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Preface

This book is entirely devoted to numerical algorithms for optimization, their
theoretical foundations and convergence properties, as well as their imple-
mentation, their use, and other practical aspects. The aim is to familiarize
the reader with these numerical algorithms: understanding their behaviour
in practice, properly using existing software libraries, adequately designing
and implementing “home-made” methods, correctly diagnosing the causes
of possible difficulties. Expected readers are engineers, Master or Ph.D. stu-
dents, confirmed researchers, in applied mathematics or from various other
disciplines where optimization is a need.

Our aim is therefore not to give most accurate results in optimization, nor
to detail the latest refinements of such and such method. First of all, little is
said concerning optimization theory itself (optimality conditions, constraint
qualification, stability theory). As for algorithms, we limit ourselves most of
the time to stable and well-established material. Throughout we keep as a
leading thread the actual practical value of optimization methods, in terms of
their efficiency to solve real-world problems. Nevertheless, serious attention is
paid to the theoretical properties of optimization methods: this book is mainly
based upon theorems. Besides, some new and promising results or approaches
could not be completely discarded; they are also presented, generally in the
form of special sections, mainly aimed at orienting the reader to the relevant
bibliography.

An introductory chapter gives some generalities on optimization and it-
erative algorithms. It contains in particular motivating examples, ranking
from meteorological forecast to power production management; they illus-
trate the large field of branches where optimization finds its applications.
Then come four parts, rather independent of each other. The first one is
devoted to algorithms for unconstrained optimization which, in addition to
their direct usefulness, are a basis for more complex problems. The second
part concerns rather special methods, applicable when the usual differentia-
bility assumptions are not satisfied. Such methods appear in the decompo-
sition of large-scale problems and the relaxation of combinatorial problems.
Nonlinearly constrained optimization forms the third part, substantially more
technical, as the subject is still in evolution. Finally, the fourth part gives a
deep account of the more recent interior point methods, originally designed



VI Preface

for the simpler problems of linear and quadratic programming, and whose
application to more general situations is the subject of active research.

This book is a translated and improved version of the monograph [43],
written in French. The French monograph was used as the textbook of an
intensive two week course given several times by the authors, both in France
and abroad. Each topic was presented from a theoretical point of view in
morning lectures. The afternoons were devoted to implementation issues and
related computational work. The conception of such a course is due to J.-B.
Hiriart-Urruty, to whom the authors are deeply indebted.

Finally, three of the authors express their warm gratitude to Claude
Lemaréchal for having given the impetus to this new work by providing a
first English version.

Notes on this revised edition. Besides minor corrections, the present
version contains substantial changes with respect to the first edition. First
of all, (simplified but) nontrivial application problems have been inserted.
They involve the typical operations to be performed when one is faced with a
real-life application: modelling, choice of methodology and some theoretical
work to motivate it, computer implementation. Such computational exercises
help getting a better understanding of optimization methods beyond their
theoretical description, by addressing important features to be taken into
account when passing to implementation of any numerical algorithm.

In addition, the theoretical background in Part I now includes a discus-
sion on global convergence, and a section on the classical pivotal approach
to quadratic programming. Part II has been completely reorganized and ex-
panded. The introductory chapter, on basic subdifferential calculus and du-
ality theory, has two examples of nonsmooth functions that appear often in
practice and serve as motivation (pointwise maximum and dual functions).
A new section on convergence results for bundle methods has been added.
The chapter on applications of nonsmooth optimization, previously focusing
on decomposition of complex problems via Lagrangian duality, describes also
extensions of bundle methods for handling varying dimensions, for solving
constrained problems, and for solving generalized equations. Also, a brief
commented review of existing software for nonlinear optimization has been
added in Part III.

Finally, the reader will find additional information at http://www-rocq.
inria.fr/~gilbert/bgls. The page gathers the data for running the test
problems, various optimization codes, including an SQP solver (in Matlab),
and pieces of software that solve the computational exercises.

Paris, Grenoble, Rio de Janeiro, J. Frédéric Bonnans
May 2006 J. Charles Gilbert

Claude Lemaréchal
Claudia A. Sagastizábal
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1 General Introduction

We use the following notation: the working space is R
n, where the scalar

product will be denoted indifferently by (x, y) or 〈x, y〉 or x>y (actually, it
will be the usual dot-product: (x, y) =

∑n
i=1 x

iyi); | · | or ‖ · ‖ will denote the
associated norm. The gradient (vector of partial derivatives) of a function
f : R

n → R will be denoted by ∇f or f ′; the Hessian (matrix of second
derivatives) by ∇2f or f ′′. We will also use continually the notation g(x) =
f ′(x).

1.1 Generalities on Optimization

1.1.1 The Problem

Given a set X and a function f : X → R (the objective function), we want to
find x∗ ∈ X such that, for all x ∈ X , there holds f(x) > f(x∗). The variable
x is usually called decision or control variable.

We will consider only the case where X is a subset of R
n, defined by

constraints , i.e., given a number mI + mE of functions cj : R
n → R for

j = 1, . . . ,mI +mE , the problem is




min f(x) x ∈ R
n

cj(x) 6 0 j ∈ I
cj(x) = 0 j ∈ E .

(P )

Here, I and E are two disjoint sets of integers, of cardinalities mI and mE

respectively. We thus have mI inequality constraints, indexed in I , and mE

equality constraints, indexed in E.

Remark 1.1. We do not consider problems of combinatorial optimization,
where the set X is discrete, or even finite. They could be covered by our
formalism via constraints of the type xi(1− xi) = 0 (to express xi ∈ {0, 1})
but this is very artificial – and not at all efficient in general. Actually, combi-
natorial optimization problems call for methods totally different from those
presented in this book. Their intersection is not totally empty, though: §8.2
will mention the use of continuous optimization to bound the optimal value
in combinatorial problems. Section 1.2.4 will give an illustrative example.
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In another class of problems, the vector-variable x ∈ R
n becomes a func-

tion of time x(t), t ∈ [0, T ]: these are optimal control problems. They are
close to our formalism, possibly after discretizing [0, T ]; in fact, examples are
given in §1.2.2 and 1.2.3.

Perhaps rather paradoxically, the methods in this book extend easily to
optimal control problems, while they fit very badly to combinatorial opti-
mization. ut

1.1.2 Classification

Among the various possible classifications, the following is made according
to the difficulty of the problem to solve.

1. Unconstrained problems (mI = mE = 0, I = E = ∅)
1.1 Quadratic problems: f(x) = 1

2 (x,Mx)− (b, x) (M symmetric n× n)
1.2 Nonlinear problems: f neither linear nor quadratic.

2. Linearly constrained problems (the functions cj are affine)
2.1. Problems with equality constraints only (mI = 0, I = ∅)

2.1.1 Linear-quadratic problems: f quadratic
2.1.2 Nonlinear problems: f neither linear nor quadratic

2.2 Problems with inequality constraints
2.2.1 Linear programming: f linear (needs mI > n−mE)
2.2.2 Linear-quadratic problems: f quadratic
2.2.3 Linearly constrained nonlinear problems.

3. Nonlinear programming
3.1 With equality constraints only
3.2 General nonlinear programming.

Observe that

– in optimization, the word “linear” is frequently (mis)used, instead of affine
(see 2; recall that an affine function is the sum of a linear function and a
constant term);

– 2.1 is the minimization in a hyperplane, isomorphic to a subspace of di-
mension n−mE , so that 2.1 is equivalent to 1, at least theoretically;

– 1.1 reduces to solving a linear system (Ax = b – at least if A is positive
definite); 2.1.1 as well, in view of the preceding remark;

– 2.2 minimizes f in a convex polyhedron, the simplest being a parallelotope,
defined by simple bounds: ai 6 xi 6 bi, for i = 1, . . . , n;

– 2.2 is considerably more complicated than 2.1, simply because one does not
know in advance which inequalities will play a role at the optimal point.
Said otherwise, there are 2mI ways of putting a problem 2.2 into the form
2.1; the question is: which is the correct one? An inequality constraint is
said to be active at x (not necessarily optimal) when cj(x) = 0. To put 2.2
into the form 2.1, one needs to know which constraints will be active at the
(unknown!) optimum point.
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1.2 Motivation and Examples

In this section, we show with some examples the variety of domains where one
finds optimization problems considered in the present book. Since problems
of the linear type (categories 2.2.1 and 2.2.2 in §1.1.2, described in the fourth
part) have existed for a long time, and are well known, it is not necessary
to motivate this branch. This is why the four examples below are of the
“general” nonlinear type.

1.2.1 Molecular Biology

An important problem in biochemistry, for example in pharmacology, is to
determine the geometry of a molecule. Various techniques are possible (X-ray
crystallography, nuclear magnetic resonance,. . . ) one of these is convenient
when

– the chemical formula of the molecule is known,

– the molecule is not available, making it impossible to conduct any experi-
ment,

– one has some knowledge of its shape and one wants to refine it.

The idea is then to compute the positions of the atoms in the space
that minimize the associated potential energy. Let N be the number of
atoms and call xi ∈ R

3 the spatial position of the ith atom. To the vec-
tor X = (x1, . . . , xN ) ∈ R

3N is associated a potential energy f(X) (the
“conformational energy”), which is the sum of several terms. For example:

– Bond length: between two atoms i and j at distance |xi −xj |, there is first
an energy of the type

Lij(xi, xj) = λij(|xi − xj | − dij)
2 .

– There is also a Van der Waals energy, say

Vij(xi, xj) = vij

( δij
|xi − xj |

)6

− wij

( δij
|xi − xj |

)12

.

Here, the λij , vij , wij , dij , δij ’s are known constants, depending on the pair
of atoms involved (carbon-carbon, carbon-nitrogen, etc.)

– Valence angle: between three atoms i, j, k forming an angle θijk (writing
down the value of θijk , as a function of xi, xj , xk, is left as an exercise!),
there is an energy

Aijk(xi, xj , xk) = αijk(θijk − θ̄ijk)2 ,

where, here again, αijk and θ̄ijk are known constants.
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Other types of energies may also be considered: electrostatic, torsion an-
gles, etc. The total energy is then the sum of all these terms, over all pairs/-
triples/quadruples of atoms. The important thing to understand here, is that
this energy can be computed (as well as its derivatives) for any numerical
values taken by the variables xi. And this is true even if these values do not
correspond to any reasonable configuration; simply, the resulting energy will
then be unreasonably large (if the model is reasonable!); the optimization
process, precisely, will aim at eliminating these values.

This is obviously a problem from category 1.2 in §1.1.2. Note that the
objective function is disagreeable:

– With its many terms, it is long to compute.

– With its strong nonlinearities, it does not enjoy the properties useful for
optimization: it is definitely not quadratic, and not even convex. Actually,
in most examples there are many equilibrium points X∗ (local minima);
this is why the only hope is to refine a specific one: by assumption, some
estimate X0 is available, close to the sought “optimal” X∗. Otherwise the
optimization algorithm could only find some uncontrolled equilibrium, “by
chance”.

Such a problem will call for methods from the first part of this book,
more precisely §4.4. Actually, since nowaday’s “interesting” molecules have
103 atoms and more, this problem is also large-scale; as a result, it will rather
be necessary to use methods from Sections 5.6, 6.3, or also 6.4.

1.2.2 Meteorology

To forecast the weather is to know the state of the atmosphere in the fu-
ture. This is quite possible, at least theoretically (and within limits due to
the chaotic character of phenomena involved). Let p(z, t) be the state of the
atmosphere at point z ∈ R

3 and time t ∈ [0, 7] (assuming a forecast over one
week, say); p is actually a vector made up of pressure, wind speed, humid-
ity . . . The evolution of p along time can be modeled: avoiding technicalities,
fluid mechanics tells us that

∂p

∂t
(z, t) = Φ(p(z, t)) , (1.1)

where Φ is a certain differential operator. For example, (1.1) could be the
Navier-Stokes equation, but approximations are generally introduced.

To forecast the weather once our model Φ is chosen, it “suffices” to inte-
grate (1.1). For this, initial conditions are needed (the question of boundary
conditions is neglected here; for example, we shall say that they are peri-
odicity conditions, (1.1) being integrated on the whole earth). Here comes
optimization, in charge of estimating p(·, 0) via an identification process,
which we roughly explain.

In fact, the available information also contains all the meteorological ob-
servations collected in the past, say during the preceding day. Let us denote
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by Ω = {ωi}i∈I these observations. To fix ideas, we could say that each ωi

represents the value of p at a certain point (zi, ti) (but actually, only some
coordinates of the vector p(zi, ti) are observed). To take these – noisy – data
into account, a natural and well-known idea is to consider the problem

minp ‖p−Ω‖ , (1.2)

(1.1) being considered as a constraint (called in this context the state equa-
tion).

– Observe here that our optimization problem is not posed with respect to
some x ∈ R

n but to p, varying in a functional, infinite-dimensional, space.
See Remark1.1; we are dealing with an optimal control problem. Notwith-
standing, any numerical implementation implies first a discretization, which
reduces the problem to the framework of this book.

– Note also that (1.1) is a priori valid on the whole interval [−1,+7], but
(1.2) concerns [−1, 0] only. Actually, optimization just deals with this latter
interval; it is only for the forecast itself, after optimization is finished, that
the interval [0, 7] will come into play.

– Since p and Ω do not live in the same space (the number |I | of observations,
possibly very large, is certainly finite), Ω must first be embedded in the
same function space as p. Besides, the norm ‖ · ‖ in (1.2) must be carefully
chosen. These aspects, which concern modeling only, have a big influence
on the behaviour of solution algorithms.

At this point, it is a good idea not to view (1.1), (1.2) as a nonlinearly
constrained optimization problem (category 3.2 in §1.1.2), but rather as an
unconstrained one (category 1.2). In fact, call u(z) = p(z,−1) the state of
the atmosphere at z, at initial time t = −1. A fundamental remark is then:
assuming u to be known, (1.1) gives unambiguously p(z, t) = pu(z, t) for all
z and all t > −1: the unknown pu depends on the variable u only. Hence, the
objective value in (1.2) also depends on u only. Our problem can therefore
be formulated as minu ‖pu −Ω‖, which means:
– to minimize with respect to u (unconstrained variable)
– the function defined by (1.2),
– where p = pu is obtained from (1.1)
– via the initial condition p(·,−1) = u.

The actual decision variable in this formulation is u indeed: p plays only
the role of a parameter, called state variable, while the terminology control
variable is here reserved to u. The objective function will be denoted by
J(u), rather than f(x). Thus, the number of variables is reduced (drastically:
passing from about 109 for p, to about 107 for u alone) and, more importantly,
any form of constraint is eliminated.

Remark 1.2. The “normal”, direct , problem is to compute p(z, t) from
p(z, 0) via (1.1). Here we solve the inverse problem: to compute p(z, 0) from
(a partial knowledge of) p(z, t).
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The above description is of course very sketchy and does not reveal all the
difficulty of the problem. For instance: the number of observations is about
105, which is by far insufficient to identify the 107 unknowns. To orient the
search toward reasonable pu’s, any a priori information on the stationary
solutions to (1.1) is an important element, which is taken into account in
actual implementations. ut

Here again, the methods from the first part of this book will be used. The
problem is more than ever large-scale: after discretization, u ∈ R

107

; calling
for §6.3 therefore becomes a must.

1.2.3 Trajectory of a Deepwater Vehicle

Most optimal control problems consist in optimizing a trajectory; an example
is towing a submarine vehicle. Consider a deepwater observation device (the
“fish”), moving close to the sea bottom, and pulled from the surface by a tug.
The problem is to control the tug so that the fish makes a given maneuver,
while avoiding obstacles. For example, one may ask to make a U-turn in
minimal time.

Let L be the length of the pulling cable. One may assume that L is a
known constant, or that the cable is inextensible; anywayL is for this problem
several kilometers long, and one cannot assume that the cable behaves like
a rigid rod. As a result, the fish’s trajectory is a rather complicated function
of the tug’s. A possible model is as follows.

– Let y(s, t) ∈ R
3 be the position in the sea of a point at time t and (curvi-

linear) coordinate s ∈ [0, L] along the cable.

– Then y(0, t) is the tug’s position, it is the control variable; y(L, t) is the
fish’s, it is the variable to be controlled.

– These two variables are not independent: from inextensibility, we have

∥∥∥∂y
∂s

∥∥∥ = 1 (1.3)

and y obeys the state equation

∂2y

∂t2
− ∂

∂t

(
T (s, t)

∂y

∂s

)
+ τ
(∂y
∂t

)
= w . (1.4)

Here T is the cable’s tension (unknown), w its linear weight rate and τ
models the drag.

– In addition to this system of equations, there are appropriate initial and
boundary conditions, among which y(0, t) = u(t), which simply expresses
that y(0, ·) plays a special role (the control!).

Just as in §1.2.2, we are again faced with an optimal control problem: the
objective function (for example the time needed to make a U-turn) depends
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on the control u implicitly, via a state (yu, Tu), solution to a state equation.
However, the situation is no longer as “simple”(!) as in §1.2.2: we still have
to express that the fish must evolve above the sea bottom, which yields
constraints on the state: if ϕ(z1, z2) is the height of free water at z ∈ R

2, one
must impose

y3(L, t) > ϕ(y1(L, t), y2(L, t)) , for all t . (1.5)

These constraints in turn depend implicitly on u, and they are actually in-
finitely many (i.e. many, after discretization). As a result, it is hardly possible
to “reduce” the problem with respect to u only. We now have to call for the
third part of this book (constrained nonlinear optimization): the distinction
between control and state variables is no longer relevant. In the sense of
§1.1.1, the decision variables are now the couple (y, T ), with respect to which
one must

– minimize a certain function f(y) (for example the time of the U-turn)

– under equality constraints cj(y, T ) = 0, j ∈ E, which symbolize the state
equations (1.3), (1.4) (here E is big)

– and inequality constraints cj(y) 6 0, j ∈ I , which symbolize constraints on
the state (1.5) (and I is just as big).

This example illustrates, among other things, the ambiguity which can
exist concerning the decision variables: in the sense of optimal control, the
control variable is u; however, the optimization algorithm “sees” as decision
variable the whole of (y, T ). Of course, the algorithm designer is allowed –
and even strongly advised – to remember the origin of the problem, and to let
y(0, ·) play a particular role in the complete set of variables {(y, T )(s, t)}s,t.

1.2.4 Optimization of Power Management

We complete this list of examples with a problem having nothing to do with
the preceding : to optimize the production of electrical power plants. The
following constitutes a simplest instance among realistic models. Consider a
set I of power plants (hydro-electrical, thermal, nuclear or not). One wishes
to optimize their production over a horizon {1, . . . , T}, for example T = 48
half-hours; the demand is supposed to be known, call it d1, . . . , dT . If pi

t

denotes the energy produced by the production unit i ∈ I during the period
t, one must first satisfy the demand constraints

∑
i∈I p

i
t > dt , for t = 1, . . . , T . (1.6)

Use the notation pi = {pi
1, . . . , p

i
T } for the production-vector of unit i. To

each unit is associated a production cost ci : R
T → R: one wishes to solve

min
∑

i∈I c
i(pi) . (1.7)

Besides, each unit has its own technological constraints describing the set Di

of possible production vectors:
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pi ∈ Di , for i ∈ I . (1.8)

Describing the ci’s and Di’s may not be a simple task, which goes beyond our
framework. We just note here their disparity : nuclear and hydro plants have
nothing to do with each other, neither in their operation costs, nor in their
constraints. For one thing, a hydro plant has basically linear characteristics
(category 2.2.1 in §1.1.2), although it becomes nonlinear (category 3.2) in
accurate models. By contrast, thermal plants have an important combina-
torial aspect, owing to a 0 − 1 behaviour: it is not possible to change their
production level continuously, neither at any time.

The crude problem is to minimize (1.7) under constraints (1.6), (1.8).
This problem is large-scale: as an example, the French power mix has about
200 plants working every day, which gives birth to 200× 48 = 104 variables
pi

t (and even many more, due to combinatorics; actually, each unit i is an
optimal control system, with its own additional state variables). Yet, the
real difficulty of the problem is not its size but its heterogeneity: nonlinear
methods of this book will fail, just as combinatorial methods.

This is why it is suitable to transform this problem. The key is to ob-
serve that, if constraints (1.6) were not present, each plant could be treated
separately: one would have to solve, for each i ∈ I

min ci(q) , q ∈ Di . (1.9)

Here, the dummy variable q represents the production-vector pi. Each of
the latter problems becomes solvable, by a method tailored to each case,
depending on i. Starting from this remark, a particular heuristic technique
is rather well-suited for (1.6)–(1.8). More precisely, Lagrangian relaxation
(§8.2) approximates a solution by minimizing a convex nonsmooth function,
to be seen in Chap. 10.

1.3 General Principles of Resolution

The problems of interest here – such as those of §1.2 – are solved via an
algorithm which constructs iteratively x1, x2, . . . , xk , . . . To obtain the next
iterate, the algorithm needs to know some information concerning the original
problem (P ) of §1.1.1: essentially, the numerical value of f and c for each value
of x; often, their derivatives as well.

– If there are only linear or quadratic functions, this information is globally
and explicitly available in the data: a linear [resp. quadratic] function (b, x)
[resp. (x,Ax)] is completely characterized by the vector b [resp. the matrix
A]. As a result, categories 1.1, 2.1.1, 2.2.1, 2.2.2 of § 1.1.2 make up a very
particular class, and call for very particular methods, studied in the fourth
part of this volume.



1.3 General Principles of Resolution 11

– By contrast, as soon as really general functions are involved, this infor-
mation is computed in a black box (subprogram) characterizing (P ), and
independent of the selected algorithm. This subprogram can be called sim-
ulator , since it simulates the behaviour of the problem under the action of
the decision variables (optimal or not).

Hence (and it is important to convince oneself with this truth), a computer
program solving an optimization problem is made up of two distinct parts :

– One is in charge of managing x and is the algorithm proper; call it (A),
as Algorithm; it is generally written by a mathematician, specialized in
optimization.

– The other, the simulator, depending on (P ), performs the required calcu-
lations for each x decided by (A); it is generally written by a practitioner
(engineer, physicist, economist, etc.), the one who wishes to solve the spe-
cific optimization problem.

The distinction between (A) and (P ) is not always straightforward, ac-
tually it depends on the modeling. Consider the examples of the preceding
section:

§1.2.1. There is no ambiguity in the biochemistry problem: (A) places the
atoms in the space, (P ) computes the resulting energy, and perhaps
its derivatives as well: they are very useful for (A).

§1.2.2. The case of meteorology is also relatively clear: (A) decides the ini-
tial conditions (denoted by u or p(·,−1) rather than x); (P ) inte-
grates the state equation over [−1, 0], which allows the computation
of the objective function (1.2); call J(u) this objective. Note that
differentiating J is now far from trivial; yet, it is certainly possible
(at least after discretization, in case of theoretical difficulties for the
continuous version). More is given on this topic in §1.6 below.

§1.2.3. In the cable problem the situation is no longer so clear-cut. In a
control-like formulation as in §1.2.2, (A) would decide the tug’s tra-
jectory, and (P ) would integrate (1.3), (1.4) to obtain the fish’s
trajectory; the objective value and the constraint value (1.5) would
ensue.

In the suggested “general-constrained” formulation, (A) fixes the
trajectory and tension of every point on the cable. The job of (P )
is now much more elementary: it knows the values of (y, T )(s, t)
for each (s, t) – they have been fixed by (A) – and it just have to
compute the values (and derivatives) of the objective, of the equality
constraints (1.3), (1.4), and of the inequality constraints (1.5).

§1.2.4. A complication appears in production optimization because the
problem is not really (1.6)–(1.8), but rather an auxiliary abstract
problem, which will be seen in §8.3.2. The objective is actually a
perturbation of (1.7), namely a Lagrange function incorporating the
term

∑
t λt

(∑
i p

i
t−dt

)
; the decision variables are no longer the pi

t’s
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but the λt’s, i.e. the multipliers associated with (1.6). Thus, (A) fixes
the λt’s, while (P ) solves for each i a perturbation of (1.9), namely

min
q∈Di

ci(q) +
∑

t

λtqt .

Remark 1.3. In addition to the (A)–(P ) distinction, another fundamental
thing to understand here is the following: for any problem considered, the only
information available for (P ) is the result of a numerical calculation, generally
complicated; for example, the resolution of a partial differential equation, or
the optimization of a number of nuclear plants, etc. Hence, (A) has to proceed
by “trial and error”: it assigns trial values to the decision variables x, and it
corrects these values upon observation of the answer from (P ); and this will
repeatedly make up the iterations of the optimization process. ut

Now the current iteration of an optimization algorithm is made up of two
phases: to compute a direction, and to perform a line-search.

– Computing a direction: (P ) is replaced by a model (Pk), which is simpler;
then (Pk) is solved to yield a new approximation xk + d.

– Line-search: a stepsize t > 0 is computed so that xk + td is “better” than
xk in terms of (P ).

– The new iterate is then xk+1 = xk + td.

Remark 1.4. The direction is computed by solving (usually accurately) an
approximation (Pk) of (P ). By contrast, the stepsize is computed by observing
the true (P ) on the restriction of x ∈ R

n to the half-line {xk + td}t∈R+
(xk

and d fixed).
Replacing the given problem (P ) by a simpler (Pk) is a common technique

in numerical analysis. By contrast, the second phase which corrects xk +d, is
a technique specific to optimization. Its motivation is stabilization. All this
will be seen in detail in the next chapters. ut

The next two subsections are devoted to some convergence theory tailored
to optimization algorithms.

1.4 Convergence: Global Aspects

Let an optimization algorithm generate some sequence {xk}. This algorithm
is said to converge globally when

{xk} converges to “what is wished” for any initial iterate x1.

Caution: this terminology is ambiguous because “what is wished” does not
mean a solution to the initial problem (P ), often called global optimum. Here,
one rather stresses the fact that the initial iterate can be arbitrarily far from
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“what is wished”, without impairing convergence; actually, “what is wished”
generally means an x satisfying what is called the necessary optimality con-
ditions (see below and the sections involved: §§2.2 and 13.3).

In connection with Remark 1.4, one generally has a merit function Θ :
R

n → R, which is minimal at “what is whished”: (P ) is thus equivalent to
minimizing Θ over the whole of R

n. The simplest example is unconstrained
optimization: one must minimize f over R

n, so one naturally takes Θ = f .
The word “better” introduced in §1.3 can then be given the meaning

Θ(xk+1) < Θ(xk) . (1.10)

Then let us review the various convergence properties that an optimiza-
tion algorithm may enjoy. First, a direct consequence of (1.10) is that

{Θ(xk)} has a limit, possibly −∞
– of course, Θ(xk)→ −∞ reveals an ill-posed problem (P ).

Minimal requirement To make things simple, let us assume that Θ is a
continuously differentiable function and consider its first-order development
around a given x:

Θ(x + h) ' Θ(x) + (∇Θ(x), h) .

Assuming ∇Θ(x) 6= 0 and taking h = −t∇Θ(x) with a small t > 0, we obtain
Θ(x + h) − Θ(x) ' −t|∇Θ(x)|2 < 0; as a result, x cannot minimize Θ. We
say that ∇Θ(x) = 0 is an optimality condition for x to minimize Θ. The least
property that should be satisfied by a sequence {xk} constructed as in §1.3
is then1

lim inf |∇Θ(xk)| = 0 ; (1.11)

this means that the gradient ∇Θ(xk) will certainly have a norm smaller than
ε for some finite k, no matter how ε > 0 is chosen. Thus, in this context, a
globally convergent algorithm has to satisfy (1.11) for any starting point x1.

It should be noted that (1.11), or even the property lim |∇Θ(xk)| = 0,
is fairly weak indeed: it does not tell much unless {xk} itself has some limit
point. For example, it does not imply that {xk} is a minimizing sequence, i.e.
that Θ(xk)→ inf Θ.

Boundedness If the original minimization problem (P ) is reasonably well-
posed, a reasonable merit function satisfies

Θ(x) → +∞ when |x| → +∞
(for example, minimizing ex over x ∈ R is an ill-posed optimization problem:
it has no solution). Together with (1.10), this property automatically guar-
antees that {xk} is a bounded sequence. As a result, {xk} has a cluster point;
and every subsequence {xk}k∈K is also bounded.

1 The lim inf [resp. lim sup] of a numerical sequence is its smallest [resp. largest]
cluster point.
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Convergent sequences Assume boundedness of {xk}. Then (1.11) guar-
antees the existence of a subsequence {xk}k∈K satisfying

xk
k∈K−→ x∗ and ∇Θ(xk)

k∈K−→ 0 ,

from wich continuity of ∇Θ implies ∇Θ(x∗) = 0.
On the other hand, the monotonicity property (1.10) implies that the

whole sequence {Θ(xk)} tends to Θ(x∗): all cluster points of {xk} have the
same Θ-value. Whether this value is the minimum value of Θ is more delicate.

When Θ is a convex function, the optimality condition ∇Θ(x∗) = 0 is
(necessary and) sufficient for x∗ to minimize Θ (use for example the well-
known property Θ(y) > Θ(x∗)+(∇Θ(x∗), y−x∗) for all y). In this situation,
we conclude that all the cluster points of {xk} minimize Θ; and finally, the
whole of {xk} converges to the same limit x∗ if Θ has a single minimum point
x∗ (for example if Θ is strictly convex).

Let us summarize our considerations: admitting that (P ) can be formulated
as minimizing a differentiable function Θ, the key property to be satisfied
by an algorithm is (1.11). If Θ enjoys appropriate additional properties, then
the limit points of {xk} will minimize Θ, and hence solve (P ).

1.5 Convergence: Local Aspects

Now {xk} is assumed to have a limit x∗ – which may or may not be “what
is wished” – and one wants to know at what speed xk − x∗ tends to 0; in
particular, one tries to compare this error to an exponential function. This
study is limited to large values of k (hence xk is already close to x∗): it
is only a local study. First recall some notation: s = o(t) means that s is
“infinitely smaller” than t; more precisely s

t → 0. Here t and s are two
variables (depending on a parameter x, on an iteration number k, etc.); t
is scalar-valued and positive; strictly speaking, s as well; when s is vector-
valued, the correct and complete notation should be |s| = o(t). In practice,
it is implicitly understood that t ↓ 0 (say when x → x∗, or k → +∞) and
s = o(t) means that s tends to 0 infinitely faster than t. The notation s = O(t)
means that s is not infinitely bigger than t: there exists a constant C such
that s 6 Ct.

Consider now a sequence {xk} converging to x∗; two types of convergence
are relevant:

Q-convergence : this is a study of the quotient qk := |xk+1 − x∗|/|xk − x∗|.
– Q-linear convergence is said to hold when lim sup qk < 1.

– Q-superlinear convergence when lim qk = 0.

– Particular case: Q-quadratic convergence when qk = O(|xk−x∗|); or equiv-
alently: |xk+1 − x∗| = O(|xk − x∗|2); roughly, the number of exact digits
doubles at each iteration.
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Often, “Q” is omitted: superlinear convergence implicitly meansQ-superlinear
convergence.

R-convergence : even though Theorems 1.7 and 1.8 below give a more natural
definition, R-convergence is originally a study of the rate rk := |xk −x∗|1/k.

– lim sup rk < 1: R-linear convergence,

– lim rk = 0: R-superlinear convergence.

Remark 1.5. A sequence converging sublinearly to its limit (qk or rk tends
to 1) is in practice considered as not converging at all, because convergence is
so slow; an algorithm with sublinear convergence must simply be forgotten.

ut

R-linear convergence means geometric or exponential convergence: setting
r := lim sup rk, we have rk 6 r + ε for all ε > 0 and k large enough; this is
equivalent to |xk − x∗| 6 (r + ε)k (and note: r + ε can be made < 1).

Q-convergence is more powerful, in that the error at iteration k + 1 can
be bounded in terms of the error at iteration k: if q = lim sup qk,

|xk+1 − x∗| 6 (q + ε)|xk − x∗| , for all ε > 0 and k large enough.

In a way, Q-convergence is a Markovian concept: it only involves what hap-
pens at the present iteration. In the above writing, “iteration k [resp. k+1]”
can be replaced by “current iterate x [resp. next iterate x+]” and “k large
enough” by “x close enough to x∗”. In plain words, Q-superlinear conver-
gence is expressed by: if the current iterate is close to the limit, then the next
iterate is infinitely closer. This is not true for R-convergence, since k plays
its role in the definition of rk , which has to be a kth root. The next result
confirms that Q-linear convergence implies geometric convergence:

Theorem 1.6. If xk tends Q-linearly to x∗, then: for all q > lim sup qk, there
exists k0 and C > 0 such that

|xk − x∗| 6 Cqk for all k > k0.

Proof. Fix q as announced, k0 such that

|xi+1 − x∗| 6 q|xi − x∗| for i > k0,

which gives (multiplying out for i = k0, . . . , k − 1)

|xk − x∗| 6 |xk0
− x∗|qk−k0 =

|xk0
− x∗|
qk0

qk

and the result is obtained with C := |xk0
− x∗|/qk0 . ut
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Once again, this theorem does not contain all the power of Q-convergence,
since it does not say that the error decreases at the rate q < 1 at each
iteration.

Quite often, convergence speed is established via a study of an upper
bound of the error. Q-convergence of an upper bound of |xk − x∗| becomes
R-convergence for {xk}. For example:

Theorem 1.7. If |xk − x∗| 6 sk where sk converges Q-superlinearly to 0,
then {xk} converges R-superlinearly to x∗.

Proof. Fix ε > 0. From Theorem 1.6, there is C such that sk 6 Cεk for k
large enough. Hence, by assumption,

|xk − x∗|1/k
6 s

1/k
k 6 C1/kε .

Pass to the limit on k: C1/k → 1 and lim sup |xk − x∗|1/k 6 ε. ut

Actually, the converse is also true. To show it, we give a last result, stated
in terms of linear convergence, to make a change:

Theorem 1.8. Let xk tend to x∗ R-linearly. Then |xk −x∗| is bounded from
above by a sequence sk tending to 0 Q-linearly.

Proof. Call r < 1 the limsup of |xk−x∗|1/k and take ε ∈ ]0, 1− r[. For k large
enough, |xk − x∗| 6 (r + ε)k. The sequence sk := max{|xk − x∗|, (r + ε)k} is
indeed an upper bound of {|xk − x∗|} and, for k large enough, sk = (r+ ε)k;
hence sk answers the question. ut

These two theorems establish the equivalence between R-convergence of
a nonnegative sequence tending to 0, and Q-convergence of an upper bound.
This gives another definition of R-convergence, perhaps more natural than
the original one; namely: xk → x∗ R-superlinearly when |xk − x∗| 6 sk, for
some {sk} tending to 0 Q-superlinearly.

1.6 Computing the Gradient

As seen in §1.3, the main duty of the user of an optimization algorithm is to
write a simulator computing information needed by the algorithm. It has also
been said (and it will be confirmed all along this book) that the simulator
should compute not only function- but also derivatives-values. This is not
always a trivial task, especially in optimal control problems. Take for example
the case of meteorology in §1.2.2: it is easy to understand how the objective
function of (1.2) (call it f) can be computed via (1.1), for given values of the
control variable u(·) = p(·,−1); but how about the total derivative of f with
respect to u? Since f is given implicitly by (1.1), one must somehow invoke
the implicit function theorem, which may be tricky. Indeed, computing the
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Jacobian of the operator “control variable 7→ state variable” is often out of
question, and useless anyway. Here we demonstrate a technique commonly
used, which involves the adjoint equation. For reasons to be explained in
Remark 1.9 below, we do this computation in a finite-dimensional setting,
even though optimal control problems are usually set in some function space.

So we consider the following situation. The control variables are {ut}Tt=1

where ut ∈ R
n for each t. The state variables are likewise {yt}t with yt ∈ R

m,
given by the state equation

{
yt = Ft(yt−1, ut) , for t = 1, . . . , T ,
y0 given.

(1.12)

Here, for each t, Ft is a function (possibly nonlinear) from R
m × R

n to R
m.

Besides, a function is given, say

f =
T∑

t=1

ft(yt, ut) ,

where, for each t, ft sends R
m × R

n to R. It is purposedly that we do not
specify formally which variables f depends on. Incidentally, note that f can
be the objective function of our optimal control problem; but it can equally be
a constraint, involving the state variables; for example a final-time constraint
c(yT ) (imposed to be 0, or nonnegative, etc.)

Call v = du ∈ R
nT a differential of u; it induces from (1.12) a differential

z = dy ∈ R
mT , and finally a differential df . To be specific, we assume the

usual dot product in each of the spaces involved and we use the notation (·, ·)n

[resp. (·, ·)m] for the dot-product in R
n [resp. R

m]. In the control space, the
scalar product is therefore

(g, v) =
T∑

j=1

(gt, vt)n .

Our problem is then as follows: find {gt}Tt=1 such that the differential of f
is given by df = (g, v). This will yield {gt}t ∈ R

nT as the gradient of f ,
considered as a function of the control variable u alone.

To solve this problem, we have from (1.12) (assuming appropriate smooth-
ness of the data)
{
zt = (Ft)

′
y(yt−1, ut)zt−1 + (Ft)

′
u(yt−1, ut)vt for t = 1, . . . , T ,

z0 = 0
(1.13)

(z0 = 0 because y0 is fixed!). In this writing, the Jacobian (Ft)
′
y(yt−1, ut) is

an m×m matrix and (Ft)
′
u(yt−1, ut) is m× n. We have also

df =
T∑

t=1

(∇yft(yt, ut), zt)m +
T∑

t=1

(∇uft(yt, ut), vt)n ;

here ∇yft(yt, ut) ∈ R
m and ∇uft(yt, ut) ∈ R

n. We need to eliminate z be-
tween these various relations; this is done by a series of tricks:
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Trick 1. Multiply the tth linearized state equation in (1.13) by a vector pt ∈
R

m (unspecified for the moment) and sum up. Setting Gt := (Ft)
′
y(yt−1, ut)

and Ht := (Ft)
′
u(yt−1, ut), we obtain

T∑

t=1

(pt, zt)m =

T∑

t=1

(pt, Gtzt−1)m +

T∑

t=1

(pt, Htvt)m .

Single out (pT , zT )m in the lefthand side, transpose Gt and Ht, and re-index
the sum in z; remembering that z0 = 0, this gives

0 = −(pT , zT )m −
T−1∑

t=1

(pt, zt)m +

T−1∑

t=1

(G>
t+1pt+1, zt)m +

T∑

t=1

(H>
t pt, vt)n .

Trick 2. Add to the expression of df and identify with respect to the zt’s.
Setting γt := ∇yft(yt, ut) and ht := ∇uft(yt, ut):

df = (−pT +γT , zT )m +

T−1∑

t=1

(−pt +G
>
t+1pt+1+γt, zt)m +

T∑

t=1

(H>
t pt +ht, vt)n .

Trick 3. Now it suffices to choose p so as to cancel out the coefficient of each
zt: requiring

{
pT = γT ,
pt = G>

t+1pt+1 + γt for t = T − 1, . . . , 1 ,
(1.14)

we obtain the gradient in the desired form:

gt = H>
t pt + ht for t = 1, . . . , T .

The (backward) recurrence relations (1.14) form the so-called adjoint
equation, whose solution p is the adjoint state.

Remark 1.9. In optimal control problems, the state variable is often given
by a differential equation, say

{
ẏ(t) = F (y(t), u(t), t) , for t ∈ ]0, T [ ,
y(0) given,

instead of the recurrence relations (1.12). Then the “adjoint trick” can nev-
ertheless be reproduced: multiply the above equation by a function p(t) (the
continuous adjoint state), integrate from 0 to T , and integrate the lefthand
side by parts. The resulting adjoint equation is another differential equation,
instead of (1.14).

However, the actual minimization algorithm, implemented on the com-
puter, certainly does not solve this original problem; it can but solve some
discretized form of it (a computer can hardly work in infinite dimension). Us-
ing a subscript δ to connote such a discretization, we are eventually faced with
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minimizing a certain function fδ(uδ), with respect to some finite-dimensional
variable uδ. For numerical efficiency of the minimization algorithm, it is im-
portant that the simulator computes the exact gradient of fδ, and not some
discretized form of the continuous gradient ∇f . One way of achieving this is
to carefully select the discretization scheme of the adjoint equation. But the
safest approach is to discretize first the problem (and in particular the state
equation), and then only to construct the adjoint equation of the discretized
problem.

This is why we bothered to demonstrate the mechanism for the tedious
discrete case; after this, reproducing the calculations in the continuous case
is an easy exercise (only formal, though: differentiability properties of the
infinite-dimensional problem must still be carefully analyzed; otherwise, dif-
ficulties may occur for δ → 0). ut
Remark 1.10. The adjoint technique opens the way to the so-called au-
tomatic or computational differentiation. Indeed, consider a computer code
which, taking an input u, computes an output f . Such a code can be viewed
as a “control process” of the type (1.12):

– The tth line of this code is the tth equation in (1.12).

– The intermediate results of this code (the lefthand sides of the assignment
statements) form altogether a “state” y, which is a function of the “control”
u.

– Forming the righthand side of the adjoint equations then amounts to dif-
ferentiating one by one each line of the code.

– Afterwards, solving the adjoint equations – to obtain finally the gradient
∇f – amounts to writing these “linearized lines” bottom up.

These operations are all purely mechanical and lend themselves to au-
tomatization. Thus, one can conceive the existence of a software which

– takes as input a computer code able to calculate f(u) (for given u),

– and produces as output another computer code able to calculate ∇f(u)
(again for given u).

It is worth mentioning that such software do not need to know anything
about the problem. They do not even need mathematical formulae represent-
ing the computation of f . What they need is just the first half of a simulator;
and then they write down its second half. ut

Bibliographical Comments

Among other monographs devoted to optimization algorithms, [107, 27, 277,
86] can be suggested. See also [128, 160] for a style very close to users’ con-
cerns, while [239] insists more on theorems.

A function Θ for which a stationary sequence (∇Θ(xk) → 0) is not nec-
essarily minimizing (Θ(xk) 6→ inf Θ) is given in [350]. The various types of
local convergence are defined and studied in [278].
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As for available optimization software, the situation is rapidly evolving.
First, there is the monograph [267], which reviews most individual codes and
organized libraries existing in the beginning of the 90’s. Generally speak-
ing, the Harwell library has well-considered optimization codes. In fact, this
library goes far beyond optimization, as it covers the whole of numerical
analysis, from linear algebra to differential equations:

http://www.cse.clrc.ac.uk/Activity/HSL.

On the other hand, the Galahad software is exclusively devoted to optimiza-
tion and can normally be used for free:

http://galahad.rl.ac.uk/galahad-www.

The Scilab environment and the Modulopt library include implementations
of some of the algorithms presented in this book:

http://www-rocq.inria.fr/scilab/scilab.html

http://www-rocq.inria.fr/estime/modulopt.

The internet address

http://www-neos.mcs.anl.gov/neos

collects and updates, under the name NEOS, the vast majority of software
existing throughout the world, even allowing a “push-button” use of some of
them.

For computational differentiation, see for example [181], [88], [151] (but
the idea is much older, going back to [339, 208] and others). We mention
Adolc, Adifor, Tapenade as available software; the addresses are as follows:

http://www.math.tu-dresden.de/wir/project/adolc

http://www-unix.mcs.anl.gov/autodiff/ADIFOR

http://www-sop.inria.fr/tropics/tapenade/tutorial

http://www-unix.mcs.anl.gov/autodiff/AD Tools
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In this first part, we consider the problem of minimizing a function f , defined
on all of the space R

n. We will always assume f sufficiently smooth, say twice
continuously differentiable; in fact, a rather minimal assumption is that f has
a Lipschitz continuous gradient.

We start with a short introductory chapter, containing in particular the
gradient method, often deemed important. However we pass rapidly over it,
because actually it is (or should be) never used. In contrast, the whole Chap. 3
is devoted to line-searches, a subject often neglected although it is of crucial
importance in practice.

In fact, the gradient method is limited to first-order approximations,
whereas efficient optimization must take second order into account, explicitly
or implicitly; it is even fair to say that this is a necessary and sufficient con-
dition for efficiency. Using second order amounts to applying Newton’s prin-
ciple. Chapter 4 starts from these premises to study the utmostly important
and universally used quasi-Newton method. Conjugate gradient (Chap. 5) is
given mainly for historical reasons: this method has been much used but it
is now out of date. Chapter 6 is quite different: it mainly concerns methods
less used these days, but which cannot be overlooked; either due to the im-
portance of problems they treat (Gauss-Newton, Levenberg-Marquardt), or
because they will become classical in the future (trust-region, various uses of
Newton’s principle). Besides, it outlines the traditional resolution of quadratic
programs (item 2.2.2 in the classification of §1.1.2), namely by pivoting.

A short additional chapter presents an application problem: seismic reflex-
ion tomography. It can be used to illustrate the behaviour of unconstrained
optimization algorithms, and also to get familiarized with the actual writing
of a nontrivial simulator.



2 Basic Methods

We start with some generalities on the unconstrained optimization problem

min f(x) subject to x ∈ R
n . (2.1)

2.1 Existence Questions

A very first condition for (2.1) to be meaningful is that f be bounded from be-
low. Then there exists a lower bound but not necessarily an optimal solution
(e.g. f(x) = ex); an additional assumption is required.

The following property is usually satisfied (at least, it is reasonable): f is
(continuous and) “+∞ at infinity”; more precisely: f(x)→ +∞ if |x| → +∞.
Such a function is called inf-compact (cf. §1.4). Then the problem can be
restricted to a bounded set, say {x : f(x) 6 f(x1)} (often called slice of f at
level f(x1)) and existence of a global minimum x∗ is guaranteed: a continuous
function has a minimum on a compact set.

Remark 2.1. There is a delicate point in infinite dimensions. An existence
proof goes as follows:

– f bounded from below ⇒ existence of a (finite) lower bound f ∗ and of a
minimizing sequence {xk}, i.e. f(xk)→ f∗.

– Slice bounded ⇒ {xk} bounded ⇒ existence of a weak cluster point x∗ (in
a reflexive Banach space).

– To conclude f(xk)→ f(x∗) (i.e. f(x∗) = f∗) one needs also the lower semi-
continuity of f for the weak topology, which holds when f is convex; an
assumption which thus appears naturally in infinite dimension. ut

The above remark introduces two concepts which, although not funda-
mental, have their importance in optimization.

Definition 2.2. A function f is lower semi-continuous at a given x∗ when
lim infx→x∗ f(x) > f(x∗).
A function f is convex when

f(αx+ (1− α)y) 6 αf(x) + (1− α)f(y) for all x, y, and α ∈ ]0, 1[ .
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A set C ⊂ R
n is convex when

αx+ (1− α)y ∈ C for all x, y in C, and α ∈ ]0, 1[ .

Accordingly, we will say that our general problem (P ) of §1.1.1 is convex if
f and each cj , j ∈ I are convex, while {cj}j∈E is affine.
We also recall that a mapping c : R

n → R
p is affine if there exists a linear

mapping L : R
n → R

p such that

c(x)− c(y) = L(x− y) for all x, y ∈ R
n . ut

2.2 Optimality Conditions

The question is now: how to recognize an optimum point? There are necessary
conditions, and sufficient conditions, which are well-known:

– Necessary conditions: if x∗ is optimal, then

· 1st-order necessary condition (NC1): the gradient f ′(x∗) is zero;

· 2nd-order necessary condition (NC2): the Hessian f ′′(x∗) is positive semi-
definite1.

– Sufficient condition (SC2): if x∗ is such that f ′(x∗) = 0 and f ′′(x∗) is
positive definite, then x∗ is a local minimum (i.e. f(x) > f(x∗) for x close
to x∗).

Example 2.3. easiest: f quadratic, i.e. f(x) = 1
2 (x,Ax) + (b, x) + c. Then

(NC1) is the linear system Ax+b = 0. If A is positive definite, this system has
a unique solution, which is the minimum point. If A is positive semi-definite,
and if b ∈ ImA, there is a hyperplane of solutions, which make up the minima.
We conclude that minimizing an unconstrained quadratic function is nothing
other than solving a linear system, whose matrix is symmetric, and normally
positive definite. ut

The difference between (NC2) and (SC2) is weak, in practice negligible.
An x satisfying (NC1) is called critical or stationary. If f is convex, (NC1)
= sufficient condition for global minimum. The ambition of an optimization
algorithm is limited to identifying stationary points; this implies f ′(xk)→ 0.
With relation to §1.4, we will be even more modest and say that an algorithm
converges globally when lim inf |f ′(xk)| = 0. Recall how this is misleading; xk

need not converge to a global minimum,. . . or even may not converge at all
(i.e. may diverge: cf. ex, once again).

In view of second-order conditions, the following class of functions appears
naturally, for which every stationary point satisfies (SC2):

1 Recall that an operator A is positive [resp. semi-]definite when (d, Ad) > 0 [resp.
> 0] for all d 6= 0.
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Definition 2.4. The function f is said to be locally elliptic if, on every
bounded set B, it is C2 and its Hessian is positive definite; hence, there exist
(in finite dimension) two positive constants 0 < `(B) 6 L(B) such that

`(B)|d|2 6 (f ′′(x)d, d) and |f ′′(x)d| 6 L(B)|d| . ut
Observe that ` and L bound the eigenvalues of f ′′ on B. A locally elliptic

function is convex (assuming B convex), and even locally strongly convex i.e.

f(y) > f(x) + (f ′(x), y − x) +
1

2
`(B)|y − x|2 (2.2)

for all x et y in B (obtained by integration along [x, y] ⊂ B). This relation,
written at a minimum point x = x∗, expresses that f enjoys a quadratic
growth near x∗. From (2.2), we also have

(f ′(x)− f ′(y), x− y) > `(B)|x− y|2

(write the symmetric relation and add up), which expresses that f ′ is strongly
monotone (locally, on B).

After these preliminaries, we turn to numerical algorithms solving our
problem (2.1). Knowing that the ambition of an algorithm is to find a sta-
tionary point, i.e. to solve f ′(x) = 0, the first natural idea is to use methods
solving (nonlinear) systems of equations.

2.3 First-Order Methods

To solve a nonlinear system g(x) = 0, we mention two methods: Gauss-Seidel
and successive approximations; but in our context, recall that g : R

n →
R

n is not an arbitrary mapping: it is a gradient, of a function which must
be minimized; thus, among the possible stationary points, those having g′

positive (semi)definite are preferred.

2.3.1 Gauss-Seidel

This method can also be called “one coordinate at a time”. Basically, it works
as follows.

– All the coordinates are fixed, say to 0.

– The first coordinate is modified, by solving the first equation with respect
to this first coordinate.

– And so on until n.

– The process is repeated.

In other words, each iteration of this algorithm consists in solving one
equation with one unknown. The iterate xk+1 differs from xk by one coordi-
nate only, namely i(k), the rest of the integer division of k by n.

This method is little interesting, its use is not recommended. Incidentally,
observe the crook: how can we solve each of the equations in its second step?
(remember Remark 1.3).
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2.3.2 Method of Successive Approximations, or Gradient Method

In its crudest form, the method of successive approximations is the following.
One wants to solve g(x) = 0 via the iterative scheme: xk+1 = xk + tg(xk),
where t 6= 0 is a fixed coefficient; the motivation is that the fixed points of
{xk} satisfy x = x+ tg(x), and therefore are solutions. In general, choices of
t ensuring convergence are unknown. In case where g is actually a gradient,
of a function to be minimized, something can be said:

Theorem 2.5. Suppose that, locally, g is Lipschitz continuous and strongly
monotone (i.e. f is locally elliptic) and that a solution exists. Then the algo-
rithm converges if t < 0 is close enough to 0.

Proof. Setting F (x) := x+ tg(x), we write the algorithm in the form xk+1 =
F (xk) and we show that F is a contraction. Let x1 be the first iterate, x∗ a
solution (g(x∗) = 0), B the ball of center x∗ and radius |x1 − x∗|. Then

|x2 − x∗|2 = |x1 − x∗|2 + 2t(x1 − x∗, g(x1)− g(x∗)) + t2|g(x1)− g(x∗)|2.

Take t < 0; then the assumptions give

|x2 − x∗|2 6 (1 + 2`t+ L2t2)|x1 − x∗|2.

It suffices to take t > −2`/L2 to obtain (recursively) xk ∈ B and xk → x∗

Q-linearly. We have shown at the same time the uniqueness of x∗. ut

Remark 2.6. The existence hypothesis is essential to have compactness of
{xk} (without it, g(x) = ex is a counter-example). This hypothesis can be
replaced by the global (instead of local) ellipticity of f ; the proof still applies,
and shows the existence of a (unique) solution. ut

2.4 Link with the General Descent Scheme

Now, knowing that the problem to be solved is not arbitrary, but that there
is a potential function to be minimized, can we modify, improve, interpret
the methods of §2.3, according to what was seen in §1.3? For this, we need to
distinguish in the above two methods the calculation of a direction and the
line-search. This is possible:

– To compute the direction dk, make the change of variable x = xk + d,
replace f(xk + d) by f(xk) + (g(xk), d) (valid for small |d|) and let dk solve
the following model-problem:

min (g(xk), d) ‖d‖ 6 δ (Pk)

(at this point, ‖ · ‖ represents an arbitrary norm, not necessarily the Eu-
clidean norm | · |).
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– Then, xk+1 is sought along dk, in accordance with general line-search prin-
ciples.

By construction, (g(xk), dk) < 0: a descent direction at xk is obtained,
i.e. a d satisfying f(xk + td) < f(xk) for some t > 0 (actually, for all t > 0
small enough).

Remark 2.7. Here the norm ‖ · ‖ is arbitrary. The coefficient δ > 0 is es-
sential to guarantee that (Pk) has a solution (the linear function (g(xk), ·)
is unbounded on R

n), but the exact value of δ does not matter: dk depends
multiplicatively on δ, and the length of the direction is irrelevant: it will be
absorbed by the line-search anyway. ut

Several possibilities are obtained, depending on the choice of ‖ · ‖ in (Pk).

2.4.1 Choosing the `1-Norm

Suppose first ‖d‖ =
∑n

i=1 |di|. A graphic resolution of (Pk) gives dk parallel
to a certain basis axis (one corresponding to the largest component of the
gradient). One therefore sees that this direction modifies only one coordinate
of the current iterate, just as in the Gauss-Seidel method. However, the coor-
dinates are not modified in a cyclic order, here; at each iteration, it is rather
the most “rewarding” coordinate that is modified.

Let us now focus on the computation of the stepsize t > 0. To compute
tk along the dk thus obtained, an immediate idea consists in minimizing
the univariate merit function q(t) := f(xk + tdk). For this, one must solve
q′(t) = 0. We have

q′(t) =

n∑

i=1

gi(xk + tdk)
d

dt
(xk + tdk)i = (g(xk + tdk), dk).

But in the present case, dk is one of the vectors in the canonical basis (up to
its sign). Hence, to solve q′(t) = 0 is to cancel the corresponding component
of the gradient, i.e. to do precisely as in the Gauss-Seidel method.

In summary, consider the following variant of Gauss-Seidel: at each itera-
tion, choose one index i(k), corresponding to a largest component (in absolute
value) of g(xk), and solve for the component xi(k) the equation gi(k)(x) = 0.
Seen through optimization glasses, this variant can be viewed as

– choose as direction a solution to (Pk), where ‖ · ‖ is the `1-norm,

– compute the stepsize by minimizing f along this direction.

Remark 2.8. In the Gauss-Seidel method, the univariate equations giving

x
i(k)
k+1 may have several solutions. A merit of the above interpretation is to

allow a choice among these solutions: at each iteration, one has not only to
solve an equation, but also to decrease f . Here appears a first advantage of
optimization, over general equation solving. ut
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2.4.2 Choosing the `2-Norm

When ‖ · ‖ is the norm associated with the scalar product, look again at a
graphical resolution of (Pk): as a direction, the optimal d is dk = −g(xk);
the gradient method comes up. Here again, to decrease q(t) = f(xk + tdk)
provides a constructive method to compute the stepsize, while Theorem2.5
does not give any explicit bound on t (this would require the knowledge
of |x1 − x∗| and of the corresponding constants `, L,. . . ). Here lies another
advantage yielded by optimization, just as in Remark 2.8.

Remark 2.9. In numerical analysis, when g does not enjoy particular prop-
erties, stability is always a problem: the sequence {xk} should at least be
bounded! Here, the requirement q(t) < q(0), i.e. f(xk+1) < f(xk), results in
a safe stabilization of {xk}: if the problem is well-posed, f should increase at
infinity. One more confirmation that forcing to zero the gradient of a function
to be minimized is easier than solving a general system of equations; remem-
ber Remark1.4. ut

2.5 Steepest-Descent Method

In §2.4, a family of minimization methods has been given: the direction solves
a certain linearized problem at xk , and the stepsize is computed according to
the general principle f(xk+1) < f(xk). The most natural idea to compute this
stepsize is to minimize q(t) = f(xk + tdk) at each iteration; it is the essence
of Gauss-Seidel’s method anyway. This same idea can be applied with the
`2-norm, which gives the following method:

(i) Compute dk = −g(xk) =: −gk;

(ii) Compute tk solving mint>0 f(xk + tdk).

Remark 2.10. The constraint t > 0 plays no real role, it could be replaced
by t > 0. Anyway, tk > 0 would be obtained, because q′(0) = (gk, dk) =
−|gk|2 < 0 (q decreases locally near t = 0, hence 0 cannot be a minimum of
q).

Note that optimality of tk is expressed by q′(tk) = 0, which writes
(gk+1, dk) = −(dk+1, dk) = 0 at each iteration: each direction is orthogo-
nal to the preceding one. ut

This procedure will be called method of steepest descent. It therefore con-
sists in computing the steepest-descent direction associated with the | · |-norm
(this is the gradient), and then the optimal stepsize along this direction. This
method is very bad because it is very slow; in fact, the gradient direction is
itself very bad to decrease f . It is known that f(x−tg) decreases for t close to
0; but, except when x is far from a minimum point, f(x−tg) starts increasing
for rather small values of t already; as a result, the method is forced to take
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small t’s, i.e. the iterates xk cluster together; the sequence of iterates oscil-
lates and is subject to zigzags. Simple ways of computing better directions
will be seen in Chap. 4. The present method should actually be forbidden.
Its only usefulness is to serve as a basis for all the methods actually used.

xk+1

x∗

gk+1

gk

xk

Fig. 2.1. Steepest descent is very bad

It is interesting to prove convergence of a variant of the steepest-descent
method, in which the stepsize is computed in a more general way. Consider,
instead of (ii):

(iii) q(tk) 6 q(t∗k), where t∗k is the smallest positive solution to q′(t) = 0.

We will assume that such a solution exists (a counter-example could be q(t) =
e−t).

Theorem 2.11. Suppose g = ∇f is Lipschitz-continuous on the so-called
slice F1 := {x : f(x) 6 f(x1)}. Then the method defined by (i), (iii) satisfies

– either f(xk)→ −∞,
– or g(xk)→ 0.

Proof. Preliminary remarks: at each iteration, since q′(0) < 0, the continuity
of g, hence of q′, implies that q(t) decreases between 0 and t∗k (in fact, t∗k is the
first local minimum or inflexion point of q, met in the direction of increasing
t’s; it is certainly not a local maximum). The segment [xk , xk + t∗kdk] is
therefore included in F1; and this is true for all k. A Lipschitz constant L for
g on F1 is therefore valid for every segment [xk, xk + t∗kdk].

Argument 1 First we prove that, in a neighborhood of t = 0, f(xk + tdk)
decreases at a non-negligible rate. More precisely:

if 0 6 t 6 min{t∗k, 1
2L} then f(xk + tdk) 6 f(xk)− 1

2 t|gk|2 .

For this, take z of the form xk + tdk with t ∈ ]0, t∗k[. Mean-value theorem: for
some z′ between xk and z (hence z′ ∈ F1),

f(z) = f(xk) + (g(z′), z − xk) = f(xk) + (gk, z − xk) + (g(z′)− gk, z − xk) .
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Since the vectors gk and z − xk are opposite, (gk, z − xk) = −|gk||z − xk |.
Besides, the last scalar product above is bounded by L|z − xk|2 (apply suc-
cessively Cauchy-Schwarz, and g Lipschitz on [xk , z

′], and z′ ∈ ]xk , z[). We
therefore have

f(z) 6 f(xk)− |gk||z − xk|+ L|z − xk|2 = f(xk)− t|gk|2 + Lt2|gk|2 .

For t 6
1
2L , write Lt2 = Lt.t 6 t/2. It follows

f(xk − tgk) 6 f(xk) + (−t+ Lt2)|gk|2 6 f(xk)− t

2
|gk|2 .

Remembering that t must also be lower than t∗k, Argument 1 is proved.

Argument 2 Now we show that the xk ’s move in a non-negligible way. More
precisely:

tk > t∗k >
1

L
.

Set x∗k = xk + t∗kdk. We have (g(x∗k), dk) = 0, which we write (g∗k is g(x∗k))

0 = (g∗k, x
∗
k − xk) = (gk, x

∗
k − xk) + (g∗k − gk, x

∗
k − xk) .

Use the same techniques as in Argument 1:

0 = −|gk||x∗k − xk|+ (g∗k − gk, x
∗
k − xk) 6 |x∗k − xk|(−|gk|+ L|x∗k − xk |)

hence |x∗k − xk | = t∗k|gk| > |gk|/L.
Remembering that q(t) decreases on [0, t∗k], we certainly have tk > t∗k and

Argument 2 is proved.

Synthesis Take z = xk − 1
2Lgk; from Argument 2, z lies between xk and x∗k

hence
f(xk+1) 6 f(x∗k) 6 f(z)

and, from Argument 1, f(z) 6 f(xk)− 1
4L |gk|2. We conclude

|gk|2 6 4L[f(xk)− f(xk+1)] . (2.3)

The theorem is then proved by summation. ut
Remark 2.12. It is important to grasp the mechanism of the above proof,
rather than the inequalities themselves.

Argument 1 bounds from below the rate of decrease of f , using exclusively
the definition of the direction; this argument would still hold if, instead of
being collinear to −gk, the direction dk made with −gk an angle far from 90o.

Argument 2 uses essentially the definition of the stepsize, which must be
large enough to give a sufficiently large decrease of f in Argument 1.

The proof also shows that |gk|2 tends to 0 at least as fast as a convergent
series. This does not imply a very exciting speed, though: one could have for
example |gk| = 1/k, which tends to 0 sublinearly. ut
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To establish a convergence speed result, additional hypotheses are neces-
sary. The key-property in this domain is that, when leaving the optimal set, f
must increase with a comparable speed in all directions. Lipschitz continuity
of the gradient implies that this speed is at most quadratic: denoting by X∗

the optimal set, and by f∗ the corresponding optimal value, there holds

f(x) 6 f∗ +
1

2
L dist2(x,X∗)

(obtained by integration). So we need this speed to be at least quadratic, and
this is just local ellipticity of f near X∗. In a word, the adequate assumption
is the following growth condition:

f is convex; X∗ is nonempty and, in a neighborhood of X∗,
∃` > 0 such that f(x) > f∗ + 1

2` dist2(x,X∗)
(G)

Lemma 2.13. Under Assumption (G), there holds in a neighborhood of X∗:

`[f(x)− f∗] 6 2|g(x)|2 .

Proof. Let x∗ the projection of x onto X∗. From convexity and Cauchy-
Schwarz,

f∗
> f(x) + (g(x), x∗ − x) > f(x)− |g(x)| dist(x,X∗)

i.e., using Assumption (G),

f(x)− f∗
6 |g(x)| dist(x,X∗) 6 |g(x)|

√
2
f(x)− f∗

`
. ut

Remark 2.14. Assumption (G), added to the Lipschitz continuity of the
gradient, shows that the speeds of convergence of f(xk) to f∗, of xk toX∗, and
of g(xk) to 0 are the same. Indeed, calling x∗ the projection of an arbitrary
x onto X∗, one has for |x− x∗| small enough:

|g(x)−0|2 6 L2|x−x∗|2 6 2
L2

`
[f(x)−f∗] 6 4

L2

`2
|g(x)|2 6 4

L4

`2
|x−x∗|2 . ut

Under these circumstances, the steepest-descent algorithm converges lin-
early:

Theorem 2.15. Make the assumptions of Theorem 2.11 and of Lemma 2.13.
Then the sequence εk := f(xk)− f∗ tends to 0 Q-linearly.

Proof. Copy the proof of Theorem2.11 to obtain (2.3) and, using Lemma 2.13,

f(xk)− f(xk+1) >
1

4L
|gk|2 >

`

8L
[f(xk)− f∗]

i.e. εk − εk+1 > `
8Lεk, or εk+1 6 (1− `

8L )εk. ut
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2.6 Implementation

When the simulator is available, to answer upon request f(x) and g(x), the
general form of a minimization algorithm will be as follows.

Algorithm 2.16 (Schematic descent algorithm).

Step 0 (Initialization). The initial iterate x1 and a stopping tolerance ε > 0
are given; set k = 1.

Step 1 (Stopping test). Compute g(xk); if |g(xk)| 6 ε stop.
Step 2 (Computing the direction). Compute the direction; for example set

dk = −g(xk) (although it is forbidden).
Step 3 (Line-search). Find an appropriate stepsize tk > 0, satisfying in par-

ticular f(xk + tkdk) < f(xk).

Step 4 (Loop). Set xk+1 = xk + tkdk; increase k by 1 and go to 1. ut

Remark 2.17. Expliciting k is useless; one can set d = dk, t = tk, overwrite
xk+1 on xk , etc. This spares computer memory.

In this scheme, everything is clear except Step 3, which specifies neither
the conditions to be satisfied by the stepsize, nor how to meet them. Comput-
ing the stepsize is actually a subalgorithm iterating on t > 0, during which
is established a dialogue with the simulator (use of the real (P ), once again).
The line-search problem is important enough to motivate the full Chap. 3 by
itself. Here and now, however, we can say that it is advised to test in Step
4 whether the line-search has been successful, otherwise the algorithm must
be authoritatively stopped (see below the end of §3.2). ut

Extremely important remark for all the sequel:
Conditioning

Suppose we perform a linear change of variables, say x(y) = Ay, or y(x) =
A−1x. We can then consider the function h defined by

h(y) = f [x(y)] = f(Ay).

Minimizing h (with respect to y) is obviously equivalent to minimizing f (with
respect to x): the optima are “the same” – via the application of A. However,
this equivalence is misleading because it is grossly wrong numerically.

This is clear for the Gauss-Seidel method, since changing one coordinate
of y does not correspond to changing one coordinate of x (except if A is
diagonal). As for gradient methods, use the well-known result

Proposition 2.18. The gradient of h is given by the formula

h′(y) = A>g(Ay).
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Proof. By definition, we have for all z ∈ R
n

(h′(y), z) = h(y + z)− h(y) + o(|z|) = f(Ay +Az)− f(Ay) + o(|z|)
= (g(Ay), Az) + o(|Az|) + o(|z|) = (A>g(Ay), z) + o(|z|)

where we have used the property o(|Az|) = o(|z|). The result follows, since z
was arbitrary. ut

Then observe the following fact: starting from a given x, the gradient
method applied to f generates a next iterate of the form

x+ = x− tg(x) .

To the initial x, there corresponds y = A−1x; starting from this same initial-
ization, the same gradient method applied to h generates a next iterate of
the form y+ = y − tA>g(x), to which there corresponds

x′+ = Ay+ = A[y − tA>g(x)] = x− tAA>g(x) .

In other words, the effect of the change of variables amounts to multiplying
the directions by AA>, which changes everything! (unless A> is an orthogonal
matrix, in which case one would have AA> = I). Using this remark, one can
try and find a clever change of variables, such that gradient methods behave
best numerically. This is a so-called preconditioning.

The simplest preconditioner is diagonal, which amounts to adjust scale
factors: one sets

yi =
xi

x̄i
i = 1, . . . , n

and one minimizes with respect to the variable y; it will be advantageous to
take for x̄i a “nominal” variation range for xi, which makes yi dimensionless.
To choose the scale factors x̄i, the following rule serves as a guide. Let an
increment δ be given to the variable i; it yields an increment ∆i for the
function h. One should strive to obtain all the ∆i’s of the same order of
magnitude (i.e. roughly independent of i).

Bibliographical Comments

Recall again that the methods of the present chapter have a theoretical value
only; they can be found in [71]; see [79] for a study of Gauss-Seidel. The
steepest-descent method was proposed by Cauchy [70] to solve systems of
equations via least squares.
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In this chapter, considering the problem of computing the direction as solved
(but do not forget that we have seen bad directions only, better ones will be
studied in the next chapters), we focus on the computation of the stepsize.
Here appear the most serious practical difficulties, while directions are gen-
erally easy to compute, once the theory is well-mastered. A firm experience
is required to write a good computer code for line-searches, which are unique
to optimization, and fairly important as they guarantee stability: remember
Remark 1.4.

So, we are given:
– the starting point x of the line-search;
– the direction of search d;
– a merit-function t 7→ q(t), defined for t > 0, representing f(x+ td).

Besides, d is assumed to be a descent direction:

In the following, we will always suppose q′(0) < 0.

Remark 3.1 (fundamental). The function q is not known explicitly, via an
analytical formula, but only pointwise: the only available information is the
numerical value of q(t) for each numerical value of t; most often, we will also
assume that the numerical value of q′(t) = (f ′(x+ td), d) is computed at the
same time. This computation is performed in the simulator, a subprogram
characterizing the problem to be solved, which gives for each numerical value
of z ∈ R

n the numerical values f(z) and g(z) = f ′(z) ∈ R
n. Simply, we

assume that this subprogram exists. In these circumstances, the search for a
convenient t (satisfying q(t) < q(0), among other things) can only be done
by trials and errors: see §1.3 again, in particular Remark1.3. ut

3.1 General Scheme

To construct a line-search algorithm, one first defines a test with three pos-
sible exits; given t > 0, it answers whether

a) t is satisfactory

b) t is too large
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c) t is too small.

This test is performed upon observation of q(t), and possibly of q′(t).

Example 3.2. To fix ideas, let us give an extremely simple example; but we
will see below that it is too simple:

a) q′(t) = 0 (then it is normal to stop the search: t seems to minimize q);
b) q′(t) > 0 (then q seems to have a minimum point smaller than t);
c) q′(t) < 0 (then q seems to have a minimum point larger than t).
This test is illustrated by Fig. 3.1: the three circles represent those t sat-

isfying a); the intervals I1 and I3 [resp. I2 and I4] are those where t satisfies
c) [resp. b)].

q(0)

I2I1 I4

t

I3

q(t)

Fig. 3.1. A simplistic example

At this point, note something wrong in this example: the property q′(t) =
0 does not imply q(t) < q(0); hence, the property of being “satisfactory” does
not even imply the descent property, here; and there is something even worse,
which we will see at the end of this §3.1. ut

Now we will call tL a too small t (on the left of a desired t), tR a too large
t (on the right of a desired t). To initialize the search, 0 is obviously a tL; if
no upper bound is a priori available for the stepsize, tR can be initialized to
0, with the convention that tR = 0 means “no too large t has been found so
far” (logically, tR should be initialized at +∞ but this has little meaning on
a computer). Schematically, the algorithm is then the following:

Algorithm 3.3 (Schematic line-search).

Step 0. Start from an initial t > 0. Initialize tL = 0 and tR (= 0 for example).
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Step 1. Test t;
if a) terminate;
if b) declare tR = t and go to 2;
if c) declare tL = t and go to 2.

Step 2. If no real tR has been found yet (tR = 0), compute a new t > tL.
Else (tR > 0) compute a new t ∈ ]tL, tR[.
Loop to 1. ut

Remark 3.4. In principle, choosing the initial t in Step 0 is not of line-
search’s concern. Logically t should be initialized by the minimization al-
gorithm itself, which has on hand more information, once the direction is
computed. Such is for example the case of Newtonian methods, to be stud-
ied in Chap. 4. If no such information is available, a possibility is to assume
that q is quadratic, and that its decrease from t = 0 to the optimal t is
δ = f(xk−1)−f(xk); in this case, q is minimized at t = −2δ/q′(0), which can
serve as an initialization. This technique is often called Fletcher’s initializa-
tion. ut

Thus, the line-search algorithm is a sequence of interpolations, reducing
the bracket [tL, tR], and possibly preceded by a sequence of extrapolations
(as long as tR = 0).

The observations below are straightforward, but fundamental for a good
understanding of the mechanism.

– Extrapolations are performed until a real tR is found (which may happen
at the first try).

– Once tR has become nonzero, it remains such; then the interpolation phase
starts.

– In any case, tL increases each time it is modified.

– As soon as tR is nonzero, it decreases each time it is modified,

– but there always holds tL < tR.

Now, in order for the line-search to make sense and to stop after a finite
number of tries, the test in Step 1 of Algorithm3.3 must satisfy the following
properties:

Property 1 The three possible exits in the test a), b), c) form a partition
of R+ (so that every t > 0 is classified without ambiguity).

Property 2 No large t must satisfy c), that is to say: there exists t̄ such
that a) or b) holds for every t > t̄ (to avoid an increase of tL to +∞).

Property 3 Every [tL, tR] contains a nonzero interval satisfying a) (to avoid
a decrease of |tR − tL| all the way to 0).

This shows in particular that the simplistic Example 3.2, which uses only
the sign of q′(t), is really too simple. For one thing, a) is in general satisfied
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only by one point, the minimum of q: to terminate the line-search, one must
try exactly this point (one of the three circles in Fig. 3.1). Besides, q-values are
completely ignored; a local minimum can therefore be produced, possibly with
a value greater than q(0). On Fig. 3.1, for example, if a t is tried somewhere
in the interval I3, the search is henceforth trapped on the right of the picture
and it becomes impossible to obtain q(t) < q(0).

In addition to the stopping test in Step 1 of Algorithm3.3, the line-search
is characterized by the computation of the new t in Step 2. We start with a few
words on this question, even though it is Step 1 that is the most important,
since it conditions the convergence of the sequence xk .

3.2 Computing the New t

Call t the stepsize-value just tested, and t+ the value to be computed. There
are two cases.

Extrapolation Consider first the case when no upper bound is available,
i.e. tR = 0. Then t+ is wished to be “significantly” larger than t. In fact, one
wishes

Property E Infinitely many extrapolations would imply tL → +∞.

In this way, a real tR will eventually be found, due to Property 2 of the
test a), b), c) (§3.1).

For this, the simplest is to set t+ = at, with a > 1 fixed, for example
a = 10. Some more sophisticated factor can also be used. Actually, the best
is to fit a cubic function, as in the case of interpolation, given below.

Interpolation If some tR > 0 is already available, t+ must be “significantly”
between tL and tR. In fact, one wishes

Property I Infinitely many interpolations would imply |tR − tL| → 0.

In this way, case a) will eventually occur, due to Property 3 of the test
a), b), c) (§3.1).

Here again, the simplest technique is to set t+ = (tL + tR)/2, an inter-
polation by bisection. Then the length of the bracket is halved at each try.
Actually, the best is again to fit a cubic function by the technique below.

Cubic fitting In order to accelerate the line-search (which is important
since it is performed at each minimization iteration), it is advised to guide
the search for t+ by the observed behaviour of q; this can be done both in
case of extrapolation and interpolation. For this, the general idea is to select
t-values already tested, to fit a simple function (a polynomial) coinciding with



3.2 Computing the New t 41

the corresponding values of q (and possibly of q′), and finally to compute t+
minimizing this function.

When the simulator computes simultaneously function- and derivative-
values (the usual case), the universal technique is the following.

– Select two values of the stepsize: the current value t and the preceding one,
say t− (with the initialization t− = 0).

– With two values q and q′ for each of these two points t and t−, we therefore
have 4 informations q := q(t), q− := q(t−), q′ := q′(t), q′− := q′(t−) which
allow the computation of the 4 coefficients of a 3rd-degree polynomial; in
good cases, this polynomial has a local minimum which can be computed.

– We leave it to the reader to check that the following calculations give the
result:

p := q′ + q′− − 3
q − q−
t− t−

, D := p2 − q′q′− , d :=
√
Dsign (t− t−) .

If D < 0, no local minimum exists (then set for example D = 0); otherwise

t+ = t+ r(t− − t) with r :=
d+ p− q′

2d+ q′− − q′
.

Precautions: safeguard Once again, the line-search is a subalgorithm, ex-
ecuted at each minimization iteration. Contenting oneself with asymptotic
properties of this subalgorithm is therefore out of question. It is crucial to
show that case a) occurs for sure after finitely many trials. For this, Prop-
erty E (tL → +∞) and Property I (|tR − tL| → 0) are essential, in
combination with respectively Properties 2 and 3 of the test a) b) c) (§3.1).

These two properties E and I are automatically implied respectively by
the simple techniques t+ = at and t+ = (tR + tL)/2; but they must be
artificially forced if the polynomial fitting is used.

Hence, once t+ is computed, no matter by which process, it must be
forced “significantly” on the right of tL (in extrapolation) or inside [tL, tR]
(in interpolation). For this, a safeguard is necessary. In practice, one does as
follows: fix a > 1 and θ ∈ ]0, 1/2[, and then

– in extrapolation, replace t+ by max {t+, at};
– in interpolation, replace t+ successively by

min {t+, tR − θ(tR − tL)}, then by max {t+, tL + θ(tR − tL)}.
Besides, any mathematical proof needs assumptions on q and it may hap-

pen that these assumptions are not satisfied; or it may happen that the proof
does not apply, due to roundoff errors; it may also happen that mistakes have
been made when programming the computation of q′. To avoid an infinite
loop, always to be feared, it is safe to impose emergency tests at two places:

– in extrapolation, stop authoritatively if tL becomes very large;

– in interpolation, stop authoritatively if |tR − tL| becomes very small.
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From now on in this chapter, we will consider as solved the question of
finding the new t, and we will focus on the construction of the test a) b) c)
in Step 1 of the general line-search scheme (Algorithm 3.3).

3.3 Optimal Stepsize (for the record only)

The present Section 3.3 develops a technique which must indeed be avoided.
We somewhat detail it for its historical and pedagogical value only: it is
intuitively natural and easy to grasp. But it is actually just an introduction
to the modern techniques of §3.4 (this is somehow like first-order methods of
Chap. 2, which are just an introduction to modern methods of Chap. 4).

We start with a simple remark, considerably helpful for the construction of
the test a) b) c): the descent property requires that a) contains in particular
the property “q(t) < q(0)”: a t such that q(t) > q(0) has to be classified
either in b) or in c). Now – and here appears a key-idea – since q′(0) < 0, we
certainly have q(t) < q(0) for t small enough. A t such that q(t) > q(0) can
therefore be safely classified in b) (too large).

Historically, one has first tried to search a t∗ such that

q(t∗) < q(0) and q′(t∗) = 0 .

Starting from this idea the test in §3.1 was then: choose ε > 0 and define a)
b) c) by:

a) q(t) < q(0) and |q′(t)| 6 ε (then terminate);
b) q(t) > q(0) or q′(t) > ε (then tR = t);
c) q(t) < q(0) and q′(t) < −ε (then tL = t).

Note that this test is substantially more sophisticated than the simple
Example 3.2 (the latter did not even imply a decrease for q!). It is nevertheless
out of date, now, and is replaced by modern tests of §§3.4, 3.5 below. For
pedagogy, we show that it is consistent, at least theoretically.

Theorem 3.5. Suppose that q ∈ C1 is inf-compact (and that q′(0) < 0,
as always). Then this line-search is finite (providing that t+ is consistently
computed, of course; see the remarks at the end of §3.2).

Proof. We have to prove that a) occurs after finitely many tries. We will
proceed by contradiction, assuming that, at each try, either b) or c) occurs.

Let us first show that the sequence of extrapolations is finite. In fact,
inf-compactness implies that, for t large enough, c) cannot occur: otherwise
t would tend to infinity (Property E) and continually satisfy q(t) 6 q(0).
After finitely many extrapolations, we therefore get some tR > 0, which
provokes a switch to the interpolation phase.
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Let us now show that the sequence of interpolations is finite. Suppose
it is infinite. In view of Property I, the two sequences {tL} and {tR} are
adjacent1. They both tend to some t∗.

Each tL satisfies c); pass to the limit in tL → t∗:

q(t∗) 6 q(0) and q′(t∗) 6 −ε .
Pass likewise to the limit in b):

q(t∗) > q(0) or q′(t∗) > ε .

The only possibility is therefore

q(t∗) = q(0) and q′(t∗) 6 −ε .
From q(t∗) = q(0), the definition of c) shows that no tL can equal t∗:

indeed tL tends to t∗ but stays strictly smaller than t∗. Then, using the
property q(tL) < q(0) = q(t∗), the mean-value theorem gives

0 <
q(tL)− q(t∗)
tL − t∗

.

Passing to the limit provides the contradiction 0 6 q′(t∗) 6 −ε. ut
Remark 3.6. From its motivation, ε should be small; but this means nothing
(is 1015 small? yes, compared to the number of atoms in the Universe). To give
ε a meaning, it is suitable to compare q′(t) with q′(0), taking ε = −mq′(0);
here m is a dimensionless coefficient, for example m = 10−3. Note that m
cannot be 0, otherwise the proof does not work – and here precisely lies the
difficulty with Example 3.2. ut

3.4 Modern Line-Search: Wolfe’s Rule

The essence of §3.3 is to identify a local minimum of q, which makes it
tempting to choose ε very small. Yet, a) will be hard to obtain: the line-search
subalgorithm will be time-consuming (in spite of every possible quality of the
t+ from §3.2). This is why more tolerant stopping tests have been devised,
motivated by a triviality which must never be overlooked: it is f(x), and not
q(t), that we wish to minimize. Striving to minimize accurately f along the
current direction, at each iteration, is therefore completely useless.

We now describe the method seeming the most intelligent in the current
state of the art, commonly called the line-search of Wolfe. Two coefficients
0 < m1 < m2 < 1 are chosen, and cases a) b) c) are the following:

a) q(t) 6 q(0) +m1tq
′(0) and q′(t) > m2q

′(0) (then terminate);
b) q(t) > q(0) +m1tq

′(0) (then tR = t);
c) q(t) 6 q(0) +m1tq

′(0) and q′(t) < m2q
′(0) (then tL = t).

1 Two real sequences {u`} and {v`} are adjacent when u` increases, v` decreases,
v` > u`, and v` − u` → 0; then they have a common limit.
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This has a good interpretation:

– First, f is asked to decrease enough (hence xk+1 will not be too far from
xk).

– Second, the derivative is required to increase enough (hence xk+1 will not
be too close to xk).

Figure 3.2 represents a function q similar to that of Fig. 3.1, and displays again
the set a) of satisfactory t’s, and the set I1 ∪ I3 [resp. I2 ∪ I4] of t’s declared
too small [resp. too large]. Note: to familiarize oneself with this mechanism,
one can mentally suppress the local minimum on the right of the picture,
making a convex function with q; then I2 will extend to +∞, the t’s declared
“too large” will really be too large, i.e. on the right of every satisfactory t.

m2q
′(0)

m1q
′(0)

I4

t

I3I2I1

q(t)

a) a)

q(0)

Fig. 3.2. Wolfe’s rule

Theorem 3.7. Suppose that q ∈ C1 is bounded from below. Then Wolfe’s
line-search terminates.

Proof. The proof is copied from that of Theorem3.5. Start with extrapola-
tions. If they were infinitely many, a sequence of stepsizes t would be con-
structed, tending to infinity, and such that

q(t) 6 q(0) +m1tq
′(0)

hence q(t) would tend to −∞.
Suppose now that the sequence of interpolations is infinite. Just as in The-

orem3.5, the two sequences {tL} and {tR} are adjacent and have a common
limit t∗. Then, passing to the limit in b) and c): q(t∗) = q(0) + m1t

∗q′(0).
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From b), this implies in particular that no tR can equal t∗: indeed tR tends
to t∗ but stays strictly bigger than t∗.

Then write b) in the form

q(tR) > q(0) +m1q
′(0)(t∗ + tR − t∗) = q(t∗) +m1q

′(0)(tR − t∗)

and divide by tR − t∗ > 0 to obtain

q(tR)− q(t∗)
tR − t∗

> m1q(0) .

Passing to the limit: q′(t∗) > m1q
′(0) > m2q

′(0). On the other hand, passing
to the limit in c): q′(t∗) 6 m2q

′(0), contradiction. ut

Incidence on the sequence {xk} A whole family of minimization algo-
rithms is now obtained, by combining the above Wolfe line-search with any
kind of (descent) direction. We turn to the question whether the resulting
sequence {xk} converges to a minimum point. Just as in Theorem2.11, we
will decompose the proof into three arguments. This proof scheme is so im-
portant that we will in turn decompose it into two formal results. We start
with the third argument, called Synthesis in Theorem2.11; it becomes the
purely technical Lemma 3.8 below.

Of course, convergence cannot hold independently of the choice of dk (the
line-search will be helpless if dk is “too orthogonal” to gk). The angle between
the direction and the gradient thus appears as essential, and we set

cos θk =
−(gk, dk)

|gk|.|dk|
.

To say that dk is a “definite” descent direction is to say that cos θk is “suffi-
ciently” positive. This concept appears to be conveniently quantified by (3.2)
below.

Lemma 3.8. Consider an algorithm to minimize f , in which there holds at
each iteration:

r cos2 θk|gk|2 6 f(xk)− f(xk+1) , (3.1)

where the coefficient r > 0 does not depend on k. If

the series

+∞∑

k=1

cos2 θk diverges , (3.2)

then
– either the objective-function tends to −∞,
– or lim inf |gk| = 0.
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Proof. Immediate: if the decreasing sequence {f(xk)} is bounded from below,
say by f∗, then

+∞∑

k=1

cos2 θk|gk|2 6
1

r

+∞∑

k=1

[f(xk)− f(xk+1)] 6
1

r
[f(x1)− f∗] < +∞ .

As a result, if |gk| were bounded from below, say by δ > 0, then we would
have δ2

∑
cos2 θk < +∞, contradiction. ut

Of course, property (3.2) in this result depends on the way the direction
is computed. As for property (3.1), it can be established independently of the
direction: it comes just as in Arguments 1 and 2 of Theorem2.11.

Theorem 3.9. Consider a minimization algorithm using Wolfe’s rule. If g
is Lipschitz-continuous on the slice {x : f(x) 6 f(x1)}, then (3.1) holds.

Proof. Barring trivial cases where, at some iteration, t → +∞ and q(t) →
−∞, Wolfe’s line-search terminates on a) at each iteration (see Theorem3.7).
Then xk stays in the slice and the gk’s satisfy the corresponding Lipschitz
condition.

Argument 1 Bounding f(xk) − f(xk+1) from below (the stepsize is not too
large). Express q′(0) at iteration k:

tkq
′(0) = tk(dk , gk) = −tk cos θk|dk||gk| = − cos θk|xk+1 − xk||gk| .

This form directly shows that the descent property in a) implies

m1 cos θk|gk||xk+1 − xk | 6 f(xk)− f(xk+1) .

Argument 2 Bounding |xk+1−xk| from below (the stepsize is not too small).
The second half of a) gives (subtracting (gk, dk) from both sides)

(gk+1 − gk, dk) > (m2 − 1)(gk, dk) = (1−m2) cos θk|gk||dk| .
Apply Cauchy-Schwarz and then Lipschitz properties to the left-hand side;
there exists a constant L (depending on x1) such that

(gk+1 − gk, dk) 6 L|xk+1 − xk||dk| .
We therefore deduce, after division by |dk|:

(1−m2) cos θk|gk| 6 L|xk+1 − xk | .
To finish the proof, multiply this last inequality by |gk| and use Argument

1: (3.1) holds with r := m1(1−m2)/L. ut
Remark 3.10. While following the scheme of Theorem2.11, the arguments
come here much more easily, thanks to the rules satisfied by the stepsize.
Indeed, Theorem2.15 can be reproduced to establish the following result,
whose proof is left to the reader: let an algorithm use Wolfe’s line-search, and
compute the direction dk so that cos θk > c > 0. This algorithm converges
Q-linearly if f has quadratic growth in a neighborhood of a minimum point
(cf. Theorem2.15). ut
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3.5 Other Line-Searches: Goldstein and Price, Armijo

Wolfe’s rule needs the value q′(t) – hence ∇f(xk + tdk) – at each cycle in
the line-search. It therefore may lose some efficiency when computing the
gradient takes much more time than computing the function alone. Although
rare, this situation exists, making it desirable to compute as few gradients as
possible. Then the rules below become suitable: their tests a) b) c) do not
require the computation of q′.

3.5.1 Goldstein and Price

Wolfe’s rule used the slope q′(t) of q at t. The present rule rather uses the
average slope [q(t)− q(0)]/t between 0 and t: it is required to lie between two
given slopes m1 and m2, with 0 < m1 < m2 < 1. In other words, the test is

a) m2q
′(0) 6

q(t)− q(0)

t
6 m1q

′(0) (then terminate);

b) m1q
′(0) <

q(t)− q(0)

t
(then tR = t);

c)
q(t)− q(0)

t
< m2q

′(0) (then tL = t) .

The analogy with Wolfe’s rule becomes more visible if the test is rather
written in the equivalent form

a) q(t) 6 q(0) +m1tq
′(0) and

q(t)− q(0)

t
> m2q

′(0);

b) q(t) > q(0) +m1tq
′(0);

c)
q(t)− q(0)

t
< m2q

′(0) [and hence q(t) < q(0) +m1tq
′(0) !].

Proceeding as in Theorem3.7, one shows rather easily that this rule yields
a finite line-search.

3.5.2 Armijo

This rule is somewhat special, in that t is never declared too small, hence no
extrapolation ever occurs. More precisely, one chooses m1 ∈ ]0, 1[ and

a) q(t) 6 q(0) +m1tq
′(0) (then terminate);

b) q(t) > q(0) +m1tq
′(0) (then tR = t);

c) never.

Here again, it is easy to show that the resulting line-search terminates.
Note the importance of property a) above. Often called Armijo’s condi-

tion, it appears in all modern rules – including Wolfe and Goldstein-Price. It
guarantees that t is not too large and proves Argument 1 in Theorem3.9.
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Remark 3.11. Armijo’s rule is dangerous: since it never increases t, it heav-
ily relies on the initial stepsize to produce a move xk+1 − xk large enough.

– First, the reader can check that reproducing Theorem3.9 amounts to as-
suming that the initial t is bounded away from 0. This is why Armijo’s
line-search is usually initialized on a constant, say t = 1 (independently of
k).

– Yet, this constant may be hard to guess. With n = 1, consider the example
(not elliptic, though) f(x) = x4/4 and take the gradient method. Then
xk+1 = xk − tkx

3
k. Knowing that the minimum point is x∗ = 0, the Q-

convergence quotient is xk+1/xk = 1 − tkx
2
k . Unless tk (and hence the

initial stepsize) increases fairly fast, sublinear convergence xk+1/xk → 1
will occur. The reader can check that Fletcher’s initialization of Remark 3.4
does not help.

Therefore, this rule is usually limited to situations where, for some reason,
extrapolations should be avoided (examples will appear in Sections 6.1.2 and
17.1. Its merit is mainly theoretical: it is easy to understand (and to explain)
and it allows a cheap construction of implementable algorithms. ut

3.5.3 Remark on the Choice of Constants

No matter what rule is used (Wolfe, Goldstein-Price, Armijo), it is advised
to take m1 < 1/2, and it is advised in Wolfe or Goldstein-Price to take
m2 > 1/2. This is because of the following (well-known?) result:

Proposition 3.12. Suppose q is quadratic with a minimum point t∗. Then

q(t∗) = q(0) +
1

2
q′(0)t∗.

Proof. The quadratic function q can be written, for some c > 0,

q(t) =
1

2
ct2 + q′(0)t+ q(0)

in which case

t∗ =
−q′(0)

c
, q(t∗) = −1

2

q′(0)2

c
+ q(0) and

q(t∗)− q(0)

t∗
=

1

2
q′(0) . ut

Thus, if q happens to be quadratic, Armijo’s condition will reject the
optimal stepsize if m1 >

1
2 ; this is clumsy.

Remark 3.13. There is a more serious argument (here we anticipate on
Chap. 4, more precisely §4.7): suppose d is given by a Newtonian method,
in which case t = 1 will be tried first. For x close to a minimum point, f is
almost quadratic; t = 1 is almost optimal and must be accepted by the line-
search; otherwise, superlinear convergence is killed. ut
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Along the same lines, the descent test

q(t) 6 q(0) +m1tq
′(0)

has an interesting interpretation. In fact, the term tq′(0) is the linear estimate
of the variation of q between 0 and t. Said otherwise: if q were an affine
function, we would have q(t)− q(0) = tq′(0). Armijo’s test therefore consists
in requiring the objective-function to decrease by at least a fraction m1 < 1
of the linear decrease – a sort of nominal decrease.

