is often omitted. The skill in constructing such formulae lies in produc-
ing sequences which give every appearance of being random. Many have been tried
but eventually found to be wanting in that the sequence degenerates into the same
relatively short repetitive pattern. Ultimately any formula will return to its starting
point and so the aim is to make that interval (the cycle) sufficiently large so that for
all practical purposes it may be considered to be infinite. Such schemes exclude rep-
etitions within the cycle, which would be a feature of a genuinely random sequence,
but this shortcoming is deemed to be acceptable.

The most popular form of random number generator is the multiplicative con-
gruential generator which produces integers using the formula

ni+1 = λni mod m, i = 1,2, . . . (11.5)

λ is known as the multiplier, m is known as the modulus and the starting value n1 is
known as the seed. Successive values are found by calculating the remainder when
λ times the current value of ni is divided by m as shown in the following:

Problem

Generate a sequence of random numbers using the multiplicative congruential gen-
erator with multiplier 3, modulus 11 and seed 1.

Solution

Using (11.5) we have

n1 = 1

n2 = remainder
[
(3 × 1) ÷ 11

] = 3

n3 = remainder
[
(3 × 3) ÷ 11

] = 9

n4 = remainder
[
(3 × 9) ÷ 11

] = 5

n5 = remainder
[
(3 × 5) ÷ 11

] = 4

n6 = remainder
[
(3 × 4) ÷ 11

] = 1

at which point the cycle 3, 9, 5, 4, 1 repeats.

11.5 Random Number Generators 243

Discussion

Clearly the sequence we are generating could not be considered to be a satisfactory
random selection of integers from the range 1 to 10 since 2, 6, 7, 8 and 10 are miss-
ing. On the other hand the sequence ni+1 = 3ni mod 19 generates all the integers in
the range 1 to 18.

If a large selection of numbers is required, repetition of relatively short cycles
destroys all pretence that the sequence is chosen at random. The multiplicative for-
mula (11.5) has the potential to generate numbers between 1 and m − 1 and so the
hunt is on to find a and m to give sequences which generate most, if not all numbers
in the range. Ideally m should be as large as possible so that we have an algorithm
to cover all eventualities.

11.5 Random Number Generators

We give two popular generators:

ni+1 = 75ni mod
(
231 − 1

)
, i = 1,2, . . . (11.6)

and

ni+1 = 1313ni mod 259, i = 1,2, (11.7)

Generator (11.6) has the advantage that it may be programmed on most computers
using a high-level language provided care is taken to avoid integer overflow. It has
a cycle length of 231 − 1 (2147483647) and was used in early implementations of
Matlab. It has since been replaced by a different algorithm1 based on multiple seeds
with an even longer cycle length of 21430. Generator (11.7) is not so amenable to
high-level programming since the multiplier and modulus are out of normal integer
range. However it does have a cycle length of 257.

11.5.1 Customising Random Numbers

Floating point random numbers may be produced from an integer random number
generator having modulus m, by dividing by m. Using the problem above as an
example, the output as floating point numbers would be 0.2727, 0.8182, 0.4545,
0.3636, 0.0909 at which point the cycle repeats. Dividing by the modulus, m en-
sures that numbers produced lie within the range (0,1), but results may be scaled
to lie within any desired range. See the exercises for further details including the
production of random integers.

1For details see http://www.mathworks.com/moler/random.pdf.

http://www.mathworks.com/moler/random.pdf

244 11 Statistics

Without further intervention the random numbers we have generated can be con-
sidered to be uniformly distributed. In other words every number in every possible
sequence has an equal chance of appearing. In order to generate a random sequence
which has a normal distribution having mean, μ and standard deviation, σ random
points in the plane would still be generated uniformly but those that do not fall
underneath the bell shape (Fig. 11.2) would be rejected.

11.6 Monte Carlo Integration

The Monte Carlo method numerical integration is similar to the method we used for
generating normally distributed random numbers. By way of an example consider
the following problem, which we know should evaluate to π

4 (0.7854 to four decimal
places), the area of the upper right quadrant of the circle of unit radius centred on
the origin.

