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Series Preface

Mathematics is playing an ever more important role in the physical and
biological sciences, provoking a blurring of boundaries between scientific
disciplines and a resurgence of interest in the modern as well as the classical
techniques of applied mathematics. This renewal of interest, both in re-
search and teaching, has led to the establishment of the series Texts in
Applied Mathematics (TAM).
The development of new courses is a natural consequence of a high level

of excitement on the research frontier as newer techniques, such as numeri-
cal and symbolic computer systems, dynamical systems, and chaos, mix
with and reinforce the traditional methods of applied mathematics. Thus,
the purpose of this textbook series is to meet the current and future needs
of these advances and to encourage the teaching of new courses.
TAM will publish textbooks suitable for use in advanced undergraduate

and beginning graduate courses, and will complement the Applied Mathe-
matical Sciences (AMS) series, which will focus on advanced textbooks and
research-level monographs.

Pasadena, California J.E. Marsden
Providence, Rhode Island L. Sirovich
College Park, Maryland S.S. Antman



This book should serve as an undergraduate text to introduce students of sci-
ence and engineering to the fascinating field of optimization. Several features
have been united: conciseness and completeness, brevity and clarity, emphasis
on the justification of ideas and techniques and also on applications, etc. One
of the novelties of the text is that it ties together fields that are often treated as
separate. Indeed, it is hard to find a single textbook where mathematical pro-
gramming, variational problems, and optimal control problems are explained
and integrated as a unity. Thus, our readers may gain an overall view of all
aspects of optimization.

It is also true that each of the chapters is but a timid introduction to such
broad subjects as linear programming, nonlinear programming, numerical opti-
mization algorithms, variational problems, dynamic programming, and optimal
control. As a primer in optimization, our aim with this text is no more than to
provide a succinct introduction to those worlds, presented in a single resource
reference. This text cannot and does not pretend to substitute in the least other
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more profound textbooks on those subfields of optimization. Readers with some
experience in optimization seeking a more specialized source in some of those
parts will have to look for other references. Real-world applications are also far
from this introduction to the subject. Although we have tried to motivate the
ideas and techniques by using examples, these are most of the time academic
simplifications of much more complex situations. Many of our examples and
exercises are part of the standard collection of problems often used to intro-
duce optimization. Many of these, even in a much more general form, can also
be found in other textbooks.

Applied mathematicians, physicists, and all types of engineers and scien-
tists, may benefit from such an introduction to optimization that does not pay
much attention to formalities, technicalities, rigorous proofs, and statements,
in order to produce a brief text stressing the main ideas and the main reasons
for techniques. We have also tried to keep prerequisites to a minimum. Linear
algebra, calculus, and differential equations are essentially the only fields where
elementary knowledge is assumed. We hope to help students understand the
first principles of optimization so that they may be able to start solving some of
the problems they are interested in, and deepen their knowledge of a particular
area when needed.

I would like to thank Eduardo Casas, Carlos Corona, Julio Muñoz, and An-
tonio Ornelas for their reading of the manuscript and for the various, interesting
remarks they made. My thanks also go to the staff at Springer, particularly Achi
Dosanjh, Joel Ariaratnam, Frank Ganz, Margaret Mitchell, Timothy Taylor,
and Elizabeth Young. They all made the preparation of the manuscript and
the review process a rewarding and enjoyable task. I am well aware that errors,
inaccuracies, ambiguous statements and explanations, misprints, etc., are still
part of this text. Anyone interested in letting me know will be welcome to do
so by contacting me at pablo.pedregal@uclm.es.

Pablo Pedregal
Ciudad Real, April 2003

viii Preface



Contents

Series Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .vii.

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix.

Chapter 1. Introduction
1. Some examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.
2. The Mathematical Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.
3. The Variety of optimization problems . . . . . . . . . . . . . . . . . . . . . . . . . . .13.
4. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15.

Chapter 2. Linear Programming
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23.
2. The simplex method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30.
3. Duality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42.
4. Some practical issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49.
5. Integer programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59.
6. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63.

Chapter 3. Nonlinear Programming
1. Model problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67.
2. Lagrange multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69.
3. Karush–Kuhn–Tucker optimality conditions . . . . . . . . . . . . . . . . . . . . .79.
4. Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86.
5. Sufficiency of the KKT conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95.
6. Duality and convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102.
7. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106.

ix



Chapter 4. Approximation Techniques
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111.
2. Line search methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113.
3. Gradient methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116.
4. Conjugate gradient methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119.
5. Approximation under constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124.
6. Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131.
7. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132.

Chapter 5. Variational Problems and Dynamic Programming
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137.
2. The Euler–Lagrange Equation: examples . . . . . . . . . . . . . . . . . . . . . . .140.
3. The Euler–Lagrange Equation: justification . . . . . . . . . . . . . . . . . . . . 153.
4. Natural boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157.
5. Variational problems under integral and pointwise restrictions . .159.
6. Summary of restrictions for variational problems . . . . . . . . . . . . . . .168.
7. Variational problems of different order . . . . . . . . . . . . . . . . . . . . . . . . . 172.
8. Dynamic programming: Bellman’s equation . . . . . . . . . . . . . . . . . . . . 177.
9. Some basic ideas on the numerical approximation . . . . . . . . . . . . . . 184.

10. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190.

Chapter 6. Optimal Control
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195.
2. Multipliers and the hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197.
3. Pontryagin’s principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204.
4. Another format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224.
5. Some comments on the numerical approximation . . . . . . . . . . . . . . .226.
6. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .232.

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237.

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241.

x Contents



Chapter 1

Introduction

1. some examples

We believe that there is no better way to convince our readers of the interest and
applicability of certain mathematical ideas or techniques than to show the type
of practical problems and situations that can be tackled, and eventually solved,
by using them. At the same time, this initial list of problems and examples
may serve as a clear statement of the objectives and goals of this text. Some
of the examples might not be completely understandable in a first reading.
This should not bother our readers, since we will insist on them throughout
this chapter and their significance will be more clearly grasped by the end of
it. Most of the examples we will analyze are very well known and academic,
in the sense that the size of real problems is not comparable, in the least, to
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2 1.1 Some examples

the situations we will study. More complex versions of these problems can be
found in advanced textbooks. We think, however, that the main ideas will be
conveyed through them and will endow readers with the basic tools for more
realistic situations.

The transportation problem. A certain product is to be shipped in amounts
u1, u2, . . . , un from n service points to m destinations, where it is to be received
in amounts v1, v2, . . . , vm. See Figure 1.1. If the cost of sending one unit of
product from origin i to destination j is known to be cij , determine the quan-
tity xij to be sent from origin i to destination j so that the total transportation
cost is minimum.

Figure 1.1. A transportation network.

The diet problem. The nutritive contents of certain foods are known as
well as their prices and the daily minimum required for each nutrient. The task
consists in determining the amount of each food that must be purchased to
ensure that the minimum required for each nutrient is met and the total cost
of the diet is as small as possible.

The scaffolding system. Consider the scaffolding system of Figure 1.2,
where loads x1 and x2 are applied at certain points of beams 2 and 3, respec-
tively. Ropes A and B can bear a maximum weight of 300 kg each, C and D
can bear 200 kg, and E and F, a maximum of 100 kg each. Find the maximum
load x1 + x2 the system can bear without failure in equilibrium of forces and
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moments, the optimal loads x1 and x2, and the optimal points where they must
be applied, assuming that the weight of ropes and beams is negligible.

Figure 1.2. Scaffolding system.

Power circuit state estimation. The state variables of an electric network
are the voltages, each a complex number with modulus vi and argument δi,
at each node of the network. The active and reactive powers of the connection
between the nodes i and j are given, respectively, by

pij =
v2

i

zij
cos θij − vivj

zij
cos(θij + δi − δj),

qij =
v2

i

zij
sin θij − vivj

zij
sin(θij + δi − δj),

where the modulus zij and the phase θij determine the impedance of the line
ij. If experimental measurements vi, pij , qij of the respective values vi, pij , and
qij are available, and the parameters of the goodness of the measurements are
kv

i , kp
ij , kq

ij , respectively, estimate the state of the network by minimizing, on
the variables vi, the mean quadratic error of the available measurements with
respect to the predicted values so that the above formulas hold in the best way
possible.

Design of a moving solid. We wish to design a solid with radial symmetry
around a given axis that must travel in a straight line with constant velocity
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within a fluid. If the density of the fluid is sufficiently small, then the modulus
of the normal pressure in the direction of the outer normal to the surface of
the body exerted by the fluid over the solid comes in the form

p = 2ρv2 sin2 θ,

where ρ and v are the (constant) density and the (constant) velocity of the fluid
relative to the solid, and θ is the angle formed by the tangent to the profile of
the surface in the xy-plane and the velocity of the fluid (see Figure 1.3). How
can we find the optimal profile of the solid in order to minimize the pressure
exerted by the fluid on it?

Figure 1.3. A moving solid within a fluid.

Design of a channel. Channels are a particular type of conducting device
for fluids. Typically, the fluid does not ocupy all of the channel (Figure 1.4),
and in general, losses originate at the walls.

In some specific regime, friction can be approximated by the expression

1√
f
≈ 2 log

3.7Dh

e
,

where f is the friction coeficcient, Dh is the so-called hydraulic diameter, and
e represents a measure of rugosity. Moreover, we have

Dh = 4Rh, Rh = A/P,
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where A is the (area of the) cross section of the channel ocupied by the fluid,
and P is the perimeter reached by the same cross section of fluid. If we assume
that A is fixed, the question is to determine the profile of the cross section of
the channel that will minimize losses of fluid through the walls.

Figure 1.4. The cross section of a channel.

Boat manufacturer. A boat manufacturer has the following commitments
for a certain year: at the end of March, one boat; in April, 2; in May, 5; at the
end of June, 3; during July, 2, and 1 in August. He can build a maximum of
four boats per month, and can keep three in stock at most. The cost of each
boat is 10, 000 euros while keeping one in stock is 1, 000 euros per month. What
is the optimal strategy for building the boats so as to minimize costs?

The harmonic oscillator with friction. A control surface in a flying object
must be kept in equilibrium in a certain position. The fluctuations move the
surface, and if they were not addressed, it will vibrate according to the law

θ′′ + aθ′ + ω2θ = 0,

where θ is the angle measured from the desired equilibrium position, and a and
ω are given constants. A servomechanism applies a torque that changes the
behavior of the oscillator to

θ′′ + aθ′ + ω2θ = u,

where the control u must be bounded |u(t)| ≤ C. The problem consists in
determining the servomechanism parameter u(t) such that the surface goes
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back to rest θ = θ′ = 0 from an arbitrary state θ = θ0, θ′ = θ′0, in minimum
time.

A positioning problem. A certain mobile object moving in the plane is
controlled by two parameters: the magnitude of acceleration r and the rate
of change of the angle of rotation θ′. If we assume that r and θ′ are allowed
to move on the intervals [−a, a], [−α, α], respectively, determine the optimal
strategy to bring the mobile object from some initial conditions to rest at the
origin.

Although the collection of problems and situations could be considerably
enlarged (including some examples, as suggested earlier, closer to reality and
to technological or engineering situations), the ones stated above may already
serve to suggest that we are before a subject of a relevant applied character.
We will be learning to treat and solve these problems and many more in the
chapters that follow. Once those ideas have been understood and matured,
the reader will be able to analyze and solve by himself (herself) many more
situations from science and technology. He (she) may also choose to deepen his
(her) knowledge of a particular class of problems by looking for more advanced
textbooks on that particular area.

2. the mathematical setting

The examples of the previous section are apparently very different among them-
selves, although they all share something that enables them to be present in this
book. In all of those situations we are seeking an optimal solution, the best way
to do things, the most efficient manner, the most economical process. Because
of this, all of the ideas that have been developed over the years to examine
and solve these problems can be put under the label of OPTIMIZATION. Yet,
the above problems are very different from one another, and the techniques to
solve them or approximate their solutions reflect this same variety and wealth.
We do not pretend at this point that readers may discover by themselves these
differences, even more so before putting them in a more precise, quantitative
fashion reflecting faithfully each situation and allowing an appropriate treat-
ment leading to the solution or a good numerical approximation of it. This
process of going from the statement in plain words of a particular situation
to its formulation in precise, mathematical terms is of such importance that
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failure to carry it out accurately may result in absurd answers to problems.
The ultimate success of a certain optimization technique greatly depends on it.

The statement of the problem in precise mathematical terms should reflect
exactly what we desire to solve. In particular, in dealing with optimization
problems there are two important steps to cover. Firstly, the objective or cost
function must measure faithfully our idea of optimality. A more desirable so-
lution must have a smaller (or greater) cost functional, be a minimum time, a
greater efficiency, greater benefits, minimum losses, etc. If our cost functional
does not correctly reflect our optimization criterion, the final solution will not
presumably be the optimal situation sought. Secondly, it is equally important
to explicitly state the constraints that must be enforced so that admissible
solutions are truly feasible in our problem or situation. Once again, if these
restrictions are not accurately written, some of them are forgotten, or we are
enforcing several that are too restrictive, our final answer may not be what we
are looking for. With the aim of emphasizing these issues, we are going to treat,
sucessively, the previous problems and provide their mathematical formulation.
Before proceeding to such an endeavor, let us indicate some general comments
to bear in mind when facing some particular situation.

We have emphasized the importance of the passage from the statement of a
certain optimization problem, often in plain words, to its precise, quantitative
formulation that enables us to eventually solve the problem. Scientists and
engineers should become experts in this process. A fundamental attitude not
to be forgotten when trying to set up a particular problem or reformulate a
situation is to insist on reflecting at every stage of this process our original
objective, in such a way that the connection between a situation to be solved
and its precise formulation is always there. This requires an active attitude
with respect to the formulation or reformulation of a particular problem until
we have interpreted every aspect of the situation.

To prevent these general comments from being useless, we dare to provide
the following recommendations for those facing an optimization problem.

Understanding the optimality criterion. There should be a very clear state-
ment of the objective and the way in which optimality is to be measured. In
particular, the decision about the variables that the cost depends upon and
the constraints among them is crucial. One problem can be set up in many
different ways, and it is important to discern which might be the most efficient
form of the statement. Moreover, it is important to check extreme values of
the variables (or other relevant values) and whether the associated cost is co-
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herent with what might be expected. This sort of analysis may often lead to
the realization that an error has been made in the statement, and a revision of
variables, restrictions, and objective functional should be made.

Understanding the constraints. Restrictions linking in different ways the vari-
ables of the problem are equally significant. Those can be of a very distinct
nature: equalities, inequalities, differential equations, integral restrictions, etc.,
and may also be hidden in several forms, sometimes in a tacit or implicit
manner. What is vital is to analyze the relationship among the variables and
the constraints that must be respected. In particular, equalities may be con-
veniently utilized to decrease the number of variables. The same attitude de-
scribed above ought to push us to check constraints and their coherence with
respect to the situation we want to examine.

Reflecting on the precise formulation. Once the two previous steps have
been covered, it is worthwhile to ponder the mathematical formulation of our
problem. Do constraints seem coherent? Could the set of feasible vectors or
fields be empty? Could some of the restrictions be simplified or eliminated
altogether because some constraints are stricter than others? Could the cost
be made as small as we like without violating any of the constraints? If so, it
is more than likely that we have forgotten some restriction. Could we possibly
anticipate whether there is a single optimal solution or whether there could be
several?

Brief analysis of solutions. Finally, it is a good thing to get used to examining
briefly the optimal solution that has been obtained or approximated. Does it
seem like a minimum cost, a maximum efficiency, etc.? Is it plausible that it is
indeed an optimal solution? Does it reflect the desired optimality with respect
to the terms of the initial problem? Does it satisfy all the requirements?

As the saying goes, “practice makes perfect,” and optimization problems
and techniques are no exception. Exercises and situations will help students
to go through all the stages described above rapidly and accurately. In the
beginning there will be errors, insecurity, inefficiency, shortage of ideas to over-
come difficulties, etc., but as students master these aspects, self-confidence will
result.

We now proceed to provide the precise formulation of the different problems
proposed in the last section. We urge students to work on understanding the
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connection between the original formulation of a problem and its translation
into equations, formulas, inequalities, equalities, etc. This process typically in-
volves setting up a model of the proposed situation. In some simple cases, such
a model will be sufficiently clear, and no particular difficulty will be encoun-
tered in putting the problem in the appropriate format. In others, however,
there may be an initial gap in understanding the mechanisms associated with a
specific situation, and additional effort will be necessary to grasp its significance
and reach a precise formulation.

The transportation problem. If xij is the amount of the product sent from
initial location i to destination j, the total cost will be∑

i,j

cijxij

if cij is the unit cost of sending the product from i to j. What are the restrictions
we must respect? For a fixed service point i, ui is the quantity to be shipped,
so that ∑

j

xij = ui, i = 1, 2, . . . , n;

likewise, for every fixed destination, the amount vj should be received, and this
enforces ∑

i

xij = vj , j = 1, 2, . . . , m.

Notice that these two sets of equalities are compatible if∑
i

ui =
∑

j

vj ,

which is a restriction that the data of the problem must satisfy for the problem
to be well posed. Moreover, if we accept that the feature of being a service
point or a destination cannot be reversed, then we must ask for

xij ≥ 0, for all i, j.

Altogether, we are seeking to

Minimize
∑
i,j

cijxij
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under ∑
j

xij = ui, i = 1, 2, . . . , n;

∑
i

xij = vj , j = 1, 2, . . . , m;

xij ≥ 0, for all i, j.

The diet problem. Let xi be the amount of food i to be bought. The total
cost we would like to minimize is

∑
i

cixi

if ci is the unit price of food i. Let aij be the content of nutrient j per unit of
food i, and bj the daily minimum required of nutrient j. Then we must make
sure that in our choice of the diet this minimum is met:

∑
i

ajixi ≥ bj , for all j.

Finally, we must ask for the nonnegativity of each xi:

xi ≥ 0, for all i.

The problem is

Minimize
∑

i

cixi

subject to ∑
i

ajixi ≥ bj , for all j,

xi ≥ 0, for all i.

The scaffolding system. If we denote by TA, TB , TC , TD, TE , TF the
tensions on each rope when they bear an overall load x1 and x2, applied at
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points x3 and x4 units away from the left endpoints of each corresponding beam,
the conditions of equilibrium of force and momentum lead to the equations

TE + TF = x2, 8TF = x4x2,

TC + TD = x1 + TE + TF , 10TD = x3x1 + 2TE + 10TF ,

TA + TB = TC + TD, 12TB = 2TC + 12TD.

If we now express the different tensions on each rope in terms of our design
variables xi, we have

x2x4

8
= TF ≤ 100,

8x2 − x2x4

8
= TE ≤ 100,

2x2 + x1x3 + x2x4

10
= TD ≤ 200,

10x1 + 8x2 − x1x3 − x2x4

10
= TC ≤ 200,

2x1 + 4x2 + x1x3 + x2x4

12
= TB ≤ 300,

10x1 + 8x2 − x1x3 − x2x4

12
= TA ≤ 300,

and these inequalities should be satisfied. Moreover, we must ask for

x1 ≥ 0, x2 ≥ 0, 0 ≤ x3 ≤ 10, 0 ≤ x4 ≤ 8.

The problem is then to
Maximize x1 + x2

subject to

x1 ≥ 0, x2 ≥ 0,

0 ≤ x3 ≤ 10, 0 ≤ x4 ≤ 8,

x2x4 ≤ 800, 8x2 − x2x4 ≤ 800,

2x2 + x1x3 + x2x4 ≤ 2000, 10x1 + 8x2 − x1x3 − x2x4 ≤ 2000,

2x1 + 4x2 + x1x3 + x2x4 ≤ 3600, 10x1 + 8x2 − x1x3 − x2x4 ≤ 3600.

Power circuit state estimation. In this example, we are told to minimize
the mean quadratic error of certain measurements with respect to the predicted
values. Specifically, we seek to

Minimize
∑
i∈Ω

kv
i (vi − vi)2 +

∑
i∈Ω

∑
j∈Ωi

kp
ij(pij − pij)

2 +
∑
i∈Ω

∑
j∈Ωi

kq
ij(qij − qij)

2
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where the different data are given in the statement and

pij =
v2

i

zij
cos θij − vivj

zij
cos(θij + δi − δj),

qij =
v2

i

zij
sin θij − vivj

zij
sin(θij + δi − δj).

The unknown variables are (vi, δi), and we do not have any explicit restriction
on these. Here Ω is the set of nodes, while Ωi is the set of those connected to
node i.

Design of a moving solid. According to our previous explanation and the
corresponding diagram, the component along the x-axis of the normal pressure
on a point on the surface of the solid is

p sin θ = 2ρv2 sin3 θ.

The total pressure in a slice of width dx will be the product of the previous
expression times the lateral surface of the slice,

dP = 2ρv2 sin3 θ 2πy(x)
√

1 + y′(x)2 dx,

if a given profile of the solid is obtained by rotating the graph of the function
y(x). If we write sin θ in terms of tan θ = y′(x), we arrive at

dP = 2ρv22π
y′(x)3

(1 + y′(x)2)3/2
y(x)

√
1 + y′(x)2 dx,

or simplifying,

dP = 4πρv2 y(x)y′(x)3

1 + y′(x)2
dx.

The objective functional providing the total pressure is

P = 4πρv2

∫ L

0

y(x)y′(x)3

1 + y′(x)2
dx,

and we are interested in finding the profile y(x) that minimizes the previous
integral among all (continuous) profiles satisfying y(0) = 0, y(L) = R.
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Design of a channel. Since losses at the wall of a channel are proportional
to the inverse of the perimeter, for a given fixed cross section A, the best profile
is to be found in the sense that it should have the least perimeter possible. More
specifically, we are seeking the profile y(x) such that it minimizes the integral

∫ R

0

√
1 + y′(x)2 dx,

which provides the length of the graph of y(x), subject to

y(0) = 0, y(R) = 0,

∫ R

0

y(x) dx = A.

Boat manufacturer. This problem is self-explanatory, and no further com-
ments are needed.

The harmonic oscillator with friction. In this example, the best control
u(t) is to be found that leads the oscillating surface to rest as soon as possible
and at the same time respects the restriction on the size |u(t)| ≤ C.

A positioning problem. A mobile object in a plane can be controlled by
two parameters at our disposal, r1 and r2, expressing the modulus of change of
velocity and the rapidity with which the direction of movement can be changed
(angular velocity of movement), respectively. The equations of motion are

x′′(t) = cos θ(t)r1(t), y′′(t) = sin θ(t)r1(t), θ′(t) = r2(t).

Restrictions on the feasible pairs (r1, r2) are written by requiring

(r1, r2) ∈ [−a, a] × [−α, α].

The objective is to change the position of the object from, say, (x0, y0) standing
at rest x′(0) = y′(0) = 0 at the initial time, to the origin in minimum time

x(T ) = y(T ) = x′(T ) = y′(T ) = 0,

for T as small as possible.
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3. the variety of optimization problems

We have already noted, and it is more than likely that readers have also ap-
preciated it, the tremendous differences among optimization problems. These
differences have motivated the structure of this text.

Perhaps the most significant difference lies in the fact that in some problems,
vectors describe solutions and optimal solutions, whereas in other cases func-
tions are needed to formulate and solve the problem. This important, profound
qualitative distinction results in a difference between optimization techniques
for these two categories of problems. The situation is similar to the case of
equations or systems of equations in which we are interested in a vector solu-
tion, a bunch of numbers, and differential equations where the unknown is a
function. In the first case, we talk about mathematical programming; in the
second, about variational problems. In a second approximation, mathematical
programming can be divided into linear programming (Chapter 2), dealing with
the simpler world of linear problems, and nonlinear programming (Chapter 3),
for the complex nonlinear optimization techniques. The transportation and
diet problems correspond to linear programming, while the scaffolding system
and the power circuit state estimation are examples of nonlinear optimization
problems.

The type of situations where we intend to find optimal functions for specific
situations can be classified into variational problems (Chapter 5) with a brief in-
cursion into dynamic programming, and optimal control problems (Chapter 6).
The design of a moving solid or a channel and the boat manufacturer problem
correspond to variational problems and dynamic programming. The harmonic
oscillator and the positioning problem are typical examples of optimal control
problems.

Chapter 4 is like a point of intersection between the world of vectors and that
of functions. We will understand this assertion later. Our aim in this chapter
is to describe the most basic and relevant numerical algorithms for computing
and/or approximating optimal solutions to problems. Since in most of the real
situations one may encounter, exact optimal solutions are not to be expected,
these computational techniques are crucial. We will restrict attention to the
most basic, well-known such techniques. Our objective is to let readers have
some idea about the nature of approximation techniques for optimization prob-
lems. We have not included explicit implementation of algorithms for two main
reasons. There are a number of existing and tested commercial optimization
software packages (see Chapter 4 for some specific references) that are quite
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helpful, since they free us from having to be concerned about technical issues
related to approximation, and instead focus on the modeling task. On the other
hand, the fine tuning of algorithms, especially when nonlinear restrictions must
be taken into account, requires considerable experience and expertise as soon
as the number of independent variables grows above a few. The nonexpert
would probably do a poor job compared to that carried out in those software
packages. This does not mean that it is useless to have some experience trying
to write personal programs for some simple situations. We have written down
some simple versions of algorithms in pseudocode format.

Finally, it is important to stress that each of these chapters is but a timid
initiation into the corresponding ideas. The wealth of situations, the peculiari-
ties of realistic problems, the need for better computational methods and algo-
rithms, and the need for a deeper understanding of the structure of problems
can be such that a whole book would be needed to more fully cover each of these
small chapters. Our intention is to furnish a first overall view of optimization,
emphasizing the basic ideas and techniques in each category of optimization
problem.

4. exercises

1. An investor is seeking to invest a certain capital K in a diversified manner
so as to maximize expected profits at the end of a certain period of time.
If ri is the expected average interest rate for investment i, and to avoid
excesive risk he (she) does not want to put on any one investment more
than a fixed percentage r of the capital, formulate the problem leading to
the best solution. Can you figure out other types of reasonable restrictions
to enforce in such a situation?

2. In the context of the scaffolding system described earlier in the chapter,
assume that the points where loads x1 and x2 are applied are exactly the
midpoints of beams CD and EF, respectively. Formulate the problem. What
is the main difference between this situation and the one described in the
text?

3. A company that manufactures tiling elements for roofs must provide 7800 m2

of these elements for several houses. Two different elements can be used:
Model A10 requires 9.5 elements per square meter, and model A13 needs
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12.5 elements per square meter. Both models can be used in the same roof.
The respective prices are 0.70 and 0.80 euros per element. The company has
1600 labor hours to finish the roofs. In one hour, 5 m2 of model A10 and 4
m2 of model A13 can be installed. Due to baking restrictions, the maximum
amount of model A13 that can be sent is 2500 m2. Formulate the problem
of maximizing benefits subject to all of the restrictions indicated.

Figure 1.5. A system of springs.

4. In the system of springs of Figure 1.5, each node is free to rotate about
itself. If each spring has a constant ki characterizing elongation (according
to Hooke’s law) and the equilibrium position of the free central node is
determined through the system

∑
i

ki(x − xi) = 0,

where xi is the position of fixed joints, describe how to determine the optimal
spring constants ki that minimize the work done by a constant force F on
the free node, assuming that

∑
i

ki = k,

a fixed positive constant.
5. A company is to build several (m) service points to serve a certain number

(n) of known clients. A decision is to be made about the optimal location of
those service points. Assuming that the criterion chosen is global minimal
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distance from service points to clients, state the problem as a nonlinear
programming problem. Describe other ways of making that decision.

6. A quadrature formula is a way to efficiently approximate definite integrals
through sums of the type

∫ b

a

f(x) dx ≈
n∑

j=1

αjf(xj),

where weights αj and points xj determine the particular quadrature rule.
We would like to determine the vector of n weights (αj) and n points (xj)
in the interval [−1, 1] so that the corresponding quadrature is exact for
polynomials of degree as high as possible. The procedure is to minimize
the quadratic error of the quadrature formula for polynomials of degree m.
State the problem as a nonlinear programming problem.

7. The Cobb–Douglas utility function is of the form

u(x, y) = xαy1−α, 0 < α < 1, x ≥ 0, y ≥ 0.

Assume an economy of two consumers, 1 and 2, and two commodities X
and Y . Both consumers have the same utility function of the type above
with the same exponent α, and resources

(xi, yi) , i = 1, 2,

for each commodity. If prices p = (pX , pY ) prevail in the market for both
commodities, formulate the problem of maximizing satisfaction for each
consumer as measured by their utility functions.

8. A ladder must lean against a wall where a box of dimensions a× b is placed
against the same wall as in Figure 1.6. Formulate the problem of finding the
shortest such ladder.

9. John is supposed to cut ni bars of length ai, i = 1, 2, . . . , d, from bars of
fixed given length L, ai ≤ L for all i. What is the minimum number of such
bars he needs? Find a precise formulation of this optimization problem.

10. An airplane is flying with speed v with respect to the ground in a bounded
irrotational wind field given by ∇ϕ(x, y, z) and such that v > |∇ϕ|. Starting
and ending at the same point, what are the longest and shortest paths it
can fly in a given time interval [0, T ]? Write down the problem assuming
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that v is constant and the direction of velocity is at our disposal. (Hint:
Write a parametrization of a curve

σ(t) = (x(t), y(t), z(t)).

What do we know about x′, y′, z′ in terms of v, the direction of velocity
and ∇ϕ? Keep in mind that the length of such a curve is given by

∫ T

0

|σ′| dt.)

Figure 1.6. A ladder against a wall.

11. A rope is hanging vertically in equilibrium from its upper fixed endpoint
(Figure 1.7). It is stretched by the action of its own weight and a constant
mass W at its lower end. The problem consists in determining the optimum
distribution of the cross-sectional area a(x), 0 ≤ x ≤ L, so as to minimize
the total elongation. The unstretched length L, the total volume V , the
density ρ, and Young modulus E are constant and known.
1. What is the integral restriction related to the volume V that the function

a(x) must satisfy to be admissible?
2. Let y(x) be the distance, measured form the upper fixed endpoint and

corresponding to the design a(x), that the section at distance x in the
unstretched configuration moves to when the rope is pulled by the weight
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W . Assume that Hooke’s law applies: The strain y′(x) at each point is
proportional (with proportionality constant 1/E) to the stress there,
where the stress at x is the total downward force divided by the cross-
sectional area a(x). Write down this law in the form of an equation.

3. How is the objective expressed in terms of y? Is there a further restriction
to be imposed on y?

Figure 1.7. A rope with varying cross section.

12. The problem of the slowest descent to the moon can be formulated in the
following terms. If v(t) and m(t) are the velocity and combined mass of the
spacecraft and fuel at time t, σ is the (constant) relative ejection velocity
of fuel, and g is gravity, then the state law is written

(m + dm)(v + dv) − dm (v + σ) − mv = mg dt,

or equivalently,
dv

dt
= g +

σ

m

dm

dt
.

If the rate of ejection per unit time −dm/dt can be controlled within an
interval [0, α], formulate the problem of soft landing in minimum time in
precise terms.



20 1.4 Exercises

13. A jet plane is to reach a certain point in space in minimum time from take-
off. Assuming that the total energy (kinetic plus potential plus (minus) fuel)
is constant, the jet burns fuel at its maximum constant rate, and it has
zero velocity at takeoff, formulate the corresponding optimization problem.
(Hint: The equation of total energy leads us to postulate

v2 + 2gy = at,

where v = (x′, y′) is the velocity, g is the acceleration due to gravity, and a
is the constant maximum rate at which the jet burns fuel.)

14. In connection with the construction of an optimal refracting medium, the
following problem arises:

Maximize y(1)

subject to

y′′(x) − F (x)y(x) = 0, y(0) = 1, y′(0) = 0,

F ≥ 0,

∫ 1

0

F (x) dx = M.

Reformulate this problem as an optimal control problem with an integral
objective functional.

15. An aggregate model of economic growth can be described by the following
equations

Y (t) = F (L(t),K(t)),

K ′(t) + µK(t) = Y (t) − X(t),
L′(t)
L(t)

= n,

where Y is the single output of the economy, using two inputs, labor (L)
and capital (K), X denotes the amount of consumption, µ is the rate of
depreciation, the variable t indicates time, and n is the constant rate at
which labor grows. The objective of this economy is to maximize the welfare
integral ∫ ∞

0

u(X(t)/L(t))e−ρt dt,

where ρ is the time discount factor. Try to simplify the formulation of this
problem as much as possible.
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16. Sometimes, optimization problems may not adapt themselves to either of
the formats described in this chapter, mainly because the optimality crite-
rion is more involved than the ones envisioned in this text. For example,
a hydraulic cushion unit (Figure 1.8), such as those used in the railroad
industry, develops a cushioning force given by

F = c
v2

a2 , 0 ≤ x ≤ xm,

where c is a constant, v = v(x) is the velocity of the cushion, a(x) is an
orifice area that is allowed to vary with displacement x, and xm is the
maximum displacement permitted under appropriate geometric constraints.
The design of such units seeks to choose a(x) so as to minimize the maximum
force for a given impact mass m with impacting velocity v0. Show that the
optimum is obtained when a(x)2 varies linearly with x. (Hint: The work
energy formula is

1
2
mv2 =

1
2
mv2

0 −
∫ x

0

F (s) ds.

What information does this equation provide at the end of impact when
v = 0?)

Figure 1.8. A cushion unit.



Chapter 2

Linear Programming

1. introduction

The main feature of a linear programming problem (LPP) is that all functions
involved, the objective function and those expressing the constraints, must be
linear. The appearance of a single nonlinear function, either on the objective
or in the constraints, suffices to reject the problem as an LPP.

Definition 2.1 (General form of an LPP) An LPP is an optimization prob-
lem of the general form

Minimize cx =
∑

i

cixi

23
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subject to ∑
i

ajixi ≤ bj , j = 1, . . . , p,

∑
i

ajixi ≥ bj , j = p + 1, . . . , q,

∑
i

ajixi = bj , j = q + 1, . . . , m,

where ci, bj , aji are data of the problem. Depending on the particular values
of p and q we may have inequality constraints of one type and/or the other,
and equality restrictions as well.

We can gain some insight into the structure and features of an LPP by
looking at one simple example.

Example 2.2 Consider the LPP

Maximize x1 − x2

subject to

x1 + x2 ≤ 1, −x1 + 2x2 ≤ 2,

x1 ≥ −1, −x1 + 3x2 ≥ −3.

Figure 2.1. The feasible region and level curves in an LPP.
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It is interesting to realize the shape of the set of vectors in the plane satisfy-
ing all the requirements that the constraints express: Each inequality represents
a “half-space” at one side of the line corresponding to changing the inequality
to an equality. Thus the intersection of all four half-paces will be the “feasi-
ble region” for our problem. Notice that this set has the form of a polygon or
polyhedron. See Figure 2.1.

On the other hand, the cost, being linear, has level curves that are again
straight lines of equation x1 − x2 = t, a constant. When t moves, we obtain
parallel lines. The question is then how big t can become so that the line of
equation x1−x2 = t meets the above polygon somewhere. Graphically, it is not
hard to realize that the optimal vector corresponds to the vertex (−1/2, 3/2),
and the value of the maximum is 2.

Note that regardless of what the cost is, as long as it is linear, the optimal
value will always correspond to one of the four vertices of the feasible set. These
vertices play a crucial role in the understanding of LPP, as we will see.

An LPP can adopt several equivalent forms. The initial form usually de-
pends on the particular formulation of the problem, or the most convenient
way in which the constraints can be represented. The fact that all possible
formulations correspond to the same underlying optimization problem enables
us to fix one reference format, and refer to this form of any particular problem
for its analysis.

Definition 2.3 (Standard form of an LPP) An LPP in standard form is

Minimize cx under Ax = b, x ≥ 0. (P )

Thus, the ingredients of every LPP are:
1. an m × n matrix A, with n > m and typically n much greater than m;
2. a vector b ∈ Rm;
3. a vector c ∈ Rn.

Notice that cx is the inner product of the two vectors c and x, while Ax is
the product of the matrix A and the vector x. We will not make the distinction
between these possibilities, since it will be clear from the context. It is there-
fore a matter of finding the minimum value the inner product cx can take on
as x runs through all feasible vectors x ∈ Rn with nonnegative components
(x ≥ 0) satisfying the additional, and important restriction Ax = b. We are
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also interested in one vector x (or all vectors x) where this minimum value is
achieved.

We have argued that any LPP can in principle be transformed into the
standard form. It is therefore desirable that readers understand how this trans-
formation can be accomplished. We will proceed in three steps.

1. Variables not restricted in sign. For the variables not restricted in sign,
we use the decomposition into positive and negative parts according to the
identities

x = x+ − x−, |x| = x+ + x−,

where
x+ = max {0, x} ≥ 0, x− = max {0,−x} ≥ 0.

What we mean with this decomposition is that a variable xi not restricted in
sign can be written as the difference of two new variables that are nonnegative:

xi = x
(1)
i − x

(2)
i , x

(1)
i , x

(2)
i ≥ 0.

2. Transforming inequalities into equalities. Quite often, restrictions are for-
mulated in terms of inequalities. In fact, an LPP will come many times in the
form

Minimize cx under Ax ≤ b, A′x = b′, x ≥ 0.

Notice that by using multiplication by minus signs we can change the direction
of an inequality. In this situation, the use of “slack variables” permits the
passage from inequalities to equalities in the following way. Introduce new
variables by putting

y = b − Ax ≥ 0.

If we now set
X = ( x y ) , Ã = (A 1 ) ,

where 1 is the identity matrix of the appropriate size, the inequality restrictions
are written now as

ÃX = b,

so all constraints are now in the form of equalities, but we have a greater
number of variables (one more for each inequality).
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3. Transforming a max into a min. If the LPP asks for a maximum instead of
for a minimum, we can keep in mind that

max(expression) = −min(−expression);

or more explicitly,

max {cx : Ax = b, x ≥ 0} = −min {(−c)x : Ax = b, x ≥ 0} .

An example will clarify any doubt about these transformations.

Example 2.4 Consider the LPP

Maximize 3x1 − x3

subject to
x1 + x2 + x3 = 1,
x1 − x2 − x3 ≤ 1,

x1 + x3 ≥ −1,

x1 ≥ 0, x2 ≥ 0.

1. Since there are variables not restricted in sign, we must set

x3 = y1 − y2, y1 ≥ 0, y2 ≥ 0,

so that the problem will change to

Maximize 3x1 − y1 + y2

subject to
x1 + x2 + y1 − y2 = 1,

x1 − x2 − y1 + y2 ≤ 1,

x1 + y1 − y2 ≥ −1,

x1 ≥ 0, x2 ≥ 0,

y1 ≥ 0, y2 ≥ 0.

2. We use slack variables so that inequality restrictions may be transformed
into equalities: z1 ≥ 0 and z2 ≥ 0 are used to transform

x1 − x2 − y1 + y2 ≤ 1, x1 + y1 − y2 ≥ −1,
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respectively, into

x1 − x2 − y1 + y2 + z1 = 1, z1 ≥ 0,

and
x1 + y1 − y2 − z2 = −1, z2 ≥ 0.

The problem will now have the form

Maximize 3x1 − y1 + y2

subject to
x1 + x2 + y1 − y2 = 1,

x1 − x2 − y1 + y2 + z1 = 1,
x1 + y1 − y2 − z2 = −1,

x1 ≥ 0, x2 ≥ 0,

y1 ≥ 0, y2 ≥ 0,

z1 ≥ 0, z2 ≥ 0.

3. Finally, we easily change the maximum to a minimum:

Minimize − 3x1 + y1 − y2

subject to
x1 + x2 + y1 − y2 = 1,

x1 − x2 − y1 + y2 + z1 = 1,
x1 + y1 − y2 − z2 = −1,

x1 ≥ 0, x2 ≥ 0,

y1 ≥ 0, y2 ≥ 0,

z1 ≥ 0, z2 ≥ 0,

bearing in mind that once the value of this minimum is found, the corresponding
maximum will have its sign changed.