Let us go further; if q were quadratic and if t minimized q, then the
decrease of q would be 1

2 tq
′(0) (Proposition3.12). Writing Armijo’s test in

the form
q(t)− q(0) 6 (2m1)(tq

′(0)/2) ,

we see that this test consists also in requiring from the objective-function
to decrease by at least a fraction 2m1 (< 1) of the “quadratic predicted”
decrease. This observation is useful when generalizing line-searches; see in
particular §6.1.

3.6 Implementation Considerations

All the necessary ingredients to set up an optimization module are now given,
and numerical experiments can be conducted: the reader can for example
program the gradient method (d = −g) with Wolfe’s line-search, etc. It is
strongly advised to divide the program in three blocks quite distinct, remem-
bering §1.3. These will be respectively blocks 1.1, 2 and 1.2 in Table 3.6 (the
numbering 1.1 and 1.2 suggests that these two blocks are in the responsibility
of the same person: the user; using again notation from §1.3, (A) corresponds
to block 2, and (P ) to block 1).

Let us say it again: we use here d = −g, only for didactic reasons, but we
remember that it is actually a numerical absurdity. The aim of Table 3.6 is
to

– make concrete the modular structure of an optimization program,

– let the reader program a line-search; an excellent means to become familiar
with the subject.

A last remark: the resulting program will very likely fail (at least at the
first try). Experience indicates that, in 90% of cases, the mistake is not in
the optimization algorithm proper (Block 2) but in the gradient computation
(Block 1.2). Such a mistake can be detected rather reliably, upon observation
of Wolfe’s line-search. If the gradient is bugged, the following paradox is
eventually observed: a sequence {t = tR} is produced, tending to 0 with q(t)
staying stubbornly larger than q(0), while q′(t) stays stubbornly negative.
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BLOCK 1.1 – Define the problem
(let alone the number of variables).

– Initialize x among other things
(tolerances for the stopping test for example).

CALL BLOCK 2

– Exploit the results.

BLOCK 2.1 At each iteration:
– Perform the stopping test.
– Compute the direction

(for example the gradient, faute de mieux);
– Initialize the stepsize t > 0

CALL BLOCK 2.2

– Pass to the next iterate.

BLOCK 2.2 – Perform a line-search
(knowing x, d, t coming from Block 2.1).

For this, one needs to repetitively

CALL BLOCK 1.2

BLOCK 1.2 – Compute f = f(x) and g = g(x),
(for x coming from Block 2, and
having various data from Block 1.1).

Bibliographical Comments

Even though “modern” line-searches are now more than 30 years old – [12,
168, 361] – they are rarely pointed out in monographs; there are exceptions,
such as [107], or the first edition of [128]. The viewpoints exposed here are
those of [228], similar to [265].



4 Newtonian Methods

The present chapter details the most important approach (by far) to compute
a descent direction at each iteration of a minimization algorithm. This is the
quasi-Newton method, defined in §4.4. To use another direction cannot be
considered without a serious motivation; this has been true for decades and
will probably remain so for several more years.

4.1 Preliminaries

To solve the optimality condition g(x) = 0, we have seen in Chap. 2 essentially
two possibilities for the direction: the gradient, or a vector of the canonical
basis. Both are bad; to do better, let us recall the Newton principle. Starting
from the current iterate xk, replace g by its linear approximation:

g(xk + d) = g(xk) + g′(xk)d+ o(|d|)

where g′(xk) is the Jacobian of g at xk. Using the notation from §1.3, our
problem (P ) is to find d such that g(xk +d) = 0; to obtain the model-problem
(Pk), we then neglect the term o(|d|); this gives the linearized problem g(xk)+
g′(xk)d = 0. Its solution is dN = −[g′(xk)]−1g(xk) (when g′(xk) is invertible),
and the next iterate is xN = xk + dN .

In the case of an optimization problem, g is the gradient of f , g′ = f ′′ is
its Hessian. Just as g was approximated to first order, f can be approximated
to second order:

f(xk + d) = f(xk) + (f ′(xk), d) +
1

2
(d, f ′′(xk)d) + o(|d|2) .

The quadratic approximation thus obtained is minimized (in the elliptic case)
when its gradient vanishes: f ′(xk) + f ′′(xk)d = 0. We realize an evidence:
Newton’s method on min f(x) is Newton’s method on f ′(x) = 0.

The big advantage of Newton’s method is well known: it converges very
fast.

Theorem 4.1. If f ′′ is continuous and invertible near a solution x∗, then the
convergence of Newton’s method is Q-superlinear. If, in addition, f ∈ C3, this
convergence is Q-quadratic.
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Proof. Call r the remainder term in the second-order Taylor expansion, i.e.
the function from R

n to R
n such that

[0 =] f ′(x∗) = f ′(x) + f ′′(x)(x∗ − x) + r(x∗ − x).

If x is the current iterate, denote by xN = x+ dN the next iterate, given
by Newton’s method: 0 = f ′(x) + f ′′(x)(xN − x); we obtain by subtraction

0 = f ′′(x)(x∗ − xN ) + r(x∗ − x) .

In view of continuity and invertibility, this implies

|x∗ − xN | 6 M |r(x∗ − x)| ,

M being a bound for |(f ′′)−1| in a neighborhood of x∗.
By definition and continuity, r(x∗ − x) = o(|x∗ − x|); and if f is C3, then

r(x∗ − x) = O(|x∗ − x|2). The conclusions follow. ut

This theorem implies by no means global convergence of Newton’s method.
It simply says that, if x is close to the solution, then xN is infinitely closer.
In fact, drawbacks of Newton’s method are also well-known:

– in general, it diverges violently;

– in addition, it requires to compute the Hessian, and then to solve a linear
system; this is heavy;

– in our situation where g is the gradient of a function to be minimized,
another drawback is that {xk} will probably rush to the closest stationary
point, possibly a local maximum; the descent property f(xk+1) < f(xk) is
not guaranteed.

4.2 Forcing Global Convergence

Just as for first-order methods, the system g(x) = 0 is not arbitrary: here
again we have on hand a merit function, which can be forced to decrease at
each iteration. We therefore call for the model technique, introduced in §1.3;
see also §2.4.

– Computing the Newton estimate:

min f(xk) + (g(xk), d) +
1

2
(d, f ′′(xk)d) , d ∈ R

n

(admitting that it makes sense), is only considered as a first phase, which
is to solve a model-problem (Pk) of the original problem (P ).

– The solution dN is then considered as a direction, along which a line-search
is performed to decrease the function q(t) = f(xk + tdN ).

– The next iterate will then be xk+1 = xk + tkd
N .
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In the inf-compact case, we will thus have stabilized the sequence {xk}.
As was seen in Chap. 3, the line-search will be possible only if q′(0) =

(gk, d
N ) < 0. Using the definition of dN , this means that (gk, f

′′
k
−1
gk) must

be positive. If f is elliptic, so will be the case and everything will go fine;
otherwise, something more must be done. Actually, the present “damped
Newton’s method” works correctly only when f ′′

k is positive definite at each
iteration. This is why the modern tendency is to prefer the variant by trust
region, mentioned later in §6.1.

Remark 4.2. It may be useful to recall that, in numerical analysis, linear
systems (Ad = −g) are not solved by matrix inversion (d = −A−1g). When
A is positive definite (which is in principle the case in the present situation
whereA = f ′′

k ), the Cholesky decomposition is used: a lower-triangular matrix
L is computed, such that A = LL>. The resolution of Ad = −g is then simple:
solve two triangular systems Ly = −g, and then L>d = y. Even better: A can
be decomposed as A = LDL>, where D is diagonal and L, still triangular,
has now 1 as diagonal terms (the so-called Bunch and Parlett decomposition).

ut

Note also that, in contrast to first-order methods, the present dk =
−f ′′

k
−1
gk yields not only a direction, but also a stepsize along this direc-

tion. Indeed, the point xN := xk +dk, which is the Newton estimate, is in the
good cases an excellent approximation of the minimum point of f . In other
words, the stepsize t = 1 is supposedly best; it would be ideal to have tk = 1,
at least for large k (when Newton’s estimates start to be really good). This
is useful to initialize the stepsize; remember Remark 3.4.

Finally, it is easy to obtain in the elliptic case a global convergence theo-
rem, since cos (dk, gk) stays away from 0 (see again Theorem3.9).

4.3 Alleviating the Method

Consider now the second drawback of Newton’s method. Rather than com-
puting explicitly f ′′, and solving the corresponding linear system, another
idea is to approximate directly (f ′′)−1 by a matrix W , to be computed at
each iteration. Then, alongside with the descent process on f , an identifica-
tion process of the Hessian (or rather its inverse) is performed. The general
form of the algorithm is then the following (the subscript “+” denotes the
next iterate k + 1, absence of index denotes the current iterate k):

Algorithm 4.3 (Schematic quasi-Newton algorithm).

Step 0. An initial iterate x and stopping tolerance ε are given; an initial
matrix W , positive definite, is also chosen. Compute the initial gradient
g = g(x).

Step 1. If |g| 6 ε stop.
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Step 2. Compute d = −Wg.
Step 3. Make a line-search initialized on t = 1, to obtain the next iterate

x+ = x+ td and its gradient g+ = g(x+).
Step 4. Compute the new matrix W+ for the next iteration and loop to 1.

ut

The ingredients characterizing this method are therefore:

– the line-search, which will be for example that of Wolfe (§3.4),

– the initial matrix W (which can be the identity, for want of a better idea),

– the computation of W+ in Step 4.

Let us explain how this last matrix is computed. In the sequel, we will
use the notation

s = sk = xk+1 − xk and y = yk = gk+1 − gk

(observe that s and y are known when W+ must be computed).
Knowing that we want to approximate a symmetric matrix (an inverse

Hessian) and to obtain descent directions, W+ is of course required to be
symmetric positive definite.

Besides, to give W+ a chance to approximate an inverse Hessian, W+ is
required to satisfy W+y = s, called the quasi-Newton, or secant equation. Its
explanation is as follows: the mean-value G of f ′′ between x and x+ satisfies
y = Gs. The quasi-Newton equation has therefore the effect of forcing W+

to have the same action as G−1 on y, a subspace of dimension 1.
Of course, the two above requirements leave infinitely many possible quasi-

Newton matrices.

4.4 Quasi-Newton Methods

From now on in the remaining of this chapter, (g, x) = g>x is the standard
dot-product.

A quasi-Newton method is the realization of Algorithm4.3, where the
matrices Wk are computed recursively: Wk+1 = Wk +Bk, the corrections Bk

being chosen so that

(i) Wk is symmetric positive definite for all k,

(ii) the quasi-Newton equation Wk+1yk = sk is satisfied for all k.

Among all the possible corrections, stability reasons lead us to the additional
requirement

(iii) Bk is minimal in some sense.

This still leaves a large range of possibilities, depending on the sense
chosen in (iii), and a considerable number of methods have been studied.
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Historically, the first was the so-called method of Davidon-Fletcher-Powell,
which takes

W+ = W +
ss>

(y, s)
− Wyy>W

(y,Wy)
. (DFP)

Watch the matrix writing; for example, y>W is a row-matrix which, pre-
multiplied by the column Wy, produces an n×n matrix, of rank one because
its kernel is the subspace orthogonal to Wy. Thus, the correction Bk is a
“small” matrix: its rank is at most 2 (its kernel being the subspace spanned
by s and Wy). Then observe that W+ is a symmetric matrix, which satisfies
the quasi-Newton equation:

W+y = Wy + s
(y, s)

(y, s)
−Wy

(y,Wy)

(y,Wy)
= s .

At present, specialists rather unanimously agree on a method found
independently, and using different arguments, by C. Broyden, R. Fletcher,
D. Goldfarb, D. Shanno:

W+ = W − sy>W +Wys>

(y, s)
+
[
1 +

(y,Wy)

(y, s)

] ss>
(y, s)

. (BFGS)

Remark 4.4. Suppose that, instead of W , one wants to compute M , aimed
at approximating f ′′. Then M will have to satisfy the so-called “dual” quasi-
Newton equation

(ii’) M+s = y.

Let now a quasi-Newton formula be written W+ = W + B(W, y, s); here
B(W, y, s) denotes the correction of W , for example (DFP) or (BFGS). Ob-
viously, setting M = W−1, the matrix M+ = M + B(M, s, y) (obtained by
an inversion of s and y) satisfies the dual quasi-Newton equation (ii’) and
approximates f ′′, just as W+ approximates (f ′′)−1. Thus, whenever a quasi-
Newton formula is invented, two such are obtained, mutually “dual”: one
for M and the other for W . For example, it can be shown that (DFP) and
(BFGS) formulae are mutually dual; said otherwise, if M = W−1, then

M+ = M +
yy>

(y, s)
− Mss>M

(Ms, s)
(BFGS’)

gives the inverse of W+ obtained by (BFGS). ut

Since a matrix is symmetric positive definite if and only if its inverse is so,
positive definiteness of (DFP) or (BFGS) are equivalent properties. Another
writing of (DFP) is

M+ =
[
I − ys>

(y, s)

]
M
[
I − sy>

(y, s)

]
+

yy>

(y, s)
. (4.1)
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Indeed, developing the product gives

M+ = M − ys>M +Msy>

(y, s)
+

(Ms, s)

(y, s)2
yy> +

yy>

(y, s)

which is the dual of (BFGS).
With these preliminaries, the following result shows that (BFGS) and

(DFP) preserve positive definiteness, providing that (y, s) be positive:

Theorem 4.5. Suppose M is positive definite. Then (y, s) > 0 is a necessary
and sufficient condition for (4.1) to give a positive definite matrix M+.

Proof. First, M+ is obviously symmetric if M is so (compute M>
+ ). Also,

observe from the quasi-Newton equation M+s = y that the condition is
necessary.

Now take u 6= 0 and set v = u− (y, u)s/(y, s). Then

(M+u, u) = (Mv, v) +
(y, u)2

(y, s)

which is a sum of two nonnegative terms. If the first is nonzero, we are done.
Otherwise v = 0 (M is positive definite); hence u = (y, u)s/(y, s) is collinear
to s; in addition, the coefficient (y, u) is nonzero (otherwise u would be 0).
Altogether, the second term in the expression of (M+u, u) is nonzero; it is
actually positive by assumption. ut

Note that the property (y, s) > 0 is automatically guaranteed by Wolfe’s
line-search (§3.4); a curious “a posteriori” motivation.

Remark 4.6. The one-dimensional case is interesting: if n = 1, the quasi-
Newton equation defines a uniqueW+ orM+ (either one is a positive number)
by W+ = s/y. Starting from two initial iterates x1 and x2, the algorithm
reduces to

xk+1 = xk −
xk − xk−1

gk − gk−1
gk

known as the secant method, or “regula falsi”: the tangent to the graph of
g (which is used in Newton’s method) is replaced by the secant between
x and x−. Locally, this method converges Q-superlinearly and its order of
convergence (the speed at which qk converges to 0) can even be explicitly
given: it can be shown that |x+−x∗|/|x−x∗|r is bounded, where r = (

√
5 +

1)/2 is the golden section.
The opposite case (big n) also deserves comment. A drawback of Newto-

nian methods (including the present quasi-Newton variant) is the necessity
of storing an n × n matrix (what if n = 105!?). Yet, as long as k is small,
computing the direction dk of a quasi-Newton method needs only 2k vectors
si and yi, i = 1, . . . , k. In the case of a really large-scale problem, at least
a few iterations can be performed without computing explicitly the whole
matrix Wk: just develop the product Wkgk in terms of these k vector pairs.
This point will be seen in more detail in §5.6 and 6.3. ut



4.5 Global Convergence 57

4.5 Global Convergence

Basically, there exists one single theorem of global convergence, which con-
cerns BFGS.

When Wolfe’s line-search is used, Lemma 3.8 and Theorem3.9 suggest
that the whole issue is to bound the cosine between −dk and gk, i.e. the
condition number of Wk , or of Mk = W−1

k . This is the essence of the proof
of Theorem4.9 below. Note that it is not simple, since the condition number
has to involve the term (yk, sk) (see Theorem4.5), which in turn depends
on the line-search; the properties of BFGS formula and of Wolfe rule must
therefore interfere in the proof; they cannot be used separately as in §3.4.

First, we admit without proof the following preliminary result, to be read
with (BFGS’) in mind:

Lemma 4.7. For the BFGS formula approximating the Hessian:

M+ = M +
yy>

(y, s)
− Mss>M

(Ms, s)
,

the trace and determinant of M+ are given by:

trM+ = trM +
|y|2

(y, s)
− |Ms|2

(Ms, s)
and detM+ = detM

(y, s)

(Ms, s)
.

If f is convex and has a gradient locally Lipschitzian with constant L (i.e.
|y| 6 L|s|), then |y|2 6 L(y, s). ut

For the proofs below, we recall that the arithmetic mean is greater than
the geometric mean: if a1, . . . , ak are k positive numbers, then

(
1

k

k∑

i=1

ai

)k

>

k∏

i=1

ai .

The cosine between dk and −gk is given by the extreme eigenvalues of Mk;
roughly speaking, the largest is the trace and the smallest is the determinant.
We start with bounding these two quantities.

Lemma 4.8. Suppose f is convex and has a locally Lipschitzian gradient.
If M1 is positive definite and if (yk, sk) > 0 at each iteration, the BFGS
formulae satisfy

trMk+1 6 Ak , (4.2)

detMk+1 > c

k∏

i=1

|gi|2(yi, si)

C(gi, si)2
, (4.3)

where A, c and C are positive constants.
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Proof. Lemma 4.7 provides an immediate bound on the trace of Mk:

trM+ 6 trM +
|y|2

(y, s)
6 trM + L

and (4.2) is easily deduced by summation (knowing that trM1 is a constant).
Calling c the determinant of M1, we first have (Lemma4.7):

detM+ = c

k∏

i=1

(yi, si)

(Misi, si)
. (4.4)

Besides, take again the trace-relation:

trM − trM+ + L >
|Ms|2

(Ms, s)

and, by summation,

trM1 + kL >

k∑

i=1

|Misi|2
(Misi, si)

(we have neglected the positive term trM+). Knowing that trM1 is a con-

stant, we can therefore write C >
1
k

∑ |Misi|2
(Misi,si)

and we have the same bound

on the geometric mean:

Ck
>

k∏

i=1

|Misi|2
(Misi, si)

.

Multiply this last inequality by (4.4):

Ck detM+ > c
k∏

i=1

|Misi|2(yi, si)

(Misi, si)2
;

the result comes, dividing by Ck and using Misi = −tigi. ut

We are now in a position to give the global convergence result:

Theorem 4.9. Suppose f is convex with a Lipschitzian gradient on the slice
{x : f(x) 6 f(x1)}. Then the BFGS algorithm with Wolfe’s line-search and
W1 positive definite satisfies:

– either the objective function tends to −∞,
– or lim inf |g(xk)| = 0.

Proof. Take again (4.3) and bound the right-hand side. For the numerator,
the second half of Wolfe’s rule gives
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(yi, si) = (gi+1, si)− (gi, si) > (m2 − 1)(gi, si) = (1−m2)(−gi, si) ,

which eliminates one of the two terms (gi, si) in the denominator. As for the
second term, the descent-test gives

f(xi+1)− f(xi) 6 m1(gi, xi+1 − xi)

i.e.

(−gi, si) 6
1

m1
[f(xi)− f(xi+1)] .

In summary, we therefore obtain

detM+ ≥ cαk

∏k
i=1 |gi|2∏k

i=1[f(xi)− f(xi+1)]
,

where α is the constant m1(1−m2)/C. Use again the inequality of arithmetic
and geometric means:

detM+ > cαk

∏k
i=1 |gi|2(

1
k

∑k
i=1[f(xi)− f(xi+1)]

)k
= c

[
αk

f(x1)− f(x+)

]k k∏

i=1

|gi|2 .

If f is bounded from below, α/[f(x1) − f(x+)] > β > 0; compare this
inequality with (4.2) using again the means-inequality:

c(βk)k
k∏

i=1

|gi|2 6 detM+ ≤
(

1

n
trM+

)n

6

(
1

n
Ak

)n

≤ Pkn ;

here, P is the constant (A/n)n. If |gi|2 > ε > 0 for all i, then c(βεk)k 6 Pkn,
which is impossible when k → +∞ (an exponential grows faster than a
polynomial). ut

4.6 Local Convergence: Generalities

Remember that Newtonian methods are designed to converge fast, hence the
need for this section. Yet, studying the local convergence of quasi-Newton
methods is intricate, and we will pass rapidly over some details particularly
tedious.

A first result gives a general criterion for superlinear convergence, when
solving g(x) = 0: |g| must decrease infinitely faster than the move from one
iterate to the next.

Lemma 4.10. Consider a mapping g from R
n to R

n and let a sequence {xk}
tend to x∗ such that g(x∗) = 0. Assume that g′ is continuous in a neighbor-
hood of x∗, and that g′(x∗) is invertible. Then

qk :=
|xk+1 − x∗|
|xk − x∗|

→ 0 ⇐⇒ |g(xk+1)|
|xk+1 − xk|

→ 0 .



60 4 Newtonian Methods

Proof. We use again the abridged notation x and x+ (which is possible thanks
to the Markovian character of Q-convergence). Call G the mean-value of g ′

between x+ and x∗, so that

g(x+) = 0 +G(x+ − x∗).

By continuity, G is bounded and “uniformly invertible”: there exist two pos-
itive numbers ` and L such that, for k large enough (hence x+ close enough
to x∗),

`|g+| 6 |x+ − x∗| 6 L|g+|
(L is the norm of G−1, ` is the inverse of the norm of G).

Dividing the second inequality by |x+−x| and using the triangle inequal-
ity:

L|g+|
|x+ − x|

>
|x+ − x∗|
|x+ − x|

≥ |x+ − x∗|
|x+ − x∗|+ |x− x∗|

=
q

1 + q
.

Hence, if |g+|/|x+ − x| tends to 0, q tends to 0: the condition is sufficient.
Conversely, write

|g+|
|x+ − x|

=
|g+|

|x+ − x∗|
|x+ − x∗|
|x− x∗|

|x− x∗|
|x+ − x|

.

The first quotient is smaller than 1/`. The second is q, which tends to 0 by
assumption. It suffices to show that the third is bounded. But its inverse is

|x+ − x|
|x− x∗| >

|x− x∗| − |x∗ − x+|
|x− x∗| = 1− q ,

which is bounded from below, for example by 1
2 , when q → 0. ut

Let us come back to our quasi-Newton method xk+1 = xk−tkM−1
k gk and

let us admit for the moment that tk = 1 for large k. In view of Theorem4.1,
superlinear convergence can be expected if the matrix Mk − f ′′(xk) tends
to 0. However this is far too demanding, since the behaviour of M−1

k has an
importance only on gk, a subspace of dimension 1:M−1

k can behave arbitrarily
on the rest of R

n, the algorithm will not even notice it. In fact, there is a
remarkable criterion, said of Dennis and Moré, which refines Theorem4.1.

Theorem 4.11 (criterion of Dennis and Moré). Let the nonlinear func-
tion g from R

n to R
n and the sequence {xk} satisfy the assumptions of

Lemma 4.10. Suppose in addition that {xk} is generated with the help of ma-
trices Mk by the formula

xk+1 = xk −M−1
k gk .

Then xk converges Q-superlinearly (to x∗) if and only if

vk := [Mk − g′(x∗)]
xk+1 − xk

|xk+1 − xk|
→ 0 .
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Proof. By definition,

[M − g′(x∗)](x+− x) = −g− g′(x∗)(x+ −x) = g+− g− g′(x∗)(x+ −x)− g+.

Call G the mean-value of g′ between x and x+, i.e. g+ − g = G(x+ − x),
which gives

[M − g′(x∗)](x+ − x) = [G− g′(x∗)](x+ − x)− g+ .

We deduce the two inequalities

|g+|
|x+ − x|

6 |G− g′(x∗)|+ |v| and |v| 6 |G− g′(x∗)|+ |g+|
|x+ − x|

which proves the result, because |G− g′(x∗)| → 0 by continuity. ut

4.7 Local Convergence: BFGS

Theorem4.11 gives a Q-superlinear convergence criterion for quasi-Newton
matrices in methods without line-search (we have assumed tk = 1). Here,
superlinear convergence of a quasi-Newton algorithm will be established in
two steps:

– to show that the matrices Mk satisfy the criterion of Dennis-Moré,

– to show that the stepsize tk = 1 eventually satisfies Wolfe’s rule.

Recall that, when studying local convergence, xk is a priori supposed to
tend to a minimum point x∗ of f , at which additional assumptions can be
accepted.

The proofs below make an extensive use of the angle between the gradient
and the direction:

cos θk :=
−(gk, dk)

|gk| |dk|
=
−(gk, sk)

|gk| |sk|
=

(Mksk, sk)

|Mksk| |sk|
.

To start, we establish a lemma concerning the line-search, which completes
Theorem3.9.

Lemma 4.12. Let an algorithm using Wolfe’s rule generate a sequence {xk}
converging to a point x∗. Suppose that, in a neighborhood of x∗, f is strongly
convex and g is Lipschitzian, with respective constants ` and L. Then, for xk

close enough to x∗,

1−m2

L
|g(xk)| cos θk 6 |sk| ≤ 2

1−m1

`
|g(xk)| cos θk .

Proof. The left inequality is nothing other than Argument 2 in Theorem3.9.
For the right inequality, strong convexity gives



62 4 Newtonian Methods

f(x) + (g, s) +
1

2
`|s|2 6 f(x+)

which, added to the descent test f(x+) 6 f(x) +m1(g, s), gives:

(g, s) +
1

2
`|s|2 6 m1(g, s) ,

or
1

2
`|s|2 ≤ (m1 − 1)(g, s) = (1−m1)|g| |s| cos θ . ut

To continue, we need a key-result, expressing that cos θk stays away from
0 for a non-negligible number of iterations.

Lemma 4.13. Under the hypotheses of Lemma 4.12, suppose that the algo-
rithm uses the BFGS direction. Then there exists γ > 0 such that, for all k,
cos θi > γ for at least half of the indices i = 1, . . . , k.

Proof. Start from Lemma 4.8. Using in (4.3) the second half of Wolfe’s rule
(yi, si) > (1−m2)(−gi, si), we have for a certain constant D

k∏

i=1

|gi|2
(−gi, si)

6 Dk detM+ 6 Dk
( 1

n
trM+

)n

6 Dk
( 1

n
Ak
)n

.

Here, we have used successively the means-inequality, and the bound (4.2) of
Lemma 4.8. By definition of θi and from Lemma 4.12, this gives

k∏

i=1

1

cos2 θi
6

(
2
1−m1

`
D
)k( 1

n
Ak
)n

6 Ek

for a certain constant E. We see that, on the average, the cos θ’s are far from
0. The rest is purely technical and is left to the reader. ut

Lemma 4.14. Under the hypotheses of Lemma 4.13, the series
∑ |xk − x∗|

converges.

Proof. Starting from the descent-test, use successively Lemmas 4.12 and 2.13:

f(x)− f(x∗) > f(x+)− f(x∗) +m1|g| |s| cos θ

> f(x+)− f(x∗) +
m1(1−m2)

L
|g|2 cos2 θ

> f(x+)− f(x∗) +m1(1−m2)
`

2L
cos2 θ[f(x)− f(x∗)] .

We deduce

f(x+)− f(x∗) 6

(
1−m1(1−m2)

`

2L
cos2 θ

)
[f(x)− f(x∗)] .
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This inequality holds at each iteration. In view of Lemma4.13, we therefore
can write for at least half of the iterations between 1 and k:

f(xi+1)− f(x∗) 6 κ[f(xi)− f(x∗)] for a certain κ < 1.

Since, on the other hand, {f(xi)} is decreasing, we see that f(xk) converges
R-linearly to f(x∗). From strong convexity (Remark 2.14), xk also converges
R-linearly to x∗: {|xk−x∗|} is a geometric sequence, whose sum is finite. ut

Having this last result, we can at last show that the BFGS matrix allows
superlinear convergence. Of course, we need for this a second-order assump-
tion on f ; indeed, we need “slightly more” than the mere existence of f ′′(x∗)
(positive definite).

Theorem 4.15. Assume that the BFGS algorithm with Wolfe’s line-search
converges to x∗, in a neighborhood of which f is strongly convex and has a
Lipschitzian Hessian. Then the criterion of Dennis-Moré of Theorem 4.11 is
satisfied.

Proof. First, it is easily checked that the hypotheses of Lemma4.12 (and
hence of Lemmas 4.13, 4.14) are satisfied: the series

∑ |xk − x∗| converges.
On the other hand, using again the notation x for xk, call G the mean-

value of f ′′ between x and x+: we have

y = Gs = f ′′(x∗)s+ [G− f ′′(x∗)]s .

The Lipschitz property gives rather easily

|G− f ′′(x∗)| 6 Cmax{|x− x∗|, |x+ − x∗|} ,
from which we can write that

|yk − f ′′(x∗)sk|
|sk|

6 Cmax{|x− x∗|, |x+ − x∗|} ,

which tends to 0 as fast as a convergent series (Lemma4.14).
Then comes a general result: this last property, in conjunction with BFGS

formula, guarantees the criterion of Dennis-Moré. The proof is just as tedious
as the previous ones, but much longer; it is not given. Its essence is to make
a change of variables, so that f ′′(x∗) becomes the identity matrix. Using
bounding techniques of the same type as in the preceding results, one then
shows that cos θk → 0, which is the desired property indeed (after the change
of variables, the negative gradient is Newton’s direction!) ut

To conclude, it remains to make sure that the stepsize tk = 1 is accepted
by (Wolfe’s) line-search; otherwise Theorem4.15 is killed. Thinking of the
matter, one realizes that Wolfe’s rule is just a filter which, given an initial
point x, accepts a candidate x+ = x+ s if and only if

f(x+) 6 f(x) +m1(g, x+ − x) and (g+, x+ − x) > m2(g, x+ − x) . (4.5)

Whether s is set to td, possibly with d = −Wg, is just a matter of notation.
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Theorem 4.16. Suppose f has a minimum point x∗ with a Hessian f ′′(x∗)
positive definite. Then there exist δ > 0 and ε > 0 such that: if |x− x∗| 6 δ,
then every x+ satisfying |x+ − x∗| 6 ε|x − x∗| is accepted by Wolfe’s rule,
providing that 0 < m1 <

1
2 and m2 > 0.

Proof. We use the notation M = f ′′(x∗). Multiplying by s = x+ − x the
development g(x) = M(x− x∗) + o(|x − x∗|), we obtain

(g, s) = (M(x − x∗), s) + (o(|x − x∗|), s)
= (M(x − x∗), x∗ − x) + (M(x− x∗), x+ − x∗) + (o(|x − x∗|), s) .

It is easy to see that |s| = O(|x − x∗|) when |x+ − x∗| = o(|x − x∗|); as a
result, we therefore have

(g, s) = −(M(x− x∗), x− x∗) + o(|x − x∗|2) . (4.6)

Now call ` > 0 and L the extreme eigenvalues of M . Add m1 times (4.6)
to the development

f(x) = f(x∗) +
1

2
(M(x− x∗), x− x∗) + o(|x − x∗|2)

to obtain

f(x) +m1(g, s) = f(x∗) + ( 1
2 −m1)(M(x− x∗), x− x∗) + o(|x − x∗|2)

> f(x∗) + ( 1
2 −m1)`|x− x∗|2 + o(|x− x∗|2) .

On the other hand,

f(x+) = f(x∗) + 1
2 (M(x+ − x∗), x+ − x∗) + o(|x+ − x∗|2)

6 f(x∗) + 1
2L|x+ − x∗|2 + o(|x+ − x∗|2)

6 f(x∗) + 1
2Lε

2|x− x∗|2 + o(|x+ − x∗|2) .

We therefore see by subtraction that the first half of (4.5) is satisfied if |x−x∗|
is small enough and if ε2 < 2(1/2−m1)`/L.

For the second half of (4.5), take again (4.6):

m2(g, s) 6 −m2`|x− x∗|2 + o(|x − x∗|2) .

On the other hand, write again (4.6) replacing x by x+ (check that there is
no problem with the o(·)):

(g+, s) = −(M(x+ − x∗), x+ − x∗) + o(|x− x∗|2)
> −L|x+ − x∗|2 + o(|x − x∗|2)
> −Lε2|x− x∗|2 + o(|x − x∗|2) .

We again see by subtraction that the second half of (4.6) is satisfied for
ε2 < m2`/L. ut



4.7 Local Convergence: BFGS 65

Piecing together all these results, we now realize that BFGS + Wolfe line-
search does converge superlinearly. For the reader’s convenience, we state the
summarizing theorem:

Theorem 4.17. Consider the BFGS algorithm with Wolfe’s line-search, used
with 0 < m1 <

1
2 and m1 < m2 < 1, the line-search being initialized with

t = 1 (at least after finitely many iterations). Assume that the generated
sequence {xk} converges to x∗ such that f ′(x∗) = 0, and in a neighborhood
of which f is strongly convex and has a Lipschitzian Hessian.

Then the convergence is superlinear:
|xk+1 − x∗|
|xk − x∗|

→ 0 (remember also

Remark 2.14).

Proof. Call Mk the matrix used at each iteration: {Mk} is given by (BFGS’),
say. From Theorem4.15,

[Mk − f ′′(x∗)]
xk+1 − xk

|xk+1 − xk|
→ 0

so that, from Theorem4.11,

xk −M−1
k gk − x∗

xk − x∗
→ 0 .

Thus, we can apply Theorem4.16: for k large enough, x+ := xk −M−1
k gk

is accepted by the line-search and we do have xk+1 = x+, which is infinitely
better than xk. ut

Bibliographical Comments
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[290]. We mention also the proof of [66], more elegant but requiring strong
convexity, even for global convergence; there the complete proof of Theo-
rem4.15 can be found. The second part of Lemma 4.7 is proved and explained
in [196; §E.4]. It is amusing to mention that Theorem4.9 is called Lemma
by Powell in his original preprint; he was reluctant to publish [290], wanting
to get rid of the convexity assumption, which he found artificial. Powell has
also shown in [289] the global convergence of DFP; there, the line-search is
assumed exact, an assumption which seems necessary: [294].
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The criterion of Dennis-Moré (Theorem4.11) is given in [104]. To prove
first R-linear convergence (Lemma 4.14), and then Q-superlinear convergence
(Theorem4.15) may seem artificial – not mentioning other proofs in §4.7. Yet,
this is the only known way, since 1976. All this demonstrates enough how hard
is the convergence study of quasi-Newton (global as well as local).



5 Conjugate Gradient

The conjugate gradient method is also aimed at accelerating the methods
of Chap. 2. Its first motivation is to solve in n iterations a linear system
with symmetric positive definite matrix (or, equivalently, to minimize in n
iterations a quadratic strongly convex function on R

n), without storing an
additional matrix, without even storing the matrix of the system. In fact,
to solve Ax + b = 0 (A symmetric positive definite), the conjugate gradient
method just needs a “black box” (a subroutine) which, given the vector u,
computes the vector v = Au. Naturally, this becomes particularly interesting
when, while n is large, A is sparse and/or enjoys some structure allowing
automatic calculations. Typical examples come from the discretization of
partial differential equations.

5.1 Outline of Conjugate Gradient

Take again our general problem: we want to minimize a function f , having on
hand the “black box” (simulator) computing f(x) and g(x) = f ′(x). Starting
from the initial point x1, each iteration computes a direction, and then makes
a line-search. At the current iteration k, a number of gradients g1, . . . , gk

and of directions d1, . . . , dk−1 have been computed from the beginning. Then
consider the subspace Uk spanned by all of these vectors:

Uk :=
{
v =

∑k
i=1 αigi +

∑k−1
i=1 βjdj : α ∈ R

k, β ∈ R
k−1
}

;

this definition is valid for k > 1 only, U1 being the subspace spanned by g1.
In any iterative method, it is normal to seek the next iterate with the help

of the information collected about the problem to solve. Here, we seek the
next iterate in the affine manifold Vk containing xk and parallel to Uk. Said
otherwise: xk+1 will have the form xk + u with u ∈ Uk, or equivalently the
direction dk is taken in Uk. The conjugate gradient method is then defined
as follows.

Axiom We assume that f is quadratic elliptic and we take xk+1 minimizing
f in Vk = xk + Uk. ut
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Thus, xk+1 is the best possible iterate, given the information collected at
the kth iteration.

Remark 5.1. A generic point in Vk is x(α) = xk +
∑
αiui, where the ui’s

form a basis of Uk. Then consider the function h(α) = f(x(α)); we have

∂h

∂αi
(α) =

n∑

j=1

∂f

∂xj
(x(α))

∂xj

∂αi
(α) = (f ′(x(α)), ui) .

To say that x(α) minimizes f in Vk is to say that α minimizes h, or that the
gradient of f at x(α) is orthogonal to each ui. ut

In the following, we will assume that x2, . . . , xk satisfy the above axiom;
we will also assume that no gi is 0 (otherwise we are done: the corresponding
xi is already optimal). The subspace spanned by a set B will be denoted by
[B]; for example Uk = [d1, . . . , dk−1, g1, . . . , gk].

Theorem 5.2. With this system of notation, the three subspaces

U ′
k := [d1, . . . , dk−1, gk] , U ′′

k := [g1, . . . , gk] , U ′′′
k := [d1, . . . , dk]

coincide with Uk (knowing that we set U ′
1 = U1 = [g1]).

Proof. By definition and by construction, U1 = U ′
1 = U ′′

1 = U ′′′
1 ; suppose

recursively that Uk−1 = U ′
k−1 = U ′′

k−1 = U ′′′
k−1. The key is to show that both

gk and dk lie outside this subspace.
Knowing that gk 6= 0, we have f(xk) > f(xk − tgk) > f(xk+1) for t > 0

small enough (the second inequality comes from the axiom, using gk ∈ Uk).
This implies xk+1 6∈ Vk−1 (otherwise xk would not minimize f in Vk−1); hence
dk 6∈ Uk−1 and certainly has a nonzero component along gk:

dk = αkgk + u with u ∈ Uk−1 and αk 6= 0

hence

gk =
dk

αk
− u

αk
with

−u
αk
∈ Uk−1 .

We conclude that the following operations produce the same subspace:
– to construct U ′′′

k by appending dk to Uk−1 = U ′′′
k−1;

– to construct U ′′
k by appending gk to Uk−1 = U ′′

k−1;
– to construct Uk by appending dk and gk to Uk−1;
– to construct U ′

k by appending gk to U ′′
k−1 = U ′′′

k−1. ut
According to Remark 5.1, we already know that the gradients are mutu-

ally orthogonal: gk is orthogonal to every preceding gradient (and to every
preceding direction too). At each iteration k, it suffices to append to Uk either
dk+1 or gk+1; appending both is useless, the dimension of the subspace Uk

will increase by one anyway. An immediate consequence is that the algorithm
has to terminate after n iterations at most; this demonstrates well enough
the interest of this strategy.
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5.2 Developing the Method

Let us write our quadratic function in the form f(x) = 1
2 (Ax, x) + (b, x) + a,

so that its gradient is g(y) = Ay+b = g(x)+A(y−x). Our problem is now to
find dk issued from xk and pointing to the minimum of f in Vk; afterwards,
there will be no difficulty to find xk+1 by an exact minimization along dk.

Theorem 5.3. Let f be quadratic elliptic and suppose that xk minimizes f
in Vk−1. Then the following two statements are equivalent:

– the direction dk issued from xk points to the minimum of f in Vk,

– (dk , Adi) = 0 for i = 1, . . . , k − 1.

Proof. Use again Remark 5.1: the first statement means that there is t ∈ R

such that g(xk + tdk) = gk + tAdk is orthogonal to every generator of Uk.
Using Uk = U ′

k, this is to say that the following system in t is compatible:

(gk, di) + t(Adk , di) = 0 i = 1, . . . , k − 1
(gk, gk) + t(Adk, gk) = 0 .

By the last equation, t cannot be 0 (because gk 6= 0). On the other hand,
every (gk, di) is 0 by assumption (note that dk−1 ∈ Uk−1 by construction of
dk−1, the other di’s are in Uk−1 by construction of Uk−1). For the system to
be compatible, it is therefore necessary to have

(Adk , di) = 0 i = 1, . . . , k − 1 .

Conversely, suppose this last property is true, we have to show that the
same system as before is compatible, i.e. (gk, Adk) 6= 0 (all other equations
are trivially satisfied). But dk is a combination of d1, . . . , dk−1, gk. If we had
simultaneously

(Adk, d1) = · · · = (Adk , dk−1) = (Adk, gk) = 0

we would obtain by linear combination (Adk, dk) = 0, impossible. ut

Remark 5.4. By symmetry, we therefore have (di, Adj) = 0 for i 6= j. The
di’s are then said to be conjugate with respect to the matrix A, hence the
name of the method. Remember that the gradients are mutually orthogonal,
i.e. they are conjugate with respect to the identity matrix.

Besides, since ti 6= 0 (see the proof of Theorem5.3), we also have
(dk, gi+1 − gi) = 0 for i = 1, . . . , k − 1. Geometrically, dk has the same
scalar product with every gradient till the kth: dk is orthogonal to the affine
hull of these gradients. ut
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5.3 Computing the Direction

There remains to compute explicitly dk ∈ Uk. For this, it is convenient to
generate Uk by the gradients (Uk = U ′′

k ), expressing the direction in the form∑
αjgj . The αj ’s are computed by expressing that (dk, gi) is a constant,

which gives the linear system

(dk, gi) =

k∑

j=1

αj(gi, gj) = bk i = 1, . . . , k ;

here, the scalar unknown bk is a multiplicative factor which plays no role,
since we just want a direction. This system is diagonal and its solution is
straightforward: αj = bk/|gj |2. Actually, the following recursive computation
is more handy:

Theorem 5.5. The sequence {dk} of directions is given by:

d1 = −g1 for k = 1 , then

dk+1 = −gk+1 + ckdk with ck =
|gk+1|2
|gk|2

.

Proof. We case of d1 is clear. For k > 1, we have just seen that dk =
bk
∑k

j=1 gj/|gj |2. Then choose bk = −|gk|2, hence:

dk = −gk − |gk|2
k−1∑

j=1

gj

|gj |2
= −gk − |gk|2

dk−1

bk−1
= −gk + |gk|2

dk−1

|gk−1|2
. ut

Now for the stepsize: we must minimize f along dk, i.e. make an exact
line-search. With a quadratic f , this is straightforward: solve for t

0 = (g(xk + tdk), dk) = (gk + tAdk, dk) = (gk, dk) + t(Adk, dk)

and obtain tk = − (gk, dk)

(Adk, dk)
.

5.4 The Algorithm Seen
as an Orthogonalization Process

Forget now the minimization aspect, and consider a problem from linear
algebra. Let A be a given symmetric positive definite matrix, g1 a given
vector. We want to construct two sequences {gk} and {dk} by the formula

gk+1 = gk + tkAdk , dk+1 = −gk+1 + ckdk

and we want to have, for i 6= j,

(gi, gj) = 0 and (di, Adj) = 0

(the connection with the previous sections is obvious).
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Theorem 5.6. Just take d1 = −g1, then

tk = − |gk|2
(gk, Adk)

, ck =
(Adk , gk+1)

(Adk , dk)

and stop as soon as gk+1 = 0.

Proof. Suppose recursively that the desired properties hold until order k:

gk 6= 0 , dk 6= 0

and (if k > 1),

(gk, gi) = 0 , (dk, Adi) = 0 i = 1, . . . , k − 1 .

We need to establish these properties at the order k + 1.
First observe that (dk , Adk) > 0, hence ck exists; tk as well, because: first,

(g1, Ad1) = −(g1, Ag1) < 0, and then

(gk, Adk) = (−dk + ck−1dk−1, Adk) = −(dk, Adk) < 0 .

Now gk+1 is orthogonal to the previous gradients. Indeed (gk+1, gk) = 0
by the choice of tk. Then, for i < k (if k > 1),

(gk+1, gi) = (gk, gi) + tk(Adk , gi) = tk(Adk , gi) .

If i = 1 OK. Otherwise we obtain (gk+1, gi) = tk(Adk,−di + ci−1di−1) = 0
from the recursion assumption.

Then dk+1 is conjugate to the previous directions. Indeed (dk+1, Adk) = 0
by the choice of ck; and for i < k (if k > 1),

(dk+1, Adi) = −(gk+1, Adi) + ck(dk, Adi)

= −(gk+1, Adi) = −(gk+1,
gi+1 − gi

ti
)

(note that ti 6= 0) which is 0 from the first part of the proof.
Finally dk ∈ U ′′′

k = U ′′
k by definition (Theorem5.2). From the first

part of the proof, gk+1 ⊥ U ′′
k . Therefore (gk+1, dk) = 0 and we conclude

(gk+1, dk+1) = −|gk+1|2 6= 0. ut

Remark 5.7. This proof reveals the key-elements of the algorithm:

– the choice of tk and of ck simply guarantees conjugacy of the last two pairs
of vectors: (gk+1, gk) = (dk+1, Adk) = 0;

– for the preceding pairs, the recursion is transmitted by itself from k to k+1
without any other assumption;

– nevertheless, taking d1 = −g1 is necessary to start the recursion (gk+1, g1) =
tk(Adk , g1) = 0. ut
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Corollary 5.8. With the notation of §5.1, suppose that g1 has the form g1 =
Ax1 + b. In the algorithm above, construct xk+1 = xk + tkdk. The conjugate
gradient method is obtained; in particular, gk+1 ⊥ Uk.

Proof. Everything is rather clear: the strictly convex function f has a unique
minimum point xk+1 in Vk . The sequence {xk} constructed by conjugate
gradient is unambiguously defined. In view of Theorem5.3, this sequence can
also be constructed as in Theorem5.6. ut

Remark 5.9. Uniqueness of the sequence {xk} implies in particular that
ck and tk are in turn defined unambiguously; yet, Theorem5.6 gives seem-
ingly different values for tk and ck (see Theorem5.5 and the expression
−(gk, dk)/(dk, Adk) of the optimal stepsize). We leave it as an exercise to
check that the various orthogonality relations reconcile all of these different
values. ut

5.5 Application to Non-Quadratic Functions

In addition to the initial motivation of conjugate gradient, Theorems 5.5, 5.6
give an interesting way of computing the direction, in a general descent algo-
rithm. In view of the preceding developments, the following descent scheme
can be applied to a general (non-quadratic) function:

Algorithm 5.10 (Nonlinear conjugate gradient).

Step 0 (Initialization). x1 ∈ R
n and ε > 0 are given; set k = 1.

Step 1 (Stopping test). Compute gk = g(xk); if |gk| 6 ε stop.
Step 2 (Computing the direction). If k = 1 set dk = −gk;

otherwise compute ck−1 and dk = −gk + ck−1dk−1.
If (dk, gk) < 0 go to Step 3. Otherwise set dk = −gk.

Step 3. Line-search along dk to obtain tk > 0.

Step 4 (Loop). Set xk+1 = xk + tkdk; increase k by 1 and go to Step 1. ut

At Step 2, f is pretended to be quadratic and the direction is computed
accordingly. This direction is then less “Markovian” than the pure gradient:
it depends on the preceding information, mimicking what is done in quasi-
Newton methods. The direction thus obtained is “restarted” on the gradient
if it appears to be uphill; note, however, that this would never happen if the
line-searches were exact, since in this case

(dk, gk) = (−gk, gk) + ck−1(dk−1, gk) = −|gk|2 .

Remark 5.11. Of course, exact line-searches are impossible in the non-
quadratic case. In a (nonlinear) conjugate-gradient context, some comments
can be made about the line-search.
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– First, it can be considered as being a particular instance of the general
problem studied in Chap. 3;

– but one can consider that the one-dimensional minimization of f is an
important thing in the development of conjugate gradients (we used con-
tinually the property (d, g+) = 0);

– however, this argument is not completely clear, since conjugacy has so little
meaning in the non-quadratic case.

Indeed the question is still controversial. . . and probably pointless, as will
be seen later in §§5.6, 6.3. ut

Consider now the question of computing c in Algorithm5.10. Two possible
values were given in Theorems5.5 and 5.6. For example, we can simply choose
ck−1 = |gk|2/|gk−1|2, which results in the so-called Fletcher-Reeves method
(F-R). However, this technique is too heavily based on the quadratic character
of the objective function and on the starting axiom: not even speaking of exact
line-searches, minimizing f (non-quadratic) in the manifold Vk is now out of
question. Nevertheless, the mean-value formula says that

g(xk+1) = g(xk) + tkAkdk

where Ak is the average Hessian between xk and xk+1:

Ak =

∫ 1

0

f ′′(xk + stkdk)ds .

Extrapolating the proof of Theorem5.6, it can be thought (a dary thought,
indeed) that the most important thing is to conjugate at least dk and dk+1

with respect to Ak, which will occur if we take ck = (Akdk, gk+1)/(Akdk , dk).
But Ak is unknown! The following result is therefore used:

Theorem 5.12. With Ak as above, (dk, Akdk+1) = 0 providing that

(i) ck =
(gk+1 − gk, gk+1)

|gk|2
and

(ii) the (k − 1)st and kth line-searches are exact.

Proof. It suffices to show that the value of ck given in Theorem5.6 gives the
present expression. By definition of Ak,

(Akdk, gk+1)

(Akdk, dk)
=

(gk+1 − gk, gk+1)

(gk+1 − gk, dk)
.

If tk is optimal, then (gk+1, dk) = 0 and the denominator is −(gk, dk); but if
tk−1 is optimal, then (gk, dk) = (gk,−gk + ck−1dk−1) = −|gk|2. ut

The value ck = (gk+1− gk, gk+1)/|gk|2 is called the Polak-Ribière formula
(P-R). The comparative merits of both formulae (F-R and P-R) give birth
to a paradox, which is not uncommon in applied mathematics, and which
illustrates some of the difficulties encountered in this science.
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(i) It can be proved that Fletcher-Reeves converges globally (the argument
is that of Theorem3.9: the cosine of the angle between d and g does not
tend to 0 too fast).

(ii) A counter-example exists, where Polak-Ribière does not converge, in the
sense that no cluster point of the sequence {xk} is stationary (however
we mention that the global convergence of P-R can be proved if f is lo-
cally elliptic: the cosine is bounded from below by the condition number
of f ′′).

(iii) Yet, it is well-known that P-R behaves much better (i.e. converges per-
ceivably faster) than F-R, which is no longer used by anybody. Alto-
gether, P-R is much better in practice than F-R, while the contrary
prevails theoretically.

Luckily, the next section suggests (and §6.3 confirms) that this difficulty
has little importance anyway: indeed there exists a much better motivated
formula, which in addition lends itself to fruitful generalizations.

5.6 Relation with Quasi-Newton

Consider again quasi-Newton methods of Chap. 4, where the directions were
given by dk = −Wkgk. It can be shown that most conceivable quasi-Newton
formulae produce directions mutually conjugate in the “perfect” case, i.e.
when f is quadratic and the line-searches are exact. These methods therefore
also consist in minimizing a quadratic function in the manifold Vk cumulating
all past information; a connection is thus established between Chaps. 4 and 5.
Notwithstanding, the real motivation of quasi-Newton (to approximate the
Hessian matrix) is much richer than minimizing a quadratic function. Ac-
tually, a much more interesting connection exists between the two chapters,
which has important numerical consequences.

The next result uses notation from Chap. 4: s = xk+1−xk, y = gk+1− gk

and the subscript “+” denotes the (k + 1)st iterate.

Theorem 5.13. At iteration k, suppose the line-search is exact: (g+, d) = 0,
and define the matrix

W+ = I − syT + ysT

(y, s)
+
[
1 +

|y|2
(y, s)

] ssT

(y, s)
.

Then the direction d+ := −W+g+ is d+ = −g+ +
(y, g+)

(y, d)
d.

Proof. Trivial: (g+, s) = t(g+, d) = 0, hence

d+ = −g+ + (y, g+)
s

(y, s)
+ 0− 0 = −g+ + (y, g+)

d

(y, d)
. ut
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This establishes a close link with Chap. 4:

– The matrix W+ defined in this theorem is nothing other than BFGS after
a reinitialization of W to the identity. Said otherwise: W+ is the result of
the BFGS formula (§4.4) applied one time to the identity, with the most
recent pair {y, s}; while a standard quasi-Newton matrix is the result of the
formula applied k times to the identity, with the sequence of pairs {si, yi},
i = 1, . . . , k. Remember the end of Remark 4.6.

– The “poor man” quasi-Newton direction of Theorem5.13 is just a conjugate-
gradient direction, namely that of Theorem5.6.

Note that these relations are valid even when f is not quadratic: it suffices
that the line-search be exact at the present kth iteration. Now, an exact line-
search cannot be tolerated in the non-quadratic case, but after all, it can
perfectly be avoided: considering that the formulae from Theorems5.5 and 5.6
are hardly justified in the non-quadratic case, they can simply be forgotten,
to the advantage of the little more complicated formula of Theorem5.13. It
is an appropriate time to remember an important property of quasi-Newton
formulae:

Theorem 5.14. If (g+, d) > (g, d), the direction d+ of Theorem 5.13 is a
descent direction.

Proof. Immediate consequence of Theorem4.5: here M = I is positive defi-
nite, and the assumption guarantees (y, s) > 0. It follows that M+ and W+

are positive definite. ut

Then a straightforward idea is to define a variant of Algorithm 5.10: to
compute the direction of Step 2 as in Theorem5.13 (no reinitialization is
necessary), and to use in Step 3 Wolfe’s line-search (§3.4) which, we recall,
guarantees (g+, d) > (g, d).

Thus, conjugate gradient is helped by quasi-Newton theory; but the con-
verse is also true. This will be seen in §6.3, where the results above will
even be enhanced, to define methods combining the two advantages: mod-
erate memory requirement of conjugate gradient, and fast convergence of
quasi-Newton. We will also see in §6.4 another aspect of the help brought by
conjugate gradient to Newtonian methods: to allow a cheap resolution of the
linear system f ′′d = −g.

Bibliographical Comments

Conjugate gradient is due to Hestenes et Stiefel in the paper [193] which,
despite its age, still contains a lot of material worth meditating. The more
recent book of Hestenes [192] deserves the same comment. Remembering that
it is really a method belonging to the realm of linear algebra, [170] is a must.
In particular, this last reference contains some material on preconditioned
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conjugate gradient, an important technique to solve large linear systems of
equations.

For the non-quadratic case, the implementation considered best is [329].
The convergence proof of Fletcher-Reeves can be found in [376], and [294]
contains a counter-example for which Polak-Ribière does not converge. For
these questions, we mention [153], where a convergent variant of Polak-Ribière
is proposed; its basic idea is to restart on the gradient when ck 6 0; besides,
[2] proposes a variant of Wolfe’s line-search, well suited to Fletcher-Reeves:
global convergence is conserved and restarts are not necessary.

The formula given in Theorem 5.13 is commonly attributed to Perry, see
[328].



6 Special Methods

This chapter is mostly devoted to methods which, although less “universal”
than the preceding, are useful in a good number of cases. The first one (trust-
region) is actually extremely important, and might supersede line-searches,
sooner or later. The other methods deal with the direction; they are either
classical (Gauss-Newton) or recent (limited-memory quasi-Newton, truncated
Newton) and apply only in some well-defined subclasses of problems. The
chapter also outlines the standard approach to solve quadratic optimization
problems (item 2.2.2 in the classification of §1.1.2).

Up to now, we have extensively used the notation d, a minimization itera-
tion being done according to the formula x+ = x+ td. In the present chapter,
the concept of direction tends to disappear; most of the time, we will denote
by h a step between two points such as x and x+: x+ = x+ h.

6.1 Trust-Regions

Our first method is a variant of line-searches, particularly well-suited in a
Newtonian context; it appeared in the context of nonlinearly constrained
optimization. Take again the situation of Chap. 3 in a Newtonian context
(Chap. 4). Starting from the current iterate x = xk, one wishes to go to a
supposedly excellent estimate xN , obtained by the minimization of a model
representing f in a neighborhood of x. Call f̃ this model; we have seen so far
quadratic models, say

f̃(x + h) := f(x) + (g, h) +
1

2
(Mh, h) ; (6.1)

here M = Mk can be the Hessian f ′′(xk), or a quasi-Newton approximation,
or the Gauss-Newton approximation as in §6.2; in the next chapters, we will
see situations where f̃ is not quadratic. Anyhow, we set xN = x+hN , where
hN minimizes f̃(x+ ·).

The fact of interest here is that the desired iterate xN may not be conve-
nient, and must perhaps be corrected; in all preceding chapters, this was the
task of the line-search. Most often, xN is not convenient because xN−x = hN

is too large; in a Newtonian method, for example, this could occur when
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– the model is valid only for small h, and we have f(xN ) > f(x),

– and/or the Hessian M = f ′′(x) is not positive definite, which destroys any
meaning of hN .

It may also happen that hN is too small: for example, in a quasi-Newton
method, the initial matrix M1 may be too large; since M+ and M are close
together (see §4.4), Mk will remain too large for a number of iterations.

In such cases, the idea of a line-search was to seek x+ along the half-line
x+R+h

N ; what is magic in this half-line? Answer; nothing. This idea was in
fact inherited from first-order methods, where the direction was defined up to
a positive constant (compare Remark 2.7 and the end of §4.2). Indeed, rather
than shortening the stepsize, it is much more natural to modify the model;
after all, the reason xN is not convenient is that f̃ itself is not convenient.
Based on this idea, one can proceed as follows:

– Perturb the model f̃ in a certain way (see below), the perturbation depend-
ing on a certain parameter ∆.

– Solve (6.1) and obtain a perturbed solution h∆.

– Adjust ∆ so that this solution h∆ is “convenient”.

– This adjustment is made according to the principles developed in Chap. 3.

For a demonstration, let us show that line-searches of Chap. 3 can be re-
covered from these premises. The model being given by (6.1) with M positive
definite, suppose that we perturb f̃ to

f̃∆(x+ h) := f(x) + (g, h) +
1

2∆
(Mh, h) ,

which gives x∆ = x−∆M−1g. To adjust ∆ (the stepsize! setting ∆ = t and
h = d makes the allusion more blatant) so as to obtain an x+ = x∆ satisfying
Wolfe’s rule gives back the standard line-search of §3.4.

6.1.1 The Elementary Problem

There are several ways of perturbing the model, all more or less equivalent
anyway. We limit ourselves to the one that is now universally adopted: the
next iterate is forced into the ball centered at x and of radius ∆ (the trust-
region). In other words, h∆ solves

min
h
f̃(x+ h) , |h| 6 ∆ . (6.2)

Here f̃ is the unperturbed model, for example the quadratic function (6.1);
instead of perturbing the model, we rather restrict it.

It so happens that (6.2) can be efficiently solved, even when M is not
positive definite; let us give an idea of how this is done. For µ > 0 such that
M + µI is positive semi-definite (i.e. µ > max{0,−λ}, if λ is the smallest
eigenvalue of M), consider the Lagrangian
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`(h, µ) = f̃(x + h) +
µ

2
(|h|2 −∆2) .

For fixed µ large enough, ` has a minimum point h, given by

h = h(µ) := −(M + µI)−1g . (6.3)

Then the computation of h∆ calls for duality theory (see §8.2 and §16.2).
This theory predicts the value µ∗ giving, via (6.3), the h(µ) solving (6.2).
The following result is slightly informal, in that it neglects the (exceptional)
case µ∗ = −λ.

Theorem 6.1. The solutions to (6.2) are those h(µ∗) of (6.3) satisfying
|h(µ∗)| 6 ∆, where µ∗ > max{0,−λ} is such that µ∗(|h(µ∗)| − ∆) = 0.
Besides, the function µ 7→ `(h(µ), µ) is concave, infinitely differentiable, and
maximal at µ∗.

Proof. Omitted: it uses results from Chap. 8.2. Essentially, equation (6.3)
(supposed to have a solution) expresses the stationarity of the Lagrangian `,
and the condition on µ is transversality. ut

It must be mentioned that the normalization cannot be arbitrary in this
result. Luckily, the Euclidean normalization plays a privileged role, indepen-
dently of the particular form of the model:

Proposition 6.2. Suppose that f and f̃ coincide to first order in a neigh-
borhood of x: f̃(x + h) = f(x + h) + o(|h|). When ∆ → 0, the direction h∆

tends to −g (up to the normalization).

Proof. Remember §2.4: when ∆ → 0, (6.2) defines the steepest-descent di-
rection of f̃ (hence of f) associated with | · |; and by assumption, | · | is the
Euclidean norm defining the gradient. ut

Taking Theorem6.1 into account, the actual computation of h∆ reduces
to a search on µ > 0. This search can be viewed either as the resolution
of the equation |h(µ)| = ∆, or as the maximization of the concave func-
tion `(h(µ), µ). In both cases, Newton does the trick, via a differentiation of
(6.3). Normally, one solves rather 1/|h(µ)| − 1/∆ = 0, which seems a better
conditioned problem.

6.1.2 The Elementary Mechanism: Curvilinear Search

Considering now the computation of h∆ as solved, let us see how ∆ can
be adjusted, following the general principles of Chap. 3. The merit function
called there t→ q(t) = f(x+ td), with d fixed, is now ∆→ f(x+h∆), which
implies a few differences with respect to the “line”-search:
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(i) The trajectory {x+ td}t>0 becomes {x+ h∆}∆>0, which is no longer a
half-line but rather a curve in the space R

n; we will rather speak of a
curvilinear search.

(ii) If f̃ has a minimum point at finite distance, this trajectory has in turn
a finite length. In case of extrapolations, there is then a difficulty: h∆

eventually stops at a point minimizing f̃(x + ·), even if ∆→ +∞.

(iii) The initial derivative q′(0) becomes impossible to compute; the test
q(t) 6 q(0) + m1tq

′(0), central in §§3.4, 3.5, is now impossible to im-
plement (incidentally: it may even happen that g = 0 hence q′(0) = 0,
while h = 0 does not solve (6.2); one of the strong points of trust-region,
precisely, is the ability of escaping from stationary points which are not
local minima). Here comes the time to remember the remarks at the
end of §3.5.3: tq′(0) and 1

2 tq
′(0) were interpreted as nominal decreases

of f ; here, a nominal decrease can be simply taken as the decrease of
the model:

δ(∆) := f̃(x)− f̃(x+ h∆) [= f(x)− f̃(x+ h∆)] . (6.4)

(iv) In addition to q′(0) being unknown, q′(t) becomes d
d∆f(x+h∆), a num-

ber which can be computed but which has little meaning. As a result,
Wolfe’s rule (§3.4) is no longer so natural.

In view of all this, Armijo’s rule (§3.5.2) makes life simpler and is com-
monly adopted. In particular, this rule excludes any extrapolation and accom-
modates easily a trajectory {x+ h∆} of finite length. However, Remark 3.11
is still valid: a mechanism is needed to force an increase of ∆ in case of neces-
sity; the algorithm loses some purity. Using another rule (Wolfe, Goldstein
and Price) would be possible, but to the price of an elaborate study of the
mapping ∆ 7→ h∆; we skip this here, for lack of space.

In summary, the following algorithm is a very simple implementation of
the trust-region technique. Armijo’s test uses (6.4) and becomes

f(x+ h∆) 6 f(x)−mδ(∆) .

When it is not satisfied, h∆ is too large, ∆ must be decreased.

Algorithm 6.3. Are given: a starting point x, a model f̃ , an Armijo coeffi-
cient m > 0, an initial size ∆ of the trust-region, and a simulator computing
f -values.

– Compute h∆ solving (6.2).
– If f(x+ h∆) 6 f(x)−mδ(∆) terminate.
– Else decrease ∆ and loop. ut

We leave it to the reader to show that this algorithm terminates if the
following properties hold: the decrease of ∆ is significant (Property E of
§3.2), f̃(x) = f(x), f̃ ′(x) = f ′(x), and m < 1.
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Note that Algorithm6.3 considers the static aspect only: its calls must be
chained within an algorithm updating x = xk, to finally minimize f . Recall
here Remark 3.11 again: a systematic initialization ∆ = 1 is dangerous. It is
therefore recommended to allow an increase of ∆ when the search is finished,
to initialize the next search. We omit these details here.

6.1.3 Incidence on the Sequence xk

It remains to check that this method does have the qualities ensuring conver-
gence (global and possibly superlinear) of the sequence {xk} that it generates.
The rudimentary Algorithm 6.3 gives only a vague idea of an actual imple-
mentation; in particular, it does not specify the management of ∆ = ∆k from
one iteration k to the next. We will therefore content ourselves with some
indications.

Apart from the strategy to manage ∆, a trust-region method is essentially
characterized by the model f̃ (just as any optimization method, actually).
Limiting our convergence study to one particular f̃ , the quadratic model
(6.1), everything relies upon the behaviour ofM = Mk. To study the method,
one must of course express that x+ = x + h∆ is not arbitrary, but really a
minimum point of f̃ in the trust region. This is the substance of the following
result, comparing f̃(x + h∆) to what would be obtained with the steepest-
descent direction.

Lemma 6.4. Set L̃ := max{1, Λ}, where Λ is the largest eigenvalue of M in
(6.1). Then we have in (6.4)

δ(∆) >
1

2
|g|min

(
∆,
|g|
L̃

)
.

Proof. Let t∆ be the optimal solution to the problem

min
t
f̃(x− tg) = f(x)− t|g|2 +

1

2
t2(g,Mg) subject to 0 6 t|g| 6 ∆ .

Of course, f̃(x + h∆) 6 f̃(x − t∆g), and we proceed to bound f̃(x − t∆g)
from above. In the computations below, we use f̃(x) = f(x).

If the trust region does constrain the solution t∆, the function t 7→
f̃(x − tg) has a nonpositive derivative at t∆ = ∆/|g|; in other words
−|g|2 + ∆

|g|(Mg, g) 6 0. This results in a bound on (Mg, g) which, inserted in

f̃ , gives f̃(x − t∆g) 6 f(x)− 1
2∆|g|.

If t∆ is an unconstrained minimum, its value is t∆ = |g|2/(Mg, g); the
denominator is certainly positive. Since (Mg, g) 6 Λ|g|2 6 L̃|g|2, we can
write

f̃(x− t∆g) = f(x)− 1

2

|g|4
(Mg, g)

6 f(x)− 1

2L̃
|g|2 .

The formula follows from piecing together the two cases. ut
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With the help of this result, Armijo’s rule gives directly

[f(x+) =] f(x+ h∆) 6 f(x)− m

2
|g|min

(
∆,
|g|
L̃

)
,

which is the necessary bound of f(x) − f(x+) for Argument 1 in a conver-
gence proof (see Theorems2.11 and 3.9). We therefore see that, to obtain this
bound, an upper bound of the largest eigenvalue ofM is needed. The situation
is no longer as in line-searches, where a bound on the ratio of extreme eigen-
values was needed (see for example Lemma3.8). By contrast, trust-regions
would still work with Mk ≡ 0 (and it is normal since this would produce
steepest-descent!)

To obtain Argument 2 (bounding |x+ − x| from below), a lower bound of
∆ is needed. This means that the model should not be too “optimistic”: more
precisely, the smallest eigenvalue of M should not be too negative; everything
will go right if, for example, M stays positive semi-definite.

We stop technicalities here and we just mention the main convergence re-
sults allowed by trust-regions. With an appropriate (but rudimentary) man-
agement of ∆ = ∆k, and assuming that |Mk| stays bounded, it can be shown
that:

(i) either f(xk)→ −∞ or lim inf |gk| = 0,

(ii) and the criterion of Dennis-Moré (Theorem4.11) implies superlinear
convergence.

Nothing particularly amazing so far; but trust-regions enjoy two “pluses”:

(iii) indeed gk → 0; and more importantly:

(iv) take Mk = f ′′(xk); if {xk} is bounded, it has a cluster point x∗ such
that (f ′(x∗) = 0 and) f ′′(x∗) is positive semi-definite. Thus, trust-region
methods have every reason to avoid critical points which are not local
minima. Needless to say, this “miracle” has its roots in Theorem6.1.

6.2 Least-Squares Problems: Gauss-Newton

It should be clear from Chap. 4 that the name of the game in the present
Part I is to approximate the Newton step −(f ′′)−1g, i.e. after all the Hessian
f ′′; this was the essence of §§4.4 to 4.7. There exists a rather favourable situ-
ation, where an idea of this Hessian is available, without having to compute
second derivatives. This is parameter identification – the vast majority of
optimization problems. In this type of problems, the objective function is the
deviation between predictions and observations, a deviation which is often
expressed in the `2-norm.

In a word, the following least-square problem is continually encountered
in optimization:

min f(x) , where f(x) =
1

2

p∑

j=1

f2
j (x) . (6.5)
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The fj ’s generally have the form

fj(x) = ϕ(x, ej)− zj ,

where ϕ is the answer of a theoretical model to an input e, this answer being
compared to a set of experimental answers zj . The theoretical model depends
(possibly linearly) on unknown parameters x ∈ IRn to be identified.

Elementary calculations give the gradient f ′ =
∑
fjf

′
j and the Hessian

f ′′(x) =

p∑

j=1

f ′
j(x)f

′
j(x)

> +

p∑

j=1

fj(x)f
′′
j (x)

which is thus a sum of two terms; the first one depends on the gradients,
only the second one involves second derivatives. Remembering that one of the
drawbacks of Newton’s method is the need to compute such second deriva-
tives, it is tempting to neglect this second term.

In least-square problems, one is therefore led to considering

G(x) :=

p∑

j=1

f ′
j(x)f

′
j(x)

> = J(x)J(x)> , (6.6)

where J(x) denotes the matrix whose columns are the p gradients f ′
j ; G(x) is

called the Gauss-Newton matrix. A question is then: to what extent is G(x)
a good approximation of f ′′(x)? Actually, this will happen in two cases.

– When the fj ’s are mildly non-affine (each ϕ(·, ej) is mildly nonlinear), the
f ′

j ’s are quasi-constant, the f ′′
j ’s are small. Then G(x) ' f ′′(x). Indeed,

the whole idea of Gauss-Newton consists in saying: suppose the fj ’s are
affine, i.e. suppose the initial problem is a mere linear least-square problem
min 1

2 |J>x− z|2; then it is solved by the Newton iterate x− (JJ>)−1g(x)
(note that g(x) = J(J>x− z)). This amounts to assuming that the matrix
G(x) = JJ> does not depend on x – and is invertible, of course.

– When the least-square solution gives a good fit, the optimal value of f is
close to 0. Then all the fj(x)’s are small within convergence and, asymp-
totically, the Gauss-Newton matrix becomes close to the Hessian. This is
all what is needed, since the qualities of Newton’s method come into play
within convergence only.

Anyhow, the Gauss-Newton method consists in computing the direction
−G−1

k gk at each iteration k. A (Wolfe) line-search then allows the computa-
tion of the next iterate; the resulting algorithm is well-defined, provided that
each Gk is positive definite.

Actually, the difficulty precisely lies at this point.

– When a matrix Gk is “hardly” positive definite, i.e. ill-conditioned, the
method is in trouble; convergence may even be impaired (see §4.5).
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– For this same reason, the line-search itself can often be in trouble: the
Gauss-Newton direction can be orthogonal to the gradient, at least within
roundoff errors.

Indeed, the designers of the method (neither Gauss nor Newton but Lev-
enberg in 1944 and Marquardt in 1963) were aware of these difficulties due
to ill-conditioning. They imagined, independently of each other, a stabilizing
process: add to Gk a “suitably chosen” multiple λ > 0 of the identity. In view
of §6.1.1 (and setting λ = µ), we see that this is nothing other than a trust-
region device. In summary: the Gauss-Newton method is dangerous when
used with a line-search, and calls for trust-region. This gives an algorithm of
the following type:

Algorithm 6.5. To solve (6.5), start from x1; are given: the Armijo coeffi-
cient m ∈ ]0, 1[ and the stopping tolerance ε > 0. Set k = 1.

Step 1. Compute the gradient gk of f at xk. If |gk| 6 ε stop.
Step 2. Compute the Gauss-Newton matrixGk = G(xk) from (6.6) and define

the model

f̃(xk + h) = f(xk) + (gk, h) +
1

2
(Gkh, h) .

Step 3. Use a trust-region algorithm as in §6.1 to obtain xk+1 satisfying

f(xk+1) 6 f(xk)−m(f(xk)− f̃(xk+1)) .

Step 4. Increase k by 1 and loop to Step 1. ut
Convergence of such an algorithm is not difficult to establish: through

some smoothness of f , the matrices Gk, which are positive semi-definite, will
be bounded, and results from §6.1.3 will be applicable.

6.3 Large-Scale Problems:
Limited-Memory Quasi-Newton

Except possibly for least-square problems, the idea of quasi-Newton is basi-
cally the only way of computing really efficient directions. For a number of
variables n exceeding 105, say, storing and managing the corresponding ma-
trix W exceeds the abilities of present computers. In this situation, we have
only seen conjugate gradient as a possible alternative, while §5.5 has somehow
ended up in a deadlock. Yet, Theorem5.13 suggested a fruitful link: conju-
gate gradient can be viewed as a “poor man” quasi-Newton method, with
systematic re-initializations of Wk to the identity.

Let us push the idea further: a quasi-Newton matrix Wk is completely
defined by (the initial matrix W1 and) the 2(k− 1) vectors s1, y1, . . . , sk−1,
yk−1. To be sure, a means therefore exists to compute the direction dk =
−Wkgk via an explicit use of only these 2(k−1) vectors, which makes 2(k−1)n
numbers, instead of n(n + 1)/2. Formulae do exist, it is easy to check that
the following algorithm does the trick.
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Algorithm 6.6. Are given: an initial matrix W 0, a vector g and m vector
pairs {si, yi} for i = 1, . . . ,m.
Problem: compute d = −Wg, where W is the result of m BFGS updates of
W 0.
Answer : d = −hm, obtained as follows.
– Set qm = g; for i = m, . . . , 1 do

αi =
(qi, si)

(yi, si)
and qi−1 = qi − αiyi .

– Set h0 = W 0q0; for i = 1, . . . ,m do

βi =
(yi, h

i−1)

(yi, si)
and hi = hi−1 + (αi − βi)si . ut

Remark 6.7. We use superscripts (qi, αi, etc.) to suggest that the above
iterations need not be related to the iterations minimizing f . For example, if
Algorithm6.6 is used to compute the kth direction dk of such a minimization
algorithm, then we will set g = gk and dk = −hm. Said otherwise, the m
iterations of Algorithm6.6 will be systematically executed at each iteration
k of the minimization algorithm. ut

Equipped with these formulae, take a computer allowing the storage of
2m vectors of dimension n; if n = 105 for example, a standard personal
computer will easily accept m = 10. On this computer, start a quasi-Newton
algorithm without explicit storage of the matrices Wk , but with a direct
computation of Wkgk via Algorithm 6.6. The iterations k = 1, . . . ,m can be
performed normally. Afterwards, the “standard” matrix Wk can no longer be
used: it needs k > m pairs {si, yi}; among these k pairs, m must be chosen.
To respect the essence of quasi-Newton, which constructs a local model of f
in a neighborhood of xk , one chooses of course the last m computed pairs:
normally, they were computed at corresponding x’s close to xk. This results
in an algorithm intermediate between 4.3 and 5.10; its first m iterations are
identical to those of Chap. 4, let us describe the current iteration after the
mth:

Algorithm 6.8.

Step 1 (initializing iteration k). We have the m pairs of vectors

s1 = xk−m+1 − xk−m, . . . , sm = xk − xk−1 ,
y1 = gk−m+1 − gk−m, . . . , ym = gk − gk−1 .

Choose a “simple” matrix W 0, for example the identity.
Step 2 (poor-man qN formulae). Compute the direction dk = −Wkgk by an

application of Algorithm6.6 to the matrix W 0, starting from g = gk.
Step 3. Obtain the next iterate xk+1 and its gradient gk+1 by a Wolfe line-

search along dk, or alternatively by a curvilinear search of the type 6.3.
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Step 4 (refreshing the information). For i = 1, . . . ,m − 1, replace each pair
{si, yi} by {si+1, yi+1}. Store sm = xk+1 − xk and ym = gk+1 − gk and
loop to Step 1. ut

An important numerical remark is the following. In standard quasi-
Newton methods, the role of the initial matrix W1 is not too crucial: in
view of the successive updates, this role fades away along the iterations. Nev-
ertheless, it is experimentally observed that a bad initial W1 entails bad Wk’s
for many iterations. In a limited memory method such as Algorithm6.8, we
have an initial matrix W 0 = W 0

k at each iteration k. According to the above
experimental observation, W 0 must be chosen with great care; to content
oneself with W 0 = I at each iteration results in a bad algorithm. We do not
elaborate here on appropriate initializations of W 0 in Algorithm6.6.

Algorithm 6.8 is excellent; it is at present the best choice, often the only
possible one, for large-scale problems. However, it raises a rather frustrating
question. One could think that its convergence is faster when the number
m of stored pairs is larger; yet, one empirically observes that its speed of
convergence stalls beyond a modest value of m; for larger m, the total com-
puting time worsens, since the cost of one iteration is proportional to m.
Rather frequently, one sees Algorithm6.8 with m = 20 terminating faster
than the standard BFGS algorithm. Even worse: the “critical“ value of m,
beyond which the above stalling phenomenon occurs, seems relatively sta-
ble, say m ' 20, independently of n. No satisfactory explanation has been
suggested so far.

From a theoretical point of view, Algorithm6.8 has no reason to converge
superlinearly. Global convergence has received little attention.

6.4 Truncated Newton

Let us stay in the Newtonian framework. On several occasions, it has been
said that the pure Newton method has two practical drawbacks (among oth-
ers):

– to compute second derivatives,

– to solve a linear system at each iteration.

In some cases, the first drawback may disappear: for example in least-square
problems (§6.2), or also when second derivatives can easily be computed.
In these cases, how can we cope with the second drawback? Here comes a
usefulness of conjugate gradient.

Let M be the matrix of the system to be solved: M can be f ′′, or the
Gauss-Newton matrix Gk , or any other symmetric matrix; M can even be a
quasi-Newton matrix, possibly not positive definite because Wolfe’s condition
was not satisfied (see Theorem4.5). We want to solveMh = −g economically.

Suppose for the moment that M is positive definite; then we can equally
minimize the quadratic function f̃ of (6.1). Now make an important remark:
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since a Newtonian method reaches full efficiency only asymptotically, only an
approximate minimization of f̃ is necessary. As a result, conjugate gradient
is fully justified, since it decreases the model f̃ at each of its own iterations:
it will produce a “reasonable” direction even if its convergence is stopped
“manually”. In fact, call hi, i = 0, 1, . . . the iterates produced by a descent
method – conjugate gradient or any other – applied to the minimization
of f̃(x + h) (with respect to h). If this algorithm is initialized on h0 = 0,
there holds f̃(x + hi) < f̃(x + h0) = f(x) at each iteration. From positive
definiteness of M , there even holds

(g, hi) < f̃(x+ hi)− f(x) < f̃(x+ h0)− f(x) = 0 .

Thus, each hi is a descent direction, along which a (Wolfe) line-search can
be performed. In case of conjugate gradient, hi is even an excellent direction,
minimizing f̃ in a certain hyperplane: remember the axiom of §5.1. In case
M = f ′′(xk), one can also anticipate that superlinear convergence will be
preserved, providing that the direction dk = hik is close enough to the “ideal”
Newton step xN − xk .

When M is not positive definite, minimizing f̃ becomes meaningless. In
addition, while the hypothesis M positive definite is not crucial theoretically
for conjugate gradient (exercise: redo Chap. 5 under the mere hypothesis A
invertible), it is another story in practice: the method becomes unstable, with
a tendency to produce isotropic directions (i.e. q’s such that (Aq, q) = 0). This
situation places us again in the field of application of trust-region.

Altogether, the situation is as follows: we want to solve (6.1), (6.2) approx-
imately; but we do not want Theorem6.1, which implies to factor matrices
such as M + µI (by assumption we do not want to solve Mh = −g, i.e. to
factor M). Here comes a piece of luck: it suffices to apply blindly conjugate
gradient, with an appropriate stopping test.

First of all, let us adopt notation adapted to the present situation. To
solve the system Mh+ g = 0, we write conjugate gradient in the form

hi+1 = hi + tiqi , qi+1 = −Mhi+1 − g + ciqi , with

h0 = 0, q0 = −g , ti = − (Mhi + g, qi)

(Mqi, qi)
, ci =

|Mhi+1 + g|2
|Mhi + g|2 ;

(6.7)

qi thus denotes the “direction” issued from hi (but has nothing to do with the
forthcoming direction dk issued from xk); remark that the residual Mhi + g
is the gradient f̃ ′(x+ hi).

Proposition 6.9. As long as (Mqi, qi) > 0, the iterations of the above algo-
rithm satisfy |hi+1| > |hi|.

Proof. It is best to see the argument geometrically, remembering the axiom
of §5.1: each line hi +tqi is orthogonal at hi to a subspace containing hi (with
notation as in §5.1, U i = V i since h0 = 0). Hence hi is the projection of 0
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onto such a line, therefore |hi| < |hi + tqi| for any t 6= 0, in particular for
t = ti. ut

Then start solving (6.1), (6.2), via formulae (6.7). At the current iteration
i, the following events can occur:

(i) The curvature (Mqi, qi) of f̃ in the direction qi is negative: the con-
straint |h| 6 ∆ is certainly active in (6.2). For example, hi can then be
extrapolated up to the edge of the trust region: we take dk = ∆hi/|hi|.

(ii) The current iterate hi has popped out of the trust region: here again,
the constraint |h| 6 ∆ is certainly active in (6.2). For example, dk can
be interpolated between hi and hi−1.

(iii) None of the above cases: conjugate gradient proceeds normally, its iter-
ations can be continued ad libitum, for example until

(iv) the residual Mhi + g is deemed small enough; then stop: dk = hi esti-
mates well enough the Newton step.

Remark 6.10. The initialization h0 = 0 is important. Not only does it guar-
antee the downhill character of each hi, but it also implies that h1 minimizes
t 7→ f̃(x− tg) in the trust region. This is important for convergence of {xk},
see the proof of Lemma6.4. ut

We do not describe more the “complete” truncated Newton algorithm;
first, there is no consensus yet on the best version, and the details are rather
technical anyway. We just make two comments:

– The general qualities of trust-region are forwarded to the present method:
global convergence via a rudimentary management of ∆, and convergence
to a local minimum of f .

– The relevant property for superlinear convergence is that the residual go
to 0 infinitely faster than the gradient: f ′′(xk)dk + gk = o(|gk|).

6.5 Quadratic Programming

This section is devoted to quadratic programs (item 2.2.2 in the classifica-
tion of §1.1.2): we demonstrate the active set mechanism used by standard
quadratic solvers. To this aim, we consider the “simplest” (convex) quadratic
program {

min f(x) ,
x > 0 ,

with f(x) :=
1

2
x>Mx− b>x . (6.8)

Here the symmetric n× n matrix M is assumed positive definite; this avoids
a good deal of technicalities. Note at this point that the scalar product in
R

n has to be the ordinary dot-product; otherwise the constraints x > 0
would have nothing special: they should be viewed just as general constraints
Ax > a.
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Following the general principles of optimization (descent property, line-
searches etc.), the algorithm constructs a sequence of feasible points xk such
that f(xk) decreases. To do so, direct advantage is of course taken of the
simple structure of the problem.

Denote by vi the ith component of a vector v ∈ R
n and by

I(x) := {i ∈ {1, . . . , n} : xi = 0} (6.9)

the set of components of x > 0 that cannot be decreased. The optimal solution
of (6.8) is then characterized by the equations

{
(Mx− b)i = 0 if i /∈ I(x) (i.e. xi > 0) ,
(Mx− b)i > 0 if i ∈ I(x) ,

(6.10)

illustrated by Fig. 6.1. These equations are indeed necessary and sufficient for
optimality. To obtain them,

– either form the gradient ∇f(x) = Mx − b of the objective function and
apply standard optimality conditions (see (13.1); they are necessary and
sufficient because of convexity);

– or establish by direct calculations the formula

f(x+ h)− f(x) = (Mx− b)>h+
1

2
h>Mh ; (6.11)

observe that the quadratic term is nonnegative and negligible for small h.

x1

x2

Mx∗ − b

f(x) = Cst

x∗

I(x∗) = {2}

Fig. 6.1. The minimum of a quadratic function over the first orthant

The optimality conditions (6.10) can also be viewed as a complementarity
problem, which is often symbolized in the condensed form

0 6 (Mx− b) ⊥ x > 0 . (6.12)

This latter problem is thus equivalent to the optimization problem (6.8).

6.5.1 The basic mechanism

Even though (6.8) is completely determined by the (finitely many) entries of
M , no explicit formula can solve it directly. In fact, take a set I ⊂ {1, . . . , n}
(which will stand for the set of active constraints) and consider the problem
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min {f(x) : x ∈ HI} , where HI := {x ∈ R
n : xi = 0, i ∈ I} . (6.13)

In other words, impose arbitrarily some constraints of (6.8) as equalities,
and neglect the others. The solution of (6.13) is explicitly given by the linear
system {

(Mx− b)i = 0 , i /∈ I ,
xi = 0 , i ∈ I . (6.14)

There are 2n such sets I and the whole question is to find I(x∗) of (6.9),
for x∗ optimal in (6.8). In fact, solving (6.13) or (6.14) with I = I(x∗) will
explicitly produce the optimal solution x∗. The idea is then to iterate over I ,
and one iteration of the solution algorithm works schematically as follows:

Algorithm 6.11 (Schematic QP iteration). The set I ⊂ {1, . . . , n} is
given.

Step 1. Call x̂ the solution of (6.13) or (6.14).
Step 2. If x̂ satisfies (6.10) then stop.
Step 3. If x̂ 6> 0 append some appropriate index to I and loop to Step 1.
Step 4. If x̂ > 0 but Mx̂− b 6> 0, remove some appropriate index from I and

loop to Step 1. ut
Together with the index set I , the algorithm maintains a feasible point,

whose management in Step 3 will be seen in §6.5.2 below.

Remark 6.12. The matrix of the linear system in (6.14) is some principal
submatrix of the positive definite M (the one with rows and columns indexed
out of I). As such, it is positive definite, so (6.14) is appropriately solved by
a Cholesky factorization, see Remark4.2. The change in I at each iteration
allows the use of economic formulae for a quick update of the Cholesky factors.

Reaching (6.10) may require to explore all possible sets I , so tolerances
can be inserted to help the algorithm stop earlier. Actually one stops when
the two following properties hold:

– negative components of x are small,

– the projected gradient g ∈ R
n defined by

gi =

{
(Mx− b)i if xi > 0 ,
min {0, (Mx− b)i} otherwise

has small components as well. These properties guarantee that the comple-
mentarity property (6.12) holds approximately (0 begin replaced by some
small negative number in the extreme left- and righthand sides). ut

6.5.2 The solution algorithm

The algorithm starts from some x1 and sets I1 = I(x1); for example x1 = 0
and I1 = {1, . . . , n}. Then it generates a sequence of feasible points xk and
a sequence of sets Ik of “activated constraints”. At the current iteration k,
(6.14) is solved with I = Ik and produces x̂ = x̂k ∈ R

n. If (6.10) does not
hold, there are two cases.
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Case F : x̂k 6> 0 There is some r (/∈ Ik) such that x̂r
k < 0. To obtain the

next (feasible) iterate xk+1, we make a line-search, to minimize f starting
from xk and moving toward x̂k : we solve

min {f(x(t)) : x(t) > 0} , where x(t) := xk + t(x̂k − xk) .

By convexity of f (which decreases all the way from xk to x̂k), this also means
to take the largest possible t, and the optimal t is therefore:

t̄k = min
r∈{1,...,n}

{ xr
k

(xk − x̂k)r
: (xk − x̂k)r > 0

}
< 1 . (6.15)

See Fig. 6.2, where the above t̄k is obtained at r = 1. The left part represents
the space R

n and the right part is the restricted function t 7→ f(x(t)).

x(t̄k)

{2, . . . , n}

r = 1

xk

x̂k

f(xk)

t̄k

f(x̂k)

t

x(t)) > 0

f(x(t̄k))

Fig. 6.2. Minimizing the convex function f over the segment x(t) > 0

In this Case F , the algorithm sets

xk+1 = x(t̄k) and Ik+1 = I(xk+1) . (6.16)

Note that Ik+1 contains at least one r which was not in Ik.

Case F : x̂k > 0 For notational convenience, we describe the operations
as if the current iteration were the (k − 1)st.

In this case, some constraint was unduly imposed as an equality in (6.13):
there is s (∈ Ik−1) such that (Mx̂k−1−b)s < 0. Choose such an s and remove
it from Ik−1 (i.e. free the component xs). For example we can take for s the
most negative (Mx̂k−1 − b)i but this is not essential.

In this case, the algorithm sets

xk = x̂k−1 and Ik = I(xk)\{s} . (6.17)

Remark 6.13. The aim in relaxing s is to let the next iterate xk+1 enter the
feasible domain. This is guaranteed only if one index is removed from I(xk).
If several indices are removed, the crucial Lemma 6.16 below does not apply.

ut
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Set x+ = x̂, I+ = I(x+) \ {s}

Choose s with (Mx̂ − b)s < 0

x̂ > 0?

Solve (6.14) for x̂

Assume x̂ not optimal

yes (Case F )no (Case F )

Line-search toward x̂

Set x+ = x(t̄), I+ = I(x+)

Obtain t̄ from (6.15)

Fig. 6.3. Flow-chart of QP algorithm

Figure 6.3 (in which the iteration index is dropped) summarizes the op-
erations described in this section.

Remark 6.14. If only because of roundoff errors, the linear system (6.14)
is not likely to produce any xi (with i /∈ I) exactly null. In other words,
we normally have I(x̂) = I at each iteration, so that we will have I+ =
I ∪ {r} or I+ = I \ {s}, depending on which case occurred. We see that this
algorithm is very similar to the simplex algorithm for linear programming:
an iteration essentially consists in managing the matrix of a linear system by
pivoting operations. The main difference is that the dimension of that matrix
fluctuates along the iterations. ut

6.5.3 Convergence

The argument for convergence is that f decreases at each iteration, and there
are only finitely many possible Ik’s. Some subtleties in the proofs are due to
degenerate situations, in which an extra component of x̂ in (6.14) vanishes
(despite Remark6.14), or xk is already optimal in HIk . We start with a few
elementary results.

Lemma 6.15. At each iteration k,

(i) I(x̂k) ⊃ Ik,
(ii) x̂k minimizes f in HI(x̂k),

(iii) f(x̂k) 6 f(xk), with strict inequality if x̂k 6= xk.

Proof. Compare (6.14) with (6.9) to establish (i), which implies (ii) because
x̂k ∈ HI(x̂k) ⊂ HIk . Now realize from (6.16), (6.17) that xk always lies in
HIk ; so (iii) is clear by definition of x̂k , the strict inequality coming from the
strict convexity of f (which has a unique minimum on any convex set). ut

Now we make sure that relaxing s in Case F does let the next iterate
enter the feasible domain.
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Lemma 6.16. Suppose iteration k − 1 was in Case F , so that xk has been
set to x̂k−1 and x̂k is the solution of (6.13) or (6.14) with I replaced by
Ik = I(xk)\{s}. Then f(x̂k) < f(xk) and x̂s

k > 0.

Proof. We will use the notation

gi :=
∂f

∂xi
(xk) = (Mxk − b)i for i = 1, . . . , n .

Let es be the sth basis vector. Then:

– the choice of s gives ∇f(xk)>es = gs < 0, so that f(xk + tes) < f(xk) for
t > 0 small enough;

– the definition (6.17) of Ik gives xk + tes ∈ HIk for all t ∈ R.

We conclude f(x̂k) 6 f(xk + tes) < f(xk).
Now, from Lemma 6.15(ii), xk = x̂k−1 minimizes f in HI(x̂k−1) = HI(xk),

so that gi = 0 for i /∈ I(xk) (look at Fig. 6.1 again). Then

∇f(xk)>(x̂k − xk) =
∑

i∈I(xk)

gi(x̂k − xk)i = gs(x̂k − xk)s = gsx̂s
k

(note: x̂i
k = xi

k = 0 for all i ∈ I(xk) except i = s).
Piecing together, we obtain from convexity or from (6.11)

gsx̂s
k = ∇f(xk)>(x̂k − xk) 6 f(x̂k)− f(xk) < 0 .