Problem

Evaluate
∫ 1

0

∫ 1

0

√
x2 + y2 dx dy.

Solution

In the simplest implementation of the method we generate a large number of points
(x, y) in the surrounding square of unit area and estimate the integral by counting
the proportion that lies within the boundary arc

√
x2 + y2 and the axes.

Discussion

The results showing convergence for increasing values of n are shown in Table 11.8.
Although easy to apply, the Monte Carlo method can be slow to converge. The
method is generally reserved for multiple integrals over a non-standard interval or
surface which may be difficult to subdivide. The method may also be used if the

Table 11.8 Monte Carlo
estimates for π/4 (0.7854),
question 4

n Estimate

105 0.7868

106 0.7860

107 0.7852

108 0.7854

109 0.7854

11.6 Monte Carlo Integration 245

integrand or its derivatives have discontinuities that invalidate some of the assump-
tions inherent in the more formal methods of Chap. 5.

Summary This chapter has been a somewhat cursory introduction to statistics.
You will have become familiar with a number of technical terms and will be able to
appreciate their significance when they are used in other contexts.

We have dealt with the problem of using a computer to generate random num-
bers. We explained the need for such a facility and showed by example that a mul-
tiplicative congruential generator could be used to good effect. We used the aptly
named Monte Carlo method to add to the methods for numerical integration given
in Chap. 5.

Exercises

1. Use the following segments of code in a program to explore further plotting
facilities of Matlab and to verify the results of Sects. 11.2.4 and 11.2.5 using
a selection of the Matlab statistical routines hist (histogram), bar (bar chart),
mean (mean), std (standard deviation) and cov (covariance). By default graphs
will appear in the Matlab Fig. 1 window, which should be kept in view. Because
of the usually more applicable formula (11.2) that Matlab uses for calculating
standard deviations, results may differ slightly form those quoted in the chapter.

%
% Create vectors p, e and f to contain the marks
% for Programming, Engineering Design and Fluid Mechanics
%
% basic histogram for the Fluid Mechanics

hist(e)
% set the number of columns to 5, store the number of marks in each column
% in the vector n

% column locations are recorded in cen.
%

[n cen] = hist(e, 5);
%
% Plot the histogram as a bar chart
%

bar(cen, n, 'r') % set the bar colour to r red, (Sect. 1.13)
axis([10 100 0 6]) % set axes limits
set(gca,'YTick', 0 : 1 : 6) % set the tick marks on the Y axis

% gca is a Matlab abbreviation for get current axis
gtext('Fluid Mechanics'); % add the title interactively by moving

% the cross-hairs and clicking
xlabel('Mark'); % label the x-axis
ylabel('Frequency'); % label the y-axis

%

246 11 Statistics

% Calculate mean values and standard deviations, for example:
%

mean(p)
std(p)

%
% Find the covariance of for example Programming v. Engineering Design.
% cov returns a symmetric 2 × 2 matrix with diagonal elements equal to
% the standard deviations of p and e respectively. The covariance
% is given by the off diagonal element.

X = cov(p, e)
% The correlation coefficient is given by

X(1,2)/(sqrt(X(1,1)∗X(2,2)))

2. (i) Write a program to verify the results quoted in Sect. 11.3 relating to fitting the
regression line.

(ii) Repeat the program using data for the gas problem as quoted in Table
4.1, Chap. 4. Verify that the standard error estimate, SEE is 0.2003 and that the
standard deviation of the regression coefficient, σb is 0.0958.

Although the SEE value found in case (i) (1.8342) is larger than for case (ii)
it should be remembered that in (i) we were dealing with data values of an order
102 higher. Scaling the result from (i) by 10−2 shows the SEE to be smaller by a
factor of 10, which is to be expected since the relationship between gas pressure
and volume was seen to be essentially non-linear (Fig. 4.1, Chap. 4).