If we uniformize the notation by writing

(X1, X2, X3, X4, X5, X6) = (x1, x2, y1, y2, z1, z2),
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the problem will obtain its standard form

Minimize X3 − X4 − 3X1

subject to
X1 + X2 + X3 − X4 = 1,

X1 − X2 − X3 + X4 + X5 = 1,

X1 + X3 − X4 − X6 = −1,

X ≥ 0.

Once this problem has been solved and we have an optimal solution X and the
value of the minimum m, the answer to the original LPP would be as follows:
The maximum is −m, and it is achieved at the point (X1, X2, X3 − X4). Or
if you like, the value of the maximum will be the value of the original linear
cost function at the optimal solution (X1, X2, X3 − X4). Notice how the slack
variables do not enter into the final answer, since they are auxiliary variables.

Concerning the optimal solution of an LPP, all situations can actually hap-
pen:
1. the set of admisible vectors is empty;
2. it can have no solution at all, because the cost cx can decrease indefinitely

toward −∞ for feasible vectors x;
3. it can admit a single optimal solution, and this is the most desirable situa-

tion;
4. it can also have several, in fact infinitely many, optimal solutions; indeed,

it is very easy to check that if x1 and x2 are optimal, then any convex
combination

tx1 + (1 − t)x2, t ∈ [0, 1],

is again an optimal solution.

In the next section, we will see how to solve an LPP in its standard form by
the simplex method. Though interior-point methods are becoming more and
more important in mathematical programming, in both versions, linear and
nonlinear, we tend to believe that they are the subject of a second course on
mathematical programming. The fact is that the simplex method helps greatly
in understanding the special structure of linear programming as well as duality.
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2. the simplex method

We look more closely at an LPP in its standard form, and describe the simplex
method, which is one of the most successful approaches for finding the optimal
solution for such problems. Let us concentrate, then, on the problem of finding
a vector x solving

Minimize cx

subject to
Ax = b, x ≥ 0.

There is no restriction in assuming that the linear system Ax = b is solvable, for
otherwise, there would be no feasible vectors. Moreover, if A is not a full-rank
matrix, we can select a submatrix A′ by eliminating several rows of A, and the
corresponding components of b, so that the new matrix A′ has full rank. In this
case we obtain the new, equivalent, LPP

Minimize cx

subject to
A′x = b′, x ≥ 0,

where b′ is the subvector of b obtained by eliminating the components cor-
responding to the rows of A we have previously discarded. This new LPP is
equivalent to the initial one in the sense that they both have the same optimal
solutions, but the matrix A′ for the reduced problem is a full-rank matrix. We
shall therefore assume, without loss of generality, that the rank of the m × n
matrix A is m (remember m ≤ n) and that the linear system Ax = b is solvable.

There are special feasible vectors that play a central role in the simplex
method. These are the solutions of the linear system Ax = b with nonnegative
and at least n−m null components. In fact, all of these extremal points or basic
solutions, as they are typically called, can, in principle, be obtained by solving
all square m × m linear systems Ax = b where n − m components of x are set
to zero, and discarding those solutions with at least one negative component.
The very special linear structure of an LPP enables us to concentrate on these
basic solutions when looking for optimal solutions.

Lemma 2.5 If the LPP

Minimize cx
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subject to

Ax = b, x ≥ 0,

admits an optimal solution, then there is also an optimal solution that is a
basic solution.

This is quite evident if we realize that the feasible set of an LPP is some
kind of “polyhedron,” and therefore minimum (or maximum) values of linear
functions must be taken on at a vertex. See Figure 2.2, and remember the
comments on Example 2.2.

Figure 2.2. Optimal basic solution.

For the proof of the lemma, assume that x is an optimal solution with at
least m + 1 strictly positive components, and let d be a nonvanishing vector
in the kernel of A with the property that xi = 0 implies di = 0. If x has at
least m + 1 strictly positive components, such a vector d can always be found
(why?).

We claim that necessarily cd = 0. For otherwise, if t is small enough so that
x + td is feasible (i.e., x + td ≥ 0) and tcd < 0, then the cost of the vector
x+ td is stricly smaller than that of x itself, which is impossible if x is optimal.
Therefore, cd = 0, and the vectors x + td are also optimal as long as they
are feasible. All that remains to be done is to move t away from zero (either
positive or negative) until some of the components of x + td hit zero for the
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first time. For such value of t we would have an optimal solution with at least
one more vanishing component than x. This process can be repeated as long as
the vector d is not the zero vector, i.e., until the optimal solution has at least
n − m vanishing components.

As an immediate consequence of Lemma 2.5, we can find optimal solutions
for an LPP by looking at all solutions of the system Ax = b with at least n−m
zeros, discarding those with some negative component, and, by computing the
cost of the remaining ones, decide on the optimal vector. This process would
indeed lead us to one optimal solution, but the simplex method aims to organize
these computations in a judicious way so that we can reach the optimal solution
as soon as possible without having to go through an exhaustive analysis of
all extremal points. In some cases, though, the simplex method actually goes
through all basic solutions before finding an extremal solution. This situation
is, however, rare.

The SM starts at one particular extremal feasible vector x, which, after an
appropriate permutation of indices, can be written as

x = (xB 0 ) , xB ∈ Rm, 0 ∈ Rn−m, xB ≥ 0.

The basic iterative step consists in setting one of the components of xB to zero
(the so-called “leaving variable”), and letting a vanishing component of 0 ∈
Rn−m (the “entering variable”) become positive. In this way, we have moved
from an extremal point to an adjacent one. The key issue is to understand how
to make these choices (leaving and entering variables) in such a way that we
lower the cost as much as possible. Furthermore, we need a criterion to decide
when the cost cannot be decreased any more, so that we have actually found
an optimal solution and no more iterative steps are needed. We discuss this
procedure more precisely in what follows.

Let
x = (xB 0 ) , xB ∈ Rm, 0 ∈ Rn−m, xB ≥ 0,

be a feasible extremal vector. In the same way, the matrix A, after the same
permutation of columns, can be decomposed as

A = ( B N ) .

The equation Ax = b is equivalent to

( B N )
(

xB

0

)
= b, xB = B−1b.
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The cost of such a vector x is

cx = ( cB cN )
(

xB

0

)
= cBxB = cBB−1b.

The basic step of the simplex method consists in moving to another feasible
(adjacent) extremal point so that the cost has been lowered in such a movement.
The change from x = (xB 0 ) to x = ( xB xN ), where xN is at our disposal,
will take place if we can ensure three requirements:
1. Ax = b;
2. cx < cx;
3. x ≥ 0.

The first one forces us to take

xB = xB − B−1NxN .

Indeed, notice that

( B N )
(

xB

xN

)
= b

implies
xB = B−1(b − NxN ) = xB − B−1NxN .

Consequently, the new cost will be

( cB cN )
(

xB − B−1NxN

xN

)
= cB(xB − B−1NxN ) + cNxN

= (cN − cBB−1N)xN + cBxB .

We see that the sign of
(cN − cBB−1N)xN

will dictate whether we have been able to decrease the cost by moving to the
new vector

( xB − B−1NxN xN ) .

The so-called vector of reduced costs

r = cN − cBB−1N
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will play an important role in deciding whether we can move to a new ba-
sic solution and lower the cost. Since xN ≥ 0 (by requirement 3 above), two
situations may occur:

1.Stopping criterion. If all components of r turn out to be nonnegative,
there is no way to lower the cost, and the present extremal point is indeed
optimal. We have found a solution for our problem.

2. Iterative step. If r has some negative components, we can, in principle,
lower the cost by letting those components of xN become positive. However,
we must exercise caution in this change in order to ensure that the vector

xB − B−1NxN (2–1)

is feasible, i.e., will always have nonnegative coordinates. If this is not the case,
even though the cost will have a smaller value in the vector

( xB − B−1NxN xN ) ,

it will not be feasible and therefore wil not be admissible as an optimal solution
of the LPP. We must ensure the nonnegativity of the extremal vectors.

Instead of looking for more general choices of xN , the simplex method fo-
cuses on taking xN = tv, where t ≥ 0 and v is a basis vector having vanishing
coordinates in all but one place, where it has 1. This means that we will change
one component at a time. The chosen component is precisely the “entering vari-
able.” How is this variable to be selected? According to our previous discussion,
we are trying to ensure that the product

rxN = trv

will be as negative as it possibly can. Since v is a basis vector, rv is a component
of r, and therefore v must be chosen as the basis vector corresponding to the
most negative variable of r. Once v has been selected, we have to examine

xB − B−1NxN = B−1b − tB−1Nv (2–2)

in order to determine the leaving variable. The idea is the following. When
t = 0, we are sitting on our basic solution xB . What can happen if t starts to
move away from zero to the positive part? At this point three situations may
occur. We discuss them succesively.
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1. Infeasible solution. As soon as t becomes positive, the vector in (2–2)
is not feasible any longer because one of its components is less than zero. In
this case, we cannot use the chosen variable to reduce the cost, and we must
turn to the next negative variable in r; or alternatively, we can simply take
this variable as the leaving variable in spite of the fact that the cost will not
decrease. This second choice is usually preferred due to coherence of the whole
process.

2. Leaving variable. There is a positive threshold value of t at which one
of the coordinates of (2–2) vanishes for the first time. We choose precisely this
one as the leaving variable, and compute a new extremal point with smaller
cost than the previous one.

3. No solution. No matter how big t becomes, we can lower and lower the
cost, and none of the components in (2–2) will ever reach zero. The problem
does not admit an optimal solution because we can reduce the cost indefinitely.

Figure 2.3. Three possibilities in choosing the leaving variable.

The issue is how we can decide in each particular situation whether we are
in case 1, 2, or 3, above, and how to proceed accordingly. Notice that each
expression in (2–2) represents a straight line as a function of t. The three
possibilities are drawn in Figure 2.3.

Assume that we have chosen an entering variable identified with a basis
vector v. We proceed as follows:
1. If there is one vanishing component of xB = B−1b corresponding to a pos-

itive component of B−1Nv (diagram 1 in Figure 2.3), then as soon as t
becomes positive this coordinate will be smaller than zero in (2–2), and the
vector will not be feasible. We might resort to a different entering variable (a
different basis vector v), which corresponds to another negative component
of r, if available. If r does not have more negative components, we already
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have the optimal solution, and the simplex method stops. Alternatively, and
this choice is typically preferred for coherence, we can consider the vanishing
ratio as one candidate for the process in 2 below.

2. Examine the ratios of the vectors B−1b over B−1Nv componentwise, and
choose as leaving variable the one corresponding to the least of those ratios
among the strictly positive ones, including, as remarked earlier, the van-
ishing ratios with positive denominators. These would certainly be chosen,
if present, since they are smaller than the strictly positive ones. Disregard
the quotients over zero including 0/0. Start the whole process with the new
extremal vector. Notice that these ratios correspond to the values of t when
t intersects the horizontal axis in diagram 2 of Figure 2.3.

3. If there are no positive ratios, the LPP does not admit an optimal solution,
since the cost can be indefinitely lowered by increasing the entering variable.
This situation occurs when all diagrams are of the type 3 in Figure 2.3.

Since the set of feasible extremal points is finite, after a finite number of
steps, the simplex method leads us to an optimal solution or to the conclusion
that there is no optimal vector. In some very peculiar instances, the simplex
method can enter a cyclic, infinite process. Such cases are so rare that we will
pay no attention to them. One easy example is proposed as an exercise at the
end of the chapter.

In practice, the computations can be organized in the following algorithmic
fashion.

1. Initialization. Find a square m×m submatrix B such that the solution of
the linear system BxB = b is such that xB ≥ 0.

2. Stopping criterion. Write

c = ( cB cN ) , A = ( B N ) .

Solve
zT B = cB

and look at the vector
r = cN − zT N.

If r ≥ 0, stop: We already have an optimal solution. If not, choose the entering
variable corresponding to the most negative component of r.
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3. Main iterative step. Solve

Bw = y,

where y is the entering column of N corresponding to the entering variable, and
look at the ratios xB/w componentwise. Among these ratios select those with
positive denominators. Choose as leaving variable the one corresponding to the
smallest ratio among the selected ones. Go to step 2. If there is no variable to
select from, the problem does not admit an optimal solution.

We have tried to reflect the main iterative step of the simplex method in
Figure 2.4.

Figure 2.4. Several iterative steps in the simplex method.

In order to ensure that our readers understand the strategy in the simplex
method, how the entering and leaving variables are chosen and the stopping
criterion, we are going to look briefly at several simple examples.

Example 2.6 (Unique solution)

Minimize 3x1 + x2 + 9x3 + x4

subject to
x1 + 2x3 + x4 = 4
x2 + x3 − x4 = 2,

xi ≥ 0.
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In this particular instance,

A =
(

1 0 2 1
0 1 1 −1

)
, b =

(
4
2

)
, c = ( 3 1 9 1 ) .

1. Initialization. Choose

B =
(

1 0
0 1

)
, N =

(
2 1
1 −1

)
, cB = ( 3 1 ) , cN = ( 9 1 ) .

2. Checking the stopping criterion. It is trivial to find

xB = b =
(

4
2

)

such that the initial vertex is (4, 2, 0, 0) with cost 14. On the other hand,

z = cB = ( 3 1 ) , r = ( 9 1 ) − ( 3 1 )
(

2 1
1 −1

)
= ( 2 −1 ) .

Since not all components of r are nonnegative, we must go through the
iterative process in the simplex method.

3. Iterative step. Choose x4 as the entering variable, since this is the one
associated with the negative component of r. Moreover,

w =
(

1
−1

)
,

xB

w
= {4,−2} ,

so that x1 is the leaving variable, being the one corresponding to the least
ratio among the ones we would select (ratios with positive denominators).

4. Checking the stopping criterion. These computations lead us to the new
choice

B =
(

0 1
1 −1

)
, N =

(
1 2
0 1

)
, cB = ( 1 1 ) , cN = ( 3 9 ) .

It is easy to find

xB =
(

6
4

)
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and the new extremal vector (0, 6, 0, 4) with associated cost 10. The new
vectors z and r are

z = ( 2 1 ) , r = ( 3 9 ) − ( 2 1 )
(

1 2
0 1

)
= ( 1 4 ) .

Since all components of r are nonnegative, we have ended our search: The
minimum cost is 10, and it is taken on at the vector (0, 6, 0, 4).

Example 2.7 (Degenerate example)

Minimize 3x1 + x2 + 9x3 + x4

subject to
x1 + 2x3 + x4 = 0,
x2 + x3 − x4 = 2,

xi ≥ 0.

In this particular case,

A =
(

1 0 2 1
0 1 1 −1

)
, b =

(
0
2

)
, c = ( 3 1 9 1 ) .

1. Initialization. Choose

B =
(

1 0
0 1

)
, N =

(
2 1
1 −1

)
, cB = ( 3 1 ) , cN = ( 9 1 ) .

2. Checking the stopping criterion. It is trivial to find

xB = b =
(

0
2

)

such that the initial vertex is (0, 2, 0, 0) with cost 2. On the other hand,

z = cB = ( 3 1 ) , r = ( 9 1 ) − ( 3 1 )
(

2 1
1 −1

)
= ( 2 −1 ) .

Since not all components of r are nonnegative, we must go through the
iterative process in the simplex method.



40 2.2 The simplex method

3. Iterative step. Choose x4 as the entering variable, since it is the one associ-
ated with the negative component of r. Moreover,

w =
(

1
−1

)
,

xB

w
= {0,−2},

so that x1 is the leaving variable, being the one corresponding to the least
ratio among the ones we would select (ratios with positive denominators).
We can predict, however, that because our only choice is a vanishing ratio,
we will not be able to lower the cost in spite of going through an iterative
step of the simplex method. In other words, the vertex (0, 2, 0, 0) is already
an optimal solution. Since for this optimal solution the stopping criterion
does not hold for our original choice of B (r has negative coordinates), we
must, for the sake of coherence of the scheme, go through an iterative step
of the simplex method.

4. Checking the stopping criterion. The new choice

B =
(

0 1
1 −1

)
, N =

(
1 2
0 1

)
, cB = ( 1 1 ) , cN = ( 3 9 ) ,

leads us to find

xB =
(

0
2

)
,

and the new extremal vector is again (0, 2, 0, 0) with associated cost 2. The
vectors z and r are

z = ( 2 1 ) , r = ( 3 9 ) − ( 2 1 )
(

1 2
0 1

)
= ( 1 4 ) .

Since all components of r are nonnegative, we have ended our search as we
had anticipated: The minimum cost is 2 and it is taken on at the vector
(0, 2, 0, 0).

Example 2.8 (No solution)

Minimize − 3x1 + x2 + 9x3 + x4

subject to
x1 − 2x3 − x4 = −2,

x2 + x3 − x4 = 2,
xi ≥ 0.
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In this case,

A =
(

1 0 −2 −1
0 1 1 −1

)
, b =

(−2
2

)
, c = (−3 1 9 1 ) .

1. Initialization. If we were to choose

B =
(

1 0
0 1

)
, N =

(−2 −1
1 −1

)
, cB = (−3 1 ) , cN = ( 9 1 ) ,

then we would obtain

xB = b =
(−2

2

)

which is not a feasible vector, since there is one negative coordinate. Let us
take instead (second and fourth columns of A)

B =
(

0 −1
1 −1

)
, N =

(
1 −2
0 1

)
, cB = ( 1 1 ) , cN = (−3 9 ) .

2. Checking the stopping criterion. It is easy to find

xB =
(

4
2

)

such that the initial vertex is (0, 4, 0, 2) with cost 6. On the other hand,

z = (−2 1 ) , r = (−3 9 ) − (−2 1 )
(

1 −2
0 1

)
= (−1 4 ) .

Since not all components of r are nonnegative, we must go through the
iterative process in the simplex method.

3. Iterative step. Choose x1 as the entering variable, since it is the one associ-
ated with the negative component of r. Moreover,

w =
(−1
−1

)
,

xB

w
= {−4,−2}.

In this situation, we have no choice for the leaving variable: no positive
denominator. This means that the proposed LPP does not admit an optimal
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solution, i.e., the cost can be lowered indefinitely. This can be easily checked
by considering the feasible vectors

⎛
⎜⎝

t − 2
t + 2

0
t

⎞
⎟⎠ , t > 0.

The cost associated with such points is 8 − t, which can clearly be sent to
−∞ by taking t sufficiently large.

Example 2.9 (Multiple solution)

Minimize 3x1 + 2x2 + 8x3 + x4

subject to
x1 − 2x3 − x4 = −2,

x2 + x3 − x4 = 2,

xi ≥ 0.

In order to argue that there are infinitely many optimal solutions for this LPP,
we will use the equality constraints to “solve” for x1 and x2 and take these
expressions back into the objective function. Namely,

x1 = 2x3 + x4 − 2 ≥ 0, x2 − x3 + x4 + 2 ≥ 0,

and the cost function becomes

6(2x3 + x4) − 2.

Since the first constraint reads

2x3 + x4 ≥ 2,

it is clear that the minimum value of the cost will be achieved when

2x3 + x4 = 2.
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We have the two basic solutions (0, 1, 1, 0) and (0, 4, 0, 2). Any convex combi-
nation of these two will also be an optimal solution

t(0, 1, 1, 0) + (1 − t)(0, 4, 0, 2), t ∈ [0, 1].

We believe that it is elementary to understand the way in which the simplex
method works after several examples. Computations can, however, be organized
in tables (tableaux) to facilitate the whole process without having to explicitly
write down the different steps as we have done in the previous examples. We
will treat some of these practical issues in a subsequent section.

3. duality

Duality is a concept that intimately links the two following LPP:

Minimize cx subject to Ax ≥ b, x ≥ 0;
Maximize yb subject to yA ≤ c, y ≥ 0.

We will identify the first problem as the primal, and the second one as its
associated dual. Notice how the same elements, the matrix A and the vectors
b and c, determine both problems.

Definition 2.10 (Dual problem) The dual problem of the LPP

Minimize cx subject to Ax ≥ b, x ≥ 0

is the LPP
Maximize yb subject to yA ≤ c, y ≥ 0.

Although this format is not the standard one we have utilized in our discus-
sion of the simplex method, it allows us to see in a more transparent fashion
that the dual of the dual is the primal. This is, in fact, very easy to check by
transforming minima to maxima and reversing inequalities by appropriately
using minus signs (this is left to the reader).

If the primal problem is formulated in the standard form

Minimize cx under Ax = b, x ≥ 0,
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what is its dual version? Answering this question is an elementary exercise
that involves writing an LPP in standard form in the above format, applying
duality, and then trying to simplify the final form of the dual. As a matter of
fact, all we have to do is put

Ax = b is equivalent to Ax ≥ b, −Ax ≥ −b,

so that if we write
A = (A −A ) , b = ( b −b ) ,

our initial LPP is

Minimize cx under Ax ≥ b, x ≥ 0.

Therefore, its dual will have the form

Maximize yb subject to yA ≤ c, y ≥ 0.

If we now try to simplify the formulation of this problem by setting

y = ( y(1) y(2) ) ,

we arrive at

Maximize (y(1) − y(2))b under (y(1) − y(2))A ≤ c, y ≥ 0,

and letting y = y(1) − y(2), there is no restriction on the sign of y, and we have

Maximize yb under yA ≤ c,

which is the form of the dual when the primal is given in the standard form.

Lemma 2.11 (Dual problem in standard form) If the primal problem is

Minimize cx under Ax = b, x ≥ 0,

its dual is
Maximize yb under yA ≤ c.
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Before proceeding in analyzing duality more formally, it may be worthwhile
to motivate this analysis by providing an interpretation of the meaning of the
relationship between a primal and its dual. Indeed, it is interesting to realize
that they are different, but equivalent, ways of looking at the same underlying
problem. We are going to emphasize this point by describing a typical LPP
related to networks. The practical implications of duality are often tied to the
underlying problem behind a formal LPP. We restrict attention here to formally
checking the equivalence of a primal and its dual without paying much attention
to other implications. A full analysis and understanding of these would be
required in realistic situations.

Example 2.12 We wish to send a certain product from node A to node D
in the simplified network of Figure 2.5.

Figure 2.5. A simple network.

As you can see, we have five possible channels with associated costs given in
the same figure. If we use variables xPQ to denote the fraction of the product
transferred through channel PQ, we must minimize the total cost

2xAB + 3xAC + xBC + 4xBD + 2xCD

subject to the restrictions

xAB = xBC + xBD (no part of the product is lost at node B),

xAC + xBC = xCD (no part of the product is lost at node C),

xBD + xCD = 1 (the total amount of the product reaches node D),

xAB , xAC , xBC , xBD, xCD ≥ 0.
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Notice that as a consequence of these restrictions, it is easy to obtain

xAB + xAC = 1,

so that the total amount of the product departs from node A. This is the primal
formulation of the problem.

We can also think in terms of prices per unit of product at the different
nodes of the network yA, yB , yC , yD and consider the differences between
these prices at nodes as the profit when that particular channel is used. In this
situation we are seeking the maximum for yD − yA, the profit in transferring
the good from A to D. The profits for the five channels will be

yB − yA, yC − yA, yC − yB , yD − yB , yD − yC .

If we take as a normalization rule yA = 0, then we must demand that these
profits not exceed the prices for the use of each channel:

yB − yA = yB ≤ 2, yC − yA = yC ≤ 3, yC − yB ≤ 1,

yD − yB ≤ 4, yD − yC ≤ 2.

This would be the dual formulation of the problem.

We somehow suspect that these two problems must be equivalent and that
their optimal solutions must be related to each other. Indeed, this is the case.
The connection is precisely the duality link. With the elements

c = ( 2 3 1 4 2 ) , b =

⎛
⎝ 0

0
1

⎞
⎠ ,

A =

⎛
⎝ 1 0 −1 −1 0

0 1 1 0 −1
0 0 0 1 1

⎞
⎠ ,

these two problems can be formulated in compact form as

Minimize cx under Ax = b, x ≥ 0,

Maximize yb under yA ≤ c,

where
x = (xAB , xAC , xBC , xBD, xCD), y = (yB , yC , yD).
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This is precisely the form of a primal and its dual.

Next we briefly describe in two steps the relationship between the solutions
of a primal problem (P) and its dual (D), where we assume that (P) is given
in standard form.

Lemma 2.13 (Weak duality) If x and y are feasible for (P) and (D),
respectively, then

yb ≤ cx.

Moreover, if equality holds,
yb = cx,

then x is an optimal solution for (P) and y for (D).

The proof is rather simple. Indeed, from

Ax = b, x ≥ 0, yA ≤ c,

we have
yb = yAx ≤ cx.

In particular, we have

max {yb : yA ≤ c} ≤ min {cx : Ax = b, x ≥ 0} .

If yb = cx, this number must be at the same time the previous maximum and
minimum, and this in turn implies that y is optimal for (D) and x for (P).

This result also informs us that degenerate cases, when either the maximum
for the dual is +∞ or the minimum for the primal is −∞, occur when the other
problem does not have feasible vectors.

The full duality theorem follows.

Theorem 2.14 (Duality theorem) Either both problems (P) and (D) are
solvable simultaneously, or one of the two is degenerate in the sense that it
does not admit feasible vectors.

What this statement amounts to is that if x is optimal for (P), then there
exists an optimal vector y for (D), and the common value yb = cx is at the
same time the minimum for (P) and the maximum for (D). Conversely, if y
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is optimal for (D), there exists an optimal vector x for (P) with the common
value yb = cx being at the same time the minimum and the maximum.

The proof relies on our previous discussion of the simplex method. If x is
optimal for (P), then

x = (xB 0 ) , xB = B−1b, cx = cBB−1b,

r = cN − cBB−1N ≥ 0 (stopping criterion),

where c = ( cB cN ). If we examine y = cBB−1, it turns out that

yA = cBB−1 ( B N ) = ( cB cBB−1N ) ≤ ( cB cN ) = c,

so y is admissible for (D). On the other hand, y is such that

cx = cBB−1b = yb.

By the weak duality principle, x and y must be optimal.
The fact that the dual of the dual is the primal lets us pass from an optimal

solution for (D) to an optimal solution for (P).

Notice how an optimal solution for the dual has been obtained from an
optimal solution of the primal: If x = ( xB 0 ) is optimal for (P) with

xB = B−1b, c = ( cB cN ) ,

then y = cBB−1 is optimal for (D). We will return to this observation later.
It is important to stress the information on the primal provided by the

optimal solution of the dual. One such interpretation comes directly from the
duality theorem, and refers to how changes to the vector b affect the optimal
value of the primal. This is an issue of great practical importance, since we are
also interested in assessing how good changes in the independent term b are.
Constraints involving b are typically related to restrictions such as production
capacities and total investments, and we would like to know whether making
such changes would pay off. If M(b) stands for the dependence of the value of
the minimum of an LPP problem on b, we are seeking the partial derivatives
∇M . These are called sensitivity parameters, shadow prices, and dual prices
as well. By the duality theorem,

M(b) = yb,
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where y is the optimal solution of the dual. Intuitively,

∇M(b) = y

and this is usually interpreted by saying that the dual solution provides the rate
of change of the optimal value for the primal when the vector b of restrictions
changes. It is therefore as important to know the optimal solution of an LPP
as the optimal solution of the dual. To be rigorous, the above computation of
∇M has not been justified, since the optimal solution for the dual depends on
b. But since the result is essentially correct and plausible, we will not insist on
this point.

4. some practical issues

In the preceding sections, we have been concerned with the understanding of
the structure of an LPP and the standard mechanism to solve it by the simplex
method. There are, however, a number of issues of some practical importance.
We will treat in this section three such topics:
1. how to initialize the simplex method from a practical viewpoint;
2. how to organize computations in an efficient manner through tables;
3. how the optimal solution of the dual can be rapidly found from the solution

of the primal.
The significance of such issues is of relative value, since as soon as the number of
variables involved in an LPP exceeds a few, software packages must be employed
to find optimal solutions in reasonable periods of time.

In our discussion of the simplex method, we have not indicated how to find
a first feasible choice for the matrix B. This amounts to selecting m columns
among the n columns of A such that the solution of the linear system Bx = b
is such that x ≥ 0. In some cases, doing this directly may be a rather tedious
task. What we would like to do is to describe a more-or-less efficient mechanism
that may lead us to find such a feasible submatrix B without going over an
exhaustive enumeration of all possibilities, which would be, after all, solving
the LPP by brute force. We will describe two different ways of finding such an
initialization.

The first one relies on an auxiliary LPP, with trivial initialization, whose
optimal solution will tell us how to choose the initial feasible submatrix B. The
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auxiliary problem is
Minimize

∑
i

x̃i

subject to
( Ã 1 ) X = b̃, X ≥ 0,

where X = (x x̃ ), and Ã and b̃ are such that the system Ax = b is equivalent
to Ãx = b̃ but b̃ ≥ 0. This can be simply done by multiplying by −1 those con-
straints associated with negative components of b. Notice that a valid feasible
extremal vector for this problem is ( 0 b̃ ).

We claim that if the initial LPP admits an optimal solution x, then the
minimum for the auxiliary problem is 0, and it is attained at X = ( x 0 ).
This is very easy to check and left to the reader as an instructive exercise.
Consequently, if we solve this auxiliary LPP with initial vertex ( 0 b̃ ) by the
simplex method, the optimal solution found will be of the form X = ( x 0 ),
where x will have at most m nonvanishing components. Observe that the auxil-
iary problem has the same value for m. The positive components of this vector
x will indicate which columns must be chosen for a feasible starting point for
our LPP. If the number of such positive components is strictly less than the
number of columns we should select, the remaining columns can be taken ar-
bitrarily, as long as they remain a linearly independent set of vectors. In order
to clarify the mechanism that leads to a feasible initialization of any LPP, let
us consider the following example.

Example 2.15 We are interested in finding a valid initialization for the
LPP

Minimize 2x1 + 3x2 + x3

subject to
x1 + x2 + 2x3 + x4 = 500,

x1 + x2 + x3 − x4 = 500,

x1 + 2x2 + 2x3 = 600,

xi ≥ 0.

In this particular example,

A =

⎛
⎝ 1 1 2 1

1 2 1 −1
1 2 2 0

⎞
⎠ , b =

⎛
⎝ 500

500
600

⎞
⎠ , c = ( 2 3 1 0 ) .
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The issue here is how to choose the initial matrix B in order to initialize the
simplex method. In this simple case we have four possibilities that correspond
to choosing three different columns from a set of four. We could certainly go
through all these possibilities and choose the first basic solution with non-
negative coordinates. As we have argued before, this amounts to solving the
LPP itself by an exhaustive analysis of all basic solutions. When the dimen-
sion of the problem is large, this enumerative approach is not admissible, and
the mechanism described to initialize the simplex method becomes interesting.
In our example, this scheme would amount to considering the auxiliary LPP
associated with the data

Ã =

⎛
⎝ 1 1 2 1 1 0 0

1 2 1 −1 0 1 0
1 2 2 0 0 0 1

⎞
⎠ , b̃ =

⎛
⎝ 500

500
600

⎞
⎠ ,

c = ( 0 0 0 0 1 1 1 ) .

The initialization for the simplex method to solve this problem is to choose
the matrix B as the identity matrix for the last three columns of Ã. The
nonvanishing components of an optimal solution for this problem, found by
applying the simplex method, will indicate an initialization for our original
problem. In this case, by applying the simplex method we obtain the optimal
solution

(200, 100, 100, 0, 0, 0, 0),

and this indicates that the initial matrix B, made up of the three first columns
of A, is a valid initialization for the simplex method for our original LPP.

The second approach to the initialization issue does not require us to con-
sider an additional, auxiliary, LPP. It is based instead on transforming the given
LPP into a new, equivalent, LPP for which the initialization is trivial. Rather
than stating a formal result, we will intuitively discuss this transformation.
Consider a typical LPP,

Minimize cx under Ax = b, x ≥ 0,

where b ≥ 0 (multiplying by −1 those equations corresponding to negative
components of b). Let us introduce new variables y ∈ Rm and study the LPP

Minimize cx + dy under Ax + y = b, x ≥ 0, y ≥ 0,
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where the vector d ∈ Rm is assumed to have very large unspecified components.
The whole point is that ( 0 b ) is a valid initialization for the second LPP, and
for sufficiently large components in the vector d, the optimal solution will be
of the form ( x 0 ), where x is an optimal solution of our initial LPP. The first
assertion is trivial. The second is plausible, since if the components of d are
very large and we are seeking to minimize the sum cx + dy with y ≥ 0, we
see that optimal solutions will essentially require y = 0, and therefore we fall
back in our initial LPP. The disadvantage of this procedure is that in solving
this transformed LPP, we must work symbolically with the vector d, or else we
should assign a very large value for d. We will see an example later.

The computations involved in the simplex method are usually organized in
the form of tables reflecting the different steps we have already described in
Section 2.2. Since the simplex method proceeds by changing feasible subma-
trices B from the original matrix A, and renaming columns so that the first
m columns correspond to those in B, it is extremely important not to get lost
with such reorganization and to keep a record of the initial enumeration of
columns regardless of the position they ocupy in the succesive steps. Each of
these tables has the structure

A b

c d,

where d is the value indicating the cost, changed in sign, of the different basic
feasible solutions the simplex method passes through. In each of these tables
the following calculations must be performed succesively:

1. Choose the columns corresponding to the next feasible submatrix B,
place them on the first m columns of the table, and by using the elementary
transformations of linear algebra obtain the identity matrix from the columns
of B (it is not enough to have an upper or lower triangular matrix). Do not
forget to keep a record of the columns belonging to B.

2. Transform in the same manner the components of c (last row) so that
those corresponding to the columns of B vanish.

3. If the remaining components of c are nonnegative (stopping criterion),
one (the) optimal solution is found by solving the linear system Bx = b with the
current submatrix B and independent term b, putting zero in the components
not contained in B (this is why it is important to keep track of which columns
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are part of the submatrices B). If there are some negative components, we
select the entering column as the one with the least component in c.

4. Examine the ratios of b over the entering column componentwise; if there
is no positive denominator, the problem lacks an optimal solution; otherwise,
choose as leaving column the one associated with the least nonnegative ratio
among the selected ones. Go back to 1 until the stopping criterion is fulfilled
or we reach the conclusion that there does not exist an optimal solution.

Instead of insisting on clarifying these steps, which faithfully reflect those
described in Section 2.2, we propose to examine one concrete example.

Example 2.16 We want to minimize −3x1−5x2 under the constraints x ≥ 0
and

3x1 + 2x2 + x3 = 18, x1 + x4 = 4, x2 + x5 = 6.

The initial table for this example is

x1 x2 x3 x4 x5

3 2 1 0 0 18
1 0 0 1 0 4
0 1 0 0 1 6

−3 −5 0 0 0 0.

If we choose the columns or variables 3, 4, and 5 to make up the matrix
B, we find that the vertex (0, 0, 18, 4, 6) is feasible. If we reorganize the three
selected columns as the first three columns, we have the table

x3 x4 x5 x1 x2

1 0 0 3 2 18
0 1 0 1 0 4
0 0 1 0 1 6

0 0 0 −3 −5 0.

Since in this particular case the matrix B is already the identity, no further
computation is required on the table for this purpose. On the other hand, the
components of c not corresponding to columns in B are both negative (−3 and
−5); hence the stopping criterion does not hold, and we ought to transform the
table according to the main step of the simplex method. The entering variable
would be x2 (associated with −5 in c). To determine the leaving variable, we
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examine the ratios 18/2 and 6/1 (4/0 is discarded because it has a vanishing
denominator) and select the third ratio 6 as the smallest one. Accordingly, the
third column of B (corresponding to x5) is the leaving column. After these two
variables are interchanged, the table looks like this:

x3 x4 x2 x1 x5

1 0 2 3 0 18
0 1 0 1 0 4
0 0 1 0 1 6

0 0 −5 −3 0 0.

With this new table we should obtain, by means of elementary transformations,
the identity matrix in the first three columns, and the null vector on the three
components of c. In this particular case, these two objectives are obtained by
changing the first row to itself minus twice the third one, and replacing the
fourth one by itself plus five times the third one. After these changes we arrive
at

x3 x4 x2 x1 x5

1 0 0 3 −2 6
0 1 0 1 0 4
0 0 1 0 1 6

0 0 0 −3 5 30.

Once again we look at the nonvanishing components of c and select the least one
(negative) as entering variable (x1). To choose the leaving one, we examine the
ratios 6/3, 4/1, and choose the smallest among the positive ones, associated,
in this case, with x3. These changes lead to

x1 x4 x2 x3 x5

3 0 0 1 −2 6
1 1 0 0 0 4
0 0 1 0 1 6

−3 0 0 0 5 30.

As before, we seek the identity matrix in the first three columns, and the
null vector on the three components of c. The new table is
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x1 x4 x2 x3 x5

1 0 0 1/3 −2/3 2
0 1 0 −1/3 2/3 2
0 0 1 0 1 6

0 0 0 1 3 36.

Since in this table the stopping criterion holds (all nonvanishing components
of c are nonnegative), the optimal solution is found in column b. The optimal
cost (changed in sign) appears in d, −36. It is important to determine the
components associated with the values in b. In the last table the matrix B
is formed by the three columns x1, x4, and x2, and the components of b will
correspond (in this order) to these variables. The variables not present in B
are assigned a vanishing value. Thus the optimal solution is (2, 6, 0, 2, 0) with
optimal cost −36. In practice, computations proceed by transforming the tables
without any further comment.

We solve another example including the discussion on initialization by the
second method we have indicated before.

Example 2.17 The problem is

Minimize 3x1 + x2 + 9x3 + x4

subject to
x1 + 2x3 + x4 = 4,
x2 + x3 − x4 = 2,

xi ≥ 0.

According to our discussion on how to set up a new equivalent optimization
problem for which initialization is trivial, we consider the modified LPP

Minimize 3x1 + x2 + 9x3 + x4 + dx5 + dx6

subject to
x1 + 2x3 + x4 + x5 = 4,
x2 + x3 − x4 + x6 = 2,

xi ≥ 0,
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where d is assumed to be a very large parameter. The initial table for this
problem is

x1 x2 x3 x4 x5 x6

1 0 2 1 1 0 4
0 1 1 −1 0 1 2

3 1 9 1 d d 0.

We notice that we can choose as an admissible initialization the identity matrix
corresponding to the fifth and sixth columns. The second table is

x5 x6 x1 x2 x3 x4

1 0 1 0 2 1 4
0 1 0 1 1 −1 2

0 0 3 − d 1 − d 9 − 3d 1 −6d.

If d is a very large positive number, the most negative coefficient in the last
row will be 9 − 3d, so that we choose x3 as entering variable, and then x1 as
leaving variable (in this particular instance both ratios are equal, and we could
equally choose x6 as leaving variable). After rearranging columns and making
computations we have

x3 x6 x1 x2 x5 x4

1 0 1/2 0 1/2 1/2 2
0 1 −1/2 1 −1/2 −3/2 0

0 0 (d − 3)/2 1 − d 3(d − 3)/2 (3d − 7)/2 −18.

Again, having in mind that d is a very large positive number, we would choose
x2 as entering variable and x6 as our leaving variable. After computations the
table is

x3 x2 x1 x6 x5 x4

1 0 1/2 0 1/2 1/2 2
0 1 −1/2 1 −1/2 −3/2 0

0 0 −1 d − 1 d − 4 −2 −18.

Our next entering variable is x4, and x3 our leaving variable. We obtain
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x4 x2 x1 x6 x5 x3

1 0 1 0 1 2 4
0 1 1 1 1 3 6

0 0 1 d − 1 d − 2 4 −10.

Since all nonvanishing coefficients in the last row are positive, we have already
found the optimal solution, which is given by the last column 4, 6 for x4 and x2,
respectively, and the remaining variables should be set to zero. The optimal
cost is 10 and the optimal solution (0, 6, 0, 4, 0, 0). Notice how this optimal
solution has vanishing components for the auxiliary variables x5 and x6. The
optimal solution for the original problem will be (0, 6, 0, 4) with optimal cost
10.