The result follows since gs < 0. ut

This result does not imply that x̂k is feasible: some other component may
become negative, in which case the next iteration will be in Case F .

Lemma 6.17. Suppose iteration k is in Case F . Then f(xk+1) < f(xk).

Proof. Consider an index r reaching the minimum in (6.15), so that x̂r
k < 0.

From (6.14), r /∈ Ik , and we claim that xr
k > 0, i.e. that r /∈ I(xk) – see (6.9).

In fact:

– if iteration k − 1 was in Case F , this holds from (6.16);

– if iteration k − 1 was in Case F , I(xk) = Ik ∪ {s} from (6.17). If r /∈ Ik
were in I(xk), we would have r = s; but this is impossible since x̂s

k > 0
(Lemma 6.16).

Our claim is proved.
As a result, we can write

tk >
xr

k

(xk − x̂k)r
> 0 .

Furthermore xk is feasible and x̂k is not: from Lemma6.15(iii), f(x̂k) < f(xk).
Then the result is easy to visualize on the right part of Fig. 6.2. ut



94 6 Special Methods

We can now prove the main result:

Theorem 6.18. The property f(xk) 6 f(xk−1) holds at each iteration, and
equality implies f(xk+1) < f(xk).

It follows that the algorithm stops after finitely many iterations.

Proof. Lemmas 6.15(iii) and 6.17 state that f can never increase. Now
the property f(xk) = f(xk−1) implies that iteration k − 1 is in Case F
(Lemma 6.17). Then x̂s

k > 0 (Lemma 6.16), while xs
k = 0; hence x̂k 6= xk

and f(x̂k) < f(xk), which implies f(xk+1) < f(xk) (invoke Lemma6.17 if
iteration k is in Case F ).

Now assume iteration k−1 is in Case F , so that xk minimizes f in HIk−1 .
From the first part of the proof, no subsequent x̂k′ can lie in HIk−1 , which
implies that no subsequent Ik′ can be equal to Ik−1: there can be at most 2n

iterations in Case F .
Finally, if an iteration k is in Case F , then Ik+1 properly contains Ik

(Lemma 6.15(i) is important for this): there can be at most n iterations be-
tween two successive occurrences of Case F . Altogether the algorithm is finite.

ut

To finish, let us mention some delicate points in this approach.

(i) Classical algorithms simply define the next working set I+ by adding
or subtracting one index (r or s) from the current I , disregarding the
set I(x+). Such implementations are simpler than ours but Lemma6.17
disappears; so some precautions must be taken to prevent cycling, in
case x is not changed by an F -iteration.

(ii) A difficulty is the definition of I(x) (remember Remark 6.14): under
what threshold should an xi be considered as 0? Even though the
progress f(xk)− f(xk+1) is positive “on paper” in Case F , a very small
xi

k may make this progress insignificant in practice. Then zigzags may
occur, which are a weakened form of the cycling phenomenon mentioned
in (i).

The cure is to append the corresponding i into Ik but then, what
means “very small”?

(iii) Likewise, a tolerance should be used to test positivity of Mx̂ − b; but
again, the concept of a “negative but sufficiently small” (Mx̂− b)s may
be delicate to quantify – see also Remark 6.12.

(iv) Along the same lines, substantial difficulties appear in Case F when
M is only positive semidefinite. Removing s from I may result in a
degenerate system (6.14). In this situation, a number of decisions have
to be made:

– When (6.14) should it be considered as degenerate?

– In this case, when (6.13) should it be considered as having a subspace
of solutions (the alternative being no solution at all)?
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– In this case, some index not in I is redundant and should be removed.
Which one?

Again the difficulty in these decisions is numerical rather than theoret-
ical.

(v) A general quadratic problem has constraints of the type Ax > a. There
is not much difference with (6.8) – where A was the identity matrix and
a was 0; I indices activated constraints and (6.8) becomes

min f(x) , Aix = ai, for i ∈ I . (6.18)

In Case F , the properties

Ai(x̂k − xk) = 0 for all i ∈ Ik and Ar(x̂k − xk) < 0

imply that the new row Ar is linearly independent of the set {Ai}i∈Ik

– an important property for an easy resolution of (6.18).

Bibliographical Comments

A conclusion of this chapter is that the trust-region approach, which a priori
seems nothing more than a natural variant of line-searches, actually opens a
vast field of applications. The main reason is that, beyond the motivation we
gave (to argue against the value of the half-line {x+td}t>0), it is particularly
well-suited to treat a model f̃ ill-conditioned (case of Gauss-Newton), or even
nonconvex (pure Newton, quasi-Newton without the property (y, s) > 0).

This method has progressively appeared during the 70’s, and imposes
itself more and more, due to its robustness and its ease of implementation.
We just cite the synthesis [264], a reference paper.

Despite its name, Gauss-Newton is traditionally associated with the
names of Levenberg and Marquardt [237, 248]. In its classical version, it
is coupled with a stabilization of the type Gk +λI (the Levenberg-Marquardt
parameter); the modern tendency goes toward trust-region instead: see [264]
again.

Limited-memory BFGS formulae were given by J. Nocedal in [275], and
[238, 152] give implementations of the resulting algorithms. If f is elliptic, it
is observed in [238] that the proof of Theorem4.9 simplifies and applies to
the limited-memory version.

The truncated Newton method appeared in [102]; our development of §6.4
is essentially due to [345]. It should be mentioned here that the techniques
for automatic or computational differentiation, alluded to at the end of §1.6,
can be used to compute second derivatives; or at least to compute Mh, the
Hessian times a vector, without an explicit use of the second derivatives
appearing in M . This provokes a revival of the interest for Newton methods.
Even if such computational differentiation holds its promises, however (such
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is not the case yet), the result of a competition with quasi-Newton is still
unsure.

Active set methods for quadratic programming are described in most
textbooks on optimization. As mentioned earlier, their implementation is
delicate, we can cite [165]. It is worth mentioning that they may become
impractical for large problems. Just for an illustration, suppose for example
that the algorithm is initialized on x1 = 0 but that the optimal solution
x∗ is entirely positive. In view of Remark 6.13, at least n iterations will be
necessary, a possibly very large number. New ideas are then necessary. Two
such ideas can be found for example in [98, 266]; one can also use the interior-
point paradigm, developed in Part IV of this book.

Note that convexity of the quadratic function f (i.e. the property M <

0) is absolutely necessary in our framework: the nonconvex case contains
combinatorial optimization, a field which we definitely leave out of this book
– see Remark 1.1.



7 A Case Study: Seismic Reflection

Tomography

We conclude this first part of the book with the presentation of a problem
which can be implemented in a short course on numerical unconstrained
optimization, using high-level languages like Matlab [249] or Scilab [327].
It can be used to test the algorithms we have described1. Perhaps more
importantly, its implementation involves various operations, typical when
dealing with nontrivial applications. In a way, the problem resembles the
real-world examples reviewed in §1.2 – although widely simplified. As such,
it is well-suited to train oneself in the writing of a significant simulator in the
sense of §1.3. The present chapter describes the necessary material to write
the corresponding simulator.

We propose a schematic version of an engineering technique which has
been employed for many years to explore the geological structure of the sub-
surface [100, 101, 162] and has been improved recently [99]. The idea is to
measure the time taken by waves to travel from various sources to various
receivers, after their refraction and reflection on the interfaces separating the
layers of the subsurface. These measurements/observations serve to deter-
mine the positions of these interfaces and the wave velocities in the layers.
From an optimization viewpoint, the problem consists in minimizing a non-
linear least-squares function expressing the mismatch between the observed
traveltimes and those calculated by ray tracing in a subsoil model.

7.1 Modelling

Seismic tomography is based on the simplified model of geometrical optics,
in which waves are supposed to propagate along rays. Here we consider a
2D model with a single reflector. Then the waves are issued from sources,
reflect on this single interface, and are captured by receivers. The traveltimes
between sources and receivers (all of which are placed on the ground surface,
assumed horizontal) are measured and used to recover the position of the re-
flector. We take the additional assumption that the wave velocity is constant
and known in the considered subsoil layer between the ground surface and

1 Elementary algorithm testing can also use the famous Rosenbrock banana func-
tion R

2 3 (x, y) 7→ (1 − x)2 + 100(y − x2)2.
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the unknown interface. When the velocity is constant, a ray follows a trajec-
tory which is a straight line between a source/receiver and the reflector. The
model is shown in Fig. 7.1, in which one can see a source at a given position

reflector

ray

surface
(xs, 0)(xr, 0)

(x̄, ȳ)

Fig. 7.1. A single reflection on the interface

(xs, 0), a receiver at a given position (xr , 0), and the reflection point of the
wave at the position (x̄, ȳ); the latter has to be computed.

It is assumed that the interface to be retrieved has its x-coordinate be-
tween 0 and 1 and is located at a depth less than 1. Since the rays have a hor-
izontal component, it is a good idea to consider a region with x-coordinates
between xmin := −0.5 and xmax := 1.5, so that the domain of interest is
[xmin, xmax] × [−1, 0]. The unknown interface is supposed to be a function
of x; overhanging structures are thus discarded. To have a problem in finite
dimension, the interface has to be discretized. Taking a representation by a
cubic spline is attractive since the interface is then of class C2: a property
allowing the computation of the reflection points, see §7.2 below.

A cubic spline on the interval [xmin, xmax] is a piecewise polynomial func-
tion. The polynomials are cubic on each of the subintervals of [xmin, xmax],
which can be assumed to have the same length dx = (xmax − xmin)/ndx,
where ndx is typically around 100. Transition conditions between polynomi-
als defined on adjacent subintervals make the full cubic spline a C2 function.

Cubic splines can be represented and stored in various ways. The one
given in the previous paragraph roughly corresponds to the “pp” form in the
Matlab toolbox splines. However, the most useful representation in our
context is the one that makes use of the decomposition of the splines in a
basis of cubic B-splines (the “sp” form in the toolbox splines); this eases
computations to be seen §7.3 below. A cubic spline x 7→ y(x) can indeed be
decomposed as a finite sum

y(x) =
∑

i

aiBi(x) , (7.1)

where the coefficients ai are real numbers and the functions Bi are basic
cubic splines, the B-splines. These are cubic splines, positive on 4 adjacent
subintervals and null elsewhere. They are associated with the discretization.
Therefore, the cubic spline (7.1) above is fully described by the n := ndx− 3



7.2 Computation of the Reflection Points 99

coefficients ai. We use the Matlab functions spmak, fnval, and fnplot to
construct, evaluate, and plot these splines:

cs = spmak([...], [...]); y = fnval(cs,x); fnplt(cs);

7.2 Computation of the Reflection Points

The main task to make our simulator is to write a Matlab function, say

function [time,time_der,x] = ttime (src,rcv,cs)

computing the traveltime time of a wave from a given source (xs, 0) (src =
xs) to a given receiver (xr, 0) (rcv = xr), via a reflection on the interface at a
point (x̄, ȳ) (x = x̄) to be computed; see Fig. 7.1. This function also computes
the derivative time der of the traveltime with respect to the interface –
a computation to be explained in §7.3 below. Finally, cs is the Matlab
structure describing the cubic spline of the interface (see the use of spmak in
the previous section).

Consider a piecewise linear path from (xs, 0) to (xr , 0), which encounters
the interface at point (x, y). Assuming unit velocity of the wave, the time
spent along this path is its length

`(x, y) =
√

(x− xs)2 + y2 +
√

(x− xr)2 + y2 , (7.2)

where the y-coordinate is actually given by (7.1). To determine the actual
reflection point (x̄, y(x̄)), we apply the Fermat law, according to which the
traveltime is stationary. In our simplified setting, we just consider the mini-
mization of the function ϕ(x) := `(x, y(x)) with respect to x (note from (7.1)
that y, hence ϕ, also depends on a); when there are several reflection points,
we thus compute one with smallest traveltime (which is actually the point of
view adopted in practice). This is a one-dimensional optimization problem,
for which we must solve the equation

ϕ′(x) = `′x(x, y(x)) + `′y(x, y(x))y
′(x) = 0 . (7.3)

This formula shows that differentiating ϕ involves the derivatives of the cubic
spline x 7→ y(x) in (7.1), which can be obtained by the Matlab function
fnder and evaluated by fnval.

Newton’s method can be used to solve (7.3): at its current iteration k, let
(see §4.1):

xN
k := xk −

ϕ′(xk)

ϕ′′(xk)
(7.4)

be the Newton estimate. Taking xk+1 = xN
k is the pure, local, Newton algo-

rithm. A robust implementation should globalize it, by way of a line-search
(§4.2), which requires the local decrease of ϕ when moving from xk toward xN

k .
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To guarantee this property, ϕ′′(xk) (supposed to be positive) can be replaced
by 1 if it becomes less than some small ε > 0. The iterations can be started
at x1 = (xs + xr)/2.

Figure 7.2 shows a reflector having the shape of a step-pyramid and the

Fig. 7.2. Ray tracing for the step-pyramid interface (the y-axis is stretched)

result of the ray tracing operation, which computes the reflection points for
various source-receiver pairs. These results are obtained by repeated execu-
tion of the ttime function, for each source-receiver pair. In the present case,
we havem = 960 such pairs, but only one 16th of them are plotted for clarity.

7.3 Gradient of the Traveltime

In the previous section, the interface was assumed to be known. In the actual
problem, however, the interface – characterized by a in (7.1) – is unknown:
we need to identify it, with the help of the measured traveltimes; remember
the meteorological problem of §1.2.2. In ttime (the essential part of the
simulator), time will give objective values but the optimization algorithm
will also need the derivatives time der with respect to the ai’s.

Now, besides the simple functions x 7→ y from (7.1) (which should rather
be written (x, a) 7→ y to highlight the dependence on the interface) and
(x, y) 7→ ` from (7.2), we have the implicit mapping a 7→ (x̄, ȳ) defined by the
minimization of ϕ, i.e. by (7.3); ȳ stands for y(x̄) – a correct writing should be
y(x̄(a), a). The result is a composite mapping a 7→ τ(a) := `(x̄(a), y(x̄(a), a)),
which we have to differentiate.

To compute ∇τ(a), assume that the necessary differentiability properties
hold and make a formal calculation, using (7.1) and (7.3):

∇τ(a) = `′x(x̄, ȳ)∇x̄(a) + `′y(x̄, ȳ)
[
y′x(x̄, a)∇x̄(a) +∇ay(x̄, a)

]

= ϕ′(x̄)∇x̄(a) + `′y(x̄, ȳ)∇ay(x̄, a)

= `′y(x̄, ȳ)∇ay(x̄, a) ,
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which does not depend on ∇x̄(a) (luckily!). Thus, computing ∇τ(a) involves
elmentary calculus only: to differentiate (7.2) (with respect to y) and (7.1)
(with respect to a)2. Incidentally, (7.1) shows that ∇ay(x̄, a) has at most
4 nonzero components; the above computation can be performed in a time
independent of n.

7.4 The Least-Squares Problem to Solve

Given an interface, described by the parameters a ∈ R
n, and an acquisition

survey (locations of m source-receiver pairs), we have shown how a vector
of traveltimes T (a) ∈ R

m can be computed (§7.2) and differentiated (§7.3)
by ray tracing. Seismic reflection tomography is the corresponding inverse
problem. Its purpose is to adjust the interface a so that T (a) best matches a
vector of traveltimes T obs ∈ R

m (the observed traveltimes) picked on seismic
data. Since Gauss [139; 1809], it is both classical and natural to formulate
this problem as a least-squares one:

min
a∈Rn

1

2
|r(a)|22 , with r(a) := T (a)− T obs , (7.5)

in which one minimizes the norm of the mismatch or residual between T (a)
and T obs.

The fact that problem (7.5) may be ill-posed has been pointed out by
many (the problem may have no solution or its solutions may not depend
continuously on the data), which yields oscillations in the interface. To ensure
well-posedness, a curvature regularization is often introduced: one adds to the
cost function in (7.5) a term penalizing the L2-norm of y′′ in (7.1). A short
computation shows that such a term is a>Ra; here R is the symmetric positive
semidefinite matrix whose element (i, j) is

Rij =

∫ xmax−3dx

xmin+3dx

B′′
i (ξ)B′′

j (ξ) dξ .

Instead of (7.5), the regularized least-squares problem is then

min
a∈Rn

(
1

2
|r(a)|22 +

ε

2
a>Ra

)
. (7.6)

The choice of the regularization parameter ε > 0 is a difficult task; L-curve
technique [187] is sometimes used.

The necessary material is now available for an actual implementation. To
construct a synthetic dataset, proceed for example as follows:

2 A rigorous justification of the above calculation is far beyond the scope of this
book – even of Part II, which deals with nonsmooth optimization. Observe here
and now that existence of ∇τ(a) implies a crucial property: (7.3) must have a
unique solution x̄(a). Checking ∇τ by finite differences is certainly a good idea.
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– Choose an interface, characterized by a function x 7→ y(x) to be inserted in
(7.2) – the spline representation (7.1) is useless at this point! The interface
may look like the step-pyramid of Fig. 7.2 but something more handy may
be advisable; say a polynomial or a trigonometric function, behaving mildly
in [0, 1]. Note from (7.4) that y(·) must be twice differentiable.

– Place a reasonable number of sources and receivers on the ground surface.

– Apply the method defined in §7.2 to compute the traveltimes between each
pair (r, s) of source-receiver.

– Call T obs
rs the value thus obtained, to be used in (7.5).

This procedure is unlikely to allow an exact fitting: the residuals will be
nonzero at the optimal solution. For a safer debugging, it may be advisable
to choose a discretization of [xmin, xmax] and to invent coefficients ai, wich
will give the exact interface via (7.1).

7.5 Solving the Seismic Reflection Tomography Problem

The unconstrained optimization problem (7.6) can be solved by a number of
algorithms described and analyzed in this first part of the book. We quote
the following two candidates:

– The quasi-Newton algorithm (§4.4) only needs the gradient J(a)>r(a)+εRa
of the cost function in (7.6), where J(a) := r′(a) is the Jacobian of the
residual (each of its lines is the gradient of a traveltime).

– The Gauss-Newton algorithm (§6.2) uses the gradient of the cost function,
as well as the approximation J(x)>J(x) + εR of its Hessian.

Recall that the Jacobian J(a) can be computed in a time similar to T (a) (see
§7.3). Therefore, the Gauss-Newton algorithm should be favoured in this
problem, since it is able to use a part of the Hessian with the same compu-
tational effort as the one to get the gradient. Both quasi-Newton and Gauss-
Newton algorithms can be globalized by a line-search (chapter 3); Gauss-
Newton should preferably be globalized by trust regions (§6.1).

Figure 7.3 shows the retrieved interfaces corresponding to the unper-
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Fig. 7.3. Retrieving the step-pyramid interface

turbed traveltimes issued from the step-pyramid interface shown in Fig. 7.2,
for various values of the regularization parameter ε in (7.6) and a discretiza-
tion of [xmin, xmax] in 100 subintervals (500 subintervals were used for the
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ray tracing operation). The details of the interface appear progressively as ε
decreases. Observe on Fig. 7.2 that the extreme parts of the interface are not
lit by the waves emanating from the sources, so that their recovered positions
are only determined by the regularization. This explains why these parts of
the interface have a position which does not correspond to the original inter-
face, in particular when ε is small.

Needless to say, the above model is only a schematic representation of the
real problem. Among others, we can mention: more complex geometry (10
reflectors is common and they can cross each other), sources and reflectors
that can be situated in wells, noisy data, large scale (104 unknown parame-
ters, 106 data), possible constraints to take into account a priori information,
etc.

General Conclusion

This study of unconstrained optimization conveys two important messages.
One is that optimization algorithms can be given a “global” character, thanks
to stabilization devices, such as line-search or trust-region. Second, the whole
business for efficient algorithms is a proper use of second-order information.
Concerning the latter, we have seen a variety of possibilities:

(i) The “standard” one, in which nothing is known beyond first order. This
is unambiguously the realm of quasi-Newton methods, possibly with
limited memory. It can be used in conjunction with line-search or with
trust-region.

(ii) The case of least-squares problems, where an attractive approximation
Gk (the matrix of Gauss-Newton) is directly available. Even though Gk

is certainly positive semi-definite, it may be ill-conditioned. An appro-
priate parameter λ (of Levenberg-Marquardt) is needed for efficiency,
as well as successive solutions to the system (Gk + λI)d = −gk, for
successive values of λ.

(iii) In some situations, second derivatives can be computed, or conveniently
approximated. The resulting matrix Mk need not be positive semi-
definite. As a result, line-searches are definitely inappropriate: one needs
either truncated conjugate gradient (§6.4) or trust-region (§6.1). The
latter approach results in computations similar to those of case (ii):
an appropriate parameter ∆ (the size of the trust-region) is needed,
as well as successive factorizations of Mk + µI , for successive values of
the Lagrange multiplier µ (§6.1.1); and each iteration on µ implies the
factorization of the perturbed matrix Mk + µI .

Even when several of these possibilities are available, the best strategy is
not necessarily obvious. Indeed consider a least-squares problem, where the
exact Hessian can be computed, for example via automatic differentiation of
§1.6. Should one choose (i), (ii) or (iii)? and in case (i), should one choose
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a line-search? Actually the answer depends largely on computing times : how
long does it take

– to compute f and g?

– to compute f ′′?

– to obtain an appropriate solution to f ′′h = −g via truncated conjugate
gradient?

– to obtain an appropriate λ in Gauss-Newton?

– to obtain an appropriate ∆ in trust-region?

One sees that the question cannot be given a general answer in abstracto.
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Nonsmooth optimization (NSO) is devoted to optimization problems in which
the objective function f (and possibly the constraints) is not continuously
differentiable.

In these problems, the task is to find a point x̄ such that f(x̄) ≤ f(x) for all
x in the domain of interest. We will focus most of our study in unconstrained
problems, with f convex and finite everywhere (hence locally Lipschitzian),
but not continuously differentiable. To solve such problems, it is necessary to
consider a special object: the subdifferential of a convex function f , denoted
by ∂f(x), which is a fundamental concept in convex analysis.

This second part is organized as follows: Chapter 8 contains some ba-
sic results of subdifferential calculus and duality theory, and two examples of
nonsmooth functions that appear often in practice, such as pointwise maxima
and dual functions. In Chapter 9 we study the NSO methods of steepest de-
scent, subgradients and cutting-planes. We present in detail bundle methods
in Chapter 10. Chapter 11 is devoted to explaining some important applica-
tions of NSO, including the decomposition of large-scale or complex problems
using Lagrangian duality, as well as extensions of bundle methods for han-
dling varying dimensions, for solving constrained problems, and for solving
generalized equations. We finish in Chapter 12 with some computational ex-
ercises that help getting a better understanding of NSO methods.



8 Introduction to Nonsmooth Optimization

The aim of this chapter is to review some general theoretical issues concerning
the problem

min
x∈Rn

f(x) , (8.1)

where differentiability assumptions are replaced by convexity. We recall the
necessary theory for solving (8.1), and give two important examples of non-
differentiable functions, namely max-functions and dual functions.

8.1 First Elements of Convex Analysis

We make here a brief review of basic concepts in subdifferential calculus. For
proofs and more details, we refer to [195], especially its Chapter VI; see also
the abridged version [196]. The book of Rockafellar [309] is a classical refer-
ence in the domain. A more general subdifferential theory, that includes the
nonconvex setting, can be found in [80] and [314]. We refer also to [52] for
a concise treatment of the area of nonsmooth analysis underlying computa-
tional optimization techniques.

Let f be a convex function as in Definition 2.2, defined on the whole of
R

n. Then f is continuous and locally Lipschitzian. Moreover, the directional

derivative f ′(x; d) := limt↘0
f(x+td)−f(x)

t exists for each fixed x and d in R
n.

As a result, f has a gradient almost everywhere. When ∇f(x) does not exist,
the point x is called a kink.
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Fig. 8.1. Minimizers are often kinks
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Even though kinks form a set of zero measure, in practice minimizers are
often kinks. The simplest example of nondifferentiable convex function, the
absolute value function, confirms this observation. Namely, its only kink is
precisely the unique minimizer, x = 0; see Figure 8.1.

To describe the behavior of the function near a kink x, the concept of
gradient must be generalized. Instead of just a vector, a certain set will be
associated with x. This is the subdifferential of f at x:

∂f(x) := {s ∈ R
n : f(y) ≥ f(x) + 〈s, y − x〉 for all y ∈ R

n} . (8.2)

This set is nonempty, closed, convex, and locally bounded as a (set-valued)
function of x; it reduces to the singleton {∇f(x)} if and only if f is differ-
entiable at x. Each element of ∂f(x) is called a subgradient. An equivalent
definition, expressed in terms of the directional derivative, is:

∂f(x) := {s ∈ R
n : 〈s, d〉 ≤ f ′(x; d) for all d ∈ R

n} . (8.3)

Also, letting “conv S” denote the convex hull of the set S, defined as the
smallest convex set containing S, i.e., as

convS :=
{∑

i

αis
i : si ∈ S ,

∑

i

αi = 1 , αi ∈ [0, 1]
}

;

the relation

∂f(x) = conv

{
lim

xi→x
∇f(xi) for all xi for which ∇f(xi) and the limit exist

}

holds. This last definition allows a generalization of subdifferential calculus
to nonconvex functions, known as Clarke subdifferential, [80].

By using (8.3), it can be shown that

f ′(x; d) = max{〈s, d〉 : s ∈ ∂f(x)} . (8.4)

Therefore, f ′(x; ·) is Lipschitz continuous, with the same constant as f .
When comparing all the expressions above for the subdifferential, we see

that (8.2) gives a geometric interpretation. It says that ∂f(x) is made up
of the slopes of the hyperplanes supporting the epigraph of f at (x, f(x)) ∈
R

n × R. This characterization is called the subgradient inequality:

s ∈ ∂f(x) if and only if f(y) ≥ f(x) + 〈s, y − x〉 for all y ∈ R
n. (8.5)

Even though the concept of “gradient” is extended from a vector-function
to a set-valued function, a good part of the classical differential calculus
remains valid for nondifferentiable functions. For an illustration, we include
here some results, concerning primarily the first-order setting.

– First order expansion:

∀ε > 0 ∃δ > 0 : ‖h‖ ≤ δ =⇒ |f(x+ h)− f(x)− f ′(x;h)| ≤ ε‖h‖ .
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– Mean-value theorem: For x 6= y in R
n, there exist

t ∈ ]0, 1[ and s ∈ ∂f(ty + (1− t)x)

such that
f(y)− f(x) = 〈s, y − x〉 .

– Optimality in (8.1): it can be characterized by a generalization of Fermat
condition in the differentiable case, ∇f(x̄) = 0. A direct application of
definitions (8.2), (8.3) gives the following result.
For f : R

n → R convex, the following three statements are equivalent:

(i) f is minimized at x̄, i.e., f(y) ≥ f(x̄) for all y ∈ R
n;

(ii) 0 ∈ ∂f(x̄);

(iii) f ′(x̄; d) ≥ 0 for all d ∈ R
n.

Thus, a minimum point x̄ is characterized by 0 ∈ ∂f(x̄), or f ′(x̄; d) ≥ 0 for
all d ∈ R

n. Conversely, a non-optimal x is characterized by the existence of
at least one direction d such that f ′(x; d) < 0.

A direction satisfying f ′(x; d) < 0 is called a descent direction of f at
the point x (or downhill direction). As in the differentiable case, descent
directions are fundamental in numerical nonsmooth optimization, since they
allow the generation of iterates with decreasing objective values.

From the definition of directional derivative and by convexity, d is a direc-
tion of descent of f at x when there exists t > 0 for which f(x+ td) < f(x).
Also, from (8.4), this is equivalent to having 〈s, d〉 < 0 for all s ∈ ∂f(x). Fur-
thermore, see [195; Theorem VIII.1.1.3], from a geometrical point of view,
using again (8.3) and (8.4), we see that to find a descent direction corre-
sponds to finding a hyperplane separating strictly the two (closed convex)
sets ∂f(x) and {0}:

A descent direction d is such that, for α ∈ [f ′(x; d), 0[, the hyperplane
{z ∈ R

n : 〈z, d〉 = α} separates ∂f(x) and {0} strictly:

〈s, d〉 ≤ α < 0 for all s ∈ ∂f(x) .

8.2 Lagrangian Relaxation and Duality

Duality is an important source of nondifferentiable problems; see Chap-
ter 11.1. We now give some elements of Lagrangian duality.

8.2.1 Primal-Dual Relations

Consider the primal problem




min
p∈P

fo(p)

cj(p) = 0 , j ∈ E := {1, . . . , nE}
cj(p) ≤ 0 , j ∈ I := {nE + 1, . . . , n := nE + nI} ,

(8.6)
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with fo, cj : P → R and P ⊂ R
N . With the primal problem (8.6), we asso-

ciate

– a closed convex set X , the space of “multipliers” or dual variables,

– a function (the “Lagrangian”) L : P ×X → R∪{+∞} having the property
that, for all p ∈ P , supx∈X L(p, x) = fo(p) if p satisfies the constraints in
(8.6), and +∞ otherwise.

Then (8.6) is equivalent to solving

inf
p∈P

sup
x∈X

L(p, x) . (8.7)

The idea is to invert the order of “sup” and “inf” in (8.7). This inversion is
practically interesting only if the dual function

θ(x) := inf
p∈P

L(p, x) (8.8)

is easy to compute, and it is not identically −∞, a particularly nasty case.
Instead of solving (8.6) or (8.7), one works with its dual:

sup
x∈X

inf
p∈P

L(p, x) = sup
x∈X

θ(x) , (8.9)

which can be simpler to solve, due to the particular structure of the prob-
lem (this somewhat vague claim will become obvious in the examples of
§ 11.1.1, 11.1.2 below).

An abstract duality theory can be developed from these premises. Here,
we limit ourselves to a particular dual of (8.6), which is the most popular.
Specifically, we shall consider the dual coming from the Lagrangian function
classical in optimization. It is characterized by:

– X := R
nE × R

nI
+ , whose elements will be denoted by x = (xE , xI). Con-

straints will be likewise condensed into c(p) = (cE(p), cI (p)).

– L(p, x) := fo(p) + 〈x, c(p)〉, where 〈·, ·〉 is the Euclidean scalar product in
R

nE+nI .

The method which finds solutions to (8.6) by solving (8.9) is called Lagrangian
relaxation. In this method, the dual problem (8.9) -the maximization of the
dual function θ defined by (8.8)- can be put in the framework of (8.1) -the
minimization of a convex function- by defining f := −θ; we analyze such
functions in § 8.3.2 below.

Suppose that both the primal and dual problems ((8.7) and (8.9), respec-
tively) have solutions. Admitting that (8.9) is simpler to solve than (8.7)
(and hence than (8.6), our initial problem), we shall be interested in finding
primal-dual pairs which solve at the same time both problems.

In Linear Programming, having a primal optimal value that is finite
amounts to having dual feasibility and, hence, a solvable dual problem. For
general data as in (8.6), it is known that the key object for (8.9) to have dual
solutions is the image of the constraints:
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Im C := {(cE(p), cI(p)) : p ∈ P}+ {0 ∈ R
nE} × R

nI
+

=
{
(cE(p), cI(p) + r) : p ∈ P , r ∈ R

nI
+

}
.

Let “ri S” denote the relative interior of a convex set S, defined as the interior
of S in the smallest affine space in which S is contained, endowed with the
induced topology. PropositionXII.2.4.1 in [195] states the following result:

Suppose θ is not identically −∞. Then
0 ∈ ri conv ImC =⇒ (8.9) has at least one solution.

The assumption that 0 ∈ ri conv C is a condition of qualification of con-
straints (cf. the end of §13.3). Suppose (8.6) is a convex problem, i.e., P , fo

and the inequality constraints cI are convex, while the equality constraints
cE are affine. A classical constraint qualification in this setting is Slater con-
dition:

there exists p0 ∈ riP such that cE(p0) = 0 and cI(p
0) < 0 . (8.10)

If this condition holds, there are dual solutions (in fact, (8.10) just says that
0 ∈ ri Im C and, with our assumptions, ImC = conv Im C).

For general data, we shall only assume that the primal functions in (8.6)
are such that the infimum defining the dual function (8.8) is attained:

for all x ∈ X such that θ(x) > −∞ , there exists px ∈ P : θ(x) = L(px, x) .

8.2.2 Back to the Primal. Recovering Primal Solutions

The dual approach will be totally successful if a primal solution can be re-
covered from a dual solution (8.9). The duality gap measures the difference
between the dual and primal optimal values:

min
p∈P
{fo(p) : cE(p) = 0 , cI(p) ≤ 0} − sup

x∈X
θ(x) . (8.11)

This quantity is always nonnegative, see (8.14) below, and measures how
good is the dualization scheme, in the sense of approximating well the primal
problem. Along these lines, we now establish a first fundamental result, stat-
ing that each computation of the dual function has associated a minimizer
px which solves a perturbation of (8.6).

Theorem 8.1 (Everett). For fixed x ∈ X, suppose the dual function (8.8)
has a solution px ∈ P :

px solution to inf
p∈P

L(p, x) = θ(x) . (8.12)
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Then px also solves





min
p∈P

fo(p)

cE(p) = cE(px)
cj(p) ≤ cj(px) , j ∈ I such that xj > 0
cj(p) arbitrary , j ∈ I such that xj = 0 .

(8.13)

Proof. Let p ∈ P satisfy the constraints in (8.13). Because px solves (8.8), we
have L(px, x) ≤ L(p, x), which implies that fo(px) ≤ fo(p). Since px trivially
satisfies the constraints in (8.13), the result is immediate.

We now give further relations between the primal and dual problems.
In particular, relation (8.14), known as the “weak duality” inequality. The
wording “p feasible for (8.6)” below means that p satisfies the constraints
given by cE and cI in (8.6).

Lemma 8.2. Consider the primal and dual problems (8.6) and (8.7). Then

(i) The duality gap (8.11) is never negative, i.e.,

fo(p) ≥ θ(x) (8.14)

for all p ∈ P feasible in (8.6) and for all x ∈ X.

(ii) Any p ∈ P feasible in (8.6) for which fo(p) = θ(x) is a solution to (8.8).

(iii) If the maximal value of (8.9) is +∞, then (8.6) has no feasible solution.
Conversely, if (8.6) has the minimal value −∞, then θ ≡ −∞ in (8.9).

(iv) If there exist p̄ ∈ P feasible in (8.6) and x̄ ∈ X for which θ(x̄) = fo(p̄),
then p̄ solves (8.6) and x̄ solves (8.9).

Proof. (i) Because p ∈ P is feasible for (8.6), we have

fo(p) ≥ fo(p) + 〈x, c(p)〉 = L(p, x) ≥ θ(x)

for all x ∈ X , from which (8.14) follows immediately.
(ii) Any feasible p ∈ P for which fo(p) = θ(x) is, using (8.14), a minimum
point in (8.8). The remaining items are straightforward.

A consequence of weak duality is that solving the dual problem (8.9) gives
the best lower bound for the primal optimal value that can be obtained by
Lagrangian relaxation. This property is often used in combinatorial optimiza-
tion.

From Theorem 8.1, we see that to solve the primal problem (8.6) via its
dual, it is enough to find x such that px from (8.12) is also primal feasible.
This matter is not simple at all, since nothing guarantees that the process
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computing θ(x) will manage to find a solution px of (8.12) that is primal feasi-
ble. In order to recover primal solutions from dual problems two assumptions
are required. First,

∃(px, x) ∈ P ×X for px given by (8.12) and feasible for (8.6). (8.15)

Second, a property for some primal-dual pairs (p, x):

(p, x) ∈ P ×X satisfying c(p) ≤ 0 and 〈x, c(p)〉 = 0 . (8.16)

In other words, such p satisfies the constraints of (8.6), with complementarity
for the multiplier x:

cE(p) = 0 , cI(p) ≤ 0 and cj(p) = 0 for all j ∈ I such that xj > 0 ;

see also §13.3.

Lemma 8.3. Suppose (8.15) holds and let (px′ , x′) be a pair satisfying (8.16).
The following primal-dual relations hold:

(i) fo(px′) = θ(x′).

(ii) x′ solves the dual problem (8.9).

(iii) Any solution x̄ of (8.9) is such that the relations in (8.15) hold for the
pair (px′ , x̄).

(iv) p̄ is a solution to the primal problem (8.6) if and only if p̄ solves (8.12)
with x replaced by x̄, a solution to the dual problem (8.9), and the
primal-dual pair (p̄, x̄) satisfies (8.16).

Proof. (i) By (8.16), L(px′ , x′) = fo(px′), together with (8.12), item (i) holds.
(ii) Combine item (i) with (8.14) written for p = px′ and x ∈ X arbitrary,
to obtain the optimality of x′ in (8.9).
(iii) Take x̄ solving (8.9): θ(x̄) ≥ θ(x′) = fo(px′), by item (i). Inequality
(8.14) applied to px′ and x̄ gives fo(px′) ≥ θ(x̄), so θ(x̄) = fo(px′). Since
the pair (px′ , x′) satisfies (8.16), c(px′) = 0 and L(px′ , x) = fo(px′) for any
x ∈ X . In particular, this means that xx′ solves (8.12) when x = x̄.
(iv) Suppose p̄ solves (8.6). Then, by item (iii) and by item (i) written for
x̄ and p̄, fo(p̄) ≤ fo(px′) = θ(x̄) ≤ fo(p̄). As a result, by definition of the
dual function, fo(p̄) = θ(x̄) ≤ L(p̄, x̄) = fo(p̄) + 〈x̄, c(p̄)〉 ≤ fo(p̄). Thus,
〈x̄, c(p̄)〉 = 0 and p̄ solves (8.12) for x̄.
The converse assertion follows from item (i).

According to Lemma 8.3, to cancel the duality gap and to obtain px̄

solving (8.6), it “suffices” to find an admissible primal-dual pair (px̄, x̄), with
x̄ solving (8.9). The next result shows the importance of convexity for these
facts to hold.



116 8 Introduction to Nonsmooth Optimization

Theorem 8.4. Consider problem (8.6) and suppose that

(i) the set P is the whole space R
n;

(ii) the equality constraint functions are affine and the inequality constraints
are convex and differentiable; and

(iii) a constraint-qualification condition is satisfied, for example (8.10).

Then p̄ solves (8.6) if and only if there exists a multiplier x̄ ∈ X such that
the Karush Kuhn-Tucker conditions are satisfied:

∇pL(p̄, x̄) = 0 and x̄ici(p̄) = 0 , with cE(p̄) = 0 and cI(p̄) ≤ 0 .

Said otherwise, the primal solutions are exactly the points px̄ as defined in
(8.12) such that (px̄, x̄) is admissible and x̄ solves the dual problem (8.9).

Thus, the duality gap vanishes if (8.6) has convex data and a constraint
qualification is satisfied (for example, of Slater-type). In this case, a dual so-
lution x̄ is a Lagrange multiplier given by the Karush-Kuhn-Tucker Theorem.

8.3 Two Convex Nondifferentiable Functions

We finish this chapter with two important examples of NSO arising from
finite minimax problems and dual problems.

8.3.1 Finite Minimax Problems

Functions defined as the pointwise maximum of a finite collection of smooth
functions appear frequently as objective functions in (8.1). Suppose that

f(x) := max{fj(x) : j = 1, . . . , np} (8.17)

where each fj is a convex smooth function, and let J(x) := {j : fj(x) = f(x)}
denote the set of active indices at x. Then

f ′(x; d) = max{〈∇fj(x), d〉 : j ∈ J(x)}
and

∂f(x) = conv{∇fj(x) : j ∈ J(x)} .
Therefore, f has a gradient at x if there is a unique fj giving the maximum,
i.e., if there is only one active index (or if, by chance, the active gradients
∇fj(x) have the same value for all j ∈ J(x)).

We shall often consider the particular case of affine functions, i.e., when
fj(x) = 〈sj , x〉+ bj , for given sj ∈ R

n and bj ∈ R. In this case,

∂f(x) = conv{sj : j such that f(x) = 〈sj , x〉+ bj} . (8.18)

Note that, given a fixed x, knowing just one active index j ∈ J(x) amounts
to knowing f(x) = fj(x) and one subgradient, ∇fj(x) ∈ ∂f(x). The so-called
black-box methods are developed on the basis of this minimal information of
the objective function in (8.1); see § 9.3 below.
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8.3.2 Dual Functions in Lagrangian Duality

When comparing the objective function in the minimax problem in § 8.3.1,
and the dual function (8.8), we see that the latter is only an extension to an
infinite collection of functions;

−θ(x) = sup
p∈P
−L(p, x) = sup

p∈P
{−θp(x) := −fo(x)− 〈x, c(p)〉} ,

where the finite set of indices {1, . . . , np} in (8.17) is replaced by the infinite
set {p ∈ P}. Likewise, the role of {fj , j ≤ np} in (8.17) is played by the
collection of functions {−θp , p ∈ P}. The following scheme summarizes these
relations:

finite minimax (8.17)
(negative of)

dual function (8.8)

objective function f(x) = maxj fj(x) −θ(x) = supp−θp(x)
collection of functions {fj(x)} {−θp(x) = −fo(p)− 〈x, c(p)〉}
gradient of functions ∇fj(x) −∇xθp(x) = −c(p)
index set j ∈ {1, . . . , np} p ∈ P
active indices j ∈ J(x) px solving (8.8)

The negative of the dual function θ is given by the supremum of func-
tions that are affine with respect to x. In order to fully characterize its
subdifferential, and obtain a version of (8.18) in this infinite setting, some
additional assumptions are required. More precisely, the application of [195;
Theorem VI.4.4.2] to the function −θ gives the following result.

Suppose that in (8.6) P is compact, fo and the inequality constraints
cI are lower semicontinuous functions, and the equality constraints
cE are continuous. Then

∂
(
− θ
)
(x) = conv

{
− c(px) = −(cE(px), cI(px)) for all px solving (8.8)

}
.

In particular,

−c(px) ∈ ∂
(
− θ
)
(x) . (8.19)

We mention that the compactness assumption on P can be replaced by
additional conditions on the functions. For example, to require the constraints
to be bounded from below and the objective function fo to be coercive on P :

fo(p)

‖p‖ → +∞ if p ∈ P and ‖p‖ → +∞ .

With these assumptions, it is possible to replace P in (8.8) by the (compact)
set P ∩ B(0; ρ), where B(0; ρ) is the ball in R

n with radius ρ, for ρ large
enough. Note that this does not change the value of θ.
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Most of the numerical NSO methods we consider here are of the black-
box type. This means that they only need the knowledge of the function and
one subgradient. Accordingly, for any given x, it is enough to compute just
one minimizer px in (8.8): −θ(x) = −L(px, x) and, by (8.19) −c(px) is a
subgradient.

Remark 8.5. As in the finite minimax case, differentiability of θ depends on
uniqueness of “active indices”. For the dual function, this means uniqueness
of the minimizer px in (8.8). When the Lagrangian is strictly convex as a
function of p (i.e., for strictly convex fo, affine cE , and convex cI), there
is a unique minimum point px and ∇θ(x) = (cE(px), cI(px)). Otherwise, to
define a strictly convex Lagrangian, one should add a suitable penalty term,
forcing uniqueness. The resulting function is the augmented Lagrangian. For
example, when (8.6) has only equality constraints, the augmented Lagrangian
has the form

Lπ(p, x) = L(p, x) + πψ(‖cE(p)‖).
For L(·, x)+πψ(‖cE(·)‖) to be strictly convex on P , the positive penalization
parameter π should be large enough and L(·, x) should be strictly convex on
the kernel of the Jacobian JcE(·). The penalty function ψ is increasing and
satisfies ψ(t) > 0 for all t > 0 with ψ(0) = 0. A typical example is ψ(t) = t2;
more complicated expressions for ψ appear when both equality and inequality
constraints are present in (8.6); see cf. § 16.3. Note that the price of gaining
differentiability of the dual function is in the delicate problem of properly
setting π, by finding an adequate balance between optimality and feasibility.
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Once a characterization of an optimal point for (8.1) has been derived, we
are interested in the problem of computing a minimizer. We consider in this
chapter the main difficulties arising when f is not differentiable, and give a
first group of numerical methods.

9.1 Why Special Methods?

As a general rule, and for the sake of consistency, NSO methods strive to
mimic as much as possible those of differentiable optimization. In general,
the algorithms presented in the following sections generate iterates xk by
first finding a direction dk (a descent direction in favorable cases) and then a
scalar stepsize tk > 0. The update of the iterate is given by xk+1 = xk +tkd

k.
Thus, at first glance, analyzing separately the nonsmooth case could seem

useless. Yet, NSO has some traps in which a non-acquainted reader might
easily fall:

– Trap of the stopping test: this issue is extremely delicate, because the condi-
tion “g ∈ ∂f(xk) with ‖g‖ ≤ ε”, directly translated from “‖∇f(xk)‖ ≤ ε”,
may never happen. This situation occurs even in very simple cases. For ex-
ample, the absolute value function of Figure 8.1 has |g| = 1 for all xk 6= 0,
the optimum point.

– Trap of approximate subgradients: often in practical situations, the sub-
gradient (and even the function) is not computed exactly. Instead, it is
obtained from f -values by finite differences. This approach is valid only
in the smooth case, because f ′(x; d) = 〈∇f(x), d〉 is linear in d and can
be approximated by difference quotients. When f is not differentiable, the
mapping x 7→ ∂f(x) is not continuous (cf. § 9.2.2 below). As a result, dif-
ference quotients do not necessarily belong to the subdifferential, not even
in the limit. Consider in R

3 the function f(x) = max{x1, x2, x3}. As shown
in (8.18) above, ∂f(x) = {α ∈ R

3 : αi ≥ 0 ,
∑

i αi = 1} for all “diagonal”
x, i.e., such that xi = ξ for all i. However, when ξ = 0 the forward, back-
ward and central finite difference approximations are (1, 1, 1), (0, 0, 0) and
(1/2, 1/2, 1/2), respectively. None of these “approximated gradients” is in
the unit simplex ∂f(0, 0, 0).
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– Curse of nondifferentiability: since the (set-valued) function x 7→ ∂f(x)
is not continuous, a small variation on xk may produce large variations
on ∂f(xk). Directions dk are computed on the available information on
the subdifferential, so their computation may vary drastically and produce
very different iterates xk+1. This phenomenon occurs also when running
the same program on different processors: roundoff errors are such that the
sequences generated on different computers are no longer comparable! This
unavoidable problem makes extremely difficult any numerical comparison.

9.2 Descent Methods

The philosophy of so-called descent methods is to generate a sequence {xk}
such that each iteration guarantees a decrease of f . Different characteriza-
tions of descent directions were given at the end of § 8.1. Essentially, for all
non-optimal xk (0 /∈ ∂f(xk)) there exists a descent direction dk , which corre-
sponds to the strict separation of the sets {0} and ∂f(xk). Figure 9.1 displays
directions that are downhill for f at xk. Note that each of them makes an
obtuse angle with every element of the set ∂f(xk).

PSfrag replacements

0dk
∂f(xk)

Fig. 9.1. Descent directions

The algorithmic scheme underlying most descent methods is the following.

Descent pattern. Take x1 ∈ R
n and set k = 1.

Step 1 (formal stopping test). If 0 ∈ ∂f(xk), stop.
Step 2 (descent). Find a descent direction dk of f at xk.
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Step 3 (line-search). Find a stepsize tk > 0 such that f(xk + tkd
k) < f(xk).

Step 4 (loop). Define xk+1 := xk + tkd
k. Change k to k + 1, go to 1.

The stopping test of Step 1 is purely formal. The delicate issue of defining
implementable stopping tests will be treated in more detail for two particular
algorithms, cutting-planes and bundle methods, in § 9.3 and Chapter 10,
respectively.

We shall consider different possibilities in Step 2, showing how the non-
differentiability of f limits the choice of directions. In particular, we shall
see that some methods (subgradients, cutting-planes) do not follow at all the
descent scheme in Steps 2 and 3 above. The reason for such modification is
that in NSO descent directions cannot always be generated; see Figure 9.6
below.

With respect to Step 3, for simplicity we shall often set tk = 1 for all
k (even if f(xk + dk) > f(xk)). For line-searches in NSO we refer to [269],
[229]; see also the stepsize strategy in [195; Chapters XIV.3. and XV.3.3] and
the curve-search algorithm in [236].

9.2.1 Steepest-Descent Method

A first idea (very natural but very unfortunate) to find a descent direction
dk consists in looking for the best possible descent at each iteration. This is
the steepest-descent direction:

dk ∈ Argmin
‖d‖=1

f ′(xk ; d) ,

or equivalently, via (8.4),

dk ∈ Argmin
‖d‖=1

max
s∈∂f(xk)

〈s, d〉 .

In this problem, the norm chosen to bound the feasible set could be any
one (for differentiable functions, Euclidean normalizations have already been
considered in § 2.5).

From a geometric point of view, {0} and ∂f(x) are separated by the hy-
perplane orthogonal to the projection of 0 onto ∂f(x). The steepest-descent
direction, boldfaced in Figure 9.1, is just opposite to this particular subgra-
dient:

dk = − γk

‖γk‖ where γk := P∂f(xk)(0) belongs to ∂f(xk) . (9.1)

Steepest-descent algorithms suffer from two important drawbacks which
make them inefficient:

– The computation of a descent direction requires the knowledge of the whole
subdifferential, and this at each iteration. This requirement is excessive, if
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not impossible, in most practical applications. For the finite minimax prob-
lem corresponding to (8.17), it would mean to identify all the active indices
at every point. Likewise, for the dual function (8.8), one would need to com-
pute all the minimizers px, which can form an infinite set. The so-called
black-box methods, see § 9.3 and Chapter 10 below, are algorithms defined
on the knowledge of the objective function value and just one subgradient,
which is a more reasonable requirement.

– The sequence {xk} may oscillate and converge to a non-optimal point.
This zigzagging phenomenon is demonstrated in Example 9.1 below; see
also § VII.2.2, [195]. Zig-zags of steepest-descent methods for smooth func-
tions were already mentioned in § 2.5, nondifferentiability is bound to only
amplify the phenomenon. In § 9.2.2 we shall explain how to stabilize the
steepest descent algorithm in order to eliminate such oscillations.

Example 9.1 (Instability of steepest-descent). Consider in R
2 the min-

imax problem with objective function defined as follows:

f(x) := max{f0(x), f−1(x), f−2(x), f1(x), f2(x)} ,

where f0(x) := −100; f±1(x) := 3x1 ± 2x2; f±2(x) := 2x1 ± 5x2 .
The optimal value is f̄ = −100, and the (infinite) set of minimizers is

{(x1, x2) ∈ R
2 : x1 ≤ −50 and |x2| ≥ 0.4x1 + 20}, i.e., the region where f0

is active. Figure 9.2 displays the regions where the various functions fj are
active; the locus of the kinks, in boldface in the figure, is made up of the
half-lines K02, K0−2, K12, K−1−2, K±1, and K±2, where

0
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Fig. 9.2. Minimax function

K02 := {x : f(x) = f0(x) = f2(x)} = {(x1, x2) : x2 = −20− 0.4x1} ,
K0−2 := {x : f(x) = f0(x) = f−2(x)} = {(x1, x2) : x2 = 20 + 0.4x1} ,
K12 := {x : f(x) = f1(x) = f2(x)} = {(x1, x2) : 3x2 = x1} ,
K−1−2 := {x : f(x) = f−1(x) = f−2(x)} = {(x1, x2) : −3x2 = x1} ,
K±1 := {x : f(x) = f1(x) = f−1(x)} = {(x1, x2) : x2 = 0 , x1 ≥ 0} ,
K±2 := {x : f(x) = f2(x) = f−2(x)} = {(x1, x2) : x2 = 0 ,−50 ≤ x1 < 0} .
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Consider the region x1 ≥ 0. For any x on K−1−2, by (8.18), the active
gradients are ∇f−1 and ∇f−2. Therefore

x ∈ K−1−2 ⇒ ∂f(x) = conv{(3,−2), (2,−5)} so γ = P∂f(x)(0) = (3,−2) .

Similarly,

x ∈ K12 ⇒ ∂f(x) = conv{(3, 2), (2, 5)} and γ = P∂f(x)(0) = (3, 2) .

Start the steepest-descent algorithm at x1 := (9,−3) ∈ K−1−2. Omitting
normalization, the steepest-descent direction is d1 = (−3, 2). The line-search
function 0 ≤ t 7→ q(t) := f(x1 + td1) has two kinks, x1 + 3

2d
1 ∈ K±1 and

x1 + 2d1 ∈ K12:

q(t) =





33− 13t , if 0 ≤ t ≤ 3/2 ,
21− 5t , if 3/2 ≤ t ≤ 2 ,
3 + 4t , if 2 ≤ t ≤ 3 . [since x1

1 + td1
1 ≥ 0 ⇐⇒ t ≤ 3]

The exact line-search at Step 3 would give the optimal stepsize t1 = t∗ = 2,
for which x1+t1d

1 ∈ K12. As for Wolfe’s line-search (§ 3.4), starting from the
data q(0) = 33 and q′(0) = −13, it would reject any t ≤ 3/2 as “too small”
(the test q′(t) ≥ m2q

′(0) is not satisfied). In fact, when seeking a stepsize t ≥
3/2 not “too large”, any adjustment of t adapted to piecewise linear functions,
should find t1 = t∗. The next iterate is x2 = (3, 1) ∈ K12, which in turn
produces x3 = (1,−1/3) ∈ K−1−2, and the zigzagging phenomenon between
the two half-lines K12 and K−1−2 becomes blatant. As shown in Figure 9.3,
the sequence {xk = (33−k, (−1)k32−k)}k≥1 converges (very slowly!) to 0,
which is a non-optimal kink.

0
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9.2.2 Stabilization. A Dual Approach. The ε-subdifferential

For a descent algorithm to be convergent, it should generate a sequence {xk}
satisfying the following conditions:

– the sequence {f(xk)} is strictly decreasing,

– the sequence {xk} is a minimizing for problem (8.1), i.e.,
lim inf f(xk) = f(x̄) ≤ f(y) for all y ∈ R

n. In other words,

– {xk} has a cluster point x̄,

– x̄ is a minimizer of f .

In Example 9.1 the sequence {xk} does have decreasing objective values
(f(xk) = 11 ∗ 32−k) and does have a cluster point, the zero vector. However,
this cluster point is not a minimum of f . To understand what is wrong with
the steepest descent method, consider the sequence of distances

{Dk := dist(0, ∂f(xk)) = ‖γk‖} ,

where γk is as in (9.1). The multifunction x 7→ ∂f(x) has a closed graph, i.e.,

if
{(
xk , gk ∈ ∂f(xk)

)}
→ (x̄ , ḡ) then ḡ ∈ ∂f(x̄) . (9.2)

Therefore, if {Dk} tends to 0, then 0 ∈ ∂f(x̄) and the cluster point is a
minimizer. But for our example, the method generates a sequence of gradients
gk = γk = (3, (−1)k2), for which Dk =

√
32 + |2|2 for all k.

In order to ensure that x̄ is a minimizer of f (i.e., to ensure that {Dk} →
0), we would need the subdifferential to be continuous as a multifunction.
This means that ∂f(·) has to be both outer and inner semicontinuous1. Outer
semicontinuity holds because of the closedness property (9.2). However, the
following property, of inner-continuity, does not hold:

if {xk} → x̄ and ḡ ∈ ∂f(x̄) then there exists {gk ∈ ∂f(xk)} → ḡ .

This phenomenon occurs in Example 9.1, but it also occurs for the absolute
value function (take the sequence {xk = 1/k}, which minimizes the function
f(x) = |x| and whose (sub)gradients are constantly equal to 1).

The important continuity property of subgradients can be enforced by the
introduction of a tolerance, or viscosity parameter, in the definition of the
subdifferential. More precisely, for a given ε ≥ 0, the ε-subdifferential of f at
x is defined as

∂εf(x) := {s ∈ R
n : f(y) ≥ f(x) + 〈s, y − x〉 − ε for all y ∈ R

n} . (9.3)

This set approximates ∂f(x), with ∂f(x) ⊆ ∂εf(x) for all ε ≥ 0. Moreover,
it is a continuous multifunction of x:
1 We prefer here the terminology of [195] to that of an upper semicontinuous

multi function. The reader will find an explanation of this terminology in the
appendix of the cited book.
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– it is outer semicontinuous because its graph is closed (PropositionXI.4.1.1
in [195]):

{(
xk , εk, sk ∈ ∂εk

f(xk)
)}

k
→ (x̄, ε̄, s̄) =⇒ s̄ ∈ ∂ε̄f(x̄) . (9.4)

– Since f is Lipschitz-continuous, we have for fixed ε > 0 that

∀ρ > 0 ∃δ > 0 : ‖xk − x̄‖ ≤ δ =⇒ ∂εf(x̄) ⊂ ∂εf(xk) +B(0; ρ) ,

which means that ∂εf(·) is also inner semicontinuous (at x̄).

The smearing parameter ε is also introduced in other objects related to the
subdifferential. For instance, the ε-optimality condition is 0 ∈ ∂εf(x̄), and it
means that f(y) ≥ f(x̄) − ε for all y ∈ R

n. Likewise, for any point xk that
is not ε-optimal there are directions d for which the approximate directional

derivative f ′
ε(x

k; d) := limt↘0
f(x+td)−f(x)+ε

t is negative. In such directions,
called of ε-descent at xk , there exists a positive scalar t such that f(xk +td) <
f(xk)− ε.

The ε-subdifferential calculus is rather involved (see Chapter XI in [195]).
When f has the form (8.17), for the particular case of a maximum of affine
functions fj , it holds that

∂εf(x)=

{
npx∑

i=1

αis
i : αi≥0 ,

npx∑

i=1

αi = 1 and f(x) ≤
npx∑

i=1

αifi(x) + ε

}
,

where npx := min(np, n+1) depends on x. Unlike the subdifferential formula
(8.18), which only makes use of active gradients, the smeared subgradients
may employ all the gradients ∇fj for j = 1, . . . , npx. In particular, for Ex-
ample 9.1, after some calculations we obtain that, for ε > 0 small enough,

x ∈ K−1−2 =⇒ ∂εf(x) = conv{(3,−2), (2,−5), (3, 2)}

and γε := P∂εf(x)(0) = ( 140
47 ,− 46

47 ). The associated ε-steepest descent direc-
tion d1

ε now points out of the region defined by K−1−2 and K12. The corre-
sponding line-search function q(t) no longer crosses K±1 but crosses K±2 at
the only one kink t = 141

46 :

q(t) =

{
33− 510

47 t , if 0 ≤ t ≤ 141
46 ,

3− 50
47 t , otherwise .

The exact line-search at Step 3 would give the optimal stepsize t1 = t∗ = 141
46 ,

for which x1 + t1d
1
ε = (− 3

23 , 0). The dangerous kink x = (0, 0) is left behind,
and the algorithm proceeds; see Figure 9.4.

Methods that use the ε-subdifferential to compute directions are called of
ε-descent. They generate sequences {xk} and {εk} in such a way that

– {f(xk)} is decreasing;
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– {εk} tends to 0;

– 0 is a cluster point of the sequence {Dεk
= dist(0, ∂εk

f(xk)) = ‖γk
ε ‖} .

These methods can be interpreted as a stabilization in the dual space (i.e.,
in the space of subgradients) of the steepest descent algorithm.

Note that ε-steepest descent methods are still not implementable since,
to compute γk

ε , the whole ε-subdifferential must be known. We shall see in
Chapter 10 that bundle methods construct smeared subgradients ŝk without
projecting onto ∂εk

f(xk). Instead, they define a polyhedral approximation for
the subdifferential that can be built along iterations using only the black-box
information. At the same time, bundle methods approximate the objective
function f by a polyhedral model. This results in a primal stabilization (in
the x- space); see § 10.1 below.

9.3 Two Black-Box Methods

Knowing that the whole subdifferential ∂f(x) is usually not available, we
shall deal with a much weaker requirement. For any given point, the user
computes the value of the function and only one arbitrary subgradient.

PSfrag replacements
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Fig. 9.5. Black box

The black box routine displayed in Figure 9.5 is also sometimes called
oracle or simulator. Algorithms will be constructed based on this sole in-
formation, given by the user, and they will aim at being descent schemes.
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However, due to the little information available, algorithms may not always
be able to produce (or even recognize) descent directions. As a result, Step
2 of the Descent Pattern only produces candidates to become a direction
of descent (rather than certain descent directions). The performance of the
various algorithms will heavily depend on their capacity to generate and rec-
ognize which candidates are “good enough”, in the sense of decreasing the
objective value.

The term “black box” comes from the fact that optimization methods
generate a minimizing sequence independently of the way the calculations
are organized to obtain f(x) and s(x). This part of the program is left to the
user’s responsibility, who is supposed to know the real nature of the problem.

9.3.1 Subgradient Methods

In the differentiable case, the direction −∇f(x) is downhill, as well as any
direction in the half-space opposite to the gradient, since they make an obtuse
angle with ∇f(x). Starting from this remark, it is conceivable to mimic this
behavior with the information obtained from the black box. Similarly to the
implementable scheme in § 3.6, we define the following algorithmic pattern:

Algorithm 9.2 (of subgradients). Take x1 ∈ R
n and set k = 1.

Step 1 (Calling the black box – formal stopping test). Call the black box of
Figure 9.5 with x = xk. If 0 ∈ ∂f(xk), stop.

Step 2 (Candidate descent-direction). Set dk := − s(xk)

‖s(xk)‖ .
Step 3 (line-search). Find a stepsize tk > 0 satisfying, if possible, the condi-

tion f(xk + tkd
k) < f(xk).

Step 4 (loop). Define xk+1 := xk + tkd
k. Change k to k + 1, go to 1.

Step 3 is a relaxed form of the usual line-search requirement in smooth
optimization (for example, Armijo’s rule in § 3.5.2), in the sense that descent
is imposed whenever possible. This is because in the nondifferentiable case a
direction opposite to a subgradient need not always be a descent direction. As
shown in Figure 9.1, to be downhill, a direction must make an obtuse angle
with the whole subdifferential, and not with the sole element s(x). Therefore,
having as an output of the black box just one subgradient, it is not possible
to check if a given direction is downhill.

Figure 9.6 displays the level-lines for two functions minimized at 0 ∈ R
2:

the differentiable function fL(x1, x2) = x2
1+2x2

2 on the left and the nondiffer-
entiable function fR(x1, x2) := |x1|+ 2|x2| on the right. The shadowed area
shows all descent-directions in the two cases. Observe that for this simple
case, the direction opposite to s = (1, 2) ∈ ∂fR(0, x2), for x2 > 0, is not a
direction of descent.

Even though Algorithm 9.2 is not a descent pattern, an adequate choice
of stepsizes tk does produce a convergent method. To see what can be done,
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given any point y ∈ R
n, consider the sequence of square distances ‖xk+1−y‖2.

Expanding the squares, and using the definitions of xk+1 and dk, we obtain

‖xk+1 − y‖2 = ‖xk − y − tk
s(xk)

‖s(xk)‖‖
2

= ‖xk − y‖2 + t2k + 2
tk

‖s(xk)‖
〈
y − xk, s(xk)

〉
.

The subgradient inequality (8.5) written at x = xk gives the relation

‖xk+1 − y‖2 ≤ ‖xk − y‖2 + t2k + 2
tk

‖s(xk)‖(f(y)− f(xk)) . (9.5)

The following convergence result makes repeated use of this relation. We
assume that the stopping test in Algorithm 9.2 never holds and, hence, an
infinite sequence of iterates {xk} is generated.

Theorem 9.3. Assume (8.1) has minimizers. Suppose Algorithm 9.2 loops
forever (k →∞). If at Step 3 stepsizes are chosen so that

(a)
∑

k

tk = +∞ and (b)
∑

k

t2k <∞ ,

then {xk} converges to a minimum point of (8.1), at sub-linear rate.

Proof. Write (9.5) for y = x̄, a minimizer in (8.1), which exists by the as-
sumption. The corresponding relation has a third right hand side term that
is negative, so 0 ≤ ‖xk+1 − x̄‖2 ≤ ‖xk − x̄‖2 + t2k. Then, by condition (b),
the sequence of square errors {‖xk− x̄‖2} converges (for now, not necessarily
to 0). Hence, the sequence {xk} is bounded and, by the local boundedness
property of ∂f(·), so is the sequence {s(xk)}, say by a constant M . Suppose,
for contradiction purposes, that {xk} is not a minimizing sequence for (8.1).
Then liminff(xk) > f(x̄) and there exist a positive constant C, a vector ȳ
and an index K such that
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f(ȳ) ≤ f(xk)− C for all k ≥ K .

Choosing y = ȳ in (9.5), this means that

‖xk+1 − ȳ‖2 ≤ ‖xk − ȳ‖2 + tk(tk − 2C ′)

for some positive constant C ′ = C/M . Since tk → 0 by condition (b), the
factor (tk − 2C ′) above is eventually smaller than −C ′ and

‖xk+1 − ȳ‖2 ≤ ‖xk − ȳ‖2 − tkC ′ for k big enough.

Summing up the terms in the last inequality, and using again the fact that
the square errors converge, yields a contradiction of condition (a). Thus, it
must hold that liminf f(xk) = f(x̄). By continuity of f , the (bounded) se-
quence {xk} has a cluster point x̂ which minimizes f . For this minimizer,
reasoning as for x̄, the sequence of errors ‖xk − x̂‖ converges, now to 0, and
the conclusion follows.
To prove the rate of convergence result, we use again a contradiction ar-
gument. Suppose that the rate is linear, and recall Theorem 1.6. There
exist C > 0 and θ ∈]0, 1[ such that ‖xk − x̄‖ ≤ Cθk for all k. Since
tk = ‖xk+1 − xk‖ ≤ ‖xk+1 − x̄‖+ ‖x̄ − xk‖ < 2Cθk, the series

∑
k tk would

be convergent, contradicting condition (a).

A general description of subgradient methods can be found in Shor’s
monograph [332]. In view of condition (a) of Theorem 9.3, subgradient meth-
ods are also called of “divergent series”. A major difficulty of these methods is
to define practical rules for tk which ensure convergence. For example, choos-
ing tk by means of a classical line-search may generate a zigzagging sequence
as in Example 9.1.

With rules other than (a), Algorithm 9.2 can have better convergence
rates. It is shown in [163] that if tk = t0θ

k, for t0 > 0 and θ ∈]0, 1[, the
rate of convergence becomes geometric. However, the sequence converges to
a point x̄ that need not be optimal. Global convergence holds when t0 and θ
satisfy certain hypotheses, that cannot be checked in practice.

Another variant is possible when the optimal value f̄ = f(x̄) is known.
In this case, it suffices to take tk = 2m(f(xk) − f̄)/‖s(xk)‖, with m ∈]0, 1[
to improve the rate of convergence. Note that, with this choice, (9.5) written
for z = x̄ implies that the error decreases by 2m|m−1|(|f(xk)− f̄ |/‖s(xk)‖)2
at each iteration.

When the value f̄ is not available, dilation methods propose a rule that
uses information from previous iterations to choose the stepsize. These “ac-
celerated” methods avoid the generation of consecutive directions producing
zig-zags. We can cite in this family the ellipsoid algorithm [206], a particular
case of dilation along a subgradient, [331]. Along the same lines, subgradient
level methods approximate f ’s level sets in order to obtain an estimate of
f̄ , [55], [215], [164]. In these methods, there is a subsequence of “records”,
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generated by remembering the points with smallest objective value, that is
monotonically decreasing.

In general, subgradient methods suffer from important drawbacks (lack
of implementable stopping test, lack of descent, possible poor rate of con-
vergence). Nevertheless, they are extremely popular among practitioners, be-
cause of their simplicity of implementation. The methods we present in the
following sections overcome some of these drawbacks. As a price to pay, sub-
problems defining directions at Step 2 will have an increasing complexity.

9.3.2 Cutting-Planes Method

Essentially, subgradient methods use the information given by the black box
only once at a time, without a memory of past iterations. If, instead, past
information is kept, it is possible to define a model of the objective function.
Cutting-planes methods, [78], [205], use the values

fi := f(xi) and si := s(xi) , for i = 1, . . . , k

obtained so far, to construct the following piecewise-affine model for f :

f̌k(y) := max
i=1,...,k

{fi + 〈si, y − xi〉} . (9.6)

The minimization of the model f̌k, on a convex compact set S, to be de-
termined before starting the method, gives the new iterate xk+1. Figure 9.7
shows different cutting-planes for a (smooth) function f .
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Note that by definition of the model,

for all k f̌k ≤ f̌k+1 and f̌k ≤ f , (9.7)

where the last relation follows from the subgradient inequality (8.5). So, by
the convexity of f , the graph of the cutting-planes model f̌k approaches the
graph of f from outside, with increasing accuracy as k grows. This is why
the method is convergent; see Theorem 9.6 below. In addition, there is now
an implementable stopping test (note the decreasing values of the distances
δk in Figure 9.7).

Algorithm 9.4 (cutting-planes). Let tol ≥ 0 be a given stopping toler-
ance and let S 6= ∅ be a compact convex set containing a minimum point of
f . Choose x1 ∈ S and set k = 1. Define f̌0 ≡ −∞.

Step 1 (Calling the black box – implementable stopping test).
Call the black box from Figure 9.5 with x = xk. Compute

δk := f(xk)− f̌k−1(x
k) . (9.8)

If δk ≤ tol, stop.
Step 2 (Candidate descent direction). Find

dk ∈ Argminxk+d∈Sf̌k(xk + d) .

Step 3 (Line-search – constant stepsize). Take tk = 1.
Step 4 (loop). Define xk+1 := xk + tkd

k. Change k to k + 1, go to 1.

Remark 9.5.

– For simplicity, we present here a version without line-search. Step 2 can
be replaced by

xk+1 ∈ Argminy∈S f̌k(y) , (9.9)

and Step 3 can be omitted.

– We shall not specify the choice of the set S, introduced to guarantee the
existence of a direction dk (otherwise, at the initial iterations the minimiza-
tion subproblem in Step 2 may be unbounded from below). Choosing this
set is a key element to overcome the intrinsic instability of cutting-planes
(cf. the final comments in Example 9.7).

– Having on hand f̌k, a model of f , allows us to quantify in Step 1 a “nominal
decrease” δk > 0, predicted by f̌k. If the model is good (i.e., if k is large
enough), the stopping test will eventually be activated; see Figure 9.7 and
Theorem 9.6.
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– Finally, note that a price was paid for obtaining a stopping test. Suppose S
is polyhedral, for example, a box. Then, to compute dk in Step 2, instead
of the straightforward calculation in the Subgradients Algorithm 9.2, now
it is necessary to solve a linear programming (LP) problem:





min(d,r) r
r ≥ fi + 〈si, xk − xi〉+ 〈si, d〉 , i = 1, . . . , k
xk + d ∈ S and r ∈ R .

(9.10)

Like in subgradient methods, the sequence generated by Algorithm 9.4
does not necessarily have decreasing objective values f(xk). A simple example
of this situation appears in Figure 9.8, where we made a zoom of Figure 9.7.
Basically, the closer to an optimum is xk (x4 in the figure), the worse will be
the next iterate. This is due to the introduction in the model f̌k of an almost
“horizontal” affine function (f4 + 〈s4, y − x4〉 in the figure). As a result, the
minimizer xk+1 of the model is “pushed away” from the minimum of f (cf.
x5 in the figure).
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Bundle methods, described in Chapter 10, propose variants to force the
decrease of f , while keeping the model idea, important to define stopping
tests.

We now prove convergence for the sequence of records {f̄k := min1≤i≤k fi},
i.e., the best values obtained for f along the iterations of Algorithm 9.4. Note
that the assumption (at the initialization step of Algorithm 9.4) that S is a
compact set containing a minimizer of (8.1) implies that the optimal value f̄
is finite and that the sequence {xk} is bounded.
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Theorem 9.6. Consider the sequence {xk} generated by Algorithm 9.4.

(i) If the algorithm loops forever (k →∞), then

lim
k→∞

f̌k−1(x
k) = f̄ = lim

k→∞
f̄k = lim inf

k→∞
f(xk) .

Therefore, Algorithm 9.4 is guaranteed to stop at some iteration klast

whenever tol > 0.

(ii) If the sequence is finite, its last element, xklast is tol−optimal:

f(xklast) ≤ f̄ + tol .

Proof. (i) If k → ∞, by (9.9) and the left inequality in (9.7), the sequence
{f̌k−1(x

k)} is nondecreasing and bounded above by f̄ , because f̌k ≤ f for all
k. Therefore, f̌k(xk+1)↗ f̄ − C, where C ≥ 0 is some constant. So, it holds
that

for all k f̌k−1(x
k) ≤ f̄ − C . (9.11)

We now show that assuming C > 0 yields a contradiction. Take a convergent
subsequence {xkl}kl

of the (bounded) sequence {xk} ⊂ S, and let M be an
upper bound of diam(∂f(xkl−1)), for kl big enough. In addition, take kl large
enough to satisfy ‖xkl−1 − xkl‖ ≤ C/(2M). The desired contradiction results
from the following chain of inequalities:

f̄ − C ≥ f̌kl−1(x
kl) [by (9.11) with k = kl]

≥ f̌kl−1
(xkl) [by (9.7), since kl − 1 ≥ kl−1]

≥ fkl−1
+ 〈skl−1 , xkl − xkl−1〉 [by (9.6)]

≥ fkl−1
−M‖xkl−1 − xkl‖ [by Cauchy-Schwarz]

≥ f̄ −MC/(2M) [for kl large enough]

= f̄ − C

2
.

We now show that lim infk→∞ f(xk) = f̄ (note that this automatically implies
that the decreasing sequence of records {f̄k} converges to f̄). Suppose there
exists C̃ > 0 such that f(xk) ≥ f̄ + C̃ for all k. By the boundedness of {xk},
there exists a convergent subsequence {xkl}kl

. Let L be a common Lipschitz
constant for f and f̌k and take kl large enough to satisfy ‖xkl+1 − xkl‖ ≤
C̃/(2L). The following chain of inequalities shows that C̃ cannot be positive:

f̄ + C̃ ≤ f(xkl)

= f̌kl
(xkl) [by (9.6)]

= f̌kl
(xkl)− f̌kl

(xkl+1) + f̌kl
(xkl+1 )

≤ f̌kl
(xkl)− f̌kl

(xkl+1) + f̌kl+1−1(x
kl+1) [by (9.7), since kl ≤ kl+1 − 1]

≤ f̌kl
(xkl)− f̌kl

(xkl+1) + f̄ [by (9.11) with k = kl+1]

≤ L‖xkl+1 − xkl‖+ f̄ [f̌kl
Lipschitz]

≤ LC̃/(2L) + f̄ [for kl large enough]

= f̄ +
C̃

2
.
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Finally, note that when tol is positive, the existence of a subsequence
{f(xki)} → f̄ ensures that the stopping test will eventually be activated.

(ii) Since the sequence is finite, δklast
≤ tol, and

f(xklast) ≤ f̌klast−1(x
klast ) + tol [by (9.8)]

≤ f̌klast−1(y) + tol [for all y ∈ S, by (9.9)]

≤ f(y) + tol [by the right inequality in (9.7).]

Since, by assumption, S contains a minimum of f , the conclusion follows.

Cutting-planes methods have good convergence properties for functions
whose graph is V -shaped, or sharp functions; see [313], [286]. In particular,
for polyhedral functions the method has finite convergence: this is a con-
sequence of Theorem 9.6(i), since polyhedral functions coincide with their
cutting-planes model f̌k for some k, say klast. Then δklast

= 0, the sequence
{xk} is finite and the stopping test holds for any tolerance tol, in particular
tol = 0.

For general functions, however, the cutting-planes algorithm may present
instabilities and bad numerical behavior. As shown graphically in Figure 9.8,
when “horizontal” affine functions are added to the model, iterates can
move far away from the set of minima and increase the current function
value. The following function, known as badguy in the literature, is due to
A. Nemirovskii (exercise 3, § 4.3.6, [272]; see also § XV.1.1.2, [195]). It gives
an analytical extreme example of the catastrophic consequences of instability.

Example 9.7 (Instability of cutting-planes). Take in R
n the function

f(x) := max{0,−1 + 2λ+ ‖x‖} ,

where λ ∈]0, 1/2[ is an arbitrary parameter. The optimal value is f̄ = 0,
and the optimal set is the ball B(0; 1− 2λ), centered at the origin and with
radius 1 − 2λ. The function f is nondifferentiable on the sphere of kinks
B̄(0; 1 − 2λ) := {x ∈ R

n : ‖x‖ = 1 − 2λ}. From § 8.3.1, the subdifferential
has the following expression:

∂f(x) =





{0} , if ‖x‖ < 1− 2λ ;
{x/‖x‖} , if ‖x‖ > 1− 2λ ;
conv{0, x/‖x‖} , if ‖x‖ = 1− 2λ .

To start Algorithm 9.4, we assume that whenever (9.9) has more than one
minimum, we choose a solution such that xk+1 has norm equal to 1. With
this convention, for all k

f(xk+1) = 2λ , ∂f(xk+1) = {∇f(xk+1)} = xk+1 , and
fk+1 + 〈sk+1, y − xk+1〉 = 2λ+ 〈xk+1, y − xk+1〉 = −1 + 2λ+ 〈xk+1, y〉 .
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Take S = B(0; 1) ⊂ R
n as the unit-ball and start with x1 = 0 ∈ R

n. We have
δ1 = +∞, f̌1 ≡ 0 and x2 ∈ ArgminS0 = S. So

f̌2(y) = max{0,−1 + 2λ+ 〈x2, y〉} .

This function is 0 on the region S2 := {y ∈ R
n : 〈x2, y〉 ≤ 1 − 2λ}. The

minimization (9.9) eliminates this portion of S:

x3 solution to min
y∈S

f̌2(y) ≡ −1 + 2λ+ min
y∈(S\S2)

〈x2, y〉 .

Since both x2 and x3 are unit norm vectors, the minimum above is attained
when the angle between x3 and x2 is π. Along iterations, the same phe-
nomenon occurs: by the fact that f̌1 ≡ 0, a section of S (up to a π-rotation)
is eliminated at each iteration:

xk+1 solution to − 1 + 2λ+ min
y∈(S\∪k

2Sj)
max

j=2,...,k
〈xj , y〉 .

Again, the angle between xk+1 and xk is π. Therefore, as long as there remain
vectors y ∈ (S\ ∪k

2 Sj) with ‖y‖ = 1, there will be a unit norm xk+1 and the
black box will invariably answer the value f(xk+1) = 2λ. The number of
iterations necessary to obtain a value f(xk+1) < 2λ depends of the number
of cuts Sk necessary to eliminate the unit-sphere B̄(0; 1) from the unit ball.
To estimate this number, one should compare the areas of B̄(0; 1) and of an
arbitrary cut Sk ∩ B̄(0; 1), denoted by AS and Aλ, respectively (the area of
a cut does not depend on k, but on λ).

Let θ be the angle for which cos θ = 1−2λ, we have θ ' 2λ
1
2 . Some (pages

of) computations give the relations AS = 2Sn−1/n and Aλ = θnSn−1/n,
where Sn−1 is the area of the unit-sphere in R

n−1.
Therefore, Algorithm 9.4 will need k = AS/Aλ iterations until all unit-

vectors are eliminated from the unit ball, the feasible set in (9.9), i.e.,

k ≥ 2

θn
' 2(4λ)−n/2 .

Since f(x2) − f̄ = · · · = f(xk) − f̄ = 2λ as long as there remain such unit
norm vectors, if, for example, λ = 0.025 and n = 20, a number k := 2 ∗ 1010

of iterations is necessary before reducing the initial error of 0.05!

The situation can change dramatically if the feasible set S in (9.9) is
allowed to vary along iterations. Suppose that, for the same function f , we
now generate iterates satisfying

x̃k+1 ∈ Argminy∈S̃k
f̌k(y) ,

where S̃k := B(0; 1 − 2λ + κk), for κk = 2λ
k+1 . Given x̃1 = 0 ∈ R

n, we have

that S̃1 = B(0; 1− λ) and
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x̃2 ∈ Argminy∈S̃1
0 .

Adopting again the convention that whenever the LP problem has more
than one minimum, it chooses a solution on the border of S̃k, i.e., such that
‖x̃k+1‖ = 1− 2(1− 1

k+1 )λ, we would have that ‖x̃2‖ = 1− λ, so f(x̃2) = λ.

At every iteration, the point x̃k+1 ∈ S̃k has norm smaller or equal than
1−2λ+ 2

k+1λ. Since the feasible set S̃k shrinks with k, each iteration reduces
the error:

f(x̃2)− f̄ = λ , f(x̃3)− f̄ ≤ 2

3
λ , · · · , f(x̃k+1)− f̄ ≤ 2

k + 1
λ.

Taking λ = 0.025 as before, we see that already at the third iteration the
error would be reduced from 0.05 to 0.05/3.

Our choice of feasible sets S̃k, with κk → 0 as k →∞, was made in order
to make {S̃k} converge to the solution set B(0; 1−2λ). Without the knowledge
of the solution set (or, at least, of a “tight” set containing a minimizer), such
choice is not possible a priori. Instead, one could define a ball centered at the
best point obtained so far (with smallest function value, for example), with a
radius that would vary along iterations, for instance S̃k = B(xk

best;κk). This
is the basic idea of bundle methods, in their trust region variant presented in
Example 10.4.

Remark 9.8. Another serious drawback of the cutting-planes method is the
infinite accumulation of affine functions defining the model. This phenomenon
is amplified by the instability problem mentioned above. More precisely, as
k grows, the linear program (9.10) defining iterates has more and more con-
straints. Because of instability, many constraints are similar. So the linear
program (9.10) becomes extremely difficult to solve; not only due to its size,
but also due to its bad conditioning. A way out of this tailing-off effect is
to clean the model, and eliminate the less active constraints in (9.9), follow-
ing some criteria. By the nature of cutting-planes methods, the selection of
“inactive” constraints can only be done using heuristics, which are not sup-
ported by any convergence result. Bundle methods, by contrast, use the so-
called aggregation technique to control the size (and, possibly, conditioning)
of subproblems defining directions without impairing the original properties
of global convergence.
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None of the black-box methods considered so far are descent schemes. Only
the steepest-descent method guarantees a decrease of the objective function
at each iteration. However, it requires the complete knowledge of ∂f , and can
be trapped at non-optimal kinks.

We now focus our attention on a family of black-box methods that com-
bine both descent and stability properties, called bundle methods [226], [362],
[227], because they keep memory of past iterations in a bundle of information:

B = {fi , y
i , si , i = 1, . . . , k} and xk, the point with “best” objective value .

10.1 Stabilization. A Primal Approach

With the information collected along iterations, bundle methods construct
both a model (f̌k) for the objective function f and a polyhedral approxima-
tion of its subdifferential (∂f̌k). Keeping in mind Example 9.7 and § 9.2.2,
bundle methods can be considered stabilized variants of cutting-planes (pri-
mal stabilization) as well as of steepest-descent methods (dual stabilization).

We explain now the stabilization scheme in the primal space. Recall the
intrinsic instability of cutting-planes methods observed in Figure 9.8. To pre-
vent the objective function from increasing, it would be desirable for the
algorithm to “remember” the best point obtained so far (i.e., x4 giving f4
in Figure 9.8). With this extra information kept along iterations, the algo-
rithm can generate two sequences of points. One is the sequence of sample
points used to define the model f̌k. We call those points candidate points and
denote them by yk. A second sequence consists of those sample points that
decreased sufficiently the objective function f , in the sense of (10.1) below.
We call these points stability centers and denote them by xk . Note that {xk}
is a subsequence of {yk}.

In order to generate candidate points and select stability centers, we define
subproblems by modifying (9.9) in Algorithm 9.4, following some stabilization
principles determined by:

(i) the choice of a model ϕk, which approximates f (for instance, ϕk = f̌k).
The fact of having a model gives a “nominal decrease”, as in (9.8);
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(ii) the choice of a stability center xk, for which f(xk) is the “best” value
obtained so far and from which the decrease of f will be measured;

(iii) the choice of a normalization | · |k to prevent big oscillations.

We use these elements to define a stabilized subproblem, whose solution yk+1

is considered just a candidate to make f decrease. The quality of candidates
is measured using the nominal decrease δk+1. Only “good” candidates, i.e.,
those satisfying the relation

f(yk+1) ≤ f(xk)−mδk+1 (10.1)

for m ∈]0, 1[, will become stability centers.
There are several possibilities to define stabilized subproblems and their

associated nominal decrease, we describe some of them in § 10.2 below. Essen-
tially, all the variants modify the cutting-planes subproblem (9.9) to prevent
a move “too far away” from xk.

The norm | · |k , measuring distance to xk, can be made “less tight” in the
beginning of the iterations (to progress fast) and become more stringent as
k grows (to prevent instability when approaching a solution).

Algorithm 10.1 (general bundle). Let tol ≥ 0 and m ∈]0, 1[ be given
parameters. Choose x1, call the black box from Figure 9.5 with x = x1,
construct the model ϕ1, and set the algorithm parameters, such as | · |1. Set
k = 1 and δ1 =∞.

Step 1 (implementable stopping test). If δk ≤ tol, stop.

Step 2 (candidate). Solve

yk+1 ∈ Argmin stabilized pbm(ϕk , x
k, | · |k) , and (10.2)

Define δk+1 = δ(ϕk , x
k, | · |k, yk+1) ≥ 0.

Step 3 (calling the black box – assessing the candidate). Call the black box
from Figure 9.5 with x = yk+1.

Descent test:

f(xk)− f(yk+1) ≥ mδk+1?





Yes: xk+1 := yk+1 (descent-step)

No: xk+1 := xk (null-step) .

Step 4 (improving the model – loop). Append yk+1 to the model, i.e., con-
struct ϕk+1. Define the algorithm parameters for the next iteration, such
as | · |k+1. Change k to k + 1, go to Step 1.

Remark 10.2.

– Since the nominal decrease is nonnegative, the descent test of Step 3 de-
cides if the candidate provides a sufficient descent for f . If f decreases by
at least a fraction m of the decrease predicted by the model, the stability
center will be moved to yk+1. This Armijo-like test is very close to the trust
region philosophy of § 6.1; see again the end of § 3.5.3. When yk+1 is a good
candidate, we shall say that a “serious” step, or descent-step is made.
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– If the candidate brings no significant descent for f , or no descent at all, the
stability center is not changed (yk+1 is not “good enough”). In this case,
we hope to obtain a better candidate after the model is enriched at Step
4. Since nothing is done in terms of updating centers, this case is called a
“null” step.

– Note that since the relations

f(xk)− f(yk+1) > 0 and f(xk)− f(yk+1) < mδk+1

can hold simultaneously, the algorithm may generate null steps with smaller
objective function value than f(xk), but that were not considered “good
enough” in terms of the nominal decrease. This is the reason why we refer
to xk as the point with “best” objective value (instead of smallest objective
value).

– Typically, ϕk is the cutting-planes approximation f̌k, i.e., (9.6) written with
xi = yi. By “improving” the model in Step 4 we mean the fact of intro-
ducing the affine function defined by the black-box information obtained
at yk+1:

ϕk+1(y) = max{ϕk(y), f(yk+1) + 〈s(yk+1), y − yk+1〉} .

The more general notation ϕk (instead of just f̌k) reflects the possibility of
cleaning the model, already mentioned in Remark 9.8. This is the aggrega-
tion technique described in § 10.3.2 below.

– In general, since at null steps there is no new reliable information, the
metric | · |k is only updated when there is a descent-step. The update of
the metric is an extremely complex topic, yet crucial for good numerical
results. In § 10.3.3 we give a rule that proves good for implementation.

– Line-search is not considered here. This concept becomes somewhat fuzzy
in a serious-null steps framework; see the final comments in Example 10.6
below.

The set of indices k for which a new descent-step is done is denoted by
Ks. In particular, when there are infinitely many descent-steps, the infinite
sequence {δk}k∈Ks is convergent, whenever (8.1) has minimizers.

Lemma 10.3. Consider Algorithm 10.1 and suppose it loops forever (k →
∞). Use the notation f∗ := limk∈Ksf(xk) and assume f∗ > −∞. Then

(0 ≤)
∑

k∈Ks

δk ≤
f1 − f∗
m

.

Proof. Note first that, since tol ≥ 0, for the algorithm to loop forever the
nominal decrease must satisfy δk > 0 for all k. Take an arbitrary k ∈ Ks.
Since the descent test is satisfied, xk+1 = yk+1 and
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f(xk)− f(xk+1) = f(xk)− f(yk+1) ≥ mδk+1 .

Let k′ be the index following k in Ks. Between k and k′ the algorithm makes
null-steps only, without moving the stability center: xk+1 = xk+j , for all
j = 2, . . . , k′ − k. The descent test at k′ gives

f(xk+1)− f(xk′+1) ≥ mδk′+1 .

Hence, for any k′′ ∈ Ks,

m

k′′∑

k∈Ks

δk ≤
k′′∑

k∈Ks

f(xk)− f(xk+1) = f1 − fk′′ ≤ f1 − f∗ .

Now letting k′′ →∞ gives the desired result.

This simple result is useful for proving convergence whenever the algorithm
generates an infinite number of serious-steps. Namely, since the sequence
{f(xk)}k∈Ks is strictly decreasing, either {f(xk)} ↘ −∞ (in which case f
is unbounded from below and {xk} is trivially a minimizing sequence), or
by Lemma 10.3, {f(xk)} ↘ f? and {δk} → 0 (a crucial relation for showing
convergence, cf. items (ii) and (iii) in Lemma 10.8 below). Finally, note that
when {δk} → 0, if tol is positive then Algorithm 10.1 will stop at some
iteration klast.

10.2 Some Examples of Stabilized Problems

The short examples that follow are particular forms of subproblems (10.2).
Each variant is characterized by a parameter, to be updated at each iteration
in Step 4. For the moment, we do not explain how to choose neither the
model ϕk nor the normalization | · |k. We address these topics in more detail
for one of the variants, namely the penalized bundle method described in
§ 10.3.

Example 10.4 (Trust region). Consider subproblem (9.9) in the cutting-
planes Algorithm 9.4. The model is minimized over a fixed set S, possibly
big (and, thus, the way is open to uninvited oscillations as in Example 9.7).
Instead, one could define a feasible set that varies along iterations, where the
model is considered reliable, i.e., a trust region.

Having the parameter κk > 0, define the ball centered at x = xk with
radius κk. The stabilized subproblem (10.2) to be solved at Step 2 is:

yk+1 solution to

{
minϕk(y)
|y − xk|2k ≤ κk .

(10.3)

The corresponding nominal decrease is defined by δk+1 := f(xk)−ϕk(yk+1) .
The trust region is managed in such a way that the parameter κk → 0 when
k →∞.
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A curvilinear search adapted to this variant is outlined in § XV.1.3.1 of
[195]. Essentially, the parameter κk varies in the interval ]κL, κR[, according
to an Armijo-like rule; as in § 3.5.2.

Example 10.5 (Levels). This approach is somewhat dual to Example 10.4.
It seeks to minimize the radius of the ball centered at the stability center xk ,
while reaching a prescribed decrease for the model function, or level.

Having the parameter `k, subproblem (10.2) is the following:

yk+1 solution to

{
min 1

2 |y − xk|2k
ϕk(y) ≤ `k . (10.4)

The nominal decrease δk+1 is the same as in the previous example.
If the optimal value f̄ is known, the management of `k is easy. Otherwise,

the update of `k is more delicate, since the feasible set in (10.4) could be
empty. Nevertheless, the method presents good numerical performances; see
[230].

10.3 Penalized Bundle Methods

In this variant, stabilization is the result of introducing a quadratic term in
the model used for subproblems.

Example 10.6 (Penalization of the model). For a parameter µk > 0,
subproblem (10.2) is:

yk+1 solution to

{
minϕk(y) + 1

2µk|y − xk |2k
y ∈ R

n .
(10.5)

The nominal decrease is

δk+1 := f(xk)−
(
ϕk(yk+1) +

1

2
µk|yk+1 − xk|2k

)
. (10.6)

When compared to the nominal decrease in previous examples, we see that,
δk+1 = δprev

k+1 − 1
2µk|yk+1 − xk |2k. Therefore, with this nominal decrease, pe-

nalized bundle methods will be less strict for accepting a candidate as the
next stability center. If desired, the same nominal decrease, i.e., δprev

k+1 , could
be used with this variant.