3. (i) Write a program to generate 20 random numbers in the range (0,1) using
formula 11.6. Choose your own seed in the range (2,231 − 1) but use a large
number (for example 123456). You will see by experimenting that a small seed
will produce what might be considered to be an unsatisfactory random selection.

(ii) Modify the program so that the 20 random numbers in the range (−1,1)

are produced. Use the formula 2x − 1 on numbers x randomly produced in the
range (0,1).

(iii) Modify the program so that the 10 random integers in the range (5,100)

are produced. Use the formula 95x + 5 on numbers x in the range (0,1) to pro-
duce values in the range (5,100) and then take the highest integer number below
the random value using the Matlab floor function.

Matlab provides a variety of routines for generating random numbers. In par-
ticular the functions random and randint, which may be used to answer parts
(i)–(iii) of the question can take many forms as shown by the following state-
ments:

% generate a single number in the range (a, b) from a uniform distribution
r = random('unif ', a, b) ;

% as above but numbers generated in an m by n matrix from the range (a, b)
A = random('unif ', a, b, m, n);

% generate an m by n matrix of integers in the range (a, b)
A = randint(m, n, [a b]);

11.6 Monte Carlo Integration 247

By default seeds are set automatically in all Matlab functions generating random
numbers and will vary from one execution of a program to another. However
there are facilities for programmers to set specific seeds.

4. Write a program to verify the results quoted in the chapter for Monte Carlo in-
tegration. Estimate the area by generating a given number, n of random points
(x, y) drawn from a uniform distribution of x and y values in the range (0,1.0).
All (x, y) points will lie within a rectangle of area equal to 1. As points are gen-
erated count the numbers of pairs which are less than or equal to

√
x2 + y2, n1

and those which are greater, n2. The area of the quadrant will be approximately
n1/(n1 + n2).

5. The equation of the bell-shape enclosing points (x, y) over the range (−∞ <

x < ∞) having normal distribution having zero mean and standard deviation, σ

has the form

y = A exp

(−x2

2σ 2

)

where A is a constant. In practice a smaller range may be considered as y val-
ues fall rapidly and to all intents and purposes become zero as x values move
sufficiently far away from the origin.

Consider the special case, A = 1 and σ = 0.5. Find the area under the curve
for values of x in the three ranges |xi | ≤ i σ , i = 1,2,3. Use the same technique
as in the previous question to estimate the areas by generating a given number,
N of random points (x, y) drawn from a uniform distribution of x values in the
range (−3,3) and y values in the range (0,1). All (x, y) points will lie within a
rectangle of area equal to 6. There is little point in sampling outside this range
of x values since y(±3) is of order 1.5e-8 and decreasing rapidly As points are
generated count the number in each of the three groups

y ≤ exp
(−2x2) and (i) |x| ≤ 0.5, (ii) |x| ≤ 1.0, (iii) |x| ≤ 1.5.

If the final totals are n1, n2 and n3, the corresponding areas will be approximately
3ni/N , i = 1,2,3. Table 11.9 shows the (very slow) progress of the iteration for
increasing n. Write a program to verify the results shown in Table 11.9.

Express areas (i), (ii) and (iii) as fractions of the whole area enclosed by the
bell-shape and the axis to show values consistent with a normal distribution.

Table 11.9 Monte Carlo
estimates for the bell-shape,
question 5

N Area (i) Area (ii) Area (iii)

104 1.24 1.19 0.84

105 1.23 1.18 0.85

106 1.25 1.20 0.85

107 1.25 1.20 0.86

108 1.25 1.20 0.86

248 11 Statistics

Given the decreasing nature of y the integral, the relevant area under the curve
namely,

∫ +3

−3
exp

(−2x2)dx.

may be approximated using the standard result
∫ +∞

−∞
exp

(−2x2)dx =
√

π

2
.

Matlab Index

Table 1 summarises the Matlab supplied operators and functions to which we have
referred. In most cases only a few of the options available to the individual functions
have been fully utilised. Full details may be found by using the on-line help system.
It should be emphasised that this table represents a mere fraction of the facilities
available to Matlab users.