Altenatively, we can also assign a very large numeric value to d (much larger
than any of those participating in the problem, for instance d = 100) and solve
the problem. If the final solution yields vanishing values for x5 and x6, we have
our optimal solution. If not, the problem must be solved again with a larger
value for d.

Finally, we want to stress more explicitly how the passage from the optimal
solution of the primal to the optimal solution of the dual can be done in an
efficient manner. In fact, this was indicated when we treated duality, but we
would like to emphasize it here. Assume that the primal is

Minimize cx under Ax = b, x ≥ 0,

with dual
Maximize yb under yA ≤ c.

If
x = (xB 0 ) , xB = B−1b,

is the optimal solution of the primal, the optimal solution of the dual will be

y = cBB−1,

where cB incorporates the components of c corresponding to columns selected
in B. In practice, it is a matter of solving the linear system

cB = yB,
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where B and cB include the columns for the optimal solution. Indeed, these
columns are associated with the inequalities that must be converted to equali-
ties to find the optimal solution of the dual. One example will clarify this last
sentence.

Example 2.18 We want to maximize the function 18y1 + 4y2 + 6y3 under
the constraints

3y1 + y2 ≤ −3, 2y1 + y3 ≤ −5, y ≤ 0.

In matrix form, these restrictions can be written as

⎛
⎜⎜⎜⎝

3 1 0
2 0 1
1 0 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎠
⎛
⎝ y1

y2

y3

⎞
⎠ ≤

⎛
⎜⎜⎜⎝

−3
−5
0
0
0

⎞
⎟⎟⎟⎠ .

We have used the y-variable to suggest that this problem may be diretly un-
derstood as the dual of a certain primal LPP. It is true that we can solve it
directly by transforming it to standard form and applying the simplex method.
But this process requires more labor than if we treat it as a dual problem. In
fact, its associated primal is

Minimize − 3x1 − 5x2

subject to
3x1 + 2x2 + x3 = 18, x1 + x4 = 4,

x2 + x5 = 6, x ≥ 0.

This problem has already been solved. Its optimal solution is the vector

(2, 6, 0, 2, 0).

The nonvanishing components of this vector indicate that the matrix B in-
cludes the first, second, and fourth columns of A. If we had only two (or fewer)
nonvanishing components, the third column could be arbitrarily chosen as long
as the resulting matrix were nonsingular. This information suffices to solve the
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dual, since its optimal solution can be found through the solution of the linear
system ⎛

⎝ 3 1 0
2 0 1
0 1 0

⎞
⎠
⎛
⎝ y1

y2

y3

⎞
⎠ =

⎛
⎝−3

−5
0

⎞
⎠ ,

obtained by transforming into equalities the first, second, and fourth inequali-
ties of the dual. The optimal solution is thus (−1, 0,−3) and the optimal cost
−36.

5. integer programming

Engineering applications of linear programming often require variables to take
on integer values rather than real ones. In some cases, neglecting this restriction
would provide a reasonable approximation. In others, it is crucial to pay close
attention to this constraint. In such cases, in addition to the typical linear
constraints

Ax = b, x ≥ 0,

we must force some (or all) variables to take on (nonnegative) integer values
xi ∈ Z. This new constraint will be dictated by the nature of the problem we
are interested in. We therefore face the LPP, which we will identify as (P̃ ),

Minimize cx under Ax = b, x ≥ 0,

xi ∈ Z, i ∈ I ⊂ N = {1, 2, . . . , n} ,

where the subset of indices I is known. Reasonably enough, we will care first
about the underlying LPP (P ) without the integer constraint

Minimize cx under Ax = b, x ≥ 0.

Assume for a moment that x(0), the optimal solution for (P ), satisfies the inte-
grality requirement x

(0)
i ∈ Z. In this case, it is evident that we have found the

(or one) optimal solution for (P̃ ). Most likely, however, we will not be so lucky,
and such an optimal solution will not verify the complete integrality condition.
How will we proceed in such a situation? The scheme to follow is called the
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“branch and bound method,” and it consists in generating a sequence of sub-
problems, solving them, and analyzing and comparing the different solutions
until we reach a feasible optimal solution for our original problem.

The basic idea behind decomposing a problem into two disjoint subproblems
(“branching”) is the following. Assume, by recursion, that we have one LPP as
a result of previous steps and we have not yet found a feasible vector for our
initial problem. We find its optimal solution x(0). Obviously, if the problem is
infeasible, it is discarded altogether. Two situations may occur:
1. If x(0) satisfies the integrality constraints, it becomes our provisional optimal

solution, and we discard the subproblem;
2. if x(0) does not satisfy all of the integrality constraints, choose one variable

x
(0)
i ∈ (k, k + 1), k ∈ Z, i ∈ I,

and add to the collection of subproblems to be analyzed the two disjoint
subproblems (“branching”) obtained by adding to the constraints of the
problem the further constraint xi ≤ k in one case, and xi ≥ k + 1 in the
other. Notice how the feasible sets for these two subproblems are disjoint,
and their union is the complete feasible set of the LPP they come from. See
Figure 2.6.

Once we have found a feasible provisional optimal solution x∗, and we have
to analyze one subproblem previously generated by the branching procedure,
the discussion would be as follows:
1. If

cx∗ ≤ cx(0),

we discard this LPP altogether, since it cannot improve the optimal solution
we have already found, and choose another subproblem;

2. if
cx∗ > cx(0),

and x(0) satisfies the integrality requirement, change the provisional optimal
solution to x(0), discard the corresponding problem, and analyze another
subproblem;

3. if
cx∗ > cx(0),
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and x(0) does not satisfy the complete integrality constraint, proceed to
branch this problem as indicated above.

Figure 2.6. Branching of a domain.

In this way, we are ensuring that the optimal solution will be found by this
exhaustive process. Again, whenever subproblems are infeasible due to lack of
feasible vectors, they are eliminated.

After all of the generated subproblems have been analyzed, the provisional
optimal solution indeed becomes the optimal solution of our initial problem.
This is always a finite process.

Example 2.19 We want to solve the problem (P̃ )

Minimize 3x2 + 2x3

under
2x1 + 2x2 − 4x3 = 5, 4x2 + 2x3 ≤ 3,

xi ≥ 0, x1, x3 ∈ Z.

The underlying LPP is

Minimize 3x2 + 2x3 under

2x1 + 2x2 − 4x3 = 5, 4x2 + 2x3 ≤ 3, xi ≥ 0,
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whose optimal solution is (5/2, 0, 0). Since x1 is not an integer, we must proceed
to “branch” this problem. We still do not have a feasible provisional solution.
The two subproblems are

Minimize 3x2 + 2x3 under

2x1 + 2x2 − 4x3 = 5, 4x2 + 2x3 ≤ 3,

x1 ≤ 2, xi ≥ 0,

and
Minimize 3x2 + 2x3 under

2x1 + 2x2 − 4x3 = 5, 4x2 + 2x3 ≤ 3,

x1 ≥ 3, xi ≥ 0.

Their respective optimal solutions are

(
2,

1
2
, 0
)

, cost =
3
2
,(

3, 0,
1
4

)
, cost =

1
2
.

The first of these respects the integrality requirement, and therefore it is taken
as our provisional solution. Since the cost of the second is smaller than the cost
for the provisional solution, this subproblem must be considered, since it could
contain a better solution. On the other hand, since the second solution does not
respect the integrality restriction, we must branch this subproblem and obtain

Minimize 3x2 + 2x3 under

2x1 + 2x2 − 4x3 = 5, 4x2 + 2x3 ≤ 3,

x1 ≥ 3, x3 ≤ 0, xi ≥ 0,

and
Minimize 3x2 + 2x3 under

2x1 + 2x2 − 4x3 = 5, 4x2 + 2x3 ≤ 3,

x1 ≥ 3, x3 ≥ 1, xi ≥ 0.

The first one is infeasible since x3 = 0, and from the first constraint we get
2x1 + 2x2 = 5. This together with x1 ≥ 3 and x2 ≥ 0 is impossible. This
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subproblem is thus discarded. The optimal solution for the second is (9/2, 0, 1)
with cost 2. Since this cost is greater than the one for the provisional solution,
we eliminate this subproblem without changing the optimal solution. Since
there are no more subproblems to analyze, the provisional optimal solution is
proclaimed as the optimal solution for the initial problem

(
2,

1
2
, 0
)

, cost =
3
2
.

Notice how it differs from the optimal solution without the integrality require-
ment.

In practice, it is not an easy task to decide on the variable to be branched
in such a way that the whole process turns out to be as short and efficient as
possible. There are no fixed rules to determine the most efficient choice in any
situation. Any available a priori information on the problem may dictate that
one should follow one particular path over other possible alternatives.

6. exercises

1. Draw in the plane the region determined by the inequalities

x2 ≥ 0, 0 ≤ x1 ≤ 3, −x1 + x2 ≤ 1, x1 + x2 ≤ 4.

Find the point(s) where the following functions attain their maximum and
minimum values:

2x1 + x2, x1 + x2, x1 + 2x2.

2. Solve graphically the next two problems:

Maximize 2x1 + 6x2

subject to

−x1 + x2 ≤ 1, 2x1 + x2 ≤ 2, x1 ≥ 0, x2 ≥ 0;
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Minimize − 3x1 + 2x2

subject to
x1 + x2 ≤ 5, 0 ≤ x1 ≤ 4, 1 ≤ x2 ≤ 6.

3. Determine the values of the parameter d such that the feasible set deter-
mined by

x1 + x2 + x3 ≤ d, x1 + x2 − x3 = 1, 2x3 ≥ d,

is empty.
4. Determine the vectors where the linear function 2x1 + 3x2 + x3 takes on its

maximum under the constraints

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0,

x1 + x2 + 2x3 ≤ 200,

3x1 + 2x2 + x2 ≤ 500,

x1 + 2x2 + 2x3 ≤ 300.

5. The maximum value of the function 3x1 + 2x2 − 2x3 is sought subject to
the constraints

4x1 + 2x2 + 2x3 ≤ 20,

2x1 + 2x2 + 4x3 ≥ 6,

x1 ≥ 0, x2 ≥ 0,

but the sign of x3 is not restricted. Find the optimal solution(s).
6. Determine the maximum value of 18x1 + 4x2 + 6x3 under the constraints

3x1 + x2 ≤ −3, 2x1 + x3 ≤ −5, x1 ≤ 0, x2 ≤ 0, x3 ≤ 0,

by looking at the dual problem.
7. Consider the following primal problem:

Maximize 1.1x1 + 1.2x2 + x3

subject to

2x1 + 2x2 + 2x3 ≤ 10, x1 + 3x2 + x3 ≤ 10, 4x1 + x2 + x3 ≤ 10,

3x1 + x2 + 3x3 ≤ 10, x1 + 2x2 + 3x3 ≤ 10, 3x1 + 2x2 + x3 ≤ 10,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.
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Formulate the dual and solve it.
8. Find explicitly the optimal value of the LPP

Minimize x1 + x2 + x3

subject to
x1 + 2x2 + 3x3 = b1, x1 − x2 − x3 = b2,

in terms of b1 and b2. Find the optimal solution of the dual problem and
check its relationship to the gradient of the optimal value of the primal with
respect to b1 and b2.

9. For the problem of the tiling elements of Chapter 1, compute the amounts
of each model that can be sent in order to maximize benefits.

10. Solve the exercise of the spring system of Chapter 1 for the following data
set:
1. location of fixed nodes: (1, 0), (0, 1), (−1, 0), (0,−1);
2. k = 1;
3. F = (1, 1).

11. Solve the transportation problem of Chapter 1 for the following data set:
1. n = 3, m = 2;
2. u1 = 2, u2 = 2, u3 = 3, v1 = 5, v2 = 2;
3. c11 = 2, c12 = 1, c21 = 3, c22 = 1, c31 = 2, c32 = 3.

12. Try to describe the best solution to the investment exercise of Chapter 1
(Exercise 1).

13. Solve the problem of the scaffolding system proposed in Chapter 1, where
loads x1 and x2 are applied exactly at the midpoints of beams CD and EF,
respectively.

14. Although there are many software packages to solve LPP of large dimension,
it is not especially difficult to design a program to implement the simplex
method. Do so in some language (C, Fortran, Maple, Mathematica, Matlab,
etc) and use it to solve the following problems.
1. Maximize x1 + x2 − x6 subject to

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0, x6 ≥ 0,

x1 + x2 + x3 + x4 + x5 + x6 = 1.

2. Maximize x1 − x2 + x3 − x4 + x5 − x6 under the constraints

x1 ≤ 0, x2 ≤ 0, x3 ≤ 0, x4 ≤ 0, x5 ≤ 0, x6 ≤ 0,

x1 + x2 + x3 + x4 + x5 + x6 ≥ −1.
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3. Maximize x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 subject to

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0, x6 ≥ 0,

6x1+5x2+4x3+3x4+2x5+x6 ≤ 1, 6x1+x2+5x3+2x4+4x5+3x6 ≤ 1.

4. Maximize x1 − x2 + x3 − x4 + x5 − x6 + x7 − x8 + x9 − x10 under the
constraints

−1 ≤ x1 + x2 ≤ 1, −1 ≤ x1 + x2 + x3 ≤ 1,

−1 ≤ x2 + x3 + x4 ≤ 1, −1 ≤ x3 + x4 + x5 ≤ 1,

−1 ≤ x4 + x5 + x6 ≤ 1, −1 ≤ x5 + x6 + x7 ≤ 1,

−1 ≤ x6 + x7 + x8 ≤ 1, −1 ≤ x7 + x8 + x9 ≤ 1,

−1 ≤ x8 + x9 + x10 ≤ 1, −1 ≤ x9 + x10 ≤ 1.

15. Some nonlinear functions may be treated in the context of LPP. Try to
formulate and solve the following problem:

Minimize |x1| − x2

subject to
x1 + |x2| ≤ 1, 2 |x1| − |x2| ≤ 2.

(Hint: The function |·| can be modeled in a linear fashion by decomposing
it into the sum of two independent nonnegative variables, just as a vari-
able that is unrestricted in sign is the difference of two such independent
variables.)

16. Consider the simple LPP

Maximize x1 + 2x2

subject to x1 + x2 ≤ 1, 0 ≤ x1 ≤ 1, 0 ≤ x2. Check that the simplex method
enters into a cyclic infinite process by choosing as initialization the matrix
corresponding to the variables x1, x2. Notice how the inequality x1 ≤ 1 is
redundant with x1 + x2 ≤ 1, 0 ≤ x1, x2. Find out whether by eliminating
such an inequality, the simplex method avoids the cyclic process.



Chapter 3

Nonlinear Programming

1. model problem

The problem we will be concerned with in this chapter has a similar structure
to that of an LPP. We would like to learn how to

Minimize C(x) under A(x) ≤ 0.

In the situation of an LPP both the cost functional C and the functions deter-
mining admissibility A were linear. If either C or some of the components of
A are nonlinear, the previous problem is said to be a nonlinear programming
problem (NLPP). As our readers may easily infer, these problems are consider-
ably more complex than their linear counterparts. We assume that all functions
are smooth, unless otherwise explicitly stated.

67
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Although we have written the constraints in the form of inequalities, they
can be formulated as equalities and inequalities, as has been indicated in the
previous chapter, where we emphasized that multiplying by −1 reverses the di-
rection of an inequality, and that an equality is equivalent to two inequalities.
Because constraints in the form of equalities and inequalities play a differ-
ent role in NLPP, they are typically distinguished by different names, so that
throughout this chapter, we will stick to the following general form of an NLPP:

Definition 3.1 The standard form of an NLPP is

Minimize f(x) subject to g(x) ≤ 0, h(x) = 0,

where x ∈ Rn.

A first important question is related to the existence of optimal solutions for
this problem. We already know that even LPP may not have optimal solutions.
This is also true for NLPP. A typical result ensuring the existence of optimal
solutions is based on the continuity of the functions involved in such a problem.

Theorem 3.2 Assume that f , g, and h are continuous functions and one
of the two following situations holds:

1. the set of feasible vectors g(x) ≤ 0, h(x) = 0 is a bounded set in Rn;

2. the set of feasible vectors is not bounded, but

lim
|x|→∞,g(x)≤0,h(x)=0

f(x) = +∞.

Then the associated minimization problem admits at least one solution.

There is a further situation in which an NLPP admits an optimal solution,
but to elucidate that is part of the aim of this chapter (Section 5).

In many practical settings the above theorem is enough to ensure the ex-
istence of an optimal solution. The main topic of this chapter is how to find
them.

To better understand how we can find or approximate optimal solutions,
we will proceed in two main steps. First, we will treat the case in which all
constraints come in the form of equalities:

Minimize f(x) subject to h(x) = 0.



3.2 Lagrange multipliers 69

Then, we will examine the general case by appropriately applying the situation
of equality constraints. The main issue we would like to understand is, what is
special about optimal solutions of NLPP? what must they satisfy in order to
be eligible as an optimal solution for a particular optimization problem? This
is the question about necessary conditions of optimality, and it will lead to the
Karush–Kuhn–Tucker (KKT) conditions. We will investigate several explicit
examples. Next, we will be concerned with situations in which those necessary
conditions of optimality are indeed sufficient to detect (global) optimal solutions
of a NLPP. This will open the whole problem of understanding convexity, and
why it is so desirable a property, in minimizing a cost functional under a set
of constraints. We will finish the chapter with a brief discussion about duality
for NLPP.

In the treatment of NLPP it is important to make a distinction between
local and global minima.

Definition 3.3 A vector x(0) ∈ Rn is a local minimum of f subject to
g(x) ≤ 0, h(x) = 0 if

g(x(0)) ≤ 0, h(x(0)) = 0,

and
f(x(0)) ≤ f(x)

for all x such that

g(x) ≤ 0, h(x) = 0,
∣∣∣x − x(0)

∣∣∣ < ε,

for some ε > 0.

A vector x(0) is a global minimum of f subject to g(x) ≤ 0, h(x) = 0 if

g(x(0)) ≤ 0, h(x(0)) = 0,

and
f(x(0)) ≤ f(x)

for all x such that
g(x) ≤ 0, h(x) = 0.

Notice the difference between these two concepts.

2. lagrange multipliers

In this section we will try to derive the conditions that a vector must satisfy so
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that it can possibly be an optimal solution for the problem

Minimize f(x) under h(x) = 0.

It may be possible that some of our readers may already know how to write
down the optimality conditions for the above problem, i.e., those equations in
terms of f and h that optimal solutions must satisfy. This is sometimes taught
in advanced calculus courses. One needs to introduce Lagrange multipliers,
which are parameters associated with the constraints, one for each individual
constraint. If λ is such a vector of multipliers, then optimal solutions of the
NLPP must be solutions for the system of equations

∇f(x) + λ ∇h(x) = 0, h(x) = 0, (3–1)

where the pairs (x, λ) of points and multipliers are the unknowns. Notice that
we have as many equations as unknowns, n+m altogether if x ∈ Rn, λ ∈ Rm,
and we have m constraints, so that h : Rn → Rm. It is important to stress
that not all solutions of (3–1) will be optimal solutions for our problem. What
is true is that optimal solutions are to be found among the solutions of (3–1).
Other solutions of this system may correspond to maxima, local minima and
maxima, saddle points, etc.

Theorem 3.4 Every optimal solution of

Minimize f(x) under h(x) = 0

must be a solution of the system of necessary conditions of optimality

∇f(x) + λ ∇h(x) = 0, h(x) = 0.

Before providing some justification for the conditions of optimality for those
interested readers, we are going to look at several examples and see how they
can be used to find optimal solutions.

Example 3.5 We would like to find the extreme values (maximum and
minimum) of the function

f(x1, x2, x3) = x3
1 + x3

2 + x3
3
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over the sphere x2
1 + x2

2 + x2
3 = 4. In this case n = 3, m = 1, and

h(x1, x2, x3) = x2
1 + x2

2 + x2
3 − 4.

The optimality conditions (3–1) can be written

3x2
1 + λ2x1 = 0,

3x2
2 + λ2x2 = 0,

3x2
3 + λ2x3 = 0,

x2
1 + x2

2 + x2
3 = 4.

Writing down these equations should not pose any particular difficulty. Finding
their solutions may require, however, some computational maturity. Since we
have to deal with a nonlinear system of equations, there is no way we can
know in advance how many vectors we are looking for, so that in manipulating
equations we have to ensure that no solution is lost, since in particular, the
optimal solution we are seeking might be precisely the one not found. In our
particular situation, factoring out the first three equations, we obtain

(3x1 + λ2)x1 = 0,
(3x2 + λ2)x2 = 0,
(3x3 + λ2)x3 = 0,

x2
1 + x2

2 + x2
3 = 4.

The first three equations have a product structure, and so we will have eight
possibilities depending on the factors that vanish. Moreover, due to the symme-
try of the equations with respect to the three independent variables, it suffices
to consider four cases:

1. x1 = x2 = x3 = 0: this situation is inconsistent with the constraint;

2. x1 = x2 = 0, x3 	= 0: bearing in mind the constraint, we obtain x3 = ±2,
and the third equation may be used to determine the value of the multiplier
(for the moment we are not especially interested in that);

3. x1 = 0, x2, x3 	= 0: from the second and third equations we conclude that
x2 = x3, and taking this information into the constraint, x2 = x3 = ±√

2;

4. x1, x2, x3 	= 0: the first three equations lead to x1 = x2 = x3, and the
constraint ensures that this common value is ±2/

√
3.
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In summary, and having in mind the symmetry, we have the following candi-
dates for the maximum and minimum points

(±2, 0, 0), (0,±2, 0), (0, 0,±2),

(0,
√

2,
√

2), (0,−
√

2,−
√

2), (
√

2, 0,
√

2), (−
√

2, 0,−
√

2),

(
√

2,
√

2, 0), (−
√

2,−
√

2, 0), (2/
√

3, 2/
√

3, 2/
√

3), (−2/
√

3,−2/
√

3,−2/
√

3).

On the other hand, the important observation that the sphere is a bounded
surface in space enables us to know that indeed the continuous function f
ought to attain its two extreme values somewhere. Therefore, the points where
the maximum and minimum are assumed must be contained in the preceding
list. By simply computing f at those points and comparing their values, we find
that the maximum is 8 and is attained at (2, 0, 0), (0, 2, 0), and (0, 0, 2) while
the minimum is −8 and corresponds to (−2, 0, 0), (0,−2, 0), and (0, 0,−2).

Example 3.6 Let us now assume that we might be interested in knowing
the extreme values (maximum and minimum) of the same function f not over
all the points of the sphere but only over those that lie at the same time in the
plane x1 + x2 + x3 = 1, that is, we would like to find the extreme points of the
function

f(x1, x2, x3) = x3
1 + x3

2 + x3
3

over the set of points satisfying

x2
1 + x2

2 + x2
3 = 4, x1 + x2 + x3 = 1.

The equations of optimality this time are

3x2
1 + λ12x1 + λ2 = 0,

3x2
2 + λ12x2 + λ2 = 0,

3x2
3 + λ12x3 + λ2 = 0,

x2
1 + x2

2 + x2
3 = 4,

x1 + x2 + x3 = 1,

a system of five equations and five unknowns x1, x2, x3, λ1, λ2. Since we are
not particularly interested in finding the values of the multipliers, and the first
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three equations imply that the gradient of f must be a linear combination of
the gradients of the two restrictions, we can rewrite the previous system as∣∣∣∣∣∣

3x2
1 2x1 1

3x2
2 2x2 1

3x2
3 2x3 1

∣∣∣∣∣∣ = 0,

x2
1 + x2

2 + x2
3 = 4,

x1 + x2 + x3 = 1.

After factoring out 3 in the first column and 2 in the second, we arrive at a
Vandermonde determinant whose expression is well known

(x1 − x2)(x1 − x3)(x2 − x3) = 0,

x2
1 + x2

2 + x2
3 = 4,

x1 + x2 + x3 = 1.

It is elementary to find the solutions of this system. There are three distinct
possibilities, which due to symmetry, reduce to essentially one:

x1 = x2, x3 = 1 − 2x1, 2x2
1 + (1 − 2x1)2 = 4.

The other solutions are obtained by permutations of the variables. The explicit
solutions are (

1
3

+

√
22
6

,
1
3

+

√
22
6

,
1
3
−

√
22
3

)
,

(
1
3
−

√
22
6

,
1
3
−

√
22
6

,
1
3

+

√
22
3

)
,

and those obtained by permutations of these. It is straightforward to check that
the first set of solutions correspond to the maximum value, and the others to
the minimum. Notice how these solutions differ from those of Example 3.5.

How can we understand where multipliers come from? How do they arise?
A simple way of understanding this is by considering parametrized curves

τ : (−δ, δ) → Rn, δ > 0,
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whose image τ(−δ, δ) is entirely contained in the feasible set of our optimization
problem; that is

h(τ(t)) = 0, for all t ∈ (−δ, δ).

If we suppose that x0 ∈ Rn is a point of local minimum or maximum, or
even a saddle point with respect to vectors in the feasible set, and assume that
τ passes through x0 for t = 0, τ(0) = x0, then the composition f(τ(t)) must
likewise have a local minimum, local maximum, or saddle point for t = 0. What
characterizes any of these situations is that the derivative must vanish. By the
chain rule,

0 =
df(τ(t))

dt

∣∣∣∣
t=0

= ∇f(τ(0)) τ ′(0) = ∇f(x0) τ ′(0).

Figure 3.1. Lagrange multipliers.

On the other hand, since h(τ(t)) = 0 for all t, we should also have in the same
way

0 = ∇h(x0) τ ′(0).
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Since the tangent vector τ ′(0) is arbitrary, as far as it respects these two equal-
ities, we conclude that these can hold simultaneously if and only if ∇f(x0)
belongs to the span of ∇h(x0). This linear dependence gives rise to the multi-
pliers. See Figure 3.1.

It is important to point out that the method of multipliers may fail in
providing the extreme points when some of the constraints hi(x) = 0 represent
a surface (or hypersurface) that is not regular in the sense that its gradient
vector ∇hi vanishes at some point, or when the intersection of the sets hi(x) = 0
is somehow not regular. These points are thus called singular, and we should
include them in the list of candidates for maximum and/or minimum points.
This issue (nonsmooth optimization) is, however, beyond the scope of this text.
See [8].

Example 3.7 We would like to determine the minimum value that the
expression

y =
n∑

i=1

aix
2
i

can attain with respect to the variables xi (ai > 0 are given numbers) under
the constraint

c =
n∑

i=1

xi,

where c is another given constant. Optimality conditions lead to

2ajxj + λ = 0, j = 1, 2, . . . , n,

so that

xj = − λ

2aj
.

If we take these expressions back into the constraint

c = −
n∑

i=1

λ

2ai
,

then

λ = − 2c
n∑

i=1

1
ai

,
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and consequently,

xj =
c

aj

n∑
i=1

1
ai

,

which is the only solution of the system. Notice that since the objective function
tends to +∞ when some of the variables grow indefinitely, the attainment of the
minimum value is guaranteed. Therefore, the solution found must correspond
to the minimum. The maximum is +∞, since the constraint is not able to keep
all variables from growing indefinitely.

A more sophisticated, but instructive, example follows.

Example 3.8 Let a be a fixed vector in R3. We want to determine the
extreme values of the linear cost function ax under the constraints

x1x2 + x1x3 + x2x3 = 0,

|x|2 = x2
1 + x2

2 + x2
3 = 1.

For simplicity, we will use the notation

det x = x1x2 + x1x3 + x2x3.

Notice that the set of vectors x satisfying the two constraints is a subset of the
unit sphere in R3, so that it is bounded, and the cost functional necessarily
attains its maximum and minimum values. These can be detected by examining
the necessary conditions of optimality, namely,

a + λ1Ax + λ2x = 0,

det x = 0,

|x|2 = 1.

The matrix A is

A =

⎛
⎝ 0 1 1

1 0 1
1 1 0

⎞
⎠ .

The first (vector) equation informs us that the vector a must be a linear combi-
nation (whose coefficients are the multipliers) of the other two vectors, Ax and
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x. By eliminating the multipliers, we could equivalently write this equation by
requiring

0 =

∣∣∣∣∣∣
a

Ax
x

∣∣∣∣∣∣ .
But since

0 =

∣∣∣∣∣∣
a
x
x

∣∣∣∣∣∣ ,
we can also have

0 =

∣∣∣∣∣∣
a

Ax
x

∣∣∣∣∣∣ +

∣∣∣∣∣∣
a
x
x

∣∣∣∣∣∣ =

∣∣∣∣∣∣
a

x + Ax
x

∣∣∣∣∣∣ .
Let e = (1, 1, 1). Notice that x + Ax = (x e)e, so that

0 = xe

∣∣∣∣∣∣
a
e
x

∣∣∣∣∣∣ .
Observe that xe can never vanish because for one of our feasible vectors x we
have

|xe|2 = |x|2 + 2 det x = 1.

Therefore, we must have ∣∣∣∣∣∣
a
e
x

∣∣∣∣∣∣ = 0,

and this implies
x = sa + te

for certain coefficients s and t. If we take this expression into the two constraints
|x|2 = 1 and det x = 0, after a few computations we get the two quadratic
equations

det a s2 + 2st a e + 3t2 = 0,

|a|2 s2 + 2st a e + 3t2 = 1.

We immediately obtain

s2
(
|a|2 − det a

)
= 1.
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Note that (why?)

|a|2 − det a ≥ 0.

If
|a|2 − det a = 0,

then the equation for s is inconsistent. In fact, in this situation we do not have
any solution for the optimality equations. However, this situation can occur
only when a is a multiple of e (why?), so that the cost function is

cxe,

and as indicated earlier,

|xe|2 = |x|2 + 2 det x = 1,

and therefore the cost functional is constant for all feasible vectors.

Assume that a is such that

|a|2 − det a > 0.

In this case we have two solutions for s:

s =
±1√

|a|2 − det a

.

Taking these values into the first of the quadratic equations above and solving
for t leads to (using again the formula for (ae)2)

t = ±1
3
± ae

3
√
|a|2 − det a

.

The valid pairs of solutions are

⎛
⎝ 1√

|a|2 − det a

,±1
3
− a e

3
√
|a|2 − det a

⎞
⎠ ,

⎛
⎝ −1√

|a|2 − det a

,±1
3

+
a e

3
√
|a|2 − det a

⎞
⎠ .
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Among these four vectors we have to find the maximum and minimum values
of the inner product

ax = s |a|2 + tae.

By examining carefully the four possibilities, we conclude that the maximum
value is

1
3

(
2
√
|a|2 − det a + |ae|

)
,

and it is attained at
x = sa + te

for

s =
1√

|a|2 − det a

, t =
ae

|ae|
1
3
− ae

3
√
|a|2 − det a

.

The minimum value is the maximum changed in sign, and it is attained at the
opposite of the point of maximum.

3. karush–kuhn–tucker optimality conditions

We would like to treat the general case in which some of the constraints come
in the form of equalities and some come in the form of inequalities:

Minimize f(x) subject to g(x) ≤ 0, h(x) = 0.

Let us first explore what sort of conditions a point needs to satisfy so that it
can be an optimal solution of our problem. What is special about such a point?

Let x(0) be one such point of minimum, and let M be the set of indices
M = {1, 2, . . . , m}, where m is precisely the number of components of g. We
consider the following subset of M :

J =
{

j ∈ M : gj(x(0)) = 0
}

.

It might well happen that this set is empty. For j belonging to M \ J , we say
that the corresponding constraint is nonbinding or inactive. Let us look at the
auxiliary problem

Minimize f(x) under gj(x) = 0, j ∈ J, h(x) = 0.
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Our initial solution x(0) will certainly be a point of local minimum, perhaps
not global (why?), and consequently, since all constraints for this new problem
are in the form of equalities, there exists a collection of multipliers

µj , j ∈ J, λ ∈ Rd,

such that
∇f(x(0)) +

∑
j∈J

µj∇gj(x(0)) + λ∇h(x(0)) = 0. (3–2)

Furthermore, we assert that µj can be taken to be nonnegative. The intuitive
reason for this is that f has a minimum at the point x(0) but each of the gj has
a maximum, because gj(x(0)) = 0 is the maximum value that gj can attain in
the feasible set for our initial problem. Hence the gradients of f and gj at the
point x(0) “must point in different directions.” This assertion actually requires
more rigor and care, but it is enough for our purposes. For j ∈ M \ J , we take
µj = 0. We thus arrive at the necessary conditions of optimality, known as
Karush–Kuhn–Tucker (KKT) conditions.

Theorem 3.10 If x is a nonsingular optimal solution of our problem, then
there exists a vector of multipliers (µ, λ) such that

∇f(x) + µ∇g(x) + λ∇h(x) = 0,
µg(x) = 0,

µ ≥ 0, g(x) ≤ 0, h(x) = 0.

The necessity of such conditions means that optimal solutions must be
sought among those vectors x for which we can find a set of multipliers (µ, λ)
satisfying the preceding conditions. This information lets us select those points
that are feasible for minimum points. In those situations in which all such so-
lutions may be found, and we have the information that our problem actually
must have at least one solution, these can be identified by simply computing
the cost of all such candidates and deciding on the minimum.

Before analyzing several explicit examples, we would like to make a couple
of interesting observations.

1. If the optimization problem consists in finding the maximum instead of
the minimum, playing with the appropriate minus signs, it is not difficult to
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write down the changes in the KKT conditions. In fact, we should have

∇f(x) + µ∇g(x) + λ∇h(x) = 0,
µg(x) = 0,

µ ≤ 0, g(x) ≤ 0, h(x) = 0.

If we do not care about the sign of the components of µ, the list of feasible
points for extrema will significantly increase with solutions that cannot be
either maxima or minima, since the signs of components of µ will be mixed up
positive and negative. Therefore, if all components of µ are nonnegative, the
corresponding point may possibly be a point of minimum (never a maximum); if
all components are nonpositive, the point may possibly be a point of maximum
(never a minimum); and if there are positive and negative components of µ,
then the point can never be either a point of maximum or of minimum (saddle
point).

2. The conditions

µ ≥ 0, g(x) ≤ 0, µg(x) = 0,

are equivalent (why?) to

µ ≥ 0, g(x) ≤ 0, µjgj(x) = 0, j = 1, 2, . . . , m,

so that to find all solutions for the KKT conditions, we have to look for all
solutions of the system of n + m + d equations in n + m + d unknowns x, µ, λ,

∇f(x) + µ∇g(x) + λ∇h(x) = 0,
µjgj(x) = 0, j = 1, 2, . . . , m,

hi(x) = 0, i = 1, 2, . . . , d,

that also satisfy µ ≥ 0, g(x) ≤ 0, in the case we are interested in the minimum;
and that satisfy µ ≤ 0, g(x) ≤ 0, in the case of the maximum. When trying to
solve the previous system, and due to its particular structure, we can always
proceed by examining the 2m cases

µi = 0, gj(x) = 0, j ∈ J, i ∈ M \ J,
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where J runs through all possible subsets of M = {1, 2, . . . , m}. Among all
different possibilities that we may obtain, we must discard those that are im-
possible or those that we are not interested in. Although there can be other
reasonable methods of solving the system, this is a rational way of organiz-
ing computations. On the other hand, any observation based on the particular
nature of the problem, leading to discarding some of the solutions, may also
simplify considerably the solution-finding procedure.

Let us look at several examples.

Example 3.10 Suppose that a certain electrical network consists of three
different channels through which electric power flows. If xi, i = 1, 2, 3, stands
for the amount of power through channel i, the total loss in the network is
given by the function

p(x1, x2, x3) = x3 +
1
2

(
x2

1 + x2
2 +

x2
3

10

)
.

If a total amount of r is to be transferred, determine the amounts through each
channel so as to minimize the loss of power. Evidently, the problem reduces to
finding the minimum of the above function providing a measure of the loss of
power under the constraints

x1 + x2 + x3 = r, xi ≥ 0.

Since the set of points of R3 satisfying these constraints is bounded (why?),
the point of minimum we are looking for should be one of the solutions of the
system of optimality

x1 − µ1 + λ = 0, x2 − µ2 + λ = 0, 1 +
x3

10
− µ3 + λ = 0,

µ1x1 = 0, µ2x2 = 0, µ3x3 = 0, x1 + x2 + x3 = r,

where the unknowns are x1, x2, x3, µ1, µ2, µ3, λ. We are interested in those so-
lutions satisfying x1, x2, x3, µ1, µ2, µ3 ≥ 0. Notice that λ is associated with the
equality constraint x1 +x2 +x3 = r, and thus we cannot demand any condition
on its sign. Solving the previous system requires a little bit of ability in finding
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all the solutions corresponding to the eight possibilities

x1 = x2 = x3 = 0,
x1 = x2 = µ3 = 0,
x1 = µ2 = x3 = 0,
µ1 = x2 = x3 = 0,
x1 = µ2 = µ3 = 0,
µ1 = x2 = µ3 = 0,
µ1 = µ2 = x3 = 0,
µ1 = µ2 = µ3 = 0.

After studying with a little bit of care all these possibilities and discarding
those solutions we are not interested in, we arrive at the optimal solution

(r/2, r/2, 0) with associated multipliers (0, 0, 1 − r/2,−r/2)

when r ≤ 2, and

((10 + r)/12, (10 + r)/12, 5(r − 2)/6) with multipliers (0, 0, 0,−(10 + r)/12)

for r ≥ 2. Notice how both solutions coincide when r = 2.

Example 3.11 We have a rope of length a to tie a box from top to bottom
along the two perpendicular directions. What is the maximum volume that
such a box can contain?

We would like to determine the maximum of the volume function

V (x1, x2, x3) = x1x2x3

subject to the conditions

x1, x2, x3 ≥ 0, 2x1 + 2x2 + 4x3 ≤ a,

assuming that x3 is the height. With some care about the minus signs that
must be introduced to transform the problem to our standard format, we have
the system

x2x3 − µ1 + 2µ4 = 0, x1x3 − µ2 + 2µ4 = 0, x1x2 − µ3 + 4µ4 = 0,
x1µ1 = 0, x2µ2 = 0, x3µ3 = 0, (2x1 + 2x2 + 4x3 − a)µ4 = 0.
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We look for those solutions with

x1, x2, x3 ≥ 0,

2x1 + 2x2 + 4x3 ≤ a,

µ1, µ2, µ3, µ4 ≤ 0.

Since the first three equations enable us to express µ1, µ2, and µ3 in terms of
x1, x2, x3, and µ4, we can eliminate the first variables and obtain an equivalent
system

x1(x2x3 + 2µ4) = 0,

x2(x1x3 + 2µ4) = 0,

x3(x1x2 + 4µ4) = 0,

(2x1 + 2x2 + 4x3 − a)µ4 = 0.

If we add the first three equations and bear in mind the last one, we arrive at

0 = 3x1x2x3 + aµ4,

whence

µ4 = −3x1x2x3/a.

If we apply this identity to the same three last equations, and notice that the
maximum of V cannot vanish (x1x2x3 	= 0), since this would rather be the
minimum, we obtain the unique solution for the maximum

x1 = x2 = a/6, x3 = a/12.

Moreover, the associated multipliers are

(0, 0, 0,−a2/144),

which indeed correspond to a point of maximum. Since the constraint region
is bounded, this is the optimal solution sought.

Example 3.12 We would like to find the minimum and maximum of

f(x1, x2, x3) = x3
1 + x3

2 + x3
3
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over the region determined by the constraints

x2
1 + x2

2 + x2
3 ≤ 4, x1 + x2 + x3 ≤ 1.

It is a simple exercise to write down the KKT conditions for this situation,
namely,

3x2
1 + µ12x1 + µ2 = 0,

3x2
2 + µ12x2 + µ2 = 0,

3x2
3 + µ12x3 + µ2 = 0,

µ1(x2
1 + x2

2 + x2
3 − 4) = 0,

µ2(x1 + x2 + x3 − 1) = 0,

x2
1 + x2

2 + x2
3 ≤ 4,

x1 + x2 + x3 ≤ 1.