The line-search [236] corresponds to introducing a parameter t > 0 in
the quadratic term of (10.5). The corresponding solution depends on this
parameter, i.e., yk+1 = yk+1(t). Then Step 3 is modified in order to allow
interpolations and extrapolations of t during the assessment of the candidate.
Note that a change in the stepsize results in a different stabilized subproblem.
In this sense, the t-adjustment is closer in spirit to a curvilinear search ; see
also [213], [326].

Figure 10.1 shows one iteration of the penalized bundle method.
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Fig. 10.1. One iteration of the penalized bundle method

Some correspondences can be established between the examples presented
so far.

Theorem 10.7. Consider Examples 10.4, 10.5 and 10.6, with same metric
| · |k. The following holds:

(i) For given κk > 0, let yk+1 solve the stabilized problem of Example 10.4.
Then there exists µk > 0 such that yk+1 solves the stabilized problem of
Example 10.6.

(ii) For given µk > 0, let yk+1 solve the stabilized problem of Example 10.6.
Then there exists `k ≥ 0 such that yk+1 solves the stabilized problem of
Example 10.5.

(iii) For given `k ≥ 0, let yk+1 solve the stabilized problem of Example 10.5.
Then there exists κk ≥ 0 such that yk+1 solves the stabilized problem of
Example 10.4.

Proof. (i) The stabilized problem (10.3) of Example 10.4 is convex, and a
constraint qualification condition holds (see for instance, Theorem 8.4 or
Chapter 13, § 13.3). Then there exists an associated multiplier 0 ≤ λ ∈ R for
which solutions to (10.2) are obtained by minimizing the Lagrangian, i.e.,

yk+1 = argminy∈RnL(y, λ) where L(y, λ) := ϕk(y) +
1

2
λ
(
|y − xk |2k − κk

)
.
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In other words, yk+1 solves (10.5) in Example 10.6, for µk := λ.
(ii) Let yk+1 solve (10.5) in Example 10.6. For all y ∈ R

n we have

ϕk(yk+1) +
1

2
µk|yk+1 − xk|2k ≤ ϕk(y) +

1

2
µk|y − xk|2k .

In particular, let `k := ϕk(yk+1); then, for any y such that ϕk(y) ≤ `k, we
have

1

2
µk|yk+1 − xk |2k ≤

1

2
µk|y − xk|2k .

Since the parameter µk is positive, the conclusion follows.
(iii) Let yk+1 solve (10.4) of Example 10.5. Then ϕk(yk+1) = `k, so letting
κk := |yk+1 − xk|k it holds that yk+1 also minimizes ϕk(y) in {y ∈ R

n :
|y − xk |2k ≤ κk} .

This result establishes the formal equivalence of all these variants. In
practice, they differ in the heuristics used to update their respective param-
eters at Step 4 of Algorithm 10.1. Their numerical performances will vary
according to these heuristics. In § 10.3.3 we explain how to update the param-
eter for the penalized bundle method, using a rule related to quasi-Newton
methods.

For all the examples, stabilized subproblems are (convex) quadratic pro-
gramming problems (QP). Cutting-planes methods have subproblems (9.9)
that are LPs, recall (9.10). The additional complication of solving a QP is
the price to pay to obtain stability. As a thumb rule, the more robust and so-
phisticated is the black-box method, the more complex is the corresponding
subproblem. Nevertheless, convex QPs are not much more difficult to solve
than LPs. The underlying resolution technique is essentially the same (active
sets strategies, interior points, etc). In actual implementations a QP such as
(10.5) is solved through its dual. This dual QP has a very special structure,
namely, a simplicial feasible set (see Lemma 10.8 below). Good QP solvers
exploit such structure, as well as the fact of knowing how QP-data changes
along (serious step or null step) iterations in order to define warm starts. As
a result, solving (10.5) does not require much more computational work than
solving an LP like (9.10). Finally, a pay-off compensating the extra computa-
tional burden is that having QP subproblems allows to compress the bundle
of information (i.e., to clean the model) by using the aggregation techniques
described in § 10.3.2.

Other variants of stabilized subproblem were considered more recently
in [241], [240], [135]. In [241], [240], the idea is to use a model with affine
functions appended with a quadratic term centered at xk:

ϕk(y) = max
i≤k

{
fi +

〈
si, y − yi

〉
+

1

2

〈
xk − yi, Hk(xk − yi

〉}
,

where Hk is a certain quasi-Newton matrix. As for [135], it develops a com-
prehensive theory for generalized bundle methods, for which the stabilizing
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term can be any closed convex function. However, it should be noted that,
since the work of solving a general convex program has to be repeated at
each iteration, the resulting subproblems may become too difficult to solve.

10.3.1 A Trip to the Dual Space

In order to obtain a general formulation for the model ϕk, we first rewrite
the cutting-planes model f̌k by referring it to the stability center:

f̌k(y) = f(xk) + max
i=1,...,k

{−ei + 〈si, y − xk〉} ,

where the terms ei are the linearization errors at xk

(0 ≤) ei := f(xk)− fi − 〈si, xk − yi〉 , i = 1, . . . , k .

Note that, by (9.3), si ∈ ∂eif(xk). With this notation, the bundle of past
information is

B =
{
(si, ei) ; with si ∈ ∂eif(xk) , i = 1, . . . , k

}
and (xk, f(xk), s(xk)) .

When the bundle becomes too big (k large), we shall compress it to keep
only npk elements, with npk possibly much smaller than k. With the new
notation, the piecewise-linear models have the form

ϕk(y) = f(xk) + max
i=1,...,npk

{−ei + 〈si, y − xk〉} . (10.7)

At the beginning of the iterative process, while k is not too large, npk = k
and ϕk = f̌k. Later on, even though npk << k, the compressed bundle is
still formed by couples (si, ei) satisfying si ∈ ∂eif(xk); see § 10.3.2 below.
However, for some of the couples there may no longer be a point yi for which
si ∈ ∂f(yi).

Before writing a dual of (10.5), we further specify the metric therein by
choosing a square positive definite matrix Mk of order n, and letting

| · |2k := 〈Mk·, ·〉 .

The corresponding dual norm is denoted by ‖ · ‖2k := 〈·,M−1
k ·〉 .

Lemma 10.8. Let yk+1 be the unique solution to (10.5) and assume µk > 0.
Then

yk+1 = xk − 1

µk
M−1

k ŝk where ŝk :=

npk∑

i=1

ᾱis
i (10.8)

and ᾱ = (ᾱ1, . . . , ᾱnpk
) is a solution to
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minαi

1
2‖

npk∑

i=1

αis
i‖2k + µk

npk∑

i=1

αiei

α ∈ ∆k := {z ∈ [0, 1]npk :

npk∑

i=1

zi = 1} .
(10.9)

In addition, the following relations hold:

(i) ŝk ∈ ∂ϕk(yk+1),

(ii) δk+1 = εk +
1

2µk
‖ŝk‖2k, where we defined εk :=

∑npk

i=1 ᾱiei.

(iii) ŝk ∈ ∂εk
f(xk).

Proof. Write (10.5) as a QP with an extra scalar variable r as follows

{
min(y,r)∈Rn×R r + 1

2µk|y − xk|2k
r ≥ f(xk)− ei + 〈si, y − xk〉 , i = 1, . . . , npk .

(10.10)

The corresponding Lagrangian is, for α ∈ R
npk
+ ,

L(y, r, α) = r +
1

2
µk|y − xk|2k +

npk∑

i=1

αi(f(xk)− ei + 〈si, y − xk〉 − r) ,

i.e., rearranging terms,

= (1−
npk∑

i=1

αi)r +
1

2
µk|y − xk |2k +

npk∑

i=1

αi(f(xk)− ei + 〈si, y − xk〉) .

In view of strong convexity, (10.5) has the unique solution yk+1. Furthermore,
the equivalent problem (10.10) has affine constraints; hence, there exists an
optimal multiplier ᾱ associated with yk+1. Since there is no duality gap (re-
call § 8.2.2), (yk+1, ᾱ) can be obtained either by solving the primal problem
derived from (10.10) or by solving its dual.

(10.10) ≡ min max L(y, r, α) ≡ max min L(y, r, α) .
(y,r)∈Rn×R α∈R

npk
+

α∈R
npk
+

(y,r)∈Rn×R

All the problems above have the same finite optimal value. However, the
dual (rightmost) problem involves the unconstrained minimization of L with
respect to r. For the dual value to be finite, the term multiplying r in L has
to vanish, i.e. , α must lie in the unit-simplex ∆k. As a result, yk+1 and ᾱ
solve the primal and dual problems

min max L(y, α) ≡ max min L(y, α) ,
y∈Rn α∈R

npk
+

α∈R
npk
+

y∈Rn

where L(y, α) := f(xk) + 1
2µk|y − xk|2k +

∑npk

i=1 αi(−ei + 〈si, y − xk〉). Con-
sider the last dual problem. For each α ∈ ∆k fixed, the optimality condition
defining y(α) = argminy L(y, α) is 0 = ∇yL(α, y(α)), i.e.,
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0 = µkMk(y(α) − xk) +

npk∑

i=1

αis
i . (10.11)

In particular, when α = ᾱ, because y(ᾱ) is yk+1, (10.8) holds.
To see that ᾱ also solves (10.9), multiply (10.11) by y(α) − xk and by
1

µk

∑npk

i=1 αis
i to write

0 = µk|y(α)− xk|2k +
∑npk

i=1 αi〈si, y(α)− xk〉
=
∑npk

i=1 αi〈si, y(α)− xk〉+ 1
µk

∥∥∥
∑npk

i=1 αis
i
∥∥∥

2

k
,

which in turn implies that

µk|y(α) − xk|2k =
1

µk

∥∥∥
npk∑

i=1

αis
i
∥∥∥

2

k

and

L(y(α), α) = f(xk)− 1

2µk

∥∥∥
npk∑

i=1

αis
i
∥∥∥

2

k
−

npk∑

i=1

αiei .

Altogether,

ᾱ solves maxα∈∆k
L(y(α), α)

= f(xk)−minα∈∆k

{
1

2µk

∥∥∥
∑npk

i=1 αis
i
∥∥∥

2

k
+
∑npk

i=1 αiei

}
.

(10.12)

To show (i), write the optimality condition for (10.5) and use the definition
of ŝk in (10.8): 0 ∈ ∂ϕk(yk+1)+µkMk(yk+1−xk) = ∂ϕk(yk+1)−∑npk

i=1 ᾱis
i =

∂ϕk(yk+1)− ŝk.
To show (ii), note first that, since there is no duality gap, the primal optimal
value in (10.5) is equal to the dual optimal value in (10.12):

ϕk(yk+1) +
1

2
µk|yk+1 − xk|2k = f(xk)− 1

2µk

∥∥∥
npk∑

i=1

ᾱis
i
∥∥∥

2

k
−

npk∑

i=1

ᾱiei .

Together with (10.6) and (10.5), the relation follows.
Finally, to show (iii), use that f ≥ ϕk and item (i) to write for any y ∈ R

n

f(y) ≥ ϕk(y) ≥ ϕk(yk+1) + 〈ŝk, y − yk+1〉 .
Using (10.8) this inequality can be re-written as

f(y) ≥ ϕk(yk+1) + 〈ŝk, y ± xk − yk+1〉
= ϕk(yk+1) + 〈ŝk, y − xk〉 − 〈ŝk, yk+1 − xk〉
= ϕk(yk+1) + 〈ŝk, y − xk〉+ 1

µk
‖ŝk‖2k

= f(xk) + 〈ŝk, y − xk〉 −
(
f(xk)− ϕk(yk+1)− 1

µk
‖ŝk‖2k

)
.

The relations in (10.6) and item (ii) give the desired result.
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The multiplier ᾱ solving (10.9) is unique only when the bundle subgradi-
ents {si}i≤npk

are linearly independent (in this case, the (LI-CQ) condition
in Chapter 13 holds for (10.10)). In the absence of uniqueness, QP solvers
usually find the minimum-norm solution. Note, however, that ŝk, the subgra-
dients convex combination, is the same for any multiplier ᾱ solving (10.9),
because yk+1 is unique.

The last result established in Lemma 10.8 gives a formal meaning to the
dual stabilization effect of bundle methods, already announced in § 9.2.2.
More precisely, the subgradient ŝk is also a smeared subgradient of the ob-
jective function f at the center xk.

We are now in a position to “dualize” Example 10.6 and obtain another
form of stabilized subproblem (10.2).

Example 10.9 (Dual stabilization). The parameter µk in (10.9) can be
considered as a multiplier associated with the linear term

∑
k αiei. Given a

parameter εk ≥ 0, the stabilized subproblem (10.2) is given by yk+1 and ŝk

as in (10.8), where now

ᾱ = (ᾱ1, . . . , ᾱnpk
) is a solution to





minαi

1
2‖
∑npk

i=1 αis
i‖2k

α ∈ ∆k∑npk

i=1 αiei ≤ εk .
(10.13)

The nominal decrease δk+1 is the same as in (10.6). Since at a solution we
have that

∑npk

i=1 ᾱiei = εk, it follows that the relation δk+1 = εk + 1
2µk
‖ŝk‖2k,

similar to Lemma 10.8 (ii), holds.

We finish with a word on the stopping test. The expression given for
δk+1 in Lemma 10.8 (ii), shows two different terms to measure approximate
optimality of xk . Keeping in mind (9.4), by Lemma 10.8 (iii) we see that for
{xk} to be a minimizing sequence, it must hold that {εk} → 0 and {ŝk} → 0.
For this reason, it is preferable to check, instead of δk+1 ≤ tol, the following
split stopping test at Step 1

εk ≤ tolε and ‖ŝk‖k ≤ tols . (10.14)

A harmonious choice of these bounds is important to obtain good numerical
performances.

10.3.2 Managing the Bundle. Aggregation

We already mentioned that models ϕk from (10.7) essentially follow the
cutting-planes approximation f̌k. As iterations go along, the number of ele-
ments in the bundle increases. When the size of the bundle becomes too big,
it is necessary to compress it and clean the model. Algorithm 10.1 must be
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appended with a selection and compression mechanism introduced at Step
4 that keeps control of the bundle size.

Suppose that at iteration k the bundle has npk couples, which define the
model (10.7). Each couple has the form (si, ei), with si ∈ ∂eif(xk), but in the
expression defining ŝk in (10.8) only count subgradients si for which ᾱi > 0
(likewise, for the errors ei in the convex sum defining εk in Lemma 10.9(ii)).
For this reason, we call indispensable couples (respectively, dispensable) the
pairs (si, ei) in the bundle corresponding to active (resp., inactive) indices,
i.e., to i such that ᾱi > 0 (resp. ᾱi = 0). When the algorithm reaches an
iteration where the number npk becomes too big, the following steps are
executed:

– selection of dispensable couples, that can be discarded;

– if the remaining, indispensable, couples are still too many, compression of
the indispensable information into a single couple, called aggregate.

Aggregation is the synthesis mechanism that condenses the essential infor-
mation of the bundle into one single couple, given by (ŝk, εk) as defined in
Lemma 10.8. The corresponding affine function, inserted in the model when
there is compression, is called aggregate linearization:

fa(y) := f(xk)− εk + 〈ŝk, y − xk〉 . (10.15)

This function, which has the same form as any other affine function of (10.7),
summarizes all the information generated up to iteration k. Note, however,
that unlike other elements in the bundle, there is no previous yi for which
ŝk ∈ ∂f(yi). The aggregate linearization has the following properties.

Lemma 10.10. For fa defined by (10.15), it holds that

(i) fa(y) = ϕk(yk+1) + 〈ŝk, y − yk+1〉, for all y ∈ R
n.

(ii) fa(y) ≤ ϕk(y), for all y ∈ R
n.

(iii) Let ψ : R
n → R be a convex function such that ψ(y) ≥ fa(y) for all

y ∈ R
n and ψ(yk+1) = fa(yk+1)(= ϕk(yk+1)). Then

yk+1 = argmin
y∈Rn

{
ψ(y) +

1

2
µk|y − xk |2k

}
. (10.16)

Proof. Item (i) is immediate from (10.15) and the relations in Lemma 10.8,
while item (ii) follows from (i) and Lemma 10.8 (i).
(iii) Write the optimality condition of (10.16) using (10.8):

0 ∈ ∂ψ(yk+1) + µkMk(yk+1 − xk) = ∂ψ(yk+1)− ŝk ,

where ŝk is defined in (10.8). It suffices to prove ŝk ∈ ∂ψ(yk+1). For arbitrary
y ∈ R

n, the assumption on ψ and item (i) give ψ(y) ≥ fa(y) = ψ(yk+1) +
〈ŝk, y − yk+1〉, i.e., the desired result.

The last item in Lemma 10.10 shows that, a posteriori, nothing is changed if
instead of ϕk one uses fa or a function ψ as above. The aggregate linearization
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synthesizes indispensable information of active bundle elements, while the
model

ψ(y) = f(xk) + max
i: ᾱi>0

{−ei +
〈
si, y − xk

〉
}

expresses the same information in a disaggregate form. In this sense, the
function fa is “minimal”, in the class of functions sandwiched between fa

and ϕk as in (iii) that leave invariant yk+1.

Let npmax be the maximal size of the bundle, and npk be its current size.
The compression sub-algorithm to be appended at Step 4 of Algorithm 10.1
is the following:

Algorithm 10.11 (compression).

Step 4 (Algorithm 10.1)

Let npmax be given. We have npk elements (si, ei) in the bundle. The
algorithm has solved (10.5)=(10.8)&(10.9) to compute yk+1 and has called
the black box.

Compression test: If npk ≥ npmax then

Selection: Let nact := {i ≤ npk : ᾱi > 0} be the cardinality of active
indices.
If nact ≤ npmax− 1, then delete all inactive couples from the bundle,
set nleft = nact, and define npk+1 = nleft + 1.
Otherwise, discard two or more couples (si, ei) from the bundle. Oth-
erwise, discard two or more couples (si, ei) from the bundle. The
resulting bundle cardinality, nleft, should be smaller or equal to
npmax − 2. Define npk+1 = nleft + 2.

Aggregation: If nleft 6= nact, append (snpk+1−1, enpk+1−1) := (ŝk, εk) to
the bundle.

Improving/updating the bundle: Set snpk+1 := s(yk+1).
– Append (snpk+1 , enpk+1) to the bundle, with

enpk+1
=

{
0 , if serious step,
f(xk)−

(
f(yk+1) + 〈sk+1, xk − yk+1 〉

)
, if null-step.

– In case of serious step, update the linearization errors:
ei := ei+f(yk+1)−f(xk)−〈si, yk+1−xk〉 , i = 1, . . . , npk+1−1 . (10.17)

Model – loop Define the algorithm parameters for the next iteration, such
as | · |k+1. Construct ϕk+1 as in (10.7), written with k replaced by k+1.
Change k to k + 1, go to Step 1.

We now comment on some features of the compression sub-algorithm.
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Remark 10.12.

– Until npk ≥ npmax for the first time, the procedure above is just the old
Step 4 in Algorithm 10.1. The model is ϕk = f̌k, and npk = k. If there is no
compression, the relation (10.17) above just gives a smart implementation
for updating the bundle information, by dynamically redefining lineariza-
tion errors which, although not explicit in the notation, do depend on xk.

– The necessity of appending the aggregate couple in the Compression test
above depends on which information is discarded at the Selection step. More
precisely, if all active couples are kept, the aggregate couple is not needed,
because all the indispensable information condensed in the aggregate couple
is already present (in disaggregate form).

– When the maximum capacity is reached, for instance when k = npmax,
suppose we decide to discard the elements 1 and 2 from the bundle, and to
append the aggregate couple. The resulting model will be

ϕk+1(y) = max

{
max

{3≤i≤k+1}
{fi + 〈si, y − yi〉}, ϕk(yk+1) + 〈ŝk, y − yk+1〉

}

= max

{
f(xk+1) + max

{3≤i≤k+1}
{−ei + 〈si, y − xk+1〉}, fa(y)

}
.

In view of Lemma 10.10, the last affine function can be replaced by any
function ψ ≥ fa. Note that in any case, by construction, for all k and for
all y ∈ R

n, and somewhat similarly to (9.7),

fa(y) ≤ ϕk+1(y) ≤ f(y) and ϕk+1(y) ≥ fk+1 +
〈
sk+1, y − yk+1

〉
. (10.18)

– The parameter npmax determines the maximum size of each stabilized sub-
problem (10.5) and, hence, the dimension of the dual variable in (10.9).

– There are many possibilities to choose which couples to discard. For ex-
ample, all those for which ᾱi = 0 in (10.9). Or those with smallest ei. Or
the oldest ones. Or just all of them. As long as the aggregate couple is in-
troduced in the bundle when some active element has been discarded, the
algorithm will remain convergent. Different selections of discarded couples
may result in different speeds of convergence, though.

10.3.3 Updating the Penalization Parameter. Reversal Forms

We now give a rule for updating µk for k ∈ Ks, i.e., at serious steps. For
simplicity, we use Mk = I for all k, so that the metric is | · |2k = ‖ · ‖2k =
‖ · ‖2 = 〈·, ·〉, i.e., the Euclidean norm. A special feature of this rule is that
it is not completely heuristic, since it is supported by convex analysis and
quasi-Newton theory.

For a convex function f the Moreau-Yosida regularization, of f at a given
point x ∈ R

n is denoted by Fµ(x) and defined as the optimal value of
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min
y∈Rn

{
f(y) +

1

2
µ‖y − x‖2

}
, (10.19)

where µ is a positive parameter. The corresponding unique minimizer is the
proximal point of f at x, denoted by pµ(x). The optimality condition for
(10.19) is

pµ(x) = x− 1

µ
s(pµ(x)) ,where s(pµ(x)) ∈ ∂f(pµ(x)) , (10.20)

and
∇Fµ(x) = µ(x− pµ(x)) (10.21)

is a Lipschitz continuous function of x, [268],[313]. It also well known that
minimizing f is equivalent to minimizing Fµ for any µ ≥ 0.

Consider Algorithm 10.1 with subproblem (10.5), i.e., a penalized bundle
method, and suppose that ϕk = f̌k. A sequence of null steps between two
stability centers merely improves the model, leaving unchanged the center xk

in (10.5). When yk+1 satisfies the descent condition (10.1), it becomes xk+1

and, by Lemma 10.8,

for all k ∈ Ks xk+1 = xk − 1

µk
ŝk , where ŝk ∈ ∂f̌k(xk+1). (10.22)

As observed in [15], [136], [89], the process of making null steps until sat-
isfaction of the descent condition can be interpreted as an implementable
procedure to compute the proximal point of f at xk. More precisely, consider
(10.20) written with x = xk. By comparing the resulting relations to (10.22),
we observe that the parameter µ now varies with k and that

pµk
(xk) ≈ xk+1 and s(pµk

(xk)) ≈ ŝk = µk(xk −xk+1) ∈ ∂f̌k(xk+1). (10.23)

From this point of view, the descent test (10.1) is nothing but an assessment
of how good yk+1 is as an approximation of pµk

(xk) (the same interpretation
is used in a more general setting in § 11.2.3 below).

Suppose the sequence {µk}k∈Ks has a limit µ̃. By (10.21) written with
(µ, x) = (µk, x

k), we have that ŝk ≈ ∇Fµk
(xk). Since minimizing f is equiv-

alent to minimizing Fµ̃, the update in (10.22) can be seen as a step of a
preconditioned gradient method applied to the minimization of Fµ̃, similarly
to § 2.6. In order to increase the rate of convergence, the preconditioner should
vary along iterations, trying to approximate second-order information for Fµ̃

at a minimizer x̄, in the spirit of quasi-Newton framework (see Chapter 4).
The update of µk is based on this remark. More precisely, we use a variable

metric preconditioner of the form 1
µk
I , updated using the so-called symmetric

rank-one formula; see [105], which gives the following quasi-Newton formula,
called poor man’s in [236] :
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µk+1 =
‖v‖2
〈v, u〉 . (10.24)

As usual in quasi-Newton methods, the pair (u, v) is formed by some differ-
ence of points and gradients. A classical choice would be

(u, v) =
(
xk+1 − xk,∇Fµk

(xk+1)−∇Fµk
(xk)

)

≈
(
xk+1 − xk,∇Fµk

(xk+1)− ŝk
)
.

Note that, since µ in (10.19) is now varying with k, we shall be working with
a varying Moreau-Yosida regularization, Fµk

. Moreover, from (10.21), we see
that, to compute ∇Fµk

(xk+1), an additional calculation is required. For this
reason, to define the pair (u, v) we use, instead of the classical choice, the
reversal form introduced in [236], that we describe next.

After xk+1 has been defined, the black box gives a subgradient sk+1 ∈
∂f(xk+1). The idea is to use information already available to define a point
zk+1 such that xk+1 = pµk

(zk+1), by using (10.20)-(10.21). More pre-
cisely, writing (10.20) with (µ, pµ(x), x, s(pµ(x))) replaced, respectively, by
(µk, x

k+1, zk+1, sk+1) yields

xk+1 = zk+1 − 1

µk
sk+1 ⇔

{
zk+1 = xk+1 + 1

µk
sk+1

∇Fµk
(zk+1) = µk(zk+1 − xk+1) = sk+1 .

Similar relations hold for (µk, x
k , zk, sk), so

(v, u) = (∇Fµk
(zk+1)−∇Fµk

(zk) , zk+1 − zk)

= (sk+1 − sk , xk+1 − xk +
1

µk
(sk+1 − sk)) .

Using this expression for the quasi-Newton pair (u, v) in the formula (10.24)
gives the following (reciprocal of the) update

1

µk+1
=

1

µk
+
〈xk+1 − xk, sk+1 − sk〉

‖sk+1 − sk‖2 . (10.25)

This reversal formula is used in Step 3 of the penalized bundle method to
update µk when there is a descent step.

Although, in general, symmetric rank-one updates do not preserve pos-
itive definiteness (i.e., do not guarantee that µk+1 > 0), when using the
reversal form for (u, v), the numerator of the second term in (10.25) can
be made positive by incorporating a Wolfe-like condition in the curvilinear
search mentioned at the end of Remark 10.2. Alternative formulæ, based on
similar ideas were developed in [305].

The use of variable metrics allows an acceleration of penalized bundle
methods. Research on this subject is not much developed yet. “More than
first order” nonsmooth optimization methods are still an open ground; see
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for example [254], [42], [234], [235], [236], [258], [77]. In particular, it is shown
in [233] that under appropriate assumptions (related to f not being “sharp”,
cf. comments after Theorem 9.6), the sequence of serious steps generated by
penalized bundle methods using the reversal update has superlinear rate of
convergence. A related subject is to find adequate second-order developments
of convex functions; see [234], [235], [231], [255], [256].

A recent breakthrough in the area is the VU-bundle method in [257], a
fully implementable algorithm with superlinear convergence of serious iter-
ates. The price to pay for gaining in speed of convergence is that each iteration
requires the solution of two QP problems, one similar to (10.5), followed by
another QP yielding a Newton-like direction that speeds up the method.

A sophisticated code based on [236], with curvilinear search and reversal
quasi-Newton update of µk, is available upon request at Inria. It is called
n1cv2 and is free for an academic use; see

http://www-rocq.inria.fr/estime/modulopt/optimization-routines/

n1cv2.html

Other efficient codes, are Bt and Noa, based on [326], and [213], respectively.
We should also mention the proximal analytic center cutting-planes method
[18].

The figure displayed on the cover of this book shows iterates obtained by
n1cv2 for a test problem called maxquad. This academic example is due to
(the somewhat random typing of) Claude Lemaréchal; a related function can
be found in § VIII.3.3.3 of [195]. maxquad is a finite minimax problem, as
in § 8.3.1, defined by np = 5 functions fj in (8.17). Each of these functions
is quadratic and has the form fj(x) := 〈x,Ajx〉+ 〈x, bj〉 for x ∈ R

10. Letting
j = 1, . . . , np, the corresponding vectors and matrices are, for all i = 1, . . . , 10,
bj(i) := ei/j sin(ij), and

Aj(i, k) :=





ei/k cos(ik) sin(j) for k = i+ 1, . . . , 10
Aj(k, i) for k = 1, . . . , i− 1
| sin j|i/n+

∑
l6=i |Aj(i, l)| for all k = i.

At the (rounded) optimal solution

x̄ = (−.1263,−.0344,−.0069, .0264, .0673,−.2784, .0742, .1385, .0840, .0386)>

the first four quadratic functions fj (j = 1, . . . , 4) are active and equal f̄ =
−0.8414080. The cover figure shows a 2D-view of maxquad level sets about
x̄, as well as the corresponding components of a few serious steps computed
by n1cv2; see the computational exercises in Chapter 12, § 12.1.1.
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10.3.4 Convergence Analysis

When the parameter tol in Algorithm 10.1 is taken strictly positive, by
Lemma 10.3 there is an index klast for which δklast

≤ tol if (8.1) has min-
imizers. By Lemma 10.8 (ii), both εklast

and ‖ŝklast‖klast
/µklast

are small.
Therefore, by Lemma 10.8 (iii), the last serious step satisfies the following
approximate optimality condition:

∀y ∈ R
n f(y) ≥ f(xklast)− ‖ŝklast‖klast

|y − xklast |klast
− εklast

.

When tol = 0, the algorithm either stops having found a solution to (8.1)
(the inclusion 0 ∈ ∂0f(xklast) holds), or it loops indefinitely. In this case, to
analyze the global convergence properties of Algorithm 10.1, we consider the
following particular instance.

Algorithm 10.13 (penalized with aggregation).

– Matrices Mk are scalar multiples of a symmetric positive definite matrix
M , chosen at the initialization step. The scalar factors are updated only
at serious steps, i.e., Mk := ηkM , with ηk varying for k ∈ Ks. With this
choice, both the primal and dual norms can be bounded by the Euclidean
norm ‖ · ‖2, using the extreme eigenvalues λ and Λ of M :

ηkλ‖ · ‖2 ≤ | · |2k ≤ ηkΛ‖ · ‖2 and
1

ηkΛ
‖ · ‖2 ≤ ‖ · ‖k ≤

1

ηkλ
‖ · ‖2,

(10.26)

– yk+1 of (10.5) is computed by the dual (10.8)&(10.9), so the nominal de-
crease if δk+1 of (10.6) while εk is as in Lemma 10.8 (ii),

– the model ϕk of (10.7) is constructed according to the Compression sub-
algorithm 10.11, and

– the stopping tolerance is tol = 0.

Our choice of the metric corresponds to the separation between two differ-
ent effects of the quadratic term in subproblem (10.5). Namely, one related to
the strength of the penalization (corresponding to µk), and another related to
the shape of the penalization (corresponding to | · |k). This separation brings
more flexibility into the way parameters are updated. For example, the up-
date of µk could follow some (curved) line-search ideas, while the update of
ηk could be based in the variable metric ideas from § 10.3.3. Or one could
define M = I , ηk = 1 for all k ∈ Ks, and only change µk for k ∈ Ks according
to § 10.3.3. As long as the resulting parameters satisfy the conditions (10.27)
and (10.31) given below, Algorithm 10.13 will always generate a minimizing
sequence for (8.1). If condition (10.28) is also satisfied, the whole sequence
will converge to a minimizer.

To show convergence, we suppose that the algorithm never stops. In this
case, there are two possibilities for the sequence of descent steps {xk}k∈Ks .
Either it has infinitely many elements, or there is an iteration klast where a
last serious step is done, i.e., xk = xklast for all k ≥ klast. We consider these
two situations separately.
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Theorem 10.14. Suppose Algorithm 10.13 generates infinitely many descent-
steps xk for k ∈ Ks. Then either (8.1) has an empty solution set and
{f(xk)} ↘ −∞, or the following holds:

(i) Both {δk} → 0 and {εk} → 0 as k →∞ in Ks.

(ii) If

for all k ∈ Ks ηk+1 ≤ ηk and
∑

k∈Ks

ηk+1

µkηk
= +∞ , (10.27)

the sequence {xk} is minimizing for (8.1).

(iii) If, in addition to (10.27), there exist positive constants ηmin and B sat-
isfying, for all k ∈ Ks,

ηmin ≤ ηk and
ηk+1

µkηk
≤ B, (10.28)

then the sequence {xk} is bounded and converges to a minimizer of (8.1).

Proof. Note first that, since tol = 0 and the algorithm does not stop, it holds
that δk+1 > 0 for all k ∈ Ks. As a result, the infinite sequence of objective
values {f(xk)} is strictly decreasing. If (8.1) has no solution, the sequence
goes to −∞. Otherwise, by Lemma 10.3, the series

∑
k∈Ks

δk+1 converges
and item (i) follows by Lemma 10.8 (ii).
To see (ii), we apply a reasoning similar to the one yielding (9.5) in Chapter 9.
More precisely, given an arbitrary x ∈ R

n, use the definition of Mk+1 and of
xk+1 (= yk+1 in (10.8)) to expand the square below as follows:

|xk+1 − x|2k+1 =
〈
xk+1 − x, ηk+1M(xk+1 − x)

〉

= ηk+1

〈
xk − x− 1

µkηk
M−1ŝk,M(xk − x)− 1

µkηk
ŝk

〉

=
ηk+1

ηk

〈
xk − x, ηkM(xk − x)

〉
− 2

ηk+1

µkηk

〈
xk − x, ŝk

〉

+
ηk+1

µkηk

1

µk

〈
1

ηk
M−1ŝk, ŝk

〉

=
ηk+1

ηk
|xk − x|2k +

ηk+1

µkηk

(
2
〈
x− xk, ŝk

〉
+

1

µk
‖ŝk‖2k

)
.

We bound the second right hand side term by using Lemma 10.8 (iii):

2
〈
x− xk , ŝk

〉
≤ 2(f(x)− f(xk) + εk),

while a bound for the third right hand side term is given by Lemma 10.8 (ii):

1

µk
‖ŝk‖2k ≤ 2(δk+1 − εk).

As a result, using the left hand side condition in (10.27), we obtain the
relation
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|xk+1 − x|2k+1 ≤ |xk − x|2k + 2
ηk+1

µkηk
(f(x) − f(xk) + δk+1). (10.29)

To show item (ii), suppose for contradiction purposes that there exist x̃ ∈ R
n

and ρ > 0 such that f(x̃) ≤ f(xk) − ρ for all k ∈ Ks. Since, by item (i),
{δk} → 0, there exists kρ such that δk+1 ≤ ρ/2 for all k ≥ kρ, and, hence,
writing relation (10.29) for x = x̃ we obtain

0 ≤ |xk+1 − x̃|2k+1 ≤ |xk − x̃|2k + 2
ηk+1

µkηk
(−ρ+ ρ/2) for all k ∈ Ks, k ≥ kρ.

Summing the inequalities over kρ ≤ k ∈ Ks yields

0 ≤ |xkρ − x̃|2kρ
− ρ

∑

k∈Ks,k≥kρ

ηk+1

µkηk
.

Letting kρ →∞, we obtain a contradiction for the divergence assumption in
(10.27).
To see item (iii), take in (10.29) x = x̄, a solution to (8.1), and sum over
k ∈ Ks. Since f(x̄) ≤ f(xk) for all k, we see that limk→∞ |xk − x̄|2k < +∞.
By (10.26) and (10.28), ηminλ‖xk − x̄‖2 ≤ |xk − x̄|2k, so the sequence {xk} is
bounded. Extract a subsequence {xki}ki∈Ks converging to x̄ as i → ∞. To
show that the whole sequence converges to x̄, given any ρ > 0, take i big
enough to ensure that

‖xki − x̄‖2 ≤ ρηminλ

2ηkiΛ
and

∑

k∈Ks,k≥ki

δk+1 ≤
ρηminλ

2
. (10.30)

The sum of (10.29), written with x = x̄, over k ∈ Ks and going from ki to
an arbitrary k̃ > ki yields

|xk̃+1 − x̄|2
k̃+1
≤ |xki − x̄|2ki

+
k̃∑

k∈Ks,k=ki

δk+1.

By (10.26) and (10.28), this means that

ηminλ‖xk̃+1 − x̄‖2 ≤ |xk̃+1 − x̄|2
k̃+1
≤ |xki − x̄|2ki

+
∑k̃

k∈Ks,k=ki
δk+1

≤ ηkiΛ‖xki − x̄‖2 +
∑

k∈Ks,k≥ki
δk+1,

which, together with (10.30), yields that ‖xk̃+1 − x̄‖2 ≤ ρ, as desired.

We now address the case of finitely many descent-steps.

Theorem 10.15. Suppose Algorithm 10.13 generates a last descent-iterate
xklast , followed by infinitely many null-steps. If

for all k ≥ klast µk+1 ≥ µk, and µk ≤ µmax (10.31)

for some positive constant µmax, then the sequence {yk} converges to xklast

and xklast minimizes f .
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Proof. For simplicity, in the proof that follows we drop some (sub/supra)
indices klast, and denote xklast and ηklast

by x and η, respectively. Since
matrices Mk only change at serious steps, for all k ≥ klast,

| · |2k = η 〈·,M ·〉 =: η| · |2M and ‖ · ‖2k =
1

η

〈
·,M−1·

〉
=:

1

η
| · |2M−1.

For any y ∈ R
n, consider the function

Lk(y) := ϕk(yk+1) +
1

2
µkη|yk+1 − x|2M +

1

2
µkη|yk+1 − y|2M .

By definition of yk+1 in (10.5), ϕk(yk+1) + 1
2µkη|yk+1 − x|2M ≤ ϕk(x) and,

by (10.18), ϕk(x) ≤ f(x), so

Lk(yk+1) ≤ f(x) for all k ≥ klast. (10.32)

Furthermore, the right hand side inequality in (10.18) and the identity
µkηM(x− yk+1) = ŝk from (10.8) give the relations

ϕk+1(y) ≥ ϕk(yk+1) + µkη
〈
M(x− yk+1), y − yk+1

〉
= fa(y). (10.33)

Using condition (10.31), inequality (10.33) written for y = yk+2, and the
definition of Lk, we obtain that

Lk+1(y
k+2) = ϕk+1(y

k+2) + 1
2µk+1η|yk+2 − x|2M

≥ ϕk+1(y
k+2) + 1

2µkη|yk+2 − x|2M
≥ ϕk(yk+1) +

〈
µkηM(x− yk+1), yk+2 − yk+1

〉

+ 1
2µkη|yk+2 − x|2M

= Lk(yk+1)− 1
2µkη|yk+1 − x|2M

+
〈
µkηM(x− yk+1), yk+2 − yk+1

〉
+ 1

2µkη|yk+2 − x|2M .

By expanding the difference of squares we see that

|yk+2 − x|2M − |yk+1 − x|2M =
〈
yk+2− x+ yk+1 − x,M(yk+2− yk+1)

〉

=
〈
yk+2− yk+1 + 2(yk+1 − x),M(yk+2− yk+1)

〉

=
〈
yk+2− yk+1,M(yk+2− yk+1)

〉

+2
〈
yk+1 − x,M(yk+2− yk+1)

〉

= |yk+2− yk+1|2M
+2
〈
M(yk+1 − x), yk+2− yk+1

〉
,

yielding the inequality

Lk+1(y
k+2) ≥ Lk(yk+1) +

1

2
µkη|yk+2 − yk+1|2M . (10.34)

Since the increasing sequence {Lk(yk+1)} is bounded from above by (10.32),
it must converge.
We now show that the sequence {yk+1} is bounded, with {yk+1 − yk} → 0.
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Using once more the identity µkηM(x − yk+1) = ŝk and the relation fa ≤ f
in (10.18), we see that

Lk(yk+1)+
1

2
µkη|yk+1−x|2M = ϕk(yk+1)+

〈
ŝk, yk+2 − yk+1

〉
= fa(x) ≤ f(x).

Since the first term in the left hand side converges as k →∞ and, by (10.31),
µk ≥ µklast

, we obtain that the sequence {yk+1} must be bounded. In addi-
tion, using again that µk ≥ µklast

by (10.34), and passing to the limit, we
conclude that {yk+2 − yk+1} → 0.
Being a convex function, f is locally Lipschitzian with subdifferential locally
bounded. Let L and M denote the respective constants on a bounded set con-
taining the sequence {yk}. Using the right hand side inequality in (10.18),
we see that

−M |yk+1 − yk| ≤
〈
sk, yk+1 − yk

〉
≤ ϕk(yk+1)− f(yk),

while, using the inequality ϕk ≤ f in (10.18), we have that

ϕk(yk+1)− f(yk) ≤ f(yk+1)− f(yk) ≤ L|yk+1 − yk|.

Therefore, {ϕk(yk+1) − f(yk)} → 0, because {yk+1 − yk} → 0 as k → ∞.
From the bounded sequence {yk} extract a subsequence {yki} → ȳ as i→∞
and note that {yki+1} → ȳ because {yk+1 − yk} → 0. Write

f(yki+1)− ϕki(y
ki+1) = f(yki+1)− f(yki) + f(yki)− ϕki (y

ki+1)

to see that

f(yki+1)− ϕki(y
ki+1)→ 0 and ϕki(y

ki+1)→ f(ȳ) as i→∞. (10.35)

To show that x minimizes (8.1), recall that for all k ≥ klast, the descent-test
(Step 3, Algorithm 10.1) is never satisfied. This means that f(yki+1)−f(x) >
−mδki+1, so, adding δki+1 to both sides of the inequality, and using (10.6),
we obtain

0 ≤ (1−m)δki+1 ≤ f(yki+1)− f(x) + δki+1

= f(yki+1)− ϕki(y
ki+1)− 1

2µkiη|x− yki+1|2M
≤ f(yki+1)− ϕki(y

ki+1).

Passing to the limit as i→∞ and using (10.35) we conclude that δki+1 → 0.
By Lemma 10.9(ii), it follows that εki + 1

2µki
η |ŝki |2M−1 converges to 0. Then

both εki and ŝki converge to 0 as i → ∞, because µki ≤ µmax, by (10.31).
Since from Lemma 10.8 (iii), ŝki ∈ ∂εki

f(x), we have that f(y) ≥ f(x) +〈
ŝki , y − x

〉
−εki for all y ∈ R

n. Passing to the limit as i→∞, the inequality
shows that x minimizes f on R

n.
Finally, we show that any cluster point ȳ is equal to x. Use the facts that
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x minimizes f and that f ≥ ϕki by (10.18), together with the definition of
yki+1 from (10.5) and the inequality µki ≥ µklast

from (10.31), to write the
relations

f(ȳ) ≥ f(x) ≥ ϕki(x) ≥ ϕki(y
ki+1) +

1

2
µkiη|yki+1 − x|2M

≥ ϕki(y
ki+1) +

1

2
µklast

η|yki+1 − x|2M .

By (10.35), we obtain in the limit that

f(ȳ) ≥ lim
i→∞

(
ϕki(y

ki+1) +
1

2
µklast

η|yki+1 − x|2M
)

= f(ȳ) +
1

2
µklast

η|ȳ − x|2M ,

an inequality that is possible only if ȳ = x. Since the relations above hold
for any cluster point of the sequence {yk+1}, there can only be one of such
points, namely x.

Recall that, for the Subgradients Algorithm 9.2 to converge, conditions
(a) and (b) are required to hold in Theorem 9.3. In practice, no choice of tk
can satisfy both conditions simultaneously. By contrast, conditions (10.27),
(10.28), and (10.31), ensuring convergence of the Penalized Bundle Algo-
rithm 10.13, are rather mild to satisfy. For example, it is enough to set
ηk = ηmin for all k ∈ Ks and µk = µmax for all k. Of course, the method will
be faster with “smarter” choices of parameters, such as the reversal update
described in § 10.3.3.

We finish with a summary of the advantages of bundle methods, especially
when (10.2) is solved via its dual ((10.8)&(10.9)= (10.5)).

– Construction of a model ϕk and of a nominal decrease δk, which result in
implementable stopping tests.

– Better adjustment of the stopping tolerance, thanks to (10.14).

– Possibility of aggregating the bundle to avoid memory overflows, due to an
infinite accumulation of the affine functions defining the model.

– Quick resolution of (10.2), whose dual has dimension npk at most. This
aspect is crucial when n is large.



11 Applications of Nonsmooth Optimization

This final chapter is devoted to particular variants and extensions of NSO
methods, that can be developed when the problem to be solved has some
special structure. For example, such is the case

– when (8.1) corresponds to a certain dual problem, arising in large-scale or
combinatorial optimization; or

– when (8.1) is a constrained problem; or

– when (8.1) is solved via its optimality condition, i.e., by finding x̄ such that
0 ∈ ∂f(x̄).

11.1 Divide to conquer. Decomposition methods

One of the most important applications of nonsmooth optimization methods
is decomposition. Decomposition techniques are used to solve large-scale (or
complex) problems, replacing them by a sequence of reduced-dimensional (or
easier) local problems linked by a master program, as shown schematically
in Figure 11.1.
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Fig. 11.1. Decomposition/coordination
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These methods prove efficient when the structure of the problem is nat-
urally separable. For example, the optimal management of a set of power
plants; see § 1.2.4, and also [232], [19] and [21].

Two basic decomposition schemes give birth to all the methods of this
class. These are resource- and price-decomposition, dual to each other.

– In resource decomposition, the central manager sends directives to each unit
(decomposition). Each plant minimizes its own cost while respecting the
directives, and answers in return a price according to these directives. With
this new data, the master program adjusts the directives (coordination).

– Price decomposition works the opposite way. The central manager sends a
set of prices to the subsidiary companies; each of them minimizes its own
cost, driven by these prices. Depending on the local answers, the master
program adjusts the prices (coordination).

Nonsmoothness comes into play in the master program, which is a dual
problem, as in § 11.1.1, 11.1.2 below. The solution of a primal problem via its
dual is interesting only if the calculation of the dual function is much easier
than solving the primal problem directly. This is the case when the primal
problem 




minp fo(p)
p ∈ P
cE(p) = 0
cI(p) ≤ 0

(11.1)

has some structure suitable for decomposition:

– For instance, the data can be block-separable: fo(x) =
∑K

i=1 f
i
o(p

i), with
pi ∈ P i ⊂ R

Ni , and each f i
o : R

Ni → R; the constraints being decomposable
as well, as in (11.2) below. After relaxation of the constraints, there are K
local problems each one of dimension Ni; see § 11.1.1.

– When the data is not decomposable, separability can be induced by dupli-
cating variables. More precisely, suppose P in (11.1) is discrete, and that
it is difficult to check simultaneously that p ∈ P and that the remaining
constraints, c(·), are also satisfied. One can induce separability by rewriting
the problem as follows 




minp ,p̃ fo(p)
p̃ ∈ P
cE(p) = 0
cI(p) ≤ 0
p̃ = p .

Relaxing the last constraint yields a dual with two local problems, one in
the continuous variable p (checking satisfaction of constraints given by c(·)),
the other in the discrete variable p̃ (checking that p̃ ∈ P ). The principle
“divide to conquer” applies.
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In general, decomposing amounts to solving some dual problem. As shown
by Theorem 8.4, only when the Karush-Kuhn-Tucker conditions are neces-
sary and sufficient for optimality, the dual solution gives a solution to the
primal problem. Nevertheless, even in the presence of a positive duality gap,
the numerical resolution of the dual problem with a bundle method will
generate a sequence {xk} converging to a maximizer x̄, with subgradients
ŝk ∈ ∂εk

(−θ)(xk), where both ŝk and εk are close to 0 for k large enough.
Since ŝk is a convex combination of gradients si = −c(pyi) for some primal
points pyi , the primal convex combination

∑
i ᾱipyi is a reasonable approx-

imation of a primal optimum by Theorem 8.1, specially when the relaxed
constraints are affine or convex.

In addition, we stress the fact that, even without convexity, passing to
the dual problem can always be used to bound the optimal value fo(p̄) from
below by θ(x̄). This property is useful in combinatorial optimization, to define
an evaluation function in branch-and-bound methods (see [188] for an early
example).

If one really wants to eliminate the duality gap (to know exactly the op-
timal primal value, for example), augmented Lagrangians can still be used.
The augmented Lagrangian of Remark 8.5 is a basis for multiplier methods,
[191],[288], [311], [25], [27]. The augmented Lagrangian gives an augmented
dual function that is differentiable. However, it may no longer be decompos-
able (cf. § 11.1.4 below).

11.1.1 Price Decomposition

Duality shows all its potential when (11.1) is block-separable. Price decom-
position schemes appear when using Lagrangian relaxation to exploit sepa-
rability.

General Algorithm Suppose that the data can be split into K blocks, as
follows. Let the dimension of the primal space be N =

∑K
i=1Ni, with

p = (p1, . . . , pK) , pi ∈ P i ⊂ R
Ni , P =

K∏

i=1

P i ,

fo(p) =

K∑

i=1

f i
o(p

i) , cE(p) =

K∑

i=1

ciE(pi) , and cI(p) =

K∑

i=1

ciI(p
i) .

(11.2)

The decomposed functions only operate on each block:

f i
o : P i → R , ciE : P i → R

nE , and ciI : P i → R
nI .

In this setting, the Lagrangian of (11.1) has a separable structure

L(p, x) =

K∑

i=1

(
f i

o(p
i) + 〈x, ci(pi)〉

)
,



164 11 Applications of Nonsmooth Optimization

with x ∈ R
nE+nI and the decomposed vector of constraints is ci(pi) =

(ciE(pi), ciI(p
i)). The associated dual function is also separable:

θ(x) =

K∑

i=1

θi(x) :=

K∑

i=1

min
pi∈P i

{
f i

o(p
i) + 〈x, ci(pi)〉

}
. (11.3)

When compared to (8.8), we see that one evaluation of θ(x) now requires
the resolution of K independent local problems, each one of dimension Ni,
instead of one (big) problem of size N =

∑K
i=1 Ni. Thus, computations will

be dramatically simplified for large-scale primal problems, like in § 1.2.4.
Typically, the master program will choose a multiplier x (“price”) sent to

the K local solvers. Once solutions {pi
x, i = 1, . . . ,K} to (11.3) are obtained,

the master program computes θ(x) and one subgradient, and defines a new
x, by making one step of some NSO method to maximize the dual function.
Figure 11.2 shows the particular form of Figure 11.1 for this decomposition
method.

 . . .
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Algorithm 11.1 (price decomposition). Choose x1 ∈ X and set k = 1.

Step 1 (Calling the local problems – decomposition). For i = 1, . . . ,K, com-
pute:

pi
xk := argminpi∈P i

{
f i

o(p
i) + 〈xk, ci(pi)〉

}
.

Step 2 (Evaluating the dual function). We have

θ(xk) =

K∑

i=1

(
f i

o(p
i
xk) + 〈xk , ci(pi

xk)〉
)
.

From (8.19), a subgradient is available: −∑K
i=1 c

i(pi
xk) ∈ ∂

(
− θ
)
(xk).
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Step 3 (Master program – coordination). Compute xk+1 in order to maxi-
mize θ(x). For example, by using any one of the black-box methods in
§ 9.3 or in Chapter 10.

Step 4 (loop). Change k to k + 1, go to 1.

We now show that the well-known decomposition method of Dantzig-
Wolfe [95] is a particular case of price decomposition.

Relation with Dantzig-Wolfe Decomposition Suppose that at Step 3
of Algorithm 11.1 the cutting-planes method from § 9.3 is used. Following
Algorithm 9.4, at iteration k a piecewise linear (concave) model θ̌k(x) is
constructed using the past information

(
θ(xj), sj

)
=
(
L(pxj , xj), c(pxj )

)
=
( K∑

i=1

f i
o(p

i
xj ),

K∑

i=1

ci(pi
xj )
)

for j = 1, . . . , k. Each affine function defining the cutting-planes model takes
the form:

θ(xj) + 〈sj , y − xj〉 =
K∑

i=1

(
f i

o(p
i
xj ) + 〈ci(pi

xj ), y〉
)
,

for all y ∈ X . Therefore, the model (9.6) for θ (written with j,−θ(xj) ,−sj

instead of i , fi , s
i) becomes

θ̌k(y) = min
j=1,...,k

K∑

i=1

(f i
o(p

i
xj ) + 〈ci(pi

xj ), y〉) .

The cutting-planes Algorithm 9.4 (applied to the maximization of the concave
function θ) computes the next iterate as follows:

xk+1 a solution to max
y∈S

θ̌k(y) = min
y∈S

(
− θ̌k

)
(y) .

If the feasible set S is polyhedral, for example a box, this subproblem is a
linear program, so a solution can be found by solving its dual. To write this
dual problem, we proceed as in the proof of Lemma 10.8. Without going into
details, the cutting-planes subproblem (9.9) can be considered an instance
of the penalized bundle subproblem (10.5) without quadratic term (µk = 0).
Starting from the equivalent primal LP problem (recall (9.10)),

{
min{r∈R,y∈X}−r
r ≤∑K

i=1(f
i
o(p

i
xj ) + 〈ci(pi

xj ), y〉) , j = 1, . . . , k ,
(11.4)

the analogous of (10.9) is the following dual problem:
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min
α∈∆k

k∑

j=1

αj

K∑

i=1

f i
o(p

i
xj )

k∑

j=1

αj

K∑

i=1

ciE(pi
xj ) = 0

k∑

j=1

αj

K∑

i=1

ciI(p
i
xj ) ≤ 0 ,

(11.5)

where ∆k := {z ∈ [0, 1]k :
∑k

j=1 zj = 1} is the unit-simplex in R
k. Theo-

rem 8.4 gives the relation between the primal and dual solutions: xk+1 is an
optimal Lagrange multiplier for the constraints in (11.5).

The well known Dantzig-Wolfe method generates iterates precisely by
means of (11.5). At each iteration, local problems (“slave”-programs) return
to the master program the solutions {pi

xk , i = 1, . . . ,K} of Step 1. With this
information, the master defines at Step 3 the next xk+1 as the multiplier
associated with the constraints of (11.5).

From the master’s point of view, Dantzig-Wolfe decomposition is a
cutting-planes method. The well known tailing-off effect, that reduces
speed of convergence as k increases, is nothing but the intrinsic instability of
cutting-planes method that was mentioned in Remark 9.8.

Remark 11.2.

– Because the master program iterates using a cutting-planes algorithm,
for nonlinear problems convergence of the Dantzig-Wolfe decomposition
method is guaranteed only when the number of affine functions defining
the model goes to infinity. Thus, it can be preferable to solve the mas-
ter by using instead a bundle method, which allows aggregation and keeps
bounded the size of quadratic subproblems.

– Another possibility for an acceleration is the disaggregation of the master
objective function; see [19]. Denote by θi(xk) each optimal value at Step 1

of Algorithm 11.1; in view of (11.3), θ(xk) =
∑K

i=1 θ
i(xk). Disaggregation

then consists in maximizing the dual function at Step 3 via the separate
modeling of each function θi(·). The cutting-planes model θ̌k is replaced by

the (more accurate) model
∑K

i=1 θ̌
i
k. However, note that this will require to

store past information in a disaggregate form:

(
f i

o(p
i
xj ), ci(pi

xj )
)
, for i = 1, . . . ,K and j = 1, . . . , k.

Depending on the problem, this extra computational burden may have a
negative effect in the overall performance of the method.

– Since each iteration of the cutting-planes method appends to (11.4) one
constraint (i.e. the model is enriched with one affine function), this pro-
cess is called row generation. By contrast, the quantity increasing along
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iterations in (11.5) is the dimension of the variables α; one then speaks of
column generation.

11.1.2 Resource Decomposition

Consider the following reformulation of the primal problem (11.1), obtained
by introducing a right hand side perturbation u ∈ R

nE ×R
nI , corresponding

to directives or “resources”:




min v(u)
u = (uE , uI)
uE = 0
uI ≤ 0

where v(u) :=





min
p∈P

fo(p)

cE(p) = uE

cI(p) ≤ uI .

With respect to the decomposition scheme in Figure 11.1, the left hand side
problem above is the master program, while the right hand side problem
corresponds to local problems. More precisely, using the separable structure
described in (11.2), the master program is





min
ui∈Ui

K∑

i=1

vi(ui)

K∑

i=1

ui
E = 0

K∑

i=1

ui
I ≤ 0 ,

(11.6)

where for each i = 1, . . . ,K we defined the feasible set

U i :=
{
(ui

E , u
i
I) ∈ R

nE × R
nI : ∃pi ∈ P i : ciE(pi) = ui

E , c
i
I(p

i) ≤ ui
I

}
;

while the local problems are

vi(ui) :=





min
pi∈P i

f i
o(p

i)

ciE(pi) = ui
E

ciI(p
i) ≤ ui

I .

(11.7)

Problem (11.6) has no reason to be differentiable, because the individual
value functions vi(·) themselves need not be differentiable. Under appropri-
ate continuity and convexity assumptions, however, for each local problem
Theorem 8.4 holds. In this case, there is no duality gap, and (11.7) has a
minimizer p̄i

ui and an optimal Lagrange multiplier x̄i
ui , both depending on

ui, for which
vi(ui) = f i

o(p̄
i
ui) = θui(x̄i

ui), (11.8)

where θui is the dual function obtained from (11.7) after relaxation of the
constraints. Furthermore,
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−x̄i
ui ∈ ∂vi(ui).

To see that the multiplier x̄i
ui gives a subgradient, consider (11.7) written

with ui replaced by ũi, another perturbation. The weak duality relation (8.14)
applies to such problem:

f i
o(p

i) ≥ θũi(x) := inf
pi∈P i

{f i
o(p

i) + 〈x, ci(pi)− ũi〉},

for arbitrary x ∈ X = R
nE × R

nI
+ and pi ∈ P i. In particular, for pi = p̄i

ũi ,
i.e., a point in P i such that vi(ũi) = f i

o(p̄
i
ũi),

vi(ũi) = f i
o(p̄

i
ũi) ≥ θũi(x)

= infpi∈P i{f i
o(p

i) + 〈x, ci(pi)− ui〉}+ 〈x, ui − ũi〉
= θui(x) + 〈x, ui − ũi〉

for arbitrary x ∈ X . In particular, taking x = x̄i
ui , and using the relation

(11.8),
vi(ũi) ≥ vi(ui) + 〈−x̄i

ui , ũi − ui〉.

Therefore, at the coordination step, both v(u) =
∑K

i=1 f
i
o(p̄

i
ui) and the sub-

gradient −∑K
i=1 x̄

i
ui are available after solving the K local problems (11.7).

Thus, a black-box method can be applied to solve the master program (11.6)
(note that this is a constrained NSO problem, though).

Figure 11.1 specializes for this method as shown in Figure 11.3.

. . .
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Fig. 11.3. Resource decomposition

Observe that the information sent by the master to the local solvers lies in
the constraint space. From an economic point of view, the quantities ui corre-
spond to resource allocations sent from an upper level. The local units return
values −x̄i

ui , which are the marginal utilities associated with the allocated
resource ui, used to produce p̄i

ui units of product.
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11.1.3 Variable Partitioning or Benders Decomposition

Benders decomposition is useful when the variables are separable into “hard”
and “easy” ones. An example of this situation is multistage stochastic pro-
gramming [316]: easy/hard variables correspond to first/second stages of de-
cision. The primal problem (11.1) has the form





min fo(p) + f̃o(p̃)

(p, p̃) ∈ P × P̃
cE(p) + c̃E(p̃) = 0
cI(p) + c̃I(p̃) ≤ 0 ,

where hard data is denoted by using a superscript ∼. The equivalent bilevel
form is {

min fo(p) + vopt(p)
p ∈ P

where we defined the optimality function

vopt(p) :=





min f̃o(p̃)

p̃ ∈ P̃
c̃E(p̃) = −cE(p)
c̃I(p̃) ≤ −cI(p) .

(11.9)

In many cases this value function has a separable block structure, like (11.2),
but similarly to (11.7), the function vopt may not be differentiable. Depending
on the data, vopt can be lower semicontinuous and even convex. In this case,
a subgradient can be computed using a Lagrange multiplier associated with
the constraints. More precisely, writing (11.9) with p = pk, and letting p̃pk

be a solution with associated Lagrange multiplier x̃pk , we have that

vopt(pk) = f̃o(p̃pk ) and s(pk) := Jc(pk)T x̃pk ∈ ∂vopt(pk),

where we use the (transposed) Jacobian matrix Jc(pk) = (JcE(pk), JcI(p
k)).

Once again, the master program approximates vopt(·) by using a cutting-
planes model v̌opt

k . The second level problem (which may be separable) plays
the role of the local problem, and serves to evaluate vopt(pk) and a subgra-
dient, for every pk sent by the master.

Suppose, for simplicity, that we use a cutting-planes method, that fo(p) =
〈a, p〉 for some vector a, and that P is polyhedral. A straightforward appli-
cation of the cutting-planes method gives for the master program an LP
problem of the form:

{
min 〈a, p〉+ v̌opt

k (p)
p ∈ P ⇔

{
min

p∈P,r∈R

〈a, p〉+ r

r ≥ f̃o(p̃pj ) +
〈
Jc(pj)T x̃pj , p− pj

〉
for j ≤ k.

At this point, it is important to notice that, depending on pk, the feasible set
in (11.9) corresponding to the local problems, i.e.
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{
p̃ ∈ P̃ : c̃E(p̃) = −cE(pk) and c̃I(p̃) ≤ −cI(pk)

}
,

may be empty. In this case, the value of vopt(pk) and a subgradient cannot
be computed. Instead, a new pk+1, for which problem (11.9) written with
p = pk+1 is feasible, should be generated by the master program.

The new iterate is computed by introducing in the master LP problem a
feasibility cut. The idea is, before trying to compute vopt(pk), to define the
feasibility function

vfeas(pk) :=





min ‖z‖1
p̃ ∈ P̃ , z+

E , z
−
E , z+

I ≥ 0
c̃E(p̃) + z+

E − z−E = −cE(pk)
c̃I(p̃)− z+

I ≤ −cI(pk)
z = (z+

E − z−E , z+
I ) ∈ R

nE+nI ,

(11.10)

where ‖z‖1 :=
∑n

i=1 |zi| is the 1-norm in R
n. Note that the feasibility function

is nonnegative, with vfeas(p) = 0 if and only if problem (11.9) is feasible. In
order to avoid infeasible local problems, the master program should rather
be written 




min fo(p) + vopt(p)
p ∈ P
vfeas(p) = 0.

Denote by (p̃′pk , z̃pk) a solution to (11.10), and by x̃′pk an optimal multiplier

corresponding to the constraints involving cE(pk) and cI(p
k). If z̃pk = 0, the

feasible set in (11.9), written with p = pk, is nonempty. Otherwise, if z̃pk 6= 0,
instead of trying (and failing) to compute vopt(pk) and s(pk) ∈ ∂vopt(pk), we
define black-box information for vfeas(pk), knowing that

vfeas(pk) = ‖z̃pk‖1 and s′(pk) := Jc(pk)T x̃′pk ∈ ∂vfeas(pk).

With the introduction of feasibility cuts (corresponding to a cutting-
planes model of vfeas), a typical master program iteration in Benders de-
composition has the form:

{
min
p∈P
〈a, p〉+ v̌opt

k (p)

v̌feas
k (p) ≤ 0

⇔





min
p∈P,r∈R

〈a, p〉+ r

r ≥ f̃o(p̃pj ) +
〈
Jc(pj)T x̃pj , p− pj

〉
for j ∈ Ok

0 ≥ ‖z̃pl‖1 +
〈
Jc(pl)T x̃′pl , p− pl

〉
for l ∈ Fk,

where Ok and Fk correspond to past iterations where, respectively, optimality
or feasibility cuts were generated.

When (11.9) is a linear programming problem, in general there is no
need to make the extra computations required to introduce feasibility cuts.
Namely, when required to solve an infeasible problem (11.9), any good LP
solver detects infeasibility along the iterative process. In this case, there is an
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exit mode that can also provide a recession direction (of dual unboundedness),
corresponding to the feasibility cuts above.

The general decomposition scheme for this method is shown in Fig-
ure 11.4.

PSfrag replacements


minp fo(p) + v̌

opt
k (p)

v̌
feas
k (p) ≤ 0

pk

Check feasibility:
solve (11.10)
for p = pk

If z̃pk = 0
solve (11.9)
for p = pk

(p̃′
pk , z̃pk , x̃′

pk ) or (p̃pk , x̃pk )

Fig. 11.4. Benders decomposition

In contrast with resource decomposition, Benders decomposition sends to
the local units values in the (primal) variable-space. In [221] it is shown that
in the linear case, this method (primal for the master program) is dual to the
Dantzig-Wolfe decomposition applied to the dual.

Note that the resource decomposition problem (11.6) was formulated us-
ing the feasible sets U i, which may not be known apriori, except for some
particular applications. Such sets can be eliminated from (11.6) by intro-
ducing feasibility cuts, similarly to the procedure just shown for Benders
decomposition.

Since Benders decomposition is a cutting-planes method from the master’s
point of view, it also presents tailing-off effects when the number of iterations
becomes large. For this reason, a bundle method for solving the (constrained
NSO) master problem might be preferable in some applications.

11.1.4 Other Decomposition Methods

We finish this section with a quick review of other decomposition techniques.

–Decomposition methods based on the principle of auxiliary problem. For a
problem with hard constraints, the idea is to approximate the starting prob-
lem by a sequence of problems in which the hard functions are linearized;
see for instance [93]. A penalty term is added if necessary, so that local
problems, called auxiliary problems, are coercive and, hence, solvable. This
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decomposition is useful when using augmented Lagrangians with quadratic
terms. Crossed terms kill separability, the auxiliary problem principle al-
lows to introduce approximations in the augmented term, in order to obtain
separable local problems.

–Proximal decomposition methods are suitable for problems where the fea-
sible set is a subspace (such is the case when separability was induced by
duplicating variables); see [343], [245], [76]. For the convex problem





min f1(p1) + f2(p2)
p1 ∈ P1 , p2 ∈ P2

Ap1 − p2 = 0,

the method in [76] applies proximal point iterations to the subdifferential
of the Lagrangian function L(p1, p2, x) = f1(p1) + f2(p2) + 〈x,Ap1 − p2〉,
by alternately fixing the primal variables (p1, p2) or the multiplier x. A
nice feature of this decomposition scheme is that the minimization for the
local problems is carried out separately in the spaces P1 and P2, and the
two minimization problems decompose further according to the separable
structure of the functions f1 and f2. The “alternating projection-proximal
method” in [352] extends the same decomposition scheme to more general
problems. These methods, however, are only applicable if local subproblems
can be solved exactly. Although this may be the case in some applications
(linear multi-commodity flow problems, for example), such assumption can
be too restrictive in general.

–Inexact proximal decomposition methods address the question of local prob-
lems that cannot be solved exactly. For the decomposition [76] mentioned
above, when f1 and f2 are convex nondifferentiable functions, each local
problem would require the application of a NSO method (a bundle method
for example) until finding an optimum. Since such process is repeated for
each iteration of the master program, the resulting decomposition scheme
becomes inapplicable. To overcome this handicap, the method in [335] gives
a decomposition method where local problems are not solved exactly. For
the example mentioned in the previous item, it is enough to make bundle
iterations on each local problem until a relaxed stopping test is satisfied.
The decomposition approach proposed in [335] contains [76] and [352] as
special cases and gives a unified insight into those schemes by relating them
to the hybrid inexact proximal methods described in § 11.2.3 below. The
same hybrid framework, applied in a different context, gives the ε-proximal
decomposition in [279], and the parallel bundle method in [58].

11.2 Transpassing Frontiers

In some applications, the special structure of the problem to be solved leads to
the development of a new NSO method. We describe some of such extensions
in this section.
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11.2.1 Dynamic Bundle Methods

Consider problem (11.1) with only inequality constraints




minp fo(p)
p ∈ P
cj(p) ≤ 0 for j = 1, . . . , nI ,

(11.11)

where fo is a convex function, the constraints cj are affine, nI is a large
number, and P ⊂ R

N can be any set (including a discrete set).
For the Lagrangian relaxation approach to make sense in practice, two

points are fundamental. First, the dual function should be much simpler to
evaluate (at any given x) than solving the primal problem directly; we assume
this is the case for (11.11). Second, the dual problem should not be too large:
in NSO this means that the dimension of the dual variable is less than 10000.
So the approach is simply not applicable in our setting, because in (11.11) nI

is too big. Instead of dualizing all the nI constraints at once, an alternative
approach is to choose subsets of constraints to be dualized at each iteration.
In this dynamical relaxation, subsets J have cardinality |J |much smaller than
nI . As a result, the corresponding dual function, defined on the nonnegative

orthant R
|J|
+ , is manageable from the NSO point of view. However, since the

dual function now varies at each iteration, to obtain convergent algorithms,
primal and dual information should be combined adequately.

Dual Information A first important consequence of considering a subset J
instead of the full set {1, . . . , nI} is that complete knowledge of dual function
is no longer available. The dual function for (11.11) is

θ(x) = min
p∈P

L(p, x) = min
p∈P
{fo(p) + 〈x, c(p)〉}.

In the dynamic setting, for any given x only

min
p∈P



fo(p) +

∑

j∈J

xjcj(p)



 and not min

p∈P



fo(p) +

nI∑

j=1

xjcj(p)





is known. This means that rather than having θ, only its trace, θ ◦ P
J
, is

available. Here, P
J

is the linear operator in R
nI defined as the orthogonal

projection on the subspace R
|J| × {0 ∈ R

nI−|J|} ⊂ R
nI .

Similarly to px from (8.12) in § 8.3.2, it is easy to see that the point

pJ,x ∈ Argmin
p∈P



fo(p) +

∑

j∈J

xjcj(p)





still gives a subgradient, i.e, −c(pJ,x) ∈ ∂(−θ)(x). With respect to Figure 9.5,
the black-box information now depends on J , as shown in Figure 11.5.
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Fig. 11.5. Black box depending on a set J

Primal Information To choose which constraints are to be dualized at
each iteration, we assume that a Primal Oracle is available. A Primal Oracle
is a procedure PrimOr that, given p ∈ R

N and J ⊆ {1, . . . , nI}, identifies
constraints cj with j 6∈ J that are not satisfied by p. The output of the
procedure is an index set I , i.e., I = PrimOr(p, J), which can be empty.

We assume that, as long as there remain violated constraints with indices
in j ∈ {1, . . . , nI}\J , the primal procedure is able to identify one of such
constraints. With this assumption,

PrimOr(p, J) = ∅ ⇔ {j ∈ {1, . . . , nI} : cj(p) > 0} ⊆ J
⇔ {j ∈ {1, . . . , nI} : cj(p) ≤ 0}⊇ {1, . . . , nI}\J.

In particular, PrimOr(p, {1, . . . , nI}) is always the empty set. In combinato-
rial optimization, this assumption corresponds to an exact separation algo-
rithm for the family of inequalities defined by the constraints.

Note that the primal oracle can only add indices to the set J , thus increas-
ing the dual dimension. In the absence of some criterion to drop indices from
the set J , we might soon be working with a dual dimension that is too large
to handle. For this reason, every time a candidate is declared a serious step,
we eliminate indices corresponding to zero components of the new stability
center. The idea is that, since the dual variable is a multiplier for (11.11),
in view of the complementarity relation (8.16), zero dual components should
correspond to feasible constraints.

The Algorithm We now give the dynamic version of the penalized bundle
method with | · |k = ‖ · ‖, i.e., using the Euclidean norm for all iterations; we
refer to [22] for full details.

Recall that, instead of (8.1) we are now minimizing the negative of the
dual function, −θ in the nonnegative orthant R

nI
+ . The set Ĵk below corre-

sponds to the index set used when the current serious step, xk, was generated.
Note that, by (11.12) below, each iterate is defined so that yk = P

Jk
(yk) with

Ĵk ⊂ Jk.
Since all the black-box information can be recovered from pJ,x, the bundle

of information will now be

B =
{
(ei, pJi,yi), i = 1, . . . , npk

}
and Ĵk, x

k,

where linearization errors are defined for the convex function −θ:

ei = −θ(pĴk,xk)− fo(pJi,yi)− 〈c(pJi,yi), xk〉.



11.2 Transpassing Frontiers 175

Algorithm 11.3 (dynamic bundle). Let tol ≥ 0, m ∈]0, 1[, and kcomp >
0 be given parameters. Choose a nonnegative x1 ∈ R

nI
+ such that J1 :=

{j ≤ nI : x1
j > 0} 6= ∅, and call the black box from Figure 11.5 with

(x, J) = (x1, J1). Construct the model ϕ1 for the convex function −θ, and
set the algorithm parameters, such as µ1. Set k = 1, δ1 = ∞, and I1 = ∅.
Define Ĵ1 = J1.

Step 1 (dynamic stopping test). If δk ≤ tol and Ik = ∅, stop.
Step 2 (candidate). Solve

yk+1 solution to

{
minϕk(y) + 1

2µk‖y − xk‖2
y ∈ R

Jk ×
{
0 ∈ R

nI−|Jk|
}
, y ≥ 0 .

(11.12)

Define δk+1 = −θ(xk)− ϕk(yk+1)− 1
2µk‖yk+1 − xk‖2.

Define the primal convex point to be used by the Primal Oracle:

p̂k+1 =

npk∑

i=1

ᾱipJi,yi ,

where ᾱ solves the dual problem of (11.12), similar to (10.9).
Step 3 (calling the black box and the Primal Oracle). Call the black box

from Figure 11.5 with (x, J) = (yk+1, Jk).
Call the Primal Oracle to compute Ik+1 = PrimOr(p̂k+1, Jk)

Step 4 (assessing the candidate and choosing constraints). Descent test:

−θ(xk) + θ(yk+1) ≥ mδk+1?

{
Yes: (descent-step)

No: (null-step) .

If yk+1 was declared a null step, define

xk+1 = xk , Ĵk+1 = Ĵk , Jk+1 = Jk ∪ Ik+1, and go to Step 5.

If yk+1 was declared a serious step, then

– If k ≥ kcomp and Ik+1 6= ∅, define Ok+1 = ∅.
– Otherwise, compute Ok+1 = {j ∈ Jk : yk+1

j = 0}.
Define

xk+1 = yk+1 , Ĵk+1 = Jk\Ok+1 , Jk+1 = Ĵk+1 ∪ Ik+1, and go to Step 5.

Step 5 (improving the model – loop). Append yk+1 to the model, i.e., con-
struct ϕk+1. Define the algorithm parameters for the next iteration, such
as µk+1. Change k to k + 1, go to 1.

When compared to Algorithm 10.1, we see that the new extra calculations
correspond essentially to the management of index sets Jk. More precisely, as
long as null steps are done, we keep on adding constraints to the dual function
(the cardinality of Jk increases). By contrast, when a candidate is declared a
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serious step, we eliminate those constraints corresponding to zero components
of the new serious step xk+1. The parameter kcomp ensures that eventually
(as k →∞) indices will be removed only when the convex primal point p̂k+1

is feasible for all the nI constraints. In order to keep a low dimensionality
of Jk and make the algorithm faster, such condition is not required at early
iterations (k < kcomp).

In a schematic way, we now have the decomposition scheme described in
Figure 11.6.

x
g

f
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Fig. 11.6. Dynamic bundle method

Along the lines of Algorithm 10.11, it is possible to introduce a compres-
sion sub-algorithm in Algorithm 11.3. Namely, primal bundle points pJi,yi

are aggregated into the convex primal point p̂k+1, while linearization errors
are aggregated as usual. However, such aggregation results in no loss of in-
formation only if the dualized constraints are affine.

Similarly to Theorems 10.14 and 10.15 in Chapter 10, in [22] the dynamic
bundle method is shown to generate a sequence {xk} that is minimizing
for −θ on the nonnegative orthant R

nI
+ . Moreover, when in addition to c,

fo in (11.1) is also affine, it is shown that if Algorithm 11.3 stops at some
iteration klast with δklast

= 0 and Iklast
= ∅, then the primal convex point

p̂klast solves the primal problem (11.1), written with P replaced by convP .
When, in addition, P is a finite set and, hence, θ is a polyhedral function,
the algorithm is shown to have finite termination for a suitable choice of
parameters.

This dynamic methodology can also be grooved together with the so-called
maximum violation primal oracle, i.e., a procedure giving the index of the
constraint with higher value. Maximum violation oracles require to explore
the whole constraint set, and may not be well adapted for some particular
problems. By constrast, the primal oracle presented here, depending on the
set J , allows for the use of heuristic methods. The choice of suitable primal
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oracles to identify violated inequalities depends on the particular application.
For the dynamic method to work, the primal oracle should essentially ensure
that eventually all violated constraints are included in the working set J .

11.2.2 Constrained Bundle Methods

Consider a general convex constrained problem of the form

{
min
x∈Rn

f(x)

c(x) ≤ 0 ,
(11.13)

where f, c : R
n → R are convex functions, in general nondifferentiable. There

is no loss of generality in formulating (11.13) with only one constraint: if
necessary, c can be defined as the pointwise maximum of finitely many convex
functions (like (8.17) in § 8.3.1), since the resulting function would still be
convex.

Associated with problem (11.13) there is the improvement function, de-
pending on a fixed x ∈ R

n, defined by

hx(y) := max{f(y)− f(x), c(y)}, for all y ∈ R
n. (11.14)

When a Slater condition holds for (11.13), x̄ is a solution to (11.13) if and
only if x̄ solves the unconstrained problem of minimizing hx̄.

Ideally, one could apply an unconstrained bundle method to minimize the
function hx̄(·) directly. In practice, since f(x̄) is not known, the idea is to
take x = xk, the last serious step, and proceed until a new serious step is
generated. Then the base point in the improvement function moves, i.e., we
set x = xk+1 in (11.14). The resulting method, introduced in [318], works
on an objective function that varies along the iterations. Given a stability
center xk , the usual penalized bundle technique is applied to the improvement
function hk := hxk , until a descent condition for this function with respect
to the value hk(xk) = max{c(xk), 0} =: c+(xk) is achieved. At this time, the
corresponding candidate yk+1 is accepted as the next stability center and the
algorithm proceeds, working with the new improvement function, hk+1.

When written for f = hk, the descent condition (10.1), i.e, hk(yk+1) ≤
hk(xk)−mδk+1, becomes

f(yk+1)− f(xk) ≤ c+(xk)−mδk+1 , (11.15)

and
c(yk+1) ≤ c+(xk)−mδk+1 , (11.16)

where δk+1 = c+(xk)− ϕk(yk+1)− 1
2µk|yk+1 − xk|2k.

Suppose both (11.15) and (11.16) hold, so that xk+1 = yk+1. If xk is
infeasible, then f(xk+1) > f(xk) is possible (since c+(xk) > 0). Therefore,
the method is not monotone with respect to f when outside of the feasible
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region. However, outside of the feasible region the method is monotone with
respect to c, because c(xk+1) < c+(xk) = c(xk) for xk infeasible. This seems
intuitively reasonable: while it is natural to accept the increase in the objec-
tive function value in order to decrease infeasibility, it is not so clear why
one would want to decrease the objective function at the expense of moving
away from the feasible region.

The situation reverses when xk is feasible. In that case, c+(xk) = 0, so
that f(xk+1) < f(xk). But although (11.16) implies that xk+1 is feasible too,
it is possible that c(xk+1) > c(xk) (except when c(xk) is exactly zero). This
also appears completely reasonable: while preserving feasibility, we allow c to
increase (so that the boundary of the feasible set can be approached), at the
same time obtaining a decrease in the objective function. In particular, if the
starting point x0 is feasible, the method will operate in a feasible mode (all
serious steps are feasible).

Conditions (11.15) and (11.16) result in an important difference with re-
spect to the unconstrained penalized bundle method in Chapter 10. Every
time a serious step is declared, the cutting-planes model ϕk has to be prop-
erly revised to make sure that the relation ϕk+1 ≤ hk+1 holds (the important
relation ϕk+1 ≤ f in (10.18), written with f replaced by hk+1 should be sat-
isfied). Since f(xk+1) > f(xk) is perfectly possible, we may have hk+1 ≤ hk,
where the inequality can be strict for some points. This means that a lower
approximation for hk (i.e., ϕk satisfying ϕk ≤ hk) may no longer be valid
for hk+1 (i.e., ϕk 6≤ hk+1). Note that this adjustment is independent of com-
pressing the bundle, which will also require additional care.

Suppose for the moment that the bundle contains only black-box infor-
mation, i.e., that no aggregation has been done. Since the unconstrained
bundle method now works with an objective function hk(·) which varies with
k ∈ Ks, past information relevant for constructing the model is no longer
just the bundle

B =
{
(ei, s

i
h ∈ ∂eihk(xk)), i = 1, . . . , npk

}
.

Instead, separate information about the objective and constraint functions
needs to be kept. For (11.13), black-box information has the form (fi =
f(yi), ci = c(yi)) and (si

f ∈ ∂f(yi), si
c ∈ ∂c(yi)). Or, equivalently,

Bbb =
{
(ef i

, eci, s
i
f ∈ ∂ef i

f(xk), si
c ∈ ∂eci

c(xk))
}
, i = 1, . . . , npk ,

where the linearization errors for f and c, are the usual ones:

ef i
:= f(xk)− fi − 〈si

f , x
k − yi〉, and

eci := c(xk)− ci − 〈si
c, x

k − yi〉, for i ∈ Bbb.

The purpose of keeping the bundle information separated is to allow the
computation of the function and subgradient values for different functions
hk. As shown in [318; Lemma 3.1], for each i ∈ Bbb, setting
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{
ei := ef i

+ c+(xk) and si
hk

:= si
f , if fi − f(xk) ≥ ci,

ei := eci + c+(xk)− c(xk) and si
hk

:= si
c , if fi − f(xk) < ci,

guarantees that ei ≥ 0 and si
hk
∈ ∂eihk(xk) for every k ∈ Ks.

Similarly to (10.17), separate linearization errors can be updated by a
simple formula, even when hk changes. Suppose now the algorithm has per-
formed some compression and aggregation, and that we split the bundle into
two subsets, corresponding to black box and aggregate information:

B = Bbb ∪ Bagg.

For example, with respect to Algorithm 10.11, for the first iteration k when
there is aggregation, Bbb contains the nleft couples kept, while Bagg =
{(εk, ŝ

k)}. Every time a new stability center is defined (xk+1 = yk+1), lin-
earization errors for i ∈ Bbb are updated according to the relations

ef i
= ef i

+ f(yk+1)− f(xk) + 〈si
f , x

k − yk+1〉, and

eci = eci + c(yk+1)− c(xk) + 〈si
c, x

k − yk+1〉;

while aggregate errors for i ∈ Bagg are updated as follows:

εi = εi + c+(xk+1)− c+(xk) +
(
f(yk+1)− f(xk)

)+
+ 〈ŝi, xk − yk+1〉;

see [318; Lemma 3.2]. In the same work, the algorithm is shown to be con-
vergent, similarly to Theorems 10.14 and 10.15.

Bibliographical Comments Constrained nonsmooth problems are very
complex, only a few practical methods can be found in the literature.

Convex problems with “easy” constraints, such as bound or linear con-
straints, can be solved either by inserting the constraints directly into each
stabilized subproblem, or by projecting iterates onto the feasible set; see for
instance [135] and [211, 212]. For more general constraints, one possibility is
to solve an equivalent unconstrained problem with an exact penalty objective
function; see [209, 214]. This approach, however, presents some drawbacks
which are typical whenever a penalty function is employed. Specifically, es-
timating a suitable value of the penalty parameter is sometimes a delicate
task. Furthermore, if a large value of the parameter is required to guarantee
the exactness of a given penalty function, then numerical difficulties arise.

Other bundle-type methods for (11.13) that do not use penalization are
[252, 253] and [210; Chapter 5]. In these works, infeasible candidates are au-
tomatically declared “null steps”. The resulting sequence of serious steps is
then both feasible and monotone in f . Since serious steps include the starting
point, such methods require to compute a feasible point to start the algo-
rithm. This “phase I” general (nonsmooth) convex feasibility problem may
be as difficult to solve as (11.13) itself. As a result, the overall computational
burden of solving the problem may increase considerably. On the other hand,
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feasible methods can be useful in applications where problem function(s) may
not be defined everywhere outside of the feasible region.

Infeasible bundle methods are very rare. We can mention the “phase I-
phase II” modification of the feasible method in [210; Chapter 5.7] and the
constrained level bundle methods of [230]. In [230], successive approximations
of the exact improvement function hx̄ are used in the algorithm. Specifically,
in the expression

hx̄(y) = λf(y) + (1− λ)c(y)− λf(x̄) for some λ ∈ [0, 1],

the values of λ and of f(x̄) are estimated at each iteration. Those estimates
are used to define a certain gap function and an associated level parameter
`k for the QP. Like the unconstrained variant described in Example 10.5,
such methods are especially suitable for those problems where the optimal
value f(x̄) is either known or is easy to estimate. Otherwise, estimating the
optimal value is a delicate issue and inappropriately chosen values may lead
to infeasible quadratic programming subproblems.

Finally, the filter strategy [130] was recently proposed in [131] and [203]
as an alternative to the use of a penalty function in the framework of bun-
dle methods for solving (11.13). The method of [131] is based on solving
linear programming subproblems obtained by replacing the objective and
constraint functions by their respective cutting-planes models, subject to a
box-constrained trust region, like in Example 10.4. However, as stated, the
method of [131] does not allow for a compression mechanism. By contrast,
the method in [203] does use bundle compression, by applying the penalized
bundle method to the improvement function hk and using a filter criterion
to declare a candidate point a new stability center. Like smooth filter meth-
ods, both [131] and [203] are infeasible methods, but require a (feasibility)
restoration step to ensure convergence when the procedure fails to produce
a point acceptable by the filter criterion.

11.2.3 Bundle Methods for Generalized Equations

We have seen in Chapter 10, equations (10.22) and (10.23), that serious-step
iterations of the bundle method can be interpreted as an implementation of
the proximal point method. Similar ideas can be used to solve generalized
equations of the form 0 ∈ T (x), where T is a maximal monotone operator.
The relation comes from the fact that the subdifferential of a convex function
is a particular case of maximal monotone operator. Thus, problem (8.1) is
equivalent, via the optimality condition, to finding a zero of the maximal
monotone operator T = ∂f .

In order to make the link with bundle methods, recall that the general-
ized equation 0 ∈ T (x) can be solved applying the classical proximal point
method, [312]. This algorithm consists of solving a sequence of subproblems
of the following structure:
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Given xk , find xk+1 and sk+1 ∈ T (xk+1) such that 0 = sk+1+µk(xk+1−xk) .

For implementations, error terms need to be considered in subproblems. The
corresponding analysis was first done in [312]. However, to be convergent, this
inexact algorithm requires that asymptotically the subproblems are solved
exactly, in the sense that absolute errors should tend to zero (in fact, form a
convergent series). More recently, other forms of inexact proximal methods,
called “hybrid”, were considered in [337] ; see also [336] and [338]. In these
methods, subproblems also accept errors in the maximal monotone operator,
by means of an appropriate enlargement, introduced in [57] and denoted
by T ε. This enlargement plays the role of the smeared subdifferential, ∂εf ,
noting that for T = ∂f such enlargement is “big”: in [57] it is shown that
∂εf ⊆ ∂εf , where the inclusion can be strict for some functions.

The hybrid approximate extra-gradient method in [337] defines subprob-
lems and iterates as follows:

Given xk, find yk+1 and ŝk ∈ T ε̂k(yk+1) such that (11.17)
∥∥∥∥

1

µk
ŝk + yk+1 − xk

∥∥∥∥
2

+ 2
1

µk
ε̂k ≤ σ2

(∥∥∥∥
1

µk
ŝk

∥∥∥∥
2

+ ‖yk+1 − xk‖2
)

(11.18)

xk+1 = xk − 1

µk
ŝk , (11.19)

where σ ∈ [0, 1[ is a given parameter. In [338; Theorems 6 and 8] it is shown
that this method is globally convergent with linear rate, under the same as-
sumptions needed for exact proximal methods. Moreover, there is no need
of solving subproblems with more and more accuracy, in the sense that rela-
tive errors can be bounded away from zero (in fact, they can be fixed along
iterations).

When compared to a penalized bundle method applied to minimizing f ,
note that the update for xk+1 in (11.19) is the same as in (10.8), when-
ever yk+1 gives a descent step and, hence, pk = yk+1. Furthermore, using
Lemma 10.8 (iii) and defining

ε̂k := εk + f(yk+1)− f(xk) +
1

µk
‖ŝk‖2 (= f(yk+1)− ϕk(yk+1)) ,

we see that ŝk ∈ ∂ε̂k
f(yk+1) ⊆ ∂ ε̂kf(yk+1), so (11.17) holds.

We now relate condition (11.18) to the descent condition (10.1). By (10.8),
the first left hand side term in (11.18) is null, while the two right hand side

terms are both equal to σ2

µ2
k
‖ŝk‖2. Altogether, (11.18) can be re-written as

ε̂k ≤ σ2 1
µk
‖ŝk‖2 i.e., εk + f(yk+1)− f(xk) + 1

µk
‖ŝk‖2 ≤ σ2 1

µk
‖ŝk‖2 .

Rearranging terms, the right hand side inequality becomes
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f(xk)− f(yk+1) ≥ (1− σ2) 1
µk
‖ŝk‖2 + εk

= 2(1− σ2)
(

1
2µk
‖ŝk‖2 + εk

)
+ (2σ2 − 1)εk

= 2(1− σ2)δk+1 + (2σ2 − 1)εk .

Therefore, choosing σ ∈] 1√
2
, 1[ and letting m := 2(1 − σ2), the test (11.18)

would declare yk+1 a serious step when

f(xk)− f(yk+1) ≥ mδk+1 + (1−m)εk ,

a stronger condition than (10.1), used in penalized bundle methods. Such
relation is natural, since by working with the maximal monotone operator
T = ∂f instead of with f itself, important structural information is not
actually being used.

Bundle methods for maximal monotone operators are considered in [59]
and [317]. Since there is no longer a function to minimize, the concept of
model function disappears. Accordingly, the only black-box output is s ∈
T (x) for any given x. Hence, the bundle of past information consists of pairs
of the form (yi, si ∈ T (yi)) that are used to solve a QP, somewhat similar to
(10.9), of the form





min ‖∑i∈Bk
αis

i‖2
α ∈ ∆k

Bk = {i ≤ k : ‖yi − xk‖ ≤ ρk},

where ρk is a parameter of the algorithm. Candidates yk+1 are generated by
making a line-search along ŝk :=

∑
i∈Bk

ᾱis
i, where ᾱ is a solution to the

QP above. The output of the line-search is either a serious-step satisfying
〈sk+1, ŝk〉 > mmin{‖sk+1‖, ‖ŝk‖}, or a null-step. Note that the QP subprob-
lem is also close to the dual stabilization subproblem (10.13). We refer to
[317] for more details.



12 Computational Exercises

In order to get a better understanding of the different methods presented in
this NSO Part, we now give some computational exercises.

For initial experiments with optimization programs, it is a good idea
to use a numerical computing environment, such as Scilab [327], which is
freely downloadable, or Matlab [249]. Both scientific software packages are
well adapted for numerical computations: their ready-to-use functions can
be used as modules to easily build more complex algorithms. In particular,
Scilab optimization routines linpro and quapro, for linear and quadratic
programming respectively, are robust and reliable for small-scale problems.

Following the General Principles of Resolution stated in § 1.3 in the Gen-
eral Introduction of this book, the exercises below consider a separate coding
for the simulator and for the optimization algorithm.

12.1 Building Prototypical NSO Black Boxes

We start with some elementary calculations involving the test function
maxquad, to be used to test and compare various NSO algorithms.

12.1.1 The Function maxquad

Consider the function maxquad defined in page 153, at the end of § 10.3.3,
and denoted by f .

Exercise: Write the general form of its subdifferential, at an arbitrary point
x ∈ R

10. Check in particular the form of ∂f(x̄), where

x̄ =

0
BBBBBBBBBBBBBB@

−0.12635719028771
−0.03441290527305
−0.00686417677098

0.02631958976703
0.06733200924718

−0.27845349219516
0.07425434369432
0.13858219818536
0.08409149779995
0.03861740126733

1
CCCCCCCCCCCCCCA
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is the minimizer of f . To eliminate rounding errors, consider that f(x̄) =
−0.84140 to determine the set of active indices J(x̄), as introduced in § 8.3.1.

Exercise: Write a black box simulator for maxquad, following the general
abstract structure

[f,s,ind]=name of the function(x), (12.1)

where

– x is an input parameter, having the given point x ∈ R
10, and

– f, s, ind are output parameters, containing, respectively, the value of
the function at x; a subgradient; and a flag that is 0 if calculations were
performed correctly. For maxquad, ind is always set to 0.

For some functions, it may be useful to add an additional input parameter,
acting as a flag that makes the simulator produce different output (for exam-
ple, only compute the function value, but not a subgradient, or visceversa).

To check correctness of your coding, see if f(x̄) is approximately equal to
−0.8414080.