Table 1 Principle Matlab operators and functions

Name Description Page reference

Arithmetic operators

+ − ∗ / Add, subtract, multiply and divide 2

.∗ Element by element matrix multiplication 12

./ .∧ Raising to a power element by element 116

\ Left-division, if A∗X = B, X = A−1B 4

' Matrix transpose 3

Numerical functions

: Generate numbers over a range 6

sqrt, exp, sin, cos etc. Standard functions 2

bintprog Binary integer programming 164

eig Eigenvalues and eigenvectors 229

floor Nearest integer below a given number 115

function Define a new function 10

fzero Root of a function of a single variable 66

linprog Linear programming 161

lu LU decomposition 42

max Largest element 11

fminsearch Unconstrained local minimum 191

norm Norm 4

(continued on the next page)

C. Woodford, C. Phillips, Numerical Methods with Worked Examples: Matlab Edition,
DOI 10.1007/978-94-007-1366-6, © Springer Science+Business Media B.V. 2012

249

http://dx.doi.org/10.1007/978-94-007-1366-6

250 Matlab Index

Table 1 (Continued)

Name Description Page reference

ode45 Solutions to non-stiff differential equations 213

optimset Sets options for optimisation routines 68

pi π 3

polyfit Fit polynomial to data 92

polyval Polynomial evaluation 93

qr QR factorisation 229

quad Numerical integration 114

roots Roots of a polynomial 3

size Number of rows and columns 8

fsolve Solve systems of nonlinear equations 68

strcmp Compare two strings 10

strncmp Compare first n characters of two strings 10

trapz Numerical integration using the trapezium rule 115

Program control

@< name > Passing function names as parameters 66

&& || > < Relationships: and, or less than, greater than, 7

<= >= ∼ == less than or equal, greater than or equal, not, equal 7

break Terminate a loop prematurely 68

if Conditional command execution 7

clear Delete all or specified program variables 16

for loop Program section to be repeated n times 6

load Retrieve program variables from backing store 15

save Save program variables to backing store 15

while loop Program section to be repeated conditionally 8

Miscellaneous

% Program comment, not regarded by Matlab as a command 6

also used in specifying formats 13

. . . Continuation mark 13

Ctrl C Terminate execution 8

more Page by page or continuous screen output 7

Data types

cell Extension of matrix concept to elements of different type 14

complex Specify a complex number 132

global Declare a variable to be global 132

i Complex number i 132

real Extract the real part of a complex number 133

single Use 32-bit rather than 64-bit word 42

syms Symbolic variables 133

(continued on the next page)

Matlab Index 251

Table 1 (Continued)