In addition, we must keep in mind the constraints on the signs of the multipliers,
µ1 and µ2, when looking for the maximum or the minimum: µ1, µ2 ≥ 0 for the
minimum, and µ1, µ2 ≤ 0 for the maximum. We organize the discussion of the
previous system in four cases.

1. µ1 = µ2 = 0: in this case we immediately obtain the solution x1 = x2 =
x3 = 0, which is admissible for both the maximum and the minimum;

2. µ1 = 0, x1 + x2 + x3 = 1: it is straightforward to get

µ2 = −3x2
1 = −3x2

2 = −3x2
3,

whence (1/3, 1/3, 1/3) is the unique solution, which is admissible for the
maximum, not for the minimum, since µ2 = −1/3;

3. µ2 = 0, x2
1 +x2

2 +x2
3 = 4: adding the first three equations (after eliminating

µ2) and keeping in mind that the sum of squares is unity, we obtain

12 + 2(x1 + x2 + x3)µ1 = 0.

This identity discards the possibility that x1 + x2 + x3 = 0, and so

µ1 =
−6

x1 + x2 + x3
.
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If we apply this equality to the first three equations of the optimality system,
we arrive at the fact that either the coordinates of the points vanish or else
their common value is

4
x1 + x2 + x3

.

From here, the following solutions arise (discarding simultaneously those
solutions not satisfying x1 + x2 + x3 ≤ 1):

(−2, 0, 0), (0,−2, 0), (0, 0,−2),(
−
√

2,−
√

2, 0
) (

−
√

2, 0,−
√

2
) (

0,−
√

2,−
√

2
)

,(−2√
3
,
−2√

3
,
−2√

3

)
.

Since all these solutions satisfy x1 + x2 + x3 < 0 (µ1 > 0), they will be
feasible for the minimum.

4. The last case is associated with the equalities

x1 + x2 + x3 = 1, x2
1 + x2

2 + x2
3 = 4,

which has been solved in the previous section.

After computing the values of the cost function f in all those selected points,
we come to the conclusion that the maximum is taken at(

1
3

+

√
22
6

,
1
3

+

√
22
6

,
1
3
−

√
22
3

)
,

and the minimum value is attained at

(−2, 0, 0), (0,−2, 0), (0, 0,−2).

Compare these results with those of Examples 3.5 and 3.6.

4. convexity

We have developed a basic understanding of how to detect necessary conditions
of optimality that must be satisfied at a point of (local) maximum or minimum.
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We have also sufficiently stressed the fact that solutions to the KKT conditions
may include other points that are not the solutions we are looking for. There
might exist solutions to the KKT optimality conditions that do not correspond
to the extreme values. The fundamental question we would like to address is
whether there is some further requirement on the objective function and/or
the functions expressing the constraints so that we can ensure that solutions of
the KKT conditions are exactly the points where the minimum (or maximum)
is attained, without a discussion “a posteriori” on the nature of the different
solutions. As we will understand later, this is a vital issue since in most of the
situations one encounters in practice, solutions for the KKT conditions cannot
be explicitly found and need to be approximated. One is never sure whether all
solutions have been found. Because of the relevance of this issue, we will analyze
the situation in greater detail starting with the most basic case in nonlinear
programming so that we may grasp the whole point of the notion of convexity.

Let us consider the problem

Minimize f(x), x ∈ R,

assuming that f is as regular as we may need. The KKT condition reduces in
this simplified situation to

f ′(x) = 0.

This (nonlinear) equation might have many solutions, even infinitely many,
and any one of them could be the point of minimum sought. But some of those
could also correspond to points of local minima, local maxima, saddle points,
etc. Let us imagine the following situation: We know that

f(x) → +∞ when x → ±∞,

f ′(x) = 0 has a unique solution x0.

It is not difficult to realize that x0 is truly the point of global minimum, and
therefore the unique solution of our initial minimization problem (why?). The
first requirement on the infinite limits of f can be more or less easy to check
once we know what f is. But how can we be sure about the uniqueness of
the solution of the equation of critical points without having to solve it? If we
assume that f admits a continuous second derivative f ′′(x), and f ′′(x) > 0 for
all x (which in many instances can be easily checked), then we can ensure the
second requirement: The equation f ′(x) = 0 can have only one solution (why?).
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On the other hand, we know from elementary calculus that the condition f ′′ > 0
means that f is convex. In summary:
1. f(x) → +∞, x → ±∞: the equation f ′(x) = 0 has at least one solution

corresponding to the global minimum of f ;
2. f ′′(x) > 0 for all x: f is strictly convex, and the equation f ′(x) = 0 has at

most one solution.
Consequently, if both requirements hold, the only solution of the equation
f ′(x) = 0 will correspond to the global minimum, and in particular, there
is no local minimum that is not global. This is basically the reason why con-
vexity is so desperately needed in treating minimization problems (the same is
true with concavity for maximum problems). Another way of summing up the
preceding remarks is by saying that under convexity, necessary conditions of
optimality become sufficient, because convexity rules out the existence of local
minima that are not global. Since we are in front of one of the main concepts
in optimization, we are going to treat it with a little bit of care.

Figure 3.2. A convex and a nonconvex function.

Definition 3.13 A set K in Rn is convex if for every pair of vectors x, y ∈
K, the segment joining them is also contained in K:

tx + (1 − t)y ∈ K, t ∈ [0, 1].

A function f : K ⊂ Rn → R is said to be convex if K is a convex set of vectors
and

f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y), whenever x, y ∈ K, t ∈ [0, 1].
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Before proceeding to attempting a better understanding of this condition, it
is worthwhile to be persuaded that it is a key concept relevant for minimization
problems. We will learn more about convexity in the next section. Our readers
will most likely know what the convexity condition means geometrically. See
Figure 3.2.

The reason why convexity is so important in minimization problems can be
formulated as follows.

Theorem 3.14 Let
f : K ⊂ Rn → R

be convex where K is also convex. If x0 is a local minimum for f in K, then it
is also a global minimum for f in K.

For a justification of this result, notice that the condition of x0 being a local
minimum for f in K means that

f(x0) ≤ f(x), |x − x0| < ε, x ∈ K,

where ε > 0 is some given number. Let us put

Bε = {x ∈ K : |x − x0| < ε} .

Let y ∈ K be an arbitrary point in K. The segment joining x0 and y undoubt-
edly has points belonging to Bε,

tx0 + (1 − t)y ∈ Bε, t sufficiently close to 1.

Hence for such t’s and by the convexity of f ,

f(x0) ≤ f(tx0 + (1 − t)y) ≤ tf(x0) + (1 − t)f(y).

Rearranging these terms, we have

(1 − t)f(x0) ≤ (1 − t)f(y).

Since 1 − t > 0 for some such t, we conclude that

f(x0) ≤ f(y).
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The arbitrariness of y ∈ K yields the desired result.

The definition of convexity (Definition 3.13) means that for every couple of
points in K, x, y, the values of f along the points in the segment joining them
do not exceed those of the “line” through (x, g(x)), (y, g(y)); said differently,
the values of f are under each one of its (f ’s) secants. If the function f is
differentiable, then an alternative characterization of convexity can be given.
This is the most appropriate in our context because it can be directly related
to optimality conditions. Even further, if the function f is twice differentiable
with continuous Hessian matrix, then one can also verify convexity in terms of
second derivatives.

Proposition 3.15 Let

f : K ⊂ Rn → R

be a continuous function where K is convex and open.

1. If f is differentiable and ∇f is continuous, then f is convex if and only if

f(y) ≥ f(x) + ∇f(x) (y − x), x, y ∈ K. (3–3)

2. If f is twice differentiable and ∇2f is continuous, then f is convex if and
only if ∇2f(x) is positive semidefinite for all x ∈ K.

Since the expression
f(x) + ∇f(x) (y − x),

considered as a function of y ∈ K, is the equation of the tangent hyperplane of f
at x, the inequality (3–3) says that the graph of f stays above any of its tangent
hyperplanes. Concerning the characterization with the second derivatives, we
can equivalently say that if f is twice differentiable and ∇2f is continuous,
then it is convex if and only if the eigenvalues of ∇2f(x) are nonnegative at
every x ∈ K.

The proof of Proposition 3.15 proceeds in two steps. First, we will try to
show that it is true for functions of a single variable h : J → R, where J is an
interval in R.

Let us therefore assume that such an h is differentiable and satisfies

h(tx + (1 − t)y) ≤ th(x) + (1 − t)h(y), x, y ∈ J, t ∈ [0, 1].
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By rearranging and manipulating terms, we can transform it (when 1 − t > 0
and x 	= y) to

(y − x)
h(x + (1 − t)(y − x)) − h(x)

(1 − t)(y − x)
≤ h(y) − h(x).

Since this inequality is correct for every t ∈ [0, 1], by taking limits as t → 1−,
we can conclude that

(y − x)h′(x) ≤ h(y) − h(x).

This is the first part of the proposition. If we further assume that h has a
second derivative at every point of J where the above inequalities hold, we will
have, depending on whether y > x or x > y,

h(y) − h(x)
y − x

≥ h′(x),
h(y) − h(x)

y − x
≤ h′(x).

By the mean value theorem applied to h′ we ascertain the existence of z such
that

h′(z) ≥ h′(x), z ≥ x, or h′(z) ≤ h′(x), z ≤ x.

The arbitrariness of y leads to the arbitrariness of z, and hence h′ is a nonde-
creasing function that translates in the nonnegativity of h′′. This is the criterion
for convexity when functions are twice differentiable.

We finally argue that if h is a twice differentiable function, and its second
derivative is nonnegative, then we must necessarily have

h(tx + (1 − t)y) ≤ th(x) + (1 − t)h(y), x, y ∈ J, t ∈ [0, 1].

To this aim we rearrange terms in the expression

th(x) + (1 − t)h(y) − h(tx + (1 − t)y)

in the following fashion:

t (h(x) − h(tx + (1 − t)y)) + (1 − t) (h(y) − h(tx + (1 − t)y))
= t(1 − t)(x − y)h′(a)−t(1 − t)(x − y)h′(b),
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where we have used the mean value theorem, and points a and b lie between
x and tx + (1 − t)y, and tx + (1 − t)y and y, respectively. Again by the mean
value theorem applied to h′ we show the existence of a number c between x
and y such that

th(x) + (1 − t)h(y) − h(tx + (1 − t)y) = t(1 − t)(x − y)(a − b)h′′(c).

If we notice that the product (x−y)(a− b) is always nonnegative (even though
the two factors could be negative), the nonnegativity of the remaining factors
leads us to have

th(x) + (1 − t)h(y) − h(tx + (1 − t)y) ≥ 0

as desired.
For the second step, consider a function f : K → R of several variables. In

fact, the proof of this case is based on what we have already shown for functions
of one variable by simply applying the previous conclusions to the sections

h(s) = f(x + s(y − x))

for fixed x, y, and conveniently applying the chain rule to compute derivatives
and second derivatives. We leave the details to the interested reader.

Sometimes it is important, because it leads to significant consequences, to
know about strict inequalities in all three ways of checking convexity. Functions
enjoying this additional requirement are called strictly convex, and we talk
about strict convexity.

Definition 3.16 A function f : K → R, where K ⊂ Rn is convex, is called
strictly convex if f is continuous (this is in fact redundant) and

f(tx + (1 − t)y) < tf(x) + (1 − t)f(y), x 	= y ∈ K, t ∈ (0, 1).

A characterization similar to Proposition 3.15 can be shown for strict con-
vexity when the function f is more regular.

Proposition 3.17 Let

f : K ⊂ Rn → R
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be a continuous function where K is convex and open.

1. If f is differentiable and ∇f is continuous, then f is strictly convex if and
only if

f(y) > f(x) + ∇f(x) (y − x), x 	= y ∈ K;

2. If f is twice differentiable and ∇2f is continuous, then f is stricly convex
if and only if its Hessian matrix is positive definite at every point in K;
alternatively, all eigenvalues are strictly positive at every point in K; or even,
by Sylvester’s criterion, the principal subdeterminants are strictly positive
at every point of K.

The proof is an interesting exercise in going over the proof of Proposition
3.15 and checking inequalities and strict inequalities. As a general rule, we can
say that convexity lacking strict convexity is typically associated with “flat
parts of the graph.”

We end this section by looking at several examples of convex functions.

Example 3.18 Every linear (or affine) function is convex but not strictly
convex.

There are four elementary operations that respect convexity:

1. a linear combination of convex functions with nonnegative coefficients is
again a convex function;

2. if T : RN → Rm is linear, and g : Rm → R is convex, the composition
f(x) = g(Tx) is also convex;

3. if g : K ⊂ RN → R is convex and h : R → R is convex and nondecreasing,
the composition f(x) = h(g(x)) is also convex;

4. the supremum of any family of convex functions is again a convex function.

These four statements are easy to check by using directly the definition of
convexity itself.

By using linear functions and the basic operations we have listed above, we
can generate new convex functions, or deduce the convexity of known examples.
For instance, if we realize that

|x| = sup {a x : |a| = 1} ,

it turns out that the distance to the origin, |x|, is a convex function. Moreover,
since

h(t) = tp, t ≥ 0,
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is a convex increasing function if p ≥ 1,

g(x) = |x|p

is convex if p ≥ 1. This function is strictly convex if p > 1. If we take

h(t) =
√

1 + t2,

which is again a convex nondecreasing function when t ≥ 0, the function

g(x) =
√

1 + |x|p

will be convex if p ≥ 2, and strictly convex if p > 2. The functions

|x|p + |x|q , a x +
√

1 + |x|p,
|x − a|p , |a x|p + |b x|q ,

are convex when the exponents p, q are greater or equal to 1.

If a function f is not convex, we define its convexification by putting

Cf(x) = sup {h(x) : h ≤ g, h, convex} ,

which is the greatest convex function among all those under f . If f is already
convex, its convexification is f itself. For instance, if f is given by

f(x) = min
{
(x + 1)2, (x − 1)2

}
,

which is not convex, its convexification is the function defined piecewise by

g(x) =

⎧⎨
⎩

(x + 1)2, x ≤ −1,
0, |x| ≤ 1,
(x − 1)2, x ≥ 1,

a convex, not strictly convex function.
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5. sufficiency of the kkt conditions

We have learned in the preceding section about the convexity condition, trying
to emphasize its relevance concerning minimization problems. In this section,
we would like to apply those ideas to the particular situation of NLPP, and
in particular show that necessary conditions of optimality become sufficient as
well, under the main assumption of convexity of all functions involved. Since
optimality conditions are formulated in terms of first derivatives, the appropri-
ate notion of convexity is the one in which first derivatives appear: A function
f : K ⊂ Rn → R is convex if K is a convex set of vectors and

f(y) ≥ f(x) + ∇f(x) (y − x), y, x ∈ K, t ∈ [0, 1].

As usual, our model problem is

Minimize f(x) subject to g(x) ≤ 0, h(x) = 0,

where we explicitly assume that f , g, and h are defined on all of Rn. As a first
step we will consider only constraints in the form of inequalities

Minimize f(x) subject to g(x) ≤ 0.

In this situation we know that optimal solutions must also be solutions of the
conditions

∇f(x) + µ ∇g(x) = 0, µ g(x) = 0, µ ≥ 0, g(x) ≤ 0. (3–4)

The main result of this section is the following:

Theorem 3.19 Assume that f and g are convex differentiable functions.
If the pair (x, µ) satisfy the KKT conditions above, x is an optimal solution of
the problem. If in addition, f is strictly convex, x is the only solution of the
problem.

In fact, this result is almost a consequence of Theorem 3.14, since a solution
of the optimality conditions should always be a local minimum. What convexity
allows is the passage from a local minimum to a global minimum as stated in
that theorem.
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A clear, direct proof is almost immediate. Assume that the pair (x, µ) is
such that all constraints in (3–4) hold. Notice that the set

K = {x ∈ Rn : g(x) ≤ 0}

is convex, provided that g is a convex function. This is easy to check. Imagine
that y is any other vector in K. We would like to conclude that

f(y) − f(x) ≥ 0.

This is a consequence of the following chain of inequalities, each one of which
is explained to the right:

f(y) − f(x) ≥ ∇f(x) (y − x) (convexity of f)
= −µ ∇g(x)(y − x) (KKT conditions)
≥ µ (g(x) − g(y)) (convexity of g and µ ≥ 0)
= −µ g(y) (µ g(x) = 0)
≥ 0 (µ ≥ 0, g(y) ≤ 0),

as desired.
The uniqueness fact is also straightforward if we realize that if f(x) =

f(y) for some x, y ∈ K, then all above inequalities are indeed equalities. In
particular, we must have

f(y) − f(x) = ∇f(x) (y − x)

and this implies, by the strict convexity of f , that x = y.

This result clearly justifies again the great importance of convexity in min-
imization problems.

The case in which the NLPP incorporates constraints in the form of equal-
ities places rigid constraints for the sufficiency of optimality conditions. As a
matter of fact, since

h(x) = 0 is equivalent to h(x) ≤ 0,−h(x) ≤ 0,

the convexity condition on both h and −h can occur only if h is linear or affine,
so that only this type of equality constraints are permitted.
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Corollary 3.20 Assume that f , g are convex differentiable functions and h
is affine. Then, optimal solutions for the corresponding NLPP are exactly the
solutions of the KKT conditions.

We will end this section by looking at several examples.

Example 3.21 We would like to write down optimality conditions for the
LPP

Minimize cx under Ax = b, x ≥ 0.

It is immediate to obtain the corresponding KKT conditions

c + λA + µ = 0,

µx = 0,

Ax = b,

x ≥ 0, µ ≤ 0.

By eliminating µ from the first equation we arrive at

Ax = b,

λA + c ≥ 0, x ≥ 0, (λA + c)x = 0.

Since in a LPP all functions involved are linear, they are in particular convex,
and therefore any pair (x, λ) verifying the previous restrictions will be an op-
timal solution of the problem. Notice that the previous system is equivalent
to

Ax = b, ((λA)i + ci)xi = 0, i = 1, 2, . . . , n,

λA + c ≥ 0, x ≥ 0.

Example 3.22 Find an optimal solution of

Minimize |x|2 subject to ax = c,

where a is a given vector, and c is a constant. Since the objective function
is strictly convex, and the one in the constraint is linear, we know that the
optimal solution (it must be unique if it exists) of this problem corresponds
exactly with the unique solution of the KKT conditions. These are

2x + λa = 0, ax = c.
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The unique solution is

x =
c

|a|2 a, λ =
−2c

|a|2 ,

so that the minimum value is c2/ |a|2. Notice that we are calculating the square
of the minimum distance to the origin from the hyperplane ax = c. Our result
coincides with the formula given in elementary analytic geometry, c/ |a|.

Example 3.23 Consider now

Minimize |x|2 under ax ≤ c, bx ≤ d,

with a, b, x ∈ Rn, c, d ∈ R. Once again the objective function is strictly convex,
and those involved in the constraints are linear, so that the problem has at most
one solution, which, in case it actually exists, must be the only solution of the
KKT conditions. These are

2x + µ1a + µ2b = 0,
µ1(a x − c) = 0, µ2(b x − d) = 0,

together with µ1, µ2 ≥ 0, ax ≤ c, bx ≤ d. A full discussion of these equations
will lead to four possibilities:

1. µ1 = µ2 = 0, x = 0: this will be the optimal solution, provided that x = 0
is feasible, i.e., c ≥ 0 and d ≥ 0.

2. µ1 = 0, µ2 = −2d/ |b|2, x =
(
d/ |b|2

)
b: d must be negative, and feasibility

of this vector x implies the further restriction

dab ≤ c |b|2 ;

3. µ2 = 0, µ1 = −2c/ |a|2, x =
(
c/ |a|2

)
a: c must be negative, and feasibility

for x implies
cab ≤ d |a|2 ;

4. when both multipliers do not vanish, they can be determined as the solution
of the linear system

|a|2 µ1 + abµ2 = −2c,

abµ1 + |b|2 µ2 = −2d,
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whose determinant, |a|2 |b|2 − (ab)2, does not vanish unless a and b are
collinear. The solution is given by

µ1 =
2(d ab − c |b|2)
|a|2 |b|2 − (ab)2

, µ2 =
2(c ab − d |a|2)
|a|2 |b|2 − (ab)2

,

and the optimal vector is

x = −1
2
(µ1a + µ2b).

Figure 3.3. The four possibilities in Example 3.23.

To sum up, and depending on the particular data a, b, c, d, we can have the
following four situations:

1. c ≥ 0, d ≥ 0;

2. d < 0, dab ≤ c |b|2;
3. c < 0, cab ≤ d |a|2;
4. dab > c |b|2, cab > d |a|2.
It is important to point out that these are not four different solutions but a
unique one that depends on the relationship among the different vectors a and
b, and scalars c and d. All these possibilities are drawn in Figure 3.3.
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Example 3.24 Consider the problem of finding the minimum of

|x|4 + |x − a|2

under the constraint
|x|2 ≤ 1,

where a is a given vector. Due to the strict convexity of the cost function, the
optimal solution must correspond to the unique solution of the KKT conditions

4 |x|2 x + 2(x − a) + µ2x = 0, µ(|x|2 − 1) = 0,

where we must bear in mind the additional restrictions µ ≥ 0, |x| ≤ 1. The two
admissible cases are

µ = 0, x = ta, 2 |a|2 t3 + t − 1 = 0,

and
µ = |a| − 3, x = a/ |a| .

In the first situation, we must demand |a| ≤ 3 if x = ta is to be feasible, since(
2 |x|2 + a

)
x = a.

Notice that the cubic polynomial specifying t has a unique real root that lies
in the interval (0, 1/ |a|) if |a| ≤ 3, whereas if |a| ≥ 3, the optimal solution
corresponds to the second alternative.

Example 3.25 A typical truss structure as shown in Figure 3.4 is to be
designed according to the criterion of minimum weight subject to a constraint
on the maximum deflection permissible at the free node and a lower bound on
the crossectional areas of members. The data of the problem are

a1, a2, A0, A1, A2, x0.

They should all be positive and depend upon the geometry of the truss, material
constants, loads at the indicated points, etc. Specifically, the problem can be
stated as

Minimize a1x1 + a2x2
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subject to
A1

x1
+

A2

x2
≤ A0, x1, x2 ≥ x0,

where x1 and x2 are precisely the crossectional areas to be designed.

Figure 3.4. A truss structure.

The reader is invited to check that this NLPP is convex, so that the op-
timal solution can be found by solving the KKT conditions. Namely, if µi,
i = 1, 2, 3, are the multipliers associated with the three restrictions in the form
of inequalities, we have

a1 − µ1A1

x2
1

− µ2 = 0,

a2 − µ2A2

x2
2

− µ3 = 0,

µ1

(
A1

x1
+

A2

x2
− A0

)
= 0,

µ2(x0 − x1) = 0,

µ3(x0 − x3) = 0,

A1

x1
+

A2

x2
− A0 ≤ 0,

x0 − x1 ≤ 0, x0 − x2 ≤ 0,

µ1 ≥ 0, µ2 ≥ 0, µ3 ≥ 0.
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A full discussion of the solution would require a number of different cases de-
pending on the particular current values of the data set above. For definiteness,
we will take

a1 =
1
5
, a2 =

1
6
,

A0 = 12, A1 = 25, A2 = 100,

x0 = 10,

all given in appropriate units. For this particular data set, the optimal solution
turns out to be

x1 = 10, x2 =
√

120,

with multipliers

µ1 = µ3 = 0, µ2 =
1
5
.

Details are left to the interested reader.

6. duality and convexity

As in LP, we can associate with every NLPP another NLPP, called its dual,
such that there is a close relationship between the two. Since we now feel that
NLP is much more complicated than its linear counterpart, duality in NLP
is also much more delicate. This section intends to be a mere introduction to
the subject. From the practical point of view, duality in NLP appears to be
a powerful tool in trying to better approximate optimal solutions in NLP. As
such, it is closely connected to convexity, as we will see.

Definition 3.26 Given a primal problem

Minimize f(x) under g(x) ≤ 0, h(x) = 0,

we define its dual as the NLPP

Maximize θ(µ, λ) under µ ≥ 0,

where the so-called dual function θ is defined on pairs of multipliers (µ, λ) by
putting

θ(µ, λ) = inf
x

[f(x) + µ g(x) + λ h(x)] .



3.6 Duality and convexity 103

Why the dual problem is defined in this way will become clearer as we
proceed to better understand the connection between these two NLPP and
link them to the KKT optimality conditions. In a sense, the undelying idea is
to incorporate necessary conditions of optimality as part of feasibility for a new
problem as follows:

Minimize F (x, µ, λ) = f(x)

subject to
g(x) ≤ 0, h(x) = 0,

∇f(x) + µ ∇g(x) + λ ∇h(x) = 0,
µ ≥ 0, µg(x) = 0.

The function appearing in the definition of the dual function is known as the
Lagrangian associated with the problem

L(x, µ, λ) = f(x) + µ g(x) + λ h(x).

Lemma 3.27 Assume that the functions f , g, and h are such that the
infimum defining the dual function θ is always attained for all pairs (µ, λ),
µ ≥ 0. Let X = X(µ, λ) denote one such point where that infimum is taken
on, so that

θ(µ, λ) = f(X) + µ g(X) + λ h(X).

Then if the function X(µ, λ) is differentiable, so is θ, and

∇µθ(µ, λ) = g(X),
∇λθ(µ, λ) = h(X).

Our justification consists of a straightforward computation. If

θ(µ, λ) = f(X) + µ g(X) + λ h(X),

on the one hand, by the chain rule,

∇µθ = (∇f(X) + µ ∇g(X) + λ ∇h(X))∇µX + g(X);

but on the other, if the Lagrangian attains its minimum at X, its gradient with
respect to x must vanish,

∇f(X) + µ ∇g(X) + λ ∇h(X) = 0,
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so that
∇µθ = g(X),

as desired. We have a similar result with the gradient with respect to λ.

As we argued in the LP case, duality is shown in two steps. The next
proposition is typically known as weak duality.

Proposition 3.28 Let f , g, and h be differentiable.

1. We always have

max {θ(µ, λ) : µ ≥ 0} ≤ min {f(x) : g(x) ≤ 0, h(x) = 0} .

2. If (µ, λ) is feasible for the dual problem (µ ≥ 0), x is feasible for the primal
(g(x) ≤ 0, h(x) = 0), and

θ(µ, λ) = f(x),

then (µ, λ) and x are optimal solutions for the dual and primal, respectively.

The explanation is elementary. Notice that if µ ≥ 0, g(x) ≤ 0, and h(x) = 0,
then

θ(µ, λ) ≤ f(x) + µ g(x) + λ h(x) ≤ f(x).

This implies weak duality. The second part of the statement is also straight-
forward.

The difference

min {f(x) : g(x) ≤ 0, h(x) = 0} − max {θ(µ, λ) : µ ≥ 0}

is called the duality gap. When there is no such gap, both problems are equiv-
alent, and the primal problem can be solved by means of the dual. This is the
main idea of all numerical algorithms to compute optimal solutions by looking
at the dual. Apart from the interpretation of the dual problem itself, this is the
main reason why the dual problem is important in NLP. Convexity is again the
main hypothesis under which the duality gap vanishes.

Theorem 3.29 Assume that f and g are convex differentiable functions, h
is affine, and the optimization problem defining the dual function is always solv-
able. Then both problems, the primal and the dual, are solvable simultaneously
and there is no duality gap.
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For a justification, let us identify by (P) and (D), the primal and dual
problems, respectively. Assume first that the primal is solvable, so that there
exist a vector x and multipliers (µ, λ) satisfying the KKT conditions, namely,

∇f(x) + µ∇g(x) + λ∇h(x) = 0,
µg(x) = 0, µ ≥ 0, g(x) ≤ 0, h(x) = 0.

All of these conditions imply that x is feasible for (P), and (µ, λ) is feasible
for (D); under the convexity of f and g, and the linearity of h, x is a point of
attainment of the minimum for the Lagrangian, but since µ g(x) = h(x) = 0,
we have

θ(µ, λ) = f(x).

Proposition 3.28 implies that (µ, λ) is an optimal solution for (D).
Conversely, assume that (µ, λ) is an optimal solution for the dual. If we then

apply the KKT conditions to this NLPP, we obtain

∇µθ(µ, λ) − y = 0, ∇λθ(µ, λ) = 0,

µ ≥ 0, y ≥ 0, yµ = 0,

where y is the multiplier associated with the constraint µ ≥ 0. Keeping in mind
Lemma 3.27, and if x is a point where

θ(µ, λ) = f(x) + µg(x) + λh(x),

so that
∇f(x) + µ∇g(x) + λ∇h(x) = 0,

we can reinterpret those optimality conditions as

g(x) = ∇µθ(µ, λ) = y ≥ 0,

h(x) = ∇λθ(µ, λ) = 0,

µg(x) = µy = 0.

Under convexity assumptions on f , g and linearity on h, satisfying the KKT
conditions ensures that x is an optimal solution for (P).

It is relevant to emphasize that this duality fact means that the minimum

min {max {f(x) + µ g(x) + λ h(x) : µ ≥ 0} : g(x) ≤ 0, h(x) = 0}
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and the maximum

max {min {f(x) + µ g(x) + λ h(x) : g(x) ≤ 0, h(x) = 0} : µ ≥ 0}

are equal. Duality is always a question about whether the min–max operation
is reversible.

We end this section by computing the dual function in one particular ex-
ample.

Example 3.30 Consider the NLPP

Minimize x2
1 + x2

2 + x2
3

subject to

x2
1 + x2

2 + 3x3 ≤ −5
2
, x1 + x2 + x3 = −2.

Since in this situation all the convexity requirements hold, finding the dual
function for this problem θ(µ, λ) amounts to solving the KKT conditions, for
fixed (µ, λ), forgetting about constraints, i.e., solving the system

2x1 + 2x1µ + λ = 0,

2x2 + 2x2µ + λ = 0,

2x3 + 3µ + λ = 0.

The unique solution is easily found to be

x1 = x2 =
−λ

2(1 + µ)
, x3 =

−1
2

(λ + 3µ).

Taking these values into the corresponding Lagrangian, we have the dual func-
tion

θ(µ, λ) = − λ2

2(1 + µ)
− 1

4
(λ + 3µ)2 +

5
2
µ + 2λ.

It is now a question of some careful computations to check that the optimal
solution for the primal and the dual are linked through duality and the KKT
conditions. These optimal solutions are

x1 = x2 = −1
2
, x3 = −1, µ =

1
4
, λ =

5
4
,
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and the optimal value for the primal and the dual is the common value 3/2.

7. exercises

1. Determine the critical points of the function

f(x1, x2) = (2 − x1 − x2)2 + (1 + x1 + x2 − x1x2)2.

Try to decide their nature.
2. Find the minimum of the function

σ2 =
n∑

i=1

T 2
i x2

i

with respect to the variables xi subject to

c =
n∑

i=1

xi.

Both c and Ti are fixed constants.
3. Given the objective function

P = (x1 − 1)2 + x2
n +

n−1∑
i=1

(xk+1 − xk)2,

find the critical points of P

1. without any constraint;
2. subject to

c =
n∑

i=1

aixi,

where c and a are constants.
4. Check that the function

f(x1, x2, x3) = x2
1 + x2

2 + x2
3 − x1 − x2 − x3
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is convex. Find the extreme values of f under the conditions

x2
1 + x2

2 = 4, −1 ≤ x3 ≤ 1.

5. Describe the region of the plane determined by the two inequalities

x2
1 − x2

2 ≤ 1, x2
1 + x2

2 ≤ 4.

Find the extreme values of

f(x1, x2) = x2
1 + 2x2

2 + x1x2

over that region.
6. Define the functions

F (a) = min {f(x1, x2, x3) : g(x1, x2, x3) = a} ,

G(a) = min {f(x1, x2, x3) : g(x1, x2, x3) ≤ a} ,

for a ∈ R and

f(x1, x2, x3) = x4
1 + x2

1(1 − 2x2
2) + x2

2 + x2
3 − 2x1 + 1,

g(x1, x2, x3) = x4
1 + x4

2 + x4
3.

Find explicit expressions for F (a) and G(a). Study the two problems

min F (a), min G(a)

and their relationship. What can you conclude about the minimum of the
function f over all of R3? Do the same for simpler choices of the function
g.

7. Find the maximum and minimum values of

f(x1, x2) =
∫ x2

x1

1
1 + t4

dt

over the region determined by x2
1x

2
2 = 1.

8. Find the closest point of the surface xy + xz + yz = 1 to the origin. Do the
same for the surface of equation x2 + y2 − z2 = 1.

9. Solve the problem of the Cobb–Douglas utility function of Chapter 1.
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10. Solve the problem of the location of several service points where clients are
known (Chapter 1) for the following data set: The locations of customers
are

(1, 0), (2, 1), (−1, 2), (3,−1), (−1,−2), (3,−2),

and three service points are to be built.
11. Solve the exercise of the ladder in Chapter 1.
12. Solve the problem of the scaffolding system of Chapter 1.
13. A certain set of experimental data relating two variables x and y is at our

disposal,
(xi, yi), i = 1, 2, . . . , n.

A linear relationship between x and y is desired, but this is typically not
possible in an exact fashion. Determine the best coefficients a, b such that
the quadratic error of the data set with respect to the desired linear model

y = ax + b

is minimized.
14. When a certain linear system Ax = b is not solvable, we might yet be

interested in the vector x “closest” to being a solution by minimizing the
quadratic (or other type of) error

Minimize
1
2
|Ax − b|2

over all possible x. Solve this problem in general and apply your solution to
the particular case ⎛

⎝ 1 −1
1 1
2 −1

⎞
⎠(

x1

x2

)
=

⎛
⎝ 4

0
0

⎞
⎠ .

15. A truncated-conic bar, clamped at its upper end and hanging vertically (in
the spirit of Exercise 10 of Chapter 1) is to be designed under the following
restrictions (Figure 3.5): total length L, total volume at our disposal V ,
density of material to be used ρ, Young modulus of material to be used E.
The criterion is to minimize total elongation under the action of a given
weight W at its lower tip and its own weight. We assume that Hooke’s law
is valid: If the cross section at distance x from the upper end moves to y(x)
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under the action of W , then the strain at such section y′(x) is proportional
(with constant 1/E) to the stress in such a section, and this stress in turn
is the quotient of the total load acting on it and the corresponding area of
the cross section. The radii R and r of the upper and lower sections are to
be determined.
If the cross sections are squares, so that the bar is a truncated pyramid, is
the same optimal solution expected?

Figure 3.5. A conic bar.



Chapter 4

Approximation Techniques

1. introduction

It is likely that our readers may have already realized that solving optimization
problems explicitly is not an easy task. As a matter of fact, it is typically an
impossible job. Not only for those problems with a high number of variables
involved is it virtually hopeless to compute by hand the optimal solutions,
but even for many modest-sized problems it is almost impossible to solve and
manipulate so many equations. It is therefore of primary importance to show
how solutions for optimization problems can be efficiently approximated. This
need is even more unavoidable from the engineering and practical point of view,
since explicit, accurate approximation is as important as the understanding
of the underlying problem. As usual, our aim in this chapter is to cover the
basic algorithms that researchers have developed over the years to approximate

111
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solutions for NLPP without trying to exhaust all possibilities, describe the most
recent trends, or even show where the algorithms come from and why they have
their particular structure. We will try to motivate, however, the most popular
ones so that the reader may have a feeling of their nature without entering
into technical details. It is also true that this is a highly technical subject
evolving very rapidly, so that the methods that seem best now will probably be
abandoned in a few years and replaced either by old ideas in a new framework
or by entirely novel techniques. See, for instance, [17] for a very nice survey on
all this and the importance of interior point methods nowadays.

There is a further, important, reason why we will not describe a full list
of algorithms or go into too many details, and that is that there already ex-
ist very powerful software packages devoted to approximate optimal solutions
in a variety of situations. These tools free the user from the need to be too
concerned about technicalities related to practical algorithms and focus on the
modeling issues of problems and the interpretation and assessment of their so-
lutions. Some of these software packages are AIMMS, AMPL, AMSL, GAMS,
Optimization Toolbox of MatLab, and SNOPT. Much information on all this
is scattered throughout the Internet. We especially recommend the site [29],
which is like a master site for optimization. In particular, when one is looking
for information on what software is best for one’s needs, this site is a must to
visit.

Those readers interested in deepening their understanding of approximation
techniques and willing to pursue this direction should definitely resort to some
of the references we have selected at the end of the text. In particular, algo-
rithms for large optimization problems require considerable expertise, patience,
and study. Approximation is much more than the content of this chapter. For
more comprehensive sources, see [1], [13], [16], [22], [30], [32].

Many numerical approximation methods for NLPP problems have an itera-
tive nature. This means that the approximation scheme proceeds in successive,
better approximations to the solutions sought. In this way, any such algorithm
must specify a mechanism to build a new iteration from one (or several) we
already have. We thus construct a sequence {xk} of successive approximations
to the real optimal solution x, trusting that xk+1 will be closer to x than it was
in its preceding approximation xk. Indeed, an exponent α > 0 characterizes
efficient numerical algorithms when

|xk+1 − x| ≤ C |xk − x|α , C > 0.
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If we interpret the difference
|xj − x|

as a measure of the error we make when taking xj for x, the above inequality
says that in each new iteration the error is reduced by a power with exponent
α. The bigger α is, the better the method, since the error is decreased more
rapidly, but the more expensive the computation of the new iteration may be.
There should always be a balance between the efficiency of the algorithm and
the computational cost associated with its implementation.

Each specific numerical algorithm should precisely determine the passage
from one iteration xk to the next xk+1. Since these are vectors, we can think
of this process as a two-step strategy:
1. Search direction: Decide on the vector dk pointing toward xk+1 from xk,

such that dk is parallel to xk+1−xk; this vector dk is called a search direction.
2. Step-size parameter: Once dk has been decided upon, try to determine a

parameter tk such that
xk+1 = xk + tkdk;

tk is called the step-size parameter.
These two elements, dk and tk, suffice to determine a new iteration from a given
one. Each complete optimization algorithm must address and incorporate these
two ingredients: search direction and step-size parameter.

We will restrict attention first to NLPP without constraints, and treat in
this context some of the algorithms for deciding on the step-size parameter
and on the search direction. In the first case, we will briefly describe the fixed
variable step-size, interpolation, and golden rule algorithms, and we will focus
on the steepest-descent, the conjugate gradient, and Newton-like methods for
the second. Later, we will be concerned with the main ideas for dealing with
NLPP with constraints including penalizations and barriers, the dual method,
and finally, the augmented-Lagrangian method. We will try to remain as specific
and to the point in each situation as possible, with the idea of not confusing
our readers with too many statements.

2. line search methods

We will start by treating the numerical approximation of the problem

Minimize g(x), x ∈ Rn.
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As pointed out in the previous section, the choice of the step size must be made
after a search direction has been decided upon. Therefore, we will assume that
a search direction determined by dk emanating from the approximation xk has
been chosen, and we would like to decide on the parameter tk such that

xk+1 = xk + tkdk

will be our next iterate to the optimal solution we seek. If we are interested in
finding the global minimum of g(x), where we assume g to be defined in all of
Rn, and the corresponding minimum problem does have a solution, the best
move we can do toward that goal is to choose tk as a solution of the problem

Minimize g(xk + tdk), t ∈ R.

If we put
h(t) = g(xk + tdk), t ∈ R,

we are led to consider the one-dimensional minimization problem on the func-
tion h. Since h is a one-dimensional section of g, this step is typically referred
to as a line search scheme. Hence, we concentrate on finding an approximation
for

Minimize h(t), t ∈ R.

We proceed to describe briefly some of the simpler methods that can be and
are used for the one-dimensional situation. We could certainly try to determine
exactly the minimum point for the function h, but again this strategy is not
appealing from the practical point of view, since even if could exactly find that
minimum point, the fact that we will have to solve such a situation many, many
times in a systematic fashion for higherdimensional problems points toward
finding an efficient way of approximating the value of the minimum point for
one-dimensional problems.