Exercise: Write a program generating the data needed to compute maxquad
(i.e., (Aj , bj), for j = 1, . . . , 5) that calls the simulator for a given value of
x and makes a 2D graph for f near x. To make a 2D graph for this 10-
dimensional function fix, for example, variables 3 to 10 and display the level
curves of f when varying the first 2 components in a neighbourhood of x.

Compare your graph with the cover figure when x = x̄.

12.1.2 The Function maxanal

A possibility to deal with the nondifferentiability of maxquad is to smooth
the function, for example by using a logarithmic barrier (cf. Chapter 20 in
Part IV). More precisely, start by rewriting the maximum operation defining
f as a convex sum:

f(x) =
5∑

j=1

αjfj(x) ,

5∑

j=1

αj = 1 , with αj ≥ 0 for all j,

and recall that nonsmoothness for f comes from multiple active indices at
x, i.e., from having nonzero αj for more than one index j. A logarithmic
penalization of these convex factors gives the regularized function

Fµ(x) := max





5∑

j=1

αjfj(x) + µ

5∑

j=1

log(αj) :
∑

αj = 1
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where µ is a given positive parameter. As µ ↓ 0, the regularization satisfies
that Fµ(x) ↑ f(x) for any given x. However, small values of µ, say µ ≤ 0.001,
give stiff yet differentiable problems, with highly non symmetric level sets
near x̄.

The function Fµ, called maxanal in the NSO literature, is a simple exam-
ple of a common fact in NSO, already present in § 11.1. Namely, to evaluate
the function f and a subgradient at some point x, the black box needs to
solve an optimization problem parameterized by x.

Exercise: Write a black box simulator for maxanal, following the general
abstract structure given in (12.1). There are various possibilities for solving
the optimization problem involved in the definition of Fµ(x), including us-
ing optimization routines from Matlab and Scilab. Beware that, since the
optimization problem becomes ill conditioned as µ goes to 0, a straightfor-
ward application of a built-in function may not always be successful. For this
reason, maxanal output values of the flag ind may be non null, to indicate
failure in the computation of f or s.

Exercise: Write a program generating the data needed to compute max-
anal that calls the simulator for a given value of x and makes a 2D graph
for f near x. Compare the level curves of maxquad and maxanal for x = x̄
for different values of µ.

12.2 Implementation of Some NSO Methods

We now pass to the implementation of some of the algorithms presented in
Part II. The implementation will be general purpose, in the sense that it
can be used to minimize any function with black box simulator coded with
a calling list like in (12.1).

The following general structure gives a list of typical parameters of an
unconstrained minimization algorithm:

[xf,ff,sf,nbb,reason]=name of NSO algorithm(simul,

x0,f0,s0,maxbb,tolopt, printlev).
(12.2)

Like in (12.1), right hand side arguments are input parameters while left
hand side ones is output data, produced by the algorithm.

More precisely,

– simul is a string with the name of the function to minimize, coded in a
black box form, according to (12.1).

– x0, f0, s0 are the initial black box values; maxbb the maximum allowed
number of calls to the black box; tolopt the stopping tolerance; and
printlev is a flag used to determine how much information is to be printed
along the iterative process (ranging from no print out to printing informa-
tion at every iteration).
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– xf, ff, sf correspond to the final black box values, found after having
called the black box nbb times. The flag reason indicates different exit
modes (success, failure, maximum of iterations reached, etc).

The list above is just meant to serve as an example, and is far from being
exhaustive.

Exercise: Write a code for the subgradient method (Algorithm 9.2) with-
out using a line-search, but including instead the possibility of using dif-
ferent stepsizes, according to some input parameter. For example, try dif-
ferent values of constant stepsize, then take the stepsize tk = 1/k, and
tk = 2m(f(xk)− f̄)/‖s(xk)‖ with m ∈]0, 1[, to be used with those simulators
for which either the optimal value f̄ is known or it can be well estimated.

Exercise: Write a code for the cutting planes method (Algorithm 9.4). The
set S therein can be defined by a box:

S :=
{
x ∈ R

n : xlow ≤ x ≤ xup

}

where the vectors xlow and xup are additional input parameters in (12.2).

Exercise: Write a first code for the penalized bundle method (Algo-
rithm 10.1 with subproblem (10.5)) according to the following specifications:

– matrices Mk are set to the identity matrix for all k;

– constant penalization parameter µk;

– yk+1 of (10.5) is computed by the dual problem (10.8)&(10.9);

– split stopping test (10.14);

– the model ϕk of (10.7) is just the cutting-planes model f̌k from (9.6) (there
is no aggregation).

12.3 Running the Codes

Exercise: As a first try, write a black box simulator for the function ‖x‖2,
where x ∈ R

n and n is arbitrary. Run your NSO codes playing with different
values of the input parameters. In particular, for the bundle code, analyze how
different values for the stopping tolerance and the penalization parameter µk

modify the output in this very simple case.

Exercise: Use your three implemented NSO methods to minimize maxquad,
taking as starting point x a vector with all components equal to one. Repeat
your runs with starting point x= 0 ∈ R

10.

Exercise: Repeat yours runs, using now maxanal, with different values
for the barrier µ (try µ ∈ {0.00001, 0.0001, 0.001, 0.01, 0.1, 1}). Comparing
maxquad optimal value to the optimal value in the smoothened problem
gives an idea of how small µ is, i.e. how much maxquad is perturbed.
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12.4 Improving the Bundle Implementation

Exercise: Consider the following variants for your bundle code:

– Penalization parameter updated as suggested in § 10.3.3

– Bundle management that keeps only active indices at each iteration.

– Compression sub-Algorithm 10.11, allowing both for selection and aggre-
gation of the bundle.

Compare the effectiveness of each variant on the different black boxes. In par-
ticular, analyze the quality of the output when the bundle is fully compressed
at each iteration (npmax = 2).

Exercise: Since maxanal is a smooth function, it can be minimized by using
some smooth unconstrained algorithm of Part I. For example, try using BFGS
method with Wolfe’s line-search (§§ 4.4,3.4) for different values of µ. Compare
the obtained output with the one given by the simple bundle method in the
previous exercise, both in terms of precision and number of black box calls
required to stop.

12.5 Decomposition Application

We consider an energy problem along the lines of § 1.2.4. More precisely, we
aim at determining the optimal management of a set of I of thermal units
(a power plant may be composed of several units, or generators) for the next
2 days. The planning horizon is discretized in half hours, i.e, the stepsize
t ranges in {1, . . . , T}, with T = 48 half-hours. Let d1, . . . , dT denote the
(known) demand, and let pi

t denote the energy produced by the production
unit i ∈ I during the period t. In addition, to determine when the ith plant
is to be switched on or off, we define binary variables

ui
t =

{
1 if unit i is on at time step t
0 otherwise.

A simple formulation of the well known unit-commitment problem in energy
optimization consists in solving the optimization problem





min
u,p

∑

i∈I

ci(pi, ui)

∑

i∈I

pi
t = dt for all t

pi
lowu

i
t ≤ pi

t ≤ pi
upu

i
t for all i, t

ui
t ∈ {0, 1} for all i, t.

(12.3)

The two last constraints define the technological constraint set Di defined in
(1.8) for each unit. For simplicity, we consider energy bounds pi

low and pi
up



188 12 Computational Exercises

that do not vary with t; note that such capacity bounds will only be required if
the unit is switched on (ui

t = 1). As usual in this type of problems, production
costs are separable along time:

ci(pi, ui) =

T∑

t=1

cit(p
i
t, u

i
t) for all i ∈ I ;

in the expression above, the dependence on ui
t refers to eventual start-up or

shut-down costs. In a general abstract form,

cit(p
i
t, u

i
t) = αi

tu
i
t + βi

t(1− ui
t) + γi

tp
i
t + δi

tp
i
t

2

where the values (αi
t, β

i
t , γ

i
t , δ

i
t) are given apriori.

Exercise: Write the dual problem that results from dualizing demand con-
straints in (12.3). Show that the negative of the dual function has the form

f(λ) := λ>d+

T∑

t=1

∑

i∈I

f i
t (λt)

where each function f i
t is the optimal value of an optimization problem:

f i
t (λt) :=





minui
t,p

i
t
−ci(pi, ui)− λtp

i
t

pi
lowu

i
t ≤ pi

t ≤ pi
upu

i
t

ui
t ∈ {0, 1}.

(12.4)

Exercise: Write a black box simulator for the function f above, according
to the structure in (12.1). Even though each local problem (12.4) has mixed
0-1 variables, the simplicity of its formulation allows for a direct solution,
by exploring the only two possibilities for the 0-1 variable, i.e., ui

t = 0 and
ui

t = 1.

Exercise: Apply all the NSO methods implemented in § 12.2 to solve the
dual problem. To compare performances, check the final dual and primal
values obtained, as well as the total number of calls to the black box required
by each method to stop. Check also to which extent the dualized constraint
of demand is violated at the primal points pi

t(λ
final). Try your code with

different number of units (cardinality of I varying between 2 and 300, for
example) and different values of the input data, such as capacity bounds
plow and pup, as well as cost parameters α, β, γ, δ. In particular, consider
setting δi

t = 0 for all i, t. Then compare with the same configuration, but
setting a small value for the quadratic cost, say δi

t = 0.0001. What do you
observe?
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In this part, we introduce and study numerical techniques based on New-
ton’s method to solve nonlinear optimization problems: objective function
and functional constraints can all be nonlinear, possibly nonconvex. Such
methods, in the form called sequential quadratic programming (SQP), date
back at least to R.B. Wilson’s thesis in 1963 [359], but were mainly popular-
ized in the mid-seventies with the appearance of their quasi-Newton versions
and their globalization, see U.M. Garcia Palomares and O.L. Mangasarian
[280], S.P. Han [184, 185], M.J.D. Powell [291, 292, 293], and the references
therein; let us also mention the earlier contributions by B.N. Pshenichnyj
[300] and S.M. Robinson [306, 307]. Ongoing research on SQP deals with the
efficient use of second derivatives, particularly for nonconvex or large-scale
problems, the use of trust regions [86], the treatment of singular or nearly
singular situations and of equilibrium constraints [242], globalization by fil-
ters, etc. SQP also appears as an auxiliary tool in interior point methods for
nonlinear programming [65].

Like Newton’s algorithm in unconstrained optimization, SQP is more a
methodology than a single algorithm. Here, the basic idea is to linearize the
optimality conditions of the problem and to express the resulting linear sys-
tem in a form suitable for calculation. The interest of linearization is that it
provides algorithms with fast local convergence. The linear system is made
up of equalities and inequalities, and is viewed as the optimality conditions of
a quadratic program. Thus, SQP transforms a nonlinear optimization prob-
lem into a sequence of quadratic optimization problems (quadratic objective,
linear equality and inequality constraints), which are simpler to solve. This
process justifies the name of the SQP family of algorithms. The approach is
attractive because efficient algorithms are available to solve quadratic prob-
lems: active-set methods [160, 128], augmented Lagrangian techniques [98],
and interior-point methods (for the last, see part IV of the present volume).

The above-mentioned principle alone is not sufficient to derive an imple-
mentable algorithm. In fact, one must specify how to solve the quadratic
program, how to deal with its possible inconsistency, how to cope with a
first iterate that is far from a solution (globalization of the method), how the
method can be used without computing second derivatives (quasi-Newton
versions), how to take advantage of the negative curvature directions, etc.
These questions have several answers, whose combinations result in various
algorithms, more or less adapted to a particular situation. There is little to
be gained from our describing each of these algorithms. Rather, our aim is
to present the concepts that form the building blocks of these methods and
to show why they are relevant. A good understanding of these tools should
allow the reader to adapt the algorithm to a particular problem or to choose
the right options of a solver, in order to make it more efficient.

The present review of Newton-like methods for constrained optimization
is probably more analysis- than practice-oriented. The aim in this short ac-
count is to make an inventory of the main techniques that are continuously
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used to analyze these algorithms. In particular, we state and prove precise
results on their properties. We also introduce and explain their structure in
some detail. However, theory does not cover all aspects of an algorithm. We
therefore strive to describe some heuristics that are important for efficient im-
plementations. In fact, it is no exaggeration to say that a method is primarily
judged good on the basis of its numerical efficiency. The analysis often comes
afterwards to try to explain such a good behavior. Finally, let us mention
that all the mathematical concepts used in the present text are simple. In
particular, even though we use nonsmooth merit functions, very few notions
of nonsmooth analysis are employed, so as to make the text accessible to
many.

This part is organized as follows. We start in chapter 13 by recalling
some theory on constrained optimization (optimality conditions, constraint
qualification, projection onto a convex set, etc.) and Newton’s method for
nonlinear equations and unconstrained minimization. This chapter ends with
the presentation of a numerical project that will go with us along the next
chapters of this part (in §§ 14.7, 15.4, 17.4, and 18.4). This project will give
us the opportunity to discuss fine points of the implementation of some of
the proposed algorithms and to illustrate their behavior in various situations;
it also shows, incidentally, that it is relatively easy to write one’s own SQP
code, provided a solver of quadratic optimization problems is available.

After these preliminaries come two chapters dealing with local methods,
whose convergence is ensured if the first iterate is sufficiently close to a solu-
tion. Chapter 14 is devoted to problems with only equality constraints. Here
we are in the familiar domain of Analysis, where the objects involved (func-
tions and feasible sets) are smooth. The tools are classical as well: mainly
linear algebra and differential calculus. A few concepts of differential ge-
ometry may be useful to interpret the algorithms. Chapter 15 considers the
case where equalities and inequalities are present. Introducing inequality con-
straints results in an important additional difficulty, due to intrinsic combi-
natorics in the problem. This comes from the fact that one does not know
a priori which inequality constraints are active at a solution, i.e., those that
vanish at a solution. If they were known, the algorithms from chapter 14
would apply. The algorithms themselves must therefore determine the set of
active constraints, among 2mI possibilities (mI being the number of inequal-
ity constraints). Combinatorics is a serious difficulty for algorithms, but SQP
copes with it by gracefully forwarding it to a quadratic subproblem, where
it is easier to manage. This also implies a change of style in the analysis of
the problem. Indeed, various sets of indices must be considered (active or
inactive, weakly or strongly active), with an accuracy that is not obtained
immediately.

The concept of exact penalty is central to force convergence of algorithms,
independently of the initial iterate (a concept known as “globalization”); this
is studied in chapter 16. First, the exactness properties of the Lagrangian and
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augmented Lagrangian can be analyzed thanks to their smoothness. These
results are then used to obtain the exactness of a nondifferentiable merit
function. In chapter 17, it is shown how this latter function can be used
and how the local algorithms can be modified to obtain convergence of the
generated iterates from a starting point that can be far from a solution. The
transition from globally convergent algorithms to algorithms with rapid local
convergence is also studied in that chapter.

In the quasi-Newton versions of the algorithms, the matrices containing
second derivatives are replaced by matrices updated with adequate formulae;
this is the subject of chapter 18.

The Problem to Solve

This text presents efficient algorithms for minimizing a real-valued function
f : Ω → R, defined on an open set Ω in R

n, in the presence of functional con-
straints on the parameters x = (x1, . . . , xn) to optimize. Equality constraints
ci(x) = 0, for i ∈ E, as well as inequality constraints ci(x) ≤ 0, for i ∈ I ,
can be present. It is supposed that the index sets E (for equalities) and I
(for inequalities) are finite, having respectively mE and mI elements. These
constraints can also be written

cE(x) = 0 and cI(x) ≤ 0.

Vector inequalities, such as cI(x) ≤ 0 above, are to be understood com-
ponentwise. Hence cI(x) ≤ 0 means that all the components of the vector
cI(x) ∈ R

mI must be nonpositive. The functions f and c need not be convex.
We therefore look for a point x∗ ∈ Ω that minimizes f on the feasible set

X = {x ∈ Ω : cE(x) = 0, cI(x) ≤ 0}.

A point in X is said to be feasible. The problem is written in a condensed
way as follows:

(PEI )





minx f(x)
cE(x) = 0
cI(x) ≤ 0
x ∈ Ω.

The open set Ω appearing in (PEI ) cannot be used to express general
constraints, since a solution cannot belong to its boundary. It is simply the
domain of definition of the functions f , cE , and cI . It is also the set where
some useful properties are satisfied. For example, we always suppose that cE

is a submersion on Ω, i.e., that its Jacobian matrix at x ∈ Ω,

AE(x) := ∇cE(x)>,

of dimension mE × n (the rows of AE(x) contain the transposed gradients
∇ci(x)>, i ∈ E, for the Euclidean scalar product), is surjective (or onto), for
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any x ∈ Ω. Also, f and c are assumed to be smooth on Ω, for example of
class C2 (twice continuously differentiable).

We recall from definition 2.2 that problem (PEI ) is said to be convex
when Ω is convex, f and the components of cI are convex and cE is affine.
In this case, the feasible set X is convex.

Notation

We denote by
m = mE +mI

the total number of functional constraints. It will be often convenient to
assume that E and I form a partition of {1, . . . ,m}:

E ∪ I = {1, . . . ,m} and E ∩ I = ∅.

Then, for v ∈ R
m, we denote by vE the mE-uple made up of the components

vi of v, with indices i ∈ E; likewise for vI . The constraints cE and cI are
then considered to be obtained from a single function c : Ω → R

m, whose
components indexed in E [resp. I ] form cE [resp. cI ].

With a vector v ∈ R
m, one associates the vector v# ∈ R

m, defined as
follows:

(v#)i =

{
vi if i ∈ E
v+

i if i ∈ I,
where v+

i = max(0, vi). With this notation, (PEI) is concisely written as:





minx f(x)
c(x)# = 0
x ∈ Ω.

Indeed, c(x)# = 0 if and only if cE(x) = 0 and cI(x) ≤ 0.
Let x ∈ Ω. If ci(x) = 0, the constraint i is said to be active at x. We

denote by
I0(x) = {i ∈ I : ci(x) = 0}

the set of indices of inequality constraints that are active at x ∈ Ω.
The Euclidean or `2 norm is denoted by ‖ · ‖2. We use the same notation

for the associated matrix norm.

Codes

A number of pieces of software based on the algorithmic techniques presented
in this part have been written. We give a few words on some of them with a
vocabulary that will be clear only after having read part III of the book.
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• VF02AD by Powell [293; 1978] is part of the Harwell library. It uses
Fletcher’s VE02AD code (also part of the Harwell library) for solving
the osculating quadratic problems [125].

• NLPQL by Schittkowski [323; 1985-86] can be found in the IMSL library.
The osculating quadratic problems are solved by the dual method of Gold-
farb and Idnani [165] with the modification proposed by Powell [296] (QL
code).

• NPSOL by Gill, Murray, Saunders, and Wright [158; 1986] is available in
the NAG library.

• FSQP by Lawrence, Tits, and Zhou [282, 222, 223, 224; 1993-2001] uses
an SQP algorithm that evaluates the objective function only at points
satisfying the inequality constraints. This nice property can be important
for certain classes of applications.

• SPRNLP by Betts and Frank [29; 1994] can use second derivatives (if
not positive definite, the Hessian of the Lagrangian is modified using
a Levenberg parameter) and exploits sparsity information. It has been
used to solve many optimal control problems after a direct transcription
discretization.

• FAIPA by Herskovits et al. [189, 190; 1995-1998] also forces the iterates
to be strictly feasible with respect to the inequality constraints. Inter-
estingly, the algorithm requires to solve only linear systems of equations,
no quadratic optimization problems [283]. This approach is connected to
interior point algorithms.

• DONLP2 by Spellucci [342; 1998] is available on Netlib. It uses an active
set technique on the nonlinear problem, so that the osculating quadratic
problems have only equality constraints.

• SNOPT by Gill, Murray, and Saunders [156; 2002] is designed for sparse
large-scale problems. The Hessian of the Lagrangian is approximated by
limited memory BFGS updates (§ 6.3). The quadratic programs are solved
approximately by an active set method. The globalization is done by line-
search on an augmented Lagrangian merit function.

• SQPAL by Delbos, Gilbert, Glowinski, and Sinoquet [99; 2006] can solve
large-scale problems since it uses an augmented Lagrangian approach for
solving the quadratic problems [98], a method that has the property of
identifying the active constraints in a finite number of iterations.

Notes

Surveys on Newton’s method for constrained optimization have been written
by Bertsekas [26; 1982], Powell [295; 1986], Fletcher [128; 1987], Gill, Murray,
Saunders, and Wright [159; 1989], Spellucci [340; 1993], Boggs and Tolle [35;
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1995], Polak [285; 1997], Sargent [320; 1997], Nocedal and Wright [277; 1999,
Chapter 18], Conn, Gould, and Toint [86; 2000, Chapter 15], and Gould,
Orban, and Toint [178; 2005]. See also [242] for problems with equilibrium
constraints and [28, 325] for applications to optimal control problems.
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13 Background

Before entering the subject itself, we recall some basic concepts. For further
details, the reader is referred to the books by Fletcher [128; 1987], Ciarlet [79;
1988], Gauvin [141, 142; 1992-95], Hiriart-Urruty and Lemaréchal [195; 1993],
and Bonnans and Shapiro [50; 2000]. See also [150] for an online review (in
French).

13.1 Differential Calculus

A function is said to be of class Ck integer k ≥ 0, if it is k times continuously
differentiable. A function f is said to be of class Ck,1it is of class Ck and if its
kth derivative f (k) is Lipschitz continuous: for some norm ‖ · ‖ and constant
L > 0, and for any x and y, one has

‖f (k)(x) − f (k)(y)‖ ≤ L‖x− y‖.

We shall frequently expand functions, i.e., give a polynomial approxima-
tion of h 7→ f(x+h), valid for more or less small h. This is due to the nature of
our algorithms, obtained by linearizing optimality conditions. We give below
some useful formulae for controlling the precision of these expansions.

Consider first the case of a scalar-valued function f : Ω → R defined
on an open set Ω of R

n. Let x ∈ Ω and h ∈ R
n be such that the segment

[x, x + h] = {(1−α)x + α(x + h) : α ∈ [0, 1]} lies in Ω. Suppose that f is
(k−1) times differentiable on Ω (k ≥ 1) and k times differentiable on the
open segment ]x, x+ h[ = {(1−α)x+α(x+h) : α ∈ ]0, 1[}. Then there exists
θ ∈ ]0, 1[ such that

f(x+ h) =

k−1∑

i=0

1

i!
f (i)(x) · hi +

1

k!
f (k)(x+ θh) · hk.

If f : Ω → R
m is vector-valued (m > 1), this expansion may not hold.

Under the same conditions as above, however, we can write

∥∥∥∥∥f(x+ h)−
k−1∑

i=0

1

i!
f (i)(x) · hi

∥∥∥∥∥ ≤
(

sup
z∈]x,x+h[

‖f (k)(z)‖
)
‖h‖k
k!

.
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Now if f : Ω → R
m is only (k−1) times differentiable on Ω and k times

differentiable at x, then

f(x+ h) =

k∑

i=0

1

i!
f (i)(x) · hi + o(‖h‖k).

If some more smoothness is assumed on f , the remainder term can be
expressed in integral form. More precisely, if f : Ω → R

m is of class Ck on Ω
and if the segment [x, x+ h] lies entirely in Ω, we have the formula:

f(x+ h) =

k−1∑

i=0

1

i!
f (i)(x) · hi +

∫ 1

0

(1− t)k−1

(k−1)!
f (k)(x+ th) · hk dt.

As a weakened form of differentiability, we say that f : Ω → R
m has a

directional derivative at x in the direction h if the limit exists in the following
expression:

f ′(x;h) := lim
t→0+

f(x+ th)− f(x)

t
.

The next lemma shows that the composition of functions having directional
derivatives has directional derivatives too, providing the second function is
Lipschitz continuous.

Lemma 13.1 (directional differentiability of a composition). Suppose
that ϕ : R

n → R
m has a directional derivative at x in the direction h ∈ R

n

and that ψ : R
m → R

p is Lipschitz continuous in a neighborhood of ϕ(x) and
has a directional derivative at ϕ(x) in the direction ϕ′(x;h). Then (ψ ◦ ϕ)
has a directional derivative at x in the direction h and there holds

(ψ ◦ ϕ)′(x;h) = ψ′(ϕ(x);ϕ′(x;h)).

Proof. For t→ 0+, use successively the directional differentiability of ϕ, the
Lipschitz continuity, and the directional differentiability of ψ:

(ψ ◦ ϕ)(x + th) = ψ(ϕ(x) + tϕ′(x;h) + o(t))

= ψ(ϕ(x) + tϕ′(x;h)) + o(t)

= (ψ ◦ ϕ)(x) + tψ′(ϕ(x);ϕ′(x;h)) + o(t).

The result follows.

We shall also use the following result.

Lemma 13.2 (differentiability of a product). If g : R
n → R

m is contin-
uous at x ∈ R

n and α : R
n → R is Fréchet differentiable at x with α(x) = 0,

then f : R
n → R

m defined by f(x) = α(x)g(x) is Fréchet differentiable at x
and for h ∈ R

n: f ′(x) · h = (α′(x) · h)g(x).
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Proof. Let h→ 0. By the assumptions α(x+h) = α′(x) ·h+o(‖h‖) = O(‖h‖)
and g(x+ h) = g(x) + o(1). Therefore:

f(x+ h)− f(x)− (α′(x) · h)g(x) = α(x + h)g(x+ h)− (α′(x) · h)g(x)
= (α(x+ h)− α′(x) · h) g(x) + o(‖h‖)
= o(‖h‖).

13.2 Existence and Uniqueness of Solutions

Consider the optimization problem

(P )

{
minx f(x)
x ∈ X,

where X is a subset of R
n (here unspecified).

Recall that a global solution to problem (P ) is a point x∗ ∈ X minimiz-
ing f on the feasible set X :

f(x∗) ≤ f(x), for all x ∈ X.

A local solution to (P ) is a feasible point x∗, minimizing f locally on the
feasible set X : there exists ε > 0 such that

f(x∗) ≤ f(x), for all x ∈ B(x∗, ε) ∩X.

Here B(x∗, ε) is the open ball centered at x∗, with radius ε. We say that x∗ is
a strict local solution, if the above is a strict inequality when x 6= x∗. Observe
that a global solution is also a local solution. The algorithms to come are not
aimed at finding global solutions. Hence, the word solution will hereafter be
used for local solutions to (P ).

Problem (P ) has a solution if f is continuous and X is compact (closed
and bounded) nonempty. The assumption “X compact” can be replaced by
“X closed” (nonempty) if f has the property of tending to infinity at infinity
on X , i.e., if:

lim
x∈X

‖x‖→∞

f(x) = +∞.

Besides, this problem has at most one solution if f is strictly convex and X
is convex.
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13.3 First-Order Optimality Conditions

Let x∗ be a local solution to (PEI ). It is known that, if f and c are Gâteaux
differentiable at x∗ and if the constraints are qualified at x∗ (see below),
then there exists λ∗ ∈ R

m such that the following Karush, Kuhn, Tucker
conditions (KKT) hold:

(KKT)





(a) ∇f(x∗) +A(x∗)>λ∗ = 0
(b) cE(x∗) = 0, cI(x∗) ≤ 0
(c) (λ∗)I ≥ 0
(d) (λ∗)>I cI(x∗) = 0.

(13.1)

We use the notation ∇ for a gradient with respect to the Euclidean scalar
product (vector of partial derivatives). The above optimality conditions are
called “of first-order”, for they only involve first-order derivatives of f and c.
They are continually used. Some comments on this optimality system will
help the reader to memorize it.

Identity (a) is the optimality equation itself. We have used the notation
A(x∗) for the m × n Jacobian of the constraints at x∗: A(x) = ∇c(x)>, so
that its (i, j)th element is the partial derivative ∂ci/∂xj evaluated at x. This
equation can also be written

∇x`(x∗, λ∗) = 0,

where ` is the Lagrangian of the problem:

`(x, λ) = f(x) + λ>c(x). (13.2)

The vector λ∗ is called the Lagrange multiplier. The name multiplier comes
from the fact that it multiplies the constraint vector in the Lagrangian. The
vector has as many components as there are constraints. In (b), we recognize
feasibility of x∗. Conditions (c) and (d) are only related to inequality con-
straints. By (c), the corresponding multipliers have a definite sign, depending
on how (PEI ) is formulated. Here we have a “min”, constraints cI are “neg-
ative”, equation (a) has a “+” sign, as well as the Lagrangian `. Identity
(d) is called complementarity conditions. As (λ∗)I ≥ 0 and cI(x∗) ≤ 0, this
amounts to writing

(λ∗)ici(x∗) = 0, for all i ∈ I.

Said otherwise, the multipliers corresponding to inactive constraints are zero:

ci(x∗) < 0 =⇒ (λ∗)i = 0.

This comes from the fact that (13.1) expresses stationarity of x∗, which is
a local property: if ci(x∗) < 0, the constraint ci must not appear in (13.1)



13.3 First-Order Optimality Conditions 201

because a small perturbation of this constraint does not affect stationarity
of x∗. In some cases, we have the equivalence

ci(x∗) < 0 ⇐⇒ (λ∗)i = 0. (13.3)

We then say that strict complementarity holds.
A pair (x∗, λ∗) satisfying (KKT) is called a primal-dual solution to (PEI),

and x∗ is said to be stationary. Given a primal-dual solution (x∗, λ∗), we use
the notation

I0
∗ = I0(x∗) = {i ∈ I : ci(x∗) = 0},

I0+
∗ = {i ∈ I0

∗ : (λ∗)i > 0},
I00
∗ = {i ∈ I0

∗ : (λ∗)i = 0}.

Constraints with indices i ∈ I0+
∗ are said to be strongly active and those

with indices i ∈ I00
∗ are said to be weakly active. The latter, though active

(ci(x∗) = 0), can be removed from the problem without affecting stationarity
of x∗ (since (λ∗)i = 0).

Constraint Qualification

As mentioned above, existence of a multiplier λ∗ ∈ R
m such that (KKT)

holds, is ensured when the constraints are qualified at x∗. The aim of the
present subsection is not to give this concept a precise meaning. We shall
therefore just give sufficient qualification conditions, which we shall call some-
what abusively constraint qualification.

Thus, we say that the constraints are qualified at x when one of the
following conditions is satisfied.

(A-CQ) cE∪I0(x) is affine in a neighborhood of x.

(S-CQ) Slater’s Qualification [334; 1950]:

• cE is affine with c′E surjective,
• the components of cI0(x) are convex,
• there exists a point x̂ ∈ X such that cI0(x)(x̂) < 0.

(LI-CQ) The gradients of the active constraints {∇ci(x) : i ∈ E ∪ I0(x)}
are linearly independent.

(MF-CQ) Mangasarian-Fromovitz Qualification [246; 1967]: if

∑

i∈E∪I0(x)

αi∇ci(x) = 0, with αi ≥ 0 for i ∈ I0(x),

then αi = 0 for all i ∈ E ∪ I0(x).
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Observe that, if the constraint qualification condition (LI-CQ) is satisfied,
there is at most one multiplier λ∗ satisfying the first-order optimality condi-
tions (KKT) for a given primal solution x∗. Indeed, from (KKT)d, we have
(λ∗)i = 0 if ci(x∗) < 0. For i ∈ E∪ I0

∗ , (KKT)a and (LI-CQ) give uniqueness.
Observe also that the Mangasarian-Fromovitz condition is weaker (i.e.,

satisfied more often) than (LI-CQ). It can be shown to be equivalent to

∀v ∈ R
m, ∃ d ∈ R

n : c′E(x) · d = vE and c′I0(x)(x) · d ≤ vI0(x). (13.4)

In plain words, it is a kind of “weak-surjectivity” of the Jacobian of the active
constraints; while (LI-CQ) expresses that this same operator is surjective.
Recall that if (x∗, λ∗) satisfies (KKT), the set of Lagrange multipliers λ∗
associated with x∗ is bounded if and only if (MF-CQ) holds [140, 141].

13.4 Second-Order Optimality Conditions

We recall that a subset C of R
n is a cone when αC ⊂ C, for all α > 0. Said

otherwise, αx ∈ C whenever x ∈ C and α > 0.
Let x∗ be a point in the feasible set X = {x ∈ Ω : cE(x) = 0, cI(x) ≤ 0}

of problem (PEI). The critical cone C∗ at x∗ associated with problem (PEI )
is defined by

C∗ = {d ∈ R
n : c′E(x∗) · d = 0, c′I0

∗

(x∗) · d ≤ 0, f ′(x∗) · d ≤ 0}. (13.5)

The elements of C∗ are called the critical directions. If (x∗, λ∗) is a primal-
dual solution to (PEI ), C∗ can also be written

C∗ = {d ∈ R
n : c′

E∪I0+
∗

(x∗) · d = 0, c′I00
∗

(x∗) · d ≤ 0}. (13.6)

When the strict complementarity conditions (13.3) hold, I00
∗ = ∅ and the

critical cone becomes the null space of the Jacobian of the active constraints:

{d ∈ R
n : c′E∪I0

∗

(x∗) · d = 0} = N
(
AE∪I0

∗
(x∗)

)
.

We can now state second-order necessary conditions (theorem 13.3, NC2)
and second-order sufficient conditions (theorem 13.4, SC2) of optimality.

Theorem 13.3 (NC2). Let x∗ be a local solution to (PEI ). Suppose that f
and cE∪I0

∗
are of class C2 in a neighborhood of x∗ and that cI\I0

∗
is continuous

at x∗. Suppose also that the Mangasarian-Fromovitz constraint qualification
(MF-CQ) holds at x∗. Then the set Λ∗ of Lagrange multipliers λ∗ associated
with x∗ such that conditions (KKT) hold is nonempty and

∀d ∈ C∗, ∃λ∗ ∈ Λ∗ : d>∇2
xx`(x∗, λ∗)d ≥ 0. (13.7)
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When the Mangasarian-Fromovitz constraint qualification (MF-CQ) holds
at x∗, the set Λ∗ of Lagrange multipliers associated with x∗ is nonempty and
compact, but this set is not necessarily reduced to a singleton. Therefore, the
multiplier λ∗ that gives the nonnegativity of d>∇2

xx`(x∗, λ∗)d in (13.7) may
depend on d ∈ C∗.

Sufficient conditions of optimality do not include a constraint qualifica-
tion.

Theorem 13.4 (SC2). Suppose f and cE∪I0
∗

are differentiable in a neigh-
borhood of x∗ ∈ Ω and twice differentiable at x∗. Suppose also that the set
Λ∗ of Lagrange multipliers λ∗ such that conditions (KKT) hold is nonempty
and that

∀d ∈ C∗\{0}, ∃λ∗ ∈ Λ∗ : d>∇2
xx`(x∗, λ∗)d > 0. (13.8)

Then x∗ is a strict local minimum of (PEI ).

Condition (13.8) in theorem 13.4 is sometimes called the weak second order
sufficient condition of optimality. In some cases, a stronger form of (13.8)
is satisfied, in which a fixed λ∗ can be chosen independently of the critical
direction:

∃λ∗ ∈ Λ∗, ∀d ∈ C∗\{0}, d>∇2
xx`(x∗, λ∗)d > 0. (13.9)

Condition (13.9) will be called the semi-strong second order sufficient con-
dition of optimality. Finally, it is said that a solution x∗ satisfies the strong
second order sufficient condition of optimality if λ∗ can be arbitrary in Λ∗:

∀λ∗ ∈ Λ∗, ∀d ∈ C∗\{0}, d>∇2
xx`(x∗, λ∗)d > 0. (13.10)

When there is a unique Lagrange multiplier λ∗ associated with x∗ (for ex-
ample because (LI-CQ) or the Kyparisis condition [220] holds), then (13.8),
(13.9), and (13.10) are all equivalent.

We call strong solution to (PEI ) a pair (x∗, λ∗) satisfying the sufficient
conditions of optimality stated in theorem 13.4 with one of the conditions
(13.8), (13.9), or (13.10).

13.5 Speed of Convergence

Let {uk}k≥1 be a sequence in a normed space, converging to 0; and let
{αk}k≥1 be a sequence of positive numbers converging to 0 when k →∞. We
write uk = O(αk), and we say that uk is big O of αk, if there is a constant C
such that ‖uk‖ ≤ Cαk for all k ≥ 1. We write uk = o(αk), and we say that uk

is little o of αk, if for all ε > 0 there exists an index kε such that ‖uk‖ ≤ εαk

for all k ≥ kε. If {u′k}k≥1 is another sequence of points converging 0, we write
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uk ∼ u′k, (13.11)

and we say that {uk} and {u′k} are two equivalent sequences if uk = O(‖u′k‖)
and u′k = O(‖uk‖).

Let {xk} converge to a point x∗ and take a norm ‖ · ‖. We say that the
convergence is linear for that norm, if there exist r ∈ ]0, 1[ and an index kr

such that
‖xk+1 − x∗‖ ≤ r‖xk − x∗‖, for all k ≥ kr.

The convergence is superlinear if

xk+1 − x∗ = o(‖xk − x∗‖).
The convergence is quadratic if

xk+1 − x∗ = O(‖xk − x∗‖2).
One speaks of linear, superlinear and quadratic convergence in p steps (p
integer ≥ 1), if there holds respectively ‖xk+p − x∗‖ ≤ r‖xk − x∗‖ (for some
r ∈ ]0, 1[ and for all k large enough), xk+p−x∗ = o(‖xk−x∗‖), and xk+p−x∗ =
O(‖xk − x∗‖2).

These are obviously stronger and stronger concepts: quadratic conver-
gence implies superlinear convergence, which in turn implies linear conver-
gence. The property of linear convergence depends on the norm, while super-
linear and quadratic convergence do not.

Lemma 13.5 (equivalent sequences). If the sequence {xk} converges su-
perlinearly to x∗, then there holds (xk − x∗) ∼ (xk+1 − xk).

Proof. We have

xk+1 − xk = (xk+1 − x∗)− (xk − x∗) = −(xk − x∗) + o(‖xk − x∗‖).
The result follows.

Other Use of the Notation O(·) and o(·).

We shall also use Landau’s notation O(·) and o(·) with a slightly different
point of view, without reference to convergent sequences. This notation will be
useful when studying the local convergence of algorithms, before establishing
the convergence of the considered sequences, so that the preceding definitions
do not apply.

Let ψ and φ be two functions defined in a neighborhood V of a point
x∗ ∈ R

n, with values in normed spaces. We say that ψ is dominated by φ in a
neighborhood of x∗, and we write ψ = O(φ), if there exist a positive number
C and a neighborhood V0 ⊂ V of x∗ such that ‖ψ(x)‖ ≤ C‖φ(x)‖ for all
x ∈ V0. We say that ψ is negligible compared with φ in a neighborhood x∗,
and we write ψ = o(φ), if for all ε > 0, there exists a neighborhood Vε ⊂ V
of x∗ such that ‖ψ(x)‖ ≤ ε‖φ(x)‖ for all x ∈ Vε.
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13.6 Projection onto a Closed Convex Set

Let 〈·, ·〉 be a scalar product on R
n, ‖ · ‖ the associated norm (i.e., ‖x‖ =

〈x, x〉1/2
), C a nonempty closed convex set in R

n and x a point of R
n. Then

there exists a unique element xp ∈ C, called the projection of x onto C, such
that

‖xp − x‖ ≤ ‖y − x‖, for all y ∈ C.
It is thus the point of C that minimizes the distance of x to the points of C.
We shall also use the notation xp = PCx.

Here are some properties of the projection that will be useful.
First, the projection xp = PCx is characterized by one of the following

equivalent conditions:

〈xp − x, y − xp〉 ≥ 0, for all y ∈ C, (13.12)

〈y − x, y − xp〉 ≥ 0, for all y ∈ C. (13.13)

Thus, if xp ∈ C satisfies one of the above properties, it is the projection of x
onto C. If C is a nonempty closed convex cone of R

n and x ∈ R
n, another

characterization of xp = PCx is easily deduced from (13.12):

〈xp − x, xp〉 = 0 and 〈xp − x, y〉 ≥ 0, for all y ∈ C. (13.14)

Furthermore, the mapping x 7→ PCx has the following property:

〈PCx2 − PCx1, x2 − x1〉 ≥ ‖PCx2 − PCx1‖2, for all x1, x2 ∈ R
n,

which implies in particular that PC is a monotone mapping. Using the
Cauchy-Schwarz inequality 〈u, v〉 ≤ ‖u‖ ‖v‖, one deduces:

‖PCx1 − PCx2‖ ≤ ‖x1 − x2‖, for all x1, x2 ∈ R
n. (13.15)

The projector PC is therefore Lipschitz continuous with modulus 1.

13.7 The Newton Method

Consider a mapping F : R
N → R

N . We want to solve numerically for z ∈ R
N

the system with N equations in the N unknowns

F (z) = 0. (13.16)

The Newton method (see also chapter 4) generates a sequence {zk} by the
recurrence formula

zk+1 = zk + dk, (13.17)

where the step dk solves the equation (13.16) linearized at zk:
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F (zk) + F ′(zk)dk = 0. (13.18)

This equation has a unique solution if F ′(zk) is nonsingular. In this case,

dk = −F ′(zk)−1F (zk). (13.19)

The next theorem analyses the convergence of a slightly more general
method, in which the direction dk is given by

dk = −M−1
k F (zk), (13.20)

where Mk is a nonsingular matrix. Quasi-Newton methods enter this frame-
work. We recall that nonsingular matrices form an open set in the normed
space of matrices.

Theorem 13.6 (convergence of Newton’s algorithm). Let z∗ be a zero
of a map F : Ω → R

N defined on some neighborhood Ω ⊂ R
N of z∗. Suppose

that F is of class C1 on Ω and that F ′(z∗) is nonsingular.
1) Then there exist εz > 0 and εM > 0 such that

‖z1 − z∗‖ ≤ εz and ‖Mk − F ′(zk)‖ ≤ εM , ∀ k ≥ 1, (13.21)

imply that the recursion (13.17) with dk given by (13.20) is well defined
and generates a sequence {zk} converging linearly to z∗.

2) If, in addition,

(
Mk − F ′(z∗)

)
(zk − z∗) = o(‖zk − z∗‖),

then the convergence is superlinear.
3) If, in addition, F ′ is Lipschitz continuous on Ω and

(
Mk − F ′(z∗)

)
(zk − z∗) = O(‖zk − z∗‖2),

then the convergence is quadratic.

Proof. Note β := ‖F ′(z∗)−1‖ and choose εM > 0 such that βεM < 1 and

r :=
3βεM

1− βεM
< 1.

Now determine εz > 0 such that B̄(z∗, εz) ⊂ Ω and ‖F ′(z) − F ′(z∗)‖ ≤ εM

for all z ∈ B̄(z∗, εz) (possible by the continuity of F ′).
Let M be an N × N matrix verifying ‖M − F ′(z∗)‖ ≤ εM . Then

‖F ′(z∗)−1(M − F ′(z∗))‖ ≤ βεM < 1 and, by Banach’s perturbation lemma,
the matrix M in nonsingular and satisfies ‖M−1‖ ≤ β/(1 − βεM ). Apply-
ing this to M = Mk and M = F ′(z), one finds that, for all k ≥ 1 and all
z ∈ B̄(z∗, εz), Mk and F ′(z) are nonsingular and
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‖M−1
k ‖ and ‖F ′(z)−1‖ ≤ β

1− βεM
.

In this case, dk is well defined by formula (13.20).
Using F (z∗) = 0 and the fact that F is C1 on B̄(z∗, εz), which allow us

to use a Taylor expansion in integral form, there holds when zk ∈ B̄(z∗, εz)

zk+1 − z∗ = zk − z∗ + dk

= M−1
k

(
Mk(zk − z∗)− F (zk)

)

= M−1
k

(
Mk − F ′(zk)

)
(zk − z∗)

+M−1
k

∫ 1

0

(
F ′(zk)− F ′(z∗ + t(zk − z∗))

)
(zk − z∗) dt.

Taking norms, also permuting norm and integral operator, we deduce that
‖zk+1 − z∗‖ ≤ r‖zk − z∗‖. Therefore, by induction, all the sequence {zk} ⊂
B̄(z∗, εz) if z1 ∈ B̄(z∗, εz). Furthermore zk → z∗ (since r < 1). This concludes
the proof of the first claim of the theorem.

With the additional assumption of the second point of the theorem, the
estimate of the error zk+1 − z∗ above shows that zk+1 − z∗ = o(‖zk − z∗‖),
hence the convergence of {zk} is superlinear. Finally, with the additional as-
sumptions of the third point of the theorem, the same error estimate provides
‖zk+1− z∗‖ ≤ C‖zk− z∗‖2, for some constant C > 0, implying the quadratic
convergence of {zk}.

Applying this theorem to the Newton algorithm (Mk = F ′(zk) for all k)
shows that, if F is C1 in a neighborhood of z∗, if F ′(z∗) is nonsingular, and
if the first iterate is close enough to z∗, the method converges superlinearly.
It converges quadratically if, in addition, F ′ is Lipschitz continuous in a
neighborhood of z∗.

The Osculating Quadratic Problem

To solve the unconstrained minimization problem

min
x∈Rn

f(x), (13.22)

a possibility is to solve its optimality condition (see § 2.2 or use (KKT))

∇f(x) = 0.

Taking F = ∇f in (13.16), the Newton equation (13.18) can be written

∇f(xk) +∇2f(xk)dk = 0. (13.23)

This equation is the first-order optimality condition of the problem
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min
d
∇f(xk)>d+

1

2
d>∇2f(xk)d, (13.24)

which is called the osculating quadratic problem to (13.22) at xk.
When ∇2f(xk) is positive definite (so is the case if xk is close to a strong

solution to (13.22)), it is equivalent to solve the linear system (13.23) or the
quadratic problem (13.24). With (13.24), we have an optimization problem
to solve, which may guide intuition when designing algorithms. This return
to optimization after linearization of the optimality conditions will also be
done for constrained problems.

Because Newton’s algorithm is basically a method to solve nonlinear equa-
tions, it makes no distinction between the types of stationary points x∗, pro-
vided ∇2f(x∗) is nonsingular. According to theorem 13.6, the iterates are
indeed attracted by such a regular point, even though it is not a local min-
imum of f ; in particular it can be a maximum. When one tries to find a
minimizer, this is not a nice property. There are techniques, however, such
as truncated conjugate gradient iterations or the use of trust regions, which
tend to overcome this undesirable feature. Some of them will be described in
chapter 17, in the framework of constrained optimization problems.

13.8 The Hanging Chain Project I

We introduce here a test problem that will go with us along the chapters of
this third part of the book. This problem will be used to implement and to
test some of the optimization algorithms that will be presented and analyzed
in the chapters 14 to 18. The model is simple enough to be implemented in
a course on numerical constrained optimization, using languages like Mat-
lab [249] or Scilab [327]. It is also rich enough to present all the difficult
situations that a nonlinear optimization software has to deal with. The large
amount of details given in this section and others have the goal to make an
implementation easy.

The problem we propose to look at consists in finding the static equilib-
rium position of a chain made of rigid bars. Its extreme joints are fixed at
two hooks and it is maintained above a given tilted flat floor. As we shall see,
this problem can be modeled as a minimization problem with equality and
inequality constraints, hence having the form of problem (PEI) on page 193.

The hanging chain problem has been considered by several authors, with
more or less generality and without the floor constraint. Luenberger [239]
introduces it “to illustrate a wide assortment of theoretical principles and
practical techniques”. Veselić [356] provides a precise analysis of the problem.
Bonnans and Shapiro [49] use it as an example for a perturbation analysis.
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Modeling

We suppose that the chain has perfectly flexible joints and is subject to
gravity, so that it lies in the vertical plane containing the hooks. Let it be the
(x, y)-plane (see figure 13.1). We assume that the chain has nb rigid bars of

PSfrag replacements
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(a, b)

joint i−1

joint i

bar i

Fig. 13.1. Model of the hanging chain

given lengths Li, i = 1, . . . , nb. Therefore, there are nj = nb− 1 free joints.
The coordinates of the joints are denoted by (xi, yi), for i = 1, . . . , nj. These
ones are the n := 2(nj) variables to determine, since the position of the
hooks is supposed to be given: at positions of coordinates (x0, y0) = (0, 0)
and (xnb, ynb) = (a, b) say. There is no restriction on the value of (a, b).
In particular, one can set (a, b) = (0, 0), in which case the vertical plane
containing the chain is supposed to be a problem data (it has not to be
specified, but in this case the solution found in the (x, y)-plane is still a
solution to the problem after a rotation around the vertical axis going through
the point (0, 0)). We start with the premise that the position of the chain
can be obtained by minimizing its potential energy. Let us give its analytic
expression.

Consider a chain whose bars have not necessarily the given lengths and
that is specified by the position of its free joints. We gather them in the vector
of unknowns

x := (x1, x2, . . . , xnj, y1, y2, . . . , ynj).

The adopted order in the components of x is more convenient than tak-
ing (x1, y1, x2, y2, . . .). Since the ith bar is between the joints of coordinates
(xi−1, yi−1) and (xi, yi), its length is given by

li(x) :=
√

(xi − xi−1)2 + (yi − yi−1)2, i = 1, . . . , nb,

with (x0, y0) := (0, 0) and (xnb, ynb) = (a, b). Therefore, assuming unit weight
per unit of length, the potential energy of the considered chain, which is
defined up to a constant, can be written
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E(x) =

nb∑

i=1

li(x)
yi + yi−1

2
.

The model must also specify the actual length of the bars: li(x) = Li.
Squaring li(x) to have differentiability leads to the constraints c(x) = 0 ∈ R

nb,
where

ci(x) = li(x)
2 − L2

i , for i = 1, . . . , nb.

Without the floor constraint, the model consists in

{
minx E(x)
ci(x) = 0, i = 1, . . . , nb.

Note that on the feasible set, li(x) = Li, so that the problem is not modified
if li(x) is substituted by Li in the objective. The interest of this substitution
is that the objective becomes linear:

{
minx e(x)
ci(x) = 0, i = 1, . . . , nb,

where

e(x) =

nb∑

i=1

Li
yi + yi−1

2
.

We still have to model the floor constraint.
It is assumed that the floor is smooth, without roughness, so that the

joints and the chain can slip on it without resistance. This implies that the
actual equilibrium position is still the one with minimal potential energy. To
simplify, we assume that the floor is flat and possibly tilted. In the (x, y)-
plane, the floor is given by the affine function y = g(x), where

g(x) := g0 + g1x. (13.25)

The constants g0 and g1 are supposed given and may vary from one test-
problem to another. The chain must hang in the half-plane D := {(x, y) : y ≥
g(x)}. In particular, the hooks must lie in D, which leads to the following
compatibility conditions on g0 and g1:

g0 ≤ 0 and g0 + g1a ≤ b.

Then, since the chain is affine between its joints, it is entirely in D if cI(x) ≤
0 ∈ R

nj, where

ci(x) = g0 + g1xi−nb − yi−nb, for i = nb+ 1, . . . , nb+ nj.

Finally, the problem to solve can be written
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minx e(x)
ci(x) = 0, i ∈ E := {1, . . . , nb}
ci(x) ≤ 0, i ∈ I := {nb+ 1, . . . , nb + nj}.

It has the structure of a minimization problem with equality and inequal-
ity constraints like (PEI ). The Lagrangian of the problem is the function
denoted by

(x, λ) 7→ `(x, λ) = e(x) + λ>c(x),

where λ = (λE , λI ) and λE ∈ R
nb and λI ∈ R

nj are the multipliers associated
with the equality and inequality constraints. Figure 13.2 represents a typical

PSfrag replacements
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Fig. 13.2. Static equilibrium of the hanging chain

equilibrium position without (the dashed line) or with (the solid line) a floor
constraint.

The Simulator

The easiest way of organizing the program is to use direct communication
(see figure 13.3): a main program (say in the file ch.m) calls the optimization
module (say in the file sqp.m), which communicates with a simulator (say
in the file chs.m) to get information on the problem to solve. The parameter
indic monitors the communication with the simulator: the calling procedure
uses indic to specify the job to realize by the simulator and this one uses
this parameter to inform the calling procedure on the course of the simulation
(for example, to indicate failure in the required computation).

In Matlab, the procedure chs can determine what it has to compute by
looking at the number of its input and output arguments when it is called
(nargin and nargout), so that there is no need to use the parameter indic
on input; however, this variable is still useful on output (its meaning has
been specified above). Our implementation of the simulator recognizes the
following calls:
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indic

simulator
chs.m

calling procedure
ch.m (first part)

calling procedure
ch.m (second part)

optimization module
sqp.m

optimization
loop

Fig. 13.3. Optimization code organized in direct communication

[indic] = chs(xy)

[e,ce,ci,indic] = chs(xy)

[e,ce,ci,g,ae,ai,indic] = chs(xy)

[hl,indic] = chs(xy,lmde,lmdi)

In the first case, the simulator just plots the chain specified by the coordinates
of the free joints in xy = x; in the second case, it computes the function
e = e(x) to minimize, the constraint functions ce = cE(x) and ci = cI(x);
in the third case, it computes e(x), cE(x), cI(x), the gradient g = ∇e(x),
and the Jacobian matrices ae = c′E(x) and ai = c′I(x); finally in the fourth
case, it computes the Hessian of the Lagrangian hl = ∇2

xx`(x, λ), using the
coordinates xy = x and the multipliers lmde = λE and lmdi = λI . Actually,
this Hessian does not depend on λI since the inequality constraints are linear.

The main module defines the problem’s data and calls the optimization
procedure after having set its parameters.

It is good practice to write the optimization module independently of
the problem to solve, translating in computer language the mathematical
objects and operations that are used in this book. The obvious reason is
that the module can then be used to solve other optimization problems.
Since the simulator needs information on the problem defined in the main
module ch (e.g., the length of the bars) and that this information cannot be
passed through the optimization module, it must be passed using the global
statement of Matlab.
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First Session

The goal of this first session is to write the main module ch.m and the sim-
ulator chs.m. To do this, just follow the description given in the previous
two sections. No knowledge in optimization is required to achieve this goal.
Various optimization algorithms will be implemented and tested in other
sessions.

A delicate task, which is however crucial for the success of the next ses-
sions, is to check the correctness of the simulator. Both function values (e
and c) and derivatives (first ∇e(x), c′(x), and second ∇2

xx`(x, λ)) need to be
examined. Function values are best verified by considering simple cases, for
which the values of e(x) and c(x) are known (a chain with 2 or 3 bars of
equal length, for example).

The consistency between a function and its derivatives is more delicate.
In smooth optimization, a standard way of proceeding is to compare the
computed derivatives with their approximations by finite differences. For a
function ϕ : R

n → R
m, one can check that the computed values ϕ′(x) · ei =

∂ϕ(x)/∂xi ∈ R
m (ei denotes the ith basis vector of R

n), for i = 1, . . . , n, are
close to one of their approximations

ϕ(x+tie
i)− ϕ(x)

ti
= ϕ′(x) · ei +O(ti),

ϕ(x+tie
i)− ϕ(x−tiei)

2ti
= ϕ′(x) · ei +O(t2i ).

The second differential quotient is more precise but requires more function
evaluations. The choice of ti is known to be sensitive. It is standard [107] to
take

ti = ε1/2 max(τi, |xi|),
where ε is the machine epsilon, which is the smallest positive floating point
number such that fl(1 + ε) 6= 1 (it is given by the variable eps in Matlab),
and τi is a typical size of xi (τi = 1 can be chosen for the data given in this
project).

Other ways of assessing the correctness of the derivatives will be available
after the implementation of the local algorithms in the sessions of §§ 14.7
and 15.4, and of the line-search in the session of § 17.4 (see the comments
after the output printed by the line-search on page 318).

Notes

Section 13.5 has introduced the so-called quotient rates of convergence. Some-
times the convergence can only be qualified by the so-called root rates. These
are defined, discussed and compared with the quotient rates by Ortega and
Rheinbold [278].



214 13 Background

Theorem 13.6 is not the only result on the convergence of Newton’s algo-
rithm. Of particular interest is the Kantorovich theorem, which has the nice
feature of not assuming the existence of a zero of F , but proves that such
a zero exists, provided some conditions hold at the first iterate z1 (F (z1) is
small, F ′(z1) is nonsingular) and in some neighborhood (F ′ does not change
too rapidly), see [202, 108].

Exercises

13.1. Find a set X defined by inequality constraints and a point x ∈ X, for which
(MF-CQ) holds but not (LI-CQ).

13.2. Find optimization problems in which a solution satisfies: (i) the strong
second order sufficient condition of optimality (13.10); (ii) the semi-strong
second order sufficient condition of optimality (13.9) but not the strong one
(13.10); (iii) the weak second order sufficient condition of optimality (13.8)
but not the semi-strong one (13.9).



14 Local Methods for Problems with

Equality Constraints

In this chapter, we present and study several local methods for minimizing
a nonlinear function subject only to nonlinear equality constraints. This is
the problem (PE) represented in figure 14.1: Ω is an open set of R

n, while

M∗ := {x ∈ Ω : c(x) = 0}

(PE)





minx f(x)
c(x) = 0
x ∈ Ω

x∗

Fig. 14.1. Problem (PE) and its feasible set

f : Ω → R and c : Ω → R
m are differentiable functions. Since we always

assume that c is a submersion, which means that c′(x) is surjective (or onto)
for all x ∈ Ω, the inequality m < n is natural. Indeed, for the Jacobian of
the constraints to be surjective, we must have m ≤ n; but if m = n, any
feasible point is isolated, which results in a completely different problem,
for which the algorithms presented here are hardly appropriate. Therefore, a
good geometrical representation of the feasible set of problem (PE) is that of
a submanifold M∗ of R

n, like the one depicted in figure 14.1.
There are several reasons for postponing the study of optimization prob-

lems with inequality constraints. First, we tackle difficulties and notation
progressively, and prepare the intuition for the general case. Also, the re-
duced Hessian method (§ 14.5) has no simple equivalent form when inequali-
ties are present. Finally, such problems arise both in their own right and as
subproblems in some algorithmic approaches to solve optimization problems
with inequality constraints. For instance, nonlinear interior point algorithms
sometimes transform an inequality constrained problem into a sequence a
equality constrained problems by introducing slack or shift variables and a
logarithmic penalization (see [143, 65, 11] for examples). A good mastery of
the techniques used to solve problem (PE) is therefore helpful.
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By local methods, we mean methods whose convergence is ensured pro-
vided the initial iterate is close enough to a solution. In this case, the algo-
rithms presented in chapters 14 and 15 have the nice property to converge
quadratically. This feature comes from the linearization of the optimality
conditions. Among the quadratically convergent algorithms that have been
proposed to solve problem (PE), we have chosen to describe two of them (and
some of their useful variants): Newton’s method (§ 14.1) and the reduced
Hessian method (§ 14.5). These are probably the most often implemented
algorithms. Also, they offer a framework in which different techniques can
be used: line-search and trust region globalization techniques, quasi-Newton
Hessian approximations, etc.

When c is a submersion, the feasible set of (PE) forms a submanifold
of R

n. However, the algorithms studied in this section do not force the iter-
ates to stay in that manifold. For general nonlinear constraints, this would
generally require too much computing time. Rather, optimality and feasibil-
ity are searched simultaneously, so that optimality is obtained in a time of the
same order of magnitude as that needed to obtain feasibility in a code with-
out optimization. This nice feature makes these algorithms very attractive in
practice.

According to the first-order optimality conditions (13.1), we know that,
when the constraints are qualified at a solution x∗ ∈ Ω to (PE), there exists
a Lagrange multiplier λ∗ ∈ R

m such that

{
∇f(x∗) +A(x∗)>λ∗ = 0
c(x∗) = 0.

(14.1)

We have denoted by A(x) := c′(x) the m × n Jacobian matrix of the con-
straints: the ith row of A(x) is the transposed gradient∇ci(x)> of the ith con-
straint; hence the (i, j)th element of A(x) is the partial derivative ∂ci/∂xj(x).

14.1 Newton’s Method

The Newton Step

We have seen in chapter 13 how Newton’s method can be used to solve non-
linear equations (see (13.18)) and to minimize a function (see (13.24)). For
optimization problems with equality constraints, it is therefore tempting to
compute the step dk at xk by means of a quadratic [resp. linear] approxima-
tion of the objective function [resp. constraints] at xk . With such a method,
dk would solve or would compute a stationary point of the quadratic problem

{
mind f

′(xk) · d+ 1
2f

′′(xk) · d2

c(xk) + c′(xk) · d = 0,
(14.2)
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and the next iterate would be xk+1 = xk + dk. Beware of the nonconver-
gence of this algorithm! In some cases, the generated sequence moves away
from a solution, no matter how close the initial iterate is to this solution1.

The right approach consists in dealing simultaneously with the objective
minimization and the constraint satisfaction, by working on the optimality
conditions (14.1). Actually, these form a system of n+m nonlinear equations
in the n+m unknowns (x∗, λ∗), a system that can be solved by Newton’s
method. This results is a so-called primal-dual method, which means that a
sequence {(xk, λk)} is generated, in which xk approximates a primal solu-
tion x∗ and λk approximates the associated dual solution λ∗.

Let (xk , λk) be the current primal-dual iterate. We use the notation

fk := f(xk), ck := c(xk), Ak := A(xk) := c′(xk), ∇x`k := ∇x`(xk , λk),

and finally denote by

Lk := L(xk, λk) := ∇2
xx`(xk, λk)

the Hessian of the Lagrangian ` with respect to x at (xk , λk). See (13.2) for
a definition of the Lagrangian. Newton’s method defines a step in (x, λ) at
(xk , λk) by linearizing the system (14.1) at (xk , λk). One finds

(
Lk A

>
k

Ak 0

)(
dk

µk

)
= −

(
∇x`k
ck

)
. (14.3)

Given a solution (dk, µk) to (14.3), the Newton method defines the next iterate
(xk+1, λk+1) by

xk+1 = xk + dk and λk+1 = λk + µk. (14.4)

Since ∇x`k is linear with respect to λk, (14.3) can be rewritten as follows:
(
Lk A

>
k

Ak 0

)(
dk

λQP

k

)
= −

(
∇fk

ck

)
, (14.5)

where we have used the notation

λQP

k := λk + µk.

The superscript ‘QP’ suggests the fact that, as we shall see below, λQP

k is the
multiplier associated with the constraints of a quadratic problem. The next
iterate (xk+1, λk+1) of Newton’s method is in this case

1 See exercise 14.1 for an example, in which f is concave. When f is strongly convex
and has a bounded Hessian, one can get convergence with line-search along the
direction computed by (14.2). When f is nonconvex, convergence can still be
obtained with line-search and the truncated SQP algorithm. This will be clearer
with the concepts developed in chapter 17. Nevertheless, as this is shown below,
the step computed by (14.2) neglects an important part of the “curvature” of
problem (PE).
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xk+1 = xk + dk and λk+1 = λQP

k . (14.6)

This formulation reveals the less important role played by λk , compared with
that of xk. Observe indeed in (14.5) that λk only appears in the matrix Lk,
while xk is the linearization point of the functions defining the problem.

Osculating Quadratic Problems

Just as in the unconstrained case, the Newton equation (14.3) can be viewed
as the optimality system of a quadratic problem (QP), namely

{
mind ∇x`

>
k d+ 1

2d
>Lkd

ck +Akd = 0.
(14.7)

This one is called the osculating quadratic problem of (PE) at (xk , λk). If we
consider (14.5) instead of (14.3), we find

{
mind ∇f>

k d+ 1
2d

>Lkd
ck +Akd = 0,

(14.8)

which is another osculating quadratic problem, whose optimality system is
(14.5).

The transformations from (14.3) to (14.7) and from (14.5) to (14.8) call
for some comments.

1. Any linear system with a symmetric matrix having the structure of that
in (14.5) (the distinguishing feature is the zero (2, 2) block of the matrix)
can be viewed as the first order optimality conditions of the associated QP
in (14.8). This point of view can be fruitful when numerical techniques
to solve (14.5) are designed.

2. We know that (14.7) and (14.8) have the same primal solutions. This can
also be deduced by observing that their objective functions only differ in
the term λ>kAkd, which is the constant −λ>k ck anywhere on the feasible
set. However, these problems have different dual solutions. With (14.7),
we obtain the step µk to add to the multiplier λk (λk+1 = λk +µk), while
(14.8) gives directly the new multiplier (λk+1 = λQP

k ).

3. One can obtain (14.7) directly from (PE): the constraints are linearized
at the current point xk and the objective function is a quadratic approx-
imation of the Lagrangian at (xk, λk) (the constant term `(xk, λk) of this
approximation can be added to the objective function of (14.7), without
changing the solution).

4. Note the difference between (14.2) and (14.8). The former takes the Hes-
sian of the objective function; the latter uses the Hessian of the La-
grangian. The difference between these two Hessians comes from the con-
straint curvature (sum of the terms (λk)i∇2ci(xk)). In order to have fast
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convergence, this curvature must be taken into account. This is all the
more important when f is nonconvex.

The validity of (14.7) can be justified a posteriori. Indeed the Lagrangian
has a minimum in the subspace tangent to the constraints (if the second-
order sufficient conditions of optimality of theorem 13.4 hold); there-
fore, it makes sense to minimize the quadratic approximation of this
Lagrangian, subject to the linearized constraints. Since the same cannot
be said of f , (14.2) appears suspect.

We can also make the following remark. To have a chance of being
convergent, an algorithm should at least generate a zero displacement
when starting at a solution. We see that this property is not enjoyed by
(14.2). In fact, if xk solves (PE), then ck = 0 and ∇f(xk)>d = 0 for all
d ∈ N(Ak); hence (14.2) amounts to minimizing 1

2d
>∇f(xk)2d onN(Ak).

If the Hessian of f is not positive semi-definite in the space tangent to
the constraints, which may well happen, then d = 0 does not solve (14.2)
(unbounded problem). In contrast, (14.3) and (14.5) do enjoy this mini-
mal property, insofar as the matrix appearing in these linear systems is
nonsingular (see proposition 14.1 below and the comments that follow
definition 14.2).

5. No equivalence holds between (14.5) and (14.8): the minimization prob-
lem (14.8) may have a stationary point (hence satisfying (14.5)) but no
minimum (unbounded problem). Equivalence does hold between (14.5)
and (14.8) – or (14.3) and (14.7) – if Lk satisfies

d>Lkd > 0, for all nonzero d in N(Ak).

In fact, in this case, d 7→ ∇f>
k d + 1

2d
>Lkd is quadratic strictly convex

on the affine subspace {d : ck +Akd = 0}. Therefore (14.8) has a unique
solution, which solves the optimality equations (14.5). These equations
have no other solution (proposition 14.1).

6. From a numerical point of view, the osculating quadratic problem shows
that the Newton equations can be solved by minimization algorithms. For
large-scale problems, the reduced conjugate gradient algorithm is often
used: one computes a restoration step rk that is feasible for (14.8) (hence
satisfying ck + Akrk = 0) and then one generates directions in the null
space of Ak. We shall come back to this issue in § 14.4 and § 17.2.

Regular Stationary Points

The Newton step can be computed if the linear system that defines it, (14.5)
say, is nonsingular. The next proposition gives conditions equivalent to this
nonsingularity.

Proposition 14.1 (regular stationary point). Let A be an m×n matrix,
L be an n× n symmetric matrix, and
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K :=

(
L A>

A 0

)
. (14.9)

Then the following conditions are equivalent:
(i) K is nonsingular;

(ii) A is surjective and any d ∈ N(A) satisfying Ld ∈ N(A)⊥ vanishes;
(iii) A is surjective and Z−>LZ− is nonsingular for some (or any) n ×

(n−m) matrix Z− whose columns form a basis of N(A).

Proof. [(i) ⇒ (ii)] Since K is surjective, so is A. On the other hand, if
d ∈ N(A) satisfies Ld ∈ N(A)⊥ = R(A>), there exists µ ∈ R

m such that
(d, µ) ∈ N(K), so that d = 0.

[(ii)⇒ (iii)] Let Z− be a matrix like in (iii). If Z−>LZ−u = 0 for some
u ∈ R

n−m, d := Z−u ∈ N(A) and Ld ∈ N(Z−>) = R(Z−)⊥ = N(A)⊥, so
that Z−u = 0 by (ii). Now u = 0 by the injectivity of Z−.

[(iii)⇒ (i)] It suffices to show that K is injective. Take (d, µ) in its null
space. Then Ad = 0 and Ld+A>µ = 0, which imply d ∈ N(A) (or d = Z−u
for some u) and Z−>Ld = 0. From (iii), u = 0 and d = 0. Thus A>µ = 0,
and µ = 0 by the injectivity of A>.

Note that the nonsingularity of L and the surjectivity of A are not suffi-
cient to guarantee the equivalent conditions (i)–(iii). For a counter-example
consider

L =

(
1 0
0 −1

)
and A =

(
1 −1

)
.

The vector
(
1 1 −1

)>
is in the null space of K. On the other hand, when A is

surjective, condition (iii) is obviously satisfied if Z−>LZ− is positive definite,
and a fortiori if L is positive definite. Exercise 14.2 gives more information
on the spectrum of the matrix K: it is claimed in particular that, when A is
surjective, the matrix K always has m negative and m positive eigenvalues
(for the intuition, consider the case when n = m = 1 and observe that the
determinant of K is negative; hence there is always one negative and one
positive eigenvalue).

A consequence of exercise 14.2 is that a quadratic function, whose Hes-
sian is the matrix K with a surjective A, is never bounded below. If this
function has a stationary point, it is not a minimizer, but a saddle-point.
The symmetry of K suggests, however, that a linear system based on this
matrix expresses the optimality conditions of a quadratic minimization prob-
lem, but this one needs linear equality constraints (using the matrix A) to
have a chance of being well-posed: see (14.8) for an example. Actually, a
stationary point of this constrained quadratic problem will be a constrained
minimizer if and only if the matrix L is positive semi-definite on the null
space of A.

The discussion above leads us to introduce the following definition.
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Definition 14.2 (regular stationary point). A stationary point (x∗, λ∗)
of (PE) is said to be regular if A∗ := c′(x∗) is surjective and if Z−>

∗ L∗Z−
∗ is

nonsingular, for some (or any) n× (n−m) matrix Z−
∗ whose columns form a

basis of N(A∗).

A regular stationary point is necessarily isolated: it has a neighborhood con-
taining no other stationary point (see exercise 14.3 for a precise statement).
Also, a strong primal-dual solution (x∗, λ∗) to (PE) satisfying (LI-CQ) (i.e.,
A∗ surjective) is a regular stationary point. Indeed, in this case d>L∗d > 0
for all nonzero d ∈ N(A∗), so that the so-called reduced Hessian of the La-
grangian

H∗ := Z−>
∗ L∗Z

−
∗

is positive definite. The (n−m) × (n−m) matrix H∗ clearly depends on the
choice of the matrix Z−

∗ . In some cases, it can be viewed as a Hessian of some
function (see exercise 14.4).

The Algorithm

We conclude this section by giving a precise description of Newton’s algorithm
to solve problem (PE). As already mentioned, the method generates a primal-
dual sequence {(xk, λk)} ⊂ R

n × R
m.

Newton’s algorithm for (PE):

Choose an initial iterate (x1, λ1) ∈ R
n × R

m.
Compute c(x1), ∇f(x1), and A(x1).
Set k = 1.

1. Stop if ∇`(xk, λk) = 0 and c(xk) = 0 (optimality is reached).
2. Compute L(xk, λk) and find a primal-dual stationary point of the

quadratic problem (14.8), i.e., a solution (dk, λ
QP

k ) to (14.5).
3. Set xk+1 := xk + dk and λk+1 := λQP

k .
4. Compute c(xk+1), ∇f(xk+1), and A(xk+1).
5. Increase k by 1 and go to 1.

In practice, the stopping criterion in step 1 would test whether ‖∇`(xk, λk)‖
and ‖c(xk)‖ are sufficiently small. This remark holds for all the algorithms
of this part of the book.

Before analyzing the convergence properties of this algorithm in § 14.3, we
introduce some notation that makes it easier to understand some interesting
variants of the method and highlights the structure of the Newton step dk.
How to compute this step is dealt with in § 14.4.
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14.2 Adapted Decompositions of R
n

A General Framework

Suppose that c is a submersion on the open set Ω ⊂ R
n. Then, the set

Mx := {y ∈ Ω : c(y) = c(x)}

is a submanifold of R
n with dimension n−m (for the few concepts of dif-

ferential geometry that we use, we refer the reader to [344, 51, 84, 112] for
example). Intuitively, the tangent space to Mx at x is the set of directions
of R

n along which c does not vary at the first order; it is therefore the null
space of the Jacobian matrix

Ax := A(x) := c′(x)

of c at x. This null space and a complementary subspace decompose R
n

into two subspaces, which make the description and interpretation of the
algorithms easier. This decomposition, which we now describe, is shown in
figure 14.2.

Mx − x0

R(Z−
x ) = N(Ax)

R(A−
x ) = N(Zx)

Fig. 14.2. Adapted decomposition of R
n

Consider first the tangent subspace N(Ax). We shall often assume that
we have a smooth mapping

Z− : Ω → R
n×(n−m) : x 7→ Z−

x := Z−(x),

such that for all x ∈ Ω, Z−
x is a basis of the tangent subspace. We mean by

this that the columns of Z−
x form a basis of N(Ax) or equivalently:

∀x ∈ Ω, Z−
x is n×(n−m) injective and AxZ

−
x = 0. (14.10)

Besides, since Ax is surjective, it has a right inverse: an n×m matrix A−
x

satisfying AxA
−
x = Im. We shall always assume that A−

x is the value at x of
a smooth mapping
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A− : Ω → R
n×m : x 7→ A−

x := A−(x).

Therefore
∀x ∈ Ω, A−

x is n×m injective and AxA
−
x = Im. (14.11)

The range space of A−
x is a subspace complementary to N(Ax), because

R(A−
x ) ∩N(Ax) = {0} and dimR(A−

x ) + dimN(Ax) = m+ (n−m) = n.
Thus, R

n can be written as the direct sum of the subspaces spanned by
the columns of Z−

x and the columns of A−
x : for all x ∈ Ω,

R
n = R(Z−

x )⊕R(A−
x ).

Lemma 14.3 (adapted decomposition of R
n). Let Z− : Ω → R

n×(n−m)

and A− : Ω → R
n×m be mappings satisfying respectively (14.10) and (14.11).

Then there exists a unique mapping

Z : Ω → R
(n−m)×n : x 7→ Zx := Z(x)

satisfying for all x ∈ Ω:

ZxA
−
x = O(n−m)×m, (14.12)

ZxZ
−
x = In−m. (14.13)

This mapping Z is also characterized by the following identity, valid for all
x ∈ Ω:

I = A−
xAx + Z−

x Zx. (14.14)

Proof. It can be easily checked that the matrixXx =
(
A−

x Z−
x

)
is nonsingular,

from which follow the existence and uniqueness of Zx satisfying (14.12) and
(14.13). Next observe from (14.10), (14.11), (14.12) and (14.13) that the

matrix Yx =
(
A>

x Z>
x

)>
is the inverse of Xx, since YxXx = In. Then (14.14) is

exactly the identity XxYx = In. Conversely, this last identity determines Yx,
hence Zx.

Figure 14.2 summarizes the properties of the operators Ax, Z−
x , A−

x ,
and Zx. The manifold Mx is translated by −x, so that the linearization
point x is at the origin. To find one’s way in this family of operators, a
mnemonic trick is welcome: the operators A−

x and Z−
x , with a minus expo-

nent, are injective and right inverses; while the operators Ax and Zx, without
a minus exponent, are surjective and left inverses.

Using the identity (14.14), we have for every vector v ∈ R
n,

v = A−
xAxv + Z−

x Zxv.

This identity allows us to decompose a vector v into its longitudinal compo-
nent Z−

x Zxv, tangent at x to the manifoldMx, and its transversal component
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A−
xAxv, which lies in the complementary space R(A−

x ). In view of our pre-
ceding development, this decomposition is well-defined, once the matrices Z−

x

and A−
x have been given. Observe also that A−

x Ax and Z−
x Zx = I − A−

x Ax

are oblique projectors on R(A−
x ) and R(Z−

x ). The orthogonal projectors on
these subspaces are

A−
x (A−>

x A−
x )−1A−>

x = I − Z>
x (ZxZ

>
x )−1Zx

and
Z−

x (Z−>
x Z−

x )−1Z−>
x = I −A>

x (AxA
>
x )−1Ax.

Below, we give some formulae for the computation of the matrices Z−
x and

A−
x satisfying properties (14.10) and (14.11). These formulae use inverses of

matrices, which need not be computed explicitly in algorithms. Likewise, the
matrices Z−

x and A−
x need not be computed explicitly. What matters is their

action (or the action of their transpose) on a vector, which can generally be
obtained by solving a linear system. For example, as we shall see, the right
inverse A−

x is usually applied to the vector c(x), whereas A−>
x is often applied

to ∇f(x).
We now proceed by giving examples of matrices Z−

x , A−
x , and Zx that are

frequently used in the algorithms.

Decomposition by Partitioning (or Direct Elimination)

This decomposition has its roots in optimal control problems (see § 1.2.2 and
§ 1.14 for examples of such problems), in which the variables x = (y, u) are
partitioned in state variables y ∈ R

m and control variables u ∈ R
n−m. The

Jacobian Ax is likewise partitioned in

Ax = (Bx Nx),

where Bx is an m×m matrix giving the derivatives of the constraints with
respect to the state variables. In the regular case, Bx is nonsingular. Such a
decomposition is also used in linear optimization.

The decomposition of R
n given below is often used for large-scale opti-

mization problems, in which a fixed partitioning of the variables leads to a
nonsingular matrix Bx. Note that it is always possible to make a partition
of the surjective matrix Ax as above, leading to a nonsingular matrix Bx,
provided some permutation of the columns of Ax is performed. There are
linear solvers that can select the columns of Ax in order to form a matrix Bx

with a reasonably well optimized condition number.
In the framework just described the matrix

Z−
x =

(
−B−1

x Nx

In−m

)
(14.15)

is well defined and satisfies properties (14.10), while the matrix
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A−
x =

(
B−1

x

0

)
(14.16)

is also well defined and satisfies (14.11). The mapping Z given by lemma 14.3
has for its value at x:

Zx =
(
O In−m

)
.

Now, let us highlight some other links with the optimal control framework.
Assuming that c is of class C1, the nonsingularity of Bx implies that y, the
solution to c(y, u) = c(x) for fixed x, is an implicit function of u: y = y(u) and
c(y(u), u) = c(x) for all u in a nonempty open set. Then the basis Z−

x above is
obtained by differentiating the parametrization u 7→ (y(u), u) of the manifold
Mx := {x′ ∈ Ω : c(x′) = c(x)}. On the other hand, the displacement

−A−
x c(x) =

(
−B−1

x c(x)
0

)

is a Newton step to solve the state equation c(y, u) = 0, with fixed control u.
From a computational point of view, we see that, to evaluate A−

x c(x), it
is sufficient to solve the linear system Bxv = c(x), whose solution v gives the
first m components of A−

x c(x). This is less expensive than computing B−1
x

explicitly! Likewise, the first m components h of Z−
x u can be obtained by

solving the linear system Bxh = −Nxu.

Orthogonal Decomposition

The orthogonal decomposition is obtained by choosing a right inverse A−
x ,

whose columns are perpendicular to N(Ax) (they cannot be orthonormal in
general), and a tangent basis Z−

x with orthonormal columns. The condition
on A−

x implies that this matrix has the form A−
x = A>

xS, for some matrix S.
Since AxA

−
x = I must hold, A−

x is necessarily given by

A−
x = A>

x (AxA
>
x )−1. (14.17)

Now, let Z−
x be an arbitrary orthonormal basis of N(Ax): AxZ

−
x = 0 and

Z−>
x Z−

x = In−m. To get the matrix Zx provided by lemma 14.3, let us mul-
tiply both sides of the identity (14.14) to the left by Z−>

x , using (14.17).
Necessarily

Zx = Z−>
x .

One way of computing the matrices A−
x and Z−

x just described, is to use
the QR factorization of A>

x (see [170] for example):

A>
x =

(
Y −

x Z−
x

)(Rx

O

)
= Y −

x Rx, (14.18)

where
(
Y −

x Z−
x

)
is an orthogonal matrix and Rx is upper triangular. The

matrix Rx is nonsingular since Ax is assumed to be surjective. Then, the
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last n−m columns Z−
x of the orthogonal factor form an orthonormal basis

of R(Y −
x )⊥ = R(A>

x )⊥, which is indeed the null space of Ax. Furthermore,
(14.18) and the nonsingularity of Rx show that the columns of Y −

x ∈ R
n×m

span R(A>
x ) = N(Ax)⊥. Since, by multiplying the extreme sides of (14.18) to

the left by Y −>
x , it follows that AxY

−
x = R>

x or AxY
−
x R−>

x = Im, the right
inverse of Ax given by (14.17) is necessarily

A−
x = Y −

x R−>
x .

The orthogonal decomposition just described has the advantage of being
numerically stable and of computing a perfectly well-conditioned basis Z−

x .
The QR factorization can be carried out by using Givens rotations or with
at most m Householder reflections. Therefore, this is a viable approach when
m is not too large.

Oblique Decomposition

Let M be a matrix that is nonsingular on the null space of Ax, meaning that
Z−>

x MZ−
x is nonsingular for some basis Z−

x of N(Ax) (this property of M
does not depend on the choice of Z−

x , see proposition 14.1). Then, one can
associate with M a right inverse of Ax, defined as follows. Take v ∈ R

m. Then
the quadratic problem in d

{
mind

1
2d

>Md
Axd = v

(14.19)

has a unique stationary point, which satisfies the optimality conditions

{
Md+A>

xλ = 0
Axd = v,

(14.20)

for some multiplier λ ∈ R
m. We see that d depends linearly on v. Denoting

by Â−
x the matrix representing this linear mapping, i.e., d = Â−

x v, the second

equation in (14.20) shows that Â−
x is a right inverse of Ax. This matrix Â−

x

will be useful to write a simple expression of the Newton displacement to
solve (PE).

An explicit expression of Â−
x can be given by using a basis Z−

x of the null
space of Ax and a right inverse A−

x of Ax. Then (14.14) and (14.20) show
that d = A−

x v+Z−
x u for some u ∈ R

n−m. By premultiplying both sides of the
first equation of (14.20) by Z−>

x , we obtain u = −(Z−>
x MZ−

x )−1Z−>
x MA−

x v.
Finally

Â−
x =

(
I − Z−

x

(
Z−>

x MZ−
x

)−1
Z−>

x M
)
A−

x . (14.21)

Even though A−
x and Z−

x appear in this formula, Â−
x does not depend on them

(from its definition). From lemma 14.3, there corresponds to the operatorsZ−
x
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and Â−
x a unique matrix Ẑx such that ẐxÂ

−
x = 0 and ẐxZ

−
x = I . To give an

analytic expression of Ẑx, observe first that from (14.21), one has

Z−>
x MÂ−

x = 0, (14.22)

which expresses the fact that the range spaces R(Z−
x ) and R(Â−

x ) are “or-
thogonal” with respect to the matrix M (this would correspond to a proper
notion of orthogonality if the matrix M were positive definite). It is then easy
to check that

Ẑx =
(
Z−>

x MZ−
x

)−1
Z−>

x M

satisfies the required properties.
To conclude, note that Â−

x may not exist if M is singular on the null space
of Ax. Here is a counter-example with n = 2 and m = 1:

M =

(
1 1
1 0

)
, Ax =

(
1 0
)
, and Z−

x =

(
0
1

)
.

Since Z−>
x M = Ax, Â−

x cannot satisfy both AxÂ
−
x = I and (14.22). Observe

finally that the right inverses (14.16) and (14.17) obtained previously can

be recovered from Â−
x by an appropriate choice of M ; this is the subject of

exercise 14.7.

14.3 Local Analysis of Newton’s Method

Local Convergence

In this section, we study the local convergence of the Newton algorithm to
solve problem (PE), introduced in § 14.1. We use the notation

A∗ = A(x∗) and L∗ = L(x∗, λ∗).

Quadratic convergence of the primal-dual sequence {(xk, λk)} will be
shown thanks to theorem 13.6. We shall also use proposition 14.1, whose
conditions (i)-(iii) imply that the constraints are qualified at the solution x∗
in the sense (LI-CQ):

A∗ is surjective. (14.23)

A consequence of proposition 14.1 is that, when (x∗, λ∗) is a regular stationary
point, the system (14.3) or (14.5) has a unique solution for (xk , λk) close to
(x∗, λ∗). Therefore Newton’s method is well defined in the neighborhood of
regular stationary points.

Theorem 14.4 (convergence of Newton’s algorithm). Suppose that f
and c are of class C2 in a neighborhood of a regular stationary point x∗ of
(PE), with associated multiplier λ∗. Then, there exists a neighborhood V of
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(x∗, λ∗) such that, if the first iterate (x1, λ1) ∈ V , the Newton algorithm de-
fined in § 14.1 is well-defined and generates a sequence {(xk, λk)} converging
superlinearly to (x∗, λ∗). If f ′′ and c′′ are Lipschitzian in a neighborhood of
x∗, the convergence of the sequence is quadratic.

Proof. The result is obtained by applying theorem 13.6 with z = (x, λ) and

F (z) =

(
∇f(x) +A(x)>λ

c(x)

)
.

Clearly, F is of class C1 in a neighborhood of z∗ = (x∗, λ∗) and F ′(z∗) is non-
singular (from proposition 14.1). The superlinear convergence of {(xk, λk)}
to (x∗, λ∗) follows if (x1, λ1) is close enough to (x∗, λ∗). If f ′′ and c′′ are Lips-
chitzian near x∗, so is F ′ near z∗, and the quadratic convergence of {(xk, λk)}
follows.

This theorem tells us that Newton’s algorithm makes no distinction be-
tween stationary points, provided they are regular in the sense of defini-
tion 14.2. The iterates are indeed attracted by such a point, even if it is not
a local minimum of (PE); in particular it can be a maximum. The reason of
this property comes from the fact that Newton’s algorithm is essentially a
method to solve nonlinear equations (here the optimality conditions of (PE)).
When one tries to find a minimizer, this is not a nice property. We shall see,
however, that the techniques of chapter 17 tends to overcome this undesirable
feature.

Note that the quadratic convergence of the sequence {(xk, λk)} by no
means implies that of {xk} (see exercise 14.8). However, we shall see in chap-
ter 15 (theorem 15.7) that {xk} does converge superlinearly. On the other
hand, there are versions of Newton’s method that guarantee the quadratic
convergence of the primal sequence {xk}. Here is an example of such an
algorithm.

A Primal Version of the Newton Algorithm

It has already been observed that, in Newton’s method, λk plays a less crucial
role than xk in the computation of the next iterate (xk+1, λk+1). If, instead
of letting the sequences {xk} and {λk} be generated independently, the dual
iterate λk is computed from the primal iterate xk, by means of a function
x 7→ λ(x), i.e.,

λk = λ(xk),

the algorithm becomes completely primal. Indeed, then the knowledge of
xk entirely determines the next iterate xk+1. We shall show below that the
function λ(·) can be chosen in such a way that the convergence of {xk} will be
quadratic, under natural assumptions. A possible candidate for that function
is the least-squares multiplier :
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λLS(x) := −A−(x)>∇f(x), (14.24)

where A−(x) is a right inverse of A(x). One speaks of least-squares multi-
plier because λLS(x) minimizes in λ a weighted `2 norm of ∇x`(x, λ) (see
exercise 14.9).

Let us make precise the algorithm under investigation.

Primal version of Newton’s Algorithm for (PE):

Choose an initial iterate x1 ∈ R
n.

Compute c(x1), ∇f(x1), and A(x1).
Set k = 1.

1. Compute λk = λ(xk).
2. Stop if ∇`(xk, λk) = 0 and c(xk) = 0 (optimality is reached).
3. Compute L(xk, λk) and find a solution (dk, λ

QP

k ) to the linear sys-
tem

(
L(xk, λk) A(xk)>

A(xk) 0

)(
dk

λQP

k

)
= −

(
∇f(xk)
c(xk)

)
. (14.25)

4. Set xk+1 := xk + dk.
5. Compute c(xk+1), ∇f(xk+1), and A(xk+1).
6. Increase k by 1 and go to 1.

We have used the same notation λQP

k for the dual solution to (14.25) and
(14.5), although their values are different, since here λk depends on xk . Note
that although λQP

k is computed, it has no influence on the value of xk+1.
The next theorem analyses the local convergence of this algorithm.

Theorem 14.5 (convergence of a primal version of Newton’s algo-
rithm). Suppose that f and c are of class C2 in a neighborhood of a regular
stationary point x∗ of (PE), with associated multiplier λ∗. Suppose also that
the function λ(·) used to set the value of λk satisfies λ(x∗) = λ∗ and is
continuous at x∗. Then, there exists a neighborhood V of x∗ such that, if
the first iterate x1 ∈ V , the above primal version of Newton’s algorithm is
well-defined, generates a sequence {xk} converging superlinearly to x∗, and
λQP

k − λ∗ = o(‖xk − x∗‖). If furthermore f ′′ and c′′ are Lipschitzian in a
neighborhood of x∗ and if there is a positive constant C such that

‖λ(x) − λ∗‖ ≤ C‖x− x∗‖, for x near x∗,

then the convergence of {xk} is quadratic and λQP

k − λ∗ = O(‖xk − x∗‖2).

Proof. We mimic the argument used in the proof of theorem 13.6. With the
notation



230 14 Local Methods for Problems with Equality Constraints

F (x, ν) :=

(
∇x`(x, ν)
c(x)

)
,

and µk := λQP

k − λ∗, the linear system (14.25) can be written

F ′(xk , λk)

(
dk

µk

)
= −F (xk, λ∗).

If xk is in some neighborhood of the regular stationary point x∗, with as-
sociated multiplier λ∗, λk is near λ∗ (continuity of λ(·) at x∗). Further-
more, F ′(xk , λk) = F ′(xk , λ(xk)) is nonsingular (see proposition 14.1) and
has a bounded inverse on that neighborhood. With the notation zk+1 :=
(xk+1, λ

QP

k ), zk,∗ := (xk , λ∗), and z∗ := (x∗, λ∗), and the fact that f and c
are of class C2, one has

zk+1 − z∗ = zk,∗ − z∗ − F ′(xk , λk)−1F (xk , λ∗)

= F ′(xk , λk)−1
(
F ′(xk , λk)(zk,∗ − z∗)− F (z∗)

−
∫ 1

0

F ′(x∗ + t(xk−x∗), λ∗) · (zk,∗ − z∗) dt
)
.

Using F (z∗) = 0 and taking norms,

‖zk+1 − z∗‖ ≤ C ′
(∫ 1

0

‖F ′(xk , λk)− F ′(x∗ + t(xk−x∗), λ∗)‖ dt
)
‖xk − x∗‖,

where C ′ is a positive constant. Now, since f ′′, c′′, and λ are continuous
at x∗, F ′(·, λ(·)) is continuous at x∗ and the last estimate gives zk+1 − z∗ =
o(‖xk − x∗‖), implying the superlinear convergence of xk to x∗ and λQP

k −
λ∗ = o(‖xk − x∗‖). If furthermore f ′′ and c′′ are Lipschitzian near x∗ and
λ(x)−λ∗ = O(‖x−x∗‖), one has zk+1−z∗ = O(‖xk−x∗‖2), which means that
the convergence of {xk} is now quadratic and that λQP

k −λ∗ = O(‖xk−x∗‖2).

14.4 Computation of the Newton Step

In this section, we describe three ways of computing the Newton step dk

and the associated multiplier λQP

k : the direct inversion approach, the dual ap-
proach, and the reduced system approach. We are interested both in analytic
expressions of (dk, λ

QP

k ) and computational issues. Each of these methods has
its own advantages and drawbacks. It is the last one that most highlights
the structure of the Newton step. In each case, one has to find a solution to
(14.5), which is recalled here for convenience:

(
Lk A

>
k

Ak 0

)(
dk

λQP

k

)
= −

(
∇fk

ck

)
. (14.26)

Below, the matrix of this linear system is supposed nonsingular (see propo-
sition 14.1 for conditions ensuring this property), which implies that Ak is
surjective.
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The Direct Inversion Approach

The most straightforward approach for computing the Newton step is to
consider the linear system (14.26) as a whole, without exploiting its block
structure. One should not lose sight of the dimension n + m of this linear
system, which can be quite large in practice. Therefore, to make this approach
attractive the problem needs to have small dimensions or to have sparse
matrices Lk and Ak that can be taken into account. Using this approach could
also be a naive but rapid way of computing (dk, λ

QP

k ) in a personal program,
using matrix oriented languages like Matlab or Scilab, for instance.