Name Description Page reference

disp Display text string or program variable 9

ezplot Function plotter 133

fopen Access a file 14

format Define a format 12

fprintf format a string for output to a file 14

frewind File rewind 15

input Request keyboard input 9

sprintf Formatted screen output 12

textscan formatted file input 14

type File listing 14

Plotting

axis Set axis limits 160

colorbar Colour chart 12

figure Start a new (plotting) figure 161

gca Get access to the current plot to change settings 245

gtext Interactive graph annotating facility 161

linspace Specify points over an interval 12

meshgrid Specify points over a grid 12

plot 2D-graph plotting 11

surf 3D-surface plotting 12

Special matrices

eye Generate an identity matrix 165

diag Diagonal matrix with or without sub-diagonals 214

hilb Hilbert matrix 43

ones Generate a matrix with all elements = 1 43

zeros Generate a matrix with all elements = 0 214

Statistical functions

cov Covariance 245

mean Mean 11

std Standard deviation 11

bar Bar chart 11

pie Pie chart 11

hist Histogram 245

polyfit Linear regression 92

rand Random number generator 246

randint Random integer generator 246

Index

B
Backward substitution, 21
Boundary-value problem

difference equations, 209
worked example, 210

shooting method, 207
worked example, 208

C
Cauchy’s theorem, 128
Chebyshev’s theorem, 235
Cotes, 110
Curve fitting, 71

D
Dependent variable, 18
Differences, 75
Differentiation

accuracy of methods, 126
Cauchy’s theorem, 128

worked example, 128, 129
comparison of methods, 123, 130
five-point formula, 122

worked example, 124
higher order derivative, 125

worked example, 127
second-order derivative

worked example, 125
three-point formula, 122

worked example, 123
two-point formula, 120

worked example, 120, 123

E
Eigenvalue, 216

characteristic polynomial, 217
worked example, 217

largest, 218
worked example, 218

power method, 218
simple QR method, 223

worked example, 223
smallest, 221

worked example, 221
upper triangular matrix

worked example, 223
Eigenvector, 216

normalised, 217
worked example, 216

Extrapolation, 73

F
Francis, 227
Frequency, 232
Frequency distribution, 232

G
Gauss–Seidel iteration, 37

worked example, 38
Gaussian elimination, 21

multiplier, 23
partial pivoting, 26

worked example, 26, 28
pivot, 26
pivotal equation, 26
row interchange, 24
worked example, 21, 22

Global minimum, 170

H
Hilbert, 43
Histogram, 232

C. Woodford, C. Phillips, Numerical Methods with Worked Examples: Matlab Edition,
DOI 10.1007/978-94-007-1366-6, © Springer Science+Business Media B.V. 2012

253

http://dx.doi.org/10.1007/978-94-007-1366-6

254 Index

I
IEEE standards, 26
Independent variable, 18
Initial-value problem

Euler’s method, 200
worked example, 200

Runge–Kutta, 202, 204, 206
worked example, 202, 205, 206

Integer programming, 136, 149
branch and bound, 150

worked example, 151
continuous problem, 150
decision problem, 153

decision variable, 154
worked example, 154

the machine scheduling problem, 156
worked example, 156

the travelling salesman problem, 155
worked example, 155

Integrand, 97
Integration

adaptive quadrature, 112
worked example, 112

comparison of methods, 109, 114
Gaussian quadrature, 110

worked example, 111
higher order rules, 109
Monte Carlo, 244

worked example, 244
Newton Cotes, 109

three-eighths rule, 109
of analytic function, 104

worked example, 108
of irregularly tabulated function, 102

worked example, 102
of tabulated function, 98

worked example, 98
Simpson’s rule, 101, 106

worked example, 101
trapezium rule, 99, 101, 104

worked example, 99
Integration by parts, 98
Interpolating polynomial

comparison of methods, 81
Neville, 80

worked example, 80
Newton, 77

worked example, 78, 79
spline, 82

worked example, 84
Interpolation

inverse, 73
Lagrange, 108
linear, 72

piecewise, 84
worked example, 72

piecewise linear, 74
polynomial, 77

piecewise (spline), 84
Iterative refinement, 35

residual, 36
worked example, 35

J
Josephson junction, 198

L
Lagrangian, 187
Least squares approximation, 85

confidence interval, 240
linear, 86

worked example, 86
normal equations, 88
polynomial, 88, 91

worked example, 89
residual, 86

Legendre polynomial, 110
Linear approximation, 72
Linear dependence, 33
Linear equation

comparison of methods, 38
Linear programming, 135

basic variables, 144
canonical form, 140, 141

worked example, 141
constraints, 135
costs, 140
dual problem, 146
feasible region, 138
feasible vertex, 142
graphical method, 138

worked example, 138
objective, 135
optimal solution, 136
problem variables, 140
simplex method, see separate entry, 142
slack variables, 141
standard form, 141

worked example, 141
trivial constraints, 138
vertex, 140

Linear relation, 18
example

Hooke’s law, 18
Kirchoff’s law, 18
mercury thermometer, 18

Linear system, 18
as a model of physical processes, 20
banded, 211

Index 255

Linear system (cont.)
example

portal frame, 20
ill-conditioned, 37
in matrix–vector form, 19

worked example, 19
infinity of solutions, 32

worked example, 32
multiple right hand sides, 30

worked example, 30
no solution, 32

worked example, 32
no unique solution, 32

worked example, 32
overdetermined, 86
singular, 33
sparse, 211
symmetric positive definite, 33