Fixed or variable step size. This is the most elementary of all methods. It
consists in selecting a fixed step size t and setting successive approximations
by putting

ti+1 − ti = t.

We proceed in this fashion until

h(ti+1) ≥ h(ti);
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at this point we reduce the size of t by a significant factor, and we change its
sign. We now proceed by taking

ti+1 − ti = t

with this new value of t until again we get

h(ti+1) ≥ h(ti).

We keep repeating this process iteratively until a preassigned precision is reached.

Interpolation. The interpolation method consists in interpolating the val-
ues of h at three points t1, t2, t3, by a quadratic polynomial whose minimum
point is easily located. It is convenient for the relative location of the values of
h at these three points to be

h(t2) < h(t1), h(t2) < h(t3).

Such a point of minimum, t∗, for the interpolating polynomial is considered a
good approximation of the real point of minimum for h. If more precision is
desired, t∗ replaces one of the ti’s so that the relative position of the values of
h at the three chosen points is as above, and computations are redone until a
prescribed threshold precision is hit. For smooth functions the method turns
out to be quite efficient, specially because fully explicit formulas for t∗ in terms
of ti and h(ti) can be written down. Indeed,

t∗ =
1
2

t21(h(t2) − h(t3)) + t22(h(t3) − h(t1)) + t23(h(t1) − h(t2))
t1(h(t2) − h(t3)) + t2(h(t3) − h(t1)) + t3(h(t1) − h(t2))

.

Notice that the method is exact with a single iteration when h is quadratic.

Golden section method. The golden section algorithm tries to reduce the
size of the interval where the minimum point is located by a factor k = 0.618034.
This factor is the golden section, which is the positive solution of the equation
1 + k = 1/k. Let us suppose that the minimum is attained at a point in the
interval (t1, t2). We consider two points

t3 = kt1 + (1 − k)t2, t4 = kt2 + (1 − k)t1.
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Comparing the values of h(t3) and h(t4) we proceed as follows:

1. if h(t3) > h(t4), the minimum is located in the interval (t3, t2), so that t3
replaces t1;

2. if h(t3) < h(t4), then the minimum belongs to the inteval (t1, t4), and t4
takes the place of t2.

We apply this procedure iteratively until the interval has a length less than a
preassigned threshold value.

Fibonacci’s method. This is a variant of the previous one in which the
ratio k varies depending on the iteration we are computing. The values of k
change according to the Fibonacci sequence, which is defined recursively by

a1 = a2 = 1, aj+2 = aj+1 + aj , j ≥ 1.

In each iteration, we use the parameter

kj =
aj

aj+1

instead of k. Notice that kj tends to k, the golden section, as j → ∞.

It is not fair to say that a particular method is always better than any
other one. Depending on the problem, one method may be preferable over other
possibilities. Each user may find his/her own preferences by experimentation.
In general, we can say that the interpolation method works quite well when
the objective function is smooth. Otherwise, the golden section scheme may be
used. The fixed step-size algorithm can be used, however, as a generalpurpose
algorithm to be utilized in any situation. There exist other more sophisticated
schemes. See the references cited in the introduction to this chapter.

3. gradient methods

Once we have treated the issue of the step-size choice when a search direction
has been determined, we study the task of deciding on this direction. This a
more complex and fundamental question. The success of a particular method
is greatly influenced by a good algorithm for choosing these search directions.
There are essentially two groups of algorithms to decide on the search direction:
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those not requiring any information on the objective function, and those based
on the information provided by the gradient of the objective function. Since
it is reasonable to believe that we can use the information coming from the
gradient to our advantage, we will focus on the gradient methods, since these
are extensively used. We will describe three types of methods that are among
the most popular choices: the steepest descent, conjugate gradient, and quasi-
Newton.

The basic idea of all these algorithms relies on the notion of a descent
direction for a given smooth function.

Definition 4.1 (Descent direction) A vector d ∈ Rn is a descent direction
for a smooth function g : Rn → R at a point x ∈ Rn if

∇f(x)d < 0.

The reason for this definition is quite simple. Just notice that if we define

h(t) = g(x + td),

then by the chain rule,
h′(0) = ∇f(x)d.

Therefore, if d is a descent direction, this derivative is negative, and hence the
values of g decrease as we move along d from x, at least locally.

Any gradient method is associated with different ways of choosing the de-
scent direction. As announced, conjugate gradient and quasi-Newton methods
are among the most popular and efficient candidates. We will briefly describe
the steepest descent and quasi-Newton methods, but dwell a bit more on con-
jugate gradient methods.

Steepest descent. It is well known that the gradient of a function at a
point, ∇g(x), provides the direction along which the function increases most
rapidly. Consequently, −∇g(x) furnishes the direction of “steepest descent”
from the point x. Thus at each iteration xk, the gradient of g is evaluated at
xk, and we take as search direction

dk = −∇g(xk).

Notice that dk is always a descent direction, indeed the steepest descent direc-
tion, since

∇g(xk)dk = −‖∇g(xk)‖2 ≤ 0.
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If the gradient vanishes, then xk is the minimum point sought. If it does not
then dk is a descent direction. In summary, the steepest descent algorithm can
be described as follows:

1. Initialization. Choose x0, initial approximation.

2. Search direction. Given approximation xk, set dk = −∇g(xk).
3. Stopping criterion. For a preassigned threshold value ε > 0, if

‖dk‖ ≤ ε,

stop: The current approximation xk is sufficiently good, i.e., sufficiently close
to a true point of minimum. Else, continue. Notice that at such a point of
minimum the gradient actually vanishes.

4. Line search. Find an approximation to the line minimization problem (see
last section)

Minimize g(xk + tdk), t ∈ R.

Let tk be an approximation to such a minimum point.

5. New approximation. Put xk+1 = xk + tkdk. Go back to step 2.

Quasi-Newton methods The Newton method takes as search direction

d = −[∇2g(x)]−1∇g(x),

where
∇2g(x)

is the (symmetric) Hessian matrix of g at x.

Proposition 4.2 If ∇2g(x) is positive definite, then d as above is a descent
direction for g at x. Indeed, if A is any positive definite matrix, the direction

−A∇g(x)

is a descent direction of g at x.

The proof is elementary and left to the reader. More important than this
fact is to understand where the descent direction for Newton’s method comes
from. From Taylor’s expansion we have

g(x) ≈ g(x0) + ∇g(x0) (x − x0) +
1
2
(x − x0)T∇2g(x0)(x − x0),
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so that by differentiation,

∇g(x) ≈ ∇g(x0) + ∇2g(x0) (x − x0).

If x is a point of minimum, we must enforce ∇g(x) = 0, and this leads to

x = x0 − [∇2g(x0)]−1∇g(x0).

This is the explanation of the form of the search direction for Newton’s method.

The computation of the inverse of the Hessian matrix is, however, not ap-
pealing from a practical point of view. Trying to overcome this difficulty leads
one to consider quasi-Newton algorithms where the inverse of the Hessian ma-
trix is approximated succesively by using only the gradient of g (first deriva-
tives). We simply give in the sequel the two most important quasi-Newton
algorithms without further justification.

1. Initialization. x1, initial approximation; H1 = 1, p1 = −H1∇g(x1). Here 1
is the identity matrix.

2. Line search. Find an approximation to the line minimization problem

Minimize g(xk + tpk), t ∈ R.

Let tk be an approximation to such a minimum point.

3. New approximation. Put xk+1 = xk + tkdk.

3. Stopping criterion. For a preassigned threshold value ε > 0, if

‖∇g(xk+1)‖ ≤ ε,

stop: The current approximation xk+1 is sufficiently good, i.e., suffi-
ciently close to a true point of minimum. Else, continue.

4. New search direction. Let

qk = ∇g(xk+1) −∇g(xk), pk+1 = −Hk+1∇g(xk+1),

and go to step 2.

The form of the matrix Hk+1 distinguishes different algorithms.

1. Davidon–Fletcher–Powell algorithm. Take

Hk+1 = Hk + tk
pkpT

k

pkqk
− HkqkqT

k Hk

qT
k Hkqk

.
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2. Broyden–Goldfarb–Shanno algorithm. Take

Hk+1 = tk
pkpT

k

qkpk
+
(
1 − pkqT

k

qkpk

)
Hk

(
1 − qkpT

k

qkpk

)
.

4. conjugate gradient methods

The conjugate gradient algorithm is a more elaborate procedure to decide on
the search direction as compared to the steepest descent method. Its interest
can be motivated as a way to solve the problem that the direction provided
by the gradient itself is often not the best choice, and therefore the steepest
descent algorithm may be extremely slow in getting close to the minimum
point. The main concept associated with the conjugate gradient algorithm is
that of conjugate directions for a quadratic function. In all that follows, we will
restrict attention, to motivate the genesis of the algorithm itself, to a quadratic
function

g(x) =
1
2
xT Ax − bx + c,

where A is a positive definite n×n matrix (so that the corresponding minimum
problem has a unique solution), b is a vector, and c is a constant.

Definition 4.3 A set of vectors {pi}, i = 1, 2, . . . , n, is a set of conjugate
directions for g if

pT
i Apj = 0, i 	= j, pT

i Api = γi, i = 1, 2, . . . , n.

In particular, this set of vectors is linearly independent, and they make up
a basis for Rn. We specify the interest of conjugate directions with respect
to minimum problems in two results. The first one establishes the relevance
of conjugate directions with respect to minimum problems. The second one
indicates one of various possibilities for determining sets of conjugate directions
for a given quadratic function. We finally explicitly write down the conjugate
gradient algorithm for a general objective function g, not necessarily quadratic.

Lemma 4.4 Let {pj} be a set of conjugate directions with respect to the
quadratic function g as above, and put:
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1. x1 arbitrary, g1 = −∇g(x1);
2. for k ≥ 1,

tk = − gkpk

pT
k Apk

, xk+1 = xk + tkpk, gk+1 = ∇g(xk+1) = gk + tkApk.

For every j we have
gj+1pk = 0, k = 1, 2, . . . , j.

In particular,
gn+1pk = 0, k = 1, 2, . . . , n,

implies gn+1 = 0, and consequently, g attains its minimum at xn+1.

This result says that by using a set of conjugate directions as search direc-
tions for a quadratic functional, we can find the minimum in exactly n steps,
where n is the dimension of the problem. It is interesting to point out where
the choice of tk comes from. If we consider the function

h(t) = g(xk + tpk),

it turns out that the value of t at which the minimum of h is taken on is
precisely the value we have chosen for tk. This is easily derived by keeping in
mind that g is quadratic and appropriately using the chain rule.

For the proof of Lemma 4.4, notice that the minimum we are looking for is
the solution of the linear system

Ax − b = 0,

since the gradient of g is
∇g(x) = Ax − b.

Therefore, we pretend to solve the previous linear system in n steps n being
the dimension of the matrix. We argue by induction on the index j, so that we
assume

gj+1pk = 0, k = 1, 2, . . . , j,

and want to conclude that

gj+2pk = 0, k = 1, 2, . . . , j + 1.
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On the one hand,

gj+2pk = (gj+1 + tTj+1Apj+1) pk = 0

if k = 1, 2, . . . , j, by the induction hypothesis and the fact that we are working
with conjugate directions. On the other hand, the identity

gj+2pj+1 = (gj+1 + tTj+1Apj+1) · pj+1 = 0

follows from the choice of tj+1. Notice that the choice of tk is dictated so as to
determine the minimum of the quadratic function of t, g(xk +tpk), as remarked
before.

Once we have seen the interest of the sets of conjugate directions, we pro-
vide and justify one of various important ways of recursively constructing such
sets of directions and the succesive approximations to the point of minimum,
simultaneously.

Lemma 4.5 (Fletcher–Reeves) Set:

1. p1 = −g1 = −∇g(x1);
2. for k ≥ 1,

pk+1 = −gk+1 + βkpk, βk =
|gk+1|2
|gk|2

,

where gj is the gradient of g at xj . The set {pj} is a set of conjugate
directions for g.

To prove this result, we again argue by induction. Suppose we have chosen
k conjugate directions pj , j = 1, 2, . . . , k, so that, according to Lemma 4.4,

gk+1pj = 0, tTj Apj = gj+1 − gj , j = 1, 2, . . . , k, (4–1)

and

tj = − gjpj

pT
j Apj

= −gj (−gj + βj−1pj−1)
pT

j Apj

=
|gj |2

pT
j Apj

,

since gjpj−1 = 0. If we take the new direction pk+1 as in the statement of
the lemma, we would like to conclude that it is conjugate with respect to the
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previous ones. Bearing in mind (4–1), we have

pT
k+1Apj = (−gk+1 + βkpk)T Apj

= − gk+1
1
tj

(gj+1 − gj) + βkpT
k Apj

= − gk+1

tj
(−pj+1 + βjpj + pj − βj−1pj−1) + βkpT

k Apj .

For j < k, and assuming that tj does not vanish (otherwise, gj = 0, which im-
plies that xj is the point of minimum, and there is no need for more conjugate
directions), we observe that this expression is zero by the induction hypothesis
and the fact that the previously chosen directions are conjugate among them-
selves. For j = k, some terms vanish, and others do not. Specifically, having in
mind the formula for βk, we obtain

pT
k+1Apk =

gk+1pk+1

tk
+ βkpT

k Apk

=
pT

k Apk

|gk|2
(− |gk+1|2 + βkgk+1pk) + βkpT

k Apk

=
pT

k Apk

|gk|2
(
− |gk+1|2 +

|gk+1|2
|gk|2

gk+1pk + |gk+1|2
)

.

This last expression vanishes because gk+1pk = 0.

For a general objective function g(x) the conjugate gradient method pro-
ceeds by successive approximations, and a new search direction is chosen at
every iteration. The form of these search directions is justified by the previ-
ous discussion. In algorithmic fashion, we can sum up the conjugate gradient
method as follows:
1. Initialization. Choose x0, initial approximation.
2. Stopping criterion. For a preassigned threshold value ε > 0, if

‖∇g(xk)‖ ≤ ε,

stop: The current approximation xk is sufficiently good, i.e., sufficiently close
to a true point of minimum. Else, continue.

3. Search direction. Given approximation xk, set pk = −∇g(xk) + βkpk−1,
taking p−1 arbitrary.
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4. Line search. Find an approximation to the line minimization problem (see
Section 4.2)

Minimize g(xk + tpk), t ∈ R.

Let tk be an approximation to such minimum point.
5. New approximation. Put xk+1 = xk + tkdk. Go back to step 2.

The different variants of the conjugate gradient algorithm correspond to
different ways of taking the parameter βk. The most popular choices are the
following:
1. Fletcher–Reeves algorithm:

βk =

⎧⎨
⎩

0, k = jn, j = 0, 1, . . . ,
‖∇g(xk)‖2

‖∇g(xk−1)‖2 , otherwise.

2. Polak–Ribière algorithm:

βk =

{ 0, k = jn, j = 0, 1, . . . ,
∇g(xk) (∇g(xk) −∇g(xk−1))

‖∇g(xk−1)‖2 , otherwise.

The reason for taking βk = 0 every n iterations is to avoid the effect of accu-
mulation of numerical errors. Empirically, the Polak–Ribière algorithm seems
more robust.

5. approximation under constraints

Since constraints are frequently an essential part of optimization problems, nu-
merical algorithms to solve or approximate solutions must be such that they
respect the appropriate restrictions and indeed lead to the solution of the op-
timization problem subjected to those constraints. We are therefore interested
in describing algorithms to efficiently approximate the optimal solutions of a
typical NLPP,

Minimize f(x)

subject to
g(x) ≤ 0, h(x) = 0.
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There are essentially two main strategies for treating this problem numeri-
cally: Either we decide not to involve multipliers, and therefore not to use the
information coming from optimality conditions; or else, we try to utilize this
information in some way. The first class includes the techniques of penaliza-
tion and barriers, and in the second category we will explain the standard dual
method and the augmented Lagrangian algorithm. In any case, algorithms are
built in such a way that they rely in one way or another on the nonconstraint
case, so that the underlying idea is to construct a closely related, unconstrained
optimization problem and apply to it some of the algorithms we already have
for nonconstrained problems.

Penalization and barriers. The idea behind the penalization and barrier
methods consists in transforming the optimization problem with constraints in
such a way that infeasible vectors are prohibited or at least penalized. Ideally,
this can be accomplished by considering the following optimization problem:

Minimize f(x) + f̃(x),

where

f̃(x) =
{

0, g(x) ≤ 0, h(x) = 0,
+∞, otherwise.

The effect of adding f̃ to f , as one can see in the previous definition, is null if a
vector is feasible, so that its cost is f(x), as it should be. But if x is not feasible,
its cost is infinite, so that it is eliminated from the minimization process. This is
exactly what the constraints mean. The new problem is a nonconstrained one.
However, the fact that the cost f + f̃ is not continuous, since it can take on the
value +∞ abruptly, makes this new problem unsuitable for the algorithms we
explained in the last section. Before applying such algorithms to the problem,
we must do something about this special cost f + f̃ .

One possibility is not to assign an infinite cost to an infeasible vector, but
simply to penalize, in one way or another, those vectors. This is the idea of the
penalization method that is used in many other areas of mathematics: If we
ought to satisfy some restrictions that are hard to handle, we can ignore them
but add a penalization term to the cost functional when they are not met so
as to discourage them. One of the most popular families of penalizations is

f̃r(x) = r

⎛
⎝∑

i

max {0, gi(x)}p +
∑

j

|hj(x)|q
⎞
⎠ ,
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where p, q > 1 are exponents and r is a penalization parameter. Notice that
if p > 1, the function max {0, gi(x)}p

is differentiable if gi is. The greater r
is, the more effective the penalization. One typical case that is used often is
the quadratic penalization corresponding to p = q = 2. It is true that since
a penalization does not prohibit infeasible points, the approximation one can
obtain by applying a nonconstrained optimization algorithm to f + f̃r may not
give good results. Only when we push the parameter r to become bigger and
bigger, the corresponding approximations to the nonconstrained problems are
closer and closer to one solution of the constrained problem.

Another idea that can be used in dealing with constrained problems is to
mimic the infinite barrier that f̃ above sets between feasible and infeasible
points, but in such a way that it is not instantaneous. For example, if we take

f̃r(x) = −1
r

∑
i

1
gi(x)

,

when the constraints of the problem come only in the form of inequalities
g(x) ≤ 0, we notice that as we move toward the boundary of the feasible set
so that gi(x) becomes closer to zero from the negative part, the function f̃r(x)
becomes larger and larger and eventually takes on an infinite value, placing a
barrier at the boundary of the set of feasible points. The effect of the parameter
r when it becomes big is to interfere as little as possible with the value of
the objective function f on the set of feasible points. When gi(x) < 0 and r
is large, so that 1/r is small, we have that f̃r(x) is also very small. Again,
only when this parameter r is large can we obtain good approximations by
applying a nonconstrained algorithm to the cost f + f̃r. As r → +∞ those
approximations will tend to a true solution of the original constrained problem.
Another interesting posibility is to take a logarithmic barrier of the type

f̃r(x) = −1
r

∑
i

log(−gi(x)).

One further good choice can be

f̃r(x) =
1
r

∑
i

1
1 − rgi(x)

.

In the case in which some constraints come in the form of equalities h(x) = 0,
one possibility consists in adding the term

r3
∑

j

hj(x)2

1 − r2hj(x)2



4.5 Approximation under constraints 127

to f̃r.

Although the preceding ideas look appealing for their simplicity, in prac-
tice, due to the fact that accuracy is linked to high values of the parameter
r, numerical errors appear because we have to deal with very large numbers,
and only obtains one a modest efficiency. Indeed, optimal results in using pe-
nalization or barriers are found in an intermediate range for the parameter r,
and this range is highly dependent on the particular problem at hand, so that
a good deal of experimentation is required to assess optimal results. For this
reason, algorithms taking into account multipliers and optimality and/or dual-
ity conditions have been developed. We will restrict attention, as pointed out
before, to a standard dual method and will finish with a short discussion of the
augmented Lagrangian algorithm.

Dual method. We learned in Chapter 3 the relationship between an NLPP
and its dual. In fact, if we have to solve the primal problem

Minimize f(x)

subject to

g(x) ≤ 0, h(x) = 0,

we know that under appropriate hypotheses, we can equivalently treat its dual

Maximize θ(µ, λ)

under µ ≥ 0, where the dual function is defined by

θ(µ, λ) = min
x

{f(x) + µ g(x) + λ h(x)} .

The advantage of the dual is that the definition of the dual function is a non-
constrained problem, and, at the same time, the constraint itself for the dual
problem is much simpler (in particular, linear) than in the primal problem.
The idea of the dual method consists in approximating the optimal solution of
the dual, and then computing an approximation of the optimal solution of the
primal. For notational convenience, let us put

L(x, µ, λ) = f(x) + µ g(x) + λ h(x)
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for the Lagrangian of the problem. In the following algorithm we have used a
steepest descent method for the solution of the dual. Remember (Chapter 3)
that

∇µθ(µ, λ) = g(x), ∇λθ(µ, λ) = h(x),

if x is such that θ(µ, λ) = L(x, µ, λ).

1. Initialization. (µ1, λ1), initial approximation with µ1 > 0.

2. Approximated solution for the primal. For (µj , λj), find (approximate) an
optimal xj for the dual function. Use a nonconstrained algorithm for this.

3. Stopping criterion. For a preassigned threshold value ε > 0, if

|h(xj)| < ε, |µj g(xj)| < ε,

stop: The current approximation xj is sufficiently good. Else continue.

4. Search direction. Take

dk =

{
gk(xj), if µ

(k)
j > 0,

max {0, gk(xj)} , if µ
(k)
j = 0,

where µ(k) represents the k-component of µ, and

ek = hk(xj).

5. New approximation. Put

µj+1 = µj + sjd, λj+1 = λj + sje,

where sj is chosen to maximize the function

ϕ(s) = θ(µj + sd, λj + se),

keeping in mind that s is restricted because µj + sd ≥ 0. Go to step 2.

Augmented Lagrangian method. Another fruitful idea consists in using
the information coming from optimality conditions. In order to motivate the
form of the final algorithm we will present, let us focus first on an NLPP with
equality constraints of the type

Minimize f(x) under h(x) = 0.
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We know that optimal solutions must satisfy

∇f(x) + λ ∇h(x) = 0,

for an appropriate multiplier λ. Let us pretend that we have an approximate
value of λ, λj . The issue is how we can use this λj in order to find an approxima-
tion to the optimal solution xj , and simultaneously improve the approximation
of the multiplier λj+1 to proceed iteratively. Obviously, the initial optimization
problem is equivalent to

Minimize f(x) + λj h(x) under h(x) = 0,

where we have incorporated, in a trivial manner, λj . To solve this problem, we
introduce a quadratic penalization of the type we discussed earlier, and treat
the problem of minimizing the cost function

f(x) + λj h(x) +
rj

2
|h(x)|2

for some penalization parameter rj . The optimality condition for this problem
is

∇f(x) + λj ∇h(x) + rjh(x)∇h(x) = 0.

If we assume that the approximation xj is good, it must be close to the true
optimal solution x, so therefore, if we compare the optimality conditions for
both problems,

∇f(x) + λ ∇h(x) = 0,
∇f(xj) + λj∇h(xj) + rjh(xj)∇h(xj) = 0,

we come to the conclusion that

λj + rjh(xj) ≈ λ.

These heuristic ideas (which can indeed be conveniently formalized) lead to the
following iterative scheme:

1. Initialization. Take λ1, r1 > 1, c > 1, and tolerance ε > 0.
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2. New approximation. Find an approximation xj of the nonconstrained min-
imization problem for

f(x) + λj h(x) +
rj

2
|h(x)|2 .

3. Stopping criterion. If

|∇f(xj) + λj ∇h(xj)| < ε,

stop: xj is a sufficiently good approximation. Else, continue.

4. Update. Update the values of the multiplier and the penalization parameters
by taking

λj+1 = λj + rjh(xj), rj+1 = crj .

Go to step 2.

For a general NLPP where both types of constraints in the form of equalities
and inequalities are present, various tricks may reduce the problem to the
case of equality constraints such as introducing new slack variables. But the
following algorithm, in the spirit of the previous ideas, can also be used. The
NLPP is now

Minimize f(x)

subject to
g(x) ≤ 0, h(x) = 0.

For notational convenience, let us set the augmented Lagrangian

L(x, µ, λ, r) = f(x) + µ g(x) + λ h(x) +
r

2

(∑
i

max {0, gi(x)}2 +
∑

k

hk(x)2
)

.

1. Initialization. Choose µ1 ≥ 0, λ1, r1 > 0, c > 1, and tolerance ε > 0.

2. New approximation. Find an approximation xj for the minimum of the
augmented Lagrangian L(x, µj , λj , rj). Recall that the functions

max {0, gi(x)}2

are differentiable, so that we can apply a typical algorithm for unconstrained
problems such as the conjugate gradient or quasi-Newton.
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3. Stopping criterion. If

|∇f(xj) + µj ∇g(xj) + λj h(xj)| < ε, |µj g(xj)| < ε, |h(xj)| < ε,

stop and take as a good approximation xj .

4. Update. Update the values of the multipliers and penalization parameter
by the formulas

λj+1 = λj + rjh(xj), µj+1 = max {0, µj + rjg(xj)} , rj+1 = crj .

Go to step 2.

6. final remarks

The task of searching for optimal global solutions of optimization problems
is a tremendously complex and subtle job. Our readers may have the (false)
impresion that the methods that have been described throughout this chap-
ter, or others that have been omitted, are sufficient for implementing realistic
problems. This is far from the truth. In reality, the gradient methods studied
earlier yield, with a great deal of success, local minima of objective functionals.
Graphically, we can say that by using a particular first approximation taken
“ad hoc,” the algorithm will lead us to the local minimum located in the “val-
ley of atraction” of our initial guess. If we change this initial iterate, and this
lies in a different valley, our final approximation will furnish a different local
minimum. What is dramatic is that most likely, neither of the two will be the
one global minimum we are seeking; but even if one of those were truly the
global minimum, there is no way we can be certain about that. All kinds of
heuristic algorithms have been developed over the years to approximate global
solutions of technological problems of large dimension. Most of them incorpo-
rate a random ingredient of some sort. Among them we can cite decomposition
techniques, montecarlo algorithms and their variants, simulated annealing and
its variants, and genetic algorithms.

This paragraph is devoted to insisting on the importance of convexity from
the horizon of the numerical approximation of optimal solutions. How impor-
tant is the information that the objective function and the constraints are
convex as regards the global optimal solutions? The answer is given in Theo-
rem 3.14: A convex function defined over a convex set can have at most one
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valley, so that any algorithm providing approximations for a local minimum
yields a global minimum as well. It is essentially the only situation in which we
can guarantee that algorithms catch global minima. Otherwise, the problem of
finding and approximating global optimal solutions does not have a rigorous
solution.

Finally, let us stress again that many of the algorithms presented in this
chapter have been implemented in commercial software packages (see the intro-
duction to this chapter). The person who needs to solve optimization problems
on a regular basis (linear and nonlinear programming) will find it quite con-
venient to rely on those computing tools and concentrate on modeling issues
directly related to optimization problems. Furthermore, effective implementa-
tion of algorithms requires a good deal of experimentation, since the tuning
of parameters is an essential ingredient for success. This does not mean that
writing a program for a conjugate gradient method, for instance, in one of the
typical computing languages is not a good exercise. Indeed, once students have
had such an experience they will really appreciate the importance of the work
done by specialists in numerical optimization. Some practice is proposed in the
exercises that follow.

7. exercises

1. By using one of the typical line search methods, find the minima for the
following functions, starting out at the given initial points.
1. f(x) = x4 − x2 + x − 1, x0 = 1;
2. g(x) = x16 + 3x14 − x7 − 3, x0 = −1;
3.

h(x) =
∫ x

−1

ses + s − 1
2e2 + 3

ds, x0 = −1.

2. Argue that by minimizing the primitive

F (x) =
∫ x

0

f(s) ds

we can find some solutions of the (nonlinear) equation f(x) = 0. Apply this
to looking for some solutions of the equations

x7 + x4 + 1 = 0, log x + 6x = 0.
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3. Consider the function

f(x) =
1

100
(
x6 − 30x4 + 192x2 + 7x3

)
.

We seek to find the global minimum of f over the real line R. Apply one of
the line search methods starting with
1. x1 = 1;
2. x1 = −1.2;
3. x1 = 5;
4. x1 = 3;
5. x1 = −8;
6. x1 = −3.

What are your conclusions? Are you sure about what the global mini-
mum of f is? Can you think of any way to be certain about this global
minimum in this case?

4. Try to approximate different minima for the functions

f(x) =
2 − sin |x| + x2

2 + sin x
, g(x) = sin

(
x2

2

)
+
√
|x + 1|,

by using one of the line search algorithms starting with different initial
guesses.

5. The linear system Ax = b can be numerically solved by minimizing the
function

f(x) =
1
2
|Ax − b|2 .

If the system is solvable, the global minimum should vanish; if it is not, the
point of minimum is, in a sense, the closest to a solution. Apply a steepest-
descent algorithm to numerically solve the systems
1.

A =
(

3 −1
−1 1

)
, b =

(
1
2

)
;

2.

A =

⎛
⎝ 3 −1

−1 1
2 1

⎞
⎠ , b =

⎛
⎝ 1

−1
1

⎞
⎠ ;
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3.

A =

⎛
⎝ 3 1 −1

1 2 2
−1 2 1

⎞
⎠ , b =

⎛
⎝ 0

−1
1

⎞
⎠ .

6. When the matrix A is symmetric and positive definite, the linear system
Ax = b is the equation for critical points of the associated quadratic form

Q(x) =
1
2
xT Ax − xT b.

Argue why this is so and find an approximate solution to the linear system
by minimizing the quadratic form in the case

A =

⎛
⎝ 1 1 −1

1 2 1/4
−1 1/4 3

⎞
⎠ , b =

⎛
⎝ 1

1
1

⎞
⎠ .

7. Find the minimum of the function

P (x, y) = x2 + 2y2 − 2x − 8y

and approximate it by using the steepest descent starting out at (0, 0).
8. Approximate the minimum of the function

P (x, y) = 2x2 − 2xy + y2 + 2x − 2y

by the steepest-descent method. What results do you get? Approximate the
same problem by a conjugate gradient method and compare your results.

9. Same as in the previous exercise for the function

P (x, y) =
1
4
(x4 − 4xy + y4).

10. Examine and study the following minimization problems with the given
initial points:
1. 100(x2 − y)2 + (1 − x)2, (−1.2, 1);
2. (x2 − y)2 + (1 − x)2, (−2,−2);
3. (x2 − y)2 + 100(1 − x)2, (2,−2);
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4. 100(x3 − y)2 + (1 − x)2, (−1.2, 1).
11. Approximate the minimization problem for

f(x1, x2, x3, x4) = (x1 + 10x2)2 + 5(x3 − x4)2 + (x2 − 2x3)4 + (10x1 − x4)4,

with initial guess (3,−1, 0, 1).
12. We would like to approximate the minimum value of the function f(x, y) =

y − x2 over the unit circle x2 + y2 = 1.
1. Find such minimum in an exact fashion.
2. Approximate such a solution by using penalized functions of the type

fn(x, y) = y − x2 + n(x2 + y2 − 1)n

for increasing values of n. Compare your results.
13. Set up a suitable strategy for approximating the optimal solution of

Minimize
1
2
xT Ax

subject to
bx = c,

where A is a symmetric positive definite matrix. Apply this to solving the
case for

A =

⎛
⎝ 3 3 1

3 5 3
1 3 3

⎞
⎠ , b = ( 1 1 1 ) , c = 1.

14. Same exercise as the previous one but changing the equality restriction
bx = c to the inequality bx ≤ c. How would you approximate a similar
problem under a quadratic restriction of the type

xT Bx + bx ≤ c

with B symmetric and positive semidefinite? Apply your method to solving

Minimize |x|2

under
(2x1 − x2)2 + (x3 − 2)2 ≤ 1.

15. Choose some of the exercises proposed in Chapter 3 for a particular data
set and approximate their solutions.



Chapter 5

Variational Problems and Dynamic Programming

1. introduction

We start in this chapter the analysis of optimization problems of a different
nature. Specifically, this chapter is devoted to variational problems of finding
the infimum of the integrals∫

Ω

F (x, u(x),∇u(x)) dx, (5–1)

where Ω ⊂ RN , the functions u : Ω → R must be differentiable, and they
typically are also constrained in some other way such as having their boundary
values on ∂Ω fixed by some preassigned function u0, i.e., u = u0 on ∂Ω. The
integrand (or Lagrangian)

F : Ω × R × RN → R

137
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characterizes each such problem. The proposed task consists in finding a func-
tion U , admissible according to the restrictions we have imposed on competing
functions, such that the integral∫

Ω

F (x, U(x),∇U(x)) dx

is smaller than (or equal to) the same integral for any other feasible function
u. If we use the notation

I(u) =
∫

Ω

F (x, u(x),∇u(x)) dx,

we are interested in understanding the optimization problem formulated as

Minimize I(u)

subject to further constraints on the functions u, such as for instance,

u(x) = u0(x), x ∈ ∂Ω.

It is therefore an optimization problem in which admissible functions replace
feasible vectors.

We will be mainly concerned, in this introductory chapter for variational
problems, about the one-dimensional situation where Ω = (a, b) is an interval
in R, and admissible functions u : (a, b) → R will often be required to satisfy
the boundary conditions

u(a) = A, u(b) = B,

for known values A, B. In this case

I(u) =
∫ b

a

F (x, u(x), u′(x)) dx,

where now the integrand F is a function of three (or fewer) variables. We
have already mentioned some of these examples in Chapter 1, and have tried
to convince the reader that learning to solve this sort of problem (or at least
to approximate optimal solutions appropriately) might be important. In this
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chapter we will study and solve more examples, and learn the main techniques
in dealing with such problems.

There is a great variety of variational problems. The common ingredient is
that costs are typically represented by an integral of the type indicated above.
But additional constraints may vary from example to example. We can classify
these constraints as follows:
1. Boundary conditions. One of the most common situations corresponds to

having prescribed boundary values along the complete boundary ∂Ω; but
other possibilities include having this prescription in part of the boundary
(in particular no condition on the boundary at all) and having prescribed
not the values of the functions but those of the derivative or some of the
derivatives.

2. Integral constraints, requiring of competing functions to comply with re-
strictions of the type

∫
Ω

G(x, u(x),∇u(x)) dx = α,

where
G : Ω × R × RN → Rd, α ∈ Rd,

are known; some of these constraints could come in the form of inequalities.
3. Pointwise constraints, establishing that feasible functions must respect the

condition
G(x, u(x),∇u(x)) = 0,

for all x in Ω, where again G is a known function as above, and we could
also have some inequalities.

Finally, it is important to point out that some of the techniques to be discussed
can be extended without much change to situations in which cost functionals
include a dependence on higher derivatives (or no derivatives at all). We will
also deal with some of these situations.

Another aspect, intimately connected with variational problems, refers to
dynamic programming. In the discrete case, we will briefly discuss the main
underlying principle leading to optimal solutions. In the continuous case, we
will heuristically establish Bellman’s equation of dynamic programming, which
will help us to derive Pontryagin’s maximum principle in the next chapter.
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It is fair to stress the importance of variational problems in many fields of
science and engineering. We can hardly mention all of them here: mechanics,
elasticity (linear and nonlinear), continuous media, dynamics, material behav-
ior, solid structures, fluids, etc. Some of our examples will illustrate in a simple
and direct way the relevance and the role played by variational formulations
and techniques. This is not surprising, since nature, as well as human beings,
is, in one way or another always looking for the best.

2. the euler–lagrange equation: examples

The Euler–Lagrange equation (E-L) associated with a variational problem plays
the same role as the necessary conditions of optimality in a programming prob-
lem (KKT conditions). As we now know, such necessary conditions of optimal-
ity furnish restrictions that optimal solutions (possibly among other feasible
vectors) must satisfy. By exploiting such conditions, optimal solutions can be
found or approximated explicitly in a variety of situations. We have also stressed
the central role played by the notion of convexity in ensuring that optimality
conditions are in fact sufficient for optimal solutions. It is therefore not surpris-
ing that convexity will also be central to this and the next chapters: Convexity
is always the key concept in minimization problems of any type.

In general, a variational problem is characterized by an integral cost func-
tional

I(u) =
∫

Ω

F (x, u(x),∇u(x)) dx,

where Ω ⊂ RN , u : Ω → R are differentiable, and the cost integrand

F (x, λ, ξ) : Ω × R × RN → R

is assumed to be differentiable, in fact twice differentiable, with respect to the
variables (λ, ξ). Note that

ξ = (ξ1, ξ2, . . . , ξN ).

We will first focus on the situation in which we have additional feasibility
constraints of the type

u(x) = u0(x), x ∈ ∂Ω,
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since this is the most typical situation. Later, when restricting to dimension
N = 1, we will consider other cases.

The next result is the clue to finding optimal solutions for this sort of
problem.

Theorem 5.1 (Euler–Lagrange equation) Under the setting described above:

1. If u is an optimal solution, then u must also be a solution of the problem
(E-L)

div (Fξ(x, u(x),∇u(x))) = Fλ(x, u(x),∇u(x)) in Ω,

u = u0 on ∂Ω.

2. If u satisfies E-L and F is convex with respect to the variables (λ, ξ) for each
fixed x ∈ Ω, then u is also an optimal solution of the variational problem.

3. If in addition, F is strictly convex with respect to (λ, ξ) for each x ∈ Ω, the
optimal solution u, if it exists, is unique.

Before explaining where this E-L equation comes from, it might be impor-
tant to become convinced of its relevance and applicability in solving some
variational problems. We are going to look at some particular situations in-
cluding some of the cases discussed in the first chapter. Most of these examples
correspond to the one-dimensional case, when N = 1 and Ω is in fact an open
interval (a, b) on the real line. The E-L equation is now a second order ordinary
differential equation completed with the appropriate boundary values

d

dx
[Fξ(x, u(x), u′(x))] = Fλ(x, u(x), u′(x)), x ∈ (a, b),

u(a) = A, u(b) = B,

where A and B are typically given. In this one-dimensional situation, we will
cover several possibilities so as to gain familiarity with the E-L equation.

1. Assume, to begin with, the most simple situation, in which F depends
on ξ exclusively. In this case, F = F (ξ), and E-L simplifies to

d

dx
[F ′(u′(x))] = 0,

which in turn holds if
F ′(u′(x)) = k,
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a constant. Evidently, this last requirement is fulfilled if we take u′ constant
throughout the interval (a, b), and this is so if u is indeed the straight line
joining the points (a, A), (b, B). Such a linear (affine) function is always a
solution of E-L if F depends only on the derivative variable ξ. If in addition, F
is convex, that linear function will be a minimizer. If even further, F is strictly
convex, this linear function is the only minimizer of the problem. In case F is
not convex, even though the linear function is a solution of E-L, it may not be
a minimizer, as the following example shows.

Example 5.2 (Nonconvex example) Let us take

F (ξ) = e−ξ2
, a = A = B = 0, b = 1.

In this situation the linear function through the points (0, 0), (1, 0) is the func-
tion u0 vanishing identically on the interval (0, 1). Its cost is 1. However, we
claim that the infimum of the integrals

I(u) =
∫ 1

0

e−u′(x)2 dx

subject to

u(0) = u(1) = 0

vanishes. Indeed, consider the sequence of feasible functions

uj(x) = j

(
x − 1

2

)2

− j

4
.

It is not hard to check that I(uj) ↘ 0, so that the above infimum does truly
vanish. Hence, u0 is a solution of the associated E-L, but it is not a minimizer.
What fails in this situation is the convexity of F . It is even true that there is
no minimizer for this problem, because such a function v would have to satisfy

∫ 1

0

e−v′(x)2 dx = 0,

and this is impossible.
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Figure 5.1. Geodesics in a cylinder.