As regards the numerical techniques used to solve the full linear system,
observe that, although the matrix in (14.26) is symmetric, it is never posi-
tive definite, even at a strong solution to problem (PE) (see exercise 14.2).
Therefore, a Cholesky factorization or conjugate gradient iterations are not
adequate algorithms to solve this linear system! Direct linear solvers (i.e.,
those that factorize the matrix in (14.26)) can be considered, in particular
when they can take advantage of the possible sparsity of Ak and Lk. The
methods of Bunch and Kaufman [56] for the dense case or the MA27/MA47
solvers of Duff and Reid [114, 115, 116] for the sparse case are often em-
ployed. For large-scale problems, iterative solvers with preconditioners have
also been developed, see for example [53, 20, 315, 358, 333].

The Dual Approaches

The dual approaches (sometimes called range-space approaches) need to have
nonsingular matrices Lk and AkL

−1
k A>

k . This condition is certainly satisfied
if Lk is positive definite (remember that Ak is always assumed surjective in
this section).

In the dual approach, the value of dk is given as a function of λQP

k , using
the first equation of (14.26):

dk = −L−1
k (∇fk +A>

kλ
QP

k ). (14.27)

Substituting this expression in the second equation of (14.26) gives the value
of the QP multiplier, which is the solution to the linear system

(AkL
−1
k A>

k )λQP

k = −AkL
−1
k ∇fk + ck. (14.28)

A way of solving (14.26) is then to consider the two linear systems (14.28)
and (14.27) one after the other: once λQP

k has been determined by (14.28),
dk can be evaluated by (14.27). The computational effort depends on how
these systems are solved, which should be a consequence of the problem size
and structure. If direct solvers are used, one can give a rapid count of the
number of linear systems to solve: m+1 with the n × n matrix Lk and one
with the m×m matrix AkL

−1
k A>

k . Indeed, the calculation can be organized
as follows: first, one computes L−1

k A>
k and L−1

k ∇fk; next, λQP

k is evaluated
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by solving (14.28); finally, dk is obtained by (14.27) without having to solve
any additional linear system.

When Lk is positive definite, λQP

k in (14.28) maximizes the dual function
associated with the osculating quadratic problem (14.8), which is the function
(see also part II)

λ 7→ min
d

(
1

2
d>Lkd+∇f>

k d+ λ>(ck +Akd)

)
. (14.29)

On the other hand, dk given by (14.27) is the solution to this minimiza-
tion problem in (14.29) with λ = λQP

k . This viewpoint gives its name to
the approach. It also suggests other ways of solving (14.26), which are of-
ten interesting for very large-scale problems such as the Stokes equations in
fluid mechanics (see [243] and references therein). We briefly discuss these
approaches below.

The Uzawa algorithm [13, 134] generates a sequence of multipliers λ con-
verging to λQP

k . For each λ, the minimization problem in (14.29) is solved,
which provides an approximation d of the solution dk. Next the multiplier is
updated by a steepest ascent step on the dual function: λ+ := λ+α(ck+Akd),
where α > 0 is an “appropriate” stepsize. This first order method in λ is some-
times too slow. One way of accelerating it in this simple quadratic setting
is to use the conjugate gradient (CG) algorithm on the dual function, which
is equivalent to solving the linear system (14.28) by CG. Each CG iteration
normally requires an accurate solution to a linear system with the matrix Lk,
although inexact solution can also be considered (see for example [355]).

Another way of accelerating the Uzawa procedure described above is
to substitute in (14.29) the Lagrangian by the augmented Lagrangian (see
§ 16.3):

λ 7→ min
d

(
1

2
d>Lkd+∇f>

k d+ λ>(ck +Akd) +
r

2
‖ck +Akd‖22

)
, (14.30)

where r > 0 is a parameter. The algorithm is similar: λ+ := λ+ r(ck +Akd),
where d is now the solution to the minimization problem in (14.30). See [134]
for more details.

Time saving is also possible by avoiding an exact minimization of the
problem in (14.29) or (14.30) before updating the multiplier (see [303, 118,
54, 92] for instance).

In conclusion, the dual approaches can be appropriate when Lk and
AkL

−1
k A>

k are nonsingular and a linear system with the matrix Lk is not
too difficult to solve. They can also be useful when quasi-Newton techniques
are used to approximate L−1

k by positive definite matrices in the nonlinear
algorithm (the one that sets problem (14.26)), since then there is no linear
system to solve with the matrix Lk, just a matrix-vector product needs to be
done.
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The Reduced System Approach

In this approach (sometimes called the null-space approach), it is assumed
that a decomposition of R

n has been chosen, similar to those described
in § 14.2. The operators A−(x) and Z−(x) should take advantage of the fea-
tures of the problem, in order to avoid expensive operations. We show below
that then the optimization aspect contained in (14.26) can be transferred
into a single linear system, involving an (n−m)× (n−m) symmetric matrix:
the reduced Hessian of the Lagrangian. This makes the reduced system ap-
proach particularly appropriate when n−m � n. Since the reduced Hessian
is positive definite at a strong solution to (PE), the approach makes it possi-
ble to detect convergence to a stationary point that is not a local minimum.
Furthermore, the method leads to formulae highlighting the structure of the
Newton step dk .

Let us start by introducing a very useful notion. We have denoted by
Z−(x) an n × (n−m) matrix, whose columns form a basis of N(A(x)), the
subspace tangent to the constraint manifold at x. We call reduced gradient
of f at x for the basis Z−, the vector of R

n−m defined by

g(x) := Z−(x)>∇f(x). (14.31)

We note gk := g(xk). This vector can be interpreted in Riemannian geom-
etry as follows. Equip the manifold Mx with a Riemannian structure by
defining at each point y ∈ Mx the scalar product on the tangent space
γy(Z−

y u, Z
−
y v) = u>v; then the gradient of f |Mx

at y for this Riemannian
metric is just the tangent vector Z−(y)g(y).

Consider now the computation of dk. Recalling (14.14), the second equa-
tion in (14.26) shows that dk has the form

dk = −A−
k ck + Z−

k uk,

for some uk ∈ R
n−m. Then, the first equation in (14.26) gives

LkZ
−
k uk +A>

kλ
QP

k = −∇fk + LkA
−
k ck.

Premultiplying by Z−>
k to eliminate λQP

k provides the reduced linear system:

Hkuk = −gk + Z−>
k LkA

−
k ck, (14.32)

where the (n−m)× (n−m) matrix

Hk := Z−>
k LkZ

−
k

is called the reduced Hessian of the Lagrangian at (xk, λk). It depends on
the choice of the basis Z−

k . This matrix is necessarily nonsingular when the
matrix in (14.26) is nonsingular (see proposition 14.1). This leads to

dk = −(I − Z−
k H

−1
k Z−>

k Lk)A−
k ck − Z−

k H
−1
k gk.



234 14 Local Methods for Problems with Equality Constraints

The operator acting on ck, namely

Â−
k := (I − Z−

k H
−1
k Z−>

k Lk)A−
k , (14.33)

is the right inverse of Ak defined in (14.21), whereM and x have been replaced
by Lk and xk respectively. Finally

dk = −Â−
k ck − Z−

k H
−1
k gk. (14.34)

This computation reveals the structure of the Newton direction dk, made
up of two terms (see figure 14.3). The first term r̂k := −Â−

k ck is a stationary

xk

M∗ := {x ∈ R
n : c(x) = 0}

−Â−
k ck

−A−
k ck

tk

dk

x∗

{xk + d : ck +Akd = 0}

Fig. 14.3. Structure of the Newton step dk

point of the quadratic problem in r ∈ R
n:

{
minr

1
2r

>Lkr
ck +Akr = 0.

To see this, just set ∇fk = 0 in (14.8) and (14.34). This direction aims at
reducing ρ(·) = ‖c(·)‖, an arbitrary norm of the constraints. Indeed, when
ck 6= 0, r̂k is a descent direction of ρ, since according to lemma 13.1:

ρ′(xk; r̂k) = (‖ · ‖)′(ck;Ak r̂k) = (‖ · ‖)′(ck ;−ck) = −‖ck‖ < 0.

The second term in the right-hand side of (14.34), tk := −Z−
k H

−1
k gk, is a

stationary point of the quadratic problem in t ∈ R
n:

{
mint ∇f>

k t+ 1
2 t

>Lkt
Akt = 0.

To see this, just set ck = 0 in (14.8) and (14.34). It is tangent to the manifold
Mk := Mxk

and aims at decreasing the function f . Indeed, when Hk is
positive definite and gk 6= 0, tk is a descent direction of f at xk, since
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f ′(xk) · tk = ∇f(xk)>(−Z−
k H

−1
k gk) = −g>kH−1

k gk < 0.

We shall come back to this issue in § 14.6, when comparing the direction dk

with directions generated by other algorithms.
On the influence of Lk on the direction dk, we can observe the following.

1. The second-order information used in the Newton direction is entirely
contained in the part Z−>

k Lk of Lk. This can be seen in formula (14.34):

only this part enters the matrices Â−
k and Hk. In particular, the direction

dk is not changed if we add to Lk a matrix of the form A>
kSkAk , where

Sk is an arbitrary symmetric m×m matrix.

2. If we multiply Lk by a number α 6= 0, the transversal part −Â−
k ck of

the direction is not affected, while the longitudinal part −Z−
k H

−1
k gk is

divided by α. In other words, the “size” of Lk only acts on the tangential
part of dk.

Consider now the computation of λQP

k . Premultiply the first equation of

(14.26) by A−>
k and use formula (14.34) of dk to find

λQP

k = −Â−>
k ∇fk +A−>

k LkÂ
−
k ck. (14.35)

This multiplier, as well as the first term in (14.35),

λ̂k := −Â−>
k ∇fk, (14.36)

are sometimes called second-order multipliers, since they involve second-order
derivatives of the functions f and c, via the Hessian of the Lagrangian Lk.
These are estimates of the optimal multiplier, since λQP

k = λ̂k = λ∗ when
xk = x∗, a stationary point. Such is also the case of

λLS

k := −A−>
k ∇fk,

called the first-order multiplier or least-squares multiplier (see (14.24)). It is
said to be of first-order because it only involves the first derivatives of the
data.

With this section, we have concluded the description of Newton’s algo-
rithm to solve equality constrained optimization problems. Next comes the
description of an algorithm, also proceeding by linearizations, but different
from Newton’s method. It can be seen as a kind of nonlinear block Gauss-
Seidel approach.

14.5 Reduced Hessian Algorithm

There is an algorithm to solve problem (PE), different from Newton’s method,
that also enjoys local quadratic convergence. In optimization, its existence can
be suggested by the following considerations.
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When c is a submersion on Ω, the feasible set

M∗ = {x ∈ Ω : c(x) = 0}

is a manifold of dimension n−m. Then (PE) has only n−m degrees of freedom
and a natural question is whether there exists a method where the matrix
containing the second-order information (second derivatives of f and c or
their quasi-Newton approximation) is only (n−m)× (n−m). This is certainly
the case if the iterates xk are forced to stay inM∗. Indeed, such an algorithm
can be obtained by taking a parametrization ofM∗ around x∗ and applying
Newton’s method in the parameter space, which has dimension n−m. How-
ever, requiring xk ∈ M∗ is not realistic: it is often computationally expensive
and, anyway, it cannot be realized exactly when c is an arbitrary nonlinear
function. What is desired is a method with the following properties:

• the only matrix containing second-order information is (n−m)× (n−m),
• the iterates xk are not forced to satisfy the constraints at each iteration,
• the speed of convergence is quadratic.

In this section, we show how to introduce such an algorithm. We shall
see that this approach is particularly attractive when n−m � n and quasi-
Newton techniques are employed. Throughout the section, we assume that
the stationary point x∗ we are seeking is regular (see definition 14.2).

The Reduced Optimality System

The first stage leading to the definition of the algorithm is to provide an
optimality system of reduced size, with fewer equations than in (14.1). This
stage is optional but, by eliminating the multiplier from (14.1), it leads to a
more concise presentation.

Premultiply the first equation of (14.1) by Z−(x∗)> to find, with (14.10),
the reduced optimality system:

{
g(x∗) = 0
c(x∗) = 0,

(14.37)

where g is the reduced gradient of f , defined by (14.31). The multiplier λ∗
no longer appears in this system, which counts (n−m)+m = n equations for
the n unknowns x∗.

Note that the two systems (14.1) and (14.37) have the same solutions x∗.
Indeed, we have just shown that (14.37) can be obtained from (14.1). On the
other hand, we deduce from the first equation of (14.37) that

∇f(x∗) ∈ N(Z−(x∗)
>) = R(Z−(x∗))

⊥ = N(A(x∗))
⊥ = R(A(x∗)

>).

Therefore there exists λ∗ ∈ R
m such that ∇f(x∗) + A(x∗)>λ∗ = 0. This is

the first equation of (14.1). Thus, there is no loss of solutions by considering
(14.37) instead of (14.1).
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Solving the Reduced Optimality System by a
Decoupling Technique

The reduced Hessian method essentially consists in performing one Newton-
like step to solve the second equation of (14.37), followed by one Newton-like
step to solve the first equation. This resembles a nonlinear block Gauss-Seidel
method. There is an important difference however. We shall show that, to
yield local quadratic convergence, the first step can be an arbitrary Newton-
like step, but the second one must have a very specific form. In particular, this
second step must be tangent to the manifold defined by the second equation
in (14.37).

The algorithm generates two sequences of iterates, {xk} and {yk}, both
converging to the same solution x∗. Local convergence is studied more eas-
ily if the method is thought of generating the sequence {yk}. It is this se-
quence that converges (almost) quadratically. Curiously the sequence {xk}
converges slightly less rapidly, but the algorithm is easier to implement in
terms of the sequence {xk}. We now introduce the method by considering
the sequence {yk}, while {xk} appears as an intermediate sequence.

Starting with an iterate yk ∈ Ω, we first perform a Newton-like step that
aims at solving the second equation of (14.37). For this, we use a right inverse
of the Jacobian of c. This gives an intermediate point xk, defined by

xk = yk −A−(yk)c(yk).

Note that, if m = n, then A−(yk) is the inverse of A(yk) and the step
−A−(yk)c(yk) is exactly the Newton step at yk to solve c(x) = 0 (com-
pare with (13.17) and (13.19)). When m < n, which is our situation, every
right inverse A−(yk) produces a particular solution xk − yk to the constraint
equation, linearized at yk.

We are now interested in making a Newton-like step from xk to solve the
first equation of (14.37). The point xk is supposed to be in Ω. Observe first
that the reduced gradient can be written g(x) = Z−>

x ∇x`(x, λ∗), where λ∗ is
the multiplier associated with the solution x∗. By optimality,∇x`(x∗, λ∗) = 0.
Hence, assuming that Z−

x is continuous at x∗ and using lemma 13.2, one has

g′(x∗) = Z−>
∗ L∗, (14.38)

where we have set Z−
∗ = Z−(x∗) and L∗ = L(x∗, λ∗), as usual. If (x∗, λ∗) is

a regular stationary point, the reduced Hessian of the Lagrangian at (x∗, λ∗),

H∗ := Z−>
∗ L∗Z

−
∗ ,

is nonsingular (see proposition 14.1), so that g′(x∗) is surjective. Therefore g
is a submersion in a neighborhood of x∗, which is supposed to contain Ω. As
above, we can therefore take a right inverse B−(xk) of g′(xk) and define the
next iterate by
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yk+1 = xk −B−(xk)g(xk).

We have just described a procedure for computing yk+1 from yk, with xk as
an intermediate iterate.

We now raise the following question. Is it possible to find a matrix map-
ping x 7→ B−(x) so as to obtain fast convergence of the sequence {yk} to x∗?
To answer this question, we introduce the functions ϕ and ψ : R

n → R
n

defined by:

ϕ(y) = y −A−(y)c(y)

ψ(x) = x−B−(x)g(x).

Then, the procedure we are analyzing can be viewed as fixed point iterations:
yk+1 = (ψ ◦ ϕ)(yk). As a result, if B−(·) can be determined in such a way
that (ψ ◦ ϕ)′(x∗) = 0, the algorithm is likely to converge quadratically (see
exercise 14.10). The next lemma specifies the value of B−

∗ := B−(x∗) to get
this property.

Lemma 14.6 (condition of quadratic convergence of a decoupling
method). Suppose that g and c are differentiable at x∗, that A−(·) and
B−(·) are continuous at x∗, and that (x∗, λ∗) is a regular stationary point
of (PE). Then

(ψ ◦ ϕ)′(x∗) = 0 ⇐⇒ B−
∗ = Z−

∗ H
−1
∗ ,

where H∗ := Z−>
∗ L∗Z−

∗ , for some basis Z−
∗ of N(A∗).

Proof. Set B∗ = Z−>
∗ L∗ and C∗ = (ψ ◦ ϕ)′(x∗). Then, with the assumptions

and lemma 13.2:
C∗ = (I −B−

∗ B∗)(I −A−
∗ A∗).

If (ψ ◦ ϕ)′(x∗) = 0, then C∗Z−
∗ = 0, which gives

B−
∗ B∗Z

−
∗ = Z−

∗ .

We deduce B−
∗ = Z−

∗ H
−1
∗ . Conversely, if B−

∗ = Z−
∗ H

−1
∗ , we have A∗B−

∗ = 0.
Then (

A∗
B∗

)
C∗ = 0.

Since the operator applied to C∗ is nonsingular, we haveC∗ = (ψ◦ϕ)′(x∗) = 0.

The Algorithm

Lemma 14.6 suggests designing the algorithm that generates the sequences {xk}
and {yk} as follows:
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xk = yk −A−(yk)c(yk)
yk+1 = xk − Z−(xk)H−1

k g(xk).

Here Hk is an (n−m)×(n−m) matrix approximating the reduced Hessian H∗
of the Lagrangian, or Z−(xk)>L(xk, λk)Z−(xk), for a certain multiplier λk.

As such, this algorithm can be very time-consuming because the con-
straints must be linearized at the two points xk and yk, and also the two
right inverses A−(yk) and Z−(xk) must be computed. Even though it is cru-
cial to compute g at xk and c at yk, theorem 13.6 states that good convergence
can be preserved if the operators involving first derivatives are evaluated at
other points; the important thing is that these points converge to the solu-
tion. Since the reduced gradient must be evaluated at xk, and since it involves
a basis Z−(xk) of the tangent space, the constraints must be linearized at xk

anyway. However, A− can be evaluated at xk instead of yk. This avoids lin-
earizing the constraints at yk. Stating the algorithm in terms of the sequence
{xk}, we then obtain

yk+1 = xk − Z−(xk)H−1
k g(xk)

xk+1 = yk+1 −A−(xk)c(yk+1).

Finally, setting gk = g(xk), A−
k = A−(xk), Z−

k = Z−(xk) and

tk = −Z−
k H

−1
k gk, (14.39)

the algorithm can be stated in a very concise manner:

xk+1 = xk + tk −A−
k c(xk+tk). (14.40)

As with the Newton method (14.34), the first phase of Algorithm (14.40)
consists in performing a displacement tangent to the manifoldMk at xk. In
the second phase, the algorithm aims at getting the next iterate xk+1 closer
to the manifoldM∗ by taking the displacement −A−

k c(xk+tk), in which the
constraints are evaluated at xk + tk, after the tangent step.

Although the reduced Hessian algorithm, which is summarized in the
recurrence (14.40), should be quite clear, we formally state it below.

Reduced Hessian algorithm for (PE):

Choose an initial iterate x1 = y1 ∈ R
n.

Compute c(x1), ∇f(x1), and A(x1).
Set k = 1.

1. Compute the reduced gradient g(xk) by (14.31).
2. Stop if g(xk) = 0 and c(yk) = 0 (optimality is reached).
3. Compute the reduced Hessian of the Lagrangian Hk, or an ap-

proximation to it, and the tangent step tk by (14.39).
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4. Evaluate the constraint at yk+1 := xk + tk.
5. Compute the new iterate xk+1 by (14.40), ∇f(xk+1) and A(xk+1).
6. Increase k by 1 and go to 1.

Note that this algorithm is essentially primal, since it can be expressed only in
terms of the primal sequence {xk}. A multiplier estimate λk is however often
necessary, either to evaluate the reduced Hessian of the Lagrangian at (xk, λk)
in step 3 or to update a quasi-Newton approximation to it (see chapter 18).
The cheapest one is the least-squares multiplier defined by (14.24).

Simplified Newton Method

Algorithm (14.40) would be simpler if, in the second phase, the constraints
were evaluated at xk . It would then be written

xk+1 = xk + tk −A−
k ck. (14.41)

This algorithm is sometimes called the simplified Newton method because it
only uses the reduced Hessian of the Lagrangian Hk, not the full Hessian Lk

(compare with (14.34) or see § 14.6). It has a slower convergence speed than
(14.40): under natural assumptions, {xk} converges quadratically in two steps
(see exercise 14.11). On the other hand, there are examples showing that the
sequence {xk} may not converge quadratically in one step (see [63, 373]). To
get good convergence, it is therefore important to evaluate the constraints at
xk + tk, after the tangent displacement.

Local Convergence

The next theorem states that the sequence {yk} ≡ {xk + tk} of Algo-
rithm (14.40) converges superlinearly if the matrix Hk appearing in the tan-
gent step tk satisfies the estimate

Hk −H∗ = O(‖xk − x∗‖).

If Hk is set to Z−(xk)>L(xk, λk)Z−(xk), it depends on xk and λk and this
condition is satisfied if λk − λ∗ = O(‖xk − x∗‖) and if the functions f ′′, c′′,
and Z− are Lipschitzian near x∗. This leaves a certain freedom for the choice
of the multiplier λk. For example, one can take λk = λLS(xk), the least-squares
multiplier defined by (14.24). It is easy to check that λLS(x∗) = λ∗, and thus
λLS(xk) − λ∗ = O(‖xk − x∗‖) if A− and f ′ are Lipschitzian near x∗. With
this value of the multiplier, Algorithm (14.40) becomes entirely primal, in the
sense that the algorithm only constructs the sequence {xk}, the multiplier
being reduced to an auxiliary vector, itself depending on xk.

The result given below is slightly weaker than theorem 14.5 stating the
convergence of {xk} in the primal variant of Newton’s algorithm. For that al-
gorithm, the sequence {xk} converges quadratically if λk−λ∗ = O(‖xk−x∗‖).
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The proof of theorem 14.7 uses the notation O(·) as explained at the
end of § 13.5. At first, it may disconcert the reader. For example, the first
estimate obtained in the proof, namely (14.43), means that there exists a
positive constant C such that, if xk is in some neighborhood of x∗:

‖yk+1 − x∗ − (xk − x∗) + Z−
k H

−1
k Z−>

∗ L∗(xk − x∗)‖ ≤ C‖xk − x∗‖2.

The point xk is considered as an arbitrary point in that neighborhood and,
despite the presence of the iteration index k, there is no reference to a par-
ticular sequence. The estimate obtained at the end of the proof, namely
xk+2 − x∗ = O(‖xk − x∗‖2), implies that if x1 and x2 are in a sufficiently
small neighborhood of x∗, then x3 and x4 are in that neighborhood (because
for example ‖x3 − x∗‖ ≤ (C‖x1 − x∗‖)‖x1 − x∗‖ ≤ ‖x1 − x∗‖ if ‖x1 − x∗‖
is sufficiently small). Therefore, by induction, all the estimates can now be
applied to all the generated sequences. The interest of this notation is to
provide very concise proofs (for another example, see exercise 14.11).

Theorem 14.7 (convergence of the reduced Hessian algorithm). Sup-
pose that f and c are twice differentiable at a regular stationary point x∗ of
problem (PE) (this allows the use of the operators Z−(x) and A−(x) intro-
duced in § 14.2, for x near x∗) and that the reduced gradient g is differentiable
near x∗. Suppose also that c′, g′, Z− and A− are Lipschitzian near x∗, and
that the matrix Hk used in (14.40) satisfies Hk −H∗ = O(‖xk − x∗‖). Then,
there exists a neighborhood V of x∗ such that, when the first iterate x1 ∈ V ,
Algorithm (14.40) is well defined and generates a sequence {xk} converging
quadratically in two steps to x∗. Furthermore, the sequence {yk} converges
superlinearly to x∗ with the estimate

yk+1 − x∗ = O(‖xk−1 − x∗‖ ‖yk − x∗‖). (14.42)

Proof. Remark first that, when xk is close to x∗, by assumption, Hk is close
to H∗, which is nonsingular (x∗ is regular). Thus, Hk is nonsingular and the
iteration is well defined. Also {H−1

k } is bounded when xk remains in some
neighborhood of x∗.

Remembering that yk+1 = xk + tk and using g(x∗) = 0, (14.38), and the
Lipschitz continuity of g′, we have

yk+1 − x∗ = xk − x∗ − Z−
k H

−1
k gk

= xk − x∗ − Z−
k H

−1
k Z−>

∗ L∗(xk − x∗) (14.43)

+O(‖xk − x∗‖2).

But H−1
k −H−1

∗ = −H−1
k (Hk −H∗)H−1

∗ = O(‖xk − x∗‖), so that, with the
Lipschitz continuity of Z−, the following holds

yk+1 − x∗ = (I − Z−
∗ H

−1
∗ Z−>

∗ L∗)(xk − x∗) +O(‖xk − x∗‖2). (14.44)
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This implies in particular that yk+1−x∗ = O(‖xk−x∗‖). We also have xk+1 =
yk+1 − A−

k c(yk+1). Therefore, using successively c(x∗) = 0, the Lipschitz
continuity of c′ and A−, (14.14), (14.44), and (14.13), we obtain

xk+1 − x∗ = yk+1 − x∗ −A−
k A∗(yk+1 − x∗) +O(‖yk+1 − x∗‖2)

= yk+1 − x∗ −A−
∗ A∗(yk+1 − x∗) +O(‖xk − x∗‖ ‖yk+1 − x∗‖)

= Z−
∗ Z∗(yk+1 − x∗) +O(‖xk − x∗‖ ‖yk+1 − x∗‖) (14.45)

= Z−
∗ (Z∗ −H−1

∗ Z−>
∗ L∗)(xk − x∗) +O(‖xk − x∗‖2). (14.46)

The operator acting on (xk − x∗) in (14.46) is nonzero in general but its
square vanishes, because (Z∗ −H−1

∗ Z−>
∗ L∗)Z−

∗ = 0. From this observation,
we deduce the estimate

xk+2 − x∗ = O(‖xk − x∗‖2),

which shows the two-step quadratic convergence of the sequence {xk}.
Using (14.44), (14.45) (at the previous iteration), and observing that

(I − Z−
∗ H

−1
∗ Z−>

∗ L∗)Z
−
∗ = 0,

we obtain (14.42). The superlinear convergence of {yk} follows.

At this point it is reasonable to wonder why the convergence of the
sequence {yk} is not quadratic. Since Algorithm (14.40) uses the second
derivatives of f and c, it is legitimate to expect quadratic convergence.
The above proof clarifies this, indeed: the constraints are not linearized
at yk, but at the neighboring points xk−1 and xk . Then, passing from yk

to yk+1 involves the right inverse A−(xk−1) instead of A−(yk), which per-
turbs the speed of convergence. If the right inverse A−(yk+1) were used in
place of A−(xk), an O(‖yk+1 − x∗‖2) would appear in (14.45) instead of an
O(‖xk − x∗‖ ‖yk+1 − x∗‖) and quadratic convergence would ensue. Numer-
ically, it is not clear that the computing time of A(yk) and A−(yk) would
be balanced by the quadratic convergence thus recovered, which is why the
algorithm is often stated in the form (14.40).

Beware of the different behavior of the sequences {xk} and {yk}. Even
though they are generated by the same algorithm and both converge to the
same point x∗, the first one is slower than the second one. This may look sur-
prising, but examples do exist, in which the sequence {xk} does not converge
quadratically (see [63]).

Newton and Quasi-Newton Versions

We have already mentioned that the reduced Hessian method is a very attrac-
tive approach when n−m is much smaller than n. This is particularly true
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for their quasi-Newton versions. In these algorithms the (n−m) × (n−m)
reduced Hessian Hk = Z−(xk)>L(xk , λk)Z−(xk) is approximated by a ma-
trix updated by a quasi-Newton formula (see chapters 4.4 and 18). Only this
“small” matrix needs to be updated to collect all the necessary second-order
information on the problem that provides superlinear convergence. Further-
more, the small order of these updated matrices makes it possible to rapidly
obtain a good approximation of the reduced Hessian.

In the Newton version, Hk must be computed. The interest of the re-
duced Hessian method is then less clear. One way of computing Hk is to
evaluate first L(xk, λk)Z−(xk), by computing n−m directional derivatives
of the gradient of the Lagrangian along the columns of Z−(xk), and then
premultiplying the matrix thus obtained by Z−(xk)>. This computation is
conceivable, but the knowledge of L(xk, λk)Z−(xk) would allow the use of
Newton’s method, which does not require any other information on the Hes-
sian of the Lagrangian (see remark 1 on page 235); furthermore, Newton’s
method does not require a re-evaluation of the constraints after the tangent
step.

Another way of getting second-order information in the reduced Hessian
algorithm is to approximate Hk by computing the directional derivatives
of the reduced gradient g along the n−m columns of Z−(xk). Note that
H̃k := g′(xk)Z−(xk) is usually different from Hk, although, in view of for-
mula (14.38), g′(x∗)Z−

∗ does equal Z−>
∗ L∗Z−

∗ . Now H̃k satisfies the estimate
H̃k − H∗ = O(‖xk − x∗‖) (with sufficiently smooth data), so that theo-
rem 14.7 can be applied. Note also that H̃k is not necessarily a symmetric
matrix. This property depends in particular on the choice of the bases Z−:
if Z−(x) is computed by partitioning A(x) (i.e., using formula (14.15)), then
H̃k is symmetric; but in general it is not so when orthonormal bases are used
(see [149]).

14.6 A Comparison of the Algorithms

Table 14.1 and figure 14.4 compare the form and speed of convergence of
the three algorithms described in this chapter: Newton (14.6) with (14.5) or
(14.34)–(14.35), simplified Newton (14.41), and reduced Hessian (14.40).

In all algorithms, the longitudinal step (tangent to the manifold Mk) is
identical and is written

tk = −Z−
k H

−1
k gk.

When Hk is positive definite, this step is opposite to the gradient of f , seen
as a function defined on the manifold Mk equipped at xk with the scalar
product (Riemannian structure on Mk):

γxk
(Z−

xk
u, Z−

xk
v) = u>Hkv.
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Algorithms
Longitudinal
displacement

Transversal
displacement

Speed of
convergence

Newton tk − bA−
k ck quadratic

Simplified Newton tk −A−
k ck 2-step quadratic

Reduced Hessian tk −A−
k c(xk+tk) “almost” quadratic

Table 14.1. Comparison of local methods

M∗ M∗ M∗

tk
xk

tk
xk

x∗ x∗ x∗

dN

k

− bA−
k ck

xk

dN

k dN

k

−A−
k ck

−A−
k c(xk+tk)

tk

Fig. 14.4. Comparison of the Newton (dN

k ), simplified Newton, and reduced Hessian
steps

When Hk is set to Z−>
k LkZ

−
k and Hk is positive definite, tk can also be

viewed as the unique solution to the quadratic problem in t:

{
mint ∇f>

k t+ 1
2 t

>Lkt
Akt = 0,

This interpretation shows that tk does not depend on the choice of the basis
Z−

k , despite the use of this matrix in the formula above. The algorithms
presented in table 14.1 therefore only differ in the choice of the restoration
operator, A−

k or Â−
k , and in the points where the constraints are evaluated,

xk or xk+tk.
First let us compare the two forms of Newton’s method: standard (step

given by (14.34)), and simplified (step given by (14.41)). We see that the two
displacements have the same form, but the operator acting on ck = c(xk) is

Â−
k in the first case, and A−

k in the second (both are right inverses of Ak).

It has been observed (§ 14.2) that Â−
k only depends on the problem’s data

(see problem 14.19), while A−
k is the concern of the user of the algorithm.

Theorems 14.4 and 14.5 have shown that the choice Â−
k leads to quadrati-

cally convergent methods. On the other hand, it is easy to check that the
convergence of {xk} with (14.41) is only two-step quadratic when the right
inverse A−

k is arbitrary: one-step quadratic convergence is never guaranteed
(see exercise 14.11). Therefore Newton’s method is the most effective. Note
finally that one can view the simplified Newton method as an algorithm
neglecting the part Z−>

k LkA
−
k of Lk in the standard Newton method (see
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formula (14.33)). Newton’s algorithm gains in efficiency from getting more
information on the Hessian of the Lagrangian.

As for the reduced Hessian algorithm (14.40), it is very close to the sim-
plified Newton method (14.41). The algorithms differ in the point at which
the constraints are evaluated: xk + tk in (14.40) and xk in (14.41). The re-
duced Hessian method can thus be viewed as a technique to compensate a
possible bad choice of right inverse A−

k by a re-evaluation of the constraints
after the tangent step. As shown by theorem 14.7, this yields a good speed
of convergence for the sequence {xk + tk}, a property that is not shared with
the simplified Newton algorithm.

14.7 The Hanging Chain Project II

The goal of the second session is to implement one of the local algorithms
introduced in this chapter and to understand its behavior on the hanging
chain test problem presented in § 13.8 (we assume here that the main program
and the simulator have been written in Matlab). Various algorithms can be
implemented. Below, we concentrate our comments on the standard Newton
method described on page 221 in § 14.1, because it is this algorithm that is the
easiest to extend to inequality constrained problems. We shall gain experience
on its features, its efficiency, and shall reveal its weak points (some of them
will be fixed in the next chapters).

We refer the reader to figure 13.3 for the general flowchart of the program.
In this session, we start to write the optimization function sqp, which is
assumed to be in the file sqp.m. We want to have an implementation that
can be used to solve other optimization problems than the hanging chain test
problem. This is a good reason for using the mathematical notation of this
chapter inside sqp.m, not the language linked to the test problem. In our
implementation, the function sqp has the following form

function [x,lme,lmi,info] = ...

sqp (simul,x,lme,lmi,f,ce,ci,g,ae,ai,hl,options)

Some of the input or output arguments can be empty, depending on the pres-
ence of equality and/or inequality constraints; in particular, the variables in
connection with the inequality constraints can be ignored for the while. The
input arguments are the following: simul is a string giving the name of the
simulator (here ’chs’); x is the initial value of the primal variable x (posi-
tion of the joints); lme and lmi are the initial values of the multiplier λE and
λI associated with the equality and inequality constraints; f, ce, and ci are
the values of the objective function f to minimize (the energy) and of the
equality and inequality constraint functions cE and cI (lengths of the bars
and floor constraint) at the initial point x; g, ae, and ai are the values of
the gradient of f and the Jacobian matrices AE and AI of cE and cI at the
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initial point x; hl is the Hessian of the Lagrangian at the initial (x, λ) or an
approximation to it; and the structure options is aimed at tuning the behav-
ior of the solver. Standard options include upper bounds on the number of
iterations and simulations (options.iter and options.simul), the required
tolerances on the KKT conditions (options.tol(1:4), see below), the out-
put channel for printing (options.fout), etc. Other options will be discussed
in other sessions. The output arguments are as follows: x, lme, and lmi are
the final values of the primal and dual (multipliers) variables found by sqp;
and info is a structure providing various information on the course of the
optimization realized by the solver, telling in particular whether optimality
has been reached, up to the required precision specified by the options.tol

input argument, and in any case the reason why the solver has stopped.
We have already said on page 228 that the Newton algorithm aims at

finding a stationary point, i.e., a pair (x∗, λ∗) satisfying the optimality con-
ditions (13.1), not necessarily a local minimum. Therefore, it makes sense to
have a stopping criterion based on these conditions. In our code, we stop the
iterations as soon as, for some norms, the current iterate (x, λ) satisfies

‖∇f(x) +A(x)>λ‖ ≤ options.tol(1)

‖cE(x)‖ ≤ options.tol(2)

‖cI(x)+‖ ≤ options.tol(3)

max(‖λ−I ‖, ‖Λ>
I cI(x)‖) ≤ options.tol(4).

where t+ = max(0, t), t− = max(0,−t), and ΛI = Diag(λI ).
Writing the Matlab function sqp implementing the Newton algorithm of

page 221 is actually extremely simple. The core of the function is only a few
lines long. The time consuming operation is the one to solve the linear system
in step 2, but for a small problem this is straightforward. The easiest way of
doing this operation is to form the matrix K in (14.9) and to use the standard
linear solver of Matlab (see § 14.4 for other possibilities). Since hl and ae

are the variables containing respectively the Hessian of the Lagrangian and
the Jacobian of the equality constraints, steps 2 and 3 of the algorithm are
simply made up of

K = [hl ae’; ae zeros(me)];

d = -K\[g;ce];

x = x + d(1:n);

lme = d(n+1:n+me);

where me = mE is the number of equality constraints, n = n is the number
of variables, and the final values of x and lme are the updated iterates x+

and λ+.

Algorithmic Details, Errors to Avoid, Difficulties to Overcome

The solver sqp offers the user the possibility to set the initial value of x
and λ. This is interesting when it is desirable to restart the solver from a
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known approximate solution (recall that the method is primal-dual so that
both x and λ must be specified). More generally, requiring to initialize x is
sensible, since the user often knows an approximate solution to the problem.
This is less clear for λ, since the multipliers have sometimes a less direct
“physical” meaning or, perhaps, this meaning is known but the value of λ is
still difficult to determine. Therefore, it is sometimes wise to let the solver
choose the initial multiplier. For an equality constrained problem, one often
computes the initial λ as the solution to the linear least-squares problem

min
λ∈Rm

1

2
‖∇x`(x, λ)‖22. (14.47)

This is motivated by the fact that the gradient of the Lagrangian vanishes
at a solution. The convex quadratic problem above always has a solution
(theorem 19.1), which is the least-squares multiplier (14.24) when c′E(x) is
surjective.

The Newton algorithm is structured as an iteration loop, which contains
the piece of code given above. Of course the simulator simul must be called
at each iteration after having computed x+ and λ+, in order to update the
values of hl, ae, g, and ce and to check optimality.

Writing an optimization software is a special computer science activity in
the sense that the realized code has to control the convergence of a sequence.
In some cases, the sequence may diverge simply because the conditions of
convergence are not satisfied, not because of an error in the code. Since
convergence requires an unpredictable number of iterations, it is sometimes
difficult to tell on a particular case whether the behavior of the solver is
correct. To certify the correctness of the function sqp, a good idea is to
try it on problems with an increasing difficulty and to check the quadratic
convergence of the generated sequences, as explained below.

• Try first to start sqp at the solution to a trivial problem: for example,
the chain with 2 bars of length 5, with (a, b) = (6, 0), whose single joint
should be at position (3,−4). The solver should stop without making any
iteration, so that this test case checks only the validity of the stopping
criterion and the simulator.

• Try next to start sqp near the solution to an easy problem: for exam-
ple, the chain with 3 bars of length 5, with (a, b) = (11, 0), whose joints
should be at position (3,−4) and (8,−4). Convergence should be ob-
tained in very few iterations, if the initial nodes are at positions (2,−5)
and (9,−3). Our code converges in 5 iterations with options.tol(1:4)

set to 1.e-10.

The Newton algorithm of page 221 is known to converge quadratically if
the initial primal-dual iterate (x1, λ1) is sufficiently close to a regular sta-
tionary point (theorem 14.4). Checking that quadratic convergence actually
occurs is a good way of verifying that the implementation of both the al-
gorithm and the simulator has been done properly. The very definition of
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quadratic convergence of a sequence {zk} makes use of the limit point z∗ to
which it converges (see § 13.5). Since, in the course of the optimization, the
limit point z∗ := (x∗, λ∗) of the generated sequence {zk} := {(xk , λk)} is not
known, the definition cannot be directly applied. The idea is then to observe
the behavior of another sequence, whose limit point is zero (hence known!)
and that also converges quadratically. Below, we consider the following two
possibilities.

• For Newton’s method, a natural object to look at is the function of
which the algorithm tries to find a zero. For an equality constrained
optimization problem, it is the function z := (x, λ) ∈ R

n+m 7→ F (z) =
(∇x`(x, λ), c(x)) ∈ R

n+m. When z∗ := (x∗, λ∗) is a regular stationary
point (definition 14.2), F ′(z∗) is nonsingular and it is not difficult to
show that (zk−z∗) ∼ F (zk) in the sense of (13.11). Therefore F (zk)→ 0
quadratically in Newton’s algorithm.

• Another vector that tends to zero is the step sk := zk+1 − zk. By
lemma 13.5, {sk} also converges quadratically to zero in Newton’s
method.

Let us check quadratic convergence of our implementation on the following
test case.

Test case 1a: second hook at (a, b) = (1,−0.3), lengths of the bars: L =
(0.4, 0.3, 0.25, 0.2, 0.4), and initial positions of the chain joints: (0.2,−0.5),
(0.4,−0.6), (0.6,−0.8), and (0.8,−0.6).

The results obtained with test case 1a are shown in figure 14.5. Convergence
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Fig. 14.5. Test case 1a

with options.tol(1 : 4) = 10−10 is obtained in 6 iterations. The picture
on the left shows the initial position of the chain (thin solid bars), the 5
intermediate positions (dashed bars) and the final position (bold solid bars).
The picture on the right gives a plot of the ratios ‖F (zk+1)‖2/‖F (zk)‖22 and
‖sk+1‖2/‖sk‖22, for k = 1, . . . , 5. The boundedness of these ratios leaves no
doubt on the quadratic convergence of the sequence {zk} to its limit.
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Experimenting with the Newton Method

The test case 1a reveals the ideal behavior of Newton’s method: quadratic
convergence is obtained when the initial position of the chain is close to a reg-
ular solution. This solution is a strict local minimum (the smallest eigenvalue
of the reduced Hessian of the Lagrangian Z−>

∗ L∗Z−
∗ , for some orthonormal

basis Z−
∗ , is positive) and probably the global one.

Other solutions can be found by Newton’s method with the same data,
and those are not local minima. This is the case with the following two
starting points.

Test case 1b: identical to test case 1a, except that the initial positions of
the chain joints are (0.2, 0.5), (0.4, 0.6), (0.6, 0.8), and (0.8, 0.6).

Test case 1c: identical to test case 1a, except that the second hook at (a, b) =
(0.8,−0.3) and that the initial positions of the chain joints are (0.3, 0.3),
(0.5, 0.4), (0.3, 0.4), and (0.6, 0.3).

The resulting equilibria are shown in figure 14.6. The picture on the left

Fig. 14.6. Test cases 1b and 1c: a maximum (left) and a stationary point (right)

shows a local maximum (the largest eigenvalue of the reduced Hessian of the
Lagrangian is negative). The right hand side picture shows a stationary point
that is neither a minimum nor a maximum (the 3× 3 reduced Hessian of the
Lagrangian has two negative eigenvalues and a positive one).

The next two examples have been built to show cases without convergence.

Test case 1d: identical to test case 1a, except that the initial positions of
the chain joints are (0.2,−0.5), (0.4, 1.0), (0.6,−0.8), and (0.8,−0.6) (hence,
only the y-coordinate of the second joint has been modified).

Test case 2a: second hook at (a, b) = (2, 0), lengths of the bars: L = (1, 1),
and initial position of the chain joint: (1.5, −0.5).

The results are shown in figure 14.7. In the left picture, we have only plotted
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Fig. 14.7. Test cases 1d, 2a, and 2b: non convergence in (x, λ) (left), non conver-
gence in λ (middle), and convergence in (x, λ) (right)

the position of the chain at the first 10 iterations, since apparently Newton’s
method does not converge. The generated sequence has a typical erratic be-
havior. By chance, one of these iterates may fall into the neighborhood of
convergence of a stationary point, but this does not occur during the first 50
iterations. The middle picture is more puzzling, since it looks as if the algo-
rithm converges. This is actually the case for the primal variables x (giving
the position of the chain), which converge to the single feasible joint (1, 0),
but the dual variables diverge (their norm blows up). This reflects the fact
that the optimal solution does not satisfy the KKT conditions (the Jacobian
of the equality constraint in not surjective at the solution and there is no
optimal multipliers); in fact, a weighty chain formed of two horizontal bars
is not physically possible. The situation is quite different for the similar test
case 2b below.

Test case 2b: second hook at (a, b) = (0,−2), lengths of the bars: L = (1, 1),
and initial position of the chain joint: (0.5, −0.5).

The result is shown in the right hand side picture in figure 14.7: convergence
in both (x, λ) is obtained in 17 iterations.

We conclude with the following test case and let the reader guess whether
the position of the chain given in figure 14.8 is a local minimum.

Test case 3: second hook at (a, b) = (0,−1) and lengths of the bars: L = (0.5,
0.5, 2.0, 0.4, 0.4).

Notes

The operators A−, Z−, and Z defined in § 14.2 were introduced by Gabay
[137]. They have allowed us to use the same formalism for the optimal con-
trol and orthogonal settings. We have seen that convergence results need to
have a smooth map x 7→ (A−

x , Z
−
x , Zx). It is usually difficult to guarantee

this smoothness in a large region (for example there is no continuous basis
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Fig. 14.8. Test case 3: is this a stable static equilibrium position?

mapping x 7→ Z−
x on a sphere of even dimension). Even locally, standard

procedures such as the QR factorization presented in § 14.2 may compute a
noncontinuous basis mapping [83]. This issue has been examined by several
authors, who have proposed procedures for computing a smoothly varying
sequence of matrices Z−

k when approaching a solution: see [83, 157, 24, 68].
The connection between the symmetry of g′(x)Z−(x) and the choice of basis
of the tangent space is discussed in [149; § 3].

The accuracy of the computation of the Newton step by the reduced sys-
tem approach (see § 14.4) crucially depends on the choice of operators A−

and Z−. When these are obtained from the partitioning of A into
(
B N

)
,

with a nonsingular B, and from a Gaussian factorization of B, Fletcher and
Jonhson [129] recommend to use Gaussian elimination on the whole ma-
trix A> to get

A> =

(
L1

L2

)
U,

where L1 is unit lower triangular and U is upper triangular. The elements
of L1 and L2 can be guaranteed to be not bigger than 1 in absolute value
(e.g., because the elements of N> are taken into account in the choice of the
pivots). This approach provides well conditioned basis Z− and a solution to
the Newton system that is less sensitive to the ill-conditioning of A and that
of the reduced Hessian of the Lagrangian.

The presentation of the reduced Hessian method given in § 14.5 fol-
lows [145]. This algorithm, condensed in formula (14.40), was introduced
by Coleman and Conn [81], who proved convergence of the sequence {xk}.
Superlinear (or quadratic) convergence of the sequence {yk} was observed
independently by Hoyer [197], Gilbert [145], and Byrd [64]. The simplified
Newton method (14.41) has been studied by many authors: Murray and
Wright [271], Powell [292], Gabay [138], Nocedal and Overton [276], Byrd
and Nocedal [67], to mention a few. Newton’s method on the reduced system
(14.37) is considered by Goodman [177], who analyses its links with Newton’s
algorithm (14.5)–(14.6).
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Exercises

14.1. Nonconvergence with a step computed by (14.2). Consider the problem in
x = (x1, x2) ∈ R

2: 
minx −ax2

1 + 2x2

x2
1 + x2

2 = 1,

where a ∈ ]0, 1[. Show that the unique solution x∗ = (0,−1) to this problem
can be repulsive for an algorithm based on (14.2): for x on the constraint
manifold, arbitrary close to (but different from) the solution, and for a
stationary point d of (14.2), x + d is further from the solution than x.

14.2. Inertia of the matrix K in (14.9). The inertia i of a matrix is the triple
(n−, n0, n+) formed by the numbers of its negative, null, and positive eigen-
values respectively. Let K be the matrix defined in (14.9), where L is an
n×n symmetric matrix and A is an m×n surjective matrix (hence m ≤ n).
Show that

i(K) = i(Z−>
LZ

−) + (m, 0, m),

where the columns of Z− form a basis of N(A) (see [90, 72, 179, 244] for
related results).

[Hint : Prove the following claims and conclude: (i) n0(K) = n0(Z
−>LZ−);

(ii) there is no restriction in assuming that Z−>LZ− is nonsingular (use a
perturbation argument, for instance), which is supposed from now on; (iii)
i(K) = i(Z−>LZ−) + i(Σ), where

Σ :=

„
S Im

Im 0

«

for some m×m symmetric matrix S (use the matrix bA− defined by (14.21)
and Sylvester’s law of inertia: i(PKP>) = i(K) if P is nonsingular); (iv)
i(Σ) = (m, 0, m).]

14.3. Regular stationary points are isolated. Let (x∗, λ∗) be a regular stationary
point of problem (PE). Show that there is a neighborhood of (x∗, λ∗) in
R

n × R
m containing no other stationary point than (x∗, λ∗).

14.4. A view of the reduced Hessian of the Lagrangian. Let f : Ω → R and
c : Ω → R

m be twice differentiable functions defined in a neighborhood Ω

of a point x∗ ∈ R
n and denote `(x, λ) := f(x)+λ>c(x), for (x, λ) ∈ Ω×R

m,
and L∗ := ∇2

xx`(x∗, λ∗). Suppose that ∇x`(x∗, λ∗) = 0 for some λ∗ ∈ R
m (it

is not assumed that c(x∗) = 0) and that A∗ := c′(x∗) is surjective. Let Z−
∗

be an n× (n−m) matrix whose columns form a basis of N(A∗). Show that
one can find a twice differentiable parametric representation ϕ : U ⊂ R

n−m

→ Mx∗
⊂ R

n of the manifold Mx∗
:= {x ∈ Ω : c(x) = c(x∗)} around x∗

defined in a neighborhood U of 0, such that ϕ(0) = x∗, ∇(f ◦ ϕ)(0) = 0,
and ∇2(f ◦ ϕ)(0) = Z−>

∗ L∗Z
−
∗ is the reduced Hessian of the Lagrangian.

14.5. Right inverse and complementary subspace. Let A be an m × n surjective
matrix and S be a subspace of R

n, complementary to N(A) (i.e., N(A)∩S =
{0} and dimS = m). Show that there exists a unique right inverse A− of A

such that R(A−) = S.
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14.6. On the orthogonal decomposition. Let A be an m×n surjective matrix, A−

be a right inverse of A and Z− be a matrix whose columns form a basis
of N(A). Show that A−A + Z−Z−> = In if and only if A− = A>(AA>)−1

(i.e., A− is the unique right inverse of A whose range space is perpendicular
to N(A)) and Z−>Z− = In−m (i.e., the columns of Z− are orthonormal).

14.7. On the oblique right inverse. Let A be an m× n surjective matrix. Find an
n × n symmetric matrix M , that is positive definite in the null space of A,
such that the right inverse bA− of A defined by (14.20) is the one given by
formula (14.16). The same question to recover the right inverse given by
formula (14.17).

14.8. Quadratic convergence of {(xk, yk)} without linear convergence of {xk}. Let
y1 ∈ ]0, 1[ and consider the sequence {(xk, yk)}k≥1 ∈ R

2 generated by
yk+1 = y2

k, xk+1 = xk if k is odd and xk+1 = y2
k+1 if k is even. Show

that {(xk, yk)} converges quadratically to (0, 0), while {xk} does not even
converge linearly to 0.

14.9. Least-squares multiplier. Suppose that A(x) = c′(x) is surjective and let
A−(x) be a right inverse of A(x). Find a least-squares problem, to which
the least-squares multiplier λLS(x) = −A−(x)>∇f(x) is the solution.

[Hint : The least-squares problem has the form minλ∈Rm ‖M∇x`(x, λ)‖2, for
some nonsingular matrix M to be found.]

14.10. Quadratically convergent fixed point iterations. Let Ψ : R
n → R

n be a C1,1

map in the neighborhood of one of its fixed points x∗ (i.e., Ψ(x∗) = x∗).
Suppose that Ψ ′(x∗) = 0. Show that if x1 is sufficiently close to x∗, then
the sequence generated by xk+1 = Ψ(xk), for k ≥ 1, converges quadratically
to x∗.

14.11. Convergence of the simplified Newton method. Suppose that f and c are
twice differentiable at a regular stationary point x∗ of problem (PE) (this
allows the use of the operators Z−(x) and A−(x) introduced in § 14.2, for x

near x∗) and that the reduced gradient g is differentiable near x∗. Suppose
also that c′, g′, Z− and A− are Lipschitzian near x∗, and that the matrix
Hk used in the simplified Newton method (14.41) satisfies Hk − H∗ =
O(‖xk − x∗‖). Then, there exists a neighborhood V of x∗ such that, when
the first iterate x1 ∈ V , Algorithm (14.41) is well defined and generates a
sequence {xk} converging quadratically in two steps to x∗.

[Hint : Show that xk+1−x∗ = Z−
∗ (Z∗−H−1

∗ Z−>
∗ L∗)(xk−x∗)+O(‖xk−x∗‖2),

applying a technique similar to the one used in the proof of theorem 14.7,
and conclude.]



15 Local Methods for Problems with

Equality and Inequality Constraints

In this chapter, we consider the general minimization problem (PEI ), with
equality and inequality nonlinear constraints, which we recall in figure 15.1.
The notation used to describe this problem was given in the introduction,

(PEI)





minx f(x)
cE(x) = 0
cI(x) ≤ 0
x ∈ Ω

x∗

{x ∈ Ω : cE(x) = 0}

Fig. 15.1. Problem (PEI) and its feasible set

on page 193. As in chapter 14, we always suppose that cE is a submersion
(i.e., c′E(x) is surjective or onto for all x in the open set Ω); hence the set
c−1
E (0) := {x ∈ Ω : cE(x) = 0} is a submanifold of R

n. The feasible set of
(PEI ), denoted by

X := {x ∈ Ω : cE(x) = 0, cI(x) ≤ 0},

is then the part of this manifold formed of the points also satisfying the
inequality constraints ci(x) ≤ 0 for all i ∈ I . The set delimited by the curves
of c−1

E (0) in figure 15.1 is a typical example of feasible set for problem (PEI).
We have put the solution x∗ on the boundary of this set, but nothing imposes
that this actually occurs. The solution could just as well be inside the curved
triangle without touching the solid lines. Finding a solution like the one in
figure 15.1 is usually more difficult than when there is no active inequality
constraints (and when this fact is known). An additional fearsome difficulty,
not present in problem (PE), is indeed linked to the determination of the
active constraints at the solution.

Let us recall the first-order optimality conditions of problem (PEI ): when
the constraints are qualified at a solution x∗ ∈ X , there exists a Lagrange
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multiplier vector λ∗ ∈ R
m such that

(KKT)





(a) ∇f(x∗) +A(x∗)>λ∗ = 0
(b) cE(x∗) = 0, cI(x∗) ≤ 0
(c) (λ∗)I ≥ 0
(d) (λ∗)>I cI(x∗) = 0.

(15.1)

This chapter is organized as follows. In § 15.1, the SQP algorithm is in-
troduced as a Newton-like approach to solve the KKT system (15.1). We
shall stress the fact that, in the presence of nonconvexity, the solution to
the osculating quadratic problem has to be selected with care. In § 15.2, we
give conditions ensuring primal-dual quadratic convergence. First, the case
when strict complementarity holds is examined. The active constraints at
the solution are shown to be identified by the osculating quadratic prob-
lem as soon as the primal-dual iterate is in some neighborhood of a regular
stationary point. The algorithm then reduces to Newton’s method for the
problem where the active constraints are considered as equality constraints,
so that the local convergence result of theorem 14.4 can be applied. Next, we
focus on the case without strict complementarity and show that quadratic
convergence still holds, although the active constraint are no longer necessar-
ily correctly identified by the osculating quadratic program. Necessary and
sufficient conditions for primal superlinear convergence are given in § 15.3.

15.1 The SQP Algorithm

Introduction of the Algorithm

The Sequential Quadratic Programming (SQP) algorithm is a form of New-
ton’s method to solve problem (PEI ) that is well adapted to computation.
We have seen in chapter 14 that, to introduce such an algorithm, it is a good
idea to start with the linearization of the optimality conditions and we follow
the same approach here. Let us linearize (15.1) at the current point (xk, λk),
denoting by (dk, µk) the change in the variables. This one solves the following
system of equalities and inequalities in the unknown (d, µ):





Lkd+A>
kµ = −∇x`k

(ck +Akd)
# = 0

(λk + µ)I ≥ 0
(λk + µ)>I (ck)I + (λk)>I (Akd)I = 0.

(15.2)

As before, we use the notation ck := c(xk), Ak := A(xk) := c′(xk),
∇x`k = ∇x`(xk, λk) and Lk := ∇2

xx`(xk, λk). The notation (·)# was defined
on page 194.

Because of its inequalities, (15.2) is not simple to solve. The key observa-
tion is that a good interpretation can be obtained if we add to the last equa-
tion the term (µ)>I (Akd)I . Compared with the others, this term is negligible
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when the steps µk and dk are small, which should be the case when the iter-
ates are close to a solution to (PEI ). Introducing the unknown λQP := λk +µ,
the modified system (15.2) can then be written





Lkd+A>
kλ

QP = −∇fk

(ck +Akd)
# = 0

(λQP)I ≥ 0
(λQP)>I (ck +Akd)I = 0.

(15.3)

A remarkable fact, easy to check, is that (15.3) is the optimality system of
the following osculating quadratic problem (QP)





mind ∇f(xk)>d+ 1
2d

>Lkd
cE(xk) +AE(xk)d = 0
cI(xk) +AI(xk)d ≤ 0.

(15.4)

This QP is easily obtained from (PEI ). Its constraints are those of (PEI),
linearized at xk . Its objective function is hybrid, with ∇f(xk) in the linear
part and the Hessian of the Lagrangian in its quadratic part. The osculating
quadratic problem (14.8), associated with the equality constrained problem
(PE), has made us familiar with the structure of (15.4).

We call Sequential Quadratic Programming (SQP) the algorithm generat-
ing a sequence {(xk, λk)} of approximations of (x∗, λ∗) by computing at each
iteration a primal-dual stationary point (dk , λ

QP

k ) of the quadratic problem
(15.4), and by setting xk+1 = xk + dk and λk+1 := λQP

k .

Sequential Quadratic Programming (SQP):

An initial iterate (x1, λ1) is given.
Compute c(x1), ∇f(x1), and A(x1).
Set k = 1.

1. Stop if the KKT conditions (15.1) holds at (x∗, λ∗) ≡ (xk, λk)
(optimality is reached).

2. Compute L(xk, λk) and find a primal-dual stationary point of
(15.4), i.e., a solution (dk , λ

QP

k ) to (15.3).
3. Set xk+1 := xk + dk and λk+1 := λQP

k .
4. Compute c(xk+1), ∇f(xk+1), and A(xk+1).
5. Increase k by 1 and go to 1.

This algorithm assumes that the QP (15.4) always has a solution or, equiv-
alently, that it is feasible and bounded (theorem 19.1). Adapted remedies
must be implemented when this does not happen, such as the elastic mode
of [156], which deals with infeasible linearized constraints.
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What is gained with this formulation of Newton’s method is that (15.4)
is simpler to solve than (15.2). In fact, various quadratic programming tech-
niques can be used to solve (15.4): active-set strategies, interior-point meth-
ods, dual approaches, etc. We also see that the combinatorial aspect of the
original problem, which lies in the determination of the active inequality con-
straints, is transferred to the QP (15.4), where it is simpler to deal with than
in the original nonlinear problem. However, the SQP algorithm has its own
cost, which should not be overlooked. Indeed, all constraints must be lin-
earized, including the inactive inequalities, which should play no role when
the iterates are close to a solution. If these are many, the algorithm may
loose some efficiency. Careful implementations use techniques to deal more
efficiently with this situation (see for example [324, 301]).

Discarding Parasitic Displacements

The implementation of the SQP algorithm and the analysis of its local con-
vergence are more complex than when only equality constraints are present.
In fact, the quadratic problem (15.4) may be infeasible (its feasible set may
be empty) or unbounded (the optimal value is −∞), or it may have mul-
tiple local solutions (a nonconvexity effect), even in the neighborhood of a
solution (x∗, λ∗) to (PEI ). This may happen even when (x∗, λ∗) enjoys nice
properties such as the second-order sufficient conditions of optimality, strict
complementarity, and constraint qualification. Here is an example.

Example 15.1. We want to minimize the logarithm of (1+x) for x restricted
to the interval [0, 3]. In canonical form, the problem is





minx log(1 + x)
−x ≤ 0
x− 3 ≤ 0.

The logarithm has been used to introduce nonconvexity in the problem, since
by the monotonicity of the logarithmic function, it is equivalent to minimize
(1+x) or log(1+x). It is easily checked that this problem has a unique primal-
dual solution (x∗, λ∗) = (0, (1, 0)), which satisfies the second-order sufficient
conditions of optimality, strict complementarity, and the constraint qualifica-
tion (LI-CQ). It is therefore a “good” solution. However, the osculating QP
(15.4) at this solution can be written





mind d− 1
2d

2

−d ≤ 0
−3 + d ≤ 0.

This problem has three primal-dual stationary points (d, λ): a local minimum
(0, (1, 0)), a maximum (1, (0, 0)) and a global minimum (3, (0, 2)). It would
be unbounded without the constraint x ≤ 3 in the original problem, which
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is inactive at the solution. Among these stationary points, only the first one
is suitable: it gives a zero displacement (which is to be expected from an
algorithm started at a solution!), and optimal multipliers. The other two
stationary points are parasitic.

The situation of this example can only occur if Lk is not positive definite.
Otherwise, problem (15.4) is strictly convex and therefore has a unique so-
lution as soon as the feasible set is nonempty. The convergence results given
in § 15.2 assume that the parasitic solutions to the QP, like those revealed in
the example, are discarded. Specifically, this is done by assuming that dk is
the minimum norm solution to the QP.

15.2 Primal-Dual Quadratic Convergence

We first analyze the well-posedness of the SQP algorithm and the conver-
gence of the generated primal-dual sequences, when the first iterate is chosen
in some neighborhood of a “regular” stationary point (a notion that is made
precise in the statement of theorem 15.2 below) that satisfies strict comple-
mentarity. At such a stationary point, (LI-CQ) holds.

Theorem 15.2 highlights an interesting property of the SQP algorithm: in
some neighborhood of a stationary point satisfying the assumptions above,
the active constraints of the osculating quadratic problem (15.4) are the same
as those of (PEI ). We have said that the identification of the active constraints
is a major difficulty when solving inequality constrained problems and that,
in the SQP algorithm, this difficulty is transferred to the osculating quadratic
problem (QP), where it is easier to deal with. The result below tells us more:
the active constraints of an osculating QP at one iteration are likely to be
the same at the next iteration, at least close to a regular stationary point.
Numerically, this means that, at least asymptotically, it is advantageous to
solve the osculating QP’s by algorithms that can take advantage of a good
guess of the active constraints. Then, the combinatorial problem of determin-
ing which are the active constraints at the solution no longer occurs during
the last iterations of the SQP algorithm.

Observe that, as this was already the case for equality constrained prob-
lems, the SQP algorithm may well generate a sequence that converges to
a stationary point of (PEI ) that is not a minimum point of the problem.
Observe indeed that, at any stationary point (x∗, λ∗) of (PEI ), (0, λ∗) is a
primal-dual solution to the quadratic problem, so that the SQP algorithm
suggests not leaving x∗. This is due to the fact that SQP has been designed
by linearizing the optimality conditions and therefore the algorithm makes
no distinction between minima, maxima, or other stationary points.

Theorem 15.2 (primal-dual quadratic convergence of the SQP al-
gorithm). Suppose that f and c are of class C2 in a neighborhood of a
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stationary point x∗ of (PEI ), with associated multiplier λ∗. Suppose also that
strict complementarity holds and that (x∗, (λ∗)E∪I0

∗
) is a regular stationary

point of the equality constrained problem

{
minx f(x)
ci(x) = 0, for i ∈ E ∪ I0

∗ ,
(15.5)

in the sense of definition 14.2. Consider the SQP algorithm, in which dk

is a minimum norm stationary point of the osculating quadratic problem
(15.4). Then there is a neighborhood V of (x∗, λ∗) such that, if the first iterate
(x1, λ1) ∈ V :

(i) the SQP algorithm is well defined and generates a sequence {(xk, λk)}
that converges superlinearly to (x∗, λ∗);

(ii) the active constraints of the osculating quadratic problem (15.4) are
those of problem (PEI );

(iii) if, in addition, f and c are of class C2,1 in a neighborhood of x∗, the
convergence of {(xk, λk)} is quadratic.

Proof. The idea of the proof is to show that, close to (x∗, λ∗), the selected
minimum norm stationary point of the osculating quadratic problem (15.4)
and the primal-dual Newton step for (15.5) are identical. The result then
follows from theorem 14.4.

Suppose that (x, λ) is close to (x∗, λ∗). Since (x∗, (λ∗)E∪I0
∗
) is a regular

stationary point of (15.5), c′E∪I0
∗

(x∗) is surjective and the quadratic program

in d̃ {
mind̃ ∇f(x)>d̃+ 1

2 d̃
>L(x, λ)d̃

ci(x) + c′i(x) · d̃ = 0, for i ∈ E ∪ I0
∗

(15.6)

has a unique primal-dual stationary point. We denoted it by (d̃, λ̃E∪I0
∗
) and

form with λ̃E∪I0
∗

a vector λ̃ ∈ R
m, by setting λ̃i = 0 for i ∈ I\I0

∗ .

Let us show that (d̃, λ̃) is a stationary point of the osculating quadratic
problem (15.4), if (x, λ) := (xk, λk) is in some neighborhood of (x∗, λ∗). We
only need to show that ci(x) + c′i(x) · d̃ ≤ 0 for i ∈ I\I0

∗ and λi ≥ 0 for
i ∈ I0

∗ . From theorem 14.4, (x + d̃, λ̃) is close to (x∗, λ∗), when (x, λ) is
close to (x∗, λ∗). Therefore, for i ∈ I0

∗ , λ̃i ≥ 0, since (λ∗)i > 0 by strict
complementarity. On the other hand, d̃ is small, so that ci(x) + c′i(x) · d̃ ≤ 0
for i ∈ I\I0

∗ . Hence (d̃, λ̃) is a stationary point of (15.4). We deduce from this
that, for (x, λ) close to (x∗, λ∗), the SQP algorithm is well defined and d is
small (it is a minimum norm stationary point and d̃ is small by theorem 14.4).

Let us now show that the pair (d, λQP) := (dk , λ
QP

k ) formed of the mini-

mum norm solution to the QP and its associated multiplier is in fact (d̃, λ̃), if
(x, λ) is in some neighborhood of (x∗, λ∗). From theorem 14.4, this will con-
clude the proof. For (x, λ) close to (x∗, λ∗) and i ∈ I\I0

∗ , ci(x)+ c′i(x) · d < 0,
so that λQP

i = 0 = λ̃i. Because of the uniqueness of the stationary point of
(15.6), it remains to show that ci(x) + c′i(x) · d = 0 for all i ∈ I0

∗ and (x, λ)
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close to (x∗, λ∗). If this is not the case, there would exist an index j ∈ I0
∗ and

a sequence (x, λ) → (x∗, λ∗), such that cj(x) + c′j(x) · d < 0. Then λQP

j = 0
and

∇f(x) + L(x, λ)d+
∑

i∈(E∪I0
∗
)\{j}

λQP

i ∇ci(x) = 0.

Since ∇f(x)+L(x, λ)d→ ∇f(x∗) (d is smaller than d̃, which converges to 0)
and c′E∪I0

∗

(x∗) is surjective, λQP

i for i ∈ (E ∪ I0
∗ )\{j} would converge to some

limit, λ̄i say. Taking the limit in the equation above would give

∇f(x∗) +
∑

i∈(E∪I0
∗
)\{j}

λ̄i∇ci(x∗) = 0.

Therefore, we would have found two different multipliers: λ̄ (we set λ̄i = 0
for i 6∈ (E ∪ I0

∗ )\{j}) and λ∗ (λ̄ 6= λ∗ since λ̄j = 0 and (λ∗)j > 0 by strict
complementarity). This would be in contradiction with the uniqueness of the
multiplier, which follows from the surjectivity of c′E∪I0

∗

(x∗).

It is clear from the proof of theorem 15.2 that it is not really necessary
to take for dk, a minimum norm stationary point of the osculating quadratic
problem (15.4), some dmin

k say. The result is still true if the SQP algorithm
ensures that dk → 0 when dmin

k → 0. For example, it would suffice to compute
a stationary point dk satisfying an estimate of the form ‖dk‖ ≤ C‖dmin

k ‖, for
some positive constant C.

Theorem 15.4 below considers the case when strict complementarity does
not hold, but assumes that (x∗, λ∗) satisfies the second order sufficient condi-
tions of optimality and linear independence of the active constraint gradients
(LI-CQ). The result is also local, in the sense that the first iterate (x1, λ1)
is supposed to be close enough to (x∗, λ∗). The proof of this result is more
difficult. This is because one can no longer use theorem 14.4 as in the pre-
ceding proof: the SQP step may be different from the Newton step on (15.5),
however close to (x∗, λ∗) the current iterate (x, λ) can be. In other words,
the property of local identification of the active constraints by the osculating
quadratic problem no longer holds when complementarity is not strict. Here
is an example.

Example 15.3. Consider the problem in x ∈ R:
{

minx x
2 + x4

x ≤ 0.

The solution is x∗ = 0 and λ∗ = 0, so that strict complementarity does
not hold. On the other hand, the constraint is qualified at x∗ in the sense
of (LI-CQ) and the second order sufficient conditions of optimality hold.
The osculating quadratic problem at x (it does not depend on λ since the
constraint is linear) is the problem in d ∈ R:
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{
mind (2x+ 4x3)d+ (1 + 6x2)d2

x+ d ≤ 0.

If x > 0, x + d = 0 and the solution is obtained in one step. But if x < 0,
x+ d = 4x3/(1+6x2) ∈ ]2x/3, 0[, so that the linearized constraint is inactive
and the SQP step is different from the Newton step on (15.5). In this case,
however, the convergence is cubic in x (also in (x, λ)): |x + d|/|x|3 ≤ 4.

The preceding example suggests that fast convergence can still be ob-
tained even without strict complementarity. This is confirmed by the follow-
ing theorem.

Theorem 15.4 (primal-dual quadratic convergence of the SQP al-
gorithm). Suppose that f and c are of class C2,1 in a neighborhood of a
local solution x∗ to (PEI). Suppose also that the constraint qualification (LI-
CQ) is satisfied at x∗ and denote by λ∗ the associated multiplier. Finally,
suppose that the second-order sufficient condition of optimality (13.8) is sat-
isfied. Consider the SQP algorithm, in which dk is a minimum norm sta-
tionary point of the osculating quadratic problem (15.4). Then there exists a
neighborhood V of (x∗, λ∗) such that, if the first iterate (x1, λ1) ∈ V , the SQP
algorithm is well defined and the sequence {(xk, λk)} converges quadratically
to (x∗, λ∗).

Proof. The following lemma is assumed (see [308]).

Lemma 15.5. Under the conditions of theorem 15.4, there exists a neighbor-
hood of (x∗, λ∗) such that (15.3) has a local solution and the local solution
(dk, λ

QP

k ) with dk of minimum norm satisfies:

‖dk‖+ ‖λQP

k − λ∗‖ ≤ C(‖xk − x∗‖+ ‖λk − λ∗‖).

From this lemma, the algorithm is well defined if (xk, λk) remains close to
(x∗, λ∗). This will result from the estimates obtained below.

Let us set
δk = ‖xk − x∗‖+ ‖λk − λ∗‖.

From lemma 15.5, we have

dk = O(δk) and λk+1 − λ∗ = O(δk), (15.7)

where dk is a minimum-norm solution to (15.4) and λk+1 = λQP

k is the as-
sociated multiplier. We deduce that, for i ∈ I\I0

∗ and δk small enough, we
have

ci(xk) + c′i(xk) · dk < 0.

Hence (λk+1)i = 0, and with the set of indices

J = E ∪ I0
∗ ,
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the optimality of dk is expressed by

Lkdk +AJ(xk)>(λk+1)J +∇fk = 0.

A Taylor expansion of the left-hand side, using ∇x`(x∗, λ∗) = 0, xk+1 =
xk + dk and (15.7), leads to

0 = ∇x`(xk , λ∗) + L(xk, λk)dk +AJ (xk)>(λk+1 − λ∗)J

= L∗(xk+1 − x∗) +AJ(x∗)
>(λk+1 − λ∗)J +O(δ2k). (15.8)

Expand likewise the constraints of the osculating quadratic problem: we have
for i ∈ J

ci(xk) + c′i(xk) · dk = c′i(x∗) · (xk+1 − x∗) + (γk)i, (15.9)

where (γk)i = O(δ2k).
From the assumption, AJ (x∗) is surjective, so we can find a vector

vk ∈ R
m such that

AJ (x∗)vk = (γk)J and vk = O(δ2k).

The last estimate can be obtained by taking a minimum-norm vk satisfying
the first equation. With the notation

wk = xk+1 − x∗ + vk,

(15.9) becomes for i ∈ J :

ci(xk) + c′i(xk) · dk = c′i(x∗) · wk. (15.10)

The complementarity conditions of the osculating quadratic problem can be
written

(λk+1)i(ci(xk) + c′i(xk) · dk) = 0, for all i ∈ I. (15.11)

Hence, if (λ∗)i > 0 and δk small enough, we have ci(xk) + c′i(xk) · dk = 0.
Then we obtain from (15.10)

{
c′i(x∗) · wk = 0 if i ∈ E ∪ I0+

∗
c′i(x∗) · wk ≤ 0 if i ∈ I00

∗ .
(15.12)

This shows that wk lies in the critical cone C∗, defined by (13.6). From the
second-order sufficiency condition, we then have for a constant C1 > 0:

C1‖wk‖2 ≤ w>
kL∗wk. (15.13)

Now compute w>
kL∗wk. From (15.8) and vk = O(δ2k),

w>
kL∗wk = −(λk+1 − λ∗)>JAJ(x∗)wk +O(‖wk‖δ2k) ≤ C2‖wk‖δ2k,

since (λk+1−λ∗)>JAJ(x∗)wk = 0 thanks to (15.11) and (15.12). With (15.13),
we then obtain
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C1‖wk‖ ≤ C2δ
2
k.

Since vk = O(δ2k), we deduce

xk+1 − x∗ = O(δ2k).

On the other hand, this estimate, (15.8) and the injectivity of AJ (x∗)> show
that

(λk+1 − λ∗)J = O(δ2k).

Since (λk+1)i = (λ∗)i = 0 for i ∈ I\I0
∗ , these last two estimates show the

quadratic convergence of the sequence {(xk, λk)}.

15.3 Primal Superlinear Convergence

Theorem 15.4 gives conditions for the quadratic convergence of {(xk, λk)}.
Actually, this implies neither quadratic nor superlinear convergence for {xk}
(see exercise 14.8). Nevertheless, the following result (theorem 15.7) shows
that, for the SQP algorithm using the Hessian of the Lagrangian in the
quadratic programs (15.4), the sequence {xk} converges superlinearly. This
result is interesting because it is often desirable to have fast convergence of
this sequence.

We consider for this an algorithm slightly more general than the one
described in § 15.1, which encompasses the quasi-Newton versions of the
method. We suppose that {xk} is generated by

xk+1 = xk + dk,

where dk is a stationary point of the quadratic problem
{

mind ∇f(xk)>d+ 1
2d

>Mkd
(c(xk) +A(xk)d)# = 0.

(15.14)

This is the same problem as (15.4), but the Hessian of the Lagrangian Lk is
replaced by a symmetric matrix Mk. Incidentally, note that the multiplier λk

is no longer explicitly used in the algorithm. Theorem 15.7 gives a necessary
and sufficient condition on Mk to guarantee superlinear convergence of {xk}.

The optimality conditions of (15.14) are (λQP

k is the multiplier associated
with the constraints):





(a) ∇fk +Mkdk +A>
kλ

QP

k = 0
(b) (ck +Akdk)# = 0
(c) (λQP

k )I ≥ 0
(d) (λQP

k )I(ck +Akdk)I = 0

(15.15)

We shall need the orthogonal projector onto the critical cone C∗ at a
solution x∗ to (PEI ) (see (13.6)). We denote this (nonlinear) projector by P∗.
It is well defined since C∗ is a nonempty closed convex set.
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Lemma 15.6. If λ ∈ R
m is such that λI00

∗
≥ 0 and λI\I0

∗
= 0, then

P∗A>
∗λ = 0.

Proof. Take λ ∈ R
m as in the terms of the lemma and h ∈ C∗. Then

(A∗h)E∪I0+
∗

= 0, (A∗h)I00
∗
≤ 0, and we have

(0−A>
∗ λ)

>(h− 0) = −λ>A∗h = −λ>I00
∗

(A∗h)I00
∗
≥ 0.

The characterization (13.12) of the projection yields the result.

Theorem 15.7 (primal superlinear convergence of the SQP algo-
rithm). Suppose that f and c are twice differentiable at x∗ ∈ Ω. Suppose also
that (x∗, λ∗) is a primal-dual solution to (PEI ) satisfying (LI-CQ) and the
second-order sufficient condition of optimality (13.8). Consider the sequence
{(x∗, λ∗)} generated by the recurrence xk+1 = xk + dk and λk+1 = λQP

k ,
where (dk, λ

QP

k ) is a primal-dual solution to (15.14). Suppose that {(xk, λk)}
converges to (x∗, λ∗). Then {xk} converges superlinearly if and only if

P∗(L∗ −Mk)dk = o(‖dk‖), (15.16)

where P∗ is the orthogonal projector onto the critical cone C∗.

Proof. Using (15.15)a, ∇x`(x∗, λ∗) = 0 and λk+1 → λ∗, we have

−Mkdk = ∇x`(xk, λk+1)

= ∇x`(x∗, λk+1) + L(x∗, λk+1)(xk − x∗) + o(‖xk − x∗‖)
= A>

∗ (λk+1 − λ∗) + L∗(xk − x∗) + o(‖xk − x∗‖).

Hence

(L∗ −Mk)dk = A>
∗ (λk+1 − λ∗) + L∗(xk+1 − x∗) + o(‖xk − x∗‖). (15.17)

To show that condition (15.16) is necessary, assume that xk+1 − x∗ =
o(‖xk − x∗‖). Then (15.17) gives

(L∗ −Mk)dk = A>
k (λk+1 − λ∗) + o(‖xk − x∗‖).

Project with P∗, which is Lipschitzian (see (13.15)), and observe that, from
(15.15)c and (15.15)d, (λk+1 − λ∗) satisfies for large k the conditions on λ of
lemma 15.6:

P∗(L∗ −Mk)dk = P∗A
>
∗ (λk+1 − λ∗) + o(‖xk − x∗‖) = o(‖xk − x∗‖).

Condition (15.16) follows, because (xk − x∗) ∼ dk by lemma 13.5.
Conversely, let us show that condition (15.16) is sufficient. For i ∈ J :=

E ∪ I0
∗ , we have

ci(xk) + c′i(xk) · dk = c′i(x∗) · (xk+1 − x∗) + (γk)i,
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where (γk)i = o(‖xk − x∗‖) + o(‖dk‖). Since AJ (x∗) is surjective, (γk)J =
AJ (x∗)vk, for some vk = o(‖xk − x∗‖) + o(‖dk‖). With the notation

wk := xk+1 − x∗ + vk,

there holds
ci(xk) + c′i(xk) · dk = c′i(x∗) · wk, for i ∈ J.

Now ci(xk) + c′i(xk) · dk = 0 for i ∈ E ∪ I0+
∗ and k large enough, so that

{
c′i(x∗) · wk = 0 if i ∈ E ∪ I0+

∗
c′i(x∗) · wk ≤ 0 if i ∈ I00

∗ .

This implies that wk ∈ C∗ for large k (see (13.6)) and that, for some constant
C1 > 0,

C1‖wk‖2 ≤ w>
kL∗wk, for large k. (15.18)

On the other hand, for i ∈ I00
∗ , from (15.15)d, we have 0 = (λk+1)i(ci(xk) +

c′i(xk) · dk) = (λk+1)i(c
′
i(x∗) · wk) and (λ∗)i = 0. While for i ∈ I\I0

∗ ,
(λk+1 − λ∗)i = 0. Therefore

(λk+1 − λ∗)>A∗wk = 0, for large k.

Now, with this equation, (15.17), vk = o(‖xk − x∗‖) + o(‖dk‖), the fact that
u>v ≤ u>P∗v, for all v ∈ R

n and all u ∈ C∗ (see (13.14)), and (15.16), we
find that

w>
kL∗wk = w>

kL∗(xk+1 − x∗) +O(‖wk‖ ‖vk‖)
= w>

k (L∗ −Mk)dk + o(‖wk‖ ‖xk − x∗‖) + o(‖wk‖ ‖dk‖)
≤ w>

k P∗(L∗ −Mk)dk + o(‖wk‖ ‖xk − x∗‖) + o(‖wk‖ ‖dk‖)
= o(‖wk‖ ‖xk − x∗‖) + o(‖wk‖ ‖dk‖).

With (15.18), wk = o(‖xk − x∗‖) + o(‖dk‖); hence

xk+1 − x∗ = o(‖xk − x∗‖) + o(‖dk‖).
The property xk+1 − x∗ = o(‖xk − x∗‖) follows easily.

When there are no inequality constraints, P∗ is the orthogonal projector
onto the null space N(A∗). It is then linear. Given a basis Z−

∗ of N(A∗), it
can be written

P∗ = Z−
∗ (Z−>

∗ Z−
∗ )−1Z−>

∗ .

Since Z−
∗ is injective and Z−>

∗ Z−
∗ is nonsingular, condition (15.16) can be

written

Z−>
∗ (L∗ −Mk)dk = o(‖dk‖) or (Z−>

∗ L∗ − Z−>
k Mk)dk = o(‖dk‖).

To write the last condition, we have supposed that Z−(·) is continuous at x∗
and that {Mk} is bounded. This shows that the important part of Mk is
Z−>

k Mk, which reminds us that only the part Z−>
k Lk of Lk plays a role in

the definition of the Newton direction for equality constrained problems (see
observation 1 on page 235).
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15.4 The Hanging Chain Project III

In this third session, we resume the project on the determination of the
static equilibrium position of a hanging chain, started in § 13.8 and developed
in § 14.7. Our present objective is to implement the local SQP algorithm,
presented on page 257, to be able to take into account the floor constraint.
The algorithm is quite similar to the Newton method implemented in the
second session. The main difference is that the solver of linear equations has
to be replaced by a solver of quadratic optimization problems. This simple
change will have several consequences that are discussed in this section.

It is a good idea to keep the work done in the second session and to use
mi = mI as a flag that makes the sqp function select the type of solver (linear
or quadratic), depending on the presence of inequality constraints. Solving a
linear system is indeed much simpler than solving a quadratic optimization
problem, so that the sqp function must be allowed to take advantage of the
absence of inequality constraints.

Modifications to Bring to the sqp Function

Most of the work has been done in the previous session. There are only two
modifications to bring to the function sqp.

The main change consists in substituting a quadratic optimization solver
(to solve (15.4)) for the linear solver previously used in sqp (see chapter 14).
Writing a solver of quadratic optimization problems is a difficult task. For-
tunately, in our case, the Matlab solver quadprog can be used, so that we
can concentrate on other aspects of the SQP algorithm. Quadprog first finds
an initial feasible point by solving a linear optimization problem and then
uses an active set method to find a solution to the quadratic problem. It can
detect infeasibility and unboundedness.

A second change deals with the determination of the initial dual solution
λ = (λE , λI). Since it is known that λI must be nonnegative, it is better now
to determine λ as a solution to the bound constrained least-squares problem

min
λ=(λE ,λI)∈R

m

λI≥0

1

2
‖∇x`(x, λ)‖22,

instead of using (14.47). This convex quadratic optimization problem always
has a solution (theorem 19.1). It can be solved by quadprog.

Checking the Correctness of the SQP Solver

There is little change to make an error on the part of the simulator dealing
with the inequality constraints, since these are very simple. Nevertheless, it
is better to check it and to verify the implementation of the quadratic solver.
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The same strategy as in the case with equality constrained problems can
be followed: trying to solve more and more difficult problems and check the
quadratic convergence of the generated sequence.

Let us check the quadratic convergence on the following variant of test
case 1a, in which we add a floor constraint.

Test case 1e: same data as for the test case 1a (namely second hook at
(a, b) = (1,−0.3) and bars of lengths L = (0.4, 0.3, 0.25, 0.2, 0.4)) with an
additional floor with parameters (g0, g1) = (−0.35,−0.2) (see the definition
of the floor in (13.25)). The initial positions of the chain joints are (0.1,−0.3),
(0.4,−0.5), (0.6,−0.4), and (0.7,−0.5).

The results obtained with test case 1e are shown in figure 15.2. Convergence

PSfrag replacements

0.1

0.2

0.3

0.4

0
1 2 3 4 5

Fig. 15.2. Test case 1e

with options.tol(1 : 4) = 10−10 is again obtained in 6 iterations. The pic-
ture on the left uses the same conventions as before: the thin solid bars
represent the initial position of the chain, the dashed bars correspond to the
5 intermediate positions (hardly distinguishable), and the bold solid bars are
those of the final optimal position. This one is a local minimum (the multi-
pliers associated with the inequality constraints are positive and the critical
cone is reduced to {0}). The picture on the right gives a plot of the ratios
‖sk+1‖2/‖sk‖22, where sk = zk+1 − zk, for k = 1, . . . , 5. The boundedness of
these ratios shows without any doubt that the sequence {zk} = {(xk, λk)}
converges quadratically to its limit, as predicted by the theory (theorems 15.2
and 15.4).

Experimenting with the SQP Algorithm

A first observation, with unpleasant consequences, is that quadprog is aimed
at computing a local minimum of a quadratic problem, not an arbitrary
stationary point (note that finding a solution or a stationary point of a non-
convex quadratic problem is NP-hard, see [354] for example). Therefore, it
is quite frequent to find situations where quadprog fails to find a stationary
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point, as required by the SQP algorithm. For example, with test case 1f be-
low, which is test case 1e with the initial position of the chain given in test
case 1a, the first osculating quadratic problem is unbounded.

Test case 1f: same data as for the test case 1e; but the initial positions of
the chain joints are (0.2,−0.5), (0.4,−0.6), (0.6,−0.8), and (0.8,−0.6).

The unboundedness of an osculating quadratic problem can occur only when
its feasible set is unbounded and the Hessian of the Lagrangian L is not pos-
itive definite at the current iterate. Hence, taking a positive definite approxi-
mation of L cures the difficulty. This can be obtained by using a quasi-Newton
approximation of L; this technique is considered in chapter 18. Another possi-
bility is add to L a (not too large) positive diagonal matrix E, such that L+E
is positive definite (for example by using a modified Cholesky factorization
of L [154, 201]). Figure 15.3 shows the results obtained with this technique.

Fig. 15.3. Test case 1f

The optimal chain is actually a local minimum (the critical cone is reduced
to {0} and the energy is e = −0.489), different from the one obtained in
figure 15.2 (in which e = −0.518). Observe that, although the initial position
of the chain is not feasible for the floor constraint, the subsequent positions
are all feasible. This is due to the affinity of the floor constraint (see (13.25)
and exercise 15.1).

Another difficulty arises when the linearized constraints are incompati-
ble, leading to an infeasible osculating quadratic problem. This difficulty is
encountered at the first iteration with the initial chain given in test case 1g
below. Remedies for this kind of situations exist, see [351, 341, 156] and the
references thereof.

Test case 1g: same data as for the test case 1e; but the initial positions of
the chain joints are (0.1,−0.3), (0.3,−0.4), (0.6,−0.4), and (0.7,−0.4).



270 15 Local Methods for Problems with Equality and Inequality Constraints

Notes

The SQP algorithm, in a form equivalent to the one introduced in § 15.1 on
page 257, was first proposed by Wilson [359; 1963]. This author was mainly
concerned with the extension of the simplex method, first to quadratic pro-
gramming, and then to nonlinear convex optimization problems. The algo-
rithm was obtained by searching for a saddle point of a quadratic approxi-
mation of the Lagrangian in the primal and dual variables. No convergence
proof was given. See also the introduction of this part of the book, on page
191, for other references on the origin of the SQP algorithm.

The local quadratic convergence of theorem 15.2 is due to several authors;
see for example [307], in which various classes of algorithms are considered.
Theorem 15.4 is taken from [38]; further refinements can be found in [40].

The criterion (15.16) for superlinear convergence dates back to Dennis
and Moré [104], who introduced a similar condition to characterize the su-
perlinear convergence of sequences generated by quasi-Newton methods in
unconstrained optimization (see theorem 4.11). It was extended to problems
with equality constraints by Boggs, Tolle, and Wang [36], under a somewhat
strong assumption (linear convergence of the sequence {xk}). The possibility
of getting rid of this assumption has been observed by many authors. The
generalization to inequality constrained problems given in theorem 15.7 is
due to Bonnans [40], who uses a projector varying along the iterations; in
contrast, we use the projector P∗ onto the critical cone.

The local convergence of the SQP algorithm has been extended to dif-
ferent contexts, such as semi-infinite programming [180], infinite dimension
programming [3, 4, 5, 6, 219]. When (MF-CQ) holds, but not (LI-CQ), the
optimal multiplier may not be unique, so that the limit behavior of the mul-
tiplier sequence {λQP

k } is difficult to predict; this situation is analyzed in
[367, 183, 7, 8].

Exercise

15.1. Consider the SQP algorithm applied to problem (PEI) in which the ith
constraint, for some i ∈ E ∪ I (equality or inequality constraint), is affine
(i.e., ci(x+d) = ci(x) + c′i(x)·d for all x and d ∈ R

n). Let (x, λ) be the
current iterate and define x+ by x+ := x + αd, where d is a solution to the
osculating quadratic problem (15.4) (we drop the index k) and α ∈ ]0, 1].
Show that x+ is feasible for the ith constraint (i.e., ci(x+) = 0 if i ∈ E, or
ci(x+) ≤ 0 if i ∈ I) if either x is feasible for the ith constraint or if α = 1.
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16.1 Overview

The algorithms studied in chapters 14 and 15 generate converging sequences
if the first iterate is close enough to a regular stationary point (see theo-
rems 14.4, 14.5, 14.7, 15.2, and 15.4). Such an iterate is not necessarily at
hand, so it is important to have techniques that allow the algorithms to
force convergence, even when the starting point is far from a solution. This
is known as the globalization of a local algorithm. The term is a little am-
biguous, since it may suggest that it has a link with the search of global
minimizers of (PEI ). This is not at all the case (for an entry point on global
optimization, see [200]).

There are (at least) two classes of techniques to globalize a local algorithm:
line-search and trust-region; we shall only consider the line-search approach
in this survey. Both techniques use the same idea: the progress made from one
iterate xk to the next one xk+1 towards the solution is measured by means
of an auxiliary function, called the merit function (the novel notion of filter,
not discussed in this part, looks like a promising alternative; see [130] for
the original paper). In unconstrained optimization, “the” appropriate merit
function is of course the objective f itself. Here, the measure has to take
into account the two, usually contradictory, goals in (PEI ): minimizing f
and satisfying the constraints. Accordingly, the merit function has often the
following form

f(x) + p(x),

where p is a function penalizing the constraint violation: p is zero on the
feasible set and positive outside. Instead of merit functions, one also speaks
of penalty functions , although the latter term is usually employed when the
penalty function is minimized by algorithms for unconstrained optimization.
As we shall see, the approach presented here is more subtle: truly constrained
optimization algorithms are used (like those in chapters 14 and 15); the merit
function only intervenes as a tool for measuring the adequacy of the step com-
puted by the local methods. It is not used for computing the direction itself.
The main advantage is that the ill-conditioning encountered with penalty
methods is avoided, and the fast speed of convergence of the local methods
is ensured close to a solution.
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As many merit functions exist, a selection must be made. We shall only
study those that do not use the derivatives of f and c. These are the most
widely encountered in optimization codes and their numerical effectiveness
has been demonstrated. To start with, let us examine some common examples
of merit/penalty functions. We denote by ‖ · ‖2 the `2 norm and by ‖ · ‖

P
an

arbitrary norm.

(a) Quadratic penalization:

f(x) +
σ

2
‖c(x)#‖22. (16.1)

(b) Lagrangian:
f(x) + µ>c(x).