worked example, 33
upper triangular system, 20

worked example, 20
Local minimum, 170

comparison of methods, 174, 181
constrained variables, 184
golden section search, 172

worked example, 173
grid search, 171

worked example, 171
method of steepest descent, 176

worked example, 176
multiplier penalty function method, 186

worked example, 188
penalty function method, 185

worked example, 185
rank-one method, 178

worked example, 179
rank-two method, 184
single variable, 171

LU decomposition, 24

M
Matrix

coefficient matrix, 19
determinant, 217
diagonally dominant, 35
Jacobian, 63
permutation matrix, 28
singular, 33
sparse, 38
symmetric positive definite, 33
unitary, 229
upper triangular, 21

Mean value theorem, 60
Mixed integer programming, 136

N
Natural vibration, 216
Nonlinear equation

bisection method, 48
worked example, 49

comparison of methods, 58
example

Butler–Volmer, 48
Newton–Raphson method

problems, 58
worked example, 56

rule of false position, 51
worked example, 51

secant method, 52
breakdown, 54
worked example, 52

Nonlinear system, 58
example

metal plate, 59
turbine rotor, 63

Newton’s method, 58
worked example, 59, 63

Normal distribution, 233

O
Operations research, 159
Order of convergence, 58
Ordinary differential equation, 198

boundary-value problem, see separate
entry, 199

comparison of methods, 203
first-order, 198
higher order equations, 207
initial-value problem, see separate entry,

199
local truncation error, 205
nth-order, 199
second-order, 199

P
Pseudo-random number, 242

generator, 242
multiplicative congruential, 242

R
Random number, see also pseudo-random

number, 241
Random variable, 232

average, 233
correlation, 236

worked example, 237
covariance, 236
dispersion, 234
expected value, 233

256 Index

Random variable (cont.)
mean, 233
mean and standard deviation

worked example, 235
standard deviation, 234
variance, 234

Raphson, 47
Regression, 239

standard error estimate, 239
worked example, 239

Root, 47
Rounding error, 26

S
Similarity transformation, 223

Simplex method
all slack solution, 144
artificial variable, 148
basic feasible solution, 144
non-basic variables, 143
pseudo objective, 147
revised simplex method, 146
worked example, 142, 144, 147, 148

Stochastic variable, 232

T
Taylor series, 120, 179, 204

Z
Zero (of a function), 47

	Numerical Methods with Worked Examples: Matlab Edition
	Preface
	Contents

	Chapter 1: Basic Matlab
	Aims
	1.1 Matlab-The History and the Product
	1.2 Creating Variables and Using Basic Arithmetic
	1.3 Standard Functions
	1.4 Vectors and Matrices
	1.5 M-Files
	1.6 The colon Notation and the for Loop
	1.7 The if Construct
	1.8 The while Loop
	1.9 Simple Screen Output
	1.10 Keyboard Input
	1.11 User De?ned Functions
	1.12 Basic Statistics
	1.13 Plotting
	1.14 Formatted Screen Output
	1.15 File Input and Output

	Chapter 2: Linear Equations
	Chapter 3: Nonlinear Equations
	Aims
	Overview
	Acquired Skills
	3.1 Introduction
	3.2 Bisection Method
	3.2.1 Finding an Interval Containing a Root

	3.3 Rule of False Position
	3.4 The Secant Method
	3.5 Newton-Raphson Method
	3.6 Comparison of Methods for a Single Equation
	3.7 Newton's Method for Systems of Nonlinear Equations
	3.7.1 Higher Order Systems
	Summary

	Chapter 4: Curve Fitting
	Aims
	Overview
	Acquired Skills
	4.1 Introduction
	4.2 Linear Interpolation
	4.2.1 Differences