Example 5.3 (Geodesics in a cylinder) Let C be the cylinder of equation

x2 + y2 = 1,

and let P and Q be two distinct points on C. We would like to find the shortest
path over C going from P to Q. Without loss of generality we may assume that
P = (1, 0, 0). We will naturally pose the problem in cylindrical coordinates
(r, θ, z) with

r = 1, −π ≤ θ ≤ π,

defining C. Let Q = (1, θ0, z0) (see Figure 5.1).

By symmetry considerations, it is enough to treat the case 0 < θ0 ≤ π
(what is the geodesic when θ0 = 0?). We can represent an arbitrary curve
joining (1, 0, 0) and (1, θ0, z0) in the form

σ(θ) = (cos θ, sin θ, z(θ)), θ ∈ (0, θ0),

since geodesics will necessarily meet each vertical line in C at most once (why?),
and so the first two components of σ can be assumed to be of trigonometric
form. In this fashion any such curve is fully determined by the function z(θ).
We must also ask for

z(0) = 0, z(θ0) = z0.
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The cost functional we must minimize is that representing the length of σ:

I(z) =
∫ θ0

0

√
1 + z′(θ)2 dθ.

We know that the function

F (ξ) =
√

1 + ξ2

is stricly convex (Chapter 3), and it depends only on the derivative variable.
According to our previous discussion, the linear function

z(θ) =
z0

θ0
θ

represents the only geodesic joining those two points. This linear function in
cylindrical coordinates is an arc of an helix over C.

2. When the integrand F depends on both x and ξ, E-L becomes

d

dx
[Fξ(x, u′(x))] = 0,

or equivalently,
Fξ(x, u′(x)) = constant.

Depending on the particular form of F , this last equation will be solvable
analytically or not.

Example 5.4 (Weierstrass’s example) Let

F (x, ξ) = xξ2, x ∈ (0, 1),

and u(0) = 1, u(1) = 0 at the endpoints of the interval. In this particular
example, E-L becomes, for arbitrary constants c and d,

xu′(x) = c, u(x) = c log x + d.

Curiously enough, this family of solutions is unable to match the boundary
condition at the right endpoint u(1) = 0, and hence the variational problem



5.2 The Euler–Lagrange Equation: examples 145

might not have optimal solutions. This is indeed the case, since the family of
functions

uj(x) =
{

1, x ∈ (0, 1/j),
− log x/ log j, x ∈ (1/j, 1),

is minimizing for

I(u) =
∫ 1

0

xu′(x)2 dx, u(0) = 1, u(1) = 0,

in the sense that I(uj) ↘ 0. However, for any given function u, we have I(u) >
0, and therefore there is no optimal solution for this variational problem.

Example 5.5 (The brachistochrone) One of the most celebrated variational
problems of all time is the brachistochrone. Let us place the x-axis along the
vertical direction where gravity acts, and the y-axis perpendicular to it. Assume
that we have two points P and Q at different heights. Without loss of generality
we may take P at the origin and Q = (a, A) with both a, A positive. The task
consists in determining the path joining Q and P so that a unit mass spends
the least time possible in going from Q to P under the action of gravity without
friction.

Figure 5.2. The brachistochrone.

Evidently, the optimal path can be represented in the form y(x) for some
function y to be determined. What we mean is that paths that are not mono-
tone (with bumps) will obviously provide greater times than those that are
monotone. Assume that y(x) is one such path, so that y(0) = 0, y(a) = A.
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The transit time for such a path will be given by the integral∫ a

0

ds

v
,

where ds is the differential element of arc length given by

ds =
√

1 + y′(x)2 dx,

and v is the velocity due to gravity at height x. According to a well known
formula,

v =
√

2gx.

Altogether we are interested in finding the curve y(x), 0 ≤ x ≤ a, that mini-
mizes the transit time integral (neglecting positive constants that do not inter-
fere with minimization)

I(y) =
∫ a

0

√
1 + y′(x)2

x
dx,

and y(0) = 0, y(a) = A. We caution the reader that the solution is neither a
straight line nor a circle. In fact, in the particular case a = A = 1, could our
readers decide which curve furnishes less transit time, the line y = x or the
circle y = 1 −√

1 − x2? In our problem the integrand function F is

F (x, ξ) =

√
1 + ξ2

√
x

.

It is a (strictly) convex function of ξ, so that, overlooking the difficulty when x =
0, optimal solutions can be sought by examining the associated E-L equation.
In this case we must solve

y′
√

x
√

1 + (y′)2
=

1
c
,

(y′)2

1 + (y′)2
=

x

c2 .

This leads to

y′(x)2 =
x

c2 − x
, y(x) =

∫ x

0

√
s

c2 − s
ds,
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where the constant c is to be determined in such a way that

A =
∫ a

0

√
s

c2 − s
ds.

Can the reader argue why we have chosen the positive sign in the above square
root?

In order to find a more explicit form of the solution, we will use the change
of variables in the integral for y given by

s(r) =
c2

2
(1 − cos r) = c2 sin2(r/2).

Then

y(t) = c2

∫ t

0

sin2(r/2) dr =
c2

2
(t − sin t),

where

x(t) =
c2

2
(1 − cos t) = c2 sin2(t/2).

In parametric form,

(x(t), y(t)) = (C(1 − cos t), C(t − sin t)), 0 ≤ t ≤ t0,

is the solution. It already satisfies x(0) = y(0) = 0. The constants C and t0
must be found by imposing x(t0) = a, y(t0) = A. This curve is an arc of a
cycloid (Figure 5.3).

Figure 5.3. The cycloid.
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3. We finally analyze the case in which F = F (λ, ξ). In this situation the
E-L equation has the form

d

dx
[Fξ(u(x), u′(x))] = Fλ(u(x), u′(x)).

It is a matter of careful arithmetic to see that this equation (in the case in
which F = F (λ, ξ) and only in this case) can be rewritten

d

dx
[F (u(x), u′(x)) − u′(x)Fξ(u(x), u′(x))] = 0,

and this leads to

F (u(x), u′(x)) − u′(x)Fξ(u(x), u′(x)) = constant.

In some situations this form of the equation can be more appropriate when one
is looking for solutions. But on other occasions it may not be so.

Example 5.6 (Minimal surfaces of revolution) We would like to identify
functions u(x) defined on the interval (a, b) such that u(a) = A, u(b) = B, and
whose graphs generate, by revolution around the X-axis, the surface with least
area (Figure 5.4).

Figure 5.4. A surface of revolution.

We know from calculus that this area is given, except for a positive multi-
plicative constant, by the integral

I(u) =
∫ b

a

u(x)
√

1 + u′(x)2 dx.
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We seek the function that minimizes this integral among all those satisfying
the conditions at both endpoints. The integrand for this example is

F (λ, ξ) = λ
√

1 + ξ2.

This function is convex in ξ for fixed λ provided λ ≥ 0. It is even strictly
convex in ξ if λ > 0. However, it is not jointly convex in (λ, ξ) (why?). Hence
in principle, we cannot apply Theorem 5.1. However, it is true that convexity
is needed only with respect to ξ for fixed (x, λ) for the conclusion of this result
to be valid. This fact is beyond the scope of this text, but it is important to
have this more general fact in mind for treating this example.

Theorem 5.7 ([19]) If u is the unique solution of E-L and F is convex
with respect to the variable ξ for each fixed x ∈ Ω and λ ∈ R, then u is also
an optimal solution of the variational problem.

We can therefore proceed with the study of the E-L equation to look for
optimal solutions.

The second form of the E-L equation for this example is

u
√

1 + (u′)2 − u′ uu′√
1 + (u′)2

= c.

After several manipulations, separating variables, we arrive at

du√
u2 − c2

=
dx

c
.

In this particular case taking the positive or negative sign for the square root is
irrelevant. We invite our readers to check this. A change of variables involving
hyperbolic trigonometric functions leads us to the final form of the solution

u(x) = c cosh
(x

c
+ d

)
,

which is a catenary curve. This is the unique solution.

When we come to adjust the values at the endpoints, we find some difficul-
ties. Assume, for the sake of simplicity, that we demand u(0) = 1, u(b) = B.
The first condition allows us to put

c =
1

cosh d
,
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while the second implies

B =
cosh(b cosh d + d)

cosh d
.

This condition cannot always be satisfied. Indeed, if we keep in mind that

cosh t > |t| ,

for any real t, it turns out that

B >
b cosh d + d

cosh d
≥ b cosh d − |d|

cosh d
= b − |d|

cosh d
≥ b − 1.

This chain of inequalities means that if at the outset we have B ≤ b− 1, there
is no way we can adjust the value at the right endpoint, and consequently, the
problem may not have optimal solutions.

Figure 5.5. Toward a limit situation.

This observation can also be illustrated physically in a rather appealing way.
The form adopted by a soap film that adheres to a (non planar) ring is related
to the surface tension in such a way that the shape adopted by the soap film
will be the one minimizing this surface tension. This quantity is proportional
to the area generated by the surface, so that determining the optimal shape
is equivalent to finding the minimal surface area. In the case of surfaces of
revolution, such as those we are discussing in this example, we can imagine two
concentric rings of different but close radii and a certain small distance apart. A
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soap film glued to the two rings will exhibit the form given by the catenary we
have found earlier. But as we start moving the two rings farther away from each
other, the film will stretch until a certain point where the film will degenerate
into two circles around each ring. This transition is exactly reflected by our
computations.

The explanation of this fact relies on an understanding of our variational
problem. When the two rings are close together, the catenary provides the
minimal surface of revolution with area smaller than that of the two circles
around the rings. But as we move the rings apart, the area of the catenary
grows to a point where it equals that of the two circles. If we push further,
no surface of revolution will have a smaller area than the two circles, and
hence the soap film collapses. This optimal solution (the two disks) cannot be
described by a surface of revolution generated by the graph of a function u,
so that in reality our variational problem does not have an optimal solution.
A more general formulation of the problem would be required to incorporate
these special solutions. However, it is true that we can approximate this special
solution as much as we desire by a sequence of admissible surfaces of revolution
uj according to Figure 5.5.

4. We finally examine various easy situations in higher dimensions.

Example 5.8 (Dirichlet’s integral) Let u : Ω ⊂ RN → R be a function
satisfying u = u0 over ∂Ω, where u0 is a fixed function. We would like to
identify the function u minimizing the integral

I(u) =
1
2

∫
Ω

|∇u(x)|2 dx.

We can imagine the situations in which N = 2 or N = 3, and Ω is a circle in the
plane or a ball in space. It is therefore a problem of the calculus of variations.
We notice that the integrand

F (ξ) =
1
2
|ξ|2

is strictly convex, so that there exists an optimal solution, and it is unique (see
Theorem 5.1.) Such a function must be a solution of the E-L equation. In this
case, the equation is

div (Fξ(∇u(x))) = 0,
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i.e.,
∆u = 0.

Thus, the function minimizing the square of the norm of the gradient is the
harmonic function respecting the given boundary values on ∂Ω. This is of-
ten interpreted by saying that the harmonic function corresponds to a stable
equilibrium state with respect to an energy proportional to the square of the
gradient.

Example 5.9 (Wave equation) For the particular case in which

F (ξ1, ξ2) =
1
2
(
ξ2
1 − ξ2

2

)
,

the E-L equation is precisely the wave equation

uxx − uyy = 0.

In this case, however, F is not convex, so that we cannot talk about minimiza-
tion. Nevertheless, for this type of equation there is a rich theory of variational
principles in mechanics where Hamilton’s principle of minimum action is pos-
tulated and the central role is moved from the concept of minimizer to that of
stationary state.

A simple situation may help us in understanding a bit better what we mean
by the previous sentences. Suppose a particle of mass m travels in a straight
line under the action of a force field F (t, x) depending on position and time. If
u(t) indicates the position of the particle at time t, Newton’s law ensures that

d

dt
(mu′(t)) = F (t, u(t)).

The question is, can we invent a function L(t, λ, ξ) such that the associated
E-L equation for the functional

I(u) =
∫ t0

0

L(t, u(t), u′(t)) dt

turns out to be exactly Newton’s law? In this simplified situation this is not
difficult. If we assume that the vector field F is conservative with potential
U(t, λ) such that Uλ = −F , then we can take

L(t, λ, ξ) =
1
2
ξ2 − U(t, λ).
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This function is convex in ξ. By Theorem 5.7, we would reach the conclusion
that the movement of the particle would take place according to a principle
of least energy (least action) as measured by I. The function L is called the
Lagrangian, and the functional I is called the action integral. A full study of
these topics greatly exceeds the scope of this book.

Example 5.10 (Minimal surfaces) We consider the problem of minimal
surfaces, not necessarily of revolution around an axis. Given a plane region Ω
and a function u0 over ∂Ω (the ring), the area of the graph of a function u
defined in Ω is given by the integral

I(u) =
∫

Ω

√
1 + |∇u(x)|2 dx.

We are looking for a function u minimizing this integral among all those func-
tions having the same values as u0 over ∂Ω. Since the function

F (ξ) =
√

1 + |ξ|2

is strictly convex, if there is a solution it must be unique. The E-L equation is

div

⎛
⎝ ∇u√

1 + |∇u|2

⎞
⎠ = 0.

This partial differential equation is a complicated equation for a number of
reasons far beyond the scope of this text. In the case N = 2, the equation may
be rewritten as

(1 + u2
y)uxx − 2uxuyuxy + (1 + u2

x)uyy = 0.

3. the euler–lagrange equation: justification

After being convinced through numerous examples of the importance of the E-L
equation in finding optimal solutions for variational problems, it is worthwhile
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to explore where this equation comes from and why optimal solutions must
also be solutions of this equation. We will dwell on these issues at the level
of the underlying ideas and skip several technical issues that are irrelevant to
our discussion. We will first treat the one-dimensional situation in order to
better understand its genesis, and then we will indicate the changes for the
higherdimensional case.

We remind the reader that we would like to justify the following important
result.

Theorem 5.1 (Euler–Lagrange equation) Under the setting described ear-
lier:

1. If u is an optimal solution, then u must also be a solution of the problem
(E-L)

div (Fξ(x, u(x),∇u(x))) = Fλ(x, u(x),∇u(x)) in Ω,

u = u0 on ∂Ω.

2. If u satisfies E-L and F is convex with respect to the variables (λ, ξ) for each
fixed x ∈ Ω, then u is also an optimal solution of the variational problem.

3. If in addition, F is strictly convex with respect to (λ, ξ) for each x ∈ Ω, the
optimal solution u, if it exists, is unique.

For the one-dimensional situation the equation simplifies to

d

dx
[Fξ(x, u(x), u′(x))] = Fλ(x, u(x), u′(x)),

together with boundary conditions u(a) = A, u(b) = B, where

F = F (x, λ, ξ), I(u) =
∫ b

a

F (x, u(x), u′(x)) dx.

Let ϕ be a fixed function satisfying the requirement ϕ(a) = ϕ(b) = 0, and let
us consider the function of a single variable

g(t) = I(u + tϕ) =
∫ b

a

F (x, u(x) + tϕ(x), u′(x) + tϕ′(x)) dx,

where we are assuming that u is an optimal solution yielding the least value of
the above integrals among all feasible functions. For each choice of t ∈ R, the
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function u+tϕ turns out to be admissible, because ϕ vanishes on the endpoints
of the interval (a, b). Therefore, g has a (global) minimum for t = 0. A necessary
condition for the occurrence of such a minimum is that the derivative vanish
at such a point. If we differentiate under the integral sign in the definition of g
and evaluate at t = 0, we obtain

0 =
∫ b

a

[Fλ(x, u(x), u′(x))ϕ(x) + Fξ(x, u(x), u′(x))ϕ′(x)] dx.

Integrating by parts in the second term and bearing in mind that ϕ(a) = ϕ(b) =
0, we have

0 =
∫ b

a

[
Fλ(x, u(x), u′(x)) − d

dx
Fξ(x, u(x), u′(x))

]
ϕ(x) dx.

Since ϕ is arbitrary, save for its vanishing values at both endpoints, the previous
identity can happen only if the expression within brackets identically vanishes:
the E-L equation. This is the first part of the theorem.

Let us now suppose that the integrand F (x, λ, ξ) is jointly convex in the
variables (λ, ξ) for each fixed x ∈ (a, b), and that u is a solution of E-L together
with the appropriate boundary conditions. Let v be any other feasible function
such that v(a) = A, v(b) = B. By the convexity of F (Chapter 3),

I(v) − I(u) =
∫ b

a

[F (x, v(x), v′(x)) − F (x, u(x), u′(x))] dx

≥
∫ b

a

[Fλ(x, u(x), u′(x))(v(x) − u(x))

+ Fξ(x, u(x), u′(x))(v′(x) − u′(x))] dx.

If we integrate by parts in the second term as before, we notice that we obtain
exactly the E-L equation for u, so that if it is indeed a solution, the conclusion
is

I(v) − I(u) ≥ 0,

and u is truly an optimal solution for the problem. This is the sufficiency part
of the theorem.



156 5.3 The Euler–Lagrange Equation: justification

Finally, we would like to prove the uniqueness of optimal solutions under
the strict convexity of F . The easiest way of dealing with the strict convexity
in this context consists in requiring that the equality

f

(
1
2
x +

1
2
y

)
=

1
2
f(x) +

1
2
f(y)

automatically imply x = y if f is a strictly convex function. Let us try to reach
one such situation when we assume that F (x, ·, ·) is strictly convex.

Imagine that our variational problem admits two optimal solutions u, v. Due
to the convexity, it is not hard to deduce

1
2
I(u) +

1
2
I(v) − I

(
1
2
u +

1
2
v

)
≥ 0.

If we denote by m the value of the minimum, i.e., I(u) = I(v) = m, then

m − I

(
1
2
u +

1
2
v

)
≥ 0.

But on the other hand, since m is the value of the minimum,

I

(
1
2
u +

1
2
v

)
≥ m.

We can conclude that in fact,

I

(
1
2
u +

1
2
v

)
= m,

and hence

0 =
∫ b

a

[
1
2
F (x, u(x), u′(x)) +

1
2
F (x, v(x), v′(x))

−F

(
x,

1
2
u(x) +

1
2
v(x),

1
2
u′(x) +

1
2
v′(x)

)]
dx.
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But the previous integrand is nonnegative, again by the convexity of F . The
only possibility for a nonnegative function whose integral vanishes is to vanish
identically, so that

1
2
F (x,u(x), u′(x)) +

1
2
F (x, v(x), v′(x))

− F

(
x,

1
2
u(x) +

1
2
v(x),

1
2
u′(x) +

1
2
v′(x)

)
≡ 0.

By the remark made earlier, this implies that u = v, and the optimal solution
is therefore unique if it exists.

For the case of a problem in several variables, the argument is formally the
same. The changes relate to the way in which integration by parts must be
performed through the divergence theorem. For instance, if ϕ vanishes on ∂Ω,
so that contributions from the boundary drop, we will have

0 =
∫

Ω

[Fλ(x, u(x),∇u(x))ϕ(x) + Fξ(x, u(x),∇u(x))∇ϕ(x)] dx

=
∫

Ω

[Fλ(x, u(x),∇u(x)) − div (Fξ(x, u(x),∇u(x)))]ϕ(x) dx.

The proof proceeds accordingly.

4. natural boundary conditions

It is interesting to stress the way in which we have found E-L. To emphasize
what we mean, we are going to deal with a typical situation in which the value
at one of the two endpoints is free in a variational problem in dimension one.
We would like to find the minimum of the integral

I(u) =
∫ b

a

F (x, u(x), u′(x)) dx,

where competing functions u are required to satisfy u(a) = A exclusively, but
nothing is demanded at the right endpoint, so that the set of feasible functions is
larger compared to the situation in which we fix the value at that endpoint. We
suspect that E-L together with u(a) = A might be insufficient to completely
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determine the optimal solution u. Somehow, the condition of having a free
endpoint must impose a further condition on optimal solutions. This is indeed
so. If we return to the derivation of the E-L equation, we observe that the stage
at which the conditions at the endpoints were important was in the choice of
the auxiliary function ϕ, a function that must vanish at both a and b. If now we
must leave the value at b free, this amounts to considering ϕ arbitrary except
for ϕ(a) = 0, but nothing is required at b. This information was used at the
point of the integration by parts. If we do not have ϕ(b) = 0, we would get

0 =
∫ b

a

[
Fλ(x, u(x), u′(x)) − d

dx
Fξ(x, u(x), u′(x))

]
dx

+ Fξ(b, u(b), u′(b))ϕ(b).

If first we restrict attention to all ϕ’s vanishing at b (because those ϕ’s are also
eligible), we would conclude, as before, that the E-L equation should hold. But
once we have this information at our disposal, the above identity forces us to
have

Fξ(b, u(b), u′(b))ϕ(b) = 0.

Since ϕ(b) can be chosen arbitrarily, this implies

Fξ(b, u(b), u′(b)) = 0,

which is the so-called transversality or natural boundary condition at b. This is
an additional condition that optimal solutions to the variational problem with
the right endpoint free must satisfy. The same observations apply to the left
endpoint.

Example 5.11 Let us try to find the least value that the integrals

I(u) =
1
2

∫ log 2

0

[
(u′(x) − 1)2 + u(x)2

]
dx

can take on among all functions u. This is a situation in which both endpoints
are free, so that since the integrand

F (x, λ, ξ) = (ξ − 1)2 + λ2

is strictly convex, the optimal solution is found by solving the problem

u′′(x) − u(x) = 0, u′(0) = u′(log 2) = 1.
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The unique solution is

u(x) =
1
3
ex − 2

3
e−x.

Another possibility occurs when the values at the endpoints are restricted
by the inequalities

B1 ≤ u(b) ≤ B2.

In this case we proceed as follows. First, we examine the transversality condition

Fξ(b, u(b), u′(b)) = 0.

If this determines the optimal solution u so that it is feasible, then this is our
optimal solution. If it is not so because the value u(b) does not lie in the interval
[B1, B2], then the optimal solution will have either u(b) = B1 or u(b) = B2,
depending on whether u(b) < B1 or u(b) > B2, respectively. This rule would
require further comments and a full discussion on convexity, but we will take
it as valid, and indeed it is correct in many regular cases. We will come back
to this issue later.

Example 5.12 Consider the following easy situation:

Minimize

∫ log 2

0

[
u′(x)2 + (u(x) − 2)2

]
dx

subject to
2 ≤ u(0) ≤ 3, u(log 2) = 1.

The E-L equation together with endpoint conditions reads

u′′(x) = u(x) − 2, u′(0) = 0, u(log 2) = 1.

The solution is

u(x) = 2 − 2
5
(
ex + e−x

)
.

We notice that u(0) = 6/5, so that this solution is not admissible for our opti-
mization problem. Since, however, the value u(0) is smaller than the permissible
values at 0, we conclude that the optimal solution will be the solution of the
problem

u′′(x) = u(x) − 2, u(0) = 2, u(log 2) = 1.
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The optimal solution is thus

u(x) = −2
3
(
ex − e−x

)
+ 2.

5. variational problems under integral and pointwise restrictions

In this section we would like to consider variational problems in which in ad-
dition to having constraints on the values on both endpoints, we must respect
conditions expressed in terms of equalities and/or inequalities of the type∫ b

a

G(x, u(x), u′(x)) dx ≤ α,

∫ b

a

H(x, u(x), u′(x)) dx = β.

Notice that both G and H could be vector-valued, so that in reality we may have
several integral constraints. The vectors α and β are given. In this situation we
are willing to accept as competing functions those respecting all these integral
constraints, and among them we would like to find the one(s) realizing the least
value of the integrals ∫ b

a

F (x, u(x), u′(x)) dx.

As remarked, we might also have constraints at the endpoints. As a matter of
fact, notice that

u(a) = A, u(b) = B

is equivalent to

u(a) = A,

∫ b

a

u′(x) dx = B − A,

and we may incorporate the function G0(x, λ, ξ) = ξ as one integral constraint.
We will understand this condition in this way throughout this section.

As might be expected from the experience we already have in mathematical
programming, we have to consider multipliers associated with all the integral
constraints, one for each such restriction. Thus we will have to work with the
augmented integrand

F̃ (x, λ, ξ) = F (x, λ, ξ) + yG(x, λ, ξ) + zH(x, λ, ξ).
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The practical process of finding such optimal solutions is slightly different from
that of mathematical programming, although it is based on the same underlying
ideas. Let us first treat the case of equality constraints, so that the function G
is not present.

Proposition 5.13 Assume that there is a vector of numbers z (the vector
of multipliers) such that the auxiliary integrand

F̃ = F + zH

turns out to be convex in (λ, ξ) (in fact, only the convexity with respect to ξ is
needed) for each fixed x ∈ (a, b). If u is the unique solution of the E-L problem
associated with F̃ ,

d

dx

[
F̃ξ(x, u(x), u′(x))

]
= F̃λ(x, u(x), u′(x)),

with u(a) = A, then u is an optimal solution of the problem under the integral
constraints corresponding to the vector β determined by u itself

β =
∫ b

a

H(x, u(x), u′(x)) dx.

If the convexity of F̃ is strict, then the uniqueness of the optimal solu-
tion follows. The proof of this result reduces to applying the convexity part of
Theorem 5.1 to F̃ . It is left to the interested reader.

The way in which this result is used in practical computations consists of
two steps. First, the E-L equation for F̃ is solved incorporating the multipliers
z in the whole process as parameters, so that we obtain a whole family of
solutions, one for each z. Afterwards, these multipliers are adjusted in such a
way that the corresponding optimal solution yields the appropriate value for
the integral constraint.

Example 5.14 Find the function u minimizing the integral of the square
of its derivative over the interval (0, 1) under the restrictions

u(0) = u(1) = 0,

∫ 1

0

u(x) dx = 1.



162 5.5 Variational problems under integral and pointwise restrictions

We can alternatively write, as pointed out earlier,

u(0) = 0,

∫ 1

0

u′(x) dx = 0,
∫ 1

0

u(x) dx = 1.

The augmented integrand is now

F̃ (x, λ, ξ) = ξ2 + z1ξ + z2λ,

with E-L equation

u′′(x) =
z2

2
.

A first integration yields

u′(x) =
z2

2
x + c,

and a further integration, bearing in mind that u(0) = 0, leads to

u(x) =
z2

4
x2 + cx.

Since the function F̃ is always strictly convex (with respect to ξ), the unique
optimal solution is found by imposing the two integral constraints on the above
function u, namely,

0 =
∫ 1

0

(z2

2
x + c

)
dx, 1 =

∫ 1

0

(z2

4
x2 + cx

)
dx.

After going through the computations, we obtain the optimal solution

u(x) = −6x(1 − x).

Example 5.15 (The hanging cable) A more interesting example of a vari-
ational problem under integral constraints is the following. We would like to
determine the profile adopted by a uniform cable hanging from its two end-
points at the same height under the action of its own weight, assuming that
this profile is the result of a minimization process of the potential energy (see
Figure 5.6).
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Figure 5.6. The hanging cable.

Suppose that we place the x-axis along the two points at the same height
a distance D apart from each other. The length of the cable is L. Obviously,
L ≥ D. If w represents the weight per unit length, assuming that cross sections
are uniform along the cable, the potential energy associated with the total
weight is given by the integral

I(u) = w

∫ D

0

u(x)
√

1 + u′(x)2 dx,

where as usual,
ds =

√
1 + u′(x)2 dx

represents the infinitesimal element of arc length. Notice that in this case, u is
to be taken negative, since we will minimize I(u) among all negative functions
such that u(0) = u(D) = 0.

There is also an important restriction to be taken into account. This is
the constraint saying that the length of the cable must be L. Otherwise, the
variational problem would not have any physical significance, since we could
make I(u) as small as possible by making u more and more negative. The
constraint we are referring to is

L =
∫ D

0

√
1 + u′(x)2 dx.

Altogether, we are willing to find optimal solutions for the variational problem

Minimize

∫ D

0

u(x)
√

1 + u′(x)2 dx
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subject to

u(0) = u(D) = 0, L =
∫ D

0

√
1 + u′(x)2 dx.

According to our previous discussion, we are now concerned with the integrand

F̃ (x, λ, ξ) = λ
√

1 + ξ2 + z
√

1 + ξ2 = (λ + z)
√

1 + ξ2,

where z is the multiplier associated with the integral constraint and is regarded
as a parameter. Since we formally obtain the same type of integrand as in
the case of minimal surfaces of revolution, it is not difficult to check that
computations are formally the same, and we arrive at the optimal solution

u(x) = c cosh
(

x − D/2
c

)
− z,

where the constant c and the multiplier z are determined by the conditions

z = c cosh(D/(2c)), L =
∫ D

0

√
1 + sinh2

(
x − D/2

c

)
dx.

The solution is therefore a catenary curve.

Example 5.16 (The channel) According to our discussion on the design
of a channel in Chapter 1, the question is to determine the profile of the cross
section (a curve) that encloses a fixed area has a minimum perimeter.

If u, defined in (0, 1), describes one such feasible profile, we must demand

u(0) = u(1) = 0, A =
∫ 1

0

u(x) dx,

and among all such curves we are seeking the one providing the least value for

I(u) =
∫ 1

0

√
1 + u′(x)2 dx.

We assume that u ≥ 0.
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As before, we must work with the E-L equation for the function

F̃ (x, λ, ξ) =
√

1 + ξ2 + zλ,

where z is the multiplier. We notice that this function is convex in (λ, ξ), affine
in λ, and stictly convex in ξ. This suffices to guarantee uniqueness of the optimal
solution (review the proof of Theorem 5.1). The E-L equation has the form

(
u′(x)√

1 + u′(x)2

)′
= z.

After a few elementary computations we have

u′(x) =
zx + c√

1 − (zx + c)2
,

where c is a constant. Then

u(x) =
∫ x

0

zs + c√
1 − (zs + c)2

ds

= − 1
z

√
1 − (zs + c)2

∣∣∣x
0

=
1
z

(√
1 − c2 −

√
1 − (zx + c)2

)
.

The condition u(1) = 0 leads to c = −z/2 and hence

u(x) =
1
2z

(√
4 − z2 −

√
4 − z2(2x − 1)2

)
.

The multiplier z is to be determined to satisfy the integral constraint, and this
leads to some cumbersome computations. What is important to realize is that
this optimal solution u is an arc of a circle.

We now treat the case of integral constraints in the form of equalities and
inequalities simultaneously. We focus on the problem

Minimize I(u) =
∫ b

a

F (x, u(x), u′(x)) dx
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subject to
u(a) = A,∫ b

a

G(x, u(x), u′(x)) dx ≤ α,

∫ b

a

H(x, u(x), u′(x)) dx = β.

Again, our experience with nonlinear programming makes the following result
plausible.

Proposition 5.17 Suppose there is a vector (y, z), y ≥ 0, such that the
function

F̃ (x, λ, ξ) = F (x, λ, ξ) + yG(x, λ, ξ) + zH(x, λ, ξ)

is convex in (λ, ξ) (again the convexity with respect to ξ suffices.) If v is the
(unique) solution of the corresponding E-L problem,

d

dx

[
F̃ξ(x, v(x), v′(x))

]
= F̃λ(x, v(x), v′(x)), v(a) = A,

then v is the optimal solution of the above variational problem, provided that∫ b

a

G(x, v(x), v′(x)) dx ≤ α,

∫ b

a

H(x, v(x), v′(x)) dx = β,

y

(∫ b

a

G(x, v(x), v′(x)) dx − α

)
= 0.

Let us examine one clarifying example.

Example 5.18 Solve

Minimize

∫ 1

0

u′(x)2 dx

subject to

u(0) = 0, u(1) = 1,

∫ 1

0

u(x)2 dx ≤ α,
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where α is a given nonnegative number. Introducing a multiplier y to take care
of the integral constraint, we must face the E-L equation for the augmented
integrand

F̃ (x, λ, ξ) = ξ2 + yλ2,

regarding y as a parameter. This problem consists of

u′′(x) = yu(x), u(0) = 0, u(1) = 1.

The general solution is of the form

u(x) =
sinh(

√
y x)

sinh(
√

y)

if y does not vanish, and
u(x) = x

if y = 0. Whenever α is chosen so that

∫ 1

0

x2 dx =
1
3
≤ α,

the optimal solution will be the line u(x) = x. But if

α <
1
3
,

the optimal solution will be of the form

u(x) =
sinh(

√
y x)

sinh(
√

y)
,

where the multiplier y is determined so that

∫ 1

0

(
sinh(

√
y x)

sinh(
√

y)

)2

dx = α.

When additional restrictions for variational problems come in a pointwise
fashion like

H(x, u(x), u′(x)) = 0
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or
G(x, u(x), u′(x)) ≤ 0, H(x, u(x), u′(x)) = 0,

then multipliers y(x), z(x) must be functions of x, because we have to satisfy a
constraint for each x. In this way the functional that lets us treat this sort of
pointwise constraint is

I(u, y, z) =
∫ b

a

[F (x, u(x), u′(x)) + y(x)G(x, u(x), u′(x))

+ z(x)H(x, u(x), u′(x))] dx.

Notice the explicit dependence of I with respect to the multipliers y(x), z(x).
There is no doubt that one of the most important situations in which point-

wise constraints must be taken into account is that of optimal control problems.
Since the last chapter of this text is devoted, because of its importance, to this
class of problems, we will not say anything else at this stage.

6. summary of restrictions for variational problems

This section is intended to clarify all the possibilities that may arise in con-
sidering a typical variational problem from the perspective of different types
of constraints. This discussion incorporates, as particular cases, transversality
conditions of all kinds, and all situations related to integral constraints and
restrictions on endpoints.

Consider the problem

Minimize
∫ b

a

F (x, u(x), u′(x)) dx

subject to∫ b

a

G(x, u(x), u′(x)) dx ≤ α,

∫ b

a

H(x, u(x), u′(x)) dx = β, u(c) ≤ A,

where c = a or c = b is fixed.
We know that an optimal solution must solve E-L for the modified integrand

F̃ = F + yG + zH.
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Assume that ũ(x, y, z, w) is the general solution of the E-L equation for F̃ ,
where w = (w1, w2) represents two arbitrary constants of integration, since the
E-L equation is of second order. Define

f(y, z, w) =
∫ b

a

F (x, ũ(x, y, z, w), ũ′(x, y, z, w)) dx,

g(y, z, w) =
∫ b

a

G(x, ũ(x, y, z, w), ũ′(x, y, z, w)) dx,

h(y, z, w) =
∫ b

a

H(x, ũ(x, y, z, w), ũ′(x, y, z, w)) dx,

ϕ(y, z, w) = ũ(c, y, z, w).

Then it is not hard to convince ourselves that the optimal values for (y, z, w)
ought to be detemined by solving the NLPP

Minimize f(y, z, w)

subject to
g(y, z, w) ≤ α, y ≥ 0, y (g(y, z, w) − α) = 0,

h(y, z, w) = β, ϕ(y, z, w) ≤ A.

Once these optimal values (y0, z0, w0) have been found, it is important to go
back to F̃ “a posteriori” and check that

F̃ = F + y0G + z0H

is convex with respect to ξ. In particular, since y ≥ 0, the function G (or all of
its components) must be convex in ξ. If F̃ is not convex, then we may not have
the optimal solution. In this framework we may also treat all variants related
to different types of inequalities and/or equalities.

This general perspective sometimes leads to nonsmooth or even in some
cases to noncontinuous problems that would require, in principle, more elab-
orate techniques to find optimal solutions. Because of the special structure of
constraints, it is elementary to check that, as we pointed out when dealing with
optimality conditions for NLPP, the restrictions

g(y, z, w) ≤ α, y ≥ 0, y (g(y, z, w) − α) = 0
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amount to having
yi (gi(y, z, w) − αi) = 0

for all i, and these equations allow a separate treatment of several NLPP. For
instance, when G has a single component, then we would have two possibilities,

y = 0 or g(y, z, w) = α,

leading to the two NLPP

Minimize f(0, z, w)

subject to
g(0, z, w) ≤ α, h(0, z, w) = β, ϕ(0, z, w) ≤ A;

and
Minimize f(y, z, w)

subject to
g(y, z, w) = α, h(y, z, w) = β, ϕ(y, z, w) ≤ A,

considering those optimal solutions for y ≥ 0. The true optimal solution of our
problem will be found in one of these two NLPP.

Example 5.19 We would like to

Minimize
1
2

∫ 1

0

(u′(x) − 1)2 dx

subject to

0 ≤ u(0) ≤ 1, 0 ≤ u(1) ≤ 1
2
.

The E-L equation is u′′ = 0, so that the general solution is

u(x) = w1x + w2.

Therefore, we consider the objective function

f(w) =
1
2

∫ 1

0

(w1 − 1)2 dx =
1
2
(w1 − 1)2.
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Restrictions correspond to requiring

0 ≤ u(0) = w2 ≤ 1, 0 ≤ u(1) = w1 + w2 ≤ 1
2
.

Hence we must solve the NLPP

Minimize
1
2
(w1 − 1)2

under the constraints

0 ≤ w1 ≤ 1, 0 ≤ w1 + w2 ≤ 1
2
.

It is very easy to find (even graphically) that the optimal solution corresponds
to (1/2, 0), so that the optimal solution of our initial problem is u(x) = x/2.

Example 5.20 Consider the problem

Minimize
1
2

∫ 1

0

u′(x)2 dx

under the constraints

0 ≤ u(0) ≤ 1, u(1) = 1,

∫ 1

0

u(x) dx ≤ 1
2
.

The E-L equation we should solve is u′′ = y, whose general solution is

u(x) = y
x2

2
+ w1x + w2.

It is very easy to obtain

f(y, w) =
1
6
(
y2 + 3yw1 + 3w2

1

)
,

g(y, w) =
y

6
+

w1

2
+ w2,

ϕ(y, w) =
(
w2, w1 + w2 +

y

2

)
.



172 5.6 Summary of restrictions for variational problems

Thus the NLPP to be considered is

Minimize
1
6
(
y2 + 3yw1 + 3w2

1

)
subject to

y

6
+

w1

2
+ w2 ≤ 1

2
, w1 + w2 +

y

2
= 1, 0 ≤ w2 ≤ 1,

y ≥ 0, y

(
y

6
+

w1

2
+ w2 − 1

2

)
= 0.

As remarked earlier, this NLPP splits into

Minimize
w2

1

2

subject to
w1

2
+ w2 ≤ 1

2
, w1 + w2 = 1, 0 ≤ w2 ≤ 1,

with (0, 1) as unique admissible point and associated cost 1/2; and

Minimize
1
6
(
y2 + 3yw1 + 3w2

1

)
subject to

y

6
+

w1

2
+ w2 =

1
2
, w1 + w2 +

y

2
= 1, 0 ≤ w2 ≤ 1,

with y ≥ 0. Using the two linear constraints we obtain w1 = 1−2y/3, w2 = y/6,
and the condition 0 ≤ w2 ≤ 1 leads to 0 ≤ y ≤ 6. Altogether, and making the
appropriate substitutions, we are interested in the minimum of the parabola

1
6

(
y2

3
− y + 3

)

over the interval 0 ≤ y ≤ 6. Such a minimum is attained at y = 3/2 with cost
3/8 and w1 = 0, w2 = 1/4. Since this optimal cost is smaller than the one found
in the previous subproblem, we conclude that the optimal solution sought is

u(x) =
3x2 + 1

4
.
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7. variational problems of different order

In some instances we may be interested in variational problems where either
second (or higher) derivatives appear or else no derivative at all is present. The
highest order of derivatives appearing in a variational problems is the order
of the problem. So far, we have focused on first order problems. These are by
far the most common. But we would like to say a few words about variational
problems of zero and second order.

Variational problems of order zero, i.e., no derivatives appear in the cost
functional, are in fact included in our previous discussion, because after all,
these are a special case of first order problems where there is no dependence
on first derivatives. In such cases, the E-L equation is no longer a differential
equation but rather an algebraic equation. Solving this equation will provide the
optimal solution after the adjustment of constants with endpoint conditions.
An example will clarify what we mean.

Example 5.21 A cylindrical container rotates around its axis at constant
angular velocity ω0 (Figure 5.7). We would like to determine the profile adopted
by a certain fluid in its interior, assuming that the shape is the result of a
minimization process of potential energy.