(c) Augmented Lagrangian (case I = ∅):

f(x) + µ>c(x) +
σ

2
‖c(x)‖22. (16.2)

Augmented Lagrangian (general case):

f(x) + µ>
EcE(x) +

σ

2
‖cE(x)‖22

+
∑

i∈I

(
µi max

(−µi

σ
, ci(x)

)
+
σ

2

[
max

(−µi

σ
, ci(x)

)]2)
.

(16.3)
(d) Nondifferentiable augmented function:

f(x) + σ‖c(x)#‖
P
.

These functions have quite different features. One important property
that distinguishes them is the exactness of the penalization, which is the
subject of the present chapter. The concept of exact penalization is sometimes
ambiguous – or at least varies from author to author. We adopt the following
definition.

A function Θ : Ω → R is called an exact penalty function at a local mini-
mum x∗ of (PEI ) if x∗ is a local minimum of Θ. The converse implication (x∗
is a local minimum of (PEI) whenever it minimizes Θ locally) is not generally
possible unless feasibility of x∗ is assumed. The example in figure 16.1 is an
illustration: x′∗ is a local minimum of the functions (a) or (d) with σ ≥ 0
but, being infeasible, it is not a solution to the minimization problem. The
reason why the concept of exactness is so important for globalizing the SQP
algorithm will be discussed in chapter 17.

Table 16.1 gives some properties of the merit functions (a)–(d). This de-
serves some comments.

• As far as the differentiability of Θσ is concerned, we assume that f and c
are of class C∞. We see that, in general, the presence of inequality con-
straints decreases the degree of differentiability of the merit functions.
In this respect, the Lagrangian (b) is an exception.
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{
minx 0
c(x) = 0

x∗ x′∗ x

c

0

Fig. 16.1. Exactness and feasibility

Function Differentiability Exactness
Conditions for

exactness
Threshold of σ

depends on

(a) C1 no

(b) C∞ yes
(PEI) convex

µ = λ∗

(c) C1 yes
µ = λ∗

σ large
2nd derivatives

(d) C0 yes σ large 1st derivatives

Table 16.1. Comparison of some merit functions

• We also see that only functions (b)–(d) can be exact. The quadratic
penalty function is hardly ever exact: if I = ∅, it is differentiable and
its gradient at a solution x∗ is ∇f(x∗), which is usually nonzero. As we
shall see in the following sections, the Lagrangian (b) is exact for convex
problems and the augmented Lagrangian (c) is exact for nonconvex
problems provided the penalty parameter σ is large enough.

• To be exact, both functions (b) and (c) need to have µ = λ∗. From
an algorithmic point of view, this means that the value of µ must be
continually modified in order to approximate the unknown optimal mul-
tiplier λ∗. Algorithms using the Lagrangians do not minimize the same
function at each iteration, which can raise convergence difficulties.

• Another shortcoming of (c) is that the threshold of σ, beyond which the
penalization becomes exact, involves the eigenvalues of the Hessian of
the Lagrangian. It is therefore not easily accessible to computation, and
certainly out of reach if the Hessian of the Lagrangian is not explicitly
computed, as in the quasi-Newton versions of the algorithms. Neverthe-
less, many algorithms use this function (for example, those described
in [85]).
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• Finally, the conditions for the exactness of function (d) are less restric-
tive and this is the main reason why this merit function is often used for
globalizing the SQP algorithm, as in chapter 17. We shall see in particu-
lar that the threshold of σ can easily be estimated during the iterations,
with the help of an estimate of the optimal multiplier. Function (d) is
nonsmooth, however.

In the rest of this chapter, we study some properties of the merit functions
(b)–(d), focusing on their exactness.

16.2 The Lagrangian

In this section, problem (PEI ) is assumed to be convex: f and the ci’s, i ∈ I ,
are convex, and cE is affine. In this case, the Lagrangian of the problem is
exact at a solution x∗, providing the multiplier is set to a dual solution λ∗.
Actually, proposition 16.1 below shows a little more than that: ` has a saddle-
point at (x∗, λ∗), a concept made precise in the next definition.

Let X and Y be two sets and let ϕ : X × Y → R be a function. We say
that (x∗, y∗) ∈ X × Y is a saddle-point of ϕ on X × Y when

ϕ(x∗, y) ≤ ϕ(x∗, y∗) ≤ ϕ(x, y∗), for all x ∈ X and y ∈ Y.
Thus, x 7→ ϕ(x, y∗) is minimal at x∗ and y 7→ ϕ(x∗, y) is maximal at y∗.

Recall that the Lagrangian of problem (PEI ) is the function

(x, µ) ∈ Ω × R
m 7→ `(x, µ) = f(x) + µ>c(x). (16.4)

If a feasible point x∗ minimizes `(·, µ), then 0 = ∇x`(x∗, µ), which indicates
that x∗ will be a solution to (PEI ) provided µ is a dual solution. The following
result shows that, for convex problems, the primal-dual solutions to (PEI )
are saddle-points of ` on Ω × {µ ∈ R

m : µI ≥ 0}. The way is then open to
computing primal-dual solutions to (PEI ) with algorithms computing saddle-
points. We shall not proceed in that way but it is useful to bear this point
of view in mind. In addition, this result shows that x 7→ `(x, λ∗) is an exact
penalty function for convex problems.

Proposition 16.1 (saddle-point of the Lagrangian). Suppose that prob-
lem (PEI ) is convex, that x∗ is a solution, and that f and c are differentiable
at x∗. Suppose also that there exists a multiplier λ∗ such that the optimality
conditions (KKT) are satisfied. Then (x∗, λ∗) is a saddle-point of the La-
grangian defined in (16.4) on Ω × {µ ∈ R

m : µI ≥ 0}.
Proof. Take µ ∈ {µ ∈ R

m : µI ≥ 0}. We have

`(x∗, µ) = f(x∗) + µ>
I cI(x∗) [because cE(x∗) = 0]

≤ f(x∗) [because µici(x∗) ≤ 0 for i ∈ I ]
= f(x∗) + λ>∗ c(x∗) [because cE(x∗) = 0 and (λ∗)>I cI(x∗) = 0]

= `(x∗, λ∗).
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On the other hand, since (λ∗)I ≥ 0 and (PEI ) is convex, the function
x ∈ Ω 7→ `(x, λ∗) is convex. According to the assumptions, this function is
differentiable at x∗ and, in view of the optimality conditions (KKT), we have
∇x`(x∗, λ∗) = 0. We deduce that this function is minimal at x∗: `(x∗, λ∗) ≤
`(x, λ∗), for all x ∈ Ω.

16.3 The Augmented Lagrangian

The Lagrangian (16.4) is not an exact penalty function if the problem is
nonconvex. For example, the nonconvex problem

{
minx log(x)
x ≥ 1

has the unique primal-dual solution (x∗, λ∗) = (1, 1) and its Lagrangian
`(x, λ∗) = log(x) + 1− x is concave with a maximum at x = 1.

The augmented Lagrangian `r obviates this shortcoming. In fact we shall
prove a local version of proposition 16.1: if µ = λ∗ and r is large enough,
`r(·, µ) has a strict local minimum at a strong solution to the optimization
problem (PEI ).

The augmented Lagrangian is best introduced by using a perturbation
technique as in duality theory, but this is beyond the scope of this review.
Here we follow a more intuitive approach, starting with the case where only
equality constraints are present. In this case, one takes

`r(x, µ) = f(x) + µ>
EcE(x) +

r

2
‖cE(x)‖22. (16.5)

This is the standard Lagrangian `, augmented by the term (r/2)‖cE(x)‖22.
This term penalizes the constraint violation and makes `r(·, µ) convex around
the point x∗ in a subspace complementary to the tangent space N(AE(x∗)).
This creates a basin around a strong solution to (PE), making the penaliza-
tion exact (this point of view is developed in exercise 16.2).

To deal with inequality constraints, we first transform (PEI ) by introduc-
ing slack variables s ∈ R

mI :





min(x,s) f(x)
cE(x) = 0
cI(x) + s = 0
s ≥ 0.

Next, this problem is approached by using the augmented Lagrangian asso-
ciated with its equality constraints:

min
x

min
s≥0

(
f(x) + µ>

EcE(x) +
r

2
‖cE(x)‖22 + µ>

I (cI (x)+s) +
r

2
‖cI(x)+s‖22

)
.
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The augmented Lagrangian associated with (PEI ) is the function of x and µ
defined by the minimal value of the optimization problem in s ≥ 0 above:

`r(x, µ) := min
s≥0

(
f(x) + µ>

EcE(x) +
r

2
‖cE(x)‖22

+ µ>
I (cI(x)+s) +

r

2
‖cI(x)+s‖22

)
.

Actually, the minimization in s can be carried out explicitly since the min-
imized function of s is quadratic with a positive diagonal Hessian. More
precisely, discarding terms independent of s, the objective can be written
r
2‖s+cI(x)+µI/r‖22, so that the minimizer is the projection of −cI(x)−µI/r
on the positive orthant, namely s = max(−cI(x) − µI/r, 0). Adding cI(x),
one finds

cI(x) + s = max

(−µI

r
, cI(x)

)
.

Substituting cI(x) + s by this value in the objective of the problem above
yields an explicit formula for the augmented Lagrangian. This is the function
`r : Ω × R

m → R, defined for (x, µ) ∈ Ω × R
m and r ∈ R

∗
+ := {t ∈ R :

t > 0} by

`r(x, µ) = f(x) + µ>c̃r(x, µ) +
r

2
‖c̃r(x, µ)‖22, (16.6)

where c̃r : Ω × R
m → R

m is defined by

(c̃r(x, µ))i =

{
ci(x) if i ∈ E
max

(−µi

r , ci(x)
)

if i ∈ I . (16.7)

The coefficient r is called the augmentation parameter. This augmented La-
grangian (16.6) has therefore a structure very similar to the one associated
with the equality constraint problem (PE), see (16.5), with cE substituted
by the non-differentiable function c̃r introduced above.

Despite the nonsmoothness of the max operator in (16.7), the augmented
Lagrangian is differentiable in x, provided that f and c have that property.
The easiest way of verifying this claim is to write the terms associated with
the inequalities in (16.6) as follows

µ>
I (c̃r(x, µ))I +

r

2
‖(c̃r(x, µ))I‖22 =

1

2r

∑

i∈I

(
max(0, µi + rci(x))

2 − µ2
i

)
.

This is a differentiable function of x, since max(0, ·) is squared. A straight-
forward computation then leads to

∇x`r(x, µ) = ∇f(x) + c′(x)>(µ+ rc̃r(x, µ)). (16.8)

Second differentiability in x is also ensured around a primal solution sat-
isfying some strong conditions. Let x∗ be a solution to (PEI) and let λ∗
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be a multiplier associated with x∗. Using the complementarity conditions
(λ∗)>I cI(x∗) = 0 and the nonnegativity of (λ∗)I , it is not difficult to see that,
for x close to x∗, there holds

`r(x, λ∗) = `(x, λ∗) +
r

2

∑

i∈E∪I0+
∗

ci(x)
2 +

r

2

∑

i∈I00
∗

(ci(x)
+)2. (16.9)

Because of the operator (·)+ in (16.9), `r(·, λ∗) may not be twice differentiable
at x∗. In the case of strict complementarity, however, I00

∗ = ∅ and the last
sum disappears, so that the augmented Lagrangian can be written (for x
close to x∗)

`r(x, λ∗) = `(x, λ∗) +
r

2

∑

i∈E∪I0
∗

ci(x)
2.

Locally, equality and active inequality constraints are then treated in the
same way and `r(·, λ∗) is smooth around x∗ (provided f and c are smooth).
The next proposition gathers these differentiability properties.

Proposition 16.2 (differentiability of the augmented Lagrangian). If
f and c are differentiable at x, then the augmented Lagrangian `r, defined by
(16.6), is differentiable at x and its gradient is given by (16.8). If (x∗, λ∗) is
a KKT point for (PEI) satisfying strict complementarity and if (f, cE∪I0

∗
) is

p times differentiable (with p ≥ 0 integer) in some neighborhood of x∗, then
the augmented Lagrangian is p times differentiable is some (possibly smaller)
neighborhood of x∗.

The next result gives conditions for (x∗, λ∗) to be a saddle-point of `r
on V × R

m, where V is a neighborhood of x∗ in Ω. Compared with propo-
sition 16.1, the result is local in x, but global in µ, and the minimum in x
is strict. As before, this result implies that, if r is large enough (but finite!),
`r(·, λ∗) is an exact penalty function for (PEI).

Proposition 16.3 (saddle-point of the augmented Lagrangian). Sup-
pose that f and cE∪I0

∗
are twice differentiable at a local minimum x∗ of (PEI )

at which the KKT conditions hold, and that the semi-strong second-order suf-
ficient condition of optimality (13.9) is satisfied for some multiplier λ∗. Then
there exist a neighborhood V of x∗ in Ω and a number r > 0 such that, for
all r ≥ r, (x∗, λ∗) is a saddle-point of `r on V ×R

m. More precisely, we have
for all (x, µ) ∈ (V \{x∗})× R

m:

`r(x∗, µ) ≤ `r(x∗, λ∗) < `r(x, λ∗). (16.10)

Proof. Let us first show that λ∗ maximizes `r(x∗, ·) for any r > 0. We have
for µ ∈ R

m:

`r(x∗, µ) = f(x∗) +
∑

i∈I
ci(x∗)≥−µi/r

(
µici(x∗) +

r

2
ci(x∗)

2
)
−

∑

i∈I
ci(x∗)<−µi/r

µ2
i

2r
.
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The maximum in µ can be obtained term by term. If ci(x∗) = 0, the maximum
in the right-hand side is f(x∗), obtained for all µi ≥ 0. If ci(x∗) < 0, this
maximum is again f(x∗), obtained for µi = 0. Since (λ∗)I satisfies these
conditions, we have

`r(x∗, µ) ≤ f(x∗) = `r(x∗, λ∗), for all µ ∈ R
m.

Let us now show the second statement, dealing with the strict local mini-
mality of x∗. Note that we need to prove the inequality on the right in (16.10)
for only a single value of r, r > 0 say, because then, this inequality will hold
for any r ≥ r and any x ∈ V (independent of r). Indeed, `r(x∗, λ∗) = f(x∗)
does not depend on r and, for fixed x, r 7→ `r(x, λ∗) is nondecreasing (this
is a clear consequence of the way the augmented Lagrangian was introduced,
just before the proposition).

We prove this by contradiction, assuming that there is a sequence of
positive numbers rk → ∞ and a sequence of points xk → x∗, with xk 6= x∗
such that, for k ≥ 1:

`rk
(xk , λ∗) ≤ `rk

(x∗, λ∗). (16.11)

Taking a subsequence if necessary, we have for k →∞:

xk − x∗
‖xk − x∗‖

→ d, with ‖d‖ = 1.

Hence, setting αk := ‖xk − x∗‖, we have

xk = x∗ + αkd+ o(αk).

Our aim now is to show that d is a critical direction. We do this by ap-
propriate expansions in the left-hand side of (16.11): second order expansion
of the Lagrangian and first order expansion of the constraints in both sums
of (16.9). To simplify the notation, we introduce L∗ = ∇2

xx`(x∗, λ∗). From
the smoothness of f and c and the optimality of (x∗, λ∗), we have

`(xk , λ∗) = `(x∗λ∗) +
α2

k

2
d>L∗d+ o(α2

k),

ci(xk) = αk c
′
i(x∗) · d+ o(αk), for i ∈ E ∪ I0

∗ .

Injecting these estimates in (16.11), using (16.9) and `rk
(x∗, λ∗) = `(x∗, λ∗),

provides

α2
k

2
d>L∗d+ o(α2

k) +
rk
2

∑

i∈E∪I0+
∗

(αkc
′
i(x∗) · d+ o(αk))

2

+
rk
2

∑

i∈I00
∗

(
[αkc

′
i(x∗) · d+ o(αk)]

+
)2

≤ 0. (16.12)

Dividing by α2
krk and taking the limit yield
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c′i(x∗) · d = 0, if i ∈ E ∪ I0+
∗

c′i(x∗) · d ≤ 0, if i ∈ I00
∗ .

Therefore d is a nonzero critical direction.
On the other hand, (16.12) also implies that

α2
k

2
d>L∗d+ o(α2

k) ≤ 0.

Dividing by α2
k and taking the limit show that d>L∗d ≤ 0, which contradicts

assumption (13.9) since d ∈ C∗\{0}.

In the previous result, the semi-strong second-order sufficient condition of
optimality (13.9) is assumed. If only the weak condition (13.8) holds, `r(·, λ∗)
may not have a local minimum at x∗, whatever the choice of λ∗ ∈ Λ∗ and
the value of r. An example is given in exercise 16.4.

16.4 Nondifferentiable Augmented Function

We now consider the following merit function for problem (PEI ):

Θσ(x) = f(x) + σ‖c(x)#‖
P
, (16.13)

which we call the nondifferentiable augmented function. In (16.13), σ > 0 is
called the penalty parameter, the operator (·)# was defined on page 194, and
‖·‖P is a norm, and is arbitrary for the moment. We denote by ‖·‖D the dual
norm of ‖ · ‖

P
, with respect to the Euclidean scalar product. It is defined by

‖v‖D = sup
‖u‖

P
=1

v>u.

We therefore have the generalized Cauchy-Schwarz inequality :

|u>v| ≤ ‖u‖
P
‖v‖

D
, for all u and v. (16.14)

See exercise 16.5 for some examples of dual norms.
Because of the norm ‖ · ‖

P
and of the operator (·)#, Θσ is usually non-

differentiable; but when f and c are smooth, Θσ has directional derivatives;
this is a consequence of lemma 13.1. It so happens that this differentiability
concept will be sufficient for our development.

Let v ∈ R
m be such that vI ≤ 0 and denote by Pv : R

m → R
m the

operator defined by Pvu = (·#)′(v;u), that is

(Pvu)i =





ui si i ∈ E
u+

i if i ∈ I and vi = 0
0 if i ∈ I and vi < 0.

This notation allows us to write concisely the directional derivative of Θσ at
a feasible point.
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Lemma 16.4. If f and c have a directional derivative at x in the direction
h ∈ R

n, then Θσ has also a directional derivative at x in the direction h. If,
in addition, x is feasible for (PEI ), we have

Θ′
σ(x;h) = f ′(x;h) + σ‖Pc(x)c

′(x;h)‖
P
.

Proof. The directional differentiability of Θσ = f + σ(‖ · ‖
P
◦ (·)# ◦ c) comes

from lemma 13.1, the assumptions on f and c, and the fact that (·)# and
‖ · ‖P are Lipschitzian and have directional derivatives.

If x is feasible, c(x)# = 0 and we have from lemma 13.1,

Θ′
σ(x;h) = f ′(x;h) + σ(‖ · ‖

P
)′(0; (c#)′(x;h)).

On the other hand,

(c#)′(x;h) = (·#)′(c(x); c′(x;h)) = Pc(x)c
′(x;h)

and

(‖ · ‖
P
)′(0; v) = lim

t→0+

1

t
(‖tv‖

P
− 0) = ‖v‖

P
.

The result follows.

Necessary Conditions of Exactness

In this subsection, we examine which conditions are implied by the fact that
a feasible point x∗ is a minimum point of Θσ . We quote three such properties
in proposition 16.5: x∗ is also a minimum point of (PEI), there exists a
multiplier λ∗ associated with x∗, and σ must be sufficiently large. The second
property shows that the exactness of Θσ plays a similar role as a constraint
qualification assumption, since it implies the existence of a dual solution.

For the third property mentioned above, we need an assumption on the
norm ‖ · ‖

P
used in Θσ . The norm ‖v‖

P
must decrease if one sets to zero

some of the I-components of v ∈ R
m:

ui =

{
vi if i ∈ E
0 or vi if i ∈ I =⇒ ‖u‖

P
≤ ‖v‖

P
. (16.15)

Clearly, `p norms, 1 ≤ p ≤ ∞, satisfy this property; but it is not necessarily
satisfied by an arbitrary norm (see exercise 17.1). Also, the claim on σ in
proposition 16.5 may not be correct if ‖ · ‖

P
does not satisfy (16.15) (see

exercise 16.6).

Proposition 16.5 (necessary conditions of exactness). If x∗ is feasible
for (PEI ) and Θσ has a local minimum (resp. strict local minimum) at x∗,
then x∗ is a local minimum (resp. strict local minimum) of (PEI ). If, in addi-
tion, f and c are Gâteaux differentiable at x∗, then there exists a multiplier λ∗
such that the necessary optimality conditions (KKT) hold. If, in addition, the
norm ‖ · ‖

P
satisfies (16.15) and (LI-CQ) holds at x∗, then σ ≥ ‖λ∗‖D

.
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Proof. If x∗ is a local minimum of Θσ , there exists a neighborhood V of x∗
such that

Θσ(x∗) ≤ Θσ(x), for all x ∈ V.
Since x∗ ∈ X and Θσ |X = f |X , we have

f(x∗) ≤ f(x), for all x ∈ V ∩X,

which shows that x∗ is a local minimum of (PEI ). The above inequality is
strict for x 6= x∗, if x∗ is a strict local minimum of Θσ .

Now suppose f and g are Gâteaux differentiable at x∗. Then Θσ has
directional derivatives at x∗ (lemma 16.4). Since x∗ is a local minimum of
Θσ , we have Θ′

σ(x∗;h) ≥ 0 for all h ∈ R
m. But x∗ is feasible; hence, by

lemma 16.4:

∇f(x∗)
>h+ σ‖Pc(x∗)(A(x∗)h)‖P

≥ 0, for all h ∈ R
m. (16.16)

We deduce
Pc(x∗)(A(x∗)h) = 0 =⇒ ∇f(x∗)

>h ≥ 0.

Thus, h = 0 solves the linear program





minh ∇f(x∗)>h
AE(x∗)h = 0,
AI0

∗
(x∗)h ≤ 0.

The constraints of this problem being qualified (by (A-CQ)), we deduce the
existence of a multiplier λ∗ ∈ R

m such that





∇f(x∗) +A(x∗)>λ∗ = 0
(λ∗)I0

∗
≥ 0

(λ∗)I\I0
∗

= 0.

Since x∗ is feasible, (KKT) holds with (x∗, λ∗).
Finally, suppose that the norm ‖ · ‖

P
satisfies (16.15) and that (LI-CQ)

holds. Take again (16.16) and use the first-order optimality condition to ob-
tain

λ>∗A(x∗)h ≤ σ‖Pc(x∗)A(x∗)h‖P
, for all h ∈ R

n.

Set J = E ∪ I0
∗ , and remember that (λ∗)i = 0 if i 6∈ J . For an arbitrary v

in R
m, we have λ>∗ v = (λ∗)>J vJ and, from (LI-CQ), we can find h ∈ R

n such
that AJ (x∗)h = vJ . We deduce that

λ>∗ v = (λ∗)
>
JAJ (x∗)h = λ>∗A(x∗)h ≤ σ‖Pc(x∗)A(x∗)h‖P

≤ σ‖v‖
P
,

where the last inequality uses property (16.15) of the norm. Then λ>
∗ v ≤

σ‖v‖
P
, and since v is arbitrary, we have ‖λ∗‖D

≤ σ.
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Sufficient Conditions of Exactness

In practice, we are more interested in having conditions that ensure the exact-
ness of Θσ and this is what we focus on now. We shall show that the necessary
condition obtained on σ in proposition 16.5 is sharp: if x∗ is a strong solution
to problem (PEI) with associated multiplier λ∗, x∗ also minimizes Θσ pro-
vided σ > ‖λ∗‖D

(the strict inequality is not needed for convex problems).
This result holds without any particular assumption on the norm ‖ · ‖

P
.

The necessary conditions of exactness of Θσ were obtained by expressing
the fact that, if x∗ minimizes Θσ , the directional derivative Θ′

σ(x∗;h) must
be nonnegative for all h ∈ R

n (see the proof of proposition 16.5). Now we
want to exhibit values of σ such that Θσ has a minimum at x∗. Function Θσ

is nondifferentiable and nonconvex. Therefore, it is not sufficient to show that
Θ′

σ(x∗;h) ≥ 0 for all h ∈ R
n in order to ensure its exactness. One cannot

impose Θ′
σ(x∗;h) > 0 for all h ∈ R

n either, since this may never occur for any
value of σ (for example, when E 6= ∅ and I = ∅, Θ′

σ(x∗;h) = 0 for any h in
the space tangent to the constraint manifold). Therefore, we shall use either
a technical detour (for convex problems) or a direct proof like the one of
proposition 16.3 (for nonconvex problems).

In proposition 16.7 below, we consider the case of convex problems and in
proposition 16.8 the case of nonconvex problems. To prove the exactness of
the nondifferentiable function Θσ for convex problems, we simply use the fact
that, if σ is large enough, Θσ is above the differentiable Lagrangian (16.4)
(lemma 16.6), which is known to be exact at x∗ (proposition 16.1). Observe
that lemma 16.6 does not assume convexity.

Lemma 16.6. If σ ≥ ‖λ‖
D

and λI ≥ 0, then `(·, λ) ≤ Θσ(·) on R
n.

Proof. First observe that λI ≥ 0 implies λ>I cI(x) ≤ λ>I cI(x)
+. Then, for all

x ∈ R
n,

`(x, λ) ≤ f(x) + λ>c(x)# ≤ f(x) + ‖λ‖
D
‖c(x)#‖

P
≤ Θσ(x).

Proposition 16.7 (sufficient conditions of exactness, convex prob-
lems). Suppose that problem (PEI) is convex and that f and c are differen-
tiable at a solution x∗ to (PEI ) with an associated multiplier λ∗. Then Θσ

has a global minimum at x∗ as soon as σ ≥ ‖λ∗‖D .

Proof. According to proposition 16.1, `(·, λ∗) is minimized by x∗ and, by
lemma 16.6, it is dominated by Θσ (σ ≥ ‖λ∗‖D

and (λ∗)I ≥ 0). Therefore

Θσ(x∗) = f(x∗)

= `(x∗, λ∗)

≤ `(x, λ∗), for all x ∈ R
n

≤ Θσ(x), for all x ∈ R
n.
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The same technical detour could be used for highlighting sufficient condi-
tions of exactness of Θσ for nonconvex problems: if σ > ‖λ∗‖D

, Θσ is above
the augmented Lagrangian (16.6) in some neighborhood of x∗, so that the
exactness of Θσ follows that of the augmented Lagrangian (proposition 16.3).
This strategy is proposed in exercise 16.7. The direct proof given below has
the advantage of being valid even when only the weak second order suffi-
cient condition of optimality (13.8) holds at x∗ (in contrast, the semi-strong
condition (13.9) is assumed in proposition 16.3 and exercise 16.7).

Proposition 16.8 (sufficient conditions of exactness). Suppose that f
and cE∪I0

∗
are twice differentiable at a local minimum x∗ of (PEI ) at which

the KKT conditions hold, that the weak second-order sufficient condition of
optimality (13.8) is satisfied, and that

σ > sup
λ∗∈Λ∗

‖λ∗‖D ,

where Λ∗ is the nonempty set of multipliers associated with x∗. Then Θσ has
a strict local minimum at x∗.

Proof. We prove the result by contradiction, assuming that x∗ is not a strict
minimum of Θσ . Then, there exists a sequence {xk} such that xk 6= x∗,
xk → x∗ and

Θσ(xk) ≤ Θσ(x∗), ∀k ≥ 1. (16.17)

Since the sequence {(xk − x∗)/‖xk − x∗‖} is bounded (here ‖ · ‖ denotes an
arbitrary norm), it has a subsequence such that (xk − x∗)/‖xk − x∗‖ → d,
where ‖d‖ = 1. Denoting αk = ‖xk − x∗‖, one has

xk = x∗ + αkd+ o(αk).

Because Θσ is Lipschitzian in a neighborhood of x∗:

Θσ(xk) = Θσ(x∗ + αkd) + o(αk).

Now (16.17) shows that Θ′
σ(x∗; d) ≤ 0. Then, from lemma 16.4, one can write

f ′(x∗) · d+ σ‖Pc(x∗)(c
′(x∗) · d)‖P

≤ 0. (16.18)

This certainly implies that

f ′(x∗) · d ≤ 0. (16.19)

On the other hand, from the assumptions, there is an optimal multi-
plier λ∗ such that σ > ‖λ∗‖D

. Using the first order optimality conditions,
including the nonnegativity of (λ∗)I and the complementarity conditions
(λ∗)>I cI(x∗) = 0, one has
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−f ′(x∗) · d = λ>∗ (c′(x∗) · d)
≤ λ>∗Pc(x∗)(c

′(x∗) · d)
≤ ‖λ∗‖D

‖Pc(x∗)(c
′(x∗) · d)‖P

.

Then (16.18) and σ > ‖λ∗‖D
imply that Pc(x∗)(c

′(x∗) · d) = 0, i.e.,

{
c′i(x∗) · d = 0 for i ∈ E
c′i(x∗) · d ≤ 0 for i ∈ I0

∗ .

These and (16.19) show that d is a nonzero critical direction.
Now, let λ∗ be the multiplier depending on d, determined by the weak

second-order sufficient condition of optimality (13.8). According to theo-
rem 13.4, one has

d>∇2
xx`(x∗, λ∗)d > 0.

The following Taylor expansion (use ∇x`(x∗, λ∗) = 0)

`(xk, λ∗) = `(x∗, λ∗) +
α2

k

2
d>∇2

xx`(x∗, λ∗)d+ o(α2
k)

allows us to see that, for k large enough,

`(xk , λ∗) > `(x∗, λ∗). (16.20)

Then, for large indices k, there holds

Θσ(xk) ≤ Θσ(x∗) [by (16.17)]

= f(x∗)

= `(x∗, λ∗)

< `(xk , λ∗) [by (16.20)]

≤ Θσ(xk) [by lemma 16.6 and σ ≥ ‖λ∗‖D
],

which is the expected contradiction.

Notes

The augmented Lagrangian (16.2) for equality constrained problems was first
proposed by Arrow and Solow [14; 1958]. Hestenes [191; 1969] and Powell [288;
1969] both used this function to introduce the so-called method of multipliers,
which has popularized this type of penalization. The augmented Lagrangian
(16.3) or (16.6), adapted to inequality constrained problems, was proposed by
Rockafellar [310, 311; 1971-74] and Buys [62; 1972]. It was further extended
to constraints of the form c(x) ∈ K, where c is a vector-valued function and
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K is a closed convex cone, by Shapiro and Sun [330; 2004]. This penalty func-
tion is usually no more than continuously differentiable, even if the problem
data are infinitely differentiable. Many developments have been carried out
to overcome this drawback, proposing augmentation terms with a different
structure (for entry points see [17, 16; 1999-2000], which deal with primal
penalty functions, and [109, 110, 111; 1999-2001], which consider primal-dual
penalty functions). Surveys on the augmented Lagrangian can be found in
[26, 169].

The exact penalty function (16.13) goes back at least to Eremin [119; 1966]
and Zangwill [374; 1967]. Its connection with problem (PEI) has been studied
by many authors, see Pietrzykowski [284], Charalambous [74], Ioffe [198],
Han and Mangasarian [186], Bertsekas [26], Fletcher [126], Bonnans [39, 41],
Facchinei [120], Burke [60], Pshenichnyj [301], Bonnans and Shapiro [50], and
the references therein.

Exercises

16.1. Finsler’s lemma [123] and its limit case [9]. Let M be an n × n symmet-
ric matrix that is positive definite on the null space of a matrix A (i.e.,
u>Mu > 0 for all nonzero u ∈ N(A)). Show that there exists an r0 ∈ R

such that, for all r ≥ r0, M + rA>A is positive definite.

[Hint : Use an argument by contradiction.]

Suppose now that the symmetric matrix M is only positive semidefinite
on the null space of A (i.e., u>Mu ≥ 0 for all u ∈ N(A)). Show that the
following claims are equivalent: (i) v ∈ N(A) and v>Mv = 0 imply that
Mv = 0, and (ii) there exists an r0 ∈ R such that, for all r ≥ r0, M +rA>A

is positive semidefinite. Find a matrix M that is positive semidefinite on
the null space of A, for which these properties (i) and (ii) are not satisfied.

[Hint : For (i) ⇒ (ii), use with care an argument by contradiction.]

Consequence: If M is nonsingular and positive semidefinite (but not positive
definite) on the null space of A, it cannot enjoy property (ii) (since (i) does
not hold).

16.2. Augmented Lagrangian for equality constrained problems. Consider problem
(PE) with functions f and c of class C2 and the associated augmented
Lagrangian `r(x, λ) = f(x) + λ>c(x) + r

2
‖c(x)‖2

2. By a direct computation
of ∇x`r(x∗, λ∗) and ∇2

xx`r(x∗, λ∗), show that, if r is large enough, `r(·, λ∗)
has a strict local minimum at a point x∗ satisfying (SC2).

[Hint : Use Finsler’s lemma (exercise 16.1).]

16.3. Fletcher’s exact penalty function [124]. Consider problem (PE), in which f

and c are smooth, and c is a submersion. Denote by A−(x) a right inverse
of the constraint Jacobian A(x) := c′(x) and assume that A− is a smooth
function of x. Let λLS(x) := −A−(x)>∇f(x) be the associated least-squares
multiplier. For r ∈ R, consider the function ϕr : R

n → R defined by
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ϕr(x) = f(x) + λ
LS(x)>c(x) +

r

2
‖c(x)‖2

2. (16.21)

Let (x∗, λ∗) be a pair satisfying the second-order sufficient conditions of
optimality (SC2) of problem (PE). Show that there exists an r0 ∈ R, such
that for r ≥ r0, ϕr has a strict local minimum at x∗.

[Hint : Prove the following claims, in which A∗ := A(x∗), A−
∗ := A−(x∗),

and L∗ := ∇2
xx`(x∗, λ∗), and conclude: (i) λLS(x∗) = λ∗; (ii) ∇ϕr(x∗) = 0;

(iii) (λLS)′(x∗) = −A−>
∗ L∗ and ∇2ϕr(x∗) = L∗− (A>

∗A−>
∗ L∗ +L∗A

−
∗ A∗)+

rA>
∗ A∗; (iv) ∇2ϕr(x∗) is positive definite if r is large enough.]

16.4. Counter-example for proposition 16.3. Consider the problem in R
3:

8
>><
>>:

minx x3

x3 ≥ (x1 + x2)(x1 − x2)
x3 ≥ (x2 + 3x1)(2x2 − x1)
x3 ≥ (2x2 + x1)(x2 − 3x1).

Show that: (i) x∗ = 0 is the unique solution to the problem and that the
associated multiplier set is Λ∗ = {λ ∈ R

3
+ : λ1 +λ2 +λ3 = 1}; (ii) the weak

second order sufficient condition of optimality (13.8) is satisfied, but not
the semi-strong ones (13.9); (iii) for any λ∗ ∈ Λ∗ and r ≥ 0, the augmented
Lagrangian (16.6) has not a minimum at x∗.

Consequence: When the semi-strong second order sufficient conditions of
optimality (13.9) do not hold at x∗, the augmented Lagrangian `r(·, λ∗)
function may not have a local minimum at x∗, for any λ∗ ∈ Λ∗ and r ≥ 0.

16.5. Dual norms. (i) The `p norm on R
n is defined by

‖u‖p :=

8
>>><
>>>:

 
nX

i=1

|ui|p
! 1

p

if 1 ≤ p < ∞

max
1≤i≤n

|ui| if p = ∞.

Show that the dual norm of ‖ · ‖p is the norm ‖ · ‖p′ , where p′ is uniquely
defined by

1

p
+

1

p′
= 1.

(ii) Let Q be a symmetric positive definite matrix and define the norm

‖u‖P = (u>Qu)
1
2 . Show that its dual norm is given by ‖v‖D = (v>Q−1v)

1
2 .

16.6. Counter-example for proposition 16.5. Consider the problem

min


1

2
‖x‖2

2 : x ∈ R
2
, x1 ≤ 0, x2 + 1 ≤ 0

ff
.

Show that the unique primal-dual solution to this problem is x∗ = (0,−1)
and λ∗ = (0, 1). Show that x 7→ ‖x‖P = (x2

1 + x2
2 +

√
3x1x2)

1/2 is a norm
that does not satisfy (16.15), and that ‖λ∗‖D = 2. Show that Θσ(x) =
1

2
‖x‖2

2 + σ‖(x1, x2 + 1)+‖P has a minimum at x∗ when σ ≥ 1.

Consequence: The exactness of Θσ does not imply σ ≥ ‖λ∗‖D if the norm
‖ · ‖P does not satisfy (16.15).
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16.7. A variant of proposition 16.8. (i) Let x∗ be feasible for (PEI) and λ ∈ R
m

be such that λI ≥ 0 and λ>
I cI (x∗) = 0; let r > 0 and σ > ‖λ‖D . Show that

there exists a neighborhood V of x∗ in Ω such that for all x ∈ V , there
holds `r(x, λ) ≤ Θσ(x).

(ii) Suppose that f and cE∪I0
∗

are twice differentiable at a local minimum
x∗ of (PEI) at which the KKT conditions hold, that the semi-strong second-
order sufficient condition of optimality (13.9) holds for some optimal mul-
tiplier λ∗, and that σ > ‖λ∗‖D . Show, using (i), that Θσ has a strict local
minimum at x∗.

16.8. `1 penalty function. Suppose that f and cE∪I0
∗

are twice differentiable at
a local minimum x∗ of (PEI) at which the KKT conditions hold and that
the weak second-order sufficient condition of optimality (13.8) is satisfied.
Positive scalars σi (i ∈ E ∪ I) are given and the following penalty function
is considered:

Θ
1
σ(x) = f(x) +

X

i∈E

σi|ci(x)| +
X

i∈I

σici(x)+.

Show that, if σi > |(λ∗)i|, for i ∈ E ∪ I and all optimal multiplier λ∗, then
x∗ is a strict local minimum of Θ1

σ.

[Hint : Use the norm v 7→ ‖v‖P :=
P

i
σi|vi| and proposition 16.8.]

Remark: The `1-penalty function offers a natural way of controlling the
magnitude of penalty parameters σi, when one such parameter is associated
with each constraint.

16.9. Nondifferentiable augmented Lagrangian ([37] for equality constrained prob-
lems; [41] for an alternative to (16.22)). Suppose that f and cE∪I0

∗
are twice

differentiable at a local minimum x∗ of (PEI) at which the KKT conditions
hold. Let be given µ ∈ R

m and σ ∈ R+. Suppose one of the following:

(i) either the weak second-order sufficient condition of optimality (13.8)
is satisfied and σ > sup{‖λ∗ − µ‖D : λ∗ ∈ Λ∗},

(ii) or the semi-strong second-order sufficient condition of optimality
(13.9) holds for some optimal multiplier λ∗ and σ > ‖µ − λ∗‖D .

Then Θµ,σ : R
n → R defined by

Θµ,σ(x) := f(x) + µ
>
c(x)# + σ‖c(x)#‖P (16.22)

has a strict local minimum at x∗.

[Hint : Under assumptions (i) use a technique similar to the one in the proof
of proposition 16.8; under assumptions (ii) follow the same strategy as in
exercise 16.7.]



17 Globalization by Line-Search

There is no guarantee that the local algorithms in chapters 14 and 15 will
converge when they are started at a point x1 far from a solution x∗ to problem
(PE) or (PEI ). They can generate erratic sequences, which may by chance
enter the neighborhood of a solution and then converge to it; but most often,
the sequences will not converge. There exist several ways of damping this
uncoordinated behavior and modifying the computation of the iterates so as
to force their convergence. Two classes of techniques can be distinguished
among them: line-search and trust-region. The former is presented in this
chapter.

In methods with line-search, the iterates are generated by the recurrence

xk+1 = xk + αkdk,

where dk is a direction in R
n and αk > 0 is a stepsize, computed by a line-

search technique (see chapter 3), whose aim is to decrease a merit function.
In this chapter, we consider algorithms in which dk solves or approximately
solves the osculating quadratic program (14.8)/(15.4) of the Newton/SQP
algorithm in chapters 14/15 and the merit function is the function Θσ in
chapter 16. For convenience, we recall the definition of Θσ :

Θσ(x) = f(x) + σ‖c(x)#‖
P
, (17.1)

where ‖ · ‖P denotes an arbitrary norm and the notation (·)# was introduced
on page 194. Properties of function Θσ are studied in chapter 16; remember
that this function is usually nondifferentiable.

Let us stress the originality of this approach, which uses the solution to
the osculating quadratic program to minimize Θσ . If dk were an arbitrary
descent direction of the nondifferentiable merit function Θσ , for example
the steepest-descent direction, the resulting algorithm would not necessarily
converge (see § 9.2.1). We shall show, however, that the difficulty coming from
nonsmoothness does not occur if the search direction dk solves the osculating
quadratic problem (15.4). As for the stepsize, the value αk = 1 is preferred,
in order to preserve the quadratic convergence of the local method. We shall
see that the unit stepsize is actually accepted when xk is close to a strong
solution to (PEI ), provided some modifications of the search direction or the
merit function are made. Therefore, the final algorithm can also be viewed as
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a quadratically convergent method for minimizing the structured nonsmooth
function Θσ , a speed of convergence that cannot be obtained with general
purpose nondifferentiable algorithms like those presented in part II of this
book.

The concept of exactness plays an important part in the success of the
approach we have just outlined. Without this property, it might indeed have
been necessary to adapt σ continually to make the solution dk to the quadratic
problem a descent direction of the merit function Θσ . This is illustrated for
an equality constraint problem in figure 17.1 (a single constraint and two

PSfrag replacements
x̄σ

x̄σ

x̄σ

xkxkxk

Fig. 17.1. Importance of exactness: σ too small (l), giving descent (m), giving
exactness (r)

variables). The figure provides three pictures showing the level curves of Θσ

for three increasing values of σ (x̄σ is the minimizer of Θσ). They also show
the constraint manifold (the bold curve at the bottom) and the Newton
direction at xk (the arrow). We assume that the current iterate xk is close
to x∗ (hence the figure gives greatly enlarged views) and that the multiplier λk

is also close to λ∗, so that the Newton direction dk points towards x∗ (this
is a consequence of the quadratic convergence result in chapter 14). We can
see that dk is an ascent direction of Θσ if σ is not large enough (left-hand
picture). In this case, there is no hope in finding a positive stepsize αk along dk

that provides a decrease in Θσ . In the middle picture, σ is large enough to
make dk a descent direction of Θσ , although not large enough to make Θσ

exact at x∗. In the right-hand picture, the penalty parameter σ is large enough
to have x̄σ = x∗ (exactness of Θσ) and this gives dk a greater chance of being
a descent direction of Θσ . As we shall see, other conditions must also be
satisfied. Observe finally that the nondifferentiability of Θσ manifests itself
in the pictures by the lack of smoothness of its level curves when they cross
the constraint manifold.

To get descent property of dk, it will be necessary to increase σ at some
iterations, but the exactness property of Θσ for a finite value of σ will allow
the algorithm to do this finitely often. This is a very desirable property,
which makes the proof of convergence possible. As soon as σ is fixed, Θσ
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plays the role of an immutable reference, which is able to appreciate the
progress towards the solution, whatever may happen to the iterates.

This chapter describes and analyzes two classes of algorithms. Line-search
SQP algorithms (§ 17.1) are based on the SQP direction of chapter 15 and
use line-search on Θσ to enforce its convergence. We derive conditions that
ensure the descent property of the SQP direction on Θσ and study the global
convergence of the algorithm. This analysis assumes the strict convexity of
the osculating quadratic program defining the SQP direction (as well as its
feasibility), which may require not using the Hessian of the Lagrangian, but
a positive definite approximation thereof (chapter 18 explains how to gener-
ate quasi-Newton approximations). The truncated SQP algorithm of § 17.2 is
presented as a line-search method that can use the exact Hessian of the La-
grangian (although we restrict the analysis to equality constrained problems).
In this case, it is the way to solve the quadratic program approximately (dis-
carding tangent negative curvature information) that allows the algorithm to
generate descent directions of the merit function Θσ . The so-called Maratos
effect (nonadmissibility of the unit stepsize asymptotically) is discussed in
§ 17.3, and the most common remedies for this phenomenon are described.

17.1 Line-Search SQP Algorithms

The quadratic program (QP) considered in this section is slightly more gen-
eral than (15.4): the Hessian of the Lagrangian L(xk, λk) is replaced by some
n × n symmetric matrix Mk. This allows us to include the Newton and the
quasi-Newton versions of SQP in the same framework. On the other hand,
the descent property of the QP solution and convergence of the line-search
SQP algorithm often require the positive definiteness of Mk. The osculating
quadratic problem in d becomes:





mind ∇f(xk)>d+ 1
2d

>Mkd
cE(xk) +AE(xk)d = 0
cI(xk) +AI(xk)d ≤ 0.

(17.2)

A stationary point dk of this QP satisfies, for some multiplier λQP

k ∈ R
m, the

optimality conditions:





(a) ∇fk +Mkdk +A>
kλ

QP

k = 0
(b) (ck +Akdk)# = 0
(c) (λQP

k )I ≥ 0
(d) (λQP

k )>I (ck +Akdk)I = 0.

(17.3)

For short, we have set ∇fk = ∇f(xk), ck = c(xk), and Ak = A(xk) = c′(xk).
Let us now outline the line-search SQP algorithm that uses Θσ as a merit

function. The description includes references to numerical techniques, whose
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sense will be clarified further in the section. The analysis of this algorithm is
the subject of this section.

Line-search SQP:

Choose an initial iterate (x1, λ1) ∈ R
n × R

m.
Compute f(x1), c(x1), ∇f(x1), and A1 := c′(x1).
Set k = 1.

1. Stop if the KKT conditions (13.1) holds at (x∗, λ∗) ≡ (xk, λk)
(optimality is reached).

2. Compute a symmetric matrix Mk, approximating the Hessian of
the Lagrangian, and find a primal-dual stationary point (dk, λ

QP

k )
of the quadratic problem (17.2) (i.e., a solution to the optimality
conditions (17.3)), which is assumed to be feasible.

3. Adapt σk if necessary (the update rule must satisfy (17.9) to ensure
convergence, but a rule similar to the one on page 295 is often
used).

4. Choose αk > 0 along dk so as to obtain a “sufficient” de-
crease in Θσk

(for example, use the line-search technique given
on page 296).

5. Set xk+1 := xk + αkdk and update λk → λk+1.
6. Compute ∇f(xk+1) and Ak+1 := c′(xk+1).
7. Increase k by 1 and go to 1.

This algorithm does not specify how to update the dual variables λk. Some
authors do a line-search on λ with the help of a primal-dual merit function,
which therefore involves λ-values. Others compute λk+1 from xk+1 as in the
primal algorithm of § 14.3. Another possibility is also to take

λk+1 := λk + αk(λQP

k − λk), (17.4)

where αk is the stepsize used for the primal variables. It has already been said
that the role of λk is less important than that of xk, because it intervenes in
the algorithm only through the matrix Mk (for example the Hessian of the
Lagrangian) in (17.2). The few requirements on the way the new multiplier
is determined reflects in some way this fact.

General assumptions for this section. We assume throughout this sec-
tion that f and c are differentiable in an open set containing the segments
[xk, xk+1] that link the successive iterates. We also assume that the quadratic
problem (17.2) is always feasible (i.e., its constraints are compatible).

In practice, the last assumption on the feasibility of (17.2) is far from al-
ways being satisfied at each iteration. Therefore, carefully written codes
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use techniques and heuristics for dealing with infeasible quadratic programs.
For more computational efficiency, it is also often better to have a different
penalty factor associated with each constraint, as in exercise 16.8. For sim-
plicity, we keep a merit function with a single penalty parameter σ, knowing
that an extension is possible without difficulty.

Decrease in Θσ Along dk

The merit function Θσ decreases from xk along dk if dk is a descent direction
of Θσ at xk (we saw in lemma 16.4 that Θσ has directional derivatives),
meaning that

Θ′
σ(xk ; dk) < 0.

We focus on this issue in this subsection.
The next proposition identifies three conditions that make dk a descent

direction of Θσ : σ is large enough, Mk is positive definite, and xk is not
a stationary point of (PEI ). Such a result is useful for the quasi-Newton
versions of SQP, where the positive definiteness of Mk is preserved. To hold,
the result needs the following assumption on the norm ‖ · ‖

P
used in Θσ :

v 7→ ‖v#‖
P

is convex. (17.5)

This hypothesis is weaker than (16.15) (see exercise 17.1).

Proposition 17.1 (descent property). If (dk, λ
QP

k ) satisfies the optimality
conditions (17.3) and if ‖ · ‖

P
satisfies (17.5), then

Θ′
σ(xk; dk) ≤ ∇f>

k dk − σ‖c#k ‖P = −d>kMkdk + (λQP

k )>ck − σ‖c#k ‖P . (17.6)

If, in addition, σ ≥ ‖λQP

k ‖D
, we have

Θ′
σ(xk ; dk) ≤ −d>kMkdk .

Hence Θ′
σ(xk ; dk) < 0, if σ ≥ ‖λQP

k ‖D
, if Mk is positive definite, and if xk is

not a stationary point of problem (PEI).

Proof. Since a norm has directional derivatives and is Lipschitzian (like any
convex function), the function v → ‖v#‖P has directional derivatives. From
(17.5) and (17.3)b, we have for t ∈ ]0, 1[:

‖(ck + tAkdk)#‖
P

= ‖[(1− t)ck + t(ck +Akdk)]#‖
P

≤ (1− t)‖c#k ‖P + t‖(ck +Akdk)#‖P

= (1− t)‖c#k ‖P
.

Therefore

(‖ ·# ‖
P
)′(ck;Akdk) = lim

t→0+

1

t
(‖(ck + tAkdk)#‖

P
− ‖c#k ‖P

) ≤ −‖c#k ‖P
.
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Then, with (17.3)a, (17.3)b and (17.3)d, we prove (17.6):

Θ′
σ(xk ; dk) ≤ ∇f>

k dk − σ‖c#k ‖P

= −d>kMkdk − (λQP

k )>Akdk − σ‖c#k ‖P

= −d>kMkdk + (λQP

k )>ck − σ‖c#k ‖P
.

If σ ≥ ‖λQP

k ‖D
, using (17.3)c and the generalized Cauchy-Schwarz inequality

(16.14), we have

(λQP

k )>ck − σ‖c#k ‖P
≤ (λQP

k )>c#k − σ‖c
#
k ‖P

≤ (‖λQP

k ‖D
− σ)‖c#k ‖P

≤ 0.

Now, the second inequality of the proposition is obtained from (17.6). If
Θ′

σ(xk ; dk) = 0 and Mk is positive definite, then dk = 0. From (17.3), it
follows that xk is stationary, with λQP

k as its associated multiplier.

Note that equality holds in (17.6) if there are only equality constraints
(see the proof of lemma 17.4 below), but this is not necessarily the case when
I 6= ∅ (this is the subject of exercise 17.2). Therefore, algorithms requiring
the computation of Θ′

σk
(xk; dk) often use the negative upper bound given by

the right-hand side of (17.6):

∆k := ∇f>
k dk − σk‖c#k ‖P

= −d>kMkdk + (λQP

k )>ck − σk‖c#k ‖P
. (17.7)

We have indexed σ by k, since its value will have to be modified at some
iterations.

Update of the Penalty Parameter σk

A consequence of proposition 17.1 is that when xk is nonstationary, when
Mk is positive definite, and when σk satisfies

σk > ‖λQP

k ‖D
, (17.8)

then ∆k < 0 and the solution dk to the osculating quadratic problem is a
descent direction of Θσk

at xk, meaning that Θ′
σk

(xk ; dk) < 0. Inequality
(17.8) reminds us of the exactness condition σ > ‖λ∗‖D

found for Θσ in
chapter 16 and is therefore natural: by maintaining (17.8) at each iteration,
the algorithm ensures the exactness of Θσ at convergence (σk = σ for large k
and λQP

k → λ∗).
To maintain (17.8) at each iteration, it is necessary to modify σk some-

times (the evolution of λQP

k cannot be known when the algorithm is started).
Global convergence will show that this inequality has to be imposed with
some safeguard, given by the positive constant σ̄ below. To keep some gen-
erality, we shall just specify the properties that an adequate adaptation rule
for σk must enjoy:
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(a) σk ≥ ‖λQP

k ‖D
+ σ̄, for all k ≥ 1,

(b) there exists an index k1 such that:
if k ≥ k1 and σk−1 ≥ ‖λQP

k ‖D
+ σ̄, then σk = σk−1,

(c) if {σk} is bounded, σk is modified finitely often.

(17.9)

Property (a) means that a little more than (17.8) must hold at each iteration.
With (b), we assume that, after finitely many steps, σk−1 is modified only
when necessary, to obtain (a). Finally, (c) requires that each modification
of σk is significant, so as to stabilize the sequence {σk}: asymptotically, the
merit function should no longer depend on the iteration index.

It can be checked that the following rule, proposed by Mayne and Po-
lak [250], satisfies these properties (the constant 1.5 is given to be specific;
actually, any constant > 1 is appropriate):

if σk−1 ≥ ‖λQP

k ‖D + σ̄
then σk = σk−1

else σk = max(1.5σk−1, ‖λQP

k ‖D
+ σ̄).

Having a large parameter σk is harmless for the theoretical convergence, but
can be disastrous in practice; so it must sometimes be decreased. In this case,
the properties in (17.9) may no longer be satisfied and convergence may no
longer be guaranteed. Nevertheless, an update rule like the one below is often
used (the constants 1.1 and 1.5 can be replaced by any constant > 1):

Update rule for σk:

if σk−1 ≥ 1.1 (‖λQP

k ‖D
+ σ̄),

then σk = (σk−1 + ‖λQP

k ‖D
+ σ̄)/2;

else if σk−1 ≥ ‖λQP

k ‖D + σ̄,
then σk = σk−1.
else σk = max(1.5σk−1, ‖λQP

k ‖D
+ σ̄);

In this rule, when the previous penalty factor σk−1 exceeds 1.1 times the
minimal threshold ‖λQP

k ‖D
+ σ̄, the new factor σk is set to the arithmetic

mean of this threshold and of σk−1.
It is often better to use a different penalty factor for each constraint

(in particular, when the constraints have very different orders of magnitude).
This is done by taking as a penalty functionΘσ(x) = f(x)+‖Sc(x)#‖P , where
S = Diag(σ1, . . . , σn). The case of the `1 norm is considered in exercise 16.8.

Line-Search

The determination of the stepsize αk > 0 along dk, forcing the decrease
in Θσk

, must be done in a precise manner (see § 3 for unconstrained problems).
We shall enforce satisfaction of the following Armijo condition [12]: ω being
a fixed constant in ]0, 1

2 [, one determines α > 0 such that
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xk + αdk ∈ Ω and Θσk
(xk + αdk) ≤ Θσk

(xk) + ωα∆k. (17.10)

The requirement ω < 1
2 comes from the necessity of having asymptotic admis-

sibility of the unit stepsize (see § 17.3); it is essential neither for consistency
of (17.10) nor for global convergence (ω ∈ ]0, 1[ would be sufficient). The
value of ∆k in (17.10) should ideally be Θ′

σk
(xk , dk), but since this direc-

tional derivative is not easy to compute, we take the negative upper bound
given by (17.7).

Since Θ′
σk

(xk; dk) ≤ ∆k < 0 and ω < 1, one can easily verify that it is
possible to find αk > 0 satisfying (17.10). However, this Armijo condition
does not eliminate unduly small αk’s, which might impair convergence of
the iterates to a stationary point. This explains the following line-search
algorithm. A constant β ∈ ]0, 1

2 ] is chosen.

Backtracking line-search:

Set i = 0, αk,0 = 1.

1. If (17.10) is satisfied with α = αk,0, set αk = α and exit.
2. Choose αk,i+1 ∈ [βαk,i, (1− β)αk,i].
3. Increase i by 1 and go to 1.

Taking for example β = 1
2 , the stepsize selected by this algorithm is the first

element encountered in the list {1, 1
2 ,

1
4 ,

1
8 , · · · } satisfying (17.10). Taking the

first of these stepsizes does prevent α from being too small. The determination
of αk,i+1 in the interval [βαk,i, (1−β)αk,i] should be done using interpolation
formulas.

Global Convergence with Positive Definite Hessian
Approximations

In this subsection, we analyze the global convergence of the line-search SQP
algorithm given on page 292, when σk is adapted by a rule satisfying prop-
erties (17.9), the stepsize αk is determined by the line-search algorithm on
page 296, and the matrices Mk used in the osculating quadratic program
(17.2) are maintained positive definite, in such a way that

{Mk} and {M−1
k } are bounded. (17.11)

This is a strong assumption. For example, it is not known whether it is satis-
fied in the quasi-Newton versions of SQP. Besides, if Mk = L(xk, λk), positive
definiteness is not guaranteed. We shall, however, accept this assumption,
which allows a simple convergence proof.

Theorem 17.2 (global convergence of the line-search SQP algo-
rithm). Suppose that f and c are of class C1,1 in Ω and that ‖ ·# ‖

P
is
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convex. Consider the line-search SQP algorithm on page 292, using symmet-
ric positive definite matrices Mk satisfying (17.11) and an update rule of σk

satisfying (17.9). Then, starting the algorithm at a point x1 ∈ Ω, one of the
following situations occurs:

(i) the sequence {σk} is unbounded, in which case {λQP

k } is also unbounded;
(ii) there exists an index k2 such that σk = σ for k ≥ k2, and at least one

of the following situations occurs:

(a) Θσ(xk)→ −∞,
(b) dist(xk , Ω

c)→ 0,

(c) ∇x`(xk, λ
QP

k )→ 0, c#k → 0, (λQP

k )I ≥ 0 and (λQP

k )>I (ck)I → 0.

Proof. If {σk} is unbounded, we see from rule (17.9)b that {λQP

k : σk 6= σk−1}
is unbounded. If {σk} is bounded, rule (17.9)c shows that there exists an
index k2 such that σk = σ for all k ≥ k2. It remains to show that one of the
situations (ii-a), (ii-b), or (ii-c) occurs. For this, we suppose that (ii-a) and
(ii-b) do not hold and show (ii-c).

Each iteration after k2 forces the decrease in the same function Θσ . Since
Θσ(xk) ≥ C > −∞, Armijo’s condition (17.10) shows that

αk∆k → 0.

Then, if we show αk ≥ α > 0, the result (ii-c) will follow. Indeed, from
∆k → 0, (17.6) and (17.9)a, we deduce

d>kMkdk → 0 and c#k → 0.

Because Mk is positive definite and has a bounded inverse, dk → 0. Then,
from (17.3)a and the boundedness of Mk, we see that ∇x`(xk , λ

QP

k )→ 0. On
the other hand, (17.3)c shows that (λQP

k )I ≥ 0. Finally, ∆k = ∇f>
k dk −

σ‖c#k ‖P
→ 0 and c#k → 0 imply that ∇f>

k dk → 0 and, using (17.3)a,
(λQP

k )>Akdk → 0. Hence, from (17.3)d and (17.3)b,

(λQP

k )>I (ck)I = −(λQP

k )>I (Akdk)I

= (λQP

k )>E(Akdk)E + o(1)

= −(λQP

k )>E(ck)E + o(1)

= o(1),

because {λQP

k } is bounded and (ck)E → 0.
Therefore, it remains to prove that αk ≥ α > 0, for all k and some

constant α. We can consider the indices k of K := {k ≥ k2 : αk < 1}.
Then from the rule determining the stepsize, αk ∈ [βᾱk, (1− β)ᾱk] for some
ᾱk ∈ ]0, 1] satisfying

αk + ᾱkdk 6∈ Ω or Θσ(xk + ᾱkdk) > Θσ(xk) + ωᾱk∆k.
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For large k, the first condition is impossible because dk → 0 would then imply
that dist(xk , Ω

c)→ 0. Hence, for large k ∈ K, we have

Θσ(xk + ᾱkdk) > Θσ(xk) + ωᾱk∆k. (17.12)

Let us expand the left-hand side of (17.12). Using the smoothness of f and c,
ᾱk ≤ 1, the convexity of ‖ ·# ‖

P
(hence its Lipschitz continuity), (17.3)b, and

finally (17.6)–(17.7), we have successively

f(xk + ᾱkdk) = fk + ᾱk∇f>
k dk +O(ᾱ2

k‖dk‖2)
c(xk + ᾱkdk) = ck + ᾱkAkdk +O(ᾱ2

k‖dk‖2)
= (1− ᾱk)ck + ᾱk(ck +Akdk) +O(ᾱ2

k‖dk‖2)
‖c(xk + ᾱkdk)#‖

P
≤ (1− ᾱk)‖c#k ‖P

+ ᾱk‖(ck +Akdk)#‖
P

+O(ᾱ2
k‖dk‖2)

= (1− ᾱk)‖c#k ‖P +O(ᾱ2
k‖dk‖2)

Θσ(xk + ᾱkdk) ≤ Θσ(xk) + ᾱk∆k + C1ᾱ
2
k‖dk‖2.

Then (17.12) yields

−(1− ω)ᾱk∆k ≤ C1ᾱ
2
k‖dk‖2.

But ∆k = −d>kMkdk +(λQP

k )>ck−σ‖c#k ‖P
≤ −d>kMkdk ≤ −C2‖dk‖2 (bound-

edness of {M−1
k }), so that we deduce from the above inequality:

ᾱk ≥ (C2/C1)(1− ω) > 0,

because ω < 1. The positive lower bound on αk can therefore be taken as
α := β(C2/C1)(1− ω). This concludes the proof.

Among the situations described in theorem 17.2, only situation (ii-c) is
satisfactory. In this case, every cluster point of {(xk, λ

QP

k )} satisfies the op-
timality conditions (KKT). Unfortunately, any of the other situations may
occur. For example, (i) may occur in the example in figure 16.1 when {xk}
converges to x′∗, a point where λ∗ is not defined. Situation (ii-a) will occur if,
outside of the feasible set, f decreases more rapidly than ‖c(·)#‖P increases,
and if x1 is taken far enough from the feasible set; the example

min{−x2 : x = 0},

with ‖ · ‖
P

= | · |, is such. Finally, situation (ii-b) occurs if Ω contains no
stationary point.

17.2 Truncated SQP

In this section, we consider another globalization technique of the Newton
algorithm to solve the problem with only equality constraints:
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(PE)

{
minx f(x)
c(x) = 0.

The local algorithm was introduced in § 14.1 and we refer the reader to § 14.4
(in the subsection entitled “The reduced system approach”) for the notation.
In contrast to the approach used in the previous section, we do not replace
here the Hessian of the Lagrangian by a positive definite approximation. This
was useful to ensure the well-posedness of the osculating quadratic program
and the decrease in Θσ along the computed direction. Instead, we describe an
algorithm that directly exploits the curvature of the problem (i.e., the second
derivatives of f and c) gathered in the Hessian of the Lagrangian, even in the
presence of nonconvexity.

Here also, the computed direction will be a descent direction of the merit
function Θσ , which allows global convergence. Therefore, it must differ from
Newton’s direction, but the modification only needs to be done at points
where the reduced Hessian of the Lagrangian is not positive definite. This
form of weak nonconvexity can therefore be detected by the algorithm, which
is a nice feature. The idea is similar to the truncated Newton algorithm
in unconstrained optimization (see § 6.4): the truncated conjugate gradient
(CG) algorithm is used to solve, sometimes approximately, the reduced linear
system (see (14.32))

Hkuk = vk, (17.13)

where

Hk := Z−>
k LkZ

−
k and vk := −gk + Z−>

k LkA
−
k ck. (17.14)

Note that the reduced Hessian of the Lagrangian Hk is symmetric but may
be indefinite. By the truncated CG, the algorithm aims at collecting only the
“positive definite part” of Hk. This is obtained by stopping the CG iterations
certainly before a conjugate direction w is a negative curvature direction for
Hk (more precisely, before w>Hkw becomes less than an appropriate positive
threshold). Let us denote by ũk the approximate solution to (17.13) computed
by the truncated CG algorithm. We shall show that the search direction

dk = −A−
k ck + Z−

k ũk (17.15)

is then a descent direction of Θσ provided σ is larger than an easily com-
putable threshold. Another interesting property of this approach is that, since
Hk is positive definite around a strong solution to (PE), the CG iterations can
be pursued up to completion close to such a solution, so that local quadratic
convergence is not prevented.

Let us look at this in more detail.

Truncated CG Iterations

The truncated conjugate gradient (TCG) algorithm to solve (17.13) is pre-
sented below. For clarity, we drop the index k of the Newton algorithm and
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denote by i the CG iteration index (in superscript). For i = 0, . . . , j, Al-
gorithm TCG generates iterates ui, approximating the solution to (17.13),
residuals ri := Hui − v, and conjugate directions wi. The algorithm can be
stopped at any iteration (global convergence of the truncated SQP method
will not be affected by this), but it must certainly be interrupted at uj if
the next conjugate direction wj is a quasi-negative curvature direction for H .
This means that the following inequality does not hold with i = j:

(wi)>Hwi ≥ ν‖wi‖22. (17.16)

The threshold ν > 0 is assumed to be independent of the index k, although
an actual implementation would use a more sophisticated rule for setting
this parameter, allowing small values when approaching a solution. Hence,
Algorithm TCG simply discards quasi-negative directions. It is in this way
that nonconvexity is dealt with.

Algorithm TCG for (17.13):

1. Choose ν > 0. Set u0 = 0 and r0 = −v, where v is defined by
(17.14).

2. For i = 0, 1, . . . do the following:
2.1. If desired or if ri = 0, stop to iterate and go to step 3 with

j = i.
2.2. Compute a new conjugate direction:

wi =

{
−ri if i = 0

−ri + ‖ri‖2

‖ri−1‖2 w
i−1 if i ≥ 1.

2.3. Compute pi = Hwi.
2.4. If (17.16) does not hold, go to step 3 with j = i.
2.5. Compute the new iterate ui+1 = ui+tiwi and the new residual

ri+1 = ri + tipi, with the stepsize

ti =
‖ri‖2

(wi)>pi
.

3. Take as the approximate solution to (17.13):

ũ =

{
v if j = 0
uj if j ≥ 1.

Observe that, since the first iterate of Algorithm TCG is u0 = 0, the first CG
direction is w0 = −r0 = v, the right-hand side of (17.13). This is important
for the analysis that follows. Another key point is that the directions wi are
conjugate: wi1Hwi2 = 0 for i1 6= i2. Note finally that Algorithm TCG chooses
to output the approximate solution uj currently obtained when j ≥ 1 (it is
different from zero), but ũ = w0 = v when j = 0 (u0 = 0 in this case).
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Lemma 17.3. The vector ũ computed by Algorithm TCG has the form

ũ = Jv, (17.17)

where J is the identity matrix when j = 0 and

J =

j−1∑

i=0

wi(wi)>

(wi)>Hwi
(17.18)

when j ≥ 1. Furthermore ‖J‖2 ≤ max
(
1, j

ν

)
.

Proof. If i = 0, u = v and the result follows. Otherwise Algorithm TCG
generates conjugate directions w0, . . . , wj−1. By orthogonality of ri and
wi−1, by the fact that the algorithm starts with u0 = 0, and by conjugacy of
the directions wi, one has for 1 ≤ i ≤ j:

‖ri‖2 = −(wi)>ri

= −(wi)>(Hui − v)

= −(wi)>H

(
i−1∑

l=0

tlwl

)
+ (wi)>v

= (wi)>v.

Also, ‖r0‖2 = (w0)>v. Therefore

ũ =

j−1∑

i=0

tiwi =

j−1∑

i=0

(wi)>v

(wi)>Hwi
wi =

(
j−1∑

i=0

wi(wi)>

(wi)>Hwi

)
v.

This proves (17.18).
The upper bound on ‖J‖2 comes from the fact that ‖vv>‖2 = ‖v‖22 and

(17.16).

Note that, when j ≥ 1, the matrix J is positive semi-definite with rank j.
In view of (17.13) and (17.17), this matrix appears as a kind of “pseudo-
inverse of the positive definite part” of H .

Descent Property

In the next lemma, we give conditions ensuring that the direction dk given by
(17.15) is a descent direction of Θσk

. For this, it is convenient to give another
expression of dk by introducing the following right inverse of Ak:

Ã−
k := (I − Z−

k JkZ
−>
k Lk)A−

k . (17.19)
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This is the right inverse Â−
k in (14.33), in which H−1

k has been substituted
by its approximation Jk. Then

dk = r̃k + t̃k, (17.20)

where
r̃k = −Ã−

k ck and t̃k = −Z−
k Jkgk.

We also use the multiplier associated with Ã−
k :

λ̃k = −Ã−>
k ∇fk. (17.21)

How to compute this multiplier efficiently is dealt with in the next subsection.

Lemma 17.4 (descent property). Suppose that f and c are differentiable
at xk. Let dk be given by (17.15), where ũk is the approximate solution to
(17.13) computed by Algorithm TCG. Then Θσk

has a directional derivative
in the direction dk, whose value is given by

Θ′
σk

(xk ; dk) = −g>k Jgk + λ̃>k ck − σk‖ck‖P
. (17.22)

It is negative if xk is nonstationary and σk > ‖λ̃k‖D
.

Proof. Since a norm is Lipschitz continuous and has directional deriva-
tives, ‖ · ‖

P
◦ c has directional derivatives (see lemma 13.1). Using the fact

that dk satisfies the linearized constraints (i.e., Akdk = −ck), one has
(‖ · ‖

P
◦ c)′(xk ; dk) = (‖ · ‖

P
)′(ck;−ck) = −‖ck‖P

. Therefore

Θ′
σk

(xk; dk) = ∇f>
k dk − σk‖ck‖P .

Using (17.20) and (17.21), we get (17.22).
Suppose now that σk > ‖λ̃k‖D

. Since λ̃>k ck ≤ ‖λ̃k‖D
‖ck‖P

, we obtain

Θ′
σk

(xk; dk) ≤ −g>k Jkgk + (‖λ̃k‖D
− σk)‖ck‖P

≤ 0.

If Θ′
σk

(xk; dk) = 0, it follows that ck = 0 and g>k Jkgk = 0. If the number of CG
iterations jk = 0, then Jk = I , hence gk = 0 and xk is stationary. It remains to
show that jk cannot be ≥ 1 when Θ′

σk
(xk; dk) = 0. If jk ≥ 1, one would have

vk 6= 0 (see step 2.1 of Algorithm TCG) and therefore gk 6= 0 (since ck = 0).
But with the structure of Jk and the fact that w0

k = vk = −gk when ck = 0,
one would have g>k Jkgk ≥ (g>kw

0
k)2/((w0

k)>Hkw
0
k) = ‖gk‖4/(g>kHgk) > 0,

which would contradict the fact that g>k Jkgk = 0.
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Computation of λ̃k

Let us drop the index k. From (17.21) and (17.19), the definition of λ̃ involves
the matrix J :

λ̃ = −A−>(∇f − LZ−Jg).

We do not want to store this matrix, however. In fact, to compute λ̃, one has
to evaluate ū = Jg, which is the approximate solution to

Hū = g, (17.23)

obtained by using the same conjugate directions wi and the same products
pi = Hwi, i = 0, . . . , j−1, as those used to compute the approximate solu-
tion ũ to (17.13) by Algorithm TCG. The computation of ũ and ū can be
made in parallel, hence avoiding the need to store the conjugate directions wi

(or J) or the need to compute twice the Hessian-vector products pi = Hwi.
This is what Algorithm TCG2 below does. Its outputs are ũ and ū.

Algorithm TCG2 for (17.13) and (17.23):

1. Choose ν > 0. Set u0 = 0, r0 = −v, ū0 = 0, and r̄0 = −g, where
v is defined by (17.14).

2. For i = 0, 1, . . . do the following:
2.1. If desired or if ri = 0, stop to iterate and go to step 3 with

j = i.
2.2. Compute a new conjugate direction:

wi =

{
−ri if i = 0

−ri + ‖ri‖2

‖ri−1‖2 w
i−1 if i ≥ 1.

2.3. Compute pi = Hwi.
2.4. If (17.16) does not hold, go to step 3 with j = i.
2.5. Compute the new iterates ui+1 = ui + tiwi and ūi+1 = ūi +

t̄iwi and the new residuals ri+1 = ri+tipi and r̄i+1 = r̄i+t̄ipi,
with the stepsizes

ti =
‖ri‖2

(wi)>pi
and t̄i = − (r̄i)>wi

(wi)>pi
.

3. Take as the approximate solution to (17.13) and (17.23):

ũ =

{
v if j = 0
uj if j ≥ 1

and ū =

{
g if j = 0
ūj if j ≥ 1.

It may occur that the linear system (17.23) is solved before (17.13). In this
case, the stepsizes t̄i vanish and ūi is no longer modified. It is easy to verify
that λ̃ is obtained from ū by:
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λ̃ = −A−>(∇f − LZ−ū). (17.24)

Indeed, since ū0 = 0, one has for 1 ≤ i ≤ j:

(wi)>r̄i = (wi)>(Hūi − g) = (wi)>H

(
i−1∑

l=0

t̄lwl

)
− (wi)>g = −(wi)>g.

Hence

ū =

j−1∑

i=0

t̄iwi =

j−1∑

i=0

(wi)>g

(wi)>Hwi
wi = Jg.

The Truncated SQP Algorithm and its Global Convergence

The truncated SQP algorithm to solve problem (PE) generates a sequence
{xk}k≥1 by the recurrence

xk+1 = xk + αkdk,

where the direction dk ∈ R
n is determined by (17.15), with ũk computed by

Algorithm TCG2, and the stepsize αk > 0 is determined by a line-search on
the merit function Θσk

.
According to lemma 17.4, dk is a descent direction of Θσk

provided xk is
nonstationary and σk > ‖λ̃k‖D

. This requires a modification of σk at some
iterations and we assume that a rule respecting conditions similar to (17.9)
is adopted: for some fixed constant σ̄ > 0, the following holds





(a) σk ≥ ‖λ̃k‖D
+ σ̄, for all k ≥ 1,

(b) there exists an index k1 such that:

if k ≥ k1 and σk−1 ≥ ‖λ̃k‖D
+ σ̄, then σk = σk−1,

(c) if {σk} is bounded, σk is modified finitely often.

(17.25)

Since at a nonstationary iterate xk , dk is a descent direction of Θσk
, one can

determine a stepsize αk > 0 such that the following Armijo inequality holds

Θσk
(xk + αkdk) ≤ Θσk

(xk) + ωαkΘ
′
σk

(xk; dk), (17.26)

where ω is a constant chosen in ]0, 1
2 [. As in the line-search SQP algorithm

on page 292, the stepsize is determined in step 4 below by backtracking.
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We can now summarize the overall TSQP algorithm to solve the equality
constrained problem (PE).

Algorithm TSQP:

Choose an initial iterate (x1, λ1) ∈ R
n × R

m.
Compute f(x1), c(x1), ∇f(x1), and A(x1).
Set the constants ν > 0 (quasi-negative curvature threshold), ω ∈

]0, 1
2 [ (slope modifier in the Armijo condition), σ̄ > 0 (penalty

parameter threshold), and β ∈ ]0, 1
2 ] (backtracking safeguard pa-

rameter).
Set k = 1.

1. Stopping test : Stop if ck = 0 and gk = 0.
2. Step computation:

• Compute the restoration step rk = −A−
k ck.

• Compute the reduced gradient gk = Z−>
k ∇fk and the right-hand

side of (17.13) vk = −gk − Z−>
k Lkrk.

• Run Algorithm TCG2 to compute ũk and ūk.
• Compute the full step dk = rk +Z−

k ũk and the multiplier λ̃k by
(17.24).

3. Penalty parameter setting : Update σk such that (17.25) holds.
4. Backtracking line-search:

• Set α = 1.
• While α does not satisfy Armijo’s inequality (17.26), pick a new

stepsize α in [βα, (1−β)α].
• Set αk = α.

5. New iterates : Set xk+1 = xk + αkdk and λk+1 = λLS

k+1.
6. Increase k by 1 and go to 1.

Before proving the global convergence of this algorithm, let us make some
observations. In a practical algorithm, the stopping test in step 1 would be
replaced by a condition checking that ck and gk are sufficiently small. In
practice, in step 4, the new stepsize chosen in the interval [βα, (1−β)α] during
the line-search should be obtained by interpolation. In step 5, we have set
the new multiplier λk+1 to the least-squares multiplier

λLS

k := −A−>
k ∇fk.

This makes Algorithm TSQP close to the primal version of Newton’s al-
gorithm analyzed in theorem 14.5. Another possibility would have been to
choose λk+1 = λ̃k. Observe however that, even if the CG iterations of Algo-

rithm TCG2 solve (17.13) and (17.23) exactly, λ̃k 6= λQP

k (in this case λ̃k = λ̂k

given by (14.36), compare with (14.35)), so that with that choice of λk+1,
Algorithm TSQP does not reduce to Newton’s algorithm in a neighborhood
of a strong solution.
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Theorem 17.5 (global convergence of the line-search truncated SQP
algorithm). Suppose that the functions f and c are twice continuously dif-
ferentiable with Lipschitz continuous first derivatives. Suppose also that the
sequences {∇fk}, {Lk}, {A−

k }, and {Z−
k } generated by Algorithm TSQP are

bounded. Then the sequence of penalty parameters {σk} is stationary for
sufficiently large k: σk = σ. If furthermore {Θσ(xk)} is bounded below, the
sequences {ck} and {gk} converge to 0.

Proof. We denote by C1, C2, . . . positive constants, independent of k. We can
assume that ‖ck‖+ ‖gk‖ > 0 for all k ≥ 1, because otherwise the conclusion
is clear.

Note first, that the assumptions imply the boundedness of {λ̃k} (use
(17.24), the boundedness of {A−

k }, {∇fk}, {Lk}, {Z−
k }, and that of {Jk}

given by lemma 17.3). Then by (17.25)b, {σk} is also bounded, hence sta-
tionary for large enough k (use (17.25)c). From Armijo’s inequality (17.26),
Θσ(xk) is decreasing. It is also bounded below (by assumption), hence it
converges. This implies that αkΘ

′
σ(xk ; dk) tends to 0, or equivalently (use

lemma 17.4 and (17.25)a)

αkg
>
k Jkgk → 0 and αkck → 0. (17.27)

Let us now show that {αk} is bounded away from 0. From the line-
search (step 4), when αk < 1, there is a stepsize αk ∈ ]0, 1] such that
αk ∈ [βαk, (1−β)αk] and

Θσ(xk + αkdk) > Θσ(xk) + ωαkΘ
′
σ(xk; dk).

Using the smoothness of f and c and the fact that dk satisfies the linearized
constraints, one has successively

f(xk + αkdk) = f(xk) + αkf
′(xk) · dk +O(α2

k‖dk‖2),
c(xk + αkdk) = (1− αk)c(xk) +O(α2

k‖dk‖2),
Θσ(xk + αkdk) ≤ Θσ(xk) + αkΘ

′
σ(xk ; dk) + C1αk

2‖dk‖2.

Therefore (ω − 1)Θ′
σ(xk; dk) < C1αk‖dk‖2 or

g>k Jkgk + ‖ck‖P < C2αk‖dk‖2, (17.28)

where C2 = C1/((1−ω) min(1, σ̄)). With the boundedness of {A−
k }, {Z−

k },
{Lk}, and {Jk}, we have dk = O(‖J1/2

k vk‖ + ‖ck‖P ) and, due to the form

of vk, dk = O(‖J1/2
k gk‖+ ‖ck‖P

). Then, inequality (17.28) becomes

g>k Jkgk + ‖ck‖P
< C3αk(g>k Jkgk + ‖ck‖2P ).

From (17.27), αkck → 0 and therefore for large k

g>k Jkgk < C3αkg
>
k Jkgk.
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This inequality shows that g>k Jkgk 6= 0 when αk < 1 and k is large enough
and that {αk} is bounded away from zero. Since αk ≥ βαk, {αk} is also
bounded away from zero.

From (17.27)
g>k Jkgk → 0 and ck → 0. (17.29)

It remains to show that gk → 0. Assume the opposite: there is a constant
γ > 0 and subsequence K such that ‖gk‖ ≥ γ for k ∈ K. Using the first term
of the expression (17.18) of Jk when jk ≥ 1, w0

k = vk, and the boundedness
of {Hk}, one can write

g>k Jkgk ≥ min

(
‖gk‖22,

(g>k vk)2

v>kHkvk

)
≥ min

(
γ2, C4

(g>k vk)2

‖vk‖2
)
.

The numerator can be bounded below as follows:

(g>k vk)2 = [−‖gk‖2 +O(‖gk‖ ‖ck‖)]2
= ‖gk‖4 +O(‖gk‖3 ‖ck‖) +O(‖gk‖2 ‖ck‖2)

≥ 1

2
‖gk‖4 − C5‖gk‖2 ‖ck‖2

≥ ‖gk‖2(
1

2
γ2 − C5‖ck‖2),

which is positive for large k in K. For the denominator, we use the upper
bound:

‖vk‖2 ≤ 2‖gk‖2 + C6‖ck‖2 ≤ ‖gk‖2(2 + C6‖ck‖2/γ2).

Therefore for large k in K:

g>k Jkgk ≥ min

(
γ2,

1
2γ

2 − C5‖ck‖2
2 + C6‖ck‖2/γ2

)
.

This is in contradiction with (17.29).

17.3 From Global to Local

In this section, we analyze conditions under which the line-search algorithms
of the present chapter can transform themselves into the “local” algorithms
of chapter 14. In view of the quadratic convergence of the local methods,
this “mutation” is highly desirable. Because the direction generated by the
local algorithm is used as a descent direction of some merit function, this
transformation will occur if the line-search accepts the unit stepsize during
the last iterations. This property is referred to as the asymptotic admissibility
of the unit stepsize. We shall see that it is not guaranteed without certain
modifications of the algorithms, which are therefore crucial for their efficiency.



308 17 Globalization by Line-Search

For simplicity, we assume in this section that the problem has only equal-
ity constraints:

(PE)

{
minx f(x)
c(x) = 0.

Since our study is asymptotic, assuming convergence of the sequence {(xk,
λk)} to a primal-dual solution (x∗, λ∗), this simplification amounts to assum-
ing that the active constraints are identified after finitely many iterations,
in which case problem (PEI) reduces locally to a problem with only equality
constraints (theorem 15.2 tells us something about this).

The Maratos Effect

The merit function Θσ introduced in § 16.4 and defined by

Θσ(x) = f(x) + σ‖c(x)‖
P

does not necessarily accept unit stepsizes asymptotically. This is known as the
Maratos effect. We mean by this that when dk solves the quadratic problem

{
mind ∇f(xk)>d+ 1

2d
>Mkd

c(xk) +A(xk)d = 0,
(17.30)

we may have
Θσ(xk + dk) > Θσ(xk), (17.31)

however close to (x∗, L∗) the current pair (xk,Mk) may be.
The following counter-example demonstrates this fact. There, the con-

sidered iterate xk is on the constraint manifold: c(xk) = 0. We have seen
in proposition 17.1 that, if σk ≥ ‖λQP

k ‖D
and Mk is positive definite, Θσk

decreases along the Newton direction dk, which means that, for small step-
sizes, the decrease in f along dk compensates the increase in ‖c‖

P
. In the

counter-example, this compensation not longer holds for stepsizes close to 1.

Counter-example 17.6. Consider the problem on R
2

{
minx −x1 + τ(x2

1 + x2
2 − 1)

x2
1 + x2

2 − 1 = 0,

where τ ∈ R. Its unique solution is x∗ = (1, 0) and the associated multiplier
is λ∗ = 1

2 − τ . The Hessian of the Lagrangian at the solution is L∗ = I .
Suppose now that the step d at x is given by the osculating quadratic

problem, defined at a feasible point x with the matrix M = L∗ = I :

{
mind −d1 + 1

2‖d‖22
x>d = 0.

Its solution for x = (cos θ, sin θ) lying on the constraint is
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d =

(
sin2 θ

− sin θ cos θ

)

and c(x + αd) = α2 sin2 θ. Hence, if ‖ · ‖
P

= | · |,

Θσ(x) = − cos θ

Θσ(x+ αd) = − cos θ − α sin2 θ + (τ + σ)α2 sin2 θ.

Then Θσ(x + d) > Θσ(x) whenever τ + σ > 1 (and θ 6= 0). Because σ ≥
|λ∗| ≡ | 12 − τ | is needed to have an exact penalty, Θσ increases for a unit
stepsize if τ > 3

4 .
Figure 17.2 shows the level curves of Θσ around the solution for τ = 1 and

σ = 0.6, as well as the Newton step d from an x on the constraint manifold
(the bold curve), rather close to the solution (1, 0). One clearly observes that
Θσ(x+ d) > Θσ(x).
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Fig. 17.2. Example with a Maratos effect

This phenomenon somehow reveals a discrepancy between Θσ and the
osculating quadratic problem used to compute dk. Since this model is good
(it yields local quadratic convergence), the blame must be put on the merit
function, or on the way in which it is used. In the rest of this section, we ana-
lyze different remedies for the Maratos effect and prove that they are effective
close to a solution. The Maratos effect can also occur far from a solution and
it is then more difficult to deal with. The first remedy consists in modifying
the step dk by adding to it a small displacement, called a second order cor-
rection, that does not prevent quadratic convergence. Another possibility is
to modify the merit function, which is considered next.
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Modification of the Step: Second Order Correction

Example 17.6 has shown that there are situations in which, even close to the
solution, the increase in ‖c(·)‖P from xk to xk + dk is not compensated by
a decrease in f , resulting finally in an increase in Θσ . The remedy for the
Maratos effect presented in this subsection consists in adding to dk a small
correcting step ek ∈ R

n, whose aim is to decrease ‖c(·)‖
P
. This additional

step is defined by
ek = −A−

k c(xk+dk), (17.32)

where A−
k is some right inverse of the Jacobian matrix Ak = c′(xk), which is

assumed to be surjective. Hence, ek is a constraint-restoration step at xk +dk.
Figure 17.3 shows the second order correction for counter-example 17.6: the
small step e from x+ d to x+ d+ e.
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Fig. 17.3. Second order correction

One speaks of second-order correction because c(xk+dk) = O(‖dk‖2) and
therefore ek = O(‖dk‖2) is of order 2 in dk. This modification of dk preserves a
possible quadratic convergence since, assuming xk +dk−x∗ = O(‖xk−x∗‖2),
we have

xk + dk + ek − x∗ = (xk + dk − x∗) + ek = O(‖xk − x∗‖2),

owing to the preceding estimate of ek and to the fact that dk ∼ (xk − x∗)
(lemma 13.5).

Because ek is computed by evaluating c at a point different from xk ,
it cannot be guaranteed that dk + ek is a descent direction of Θσk

at xk .
Therefore, a line-search along this direction may be impossible. The least
expensive approach is then to determine a stepsize αk > 0 along the arc
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α 7→ pk(α) = xk + αdk + α2ek.

It has the descent direction dk as a tangent at α = 0 and visits xk + dk + ek

for α = 1. The stepsize αk can be computed in the same way as along dk,
forcing at each iteration the inequality

Θσk
(xk+αkdk+α2

kek) ≤ Θσk
(xk) + ωαkΘ

′
σk

(xk; dk), (17.33)

for some αk ∈ ]0, 1]. It is easy to verify that this inequality can always be
satisfied, provided dk is a descent direction of Θσk

at xk.
In the next proposition, we give conditions under which the unit stepsize

αk = 1 is accepted in (17.33) when xk is near a strong solution to (PE). Part
of these conditions is related to the matrix Mk, which must satisfy (17.34).
This condition is of the form tk ≥ o(‖dk‖2), for some real numbers tk, which
means that there must exist a sequence of real numbers {sk}, such that
tk ≥ sk and sk = o(‖dk‖2) when k → ∞. Observe that this condition is
satisfied when Mk is “large enough”. This is not surprising, since then the
tangent step is small (see remark 2 on page 235) and the total step dk is
close to the restoration step, along which the unit stepsize is known to be
accepted by the norm of the constraints (see exercise 17.4). Observe also that
condition (17.34) is satisfied when Mk is the Hessian of the Lagrangian (with
convergent multipliers), which corresponds to Newton’s method.

Proposition 17.7 (admissibility of the unit step-size with a second
order correction). Suppose that f and c are of class C2 in a neighborhood
of a solution x∗ to (PE) satisfying the second-order sufficient conditions of
optimality and at which A∗ = c′(x∗) is surjective. Let {xk} be a sequence
converging to x∗, let dk satisfy the first-order optimality conditions of the
osculating quadratic problem (17.30), and let ek be defined by (17.32). Suppose
also that

• {A−
k } is bounded and dk → 0,

• the matrix Mk used in the osculating quadratic problem (17.30) over-
estimates the Hessian of the augmented Lagrangian Lr

∗ := L∗ + rA>
∗A∗,

in the sense that
d>k (Mk − Lr

∗)dk ≥ o(‖dk‖2), (17.34)

where r ≥ 0 is such that Lr
∗ is positive definite (such an r always exists

under the assumptions already stated, see exercise 16.1),

• the penalty parameter σk used in Θσk
satisfies

‖λQP

k ‖D ≤ σk ≤ σ̂, (17.35)

where λQP

k is a multiplier associated with the constraints of (17.30) and σ̂
is a constant.

Then, for ω < 1
2 and large enough k, there holds

Θσk
(xk+dk+ek) ≤ Θσk

(xk) + ωΘ′
σk

(xk ; dk).
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Proof. Despite the nondifferentiability of Θσk
, one can obtain an expansion of

Θσk
(xk+dk+ek) with a precision of order o(‖dk‖2). This one follows from an

expansion of f(xk+dk+ek) and c(xk+dk+ek) about xk. Using the smoothness
assumptions on f and c, the constraint in (17.30), the definition of ek in
(17.32), the boundedness of {A−

k }, and the optimality of (x∗, λ∗), we have
successively

c(xk+dk) = ck +Akdk +
1

2
c′′(x∗) · d2

k + o(‖dk‖2),

=
1

2
c′′(x∗) · d2

k + o(‖dk‖2),
ek = O(‖c(xk+dk)‖)

= O(‖dk‖2),
c(xk+dk+ek) = c(xk+dk) +Akek + o(‖ek‖)

= o(‖dk‖2),
−A−>

k ∇fk = λ∗ −A−>
k (∇fk +A>

kλ∗)

= λ∗ + o(1),

∇f>
k ek = −(A−>

k ∇fk)>c(xk+dk)

= λ>∗ c(xk+dk) + o(‖dk‖2)

=
1

2
λ>∗
(
c′′(x∗) · d2

k

)
+ o(‖dk‖2),

f(xk+dk+ek) = fk +∇f>
k (dk + ek) +

1

2
d>k∇2f(x∗)dk + o(‖dk‖2)

= fk +∇f>
k dk +

1

2
d>kL∗dk + o(‖dk‖2).

With these estimates, the boundedness of {σk}, and the fact that, when
there are only equality constraints, the directional derivative of Θσk

in the
direction dk can be written Θ′

σk
(xk; dk) = ∇f>

k dk − σk‖ck‖P
(see the proof

of lemma 17.4), one gets

Θσk
(xk+dk+ek)−Θσk

(xk)− ωΘ′
σk

(xk ; dk)

= ∇f>
k dk +

1

2
d>kL∗dk − σk‖ck‖P

− ωΘ′
σk

(xk ; dk) + o(‖dk‖2)

= (1− ω)Θ′
σk

(xk ; dk) +
1

2
d>kL∗dk + o(‖dk‖2). (17.36)

We have to show that the right-hand side of (17.36) is nonpositive asymp-
totically.

Using the optimality conditions of (17.30), the Cauchy-Schwarz inequality
(16.14), and the bounds in (17.35), the directional derivative Θ′

σk
(xk ; dk) =

∇f>
k dk − σk‖ck‖P

can also be written

Θ′
σk

(xk; dk) = −d>kMkdk + (λQP

k )>ck − σk‖ck‖P
≤ −d>kMkdk. (17.37)
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Since d>kL∗dk ≤ d>kL
r
∗dk for a nonnegative r, (17.36) becomes with (17.37)

and (17.34):

Θσk
(xk+dk+ek)−Θσk

(xk)− ωΘ′
σk

(xk; dk)

≤
(

1

2
− ω

)
(−d>kMkdk)− 1

2
d>k (Mk − Lr

∗)dk + o(‖dk‖2)

≤
(

1

2
− ω

)
(−d>kMkdk) + o(‖dk‖2).

For large k, the right-hand side is nonpositive since, by (17.34) and the pos-
itive definiteness of Lr

∗, d
>
kMkdk ≥ d>kL

r
∗dk + o(‖dk‖2) ≥ C‖dk‖2, for some

positive constant C and large k.