	4.3 Polynomial Interpolation
	4.3.1 Newton Interpolation
	4.3.2 Neville Interpolation
	4.3.3 A Comparison of Newton and Neville Interpolation
	4.3.4 Spline Interpolation

	4.4 Least Squares Approximation
	4.4.1 Least Squares Straight Line Approximation
	4.4.2 Least Squares Polynomial Approximation
	Summary

	Chapter 5: Numerical Integration
	Aims
	Overview
	Acquired Skills
	5.1 Introduction
	5.2 Integration of Tabulated Functions
	5.2.1 The Trapezium Rule
	5.2.2 Quadrature Rules
	5.2.3 Simpson's Rule
	5.2.4 Integration from Irregularly-Spaced Data

	5.3 Integration of Functions
	5.3.1 Analytic vs. Numerical Integration
	5.3.2 The Trapezium Rule Again
	5.3.3 Simpson's Rule Again

	5.4 Higher Order Rules
	5.5 Gaussian Quadrature
	5.6 Adaptive Quadrature
	Summary

	Chapter 6: Numerical Differentiation
	Aims
	Overview
	Acquired Skills
	6.1 Introduction
	6.2 Two-Point Formula
	6.3 Three- and Five-Point Formulae
	6.4 Higher Order Derivatives
	6.4.1 Error Analysis

	6.5 Cauchy's Theorem
	Summary

	Chapter 7: Linear Programming
	Aims
	Overview
	Acquired Skills
	7.1 Introduction
	7.2 Forming a Linear Programming Problem
	7.3 Standard Form
	7.4 Canonical Form
	7.5 The Simplex Method
	7.5.1 Starting the Simplex Method

	7.6 Integer Programming
	7.6.1 The Branch and Bound Method

	7.7 Decision Problems
	7.8 The Travelling Salesman Problem
	7.9 The Machine Scheduling Problem
	Summary

	Chapter 8: Optimisation
	Aims
	Overview
	Acquired Skills
	8.1 Introduction
	8.2 Grid Searching Methods
	8.2.1 Simple Grid Search
	8.2.2 Golden Section Search

	8.3 Unconstrained Optimisation
	8.3.1 The Method of Steepest Descent
	8.3.2 A Rank-One Method
	8.3.3 Generalised Rank-One Method

	8.4 Constrained Optimisation
	8.4.1 Minimisation by Use of a Simple Penalty Function
	8.4.2 Minimisation Using the Lagrangian
	8.4.3 The Multiplier Function Method
	Summary

	Chapter 9: Ordinary Differential Equations
	Aims
	Overview
	Acquired Skills
	9.1 Introduction
	9.2 First-Order Equations
	9.2.1 Euler's Method
	9.2.2 Runge-Kutta Methods
	9.2.3 Fourth-Order Runge-Kutta
	9.2.4 Systems of First-Order Equations
	9.2.5 Higher Order Equations

	9.3 Boundary Value Problems
	9.3.1 Shooting Method
	9.3.2 Difference Equations
	Summary

	Chapter 10: Eigenvalues and Eigenvectors
	Aims
	Overview
	Acquired Skills
	10.1 Introduction
	10.2 The Characteristic Polynomial
	10.3 The Power Method
	10.3.1 Power Method, Theory

	10.4 Eigenvalues of Special Matrices
	10.4.1 Eigenvalues, Diagonal Matrix
	10.4.2 Eigenvalues, Upper Triangular Matrix

	10.5 A Simple QR Method
	Summary

	Chapter 11: Statistics
	Aims
	Overview
	Acquired Skills
	11.1 Introduction
	11.2 Statistical Terms
	11.2.1 Random Variable
	11.2.2 Frequency Distribution
	11.2.3 Expected Value, Average and Mean
	11.2.4 Variance and Standard Deviation
	11.2.5 Covariance and Correlation

	11.3 Least Squares Analysis
	11.4 Random Numbers
	11.4.1 Generating Random Numbers

	11.5 Random Number Generators
	11.5.1 Customising Random Numbers

	11.6 Monte Carlo Integration
	Summary

	Matlab Index
	Index