Specifically, and due to radial symmetry, if

z(r), 0 ≤ r ≤ R,

describes a given profile, the potential energy associated with it is expressed
through the integral

U(z) =
∫ R

0

πρ
[
gr

(
z(r)2 − 2Hz(r)

)− ω2
0r3z(r)

]
dr,

where g, ρ, and H are constants. Obviously, the profile z(r) must respect the
volume constraint

V = 2π

∫ R

0

rz(r) dr

for a fixed constant V . In summary, we seek to

Minimize

∫ R

0

[
gr

(
z(r)2 − 2Hz(r)

)− ω2
0r3z(r)

]
dr
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subject to

V = 2π

∫ R

0

rz(r) dr.

Notice that there is no derivative z′(r) appearing in the cost functional.

Figure 5.7. The profile of a rotating fluid.

If we introduce a multiplier λ to take into account the volume constraint,
we have to write down the E-L equation for the function

F (x, u) =
[
g(u2 − 2Fu)r − ω2

0r3u
]
+ λru.

This is now

0 =
∂F

∂u
(r, z(r)),

i.e.,

g (2z(r) − 2H) r − ω2
0r3 + λr = 0.

Solving for z(r), we obtain

z(r) =
ω2

0

2g
r2 + H − λ

2g
.
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By means of the volume constraint we determine the constant

H − λ

2g
.

Indeed, we have

H − λ

2g
=

V

πR2 − ω2
0

4g
R2,

and the optimal profile is

z(r) =
ω2

0

2g

(
r2 − R2

2

)
+

V

πR2 .

Notice that this is a parabola rotated around the axis of the cylinder.

Second order problems are more involved, as one would reasonably antici-
pate. The strategy for finding optimality conditions in the form of E-L equations
is, however, similar to the case of first order problems. The E-L equation will
be a fourth order differential equation, which will be complemented with ap-
propriate endpoint or boundary conditions. We leave it to the interested reader
(although we actually include such discussion below) to justify the following
fact.

Theorem 5.22 If the integrand for a second order problem is

F (x, u, u′, u′′),

then the E-L equation reads

d2

dx2

∂F

∂u′′ −
d

dx

∂F

∂u′ +
∂F

∂u
= 0.

Endpoint conditions may involve values of u and/or u′. Transversality or
natural boundary conditions will have to be kept in mind as well.

Many problems related to bending and buckling of thin elastic rods are
formulated by means of second order variational problems, because energies
depend on curvatures (second derivatives) of adopted profiles. One elementary
example follows.
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Example 5.23 A thin elastic rod is deflected as shown in Figure 5.8. If

u(x), x ∈ (0, L),

describes the center line of the rod, the potential energy accumulated in such
a state is given by the integral

P (u) = k

∫ L

0

u′′(x)2

(1 + u′(x)2)5/2
dx,

where k > 0 is a known constant. Endpoint boundary conditions are

u(0) = u′(0) = 0, u(L) = L1.

Figure 5.8. Deflection of a thin elastic rod.

Since we have three imposed conditions on endpoints, we need another one,
since the E-L equation will have order four. This missing condition is a nat-
ural boundary condition at the right endpoint L. Since the missing boundary
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condition is u′(L), the transversality condition we need is the factor going with
u′(L) when we integrate by parts in analyzing the function

g(t) =
∫ L

0

F (x, u(x) + tϕ(x), u′(x) + tϕ′(x), u′′(x) + tϕ′′(x)) dx,

and demanding

0 = g′(0) =
∫ L

0

(
∂F

∂u
ϕ +

∂F

∂u′ϕ
′ +

∂F

∂u′′ ϕ
′′
)

dx.

By integrating twice by parts and bearing in mind the other endpoint condi-
tions, we obtain

0 =
∫ L

0

ϕ

(
d2

dx2

∂F

∂u′′ −
d

dx

∂F

∂u′ +
∂F

∂u

)
dx + ϕ′(L)

∂F

∂u′′ (L, u(L), u′(L), u′′(L)).

This informs us about the E-L equation, and also tells us that the natural
boundary condition we are seeking is

∂F

∂u′′ (L, L1, u
′(L), u′′(L)) = 0.

In our particular example, this condition is

u′′(L) = 0.

After writing carefully E-L, we must solve the problem

d2

dx2

2u′′

(1 + u′2)5/2
+

d

dx

5(u′′)2u′

(1 + u′2)7/2
= 0,

u(0) = u′(0) = 0, u(L) = L1, u′′(L) = 0.

This equation is impossible to solve by hand. A reasonable approximation would
indicate that the expected profile will have a small derivative u′, so that we can
neglect terms involving u′. This simplification, together with one integration,
leads to

u′′′ +
5
2
(u′′)2u′ = constant,
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and even further,
u′′′ = constant.

This together with the four boundary conditions implies that

u(x) = − L1

2L3 x3 +
3L1

2L2 x2

provides a reasonable approximation of the profile adopted by the rod.

8. dynamic programming: bellman’s equation

In many practical situations of interest, a system is to move succesively through
a number of different steps to complete a whole process and to arrive to a
desired state. Each one of those actions has an associated cost. Given a specific
objective to be reached from a given initial state, we would like to determine
the optimal global strategy that has an associated least cost.

Let t denote the variable indicating the succesive stages in which a decision
must be made about where to lead the system

t = ti, i = 0, 1, . . . , n;

let x be the variable describing the state of the system. At each step i, we ought
to have

x ∈ Ai

if Ai is the (finite) set of feasible states when t = ti. The cost associated with
the passage from x ∈ Ai to y ∈ Ai+1 is denoted by

c(i, x, y).

Given an initial state (t0, x0), we are concerned with the task of determining
the optimal strategy to reach the final desired state (tn, xn) with the least cost.
This is a typical situation of dynamic programming.

Assume that for 0 < j < n we know the optimal path starting at (t0, x0)
and going to (tj , x) for each x ∈ Aj . Let

S(tj , x)
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provide the cost associated with such an optimal strategy ending at (tj , x). How
could we find the optimal solution starting at (t0, x0) and ending at (tj+1, y)
for any given y ∈ Aj+1? It is not hard to be convinced that we should solve
the problem

min
x∈Aj

[S(tj , x) + c(j, x, y)] .

This is the fundamental law or property of dynamic programming, and through
it we can find the optimal strategy from (t0, x0) to (tn, xn) in the most rational
way.

Proposition 5.24 (Fundamental property of dynamic programming) If
S(tj , x) denotes the optimal cost from (t0, x0) to (tj , x), then we must have

S(tj+1, y) = min
x∈Aj

[S(tj , x) + c(j, x, y)] .

A typical simplified situation follows.

Example 5.25 (The traveler) One passenger wants to go from city A to
city H through the shortest path according to the map in Figure 5.9, where
numbers indicate distances between corresponding cities.

Figure 5.9. The traveler.

Evidently, we could make an exhaustive counting of all possibilities and
decide on the best one. In this simplified situation this would not be a bad
idea. However, we would like to illustrate the fundamental property of dynamic



180 5.8 Dynamic programming: Bellman’s equation

programming in this example. According to Proposition 5.24, we must proceed
succesively to determine S(tj , x) for each x ∈ Aj to end with S(tn, xn). In
the proposed example, we have four stages t0, t1, t2, t3 with associated sets of
feasible states

A0 = {A} , A1 = {B, C, D} , A2 = {E,F,G} , A3 = {H} .

For each city in A1 there is a unique path from A, so that it must be optimal,
and

S(t1, B) = 7, S(t1, C) = 4, S(t1, D) = 1.

For each city in A2, we determine the optimal cost based on the fundamental
property of dynamic programming,

S(tj+1, y) = min
x∈Aj

[S(tj , x) + c(j, x, y)] .

In our concrete example we are looking for the minimum of

7 + 4, 4 + 4, 1 + 8,

7 + 6, 4 + 5, 1 + 4,

7 + 2, 4 + 7, 1 + 5,

to find that
S(t2, E) = 8, S(t2, F ) = 5, S(t2, G) = 6.

The last step leads us to the desired shortest path. We ought to decide the
minimum of

min {8 + 3, 5 + 6, 6 + 2} = 8.

Consequently, the shortest distance is 8, and it corresponds to the route A −
D − G − H. Note that in using the fundamental property of dynamic pro-
gramming we always have to operate with sums of two numbers, while a direct
exhaustive counting would require (in this simple situation) to work with sums
of three numbers. It is not difficult to infer the importance of this fact for more
complicated situations.

Example 5.26 Another typical situation in discrete dynamic programming
concerns a company that can produce three different food products from milk:
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cheese, butter, and yogurt. The benefit from these products using 1, 2, 3, or 4
units of milk is given in Table 5.10.

What is the maximum benefit that can be obtained with 4 units of milk?
Again, in this simplified situation, it would not be hard to find the solution by
exhaustively examining all possibilities. The scheme in the context of dynamic
programming would be as follows: We identify the three dairy products with
the values of the variable t, t0, t1, and t2. The set of possible states in each step
will be {0, 1, 2, 3, 4}, meaning that we can assign each one of those numbers of
units of milk to each of the three products, as long as we do not exceed the
available 4 units. By using the data in Table 5.10, we get the results of Table
5.11.

Table 5.10. Individual benefit from dairy products.

The maximum benefit is 28, and it corresponds to 3 units of milk for cheese
and 1 unit for yogurt.

The basic principle of dynamic programming applied to the continuous case
furnishes another perspective on variational problems in which we focus on the
optimal values rather than on optimal solutions. We define the “value function”
by putting

S(t, x) = min
u

{∫ T

t

F (τ, u(τ), u′(τ)) dτ : u(t) = x, u(T ) = B

}
,

where T and B are fixed given data. Then S(t, x) yields the optimal cost
associated with the problem starting at (t, x) and ending at (T, B). In the
variational approach, we insisted on optimal paths or solutions, and not so
much on optimal values.
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Table 5.11. Benefits from dairy products.

The basic property of this value function S(t, x) is precisely the fundamental
principle of dynamic programming, already discussed in the discrete case, which
in this context can be written as

S(t, x) = min
z

{
min

u

{∫ t′

t

F (τ, u(τ), u′(τ)) dτ : u(t) = x, u(t′) = z

}
+ S(t′, z)

}
,

where t < t′ < T (see Figure 5.12).
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Figure 5.12. The fundamental property of the value function.

This condition can be reorganized as follows:

0 = min
z

{
min

u

{
1

t′ − t

∫ t′

t

F (τ, u(τ), u′(τ)) dτ : u(t) = x, u(t′) = z

}

+
S(t′, z) − S(t, x)

t′ − t

}
.

If we let z = x+y(t′−t), the minimum on z can be transformed into a minimum
on y, and

0 = min
y

{
min

u

{
1

t − t′

∫ t′

t

F (τ, u(τ), u′(τ)) dτ : u(t) = x, u(t′) = x + y(t′ − t)

}

+
S(t′, x + y(t′ − t)) − S(t, x)

t − t′

}
.

What happens if we let t′ ↘ t? For each function u such that u(t) = x and
u(t′) = x + y(t′ − t), by the fundamental theorem of calculus, we have

1
t′ − t

∫ t′

t

F (τ, u(τ), u′(τ)) dτ → F (t, x, y),
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while if we assume that S is differentiable, then by the chain rule,

S(t′, x + y(t′ − t)) − S(t, x)
t′ − t

→ ∂S

∂t
(t, x) + y

∂S

∂x
(t, x).

We conclude that

0 = min
y

[
F (t, x, y) +

∂S

∂t
(t, x) + y

∂S

∂x
(t, x)

]
,

or

−∂S

∂t
(t, x) = min

y

[
F (t, x, y) + y

∂S

∂x
(t, x)

]
.

This is Bellman’s equation of dynamic programming. We have included this
informal derivation of it because we will follow a similar path to establish Pon-
tryagin’s maximum principle for optimal control problems in the next chapter.

This approach may lead, without great difficulty, to the E-L equation for
optimal solutions of variational problems. Since as just remarked, this will be
our main strategy for necessary conditions of optimality in the next chapter,
we do not insist on it here.

Example 5.27 In some simple situations, the computations to make Bell-
man’s equation explicit can be carried out. Assume that F (t, λ, ξ) = ξ2. Since
this function is strictly convex and it depends only on the derivative, we know
that the optimal solution u satisfying u(t) = x, u(T ) = B is the linear function
with slope (B − x)/(T − t). Therefore, the value function is

S(t, x) = (T − t)
(

B − x

T − t

)2

=
(B − x)2

T − t
.

On the other hand, for any constant α,

min
y

(y2 + yα) = −α2

4
,

so that Bellman’s equation is

4
∂S

∂t
=

(
∂S

∂x

)2

.
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It is a simple exercise to check that the explicit form for S(t, x) does indeed
satisfy this partial differential equation.

9. some basic ideas on the numerical approximation

It is almost evident that optimal solutions for many problems cannot be found
analytically. Approximation techniques are thus an indispensable tool for solv-
ing many variational problems. The basic idea of numerical approximation of
continuous optimization problems is “‘discretization.”

Given a variational problem, we must build a discretized version of it with a
certain level of accuracy that is related to the fineness of the discretization we
have utilized. Such a discretized version will now be a programming problem,
so that we can apply all the computational algorithms described in Chapter 4.
From this point of view, numerical algorithms are the common link between
finite and infinite dimensional optimization problems.

Another important possibility for approximating optimal solutions of vari-
ational problems is to exploit E-L equations. But since this is a book about
optimization, and that other approach will lead us to approximate differential
equations, we will stick to genuine optimization techniques and concepts. It is,
however, important always to bear in mind any valuable information about the
problem whose solution we seek to approximate.

Suppose we have a typical variational problem

Minimize I(u) =
∫ b

a

F (x, u(x), u′(x)) dx

with u(a) = A, u(b) = B. Usually, discretizations of integrals are set up by
dividing the interval of integration [a, b] into a certain number of subintervals,
n+1, and assume that feasible functions for the new, discretized, optimization
problem are piecewise affine, i.e., they are affine on each subinterval[

a + j
(b − a)
(n + 1)

, a + (j + 1)
(b − a)
(n + 1)

]
. (5–2)

Notice that such functions are uniquely determined by their values at the nodes

a + j
(b − a)
(n + 1)

, j = 1, . . . , n,
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and therefore feasible vectors for the new optimization problem will correspond
to these values. We see that this process will change the original infinite dimen-
sional problem to a finite dimensional one. The point is that by letting n + 1,
the number of subintervals, become larger and larger, optimal solutions for
these discretized optimization problems will resemble and approximate fairly
well, under conditions we will overlook here, the true optimal solutions for the
initial optimization problem. Let

X = (xj)1≤j≤n (5–3)

be the nodal values of feasible functions. In this way the function u that we
will consider for I(u) will be

u(x) = A +
j∑

k=1

(xk+1 − xk)
n + 1

+ (xj+1 − xj)
(

x − a − k
b − a

n + 1

)

if

x ∈
[
a + k

b − a

n + 1
, a + (k + 1)

b − a

n + 1

]
.

This is the continuous, piecewise-affine function that takes on values xj at the
nodal points a + j(b − a)/(n + 1). There is a useful way of expressing this
function as a linear combination of certain “basic functions”. Namely, if we
define

ψj,n(x), j = 0, 1, . . . , n, n + 1,

as the piecewise affine function whose value at nodes xi for i 	= j is zero and
precisely at xj is unity (see Figure 5.13), then it is clear that the piecewise-linear
function u with nodal values xj can be written as

u(x) =
∑

j

xjψj,n(x). (5–4)

For the derivative, we have

u′(x) =
∑

j

xjψ
′
j,n(x).
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Figure 5.13. Basic functions for the numerical approximation.

In this way, it is immediate how to write an optimization problem for the
vector X in (5–3) by computing I(u) for u as in (5–4). This will be the discrete,
approximated version of our continuous variational problem. Specifically,

T (X) = I(u) =
∫ b

a

F (x, u(x), u′(x)) dx

=
∫ b

a

F

⎛
⎝x,

∑
j

xjψj,n(x),
∑

j

xjψ
′
j,n(x)

⎞
⎠ dx.

If we break this integral into a sum over the subintervals (5–2), and realize
that each ψj,n is linear, so that its derivative is constant on them, gathering all
contributions on a particular subinterval, we can more explicitly write

T (X) =
n∑

j=0

∫ a+(j+1)(b−a)/(n+1)

a+j(b−a)/(n+1)

F

⎛
⎝x,

∑
j

xjψj,n(x), (n + 1)(xj+1 − xj)

⎞
⎠ dx.

Even further, we can use a simple quadrature rule to approximate these inte-
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grals. The final form, by using the trapezoidal rule, is

T (X) =
n∑

j=0

1
2(n + 1)

[
F

(
a + (j + 1)

b − a

n + 1
, xj+1, (n + 1)(xj+1 − xj)

)

+F

(
a + j

b − a

n + 1
, xj , (n + 1)(xj+1 − xj)

)]
,

where x0 = A, xn+1 = B. In terms of the vector X of nodal values, we are faced
with a (nonlinear, unconstrained) programming problem. By solving it, we
obtain an approximate solution to the initial, continuous optimization problem.
The form of the functional T (X) = I(u) in terms of X depends on the particular
situation.

Example 5.28 For the minimal surface of revolution example we take

I(u) =
∫ 1

0

u(x)
√

1 + u′(x)2 dx,

u(0) = 1, u(1) = 1.

The resulting objective function T (X) in terms of the nodal values, as pointed
out in the above discussion, is

T (X) =
n∑

j=0

√
1 + ((n + 1)(xj+1 − xj))

2 xj+1 + xj

2(n + 1)
.

Figure 5.14. Approximation of the minimal surface of revolution.
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Having in mind x0 = 1, xn+1 = 1, we see that it is this functional that we
would like to minimize with the help of some of the algorithms in Chapter 4,
for several values of the number of subintervals n. By doing so, we find very
good agreement with the arc of a catenary, which is the optimal solution of the
continuous optimization problem (Figure 5.14).

Alternatively, we can set up the discretization scheme considering as inde-
pendent variables the slopes on each subinterval. This will lead to a simpler
form of the objective functional, but we would have to enforce a (linear) con-
straint, because the slopes in the different subintervals must be such that the
value of u at 1 is given, and this imposes a restriction on the set of possible
slopes. Rather than solving the same example in this format with an integral
constraint, we prefer to start the next example.

Example 5.29 The problem for the design of a channel is

Minimize

∫ 1

0

√
1 + u′(x)2 dx

subject to

u(0) = u(1) = 0,
1
3

=
∫ 1

0

u(x) dx.

As discussed in the preceding example, by dividing the interval [0, 1] into n+1
equal subintervals with equally spaced nodes

j

n + 1
, j = 0, 1, . . . , n + 1,

we end up with a cost functional

T (X) =
1

n + 1

n∑
j=0

√
1 + (n + 1)2 (xj+1 − xj)

2
.

The constraints are x0 = xn+1 = 0 and

1
3

=
n∑

j=0

xj+1 + xj

2(n + 1)
.
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This last constraint can be rewritten in the form

n + 1
3

=
n∑

j=1

xj ,

where we have taken into account the boundary constraints x0 = xn+1 = 0.
Altogether, we would like to find the optimal solution of

Minimize

n∑
j=0

√
1 + (n + 1)2 (xj+1 − xj)

2

subject to

x0 = xn+1 = 0,
n + 1

3
=

n∑
j=1

xj ,

a nonlinear programming problem under linear constraints. Figure 5.15 shows
the resulting approximation for a particular value of n. Notice that we have
neglected a positive multiplicative constant for the functional.

10. exercises

1. Determine the geodesics on a sphere. Try to make a guess about what the
geodesics might be, and then argue that those indeed are the ones providing
the minimum value of the appropriate functional.

2. Investigate Exercise 9 of Chapter 1, trying to figure out optimal paths.
3. Write the E-L equation for the following functionals:

I(u) =
∫ [

(u′)2 + eu
]

dx, I(u) =
∫

uu′ dx, I(u) =
∫

x2 (u′)2 dx.

4. Find the optimal solution of the problem

min
{∫ 1

0

[
x′(t)2 + 2x(t)2

]
et dt : x(0) = 0, x(1) = e − e−2

}
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and the value of the minimum.

Figure 5.15. Approximation of the optimal design for the channel.

5. Solve the following variational problem:

Minimize I(u) =
∫ 1

0

(
u′(x)2 + u(x)u′(x) + u(x)2

)
dx

among all functions satisfying u(0) = 0, u(1) = 1.
6. Solve the problem of minimizing the functional

I(u) =
∫ 1

0

u′(x)2 dx, u(0) = a0, u(1) = a1,

among all functions satisfying

0 =
∫ 1

0

u(x) cos(bix) dx, i = 1, 2, . . . , N,

where a0, a1, and bi are fixed parameters.
7. Find the function u(x) that minimizes

I(u) =
∫ 1

0

(
1 + u′′(x)2

)
dx

under the constraints u(0) = 0, u(1) = 1, u′(0) = 1, u′(1) = 1.
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8. Solve the same question as in the preceding exercise with the functional

I(u) =
∫ π/2

0

(
u′′(x)2 − u(x)2 + x2

)
dx,

subject to

u(0) = 1, u(π/2) = 0, u′(0) = 0, u′(π/2) = 1.

9. The maximum entropy principle selects the probability distribution over the
semi-infinite interval (0,∞) maximizing the integral

H = −
∫ ∞

0

u(t) log u(t) dt.

If we impose the restrictions

∫ ∞

0

u(t) dt = 1,
∫ ∞

0

tu(t) dt = 1/a,

check that the most probable distribution is u(t) = ae−at.
10. Consider the function

f(y) = min

{∫ log 2

0

[
x′(t)2 + x(t)2

]
dt : x(0) = 1, x(log 2) = y

}
.

Find an explicit expression for f(y) and use it to determine the solution of
the problem

min

{∫ log 2

0

[
x′(t)2 + x(t)2

]
dt : x(0) = 1

}
.

Solve directly this last problem and compare your results.
11. Determine the minimum value of the integrals

∫ log 2

0

[
(x′(t) − 1)2 + x(t)2

]
dt
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among all functions x(t).
12. Solve the problem of the rope of variable cross section of Chapter 1.

1. Show that by the change

b(x) = W + ρg

∫ L

x

a(s) ds,

the problem can be reformulated by

Minimize
(
−ρg

E

)∫ L

0

b(x)
b′(x)

dx

subject to
b(0) = W + ρgV, b(L) = W.

2. Solve the problem in this form, and interpret the final result in terms of
the initial setting.

13. Sometimes, the exact formulation of a variational problem is impossible to
solve, and reasonable approximations must be made. The problem of the
solid moving in a bath described in Chapter 1 is one such example. Make
reasonable simplifications as in Example 5.23 to obtain a good approxima-
tion to the profile of the moving solid.

14. Study the problem

Minimize
1
2

∫ 1

0

u′(x)2 dx

subject to
u(0) ≤ 1, u(1) = 1,∫ 1

0

u(x)2 dx ≤ 2,

∫ 1

0

u(x) dx = 1.

15. (An elementary obstacle problem) Try to understand the variational prob-
lem

Minimize
∫ 1

0

u′(x)2 dx

subject to
u(0) = u(1) = 0, u(x) ≥ u0(x),
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where u0(x) is a given function such that u0(0) and u0(1) are negative but
u0 is positive somewhere in the interval (0, 1). Find the optimal solutions
when

u0(x) =
1
8
− 1

2
x2 +

1
2
x

and when
u0(x) =

1
4

sin(10x) − 1
2
− 4x2 + 4x.

16. Exercise 12 of Chapter 1 can be understood and solved as a variational
problem under pointwise constraints. Introduce a multiplier (a function)
and try to determine the optimal solutions.

17. Find an approximate solution to the brachistochrone problem

I(u) =
∫ 1

0

√
1 + u′(x)2√

x
dx,

u(0) = 0, u(1) = −1,

as described in Section 5.9. Do the same for the hanging cable problem

Minimize
∫ 1

0

u(x)
√

1 + u′(x)2 dx

subject to

u(0) = u(1) = 0,
3
2

=
∫ 1

0

√
1 + u′(x)2 dx.



Chapter 6

Optimal Control

1. introduction

Optimal control is an important part of optimization, with many applications
in different areas, especially in engineering. In this last chapter, we will simply
study the basic ideas for tackling such problems. In particular, we will focus
on Pontryagin’s maximum principle, trying to insist on its importance through
several examples.

The usual format of an optimal control problem is the following. The state
of a certain system is described by a number of parameters,

x = (x1, x2, . . . , xn),

which evolve according to a state equation

x′(t) = f(t, x(t), u(t)),

195
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where
u = (u1, u2, . . . , um)

represents the control exercised on the system (with the objective in mind
of controlling it). This control vector should typically satisfy various types of
constraints depending on the nature of the problem. We will consider only the
restriction u(t) ∈ K ⊂ Rm for all t, where K is prescribed a priori. The state
equation is also completed with initial and/or final conditions

x(0) = x0, x(T ) = xT ,

where T is the time horizon we are considering. We must also have a cost
functional measuring how good a given control u is. The form of this objective
functional is

I(x, u) =
∫ T

0

F (t, x(t), u(t)) dt,

where
F : (0, T ) × Rn × Rm → R

is a known integrand associated with the cost we are willing to measure. A pair
(x, u) is said to be feasible or admissible if
1. constraints on the control: u(t) ∈ K for all t ∈ (0, T );
2. state law: x′(t) = f(t, x(t), u(t)) for all t ∈ (0, T );
3. end-point conditions: x(0) = x0, x(T ) = xT .
As pointed out before, endpoint conditions may vary from having none of the
two to having both. The optimal control problem consists in finding (determin-
ing or approximating) an admissible pair (X, U) such that

I(X, U) ≤ I(x, u)

for all other feasible pairs (x, u).
Notice that this kind of problem includes, as a very particular case, varia-

tional problems in which we try to minimize

I(x) =
∫ T

0

F (t, x(t), x′(t)) dt
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among all fields x(t) with x(0) = x0, x(T ) = xT . Indeed, this problem is
equivalent to

x′(t) = u(t), x(0) = x0, x(T ) = xT ,

I(x, u) =
∫ T

0

F (t, x(t), u(t)) dt.

We will essentially focus in this chapter on necessary conditions of optimal-
ity. We are seeking conditions, in differential form, that optimal solutions to
control problems should satisfy. We will take for granted that our problems
are such that we always have the needed regularity to write down such opti-
mality conditions. An entire fundamental field (nonsmooth optimization) deals
with those situations in which this regularity cannot be taken for granted, and
indeed, it is one of the main ingredients and main issues to be understood.
Nonsmooth analysis is left for more advanced textbooks. See [9].

2. multipliers and the hamiltonian

We will first treat the case in which the set K is all of Rm so that there is
no restriction on where admissible controls can take on values. Hence we are
concerned with minimizing

I(x, u) =
∫ T

0

F (t, x(t), u(t)) dt

among all pairs (x, u) such that

x′(t) = f(t, x(t), u(t))

together with appropriate conditions on endpoints. As we have already noticed,
the state equation may be considered as a pointwise constraint that can be
treated by introducing a multiplier or costate p(t). Therefore, we consider the
augmented functional

I∗(x, u, p, x′) =
∫ T

0

[F (t, x(t), u(t)) + p(t)(f(t, x(t), u(t)) − x′(t))] dt.

After our experience with constraints and multipliers, it seems plausible that
optimal solutions for our initial optimal control problem ought to be a solu-
tion of the E-L equation for I∗ regarded as a function of the four variables
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(x, u, p, x′). Since Pontryagin’s maximum principle is a more general statement
than this and will be treated later, we will not insist on the validity of this
assertion at this stage. If we put

G(t, u, p, x, u′, p′, x′) = F (t, x, u) + p(f(t, x, u) − x′),

then the E-L system can be written

d

dt

[
∂G

∂x′

]
=

∂G

∂x
,

d

dt

[
∂G

∂u′

]
=

∂G

∂u
,

d

dt

[
∂G

∂p′

]
=

∂G

∂p
,

that is,

0 =
∂F

∂x
(t, x, u) + p

∂f

∂x
(t, x, u) + p′,

0 =
∂F

∂u
(x, u, t) + p

∂f

∂u
(t, x, u),

0 = x′ − f(x, u, t).

By defining the Hamiltonian of the problem H = F + pf , these equations may
be recast as

p′ = −∂H

∂x
,

∂H

∂u
= 0, x′ = f(t, x, u).

This system must be completed with conditions on the endpoints. Notice that
only two derivatives (x′ and p′) appear, so that in order to determine the
solution we require two conditions. These are the endpoint restrictions for the
state x completed with transversality conditions for the multiplier p according
to the following rule:

Transversality statement 6.1 If at a given endpoint (initial or final) we
have a condition on the state, we do not enforce the corresponding transver-
sality condition, but if the state is free, then the transversality condition p = 0
at the given endpoint must be taken into account.

As we have already argued in many other situations, optimal solutions must
be sought among the solutions of these optimality conditions. Let us look at
several examples.

Example 6.2 If

I(x, u) =
∫ 1

0

u(t)2 dt, x′(t) = u(t) + ax(t),
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where a ∈ R is a constant, we would like to determine the optimal control
under the initial condition x(0) = 1. In this example the Hamiltonian is

H = u2 + p(u + ax),

and the hypotheses that guarantee that optimal solutions are precisely the
solutions to the optimality conditions are satisfied. This will be justified later.
By manipulating these optimality conditions, we arrive at

u = −p/2, p′ = −ap, x′ = −p/2 + ax,

together with x(0) = 1, p(1) = 0. This last condition is the transversality
condition at t = 1, since we do not have the final condition for the state (we
will come back to this later). By solving for p we obtain

p(t) ≡ 0,

and then
x(t) = eat.

The optimal control is then u ≡ 0, as we could have anticipated. In reality, this
situation does not have much interest, since there is, in fact, no demand on the
system.

Assume now that we would like x(0) = 1 and x(1) = 0. The optimal strategy
is no longer u ≡ 0, since this control leads the system to x(1) = ea. Indeed,
now we do not have any transversality condition for p, and

p(t) = ce−at.

Taking this expression into the state equation, we obtain

x(t) =
c

4a
e−at + deat.

The constants c and d must be determined so that endpoint conditions are
satisfied. This leads to a linear system whose solution is

c =
2aea

sinh a
, d = − e−a

2 sinh a
.
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This time, the optimal control is

u(t) = −aea(1−t)

sinh a
.

Example 6.3 The cost is the same as in the previous example,

I(x, u) =
∫ 1

0

u(t)2 dt,

while the equation of state is

x′′(t) = u(t)

with endpoint conditions

x(0) = x′(0) = 1, x(1) = 0.

The control u is the accelerator, and the cost is a measure of fuel expendi-
ture. We first reduce the second order equation to a first order system with
components x1 = x, x2 = x′, so that

x′
1 = x2, x′

2 = u,

and endpoint conditions

x1(0) = 1, x1(1) = 0, x2(0) = 1.

The Hamiltonian is
H = u2 + p1x2 + p2u,

and optimality equations together with endpoint conditions are

u = −p2/2,

p′1 = 0, p′2 = −p1,

x′
1 = x2, x′

2 = u,

x1(0) = 1, x1(1) = 0,

x2(0) = 1, p2(1) = 0.
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It is not hard to find the optimal solution

u(t) = 6(t − 1),

x1(t) = t3 − 3t2 + t + 1,

x2(t) = 3t2 − 6t + 1.

These optimality conditions are necessary for an optimal solution, but they
might not be sufficient in the sense that there might be other types of solutions
that are not optimal. At this point, the reader will not be surprised if we assert
that convexity is involved in trying to establish that necessary conditions of
optimality are also sufficient. We can, in fact, prove the following result. We
stick to the initial notation for an optimal control problem

I(x, u) =
∫ T

0

F (t, x(t), u(t)) dt,

x′(t) = f(t, x(t), u(t)),
(x(0) = x0), (x(T ) = xT ),

We have placed endpoint conditions within parentheses to indicate that they
may be present or not.

Theorem 6.4 Let f be linear in (x, u) and F convex in (x, u) for each
fixed t. Then every solution of the system of optimality with the appropriate
endpoint conditions (including transversality) will be an optimal solution of
the control problem.

Imagine that the pair (x, u) satisfies all the optimality conditions, and let
(x̃, ũ) be any other admissible pair. We will measure the difference

I(x̃, ũ) − I(x, u)

and conclude that it cannot be negative. This implies that (x, u) is indeed
optimal.

Due to the hypotheses of linearity and convexity assumed in the statement
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of the theorem, we can write

I(x̃, ũ) − I(x, u) =
∫ T

0

[F (t, x̃, ũ) − F (t, x, u)] dt

≥
∫ T

0

[
∂F

∂x
(t, x, u)(x̃ − x) +

∂F

∂u
(t, x, u)(ũ − u)

]
dt

=
∫ T

0

[
(−p

∂f

∂x
(t, x, u) − p′)(x̃ − x) − p

∂f

∂u
(t, x, u)(ũ − u)

]
dt

= −
∫ T

0

p

[
(x′ − x̃′) +

∂f

∂x
(t, x, u)(x̃ − x) +

∂f

∂u
(t, x, u)(ũ − u)

]
dt

= −
∫ T

0

p

[
f(t, x, u) − f(t, x̃, ũ) +

∂f

∂x
(t, x, u)(x̃ − x) +

∂f

∂u
(t, x, u)(ũ − u)

]
dt

= 0.

Note how endpoint conditions and transversality are used to check that contri-
butions coming from endpoints vanish in the integrations by parts.

Sometimes, we may have to enforce additional integral constraints.

Example 6.5 Assume a particular process described by a function x(t)
starting at x(0) = 1. Our desire is to lead the system to x(T ) = 0 in the least
time possible, where the system evolves according to the law

x′(t) = ax(t) + u(t),

where a is a given constant, and we must respect the constraint

K =
∫ T

0

u(t)2 dt,

for some fixed given constant K > 0. It is precisely this integral constraint that
makes the problem interesting, because otherwise, T could be as small as we
like. After our experience with integral constraints in the last chapter, we are
going to introduce a multiplier s ∈ R associated with this restriction, and put

H = 1 + su2 + p(ax + u)
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for the Hamiltonian, where s is to be determined later. In fact, notice that we
can also write

H = s

(
1
s

+ u2 +
p

s
(ax + u)

)
,

and replacing p by p/s, we realize that optimality conditions are the same for
the Hamiltonian

H = 1 + u2 + p(ax + u),

but in this case, there is no additional constant s. It has been incorporated
somehow in the costate p. The optimality equations are

p′ = −ap, 2u + p = 0, x′ = ax + u.

By solving for u and p and replacing them in the state equation, we obtain

x′ = ax + ce−at

for a certain constant c. By solving this last equation, we arrive at

x(t) = deat +
c

2a
e−at.

We impose the three conditions

x(0) = 1, x(T ) = 0, K =
∫ T

0

u(t)2 dt,

and have
1 = d +

c

2a
,

0 = deaT +
c

2a
e−aT ,

K =
c2

8a

(
1 − e−2aT

)
.

By manipulating these equations we get the minimal T ,

T = − 1
2a

log
(
1 − a

2K

)
,

the optimal control
u(t) = −2Ke−at,
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and the associated optimal state

x(t) = eat − 4K

a
sinh(at).

Notice that the formula for T requires a < 2K. If a = 2K, then T = +∞,
and the system would tend to 0 as t → ∞ but never reach it. If a > 2K, the
system does not even approach the state 0, since x(t) tends to +∞.

All the examples we have looked at so far lie within the hypotheses of The-
orem 6.4, so that the solutions we have found are indeed the optimal solutions.

3. pontryagin’s principle

If we want to stay closer to more realistic hypotheses for optimal control prob-
lems, we must care about the possibility of having some bounds on the size of
admissible controls. This is reasonable, since a priori, a given system may not
be able to withstand the effect of a control of arbitrary size, either because it
would collapse, or because it would get out of the regime in which the state
law is valid or simply because we do not have the means to apply a control of
arbitrary size. In any case, a restriction on the size of feasible controls must be
considered. Typically, this is formulated by requiring

u(t) ∈ K,

where K is an appropriate subset of the space in which controls take on values.
Hence, in this section we are concerned with the problem

Minimize
∫ T

0

F (t, x(t), u(t)) dt

subject to

x′(t) = f(t, x(t), u(t)),
u(t) ∈ K, x(0) = x0, (x(T ) = xT ).

We are especially interested in understanding necessary conditions of optimality
that optimal solutions should satisfy.
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If we recall the discussion relative to Bellman’s equation in the last chapter,
we may consider the value function

S(t, x) = min
u

{∫ T

t

F (τ, y(τ), u(τ)) dτ : y′(τ) = f(τ, y(τ), u(τ)),

u(τ) ∈ K, y(t) = x
}

.

The fundamental property that the value function must satisfy for t′ > t is

S(t, x) = min
y

{
min

v

{∫ t′

t

F (τ, z(τ), v(τ)) dτ : z′(τ) = f(τ, z(τ), v(τ)), v(τ) ∈ K,

z(t) = x, z(t′) = x + y(t′ − t)
}

+ S(t′, x + y(t′ − t))
}

.

This condition can be rewritten as

0 = min
y

{
min

v

{
1

t′ − t

∫ t′

t

F (τ, z(τ), v(τ)) dτ : z′(τ) = f(τ, z(τ), v(τ)),

v(τ) ∈ K, z(t) = x, z(t′) = x + y(t′ − t)
}

+
S(t′, x + y(t′ − t)) − S(t, x)

t′ − t

}
.

Taking limits as t′ ↘ t, we conclude (why?) that

0 = min
y

{
min
v∈K

{F (t, x, v) : y = f(t, x, v)} +
∂S

∂t
(t, x) + y

∂S

∂x
(t, x)

}
,

which can also be reorganized as

∂S

∂t
(t, x) = −min

v∈K

[
F (t, x, v) + f(t, x, v)

∂S

∂x
(t, x)

]
. (6–1)

The question now is, what kind of information does this equation provide
concerning an optimal pair (x(t), u(t))? The fact that (x(t), u(t)) is optimal
means that

S(t, x(t)) =
∫ T

t

F (τ, x(τ), u(τ)) dτ, x′(τ) = f(τ, x(τ), u(τ)),
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for every time t. If we differentiate with respect to t and use (6–1), we can write

−F (t, x(t), u(t)) =
∂S

∂t
(t, x(t)) + x′(t)

∂S

∂x
(t, x(t))

= − min
v∈K

[
F (t, x(t), v) + f(t, x(t), v)

∂S

∂x
(t, x(t))

]

+ f(t, x(t), u(t))
∂S

∂x
(t, x(t)),

and hence

F (t, x(t), u(t))+f(t, x(t), u(t))
∂S

∂x
(t, x(t))

= min
v∈K

[
F (t, x(t), v) + f(t, x(t), v)

∂S

∂x
(t, x(t))

]
.

On the other hand, if we put p(t, x) = ∂S
∂x

(t, x), on the optimal pair we should
have, by using again

∂S

∂t
(t, x(t)) = x′(t)

∂S

∂x
(t, x(t)) + F (t, x(t), u(t)),

that

d

dt
p(t, x(t)) =

∂2S

∂x∂t
(t, x(t)) + f(t, x(t), u(t))

∂2S

∂x2 (t, x(t))

= − ∂

∂x

(
F (t, x(t), u(t)) + f(t, x(t), u(t))

∂S

∂x
(t, x(t))

)

+ f(t, x(t), u(t))
∂2S

∂x2 (t, x(t))

= − ∂F

∂x
(t, x(t), u(t)) − p(t, x(t))

∂f

∂x
(t, x(t), u(t)).

By means of the Hamiltonian

H(t, x, u, p) = F (t, x, u) + pf(t, x, u)

and the function p(t) = p(t, x(t)), we can summarize the above conclusions as
in the next statement. Notice the relationship between the multiplier (costate)
p(t) and the value function S(t, x):

p(t) = p(t, x(t)) =
∂S

∂x
(t, x(t))
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if x(t) is optimal.

Theorem 6.6 (Pontryagin’s principle: necessary conditions). If the pair
(x(t), u(t)) is optimal for our original control problem, there must exist a func-
tion p(t) such that the following conditions hold:

p′(t) = −∂H

∂x
(t, x(t), u(t), p(t)), (p(T ) = 0),

H(t, x(t), u(t), p(t)) = min
v∈K

H(t, x(t), v, p(t)),

x′(t) = f(t, x(t), u(t)), x(0) = x0, (x(T ) = xT ).

Notice how the second condition on the above statement is formulated as an
NLPP for v depending on various parameters. We have written the transversal-
ity condition and the final condition on the state within parentheses to empha-
size that one of the two, but not both at the same time, must be enforced. The
only comment on this important statement concerns precisely the transversality
condition p(T ) = 0. If we keep in mind the definition of p(t) as

p(t) =
∂S

∂x
(t, x(t)),

the transversality condition means that

∂S

∂x
(T, x(T )) = 0.

This constraint reflects nothing but the fact that if the value at the right
endpoint x(T ) is free, the value function must attain its minimum when it
takes on the value given by the optimal state x(T ). Consequently, the derivative
should vanish. If in the original formulation of the control problem we have a
constraint on the final state so that it is fixed, x(T ) = xT , then this condition
replaces transversality. The same discussion applies at the initial time t = 0.

It is also interesting to realize that the conditions on the above result are a
generalization of those in Section 6.2 since if K is all of Rm, then the minimum
of the Hamiltonian on v is achieved when the derivative with respect to v
vanishes.

Before proceeding to study sufficient conditions of optimality, we look at
several examples to examine Pontryagin’s principle.
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One of the most common families of optimal control problems is that con-
cerned with performing a given task in the least time possible. In such cases,
the objective functional to be minimized is the time employed in competing
the given task.

Example 6.7 Imagine, to begin with, a mobile object whose movement we
can control with its accelerator u, where the maximum allowable acceleration is
b, and maximum brake power is −a; i.e., −a ≤ u ≤ b. According to our previous
setting, K = [−a, b]. Starting out at rest and ending up at rest, we would like
to travel a distance α in minimum time. What is the optimal strategy for using
the accelerator? The cost functional is

I =
∫ T

0

1 dt,

under the restrictions

x′′(t) = u(t), u ∈ K,

x(0) = x′(0) = 0, x(T ) = α, x′(T ) = 0.

If we transform this second order equation into a first order system in the
standard way by means of the change

x1(t) = x(t), x2(t) = x′(t),

we obtain
x′

1 = x2, x
′
2 = u, u ∈ K,

x1(0) = x2(0) = 0, x1(T ) = α, x2(T ) = 0.

The Hamiltonian of the system will be

H(t, x, u, p) = 1 + p1x2 + p2u,

and the necessary conditions of optimality involving p, according to Pontrya-
gin’s principle, will be

p′1 = 0, p′2 = −p1.

Hence p1 = −d is constant, and p2 = dt + c, with c, d constants. If we take this
information back to the condition on the minimum, we obtain that the optimal
control u(t) should minimize the Hamiltonian H over K. In our situation,

(dt + c)u(t) = min
−a≤v≤b

(dt + c)v.
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Since the expression (dt + c)v is linear in v, the previous minimum is attained
at one of the endpoints of the interval [−a, b] depending on the sign of (dt+ c).
Therefore, the optimal control will have the form

u(t) =

{−a, dt + c > 0,
b, dt + c < 0,
any value, dt + c = 0.

Due to the physical interpretation of our problem, we have u(t) = b at the
beginning, since otherwise, our vehicle will not move, and later, obviously, we
will have to use the brake. Notice also that the above form for the optimal
control discards the possibility of having several changes between positive and
negative accelerations, since dt + c, being linear in t, can pass through zero at
most once. Consequently, the optimal control will have the form

u(t) =
{

b, t ≤ t0,
−a, t ≥ t0.

The instant t0 must be determined in terms of a, b, and α. Indeed, we will have
to solve

x′′(t) = b, x(0) = x′(0) = 0,

with solution
x(t) = bt2/2.

At time t0 (to be determined) a change in the dynamics of the system takes
place, and we must solve

x′′(t) = −a, x(t0) = bt20/2, x′(t0) = bt0,

asking, moreover, for x(T ) = α and x′(T ) = 0. Thus

x(t) = bt0

(
t − t0

2

)
− a

(t − t0)2

2
,

and the conditions at time T lead to a system of two equations in the two
unknowns T and t0. After some computations we have

t0 =

√
2aα

b(a + b)
, T =

√
2(a + b)α

ab
.
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Example 6.8 Our next example is also a minimum time problem, so that
the objective functional is the same, but the state system is now

x′
1 = −x1 + u, x′

2 = u, |u| ≤ 1,

under arbitrary initial conditions

x1(0) = a, x2(0) = b.

The task consists in leading the system to rest,

x1(T ) = x2(T ) = 0

in minimum time.

The Hamiltonian is

H(t, x, u, p) = 1 + p1(−x1 + u) + p2u,

which, as in the preceding example, is linear in u. The equations for p1 and p2

are
p′1 = p1, p′2 = 0,

so that p2 = d and p1 = cet, where c and d are constants. Due to the linearity
of H with respect to u, the optimal control will have the form

u(t) =

{−1, p1 + p2 > 0,
1, p1 + p2 < 0,
any value, p1 + p2 = 0.

We must ask ourselves how many times the expression

p1 + p2 = d + cet

can go through the origin, with the aim of deciding how many changes from −1
to 1 the optimal control will exhibit, and then, through the appropriate compu-
tations, find the optimal strategy. Since the initial conditions are arbitrary and
not given explicitly, the discussion in terms of the specific formulas providing
the optimal time and the instants where a change in the optimal control should
take place in terms of a and b becomes really tedious and almost impossible to
clarify. On such occasions, it is much more fruitful to analyze the problem in a
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qualitative fashion by means of “switching curves.” We describe in the sequel
this sort of analysis for the example at hand.

As we have argued above, the optimal control makes the process alternate
between the dynamics of the two systems{

x′
1 = −x1 + 1,

x′
2 = 1,

{
x′

1 = −x1 − 1,
x′

2 = −1.

The integral curves of these systems starting at (a, b) when t = 0 are, respec-
tively,

x1(t) = (a − 1)e−t + 1, x2(t) = t + b,

and
x1(t) = (a + 1)e−t − 1, x2(t) = −t + b.

They are schematically drawn in Figure 6.1, where the integral curve through
the origin has been highlighted in each case.

Figure 6.1. Integral curves of a control system.

If we imagine these two families of curves in a single diagram, the choice of
the optimal control is dictated by starting at the given point (a, b), following
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one of the corresponding integral curves, and, at a certain instant, changing to
the other one in such a way that the second integral curve must take us to the
origin, if this is possible. Since only one integral curve of each system will pass
through the origin (in fact, since time is not allowed to decrease, we are talking
about two half-curves), it is a matter of reaching one of these two half-curves
as soon as possible starting from the given initial point. Specifically, these two
half-curves are

Λ1 =
{
(1 − e−s, s) : s ≤ 0

}
for u = 1,

Λ−1 = {(es − 1, s) : s ≥ 0} for u = −1.

Let Λ be the union of these two curves, and let Λ+ designate the part of the
plane over Λ, and Λ− the part of the plane under Λ. It is easy to see that if the
point (a, b) belongs to Λ+, we should take u = −1 until we are on Λ1, changing
in this instant to u = 1, since that curve will lead us to the origin. In the same
way, for initial conditions (a, b) ∈ Λ−, we must choose first u = 1 until reaching
Λ−1, and then u = −1 since Λ−1 will lead us to rest. These are the optimal
strategies, since any other way of changing between these two dynamics will
make us “waste some time.” See Figure 6.2.

It is also interesting to point out that the number of changes in the optimal
control can also be determined by going back to the equation

p1 + p2 = d + cet.

The number of changes corresponds to the roots of the equation

d + cet = 0,

for arbitrary constants c, d. By solving for t, we obtain

t = log
(
−d

c

)
.

We thus conclude that the optimal control will have at most (when d/c is
negative) one switch.
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Figure 6.2. Draft of optimal strategies.

Example 6.9 One interesting problem that can be understood by a qual-
itative analysis using the switching-curve concept is the optimal control of a
harmonic oscillator, which is described by the equations

x′
1 = x2, x′

2 = −x1 + u,

where the control u is restricted in size: |u| ≤ 1. Again, we would like to know
how to lead the system to rest starting from an arbitrary initial state (a1, a2).

The Hamiltonian is

H(t, x, u, p) = 1 + p1x2 + p2(−x1 + u).

Since it is linear in u, optimal strategies will always alternate between u = 1
and u = −1. Those two dynamics are represented by the integral curves of the
systems {

x′
1 = x2,

x′
2 = −x1 + 1,

{
x′

1 = x2,
x′

2 = −x1 − 1.

It is not hard to check that the integral curves for the first are concentric circles
centered at (1, 0), while those for the second are concentric circles centered at
(−1, 0) (Figure 6.3).
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Figure 6.3. Integral curves for the harmonic oscillator.

The issue is to understand optimal strategies for arbitrary initial points in
the plane. To this end, we examine the differential equations for the costates
and see what information we can derive from them. Those are

p′1 = p2,

p′2 = −p1.

By differentiation we have

p′′2 + p2 = 0,

so that

p2(t) = A cos(t + B)

for arbitrary constants A,B. We know that the changes in the optimal control
are dictated by the times that the costate p2 passes through the origin.

Due to the form of p2, we conclude that there might be an arbitrary num-
ber of changes (depending on the initial conditions) and that these are to be
produced before π units of time goes by. Notice that roots of cos(B + t) are
located π units apart from each other. By bearing in mind this information,
and examining first those points at which no switch in the control is necessary,
then those requiring a single change, two changes, and so on, it is possible to
understand optimal strategies. These conclusions are indicated in Figure 6.4.
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Figure 6.4. Some optimal paths for the harmonic oscillator.

Example 6.10 From a given fixed point, a projectile is launched with the
aim of hitting a target located 3 + 5/6 distance units away in 3 time units. We
want this goal to be accomplished with the least cost measured by the integral

E = k

∫ 3

0

u(t)2 dt, k > 0,

where the control u indicates the accelerator of the projectile. The state equa-
tion is x′′ = u, and u is restricted in sign and size: 0 ≤ u ≤ 1. The initial and
final conditions are then

x′(0) = x(0) = 0, x(3) = 3 +
5
6
.

Transforming the second order equation to a first order system, we immediately
obtain the Hamiltonian

H(t, x, u, p) = ku2 + p1x2 + p2u,

which is a strictly convex function of u. The optimality conditions state that

p′1 = 0, p′2 = −p1,
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together with the transversality condition p2(3) = 0, since the value x2(3) is
free. Consequently, we obtain p2(t) = d(3 − t), where p1 = d is constant.

Figure 6.5. Quadratic dependence of the Hamiltonian on the control.

The condition on the minimum of H over u ∈ [0, 1], which is quadratic,
leads to three situations, depending on whether the vertex of the parabola lies
in [0, 1] or stays to the right or left of this interval. These three cases are (see
Figure 6.5):

1. u = −p2/2k = c(t − 3), c = −d/3k if c(t − 3) ∈ (0, 1);
2. u = 0 if c(t − 3) ≤ 0;

3. u = 1 if c(t − 3) ≥ 1.

Nonetheless, since the control cannot be identically zero (because the pro-
jectile would not move) only two cases are possible, in which c is always non-
positive (Figure 6.6):

1. 0 < c(t − 3) < 1, 0 ≤ t < 3: In this case, we should solve the problem

x′′ = c(t − 3), x(0) = x′(0) = 0, x(3) = 3 +
5
6
.

After a few computations, we obtain

x(t) =
c

6
t3 − 3c

2
t2, c = −1

3
− 5

54
.

However, for this value of c the optimal control u(t) = c(t − 3) always violates
the restriction u ∈ [0, 1], since u(0) > 1. This cannot be the solution sought.
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Figure 6.6. Possibilities for c(t − 3).

2. There exists t0 ∈ (0, 1) such that c(t0 − 3) = 1. In this situation

u(t) =
{

1, t ≤ t0,
c(t − 3), t ≥ t0.

We solve the problem

x′′ = u, x(0) = x′(0) = 0, x(3) = 3 +
5
6
,

in two steps. Firstly,

x′′(t) = 1 for t ≤ t0, x(0) = x′(0) = 0,

has the solution x(t) = t2/2. Next, imposing the continuity at t0 of x and x′,

x′′(t) = c(t − 3) for t ≥ t0,

x(t0) =
t20
2

, x′(t0) = t0, x(3) = 3 +
5
6
,

where we bear in mind that c(t0 − 3) = 1. After performing all these substitu-
tions, we are led to a polynomial equation for t0,

t30 − 9t20 + 23t0 − 15 = 0, t0 ∈ (0, 3).

The only admissible value is t0 = 1, and therefore, c = −1/2. The optimal
control is

u(t) =
{ 1, t ≤ 1,

− t
2 + 3

2 , t ≥ 1.
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Example 6.11 Our next example describes a situation in which the con-
trol has two components to highlight the main differences with respect to the
examples examined above.

Suppose a system obeys the state equation

x′
1 = −x2 + u1, x′

2 = x1 + u2,

where this time the control we exercise on the system should respect the con-
traint

u2
1 + u2

2 ≤ 1.

We would like to determine the shortest time interval in which we can lead the
system to rest from an arbitrary initial condition (a, b). The Hamiltonian is

H(t, x, u, p) = 1 + p1(−x2 + u1) + p2(x1 + u2),

and the condition on the minimum over the control (u1, u2) reads

p1u1 + p2u2 = min
{
p1v1 + p2v2 : v2

1 + v2
2 ≤ 1

}
.

This is a simple exercise of nonlinear programming (Chapter 3). At this point,
our readers should not have any difficulty in finding the optimal solution

u1 = − p1√
p2
1 + p2

2

, u2 = − p2√
p2
1 + p2

2

,

which provide the optimal control once multipliers (costates) are known. The
equations for those are

p′1 = −p2, p2 = p1.

Plugging one of them into the other, we arrive at

p1(t) = ρ0 cos(t + θ0), p2(t) = ρ0 sin(t + θ0),

where we have used the form ρ0 cos(t + θ0) with ρ0, θ0 arbitrary constants, for
the general solution of the equation p′′1 +p1 = 0. In this way, the optimal control
is

u1(t) = − cos(t + θ0), u2(t) = − sin(t + θ0).
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We now use the state system

x′
1 = −x2 − cos(t + θ0), x′

2 = x1 − sin(t + θ0).

Once again, by differentiating and plugging one into the other, we obtain

x′′
1 + x1 = 2 sin(t + θ0).

The general solution of this equation is

x1(t) = −t cos(t + θ0) + ρ1 cos(t + θ1),

and consequently,

x2(t) = −t sin(t + θ0) + ρ1 sin(t + θ1).

Finally, initial and final conditions lead to

a = ρ1 cos θ1, b = ρ1 sin θ1,

0 = −T cos(T + θ0) + ρ1 cos(T + θ1),
0 = −T sin(T + θ0) + ρ1 sin(T + θ1).

From this, it is immediate to obtain

T = ρ1 =
√

a2 + b2, θ0 = θ1,

and the optimal strategy

u1(t) = − cos(t + θ0), u1(t) = − sin(t + θ0),

where θ0 is the argument of the initial state (a, b).

One of the most important differences we discover in this example, in con-
trast to situations in which the control is a single number, is that the boundary
of a connected region in two or more variables is not disconnected, and thus
optimal controls do not need to jump abruptly (though sometimes do) from one
point to another, but changes in the dynamics of the system may take place
smoothly.
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We have just studied a number of examples in which, by means of Pontrya-
gin’s principle, we have apparently found optimal solutions to problems. As
in other situations analyzed before, the question is whether we can convince
ourselves that those computed optimal solutions are indeed optimal. This is
obviously an important issue. It is the matter of whether necessary conditions
of optimality are sufficient. Once again, convexity enters in a relevant way into
the discussion.

Theorem 6.12 (Sufficiency of optimality conditions) Assume that F (t, x, u)
is convex in (x, u), and f(t, x, u) linear in (x, u). If the triplet (x(t), u(t), p(t))
satisfies

p′(t) = −∂H

∂x
(t, x(t), u(t), p(t)), (p(T ) = 0),

H(t, x(t), u(t), p(t)) = min
v∈K

H(t, x(t), v, p(t)),

x′(t) = f(t, x(t), u(t)), x(0) = x0, (x(T ) = xT ),

where

H(t, x, u, p) = F (t, x, u) + pf(t, x, u)

is the Hamiltonian of the system, and K is a convex subset, then the pair
(x(t), u(t)) is an optimal solution of the corresponding optimal control problem.

This sufficiency result is not difficult to justify after the experience we al-
ready have with convexity. The condition on the minimum means that

g(s) = H(t, x(t), u(t) + s(v − u(t)), p(t)), s ∈ [0, 1],

as a function of s, for fixed t and v ∈ K, has a minimum at s = 0. Notice how
the vector sv + (1 − s)u(t) belongs to K if this set is convex. In this situation
all we can ensure is g′(0) ≥ 0 (one-sided minimum). Therefore,

0 ≤ g′(0) =
∂H

∂u
(t, x(t), u(t), p(t))(v − u(t)), v ∈ K. (6–2)



6.3 Pontryagin’s principle 221

If (x̃(t), ũ(t)) is any other feasible pair for our control problem, we have

I(x̃, ũ) − I(x, u)

=
∫ T

0

[F (t, x̃(t), ũ(t)) + p(t)(f(t, x̃(t), ũ(t)) − x̃′(t))

−F (t, x(t), u(t)) − p(t)(f(t, x(t), u(t)) − x′(t))] dt

=
∫ T

0

[H(t, x̃(t), ũ(t), p(t)) − H(t, x(t), u(t), p(t))

−p(t)(x̃′(t) − x′(t))] dt

≥
∫ T

0

[
∂H

∂x
(t, x(t), u(t), p(t))(x̃(t) − x(t))

+
∂H

∂u
(t, x(t), u(t), p(t))(ũ(t) − u(t)) + p′(t)(x̃(t) − x(t))

]
dt

≥ 0,

due to the equation that p(t) satisfies and (6–2). Hence the pair (x(t), u(t)) is
truly an optimal solution. We have also utilized in an essential way the convexity
of H with respect to (x, u), which is guaranteed because of the convexity of
F and the linearity of f . The presence of the multiplier in front of f (and in
particular its sign) keeps us from apparently relaxing the linearity of f . This
issue is left to a more advanced course in optimal control.

Quite often, optimal solutions for control problems cannot be found, either
because there are many (or not so many) variables involved, so that it is almost
impossible to handle them all by hand; or else because optimality conditions
cannot be solved explicitly or it is really cumbersome and tedious to find explicit
formulas.

Example 6.13 A mobile object in a plane can be controlled by two param-
eters, r1 and r2, expressing the rapidity with which the direction of movement
can be changed (angular velocity of movement) and the modulus of velocity,
respectively. The equations of motion are

x′′(t) = cos θ(t)r2(t), y′′(t) = sin θ(t)r2(t), θ′(t) = r1(t).

Restrictions on the feasible pairs (r1, r2) can be generally written by requiring

(r1, r2) ∈ K,
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where K is the set of admissible controls. The objective is to change the position
of the object from, say, (a0, b0) to (a1, b1) in minimum time. The equivalent
first order system is

x′
1 = x2, x′

2 = cos θr2,

x′
3 = x4, x′

4 = sin θr2,

θ′ = r1,

and the Hamiltonian is

H = 1 + p1x2 + p2 cos θr2 + p3x4 + p4 sin θr2 + p5r1.

The conditions of optimality are written

p′1 = 0, p′2 = −p1,

p′3 = 0, p′4 = −p3,

p′5 = p2r2 sin θ − p4r2 cos θ,

x′′ = cos θr2,

y′′ = sin θr2, θ′ = r1,

where r = (r1, r2) must, in turn, be the optimal solution of

min
(r1,r2)∈K

((p2 cos θ + p4 sin θ)r2 + p5r1) .

Even for simple choices of the set K (as a rectangle or an ellipse), it is almost
impossible to fully determine in a explicit form the optimal solution. On the
other hand, in this particular situation restrictions on the state (in addition to
those on the controls) in the form of obstacles to be avoided are very natural.
This, however, is well beyond the scope of this text.

Example 6.14 The economy of a certain country follows the law

k′ = f(k) − (λ + µ)k − c,

where k is the ratio of invesment per unit of labor, f is the production function,
µ and λ are parameters related to the depreciation and labor growth respec-
tively, and c is consumption per unit of labor. The objective of this country is
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to choose consumption so as to maximize the welfare integral over a fixed time
interval ∫ T

0

e−δtu(t) dt

where δ is the time discount parameter and u is the utility function. This last
function must satisfy the equation

η = −cu′′

u′

for a constant η, which is called the elasticity of marginal utility. If we assume
that k is known both at the beginning and the final time and u(T ) is also
known, we would like to determine the optimal consumption.

If we change the notation to make the formulation more transparent, we
find, by putting

x1 = k, x2 = u, x3 = u′, v = c,

that the Hamiltonian is

H = e−δtx2 + p1(f(x1) − (λ + µ)x1 − v) + p2x3 − p3η
x3

v
,

and the optimality conditions read

x′
1 = f(x1) − (λ + µ)x1 − v,

x′
2 = x3,

x′
3 = −η

x3

v
,

p′1 = −f ′(x1) + λ + µ,

p′2 = e−δt,

p′3 = −p2 +
p3η

v
,

v2 =
p3ηx3

p1
.

Notice how the dependence of H on v is convex when v > 0. This system of
six coupled differential equations is completed with endpoint conditions and
transversality conditions, namely,

x1(0) = k0, x1(T ) = kT , x2(T ) = uT ,

p2(0) = p3(0) = p3(T ) = 0.
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The whole system is impossible to solve explicitly.

It is not especially hard to check in all the examples examined above that the
hypotheses of the sufficiency optimality criterion are satisfied, so that solutions
found are truly optimal solutions in all cases.

When these sufficiency conditions ensuring optimality are violated, then
nonexistence of optimal solutions may follow. One of the simplest such examples
is concerned with minimizing

∫ 1

0

[
(u(t)2 − 1)2 + x(t)2

]
dt,

where x′(t) = u(t), x(0) = 0 and K = R. If we take

uj(t) = 1, t ∈
(

k

2j
,
k + 1

2j

)
, k even,

uj(t) = −1, t ∈
(

k + 1
2j

,
k + 2

2j

)
, k odd,

it is easy to check that I(uj) ↘ 0, and therefore conclude that the value of
the infimum is 0. It is, however, impossible to find a control u yielding this
value (why?). Notice how the convexity of the integrand F with respect to the
control u fails.

4. another format

The cost functional of an optimal control problem may incorporate another
term depending on the final state of the system. In general, we will have an
objective of the form

I(u) =
∫ T

0

F (t, x(t), u(t)) dt + φ(x(T )),

where the final state x(T ) is free, the function φ is assumed to be differentiable,
and we have the typical state equation completed with initial conditions

x′(t) = f(t, x(t), u(t)), x(0) = x0.
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This sort of, apparently more general, situation can indeed be reduced to our
typical format by means of the trick

I(u) =
∫ T

0

[
d

dt
φ(x(t)) + F (t, x(t), u(t))

]
dt

=
∫ T

0

[∇φ(x(t))f(t, x(t), u(t)) + F (t, x(t), u(t))] dt.

Therefore, it is in fact one of our typical examples for the new integrand

F̃ (t, x, u) = ∇φ(x)f(t, x, u) + F (t, x, u).

The Hamiltonian for this new problem would be

H̃(t, x, u, p) = ∇φ(x)f(t, x, u) + F (t, x, u) + pf(t, x, u).

We notice that optimality conditions are the same compared with those for the
functional I without the term φ(x(T )), but with multiplier

p̃(t) = p(t) + ∇φ(x(t)).

The only change relates to the transversality condition, which now reads

p̃(T ) = ∇φ(x(T )) (p(T ) = 0).

Hence, the computation of optimal solutions of such an optimal control problem
proceeds in the same way, ignoring the contribution φ(x(T )), which enters in
writing the transversality conditions at T , as pointed out.

Example 6.15 Imagine that we would like to find the optimal control to
minimize the cost given by

I(u) =
1
2
x(T )2 +

∫ T

0

u(t)2 dt

with state equation and initial conditions

x′(t) = −x(t) + u(t), x(0) = x0.
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Since the hypotheses for the sufficiency of optimality conditions hold, we can
find them by applying Pongryagin’s principle. As we have explained before,
those conditions are the same as those for∫ T

0

u(t)2 dt

but with the corresponding transversality condition p(T ) = x(T ). Thus, for the
Hamiltonian

H(t, x, u, p) = u2 + p(u − x),

we must solve the system

p′ = p, 2u + p = 0, x′ = u − x,

x(0) = x0, p(T ) = x(T ).

After a few computations, we have to solve the problem

x′(t) = −x(t) − 1
2
x(T )et−T , x(0) = x0.

The solution is
x(t) =

x0

5 − e−2T
(5e−t − et−2T ),

and the optimal control

u(t) = − 2x0e
−T

5 − e−2T
et−T .

Under restrictions on the size of the control u(t) ∈ K, the methodology is
similar.

5. some comments on the numerical approximation

Optimal control problems are so important in engineering that the simula-
tion and numerical approximation of them has received considerable atten-
tion, surely more than variational problems. Several successful strategies have
been analyzed and implemented (for instance, two-point boundary methods
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and schemes based on optimality conditions). This is again beyond the scope
and the aim of this text. Our goal in this section is to provide a few basic ideas
directly based on discretization and optimization (not on optimality condi-
tions) that can help in understanding and appreciating the role and difficulties
of discretization in optimal control problems. A good reference is [32], in which
a systematic approach to approximation in optimization problems, including
optimal control, is developed in a rather complete and exhaustive way.

The numerical approximation of optimal control problems could be analyzed
as we did with variational problems, namely, by dividing the time interval into
several subintervals and, assuming that admissible controls are constant on
each of those subintervals, finding the best such feasible control. When the
partition of the interval is sufficiently fine, we expect to calculate a fairly good
approximation to the true optimal control of our problem. This, in principle,
can be set up in this way, and optimal solutions can be approximated by uti-
lizing numerical algorithms for nonlinear programming. Consider the following
situation.

Example 6.16 We will perform a numerical approximation of the following
optimal control problem:

Minimize I(u) =
∫ 1

0

u(x)2 dx

subject to

x′′(t) = u(t), u(t) ∈ K, t ∈ (0, 1),
x(0) = x′(0) = 0, x(1) = 1, x′(1) = 0.

The physical interpretation is clear. We would like to minimize fuel expenditure,
measured by the integral of the square of the control, when a mobile object is
to travel a distance 1 in a straight line and finish with vanishing velocity. The
brake/accelerator must belong to a preassigned set K.

Let

u = (uj), j = 1, . . . , n,

be our independent variable, where uj is the value of the control on the interval

(
(j − 1)

n
,
j

n

)
.
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By recursion, we can solve the state equation on each of those subintervals.
Indeed, if

x′ ((j − 1)/n) = aj−1, x ((j − 1)/n) = bj−1,

are the final values obtained for x′ and x in solving the state equation in the
interval ((j − 2)/n, (j − 1)/n), then we should solve

x′′(t) = uj , t ∈ ((j − 1)/n, j/n) ,

x′ ((j − 1)/n) = aj−1, x ((j − 1)/n) = bj−1,

and put

aj = x′ (j/n) , bj = x (j/n) .

In this simplified situation, all computations involved can be done explicitly,
and we obtain

aj = aj−1 +
uj

n
, bj = bj−1 + aj−1

1
n

+
uj

2n2 .

The initial conditions imply a0 = b0 = 0. By using these recursive formulas
appropriately, it is not hard to check that

aj =
1
n

j∑
k=1

uk, bj =
1

2n2

j∑
k=1

(2j − 2k + 1)uk.

The final constraints x(1) = 1, x′(1) = 0 translate into

1
2n2

n∑
k=1

(2n − 2k + 1)uk = 1,

1
n

n∑
k=1

uk = 0.

We can even write these two constraints as

n∑
k=1

kuk + n2 = 0,
n∑

k=1

uk = 0.
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Figure 6.7. Approximation of an optimal control problem.

On the other hand, the cost functional is simply

I(u) =
n∑

k=1

u2
k.
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Finally, we are faced with the problem

Minimize
n∑

k=1

u2
k

subject to
n∑

k=1

kuk + n2 = 0,
n∑

k=1

uk = 0, uk ∈ K.

We have implemented two situations for different choices of the set K. The
first one corresponds to no real constraint, so that K = R. For the second one
we have chosen K = [−1/2, 1]. One of the numerical algorithms of Chapter 4
can be used to find these discrete approximated solutions. Figure 6.7 shows the
approximation for both cases.

Example 6.17 We explain how the numerical approximation of the optimal
solution for Example 6.7 can be set up.

Since T > 0 is unspecified (it is precisely the cost functional to be mini-
mized), we must incorporate it as another variable. Let

u = (uj), j = 0, 1, . . . , n,

be our independent variable, where we are taking u0 = T , and uj is the value
of the control on the interval (

u0
(j − 1)

n
, u0

j

n

)
.

By recursion, as in the preceding example, we can solve the state equation on
each of those subintervals. Indeed, if

x′ (u0(j − 1)/n) = aj−1, x (u0(j − 1)/n) = bj−1,

are the final values obtained for x′ and x in solving the state equation in the
interval (u0(j − 2)/n, u0(j − 1)/n), then we ought to solve

x′′(t) = uj , t ∈ (u0(j − 1)/n, u0j/n) ,

x′ (u0(j − 1)/n) = aj−1, x (u0(j − 1)/n) = bj−1,
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and put
aj = x′ (u0j/n) , bj = x (u0j/n) .

As before, all computations involved can be done explicitly, and we obtain

aj = aj−1 +
u0uj

n
, bj = bj−1 + aj−1

u0

n
+

u2
0uj

2n2 .

The initial conditions imply a0 = b0 = 0. Again, it is not hard to check that

aj =
u0

n

j∑
k=1

uk, bj =
u2

0

2n2

j∑
k=1

(2j − 2k + 1)uk.

The final constraints x(T ) = α, x′(T ) = 0 translate into

u2
0

2n2

n∑
k=1

(2n − 2k + 1)uk = α,
u0

n

n∑
k=1

uk = 0.

Or even further,

u2
0

n∑
k=1

kuk + αn2 = 0,
n∑

k=1

uk = 0.

On the other hand, the cost functional is simply

I(u) = u0.

Finally, we are faced with the problem

Minimize u0

subject to

u2
0

n∑
k=1

kuk + αn2 = 0,

n∑
k=1

uk = 0, −b ≤ uk ≤ a, u0 ≥ 0.

Notice how in optimal control problems the discretized version of the un-
derlying optimization problem requires solving a differential equation. In the
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examples examined before, this has been done explicitly. In many situations,
even simple situations, we cannot expect to be able to do that, so that either
we have to incorporate a solver for differential equations as part of the (numer-
ical) definition of cost functionals and/or constraints, or else we would have to
see how to use the information coming from optimality conditions. This last
possibility would be the subject of a more specialized text. We invite our read-
ers to work out the details of the numerical approximation in another, more
involved, but standard example: the optimal control of a harmonic oscillator
(Example 6.9, Exercise 18). This time a numerical integrator (Euler integrator)
to approximate the state equation over the subintervals where the control is
constant should be utilized.

6. exercises

1. A system is governed by the state equation x′ + ax = u, where a is a
constant, x = x(t) is the state, and u = u(t) is the control. If x(0) = 0 and
x(T ) = C, determine the optimal control that minimizes the cost

I(u) =
∫ T

0

[
(C − x)2 + u2

]
dt.

Here C is also a constant.
2. A certain system obeying the state equations

x′
1 = x2, x′

2 = −x1 + u,

starts at x1(0) = x2(0) = 1. Find the optimal control to have the system in
the same state after one unit of time x1(1) = x2(1) = 1 if the cost is

I(u) =
1
2

∫ 1

0

u2(t) dt.

3. The equations
x′

1 = x2, x′
2 = −x2 + u,

characterize the behavior of a system. If we consider a cost functional of the
type

I(u) =
∫ ∞

0

(x2
1 +

16
3

u2) dt,
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find the optimal control if

x1(0) = a, x2(0) = b, x1(t), x2(t) → 0 as t → ∞.

4. A system is governed by the equation

x′′ + x′ + x = u, x(0) = c0, x
′(0) = c1.

The control u is restricted by |u| ≤ 1. Study the optimal control leading the
system to rest in minimum time.

5. A rocket travels upward over ground under a constant gravitational force
and negligible aerodynamical effects. The thrust of the engine acts vertically
downward. The equations are

h′ = v, v′ = −g +
cβ

m
, m′ = −β,

where h is the height measured with respect to the ground, v is the vertical
velocity, m is the total mass of the rocket, c is a positive constant, and β is
the control representing the flux of fuel subject to the constraint 0 ≤ β ≤ β.
Assuming that at the beginning t = 0, we have m = m0 + mβ , where mβ

is the amount of fuel, h = 0, v = 0, determine the optimal control so as to
achieve maximum height, supposing that we are allowed a single change in
the control.

6. A company decides to hire a marketing firm with the objective of maximiz-
ing sales of a certain product. The relationship between the sales level and
the publicity employed, measured through a function A(t), is given by the
law

s′ = rA
(
1 − s

M

)
− λs,

where M is the level of saturation of sales, λ is the decay rate of sales
under no marketing, and r is a positive parameter. If the money spent on
marketing is limited at every instant by 0 ≤ A ≤ A and also globally by

B =
∫ T

0

A(t) dt,

for a given fixed B, determine the optimal strategy to maximize global sales

S =
∫ T

0

s(t) dt
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over a fixed period of time.
7. A mobile object is controlled by the law

x′′ + x′ − 2x = u, |u| ≤ 1.

If
x(0) = −1

6
e2 − 1

3
e−1 − 1

2
, x′(0) =

1
3
e2 − 1

3
e−1,

determine the optimal strategy U to lead this mobile object to rest,

x(T ) = x′(T ) = 0,

in minimum time. Assume U(0) < 0.
8. A system is governed by the equation

x′(t) = x(t) + u(t), t ∈ (0, 10),

and starts at x(0) = 100. If the cost is given by

I(u) =
1
2
x(10)2 +

∫ 10

0

[
3x(t)2 + u(t)2

]
dt,

determine the optimal control.

Figure 6.8. A circuit.

9. Consider the circuit of Figure 6.8. The initial current vanishes: i(0) = 0. A
maximal voltage difference is desired,

v0(T ) =
∫ T

0

Ri′(t) dt
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in the final instant T . The law of the circuit is

i′(t) =
1
L

vi(t) − R

L
i(t), 0 ≤ vi ≤ 1.

Determine the optimal strategy, and the maximum potential fall.
10. Two spaceships A and B travel in free space. In the initial instant, they are

a distance c0 apart, and B moves away from A at constant velocity c1. A
wants to reach B softly. The position of A is governed by

x′′ = u, x(0) = x′(0) = 0.

The energy consumed by A in this task is proportional to

I(u) =
∫ T

0

u(t)2 dt.

Find the optimal strategy, having in mind that the link-up must be accom-
plished before a certain period of time T1 (T ≤ T1).

11. Try to solve the optimal control problem number 12 in Chapter 1.
12. A cup of coffee is initially at 100◦F, and we wish to decrease its temperature

in minimum time to 0◦F by adding a fixed (unit) amount of milk. If x(t) is
the temperature of the mixture of coffee and milk in the cup, the law for
the cooling of such a mixture is

x′(t) = −x(t) − 25u(t) − 1
4
u(t)x(t),

where u(t) is the rate at which milk is added, and is restricted so that
0 ≤ u(t) ≤ 1 and ∫ T

0

u(t) dt = 1.

1. Argue why the optimal strategy must have the form

u(t) =
{

0, 0 ≤ t ≤ t0,
1, t0 ≤ t ≤ T ,

for a certain t0 ≥ 0.
2. By bearing in mind the previous step, find the optimal strategy.
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13. A certain plague is spoiling a crop. To fight against it, a predator is devel-
oped and introduced into the crop. Since the predator is also harmful to
the crop as well as infertile, it is sought that both species be eliminated si-
multaneously as soon as possible. If x1(t) and x2(t) designate both species,
respectively, and they start from x1(0) = 1/4, x2(0) = 0, determine the
optimal control u and the minimum time if −1 ≤ u ≤ 1 and the state law is

x′
1(t) = x1(t) − x2(t), x′

2(t) = −x2(t) + u.

The control u represents the rate at which the predator is put or taken.
14. Sometimes, it is not known whether desired final states for a system can

actually be reached under the constraints we have. In such cases, an optimal
control problem like

Minimize
1
2
|x(T ) − xT |2

subject to
x′ = f(t, x, u), x(0) = x0, |u| ≤ M,

may help in determining whether the desired final state xT can actually be
attained. This occurs when the optimal cost vanishes. For a linear state law
with constant coefficients,

f(t, x, u) = ax + bu + c, a, b, c ∈ R, a, b 	= 0,

decide whether there could be unreachable states xT .
15. Pontryagin’s maximum principle does not always provide optimal solutions.

This is obviously so when there are no optimal solutions. Try to use Pontrya-
gin’s maximum principle for Exercise 13 of Chapter 1, and describe what
kind of difficulties you encounter.

16. Examine the numerical approximation of Example 6.10 by using the ideas
of Section 6.5.

17. Study the optimal control problem of leading the system governed by the
state equation

x′′(t) − x(t) = u(t), −1 ≤ u(t) ≤ 1,

to rest from an initial arbitrary state in minimal time. Set up the scheme
for the numerical approximation.

18. Explore the numerical approximation of the optimal control of a harmonic
oscillator (Example 6.9) by using the ideas in Section 6.5.
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bounded set, 68
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optimal strategy, 210
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potential energy, 163, 173
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primal formulation, 46
primal problem, 43, 57
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quadratic error, 17, 109
quadratic functional, 121
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quadrature formula, 17
quadrature rule, 187
quasi-Newton algorithms, 119

radial symmetry, 173
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refracting medium, 20
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sales level, 233
saturation of sales, 233
scaffolding system, 2, 10, 15, 65
Search direction, 113
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second order ODE, 141
second order problems, 173
sensitivity parameters, 48
servomechanism, 5
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singular points, 75
slack variables, 26, 130
slowest descent, 19
soap film, 150
software packages, 14, 112
spaceships, 235
springs, 16, 65
Standard form of an LPP, 25
standard form of an NLPP, 68
state equation, 195
stationary state, 152
steepest descent, 117
step size, 114
Step-size parameter, 113
stopping criterion of the simplex method,
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successive approximations, 112
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tangent hyperplane, 90
Taylor’s expansion, 118
thin elastic rods, 175
threshold precision, 115
threshold value, 116
thrust of the engine, 233
time discount factor, 20
time discount parameter, 223
time horizon, 196
total energy, 20
transit time, 146
transportation problem, 2, 9, 65
transversality, 158, 175
transversality conditions, 198, 207
Transversality statement, 198
trapezoidal rule, 188
truncated-conic bar, 109
truss structure, 100
two-component control, 218

unique solution, example, 37
uniqueness, 96, 156
utility function, 17, 223

value function, 181, 207
Vandermonde determinant, 73
variational problems, 14
vector of reduced costs, 33
vertex, 25
voltage difference, 234

Wave equation, 152
weak duality, 47, 104
Weierstrass’s example, 144
welfare integral, 20, 223
work, 16

Young modulus, 18, 109
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