The result of proposition 17.7 has many variants. It is usually easy to
prove them by adapting the arguments used in the proof above (basically by
cleverly combining Taylor expansions of an appropriate order). For example,
one can avoid using the Hessian of the augmented Lagrangian by replacing
condition (17.34) by

d>kP
>
∗ (Mk − L∗)P∗dk ≥ o(‖dk‖2) + o(‖ck‖),

where P∗ denotes a projection operator on N(A∗). The proof of this claim
has been left as an exercise.

Computing the correction step ek can be time-consuming for some appli-
cations, since this requires a new evaluation of the constraints at xk + dk.
When xk is far from a solution, this step can also be very large, perturb-
ing uselessly the SQP step dk. Therefore meticulous implementations of the
line-search SQP algorithm usually have a test for deciding whether ek must
be computed and the arc-search detailed above must be substituted for the
less expensive line-search. Counter-example 17.6 has shown that the Maratos
effect occurs when xk is on the constraint manifold. On the other hand,
truncation of the unit stepsize is unlikely to occur in the neighborhood of a
solution when the transversal part of the step prevails. To see this, observe
that when c has its values in R

n, the unit stepsize is accepted along Newton’s
direction to solve c(x) = 0 when one uses x 7→ ‖c(x)‖P as a merit function
(see exercise 17.4). These observations suggest that there may be a danger
of small stepsize only when the restoration step is small with respect to the
tangent step. The next proposition confirms this viewpoint. It shows that
the unit stepsize is accepted asymptotically for the iterations satisfying the
inequality

‖rk‖ ≥ CME‖tk‖, (17.38)

where CME is a positive constant and ‖ · ‖ is an arbitrary norm. To write this
inequality, we have decomposed the full step dk into dk = rk + tk, where the
restoration step is written rk = −A−

k ck, for some right inverse A−
k of Ak, and

the tangent step tk ∈ R(Z−
k ) satisfies ∇f>

k tk ≤ 0.
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Proposition 17.8 (admissibility of the unit step-size at restoration
prevailing iterations). Suppose that f and c are of class C1 in a neigh-
borhood of a stationary point x∗ of (PE). Let {xk} be a sequence converg-
ing to x∗ and dk = rk + tk, where rk = −A−

k c(xk) and tk ∈ R(Z−
k )

satisfies ∇f(xk)>tk ≤ 0. Suppose that {A−
k } and {σk} are bounded, that

σk ≥ ‖A−>
k ∇f(xk)‖

D
+ σ̄ for some constant σ̄ > 0, and that ω < 1. Then, for

large indices k for which (17.38) holds with a positive constant CME, one has

Θσk
(xk+dk) ≤ Θσk

(xk) + ωΘ′
σk

(xk ; dk).

Proof. Here, as we shall see, first-order expansions are sufficient. Using the
fact that dk = O(‖rk‖) for the considered indices, one has

f(xk+dk) = fk +∇f>
k dk + o(‖rk‖)

c(xk+dk) = ck +Akdk + o(‖rk‖)
= o(‖rk‖).

Therefore, using Θ′
σk

(xk; dk) = ∇f>
k dk − σk‖ck‖P (see the proof of lemma

17.4), ∇f>
k tk ≤ 0, ω < 1, ∇f>

k rk ≤ ‖A−>
k ∇fk‖D

‖ck‖P
, and rk = O(‖ck‖P

):

Θσk
(xk+dk)−Θσk

(xk)− ωΘ′
σk

(xk; dk)

= (1− ω)∇f>
k dk − (1− ω)σk‖ck‖P + o(‖rk‖)

≤ (1− ω)
(
‖A−>

k ∇fk‖D
− σk

)
‖ck‖P

+ o(‖rk‖)
≤ −(1− ω)σ̄‖ck‖P

+ o(‖ck‖P
),

which is negative for large k.

A consequence of this result is that, optimization codes implementing
the second order correction often decide to compute ek and to do an arc-
search, only at iterations where (17.38) does not hold. The constant CME is
determined by heuristics.

Modification of the Merit Function:
Nondifferentiable Augmented Lagrangian

Another way of getting the asymptotic admissibility of the unit stepsize is to
change the merit function. Remember that dk is obtained by minimizing a
quadratic model of the Lagrangian subject to linearized constraints. Hence,
taking

`µ,σ(x) = f(x) + µ>c(x) + σ‖c(x)‖
P

as a merit function should be convenient, insofar as µ is close enough to λ∗
and σ is small enough. The validity of this intuition is confirmed by proposi-
tion 17.9 below.
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Beforehand, observe that the problem
{

minx f(x) + µ>c(x)
c(x) = 0, x ∈ Ω

is clearly equivalent to (PE). Now, let x∗ be a solution to (PE), with asso-
ciated multiplier λ∗. Then x∗ is still a solution to the problem above, with
associated multiplier λ∗ − µ. Therefore, the results of § 16.4 imply that `µ,σ

is exact if
σ > ‖λ∗ − µ‖D

.

On the other hand, one easily computes

`′µ,σ(xk; dk) = −d>kMkdk + (λQP

k − µ)>ck − σ‖ck‖P ,

which is therefore negative if Mk is positive definite and

σ ≥ ‖λQP

k − µ‖D
.

Figure 17.4 shows the level curves of `µ,σ for counter-example 17.6, with
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Fig. 17.4. Nondifferentiable augmented Lagrangian

τ = 1, µ = −0.55, and σ = 0.1.

Proposition 17.9 (admissibility of the unit step-size with a nondif-
ferentiable augmented Lagrangian). Suppose that f and c are of class
C2 in a neighborhood of a solution x∗ to (PE), satisfying the second-order suf-
ficient conditions of optimality. Let {xk} be a sequence converging to x∗, and
dk be a stationary point of the osculating quadratic problem (17.30). In this
last problem, suppose that the matrix Mk over-estimates Lr

∗ = L∗ + rA>
∗A∗

in the sense that
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d>k (Mk − Lr
∗)dk ≥ o(‖dk‖2), (17.39)

where r ≥ 0 is such that Lr
∗ is positive definite (such an r always exists under

the assumptions already stated, see exercise 16.1). Assume also that dk → 0,
that ω < 1

2 , and that σk ≥ ‖λQP

k − µk‖D
. Then there exists ε > 0 such that,

if ‖µk − λ∗‖ ≤ ε and 0 ≤ σk ≤ ε, we have for large enough k

`µk,σk
(xk+dk) ≤ `µk,σk

(xk) + ω`′µk,σk
(xk; dk).

Proof. The following expansions are easily obtained:

f(xk+dk) = fk +∇f>
k dk +

1

2
d>k∇2f(x∗)dk + o(‖dk‖2).

c(xk+dk) =
1

2
c′′(x∗) · d2

k + o(‖dk‖2).

We can then write

`µk,σk
(xk+dk)− `µk,σk

(xk)− ω`′µk,σk
(xk ; dk)

= ∇f>
k dk +

1

2
d>k∇2f(x∗)dk +

1

2
µ>

k c
′′(x∗) · d2

k − µ>
k ck − σk‖ck‖P

− ω`′µk,σk
(xk ; dk) +O(σk‖dk‖2) + o(‖dk‖2)

= (1− ω)`′µk ,σk
(xk ; dk) +

1

2
d>kL∗dk

+O((‖µk − λ∗‖D
+ σk)‖dk‖2) + o(‖dk‖2)

≤ (1− ω)`′µk ,σk
(xk ; dk) +

1

2
d>kL

r
∗dk + C1ε‖dk‖2 + o(‖dk‖2)

≤
(

1

2
− ω

)
`′µk,σk

(xk; dk)− 1

2
d>k (Mk − Lr

∗)dk + C1ε‖dk‖2 + o(‖dk‖2)

≤ −C2

(
1

2
− ω

)
‖dk‖2 + C1ε‖dk‖2 + o(‖dk‖2)

≤ 0,

if k is large enough and ε > 0 is small enough. We have used the uniform
positive definiteness of Mk, which comes from the positive definiteness of Lr

∗
and from (17.39).

We refer the reader to the original paper [37] and to [146, 10] for exam-
ples of use of the nondifferentiable augmented Lagrangian in implementable
algorithms.

17.4 The Hanging Chain Project IV

This is the fourth session dealing with the problem of finding the static equi-
librium of chain made of rigid bars that stays above a given tilted floor. The
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problem was introduced in § 13.8 and developed in §§ 14.7 and 15.4. We now
consider the implementation of the globalization technique presented in this
chapter. This will provide more robustness to the SQP solver and will give it
a tendency to avoid the stationary points that are not local minima.

We propose to use the merit function (17.1) in which ‖ · ‖
P

is the `1 norm
‖v‖1 :=

∑m
i=1 |vi|:

Θσ(x) = f(x) + σ‖c(x)#‖1. (17.40)

This norm satisfies the assumption (17.5) required by proposition 17.1 (see
exercise 17.1). The dual norm of the `1 norm is the `∞ norm ‖w‖∞ :=
max1≤i≤m |wi| (see exercise 16.5).

We assume that the osculating quadratic program has the form (17.2),
with a matrix Mk that is symmetric positive definite. This property of Mk

is important in order to get a primal solution dk to (17.2) that is a descent
direction of the exact merit function Θσ defined by (17.40) (see proposi-
tion 17.1). Since the Hessian of the Lagrangian Lk := ∇2

xx`(xk, λk) is not
necessarily positive definite, we propose to take for Mk a modification of Lk

obtained by adding to it a small positive diagonal matrix (using, for example,
a modified Cholesky factorization [154, 201]). Using a positive definite quasi-
Newton approximation to Lk is another possibility that will be examined in
chapter 18.

Modifications to Bring to the sqp Function

It is interesting to keep the possibility of using the algorithms defined in the
previous sessions by introducing flags. In our code, we use options.imode

(1:2), which has the following meanings:

• imode(1): 0 (Mk is a quasi-Newton approximation to Lk), 1 (Mk = Lk),
2 (Mk = Lk +Ek, where Ek is a small positive diagonal matrix that makes
Mk positive definite),

• imode(2): 0 (with line-search), 1 (with unit stepsize).

If we compare the local SQP algorithm on page 257, implemented in the
previous sessions, and the version with line-search on page 292, we see that
we essentially have to add the steps 3, 4, and 5 of the latter algorithm to the
sqp function.

• The determination of the penalty parameter σk in step 3 can be done by
the update rule of page 295. At the first iteration, we take σ1 = ‖λQP

1 ‖D
+σ̄

and set the constant σ̄ to max(
√
eps, ‖λQP

1 ‖D/100).

• The determination of a stepsize αk along dk in step 4 can be done like
in the backtracking line-search of page 296, with β = 0.1 and αk,i+1

determined by interpolation, i.e., as the minimizer of the quadratic func-
tion α 7→ ξ(α) satisfying ξ(0) = Θσk

(xk), ξ′(0) = ∆k, and ξ(αk,i) =
Θσk

(xk + αk,idk).
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• We set the new multiplier λk+1 by (17.4).

It is better not to limit the number of stepsize trials in the line-search,
since this number, which is most often 1, can be large at some difficult itera-
tion. However, the line-search algorithm may cycle when there is an error in
the simulator or when rounding errors occur at the end of a minimization.
Therefore, some arrangements have to be implemented to prevent this cy-
cling. In our code, the line-search is interrupted when the norm of the step
αk,i‖dk‖∞ to get improvement in the merit function becomes smaller than a
prescribed value options.dxmin given on entry in the solver.

It is important to take care over the output printed by the code, since
it provides meaningful information on the course of the optimization. Here
is the text, in connection with the line-search, that our code prints at each
iteration.

iter 11, simul 14, merit -1.47914e+00, slope -7.59338e-02

Armijo’s line-search

1.0000e+00 8.47489e-01 8.47489e-01

1.0000e-01 1.49986e-03 1.49986e-02

4.1753e-02 -1.60114e-03 -3.83479e-02

The value of ∆k defined by (17.7), which approximates Θ′
σk

(xk ; dk), is given
after the keyword slope, and should always be negative. Each line of the
table below the phrase “Armijo’s line-search” corresponds to a stepsize
trial: αk,i is in the first column, Θσk

(xk +αk,idk)−Θσk
(xk) in the second, and

(Θσk
(xk +αk,idk)−Θσk

(xk))/αk,i in the last one. We see in the first column
that the unit stepsize αk,1 = 1 is tried first and that it is determined next by
interpolation with the safeguard β = 0.1. The last column is useful to detect
a possible inconsistency in the simulator (or in the sqp function). If dk is not
a descent direction of the merit function Θσk

(it should be a descent direction
if Mk is positive definite and if nothing is wrong in the simulator and in the
sqp function, see proposition 17.1), there is a large number of stepsize trials
αk,i tending to zero. Then, the value in the last column should tend to ∆k

(this is actually certainly correct if there is no inequality constraint, since
then ∆k = Θ′

σk
(xk ; dk), see the comment after proposition 17.1).

Question: Tell why the last value in the third column of the table after
the phrase “Armijo’s line-search” above is often approximately half that
of ∆k (like here: 3.83479/7.59338' 0.505).

Experimenting with the SQP Algorithm

The first observation is good news: line-search really helps to force conver-
gence. For example, test case 1d (page 249), which diverges without line-
search, now converges to the global minimum. Figure 17.5 shows the result
with the usual convention: the thin solid bars represent the initial position of
the chain, the dashed bars correspond to the intermediate positions, and the
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Fig. 17.5. Test case 1d with line-search

bold solid bars are those of the final optimal position. For clarity, we have
not represented all the intermediate positions of the 10 iterations required to
get convergence, but 1 out of 2.

The second observation is that line-search helps the SQP algorithm to
avoid stationary points that are not local minima. For example if we apply the
present algorithm with line-search to test case 1b (page 249), the generated
sequence now converges to the global minimum of the problem, not to the
global maximum as before. The left picture in figure 17.6 shows the result (1

Fig. 17.6. Test cases 1b (left) and 1c (right) with line-search

iteration out of 3). The same phenomenon occurs with test case 1c (page 249),
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whose convergence to the global minimum is shown in the right hand side
picture of figure 17.6.

A third observation: the convergence is smoother with line-search. This is
not a very precise concept, but we mean by this that the behavior of the gen-
erated sequence is less erratic. Consider for example test case 1f (page 269).
The result is shown in figure 17.7. If we compare with figure 15.3, we see that

Fig. 17.7. Test case 1f with line-search

the second iterate is now closer the the initial one: the stepsize is actually
less than 1 (α1 = 0.1) only at the first iteration. This additional function
evaluation is beneficial since the total number of function evaluations is less
than the one without line-search (10 instead of 11, not a major improvement,
admittedly).

Notes

The use of the exact penalty function (17.1) to globalize the SQP algorithm
was proposed by Pshenichnyj (see for example [302]), Han [185; 1977] (with
the `1 norm), and others. The TSQP algorithm described in § 17.2 is taken
from [75; 2003]. Another way of dealing with nonconvex problems is to modify
the Hessian of the Lagrangian, using a modified Cholesky factorization (see
for example [133] and the references therein).

The “effect” described in § 17.3 was discovered by Maratos [247; 1978] and
counter-example 17.6 is adapted from [73]. Second-order correction strate-
gies were proposed by Boggs, Tolle, and Wang [36], Coleman and Conn [82],
Fletcher [127], Gabay [138], Mayne and Polak [250]. The use of the non-
differentiable augmented Lagrangian was proposed by Bonnans [37]. Note
that Fletcher’s exact penalty function (16.21) also accepts the unit stepsize
asymptotically, but it involves first derivatives, so that its use may lead to
expensive algorithms if a number of different stepsizes are required during
the line-search or to algorithmic remedies for avoiding expensive operations;
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see [299, 33, 34]. Other approaches include the “watchdog” technique [73]
and the nonmonotone line-search [281, 46].

To conclude this chapter let us briefly mention and/or review other contri-
butions dealing with the use of second derivatives within SQP, techniques for
solving the QP, and algorithmic modifications for tackling large-scale prob-
lems: Betts and Frank [29] add a positive multiple of the identity matrix
to the full Hessian of the Lagrangian when the factorization of the KKT
matrix reveals nonpositive definiteness of the reduced Hessian of the La-
grangian; Bonnans and Launay [45]; Murray and Prieto [270]; Gill, Murray,
and Saunders [155]; Leibfritz and Sachs [225]; Facchinei and Lucidi [121];
Boggs, Kearsley, and Tolle [32, 31] propose solving the QP by an interior
point method that can be prematurely halted by a pseudo-trust-region con-
straint, although their method uses line-search for its globalization; Sargent
and Ding [321] also use an interior point method to solve the QP inexactly
within a line-search approach, but discard the Hessian of the Lagrangian if
it fails to yield a descent direction of the merit function; Byrd, Gilbert, and
Nocedal [65] combine SQP with an interior point approach on the nonlinear
problem and use trust regions for the globalization.

Exercises

17.1. Norm assumptions. Let ‖ · ‖ be an arbitrary norm on R
m and consider the

following properties (the operators | · | and (·)+ act componentwise; the
statements are valid for all u and v ∈ R

m when this makes sense):

(i) ‖ |u| ‖ = ‖u‖;
(ii) |u| ≤ |v| =⇒ ‖u‖ ≤ ‖v‖;

(iii) ui = vi or 0 =⇒ ‖u‖ ≤ ‖v‖;
(iv) 0 ≤ u ≤ v =⇒ ‖u‖ ≤ ‖v‖;
(v) u ≤ v =⇒ ‖u+‖ ≤ ‖v+‖;

(vi) v 7→ ‖v+‖ is convex.

Show that (i) ⇔ (ii) ⇒ (iii) ⇒ (iv) ⇔ (v) ⇔ (vi), but that none of the
other implications holds in general. Show that (vi) may not hold for an
arbitrary norm.

Remark: These implications show that assumptions (16.15) and (17.5) on
the norm ‖ · ‖P are satisfied with the `p norms, 1 ≤ p ≤ ∞, since `p norms
satisfy (i). They also show that (16.15) is more restrictive than (17.5).

17.2. On the directional derivative of Θσ. Find a one-dimensional example, in
which Θ′

σ(x; d) < ∇f(x)>d − σ‖c(x)#‖P , where d is the solution to the
osculating quadratic problem (17.2) (hence the inequality in (17.6) may be
strict).

[Hint : Equality holds if I = ∅.]
17.3. Descent direction for the exact penalization of the Lagrangian. Consider the

exact penalty function Θµ,σ : R
n → R defined for µ ∈ R

m and σ > 0 by



322 17 Globalization by Line-Search

Θµ,σ(x) := f(x) + µ
>
c(x)# + σ‖c(x)#‖P ,

where the norm ‖ · ‖P satisfies (17.5) (see also exercise 16.9). Let (dk, λQP

k )
satisfy the optimality conditions (17.3). Show that dk is a descent direction
of Θµ,σ at xk, provided xk is not a stationary point of (PEI), Mk is positive
definite, σ ≥ ‖λQP

k − µ‖D , and µI ≥ 0.

17.4. Admissibility of the unit stepsize for Newton’s method. Consider the problem
of finding a root x∗ of the equation F (x) = 0, where F : R

n → R
n is a

smooth function. Newton’s method consists in updating x by x+ = x + d,
where d solves F ′(x)d = −F (x) (see § 13.7). Let ‖ · ‖ be an arbitrary norm
and consider ϕ(x) = ‖F (x)‖ as a merit function for this problem. Suppose
that F ′(x∗) is nonsingular. Show that, for any constant ω ∈ ]0, 1[, there is
a neighborhood V of x∗, such that if x ∈ V , ϕ(x + d) ≤ ϕ(x) + ωϕ′(x; d).
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In this chapter we discuss the quasi-Newton versions of the algorithms pre-
sented in chapters 14, 15 and 17. Just as in the case of unconstrained problems
(see § 4.4), the quasi-Newton approach is useful when one does not want to
compute second order derivatives of the functions defining the optimization
problem to solve. This may be motivated by various reasons, which are actu-
ally the same as in unconstrained optimization: computing second derivatives
may demand too much human investment, or their computing time may be
too important, or the problem dimensions may not allow the storage of Hes-
sian matrices (in the latter case, limited-memory quasi-Newton methods will
be appropriate). Generally speaking, quasi-Newton methods require more
iterations to converge, but each iteration is faster (at least for equality con-
strained problems).

An exhaustive study of quasi-Newton versions is impossible here. Actually,
the abundance of proposed algorithms reflects the difficulty of the problem;
a fully satisfactory solution to which, if any, has not been found yet. Thus,
after outlining the way quasi-Newton methods are used for problems with
constraints (§ 18.1), we shall limit ourselves to two approaches. In § 18.2, we
describe the one most often implemented so far. It is due to M.J.D. Powell
[293] and can be used for problems with inequality constraints. It has the
advantage of simplicity, but it is not completely satisfactory conceptually.
After having justified this claim, we give in § 18.3 another approach, reflecting
the works and concerns of the author. It has several variants and is presently
only applicable to equality constraints. The one presented here is safe, in
that it extends a well-established technique in unconstrained optimization:
Wolfe’s line-search (see chapter 3 and its § 3.4). However, its two constraint-
linearizations per iteration can reveal expensive for some problems. We then
outline some extensions less greedy in computing time.

18.1 Principles

Let us recall some principles underlying quasi-Newton techniques (see also
chapter 4) and see how these can be applied to problems with constraints.
As mentioned above, one seeks rapidly convergent algorithms, without com-
puting second derivatives of the objective and constraint functions f and c.



324 18 Quasi-Newton Versions

Typically, if superlinear convergence is impossible, the algorithm is considered
as badly designed.

To derive these algorithms, one starts from Newton’s version and one
observes that the second-order information is entirely contained in one sin-
gle matrix. In our case it will be the Hessian of the Lagrangian or the re-
duced Hessian, depending on the considered algorithm. One then defines the
quasi-Newton algorithm, using the same quadratic problems as in Newton’s
method, but replacing the second-order derivatives by a matrix appropri-
ately updated at each iteration. The role of this update is to build up the
second-order information, upon observation of the variation of certain quan-
tities computed from the first derivatives of f and c. The change in these first
derivatives give indeed information on the second-order derivatives.

To be more concrete, let us consider equality constrained problems:

(PE)

{
minx f(x)
c(x) = 0, x ∈ Ω.

In Newton’s method (§ 14.1), the direction dk ∈ R
n, giving the change in

the current primal iterate xk, is computed by solving the problem for d (see
(14.8)) {

mind ∇f>
k d+ 1

2 d
>Lkd

ck +Akd = 0.

In this problem, the Hessian of the Lagrangian Lk := ∇2
xx`(xk, λk) comes into

play: it is the n× n matrix gathering all the second-order derivatives. Since
the computation of Lk is undesired, it is approximated by an n×nmatrixMk.
We then have to solve at each iteration a problem formally identical to the
above: {

mind ∇f>
k d+ 1

2 d
>Mkd

ck +Akd = 0.
(18.1)

A new iterate (xk+1, λk+1) is computed as explained in § 14.1 and Mk is
updated to obtain Mk+1. Two sequences are thus generated: {(xk , λk)} con-
verging to the solution (x∗, λ∗) to the problem, and {Mk} approximating the
Hessian of the Lagrangian. In general, this latter sequence does not converge
to L∗ but is a sufficiently good approximation of it in certain directions, so
as to ensure the algorithm’s superlinear convergence.

The process is analogous for deriving the quasi-Newton version of the
reduced Hessian algorithm (§ 14.5). We know that, locally (see (14.40)), the
algorithm generates a sequence {xk} by the recurrence

xk+1 = xk + tk −A−
k c(xk + tk),

where tk = −Z−
k H

−1
k gk is the tangential component of the displacement,

and gk = Z−>
k ∇fk is the reduced gradient. Here, the only matrix involving

second derivatives is the reduced Hessian of the LagrangianHk = Z−>
k LkZ

−
k .
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As before, this matrix is approximated by an (n−m) × (n−m) matrix Mk,
which results in an algorithm generating {xk} by

xk+1 = xk + tk −A−
k c(xk + tk), with tk = −Z−

k M
−1
k gk,

the sequence {Mk} being generated by an appropriate formula.
The question is now how to update the matrices Mk. Two properties are

important in the choice of the update formula.

1. First, symmetry is a natural requirement. In fact, Mk must approximate
a Hessian, or a reduced Hessian; both are symmetric matrices. Imposing
symmetry to the matrices Mk therefore increases their chance of getting
correct values.

2. Second, it is recommended to have matrices Mk positive definite.

This property is better justified for the reduced Hessian method, where
Mk approximates the reduced Hessian of the Lagrangian. Indeed, from the
second-order optimality conditions, this matrix is positive semi-definite at
a solution; it is normal to require the same property to Mk. Besides, if
the approximation Mk of Hk is positive definite, the tangent direction
tk = −Z−

k M
−1
k gk is a descent direction of f or of Θσ (the exact penalty

function of § 16.4) at xk. Globalization of the algorithm will be facilitated
(see chapter 17).

In the quasi-Newton method (18.1), imposing positive definiteness of the
approximation Mk of Lk is more questionable (see § 18.2). In fact, the
Hessian of the Lagrangian may not be positive definite at a solution.
However, just as for the reduced Hessian method, positive definiteness
ofMk produces a dk that is a descent direction of Θσ (see proposition 17.1)
and thus facilitates globalization of the algorithm.

Because of these two arguments, the update of Mk is often done using the
BFGS formula (see chapter 4), which defines Mk+1 by

Mk+1 = Mk −
Mkδkδ

>
kMk

δ>kMkδk
+
γkγ

>
k

γ>k δk
. (18.2)

In this formula, γk and δk are two vectors of appropriate dimension, supposed
to gather information on the Hessian approximated by the matrices Mk.

Observe that this formula does yield the desired properties. First, Mk+1 is
symmetric if Mk is such. Second, it is easy to check that, if Mk is symmetric
positive definite, so is Mk+1 if and only if the following curvature condition
is satisfied

γ>k δk > 0. (18.3)

Condition (18.3) is clearly necessary because Mk+1 satisfies the so-called
quasi-Newton equation:

γk = Mk+1δk. (18.4)



326 18 Quasi-Newton Versions

The sufficiency of (18.3) is shown in theorem 4.5. The BFGS formula, there-
fore, makes it easy to generate symmetric positive definite matrices. If M1

has these properties (most often M1 is chosen as a multiple of the identity
matrix), it is sufficient to have (18.3) at each iteration. As we shall see, the ne-
cessity of satisfying (18.3) is actually a source of difficulties; but the qualities
of BFGS have been a strong incentive for researchers to overcome them.

In unconstrained optimization, the choice of the vectors γk and δk comes
naturally: δk = xk+1 − xk is the change in x and γk = ∇fk+1 −∇fk is the
corresponding change in the gradient of f . In constrained optimization, the
situation is not so simple. These two vectors will be chosen according to two
criteria.

Let M∗ be the matrix that Mk should approximate (M∗ is the Hessian
of the Lagrangian at a solution L∗ for SQP and the reduced Hessian of the
Lagrangian at a solutionH∗ = Z−>

∗ L∗Z−
∗ for the reduced Hessian algorithm).

Since Mk+1 satisfies the quasi-Newton equation (18.4), M∗ should satisfy this
equation as well, at least to first order. This requires from γk and δk that
they collect information on the matrix M∗ we want to approximate. Actually,
an asymptotic analysis shows that an estimate of the type

γk −M∗δk
‖δk‖

→ 0, when k →∞ (18.5)

is necessary. Anyway, it is easy to show that this estimate holds in uncon-
strained optimization when γk = ∇fk+1 − ∇fk, δk = xk+1 − xk , M∗ =
∇2f(x∗) and xk → x∗. The asymptotic criterion (18.5) is the first condition
guiding the search for good vectors γk and δk.

The second criterion is to give the possibility to realize the curvature con-
dition (18.3). Remember that, in unconstrained optimization, this condition
is a consequence of the Wolfe line-search: we seek a stepsize αk > 0 along a
descent direction dk of the objective f , so as to satisfy

f(xk + αkdk) ≤ f(xk) + ω1αk∇f(xk)>dk

and
∇f(xk + αkdk)>dk ≥ ω2∇f(xk)>dk.

The constants ω1 and ω2 must satisfy 0 < ω1 < ω2 < 1. The first inequality
forces a decrease in the objective function and the second, besides preventing
too small stepsizes αk, implies the curvature condition (18.3) for the vectors
γk = ∇fk+1 − ∇fk and δk = xk+1 − xk (just subtract ∇f(xk)>dk from
both sides and use −(1−ω2)∇f(xk)>dk > 0). It is this approach that will
be adopted in the reduced Hessian method (§ 18.3). It is more clumsy for
Newton’s method (see [10]) and will be only sketched here (and also in § 18.3).
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18.2 Quasi-Newton SQP

Recall that, locally, SQP computes a displacement dk at xk by solving the
quadratic program for d





mind ∇f(xk)>d+ 1
2 d

>Mkd
cE(xk) +AE(xk)d = 0
cI (xk) +AI(xk)d ≤ 0.

(18.6)

In the quasi-Newton version of the algorithm [184, 293], Mk becomes a sym-
metric positive definite matrix, updated at each iteration by the BFGS for-
mula (18.2) using two vectors γk and δk of R

n. Let us specify these vectors.
As shown in the local analysis of chapter 15, Mk should approximate

the Hessian of the Lagrangian. It therefore appears to be reasonable to take
γk = γ`

k, the variation of the gradient of the Lagrangian when x varies by δk:

γ`
k = ∇x`(xk+1, λk+1)−∇x`(xk, λk+1) and δk = xk+1 − xk. (18.7)

In γ`
k, we have fixed the multiplier to the value λk+1, supposed to be closer

to λ∗ than its current estimation λk. With the above values of γk and δk, we
have the estimate (18.5) where M∗ = L∗, as soon as f and c are of class C2

and (xk , λk+1)→ (x∗, λ∗). Indeed

γ`
k = L∗δk +

(∫ 1

0

(
∇2

xx`(xk + tδk, λk+1)− L∗
)
dt

)
δk = L∗δk + o(‖δk‖).

This shows that the first selection criterion of the pair (γk, δk) is satisfied
with γk = γ`

k.
According to the second selection criterion, the curvature condition

(γ`
k)>δk > 0 should be feasible with an appropriate choice of xk+1. It is nat-

ural to seek xk+1 along dk by a line-search decreasing a merit function (see
chapter 17). As a matter of fact, this is what Wolfe’s line-search does when
there are no constraints. Here, however, the Lagrangian may have a negative
curvature at xk along the line {xk + αdk : α ∈ R} and be unbounded from
below on this affine manifold. As a result, the curvature condition might
be impossible to satisfy with the above strategy: it may well happen that
(γ`

k)>δk ≤ 0 with xk+1 = xk + αkdk, for any stepsize αk > 0. The situa-
tion is therefore different from that in unconstrained optimization. Wolfe’s
line-search cannot be extended to constrained problems in a straightforward
manner.

To overcome this difficulty, M.J.D. Powell proposed in [293] computing
the vector γk by modifying γ`

k when the scalar product (γ`
k)>δk is not positive

enough. In a first phase, a stepsize αk is computed along dk to decrease a
merit function (for example the exact penalty function of § 16.4), which gives
the next iterate xk+1 = xk +αkdk. Then γ`

k and δk are defined by (18.7) and
one takes γP

k ∈ R
n as a convex combination of γ`

k and Mkδk:
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γP

k := θγ`
k + (1−θ)Mkδk. (18.8)

The choice of Mkδk as “emergency” vector obtained with θ = 0 in (18.8),
comes from the facts that δ>kMkδk > 0 and Mk+1 = Mk if γk = Mkδk (see
formula (18.2)). In order to modify γ`

k the least possible, to preserve the most
possible information from the problem data, the parameter θ is taken as large
as possible in [0, 1] while satisfying

(γP

k )>δk ≥ κ δ>kMkδk,

where the constant κ ∈ ]0, 1[ is suggested to be set to 0.2 in [293, 292]. Since
Mk is assumed to be positive definite, this inequality is satisfied for θ = 0. A
simple computation gives

θ =





1 if (γ`
k)>δk ≥ κ δ>kMkδk

(1−κ) δ>kMkδk

δ>kMkδk − (γ`
k)>δk

otherwise.
(18.9)

Then Mk is updated by the BFGS formula using γk = γP

k . This technique is
known as Powell’s correction.

An algorithm combining this technique with those of the preceding chap-
ters is given below.

Quasi-Newton SQP:

Choose an initial iterate (x1, λ1) ∈ R
n × R

m.
Compute f(x1), c(x1), ∇f(x1), and A(x1) = c′(x1).
Set the constants ω ∈ ]0, 1

2 [ (slope modifier in the Armijo condition),
σ̄ > 0 (penalty parameter threshold), and β ∈ ]0, 1

2 ] (backtracking
safeguard parameter).

Set k = 1.

1. Stopping test : Stop if ∇`(xk, λk) = 0 and c(xk) = 0 (optimality is
reached).

2. Matrix update:
• If k = 1, initialize M1 to an n × n symmetric positive definite

matrix.
• If k > 1, compute γk−1 = γP

k−1 and δk−1 by formulas (18.7),
(18.8) and (18.9); update Mk from Mk−1 by the BFGS formula
(18.2).

3. Step computation: Find the unique primal-dual solution (dk, λ
QP

k )
to (18.6), which is supposed feasible.

4. Penalty parameter setting : Update the penalty parameter σk so as
to satisfy (17.9).
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5. Backtracking line-search on the exact penalty function Θσk
:

• Set α = 1.
• While α does not satisfy Armijo’s inequality (17.26), pick a new

stepsize α in [βα, (1−β)α].
• Set αk = α.

6. New iterates : xk+1 = xk + αkdk and update λk → λk+1.
7. Increase k by 1 and go to 1.

In step 3, the constraints of the quadratic problem are assumed consistent
(nonempty feasible set). If such is not the case, techniques can be used to
modify this problem so as to increase its chances of being consistent (see for
example [293, 322, 351, 61]). To be complete, this algorithm should also in-
clude some technique described in § 17.3 to avoid the Maratos effect (undue
shortening of the stepsize). This point is fairly important for practical effi-
ciency of the algorithm; we omit these aspects to alleviate the presentation.
For the update of λk in step 6, see the comments after the line-search SQP
algorithm on page 292.

No strong convergence result can be given for the above algorithm. In
fact, even for unconstrained problems, global convergence cannot be proven
without assuming convexity; see § 4.5 and also [290, 66]. Nevertheless, the
speed of convergence can be analyzed, global convergence being assumed to
hold. Some assumptions on the problem’s data are necessary for this analysis:
the functions f and cmust be of class C2,1, strict complementarity must hold,
the Jacobian of the active constraints at the solution must be surjective, and
the second-order sufficient conditions of optimality must be satisfied. This list
of assumptions is long but acceptable. In contrast, less attractive hypotheses
must be made on the behavior of the algorithm: if, in addition to the above,
one assumes

• the unit stepsize αk = 1 is asymptotically accepted by the line-search (no
Maratos effect),

• the sequence of matrices {Mk} is bounded,
• these matrices Mk are uniformly positive definite in the subspace tangent

to the active constraints at the solution,

then the sequence {xk} converges (locally) R-superlinearly to x∗ [292].
Even though this result implies a fairly elaborate analysis, it is certainly

not satisfactory; among other things, R-superlinear convergence is not so
strong as Q-superlinear convergence, which can be reasonably expected from
a quasi-Newton method (see § 4.7). Generally speaking, the algorithm works
well, though; it is implemented in many software libraries. Its robustness is
not completely above suspicion, since some convergence difficulties may be
encountered (see [297], [298; p. 125], and the example given at the end of
§ 18.4). These observations led various authors to tackle the problem again;
many other approaches have been, and are still, proposed.
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An apparently promising approach is the following. It was explored by
many authors [184, 346, 347, 69, 10]. To simplify the analysis, we assume
only equality constraints. Problem (PE) can then be rewritten

{
minx f(x) + r

2‖c(x)‖22
c(x) = 0, x ∈ Ω.

The Lagrangian of this problem is the augmented Lagrangian `r of § 16.3. We
know that, if the augmentation factor r is taken large enough, the resulting
Hessian is positive definite at a point satisfying the second-order sufficient
conditions of optimality (see exercise 16.2). Applying the quasi-Newton ver-
sion of SQP to this problem involves matrices Mk that are now supposed
to approximate the Hessian of the augmented Lagrangian; positive definite-
ness of Mk becomes a natural requirement. In the first studies of this ap-
proach [184, 346, 161], Mk was updated with the pair (γk, δk) = (γr

k , δk)
defined by

γr
k = ∇x`r(xk+1, λ

QP

k )−∇x`r(xk, λ
QP

k ) and δk = xk+1 − xk .

This vector choice suffers from serious shortcomings, though: (i) one does not
know the threshold r̄ from which the Hessian of `r at the solution becomes
positive definite; (ii) yet, a too big r-value raises important numerical diffi-
culties [346, 276], and (iii) far from the solution, there may exist no r-value
for which (γr

k)>δk > 0.
Some difficulties of this approach can be remedied, using the structure of

the Hessian of `r at the solution:

∇2
xx`r(x∗, λ∗) = L∗ + rA>

∗A∗.

This formula suggests that we take a pair (γk , δk), where γk = γS

k is the
variation of the gradient of the Lagrangian, to which is added a term taking
the augmentation into account [347]:

γS

k = γ`
k + rA>

kAkδk and δk = xk+1 − xk. (18.10)

The scalar product of γS

k and δk is

(γS

k)>δk = (γ`
k)>δk + r‖Akδk‖22,

so that we obtain (γS

k)>δk > 0 for r large enough, providing that Akδk 6= 0.
Clearly, this strategy will fail if Akδk is zero within roundoff errors, with
(γ`

k)>δk ≤ 0. Byrd, Tapia and Zhang [69] introduced a safeguard in this
strategy, replacing A>

kAkδk by δk in γS

k when Akδk is small and (γ`
k)>δk is

not positive enough. Then positivity of (γS

k)>δk can be recovered as above
with r large enough. The numerical experiments of [69] have shown that the
approach is numerically competitive with Powell’s correction. Besides, it en-
joys a nice local convergence property: if the sequence {xk, λ

QP

k } converges to
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a primal-dual solution (x∗, λ∗) satisfying (SC2) and such that A∗ is surjec-
tive, and if the unit stepsize is asymptotically accepted, then the convergence
of {xk} is R-superlinear; it is even Q-superlinear if the augmentation param-
eter r stabilizes to a large enough value. However, this result is still not quite
satisfactory because, once again, the threshold on r is not known and the
rules updating r given in [69] do not guarantee that the assumptions of this
theorem are satisfied.

An interesting aspect in the approach by Byrd, Tapia and Zhang [69] is
to give an update rule of the augmentation parameter r. This rule allows a
convenient management of the transversal component of the matrix Mk (i.e.,
its action on the range space of A>

k ). However, the safeguard needed when the
displacement δk is tangent to the constraint manifold (Akδk = 0) reveals that
the algorithm does not completely master the longitudinal component of Mk

(its action on the null space of Ak). This observation motivated the study
in [10]. It is suggested there using the line-search to adapt the longitudinal
displacement, so as to ensure the curvature condition (18.3), without any
need for a safeguard. The resulting algorithm can be viewed as an extension
of Wolfe’s line-search to equality constrained problems. Actually, the search
is no longer done along a half-line but along a piecewise-linear path, as in the
algorithm described in § 18.3 below. The numerical experiments reported in
[10] show that this technique is more robust than the one described above.

18.3 Reduced Quasi-Newton Algorithm

Consider the problem with only equality constraints

(PE)

{
minx f(x)
c(x) = 0, x ∈ Ω

and apply to it the reduced Hessian algorithm introduced in § 14.5. We shall
give a quasi-Newton version of the algorithm, which locally (i.e., close to
a solution) is purely primal: it requires no multiplier. When the line-search
comes into play, a multiplier is necessary to adapt the penalty parameter of
the merit function.

Recall that the reduced Hessian algorithm generates the sequence of iter-
ates {xk} by the recurrence

xk+1 = xk + tk −A−
k c(xk + tk), with tk = −Z−

k M
−1
k gk,

where gk is the reduced gradient at xk and Mk approximates the reduced
Hessian of the Lagrangian. We choose to generate the sequence of matrices
{Mk} by the BFGS formula, in accordance with the motivations given in
§ 18.1. Note that these matrices are here (n−m)× (n−m). The question now
is to determine the vectors γk and δk of R

n−m that are used in the BFGS
formula, such that Mk approximates correctly the reduced Hessian of the
Lagrangian H∗ := Z−>

∗ L∗Z−
∗ .
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Choosing the Pair (γk, δk)

We already observed in (14.38) that the derivative of the reduced gradient g
at a stationary point x∗ is

g′(x∗) = Z−>
∗ L∗.

The reduced Hessian of the Lagrangian is therefore a part of g′(x∗), namely
its restriction to the directions h ∈ R(Z−

∗ ), tangent to the constraint manifold
at x∗. One then understands that variations of g along directions tangent to
the constraint manifold

Mk := {y ∈ Ω : c(y) = c(xk)}

are convenient to collect information on Hk.
Let us show that, locally, the following pair (γk, δk) can be used:

γk = g(xk + tk)− g(xk) and δk = Zktk. (18.11)

In this formula, Zk ∈ R
(n−m)×n is the unique operator associated with Z−

k

and A−
k by lemma 14.3. Observe first that δk gives the components of tk ∈

R(Z−
k ) in the tangent basis formed by the columns of Z−

k : tk = Z−
k δk. Then,

if Z− is continuous and g is C1, we find when xk → x∗ and tk → 0:

γk =

(∫ 1

0

g′(xk + αtk) dα

)
tk

= Z−>
∗ L∗tk +

(∫ 1

0

(g′(xk + αtk)− g′(x∗)) dα

)
tk

= H∗δk + o(‖δk‖). (18.12)

The asymptotic criterion (18.5) is therefore satisfied with (γk, δk) given by
(18.11) and M∗ = H∗.

The second selection criterion of the pair (γk , δk), the curvature condition
γ>k δk > 0, comes much less easily when xk is far from a solution, even if
this one satisfies (SC2) (i.e., H∗ is positive definite). Of course, Powell’s
correction introduced in § 18.2 could also be used; but our aim in this section
is to show that, just as in unconstrained optimization, line-searches are able
to provide the curvature condition, and thus to extract from the problem
data more accurate information on the reduced Hessian of the Lagrangian.
The eventual hope is to obtain an algorithm converging more rapidly.

Before proceeding, we mention that other pairs (γk, δk) than (18.11) can
also be chosen (a list of such pairs is given by Nocedal and Overton in [276]).
Here is another possibility, often used:

γk = Z−>
k

(
∇x`(xk + tk, λk)−∇x`(xk, λk)

)
and δk = Zktk. (18.13)
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In the expression of γk above, λk is a certain multiplier (for example, the

least-squares multiplier λLS

k , λ̂k, or λQP

k ; see § 14.1). If f and c are C2 and if
Z− is continuous, the asymptotic criterion (18.5) is satisfied with M∗ = H∗,
when (xk, λk) converges to (x∗, λ∗) and tk → 0.

As far as local properties are concerned, all these pairs are asymptotically
equivalent. In contrast, it really seems that the global behavior of algorithms,
far from the solution, is strongly influenced by the choice of these pairs [148].
In [149], a geometric argument is developed, revealing a relationship to be
respected between the structure of (γk, δk) and the choice of basis Z−

k . With
the basis (14.15) obtained by variable partitioning (see § 14.2), for example,
the pair (18.11) can be used. On the other hand, if one insists on using
orthonormal bases (for example because the bases (14.15) are ill conditioned),
the pair (18.13) is better. In this section, we only consider the pair (18.11).

Curvilinear Search

Now, the question at stake is whether the curvature condition γ>
k δk > 0,

with γk and δk given by (18.11), can be obtained with a line-search from xk

along tk. The answer is positive, if xk is close to a solution satisfying (SC2);
this is an easy consequence of (18.12), because H∗ is positive definite. How-
ever, the answer is negative in general, as shown by the following counter-
example [146].

Counter-example 18.1. Consider the minimization of a linear function on
the unit circle of R

2 (x(i) denotes the ith component of x ∈ R
2):

{
minx x(2)

c(x) ≡ 1
2 (‖x‖22 − 1) = 0, x ∈ R

2.

With x = (x(1), x(2)), associate the vector x̃ := (x(2),−x(1)). Suppose that x
is in the positive orthant (x(1) > 0 and x(2) > 0) and that the matrix M
(a scalar in this example because n−m = 1) is 1. Then the Jacobian of
the constraint Ax = x> is surjective and we can take as a basis of R

2:
(Z−

x , A
−
x ) = (x̃, x/‖x‖22). We then have Zx = x̃>/‖x‖22. The reduced gra-

dient can be written g(x) = −x(1), the tangent displacement is t = x(1)x̃
and thus g(x + αt) = −(x(1) + αx(1)x(2)). Since δ = x(1) > 0, the curvature

condition γ>δ > 0 is equivalent to g(x+αt) > g(x), i.e., −αx(1)x(2) > 0; this
holds for no α > 0.

Although the curvature condition may not be obtained from a line-search
along tk, it can be realized by moving along the path α 7→ pk(α) defined by the
differential equation in figure 18.1. Note that the derivative of α 7→ c(pk(α))
vanishes since, by (14.10), there holds

(c ◦ pk)′(α) = A(pk(α))Z−(pk(α))δk = 0.
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Mk

pk(α)

xk

tk

{
p′k(α) = Z−(pk(α))δk
pk(0) = xk

Fig. 18.1. Curvilinear search

Therefore, c is constant along the path: for all α

c(pk(α)) = c(xk),

which means that this path lies in the manifold Mk, which is “parallel” to
the constraint manifold (c(xk) is usually nonzero). The next result shows
that, not only the curvature condition can be obtained along pk, but f can
be decreased significantly.

Proposition 18.2 (Wolfe conditions along a curvilinear path). Sup-
pose that the path α 7→ pk(α) exists for α ≥ 0 large enough. Suppose also
that f and pk are continuously differentiable, that f is bounded from below
along the path pk, and that g>k δk < 0. Take 0 < ω1 < ω2 < 1. Then the
following inequalities

f(pk(αk)) ≤ f(xk) + ω1αkg
>
k δk and g(pk(αk))>δk ≥ ω2g

>
k δk (18.14)

hold for some αk > 0.

Proof. Set ξk = f ◦ pk. Then, inequalities (18.14) can be written

ξk(αk) ≤ ξk(0) + ω1αkξ
′
k(0) and ξ′k(αk) ≥ ω2ξ

′
k(0).

These are precisely the Wolfe conditions on the function α ∈ R+ 7→ ξk(α). Be-
cause this function is C1, bounded from below on R+, and ξ′k(0) = g>k δk < 0,
the result follows from theorem 3.7.

In the generalized Wolfe conditions (18.14), f can be replaced by the
nondifferentiable augmented Lagrangian (see exercise 16.9 and the end of
§ 17.3)

`µ,σ(x) = f(x) + µ>c(x) + σ‖c(x)‖
P
. (18.15)

Indeed we have f(pk(α)) = `µ,σ(pk(α)) for all α, since c stays constant along
the path pk. Note, however, that the displacement along pk only takes care
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of the decrease in f and neglects the second objective of (PE): to satisfy
the constraints. It is therefore necessary to add to this displacement a step
restoring the constraints. We shall see below how to do this in a more realistic
algorithm. Using the merit function (18.15), a step satisfying the generalized
Cauchy-Schwarz conditions along the curvilinear path pk(·), and an addi-
tional constraint restoration step, it is then possible to show a convergence
result.

Except in very special cases, a curvilinear search along the path pk is out
of question. With really nonlinear constraints, this would imply prohibitive
computation costs. One may then ask whether similar conditions could be
satisfied along a piecewise-linear path approximating pk and simpler to com-
pute. This is the subject of the next subsection.

Piecewise Line-Search

A simple approximation of pk is obtained by taking an integration scheme
of the differential equation defining pk, like the explicit Euler scheme for
example (see figure 18.2). Denote by

Mk

xk

pk(·)

x3
kx2

k

x1
k

Fig. 18.2. Piecewise linear search

α0
k := 0 < α1

k < · · · < αik

k =: αk

the discretization stepsizes. As we shall see below, to obtain the curvature
condition γ>k δk > 0, these stepsizes cannot be given a priori, but must satisfy
a simple rule. Denote by xi

k the point approximating pk(αi
k) (with x0

k = xk

and xik

k = yk+1). The explicit Euler scheme can be written

xi+1
k = xi

k + (αi+1
k −αi

k)tik, i = 0, . . . , ik − 1, where tik = Z−(xi
k)δk.

Since the points xi
k may no longer lie on the manifoldMk, the variation

of c must be taken into account in the search for the stepsize. We shall do so
by forcing the decrease in a rather general penalty function, of the form
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Θ(x) = f(x) + φ(c(x)), (18.16)

where φ : R
m → R+ is a continuous convex function, satisfying φ(0) = 0. For

example, the exact penalty function Θσ of § 16.4 or the function `µ,σ defined
by (18.15) can be taken. With these assumptions, φ is Lipschitzian and has
directional derivatives. Then Θ enjoys the same properties when c is smooth
(lemma 13.1). In particular,

Θ′(xi
k ; tik) = g(xi

k)>δk + φ′(c(xi
k);A(xi

k)tik) = g(xi
k)>δk.

Setting i = 0 in this relation and assuming gk 6= 0, we see that tk is a descent
direction of Θ at xk.

The rule determining the stepsizes αi
k can now be specified. We refer to

it as a piecewise line-search (PLS) technique.

Piecewise line-search (PLS):

We have at hand the current iterate x0
k ≡ xk .

Set i = 0 and α0
k = 0.

1. A stepsize αi+1
k > αi

k is computed so as to decrease Θ well enough,
by satisfying

Θ(xi
k + (αi+1

k −αi
k)tik) ≤ Θ(xi

k) + ω1(α
i+1
k −αi

k)Θ′(xi
k ; tik).

2. Set xi+1
k = xi

k + (αi+1
k −αi

k)tik.
3. Test the curvature condition at the new point xi+1

k : if

g(xi+1
k )>δk ≥ ω2g

>
k δk

holds, stop the PLS.
4. Increase i by 1 and go to 1.

Let us just check that it is always possible to find a stepsize αi+1
k > αi

k

such that the inequality in step 1 holds. For this, it is sufficient to show that
tik is a descent direction for Θ at xi

k. Such is indeed the case: Θ′(xi
k ; tik) =

g(xi
k)>δk < ω2g

>
k δk (by construction, the curvature condition is not satisfied),

and g>k δk < 0.
Under natural assumptions [146, 10] (for example, αi+1

k should not be
arbitrarily close to αi

k), this PLS can be shown to stop after a finite number
ik of cycles. A point yk+1 = xik

k is then produced, which satisfies

Θ(yk+1) ≤ Θ(xk) + ω1νk and g(yk+1)
>δk ≥ ω2g

>
k δk. (18.17)

The quantity νk < 0 collects the contributions of all previous steps 1 to the
decrease in Θ:
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νk =

ik−1∑

i=0

(αi+1
k −αi

k)Θ′(xi
k ; tik).

As explained in § 17.3, it is desirable that this search accepts asymp-
totically the unit stepsize, i.e., when xk is close to x∗, one would like
yk+1 = xk + tk to satisfy inequalities (18.17). Such a property would spare
time in the computation of the tangential displacement αk, since trying
αk = 1 first would have some chance of success. Since Mk approximates
the reduced Hessian of the Lagrangian, xk + tk will be an approximation
of the minimum point of the Lagrangian on xk + R(Z−

k ). In order to ac-
cept the unit stepsize, Θ must therefore be a correct approximation of the
Lagrangian and, for the same reasons as in unconstrained optimization and
§ 17.3, ω1 should be taken in ]0, 1

2 [. A merit function enjoying the above prop-
erties is the nondifferentiable augmented Lagrangian (18.15), providing that
µ = µk ∈ R

m is chosen so as to tend to the optimal multiplier. Note that this
penalty function is exact if

σ > ‖λ∗ − µ‖D
.

A Reduced Quasi-Newton Algorithm

The PLS described above is essentially in charge of managing the longitudinal
displacement of the iterate; it disregards the transversal displacement, the one
decreasing the norm of the constraints. After the PLS has produced yk+1, the
algorithm needs therefore a restoration step of the constraints, with a line-
search to find the new iterate xk+1. If this restoration is performed along the
direction

r̄k = −A−(yk+1)c(yk+1),

the merit function must decrease along that direction. But we have

`′µk,σk
(yk+1; r̄k) = (λLS(yk+1)− µk)>c(yk+1)− σk‖c(yk+1)‖P ,

where λLS is the least-squares multiplier defined by (14.24). This computation
suggests taking an update rule for σk such that, for some constant σ̄ > 0,
there holds:

σk ≥ ‖λLS(yk+1)− µk‖D
+ σ̄.

In this case, we have `′µk ,σk
(yk+1; r̄k) ≤ −σ̄‖c(yk+1)‖D , which is negative if

yk+1 is not feasible.
When checking the above inequality, a transversal stepsize βk > 0 along

r̄k can be determined by a backtracking technique: βk has the form βbk , where
β ∈ ]0, 1[ and bk is the smallest nonnegative integer such that

`µk ,σk
(yk+1 + βk r̄k) ≤ `µk,σk

(yk+1) + ω1βk`
′
µk,σk

(yk+1; r̄k).
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Altogether, one obtains the following algorithm, which summarizes the tech-
niques described in this section.

Reduced quasi-Newton algorithm:

Choose an initial iterate x1 ∈ R
n.

Compute f(x1), c(x1), ∇f(x1), and A(x1) = c′(x1).
Set the constants ω1 ∈ ]0, 1

2 [ and ω2 ∈ ]ω1, 1[ (constants for the PLS),
σ̄ > 0 (penalty parameter threshold), and β ∈ ]0, 1

2 ] (backtracking
safeguard parameter).

Set k = 1, σ1 = 0, and µ1 = 0.

0. Initialize M1 to an (n−m) × (n−m) symmetric positive definite
matrix, approximating the reduced Hessian of the Lagrangian.

1. Longitudinal (or tangent) displacement :
1.1. Compute the tangent direction tk = −Z−

k M
−1
k gk.

1.2. Compute the intermediate iterate yk+1 by PLS, started with
α1

k = 1 and using the penalty function Θ = `µk ,σk
.

2. Transversal (or restoration) displacement :
2.1. If necessary, adapt the multiplier µk and the penalty param-

eter σk.
2.2. Find a stepsize βk > 0 along r̄k as described above; this gives

the next iterate xk+1.
3. Stopping test : Stop if g(xk+1) = 0 and c(yk+1) = 0 (optimality is

reached).
4. Matrix update: Update Mk →Mk+1 by the BFGS formula (18.2),

using γk = g(yk+1)− g(xk) and δk = αkZktk.
5. Increase k by 1 and go to 1.

A more detailed version of this algorithm can be found in [146], as well as a
study of some of its properties.

Update Criterion

Even if αk = 1 is accepted by the PLS, step 1.2 of the above reduced
quasi-Newton algorithm needs to linearize the constraints at the interme-
diate point yk+1. This makes a total of at least two constraint linearizations
per iteration: one at xk and one at yk+1. A linearization means the compu-
tation of the constraint Jacobian A and sometimes the computation of the
operator Z− driving the reduced gradient. This can be very costly in certain
problems. Therefore reduced quasi-Newton algorithms have been sought that
do not require these two linearizations.

In these algorithms, one strives to update the reduced matrix from the
pair (γk, δk) defined by
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γk = g(xk+1)− g(xk) and δk = Zktk. (18.18)

A variant can be used for γk, corresponding to the choice (18.13):

γk = Z−>
k (∇x`(xk+1, λk)−∇x`(xk, λk)).

Because the reduced gradient at xk +tk is no longer necessary, the constraints
no longer need to be linearized at this point, as in the reduced Hessian method
(§ 14.5).

Using without precautions the pair (18.18) to update the matrix Mk may
result in an algorithm with poor efficiency. In fact, the asymptotic criterion
(18.5) selecting good pairs (γk, δk) may no longer hold. Assume that the
new iterate is computed as in the reduced Hessian method of § 14.5: xk+1 =
xk +tk +rk, where tk = −Z−

k M
−1
k gk and rk := −A−

k c(xk +tk). An expansion
similar to (18.12) gives for γk defined by (18.18) and appropriate smoothness
hypotheses:

γk = Z−>
∗ L∗(xk+1−xk)

+

(∫ 1

0

(g′(xk + α(xk+1−xk))− g′(x∗)) dα

)
(xk+1−xk)

= Z−>
∗ L∗tk + Z−>

∗ L∗rk + o(‖tk + rk‖)
= H∗δk + Z−>

∗ L∗rk + o(‖δk‖) + o(‖rk‖).
To obtain the desired estimate, one should have

rk = o(‖tk‖).
One calls update criterion a condition having the form of the above esti-

mate, which is therefore used to measure the appropriateness of an update.
In this spirit, Nocedal and Overton [276] and Gilbert [144] have indepen-
dently proposed comparing the length of the tangential displacement tk and
the transversal one rk. The matrix Mk is then updated if the following update
criterion is satisfied:

‖rk‖ ≤ µk‖tk‖. (18.19)

According to the previous estimate of γk, it is desirable to have µk → 0 in
(18.19). In principle, the sequence {µk} can be given a priori if the algorithm
is started close to a solution [276]. But with an arbitrary initial iterate, it is
a good idea to let the algorithm itself manage the parameter µk [144, 147].
The update criterion (18.19) can also be seen as a means of selecting those
iterations where the cheap γk of (18.18), and the safe γk of (18.11), are
similar because xk + tk and xk+1 are closer and closer together, in terms of
the distance ‖tk‖ separating xk + tk and xk.

The update criterion (18.19) works well in theory [276, 144, 147, 182], but
gives sometimes disappointing numerical results. This seems due to the fact
that Mk is not updated often enough.

Research on this subject is not closed and other approaches are still pro-
posed [30, 368, 357].
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18.4 The Hanging Chain Project V

This is the fifth and last session on the implementation of the SQP algorithm
and its application to the problem of determining the static equilibrium of
a hanging chain staying above a tilted flat floor. This Matlab project has
been developed in §§ 13.8, 14.7, 15.4, and 17.4. This session is dedicated to the
implementation of a quasi-Newton version of the algorithm along the lines of
§ 18.2. We shall also introduce the concept of performance profile, which will
help us to compare the numerical efficiency of the Newton and quasi-Newton
SQP approaches.

Modifications to Bring to the sqp Function

The method we focus on is summarized on page 328. This algorithm is ba-
sically the same as the one that has been implemented so far, except that,
instead of computing the Hessian of the Lagrangian Lk := ∇2

xx`(xk, λk) in
the simulator, it uses a BFGS approximation Mk to it. This is the mech-
anism that has to be added to the sqp function (we make it active when
options.imode(1) is set to 0, see § 17.4). Here are some more details.

In our implementation, we set the initial matrix M1 used at the first
iteration to the identity matrix. At the second iteration, instead of updating
M1 = I by the BFGS formula to obtain M2, we update M ′

1 := η1I , where
the positive number η1 aims at giving to M ′

1 a good scaling. It is standard
to choose η1 by forcing M ′

1 to verify a scalar version of the quasi-Newton
equation γ1 = M ′

1δ1, where δ1 := x2 − x1 and γ1 reflects the change in the
gradient of the Lagrangian from (x1, λ2) to (x2, λ2) (see below). Taking the
scalar product of this equation with δ1 and γ1 yields the following possible
values for η1:

η′1 :=
γ>1 δ1
‖δ1‖22

and η′′1 :=
‖γ1‖22
γ>1 δ1

.

It is assumed here that γ>1 δ1 > 0 (see below). It is difficult to give good
reasons to favor one of these formula. In our code, we choose η1 = η′′1 , since
this value is larger that η′1 (by the Cauchy-Schwarz inequality) and that a
larger matrix M1 gives more chance to the unit stepsize to be accepted (since
the step is usually smaller; this argument is taken from a discussion in [152]).

For k ≥ 1, the pair of vectors (γk, δk), used to update Mk (or M ′
1 if k = 1)

into Mk+1 by the BFGS formula (18.2), is formed of γk := γP

k , the Powell
correction of γ`

k (see (18.7), (18.8), and (18.9), in which κ is set to 0.2), and
δk := xk+1 − xk . Note that γP

1 is defined by (18.8) with M1 = I , not with
M1 = η′′1 I , which depends on γ1.

Performance Profiles

Even though the number of test cases we have proposed is very small, we
can draw some conclusions from the performance profiles à la Dolan and
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Moré [113] of two SQP algorithms with line-search: the one with the modified
Hessian of the Lagrangian tested in § 17.4 and the one with a quasi-Newton
approximation to this Hessian considered in this section.

Performance profiles are used to compare the efficiency of a collection S
of solvers on a set P of test problems. The comparison is summarized by one
curve per solver, which is definitely easier to read than a table of values. The
idea is the following. Let

τp,s := performance of the solver s on the problem p.

Here, a performance refers to a positive value that reflects an aspect of the
efficiency of a solver, such as the number of function evaluations or the com-
puting time that it requires to solve a particular problem to a given precision.
This value has to be smaller when the solver is more efficient. The relative
performance of a solver s (with respect to the other solvers) on a problem p
is the ratio

ρp,s =
τp,s

min{τp,s′ : s′ ∈ S} .

Of course ρp,s ≥ 1. On the other hand, it is assumed that ρp,s ≤ ρ̄ for all
problems p and solvers s, which can be ensured only by setting ρp,s to the
large number ρ̄ if the solver s cannot solve the problem p. Actually, we shall
consider that s fails to solve p if and only if ρp,s = ρ̄. The performance profile
of the solver s (relative to the other solvers) is then the function

t ∈ [1, ρ̄] 7→ ℘s(t) :=
|{p ∈ P : ρp,s ≤ t}|

|P| ∈ [0, 1],

where | · | is used to denote the number of elements of a set (its cardinality).
Only three facts need to be kept in mind to have a good interpretation of

these upper-semi-continuous piecewise-constant nondecreasing functions:

• ℘s(1) gives the fraction of problems on which the solver s is the best;
note that two solvers may have an even score and that all the solvers
may fail to solve a given problem, so that it is not guaranteed to have∑

s∈S ℘s(1) = 1;

• by definition of ρ̄, ℘s(ρ̄) = 1; on the other hand, for small ε > 0, ℘s(ρ̄− ε)
gives the fraction of problems that the solver s can solve; this value is
independent of the performance under consideration;

• the value ℘s(t) may be given an interpretation by inverting the function
t 7→ ℘s(t): for the fraction ℘s(t) of problems in P , the performance of
the solver s is never worse than t times that of the best solver (this one
usually depends on the considered problem); in this respect the argument
at which ℘s reaches its “almost maximal” value ℘s(ρ̄− ε) is meaningful.

With performance profiles, the relative efficiency of each solver appears at a
glance: the higher is the graph of ℘s the better is the solver s.



342 18 Quasi-Newton Versions

Experimenting with the SQP Algorithm

We have discussed in the introduction of this chapter the reasons why a quasi-
Newton method can be advantageous, and they are numerous. However, this
technique is often less precise than an algorithm using the Hessian of the
Lagrangian. For example, among the 10 test cases we have defined in the
previous sessions (labeled 1a-1g, 2a, 2b, and 3), the quasi-Newton-SQP algo-
rithm is only able to solve one of them (test case 2b) with options.tol(1:4)

set to 10−10, while the modified-Newton-SQP algorithm solves 8 of them. For
this reason, we set options.tol(1:4) to 10−6 in the numerical experiments
of this section.

We have plotted in figure 18.3 performance profiles of two solvers onPSfrag replacements

0

0.2

0.4

0.6

0.8

1

1

1.2

1.4

1.5

1.6

1.8

2

Number of function evaluations

PSfrag replacements

0

0.2

0.4

0.6

0.8

1

1 1.2 1.4

1.5

1.6 1.8

2

Number of function evaluations

CPU time

Fig. 18.3. Performance profiles for two versions of the SQP algorithm with line-
search: SQP-mn (with modified Hessian, solid line) and SQP-qn (with a quasi-Newton
approximation, dashed line)

the collection of 10 test cases presented in this hanging chain project. Both
solvers globalize the SQP algorithm by line-search. The first one (solid line),
say SQP-mn, takes a positive definite modification of the Hessian of the La-
grangian in its osculating QP’s (see § 17.4) and the second one (dashed line),
say SQP-qn, is based on the BFGS approximation to this Hessian, as discussed
above.

The first considered performance (left picture in figure 18.3) is the number
of function evaluations, which is identical to the number of stepsize trials
in the line-search (gradients for both solvers and Hessians for SQP-mn are
evaluated at each iteration, that is to say each time a stepsize is accepted
by the line-search). The value ρ̄ at which both curves take the value 1 is
set slightly above 2.3, beyond the rightmost abscissa shown in the picture.
We see that SQP-mn fails on 20 % of the problems (hence on 2 problems: 1g
because of an infeasible QP and 3a) and that SQP-qn fails on three problems
(1c because the updated matrices and their inverses blow up – this is further
discussed below, 1g, and 3a). When it does not fail, SQP-mn is always the
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winner (because its performance profile is constant). This is not surprising
since the solver uses the Hessian of the Lagrangian, which contains much more
information than its quasi-Newton approximation used in SQP-qn. However,
looking at abscissa 1, we see that the two solvers have an even score on 2
problems (20% of them), which is a good result for SQP-qn since this solver
does not take advantage of the second derivatives.

If we consider the CPU time as the performance criterion (right hand side
picture in figure 18.3), we see that the solver SQP-qn improves with respect to
SQP-mn. It becomes the best solver on 30% of the problems (there is no even
CPU time scores, since the time is measured with many digits of precision).
It does not beat SQP-mn, however (we see in the picture that the CPU time
spent by SQP-mn is never worse than approximately 1.2 times the one spent by
SQP-qn). This is very likely due to the small dimension of the test cases and
to the fact that the Hessian of the Lagrangian of the hanging chain problem
is very sparse and therefore not time consuming to compute in SQP-mn.

Let us now consider the test case 1c (page 249), on which the quasi-
Newton SQP solver SQP-qn fails. The final position of the chain is shown
in the left picture of figure 18.4 (we have selected one out of 3 intermedi-
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Fig. 18.4. Test case 1c with quasi-Newton Hessian approximations: the final posi-
tion of the chain (left), Powell’s θk (right, above), eigenvalues of Mk (right, below)

ate positions). This is not at all a stationary point of the problem: neither
optimality nor feasibility are reached. Actually, as shown by the right hand
side plot (the one below) in figure 18.4, the generated matrices Mk have
their smallest eigenvalue that tends to zero and their largest that blows up.
We have also plotted (the picture above in the right hand side) the value of
the parameter θk in (18.8) along the iterations: it is never equal to 1, which
means that (γ`

k)>δk is never considered to be sufficiently large (it is most
often negative). Close to the final position, the algorithm enters a vicious
circle: the bad quality of Mk induces an unsatisfactory search direction dk;
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then the line-search determines a very small step-size αk along dk , so that
the next iterate is close to the previous one; repetitive application of formula
(18.8) then produces a sequence of γP

k with (γP

k )>δk tending to zero; this de-
teriorates again the matrix Mk. It is amusing to note that by taking the more
conservative value κ = 0.23 (or a larger one) instead of the classical κ = 0.2
in (18.9), the generated sequence converges to the global minimum. It is a
matter of chance. We hope that this example may serve as a motivation for
the algorithms developed in § 18.3.
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Khachiyan [207] proved in 1979 that a linear program (optimization problem
with linear objective and constraints) could be solved in polynomial time,
thus resolving a dozens year old conjecture. It is only after Karmarkar’s
works [204] on interior-point methods , in 1984, that polynomial algorithms
became competitive with the method used until then, the simplex algorithm
of Dantzig [94], which was shown in 1970 to be non-polynomial, by Klee and
Minty [216].

More recently, the attention focused on a family of primal-dual interior-
point algorithms, called central-path algorithms. They enjoy at the same time
the best complexity estimate known so far, namely O(

√
nL̄) (see below for

the meaning of this quantity) and quadratic convergence. Most efficient codes
these days are based on this type of algorithm. In spite of recent progress in
the theoretical analysis of algorithms, there is a substantial gap between
theoretical estimates of speeds of convergence and practical performances. In
fact, interior-point algorithms have the remarkable property of converging in
a few iterations on most practical examples.

The aim of these notes is to give an introduction to the simplex method,
still frequently used, and to primal-dual path-following methods. The lat-
ter will be stated in the framework of monotone linear complementarity
problems; this allows the treatment of convex linear-quadratic problems by
interior-point methods. We will also give some complements on the largest-
step algorithm, the complexity theory for problems with integer data, and on
the Karmakar algorithm.

Linear and Linear-Quadratic Optimization

Consider an optimization problem with quadratic objective and linear con-
straints, of the type

Min
x∈Rn

c>x+ 1
2x

>Hx; Ax = b, x ≥ 0, (QP )

where H is an n × n symmetric positive semidefinite matrix, A is a p × n
matrix, and b ∈ R

p. The above format for the constraints is called standard
form. The problem is said to be linear if the objective is linear, i.e. if H = 0.
Define the value of the problem to be the infimum value of the objective on
the feasible set. With the preceding problem, which we will call primal, is
associated the dual problem,

Max
x,λ,s

−b>λ− 1
2x

>Hx; c+Hx+A>λ = s, s ≥ 0. (QD)

The primal and dual values are equal, except in the singular case where
neither the primal nor the dual have feasible points (Corollary19.13). In case
the primal and dual values are finite (hence equal), the primal and dual
problems do have optimal solutions (Theorems 19.1 and 19.12) and a point x
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is a primal solution if and only if there exists (s, λ) such that (x, s, λ) solves
the following optimality system





xs = 0,
Ax = b, c+Hx+A>λ = s,
x ≥ 0, s ≥ 0.

(OS)

We use in the above display the componentwise multiplication of vectors: xs
is defined as the vector with ith components xisi.

For linear problems, a key concept is that of basic point, defined as being
a feasible point having at most p nonzero components. Indeed, if a linear
problem has optimal solutions at all, one of them is basic (Proposition 19.2).
The simplex algorithm, presented in Chap. 19, generates a sequence of basic
points and, after finitely many iterations, obtains an optimal one.

A solution (x, λ, s) of the optimality system is strictly complementary if
x + s > 0, or equivalently max(xi, si) > 0, for all i ∈ {1, · · · , n}. If a linear
problem has a finite value, a strictly complementary optimal solution (non-
basic in general) can be shown to exist (Proposition 19.16).

Central-Path Algorithms

Let 1 be the vector with all components equal to 1, its dimension depending
on the context. The central trajectory is the set of points (x, s, λ) satisfying,
for a certain µ > 0, the relations





xs = µ1,
Ax = b, c+Hx+A>λ = s,
x ≥ 0, s ≥ 0.

(CT )

For µ = 0 we find back the optimality system (OS). Central-path algorithms
(also said “path-following” algorithms) generate a sequence of points sat-
isfying approximately the equations of the central path, for a sequence of
µ-values tending to 0. To compute the directions of move of x and s, New-
ton’s method is applied to the central-path equations. One speaks of affine
direction if one takes µ = 0 in the linearized equation of the central trajectory,
and of centralization (or restoration) if µ is set to its current value.

In order to control the effects of the nonlinear term xs, the successive
iterates are imposed to stay in a neighborhood of the central path. A point
(x, s, λ) is said to be admissible if it satisfies the linear constraints in (CT ).
The small neighborhood , parameterized by α ∈ (0, 1), and the large neighbor-
hood, parameterized by ε ∈ (0, 1), are defined respectively by

Vα :=

{
(x, s, λ, µ); µ > 0;

∥∥∥∥
xs

µ
− 1

∥∥∥∥ ≤ α; (x, s, λ) admissible

}
,

Nε :=

{
(x, s, λ, µ); µ > 0; ε1 ≤ xs

µ
≤ ε−11; (x, s, λ) admissible

}
.
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Let (x0, s0, λ0, µ0) ∈ Vα be the initial point. The small neighborhood algo-
rithm stops when a point (x, s, µ) is found in Vα such that µ ≤ µ∞, where
µ∞ is a given parameter. All interior-point algorithms presented here require
O(n3) operations per iteration (if the data are dense). Given an initial point
in the current neighborhood, with the initial value µ0 of the parameter µ,
the complexity of each algorithm is measured by the number of iterations
necessary to compute a point in the neighborhood associated with µ ≤ µ∞.
Set L̄ := log(µ0/µ∞).

The predictor-corrector method studied in Chap. 21 performs at each it-
eration a restoration step (centralization), followed by an affine move. In the
small neighborhood case, used with α ≤ 1/2, the restoration step sends a
point of Vα into Vα/2, while the affine step reduces the optimality measure
by a term of the order 1/

√
n. The complexity is therefore O(

√
nL̄). Besides,

the asymptotic analysis shows that lim supµk+1/µk ≤ 1 − α1/2|T |−1/4/2,
where T is the set of indices for which strict complementarity is not sat-
isfied. Finally, under the strict complementarity assumption, µk converges
quadratically to 0.

A variant of this algorithm, based on the modified field introduced
in Chap. 20, preserves the same complexity while converging superlinearly
without the strict complementarity assumption. More precisely, there holds

µk+1 = O(µ
5/4
k ).

Then, we study a large neighborhood algorithm, theoretically less effi-
cient, but numerically better and closer to present implementations. Its the-
oretical complexity is as follows: a centralization step of order 1/n allows a
relative reduction of the optimality measure µ, in the affine move, of the or-
der 1/n. Convergence therefore occurs in O(nL̄) iterations. The asymptotic
analysis is similar to that of the small neighborhood algorithm: convergence
is quadratic under the strict complementarity hypothesis, and a modification
of the algorithm using the modified field results in an algorithm enjoying the

same complexity, satisfying µk+1 = O(µ
5/4
k ) without strict complementarity

hypothesis.
A drawback of the above methods is to require the knowledge of an initial

point in the small or large neighborhood of the central path. This assumption,
made to facilitate the statement of the algorithms only, is not satisfied in
general. We present two classes of algorithms alleviating this requirement.

The small neighborhood non-feasible algorithm, presented in Chap. 22, is
very similar to the small neighborhood feasible algorithm: it computes the
directions of move by applying Newton’s method to the central-path equation.
Its complexity is O(nL̄) (compared to O(

√
nL̄) in the feasible case). The

asymptotic analysis is close to that of the feasible algorithm.
The second approach, presented mainly in the framework of linear pro-

gramming, is based on the properties of self-dual problems, i.e. those such
that the primal and dual formulations coincide. Any linear program can be
cast into a self-dual problem, for which one knows a point on the central
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path. Solving the self-dual problem by an interior-point (feasible) algorithm
yields a strictly complementary solution (of the self-dual problem). Once this
solution is computed, it is easy (in exact arithmetic) to compute a solution
of the original problem, or to conclude infeasibility of the latter.

Chapter 24 states the long-step algorithm, which is of the path-following
type with only one displacement per iteration (while the predictor-corrector
algorithm performs two displacements). The direction of displacement is a
combination of the affine and centralization directions. The analysis, limited
to the small neighborhood, shows that complexity is O(

√
nL̄). The conver-

gence of µk is superlinear in the neighborhood V1/4. A variant of the al-
gorithm, with restoration steps inserted at some iterations, enjoys similar
properties in the neighborhood V1/2.

Complexity Theory and Karmarkar’s Algorithm

For problems with integer data, complexity theory gives estimates of the
number of operations allowing the computation of a solution. Chapter 25
states this theory in the case of linear programming. Let L be the size of
the problem; it can be defined as the amount of memory necessary to store
(A, b, c). The key result is that, if the feasible set is nonempty and bounded,
and if x is a basic point, then: either x is optimal, or there exists an optimal x̄
such that c>x̄ < c>x−2−2L. Now, interior-point methods compute rapidly an
approximate solution of the problem. Combined with a purification algorithm
which computes a basic point via simplex-type computations, they yield the
best complexity estimate known so far for linear programming problems.

Finally, we present Karmarkar’s algorithm. Even though it is no longer
much used, its statement shows how original it is. Motivated by the com-
plexity of problems with integer data, this algorithm uses a projective trans-
formation to minimize efficiently a potential function having a singularity at
its optimum point. Undoubtedly, the works that followed it owe a lot to the
impulse given by Karmarkar’s pioneering contribution.

Other Monographs on Interior-Point Methods

Among other works devoted to interior-point algorithms, let us mention those
of Saigal [319], who analyzes in detail affine algorithms, Den Hertog [103],
who also discusses convex nonlinear or quadratic problems, Terlaky, Vial, and
Roos [349], Vanderbei [353], Wright [366], and Ye [370]. A technical discussion
of interior-point algorithms in the framework of monotone linear complemen-
tarity is given in Kojima et al. [217]. Nesterov and Nemirovski [273] present a
general complexity theory of interior-point algorithms for nonlinear problems.
One finds in Terlaky [348] a useful synthesis of various points of view and
applications. The classical aspects of linear programming are discussed by
Goldfarb and Todd [166]. Extensions to semidefinite programming problems
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are presented in Saigal, Vandenberghe, and Wolkowicz [363] and Ben-Tal and
Nemirovski [23].

Notation

B,N, T Partition of {1, · · · , n} associated with solutions of (LCP ).
dist(x,X) Distance from the point x to the set X .
F (P ) Feasible or admissible set of problem (P ).
L(x, λ, s) Lagrangian of problem (P ).
(LCP ) Monotone linear complementarity problem.
(LP ), (LD) Linear problem in standard form and its dual.
N (A),R(A) Kernel and Range of A.
∇f(x),∇2f(x) Gradient and Hessian of f(x).
PA,q , PA Orthogonal projection onto {z : Az + q = 0} and N (A).
π(x) Logarithmic potential: π(x) := −∑i logxi.
(QP ), (QD) Quadratic problem in standard form and its dual.
R,R+,R++ Sets of real, nonnegative, positive real numbers.
R−,R−− Sets of nonpositive, negative real numbers.
S(P ), v(P ) Solution set, value (optimal cost) of (P ).

If F (P ) = ∅, then v(P ) = +∞ and S(P ) = ∅.
uc, vc, ua, va Centralization and affine displacements.
w Triple (x, s, µ).

δ(w)

∥∥∥∥
xs

µ
− 1

∥∥∥∥.
1 Vector whose coordinates are all 1.
‖.‖, ‖.‖∞ Euclidean norm, max-norm.



19 Linearly Constrained Optimization

and Simplex Algorithm

Overview

This chapter recalls some theoretical results on linearly constrained opti-
mization with convex objective function. In the case of a linear or quadratic
objective, we show existence of an optimal solution whenever the value of
the problem is finite, as well as existence of a basic solution in the linear
case. Lagrangian duality theory is presented. In the linear case, existence of
a strictly complementary solutions is obtained whenever the optimal value of
the problem is finite. Finally, the simplex algorithm is introduced in the last
part of the chapter.

19.1 Existence of Solutions

19.1.1 Existence Result

Consider a linearly constrained optimization problem of the type

Min
x∈Rn

f(x); Ax = b, x ≥ 0, (P )

where f is a convex function R
n → R, A is a p × n matrix and b ∈ R

p.
Constraints written in this way are said to be in standard form. Any linearly
constrained problem can be cast into an equivalent problem in standard form.
This transformation is rarely advantageous from a numerical point of view.
The interest of the standard form is to allow a simple statement of algo-
rithms, which can be formulated in a more general format when coming to
implementations.

We denote the feasible set , the value and the solution set of problem (P )
respectively by

F (P ) := {x ∈ R
n; Ax = b, x ≥ 0},

v(P ) := inf{f(x); x ∈ F (P )},
S(P ) := {x ∈ F (P ); f(x) = v(P )}.

By convention, the infimum on the empty set is +∞. Thus, if F (P ) is empty,
then v(P ) = +∞ and S(P ) is empty. A linearly constrained optimization
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problem is said to be linear (resp. quadratic) if the objective function f is
linear (resp. quadratic). Linear and convex quadratic problems in standard
form are therefore written respectively as

Min
x∈Rn

c>x; Ax = b, x ≥ 0, (LP )

Min
x∈Rn

c>x+ 1
2x

>Hx; Ax = b; x ≥ 0, (QP )

where H is an n×n symmetric positive semidefinite matrix. Of course, linear
problems are particular cases of quadratic problems.

Theorem 19.1. The solution set S(P ) is convex. When f is convex quadra-
tic, this set is nonempty iff v(P ) ∈ R.

Proof. Convexity of S(P ) follows from that of F (P ) and f . Clearly, if S(P )
is nonempty, then v(P ) ∈ R. Let us show the converse inclusion, assuming
that f is quadratic.

(a) First, we prove the property for a linear objective. Denote the active
constraint set at x by

N(x) := {1 ≤ i ≤ n; xi = 0}.

If v(LP ) ∈ R, consider a minimizing sequence; extracting a subsequence,
there exists a minimizing sequence {xk} such that N(xk) is constant. Let
{xk} be a minimizing sequence such that N(xk) is constant and maximal
(i.e., there exists no other minimizing sequence whose active constraint set
is constant and contains N(xk) strictly). If {xk} stays out of S(LP ), extract
again a subsequence: we can assume that c>xk+1 < c>xk. Set dk := xk+1−xk.
Then c>dk = c>(xk+1 − xk) < 0.

Set tk := sup{t ≥ 0;xk + tdk ∈ F (P )}. Since N(xk+1) = N(xk), we
have tk > 0. Since v(LP ) ∈ R and c>dk < 0, we have tk < +∞ and a
nonnegativity constraint becomes active at tk. Then x̂k := xk + tkdk satisfies
N(xk) ⊂ N(x̂k), with strict inclusion. Since c>x̂k = c>(xk + tkdk) < c>xk ,
the sequence {x̂k} is minimizing. We can extract a minimizing sequence,
whose active constraint set is constant, which contradicts the definition of
{xk}. An element of the sequence {xk} therefore lies in S(LP ). In particular,
S(LP ) 6= ∅.

(b) In the case of a quadratic objective, let us check first the property for
an unconstrained problem of the type

Min
x∈Rn

f(x) := c>x+ 1
2x

>Hx.

If this problem has a finite value, then c ⊥ N (H) (otherwise, let ĉ be the
projection of c onto N (H); then the sequence xk := −kĉ satisfies f(xk) =
−k‖ĉ‖2 ↓ −∞). Decomposing x as x = x1 + x2, x1 ∈ N (H), x2 ∈ N (H)⊥,
and likewise for c, we check that
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f(x) = c>x+ 1
2x

>Hx = (c2)>x2 + 1
2 (x2)>H22x2,

where H22 is positive definite. The set of minima of f is therefore nonempty
and is given by

N (H)× {−(H22)−1c2}.
Consider now a constrained quadratic problem (QP ). As in the case of linear
problems, we form a minimizing sequence {xk} such that N(xk) is constant
and maximal. Set N∗ := N(xk), and consider the problem

Min f(x); Ax = b; xi = 0, i ∈ N∗. (P ∗)

Since {xk} ⊂ F (P ∗), we have

v(P ) = lim f(xk) ≥ v(P ∗).

Let us show that v(P ) = v(P ∗). Otherwise there exists x∗ ∈ F (P ∗) such
that f(x∗) < v(P ), and hence, x∗ 6∈ F (P ). Move from xk towards x∗ on the
segment

[xk , x∗] := {αxk + (1− α)x∗; α ∈ [0, 1]}.
Call x̂k the point obtained when a first nonnegativity constraint is hit. Then
x̂k ∈ F (P ), N∗ ⊂ N(x̂k) with strict inclusion, and by convexity of f ,

f(x̂k) ≤ max{f(xk), f(x∗)} = f(xk),

and hence, {x̂k} is a minimizing sequence of (P ) contradicting the definition
of {xk} (extract from it a subsequence whose active set is constant), so that
v(P ) = v(P ∗).

Note that (P ∗) reduces to an unconstrained problem, expressing x in a
basis of

N (A) ∩ {x ∈ R
n; xi = 0, i ∈ N∗}.

Since v(P ∗) = v(P ) ∈ R, problem (P ∗) has a solution x̄. If x̄ ∈ F (P ), this is
the desired solution since f(x̄) = v(P ∗) = v(P ). Otherwise, a contradiction
is obtained by constructing a sequence {x̂k} as before, replacing x∗ by x̄.

19.1.2 Basic Points and Extensions

Let us introduce a fundamental concept for the analysis of linear problems.
We will say that x is a basic point if x ∈ F (LP ) and xi 6= 0 for at most p
components.

Proposition 19.2. If (LP ) has solutions at all, one of them is basic.
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Proof. Let x ∈ S(LP ), having a minimal number of nonzero components, say
q. We prove a contradiction if q > p.

We can assume xi > 0, i ∈ B := {1, . . . , q}. Since A is p× n, and hence,
of rank at most p, the kernel of AB has dimension at least q − p. Thus, let
d ∈ R

n be such that d 6= 0, Ad = 0 and di = 0, i > q. Note that, for
|ρ| small enough, x + ρd ∈ F (LP ), hence c>(x + ρd) ≥ v(LP ) = c>x and
therefore c>d = 0. Changing d in −d if necessary, we can assume min{di} < 0.
Then there exists a maximal value of ρ such that x + ρd ∈ F (LP ), call it
ρ̄ := min{xi/|di|; di < 0}. The point x] := x + ρ̄d is feasible, lies in S(LP )
and has at most q − 1 nonzero components. This contradicts the definition
of x.

This type of result extends to problems depending linearly only on some
variables. In fact, if f is linear with respect to the first n1 variables, and if x̄
minimizes f on F (P ), we can consider the minimization with respect to the
first n1 variables, the others being fixed. The following result is a consequence
of Proposition19.2:

Corollary 19.3. If f is linear with respect to the first n1 variables, with
n1 > p, then the set S(P ), if nonempty, contains a point with at most p
among its first n1 components that are nonzero.

Here is another extension of Proposition19.2 to the case of a quadratic
objective.

Lemma 19.4. Suppose that f is quadratic with Hessian H positive semidef-
inite, and na := |N (H)| − p is positive. If nonempty, S(QP ) contains a
solution with at least na zero components.

Proof. Let x̄ ∈ S(QP ) have the maximum number of zero components, say
nb. Suppose nb < na. Let X be the space of dimension n − nb spanned
by the nonzero components of x̄. Then X ∩ N (A) has dimension at least
n−(nb+p); therefore, the quadratic form d→ d>Hd has onX∩N (A) a kernel
of dimension at least |N (H)| − (nb + p) = na − nb > 0. Consequently, there
exists d 6= 0, d ∈ X ∩N (A)∩N (H). We can assume min{di; 1 ≤ i ≤ n} < 0,
which gives x̂ ∈ S(QP ) in the form x̂ = x̄+σd, where σ > 0 has at least one
more nonzero component than x̄; this is the desired contradiction.

19.2 Duality

Let us now introduce some elements of Lagrangian duality theory.
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19.2.1 Introducing the Dual Problem

With problem (P ) is associated the Lagrangian

L(x, λ, s) := f(x) + λ>(Ax− b)− s>x.

Since

Max
λ∈Rp,s∈R

n
+

L(x, λ, s) =

{
f(x) if x ∈ F (LP ),
+∞ otherwise,

problem (P ) can be interpreted as

Min
x∈Rn

sup
λ∈Rp,s∈R

n
+

L(x, λ, s).

The dual problem is obtained by inverting the min and max operations:

Max
λ∈Rp,s∈R

n
+

inf
x∈Rn

L(x, λ, s).

Example 19.5. Linear Optimization. In the linear case f(x) = c>x, the
dual problem appears after some computations to be linear and to have the
expression

Max
λ,s
−b>λ; c+A>λ = s, s ≥ 0. (LD)

Remark 19.6. The same dual is obtained if only equality constraints are
dualized. The Lagrangian is then c>x+ λ>(Ax− b), and (LP ) is interpreted
as

Min
x∈R

n
+

sup
λ∈Rp

c>x+ λ>(Ax − b).

The dual problem, obtained by inverting the min and max, is

Max
λ∈Rp

−b>λ; c+A>λ ≥ 0.

This problem is equivalent to (LD).

Example 19.7. Quadratic Optimization. When f(x) = c>x + 1
2x

>Hx,
minimizing the Lagrangian with respect to x is an unconstrained optimiza-
tion problem. From Theorem19.1, the minimum is attained iff there exists a
solution, otherwise it is −∞. The Lagrangian is convex, its minima are the
zeros of its gradient, and are therefore characterized by

c+Hx+A>λ = s,

where the Lagrangian has the value

L(x, λ, s) = f(x) + λ>(Ax − b)− s>x,
= (c+Hx+A>λ− s)>x− b>λ− 1

2x
>Hx,

= −b>λ− 1
2x

>Hx.
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An expression of the dual problem is therefore

Max
x,λ,s

−b>λ− 1
2x

>Hx; c+Hx+A>λ = s; s ≥ 0. (QD)

In the case H = 0, the variable x disappears from this problem and we find
back the expression of the dual problem (LD).

An Interpretation Extracted from Economics Let b ∈ R
p be a stock of nuclear

waste (bi is the quantity of product i). One wants to eliminate them by n
different processes. Process j consumes a quantity aij of waste i, and has a
unit cost cj . Let xj measure the use of process j. The least-cost solution is
obtained by solving the linear problem in standard form. To interpret the
dual problem, write it as (with λ̂ = −λ)

Max
λ̂∈Rp

b>λ̂; A>λ̂ ≤ c.

Then λ̂i represents a price associated with refusal i, while A>λ̂ is the value
associated with the process {1, · · · , n}. The dual problem is interpreted as
the optimal assessment of the stock, under the constraint that c is an upper
bound for the process values.

As suggested by this example, the dual problem has in general a practical
interpretation, which is often useful.

19.2.2 Concept of Saddle-Point

The above duality scheme fits with the following abstract framework. Con-
sider ϕ : X × Y → R, where X and Y are two arbitrary sets. Introduce the
primal and dual problems

Min
x∈X

sup
y∈Y

ϕ(x, y), (Pϕ)

Max
y∈Y

inf
x∈X

ϕ(x, y), (Dϕ)

as well as the saddle-point problem: find (x̄, ȳ) ∈ X × Y satisfying

∀(x, y) ∈ X × Y, ϕ(x̄, y) ≤ ϕ(x̄, ȳ) ≤ ϕ(x, ȳ).

Lemma 19.8. There always holds that v(Dϕ) ≤ v(Pϕ). A saddle-point ex-
ists iff problems (Dϕ) and (Pϕ) have the same value and admit an optimal
solution (at least); the set of saddle-points is then S(P ϕ) × S(Dϕ). In this
case, we denote by v(ϕ) the common value of (Dϕ) and (Pϕ), and the set of
saddle-points is equal to S(P ϕ)× S(Dϕ).
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Proof. Let (x̂, ŷ) ∈ X × Y . Then

inf
x∈X

ϕ(x, ŷ) ≤ ϕ(x̂, ŷ) ≤ sup
y∈Y

ϕ(x̂, y),

and thus
sup
ŷ∈Y

inf
x∈X

ϕ(x, ŷ) ≤ inf
x̂∈X

sup
y∈Y

ϕ(x̂, y),

which establishes the inequality v(Dϕ) ≤ v(Pϕ). Let us show that existence
of a saddle-point (x̄, ȳ) implies the condition in the Lemma. By definition of
a saddle-point, we have

sup
y∈Y

ϕ(x̄, y) ≤ ϕ(x̄, ȳ) ≤ inf
x∈X

ϕ(x, ȳ)

and the above inequalities actually hold as equalities, since the sup and inf
are obtained respectively for ȳ and x̄, and hence,

v(Pϕ) ≤ sup
y∈Y

ϕ(x̄, y) = ϕ(x̄, ȳ) = inf
x∈X

ϕ(x, ȳ) ≤ v(Dϕ).

But v(Dϕ) ≤ v(Pϕ), and hence, v(Dϕ) = ϕ(x̄, ȳ) = v(Pϕ) = v(ϕ). Moreover

v(Pϕ) = ϕ(x̄, ȳ) = sup
y∈Y

ϕ(x̄, y)

which indicates that x̄ ∈ S(Pϕ), and likewise ȳ ∈ S(Dϕ).
To finish the proof we check that, if v(Pϕ) = v(Dϕ), and if x̄ ∈ S(Pϕ) and

ȳ ∈ S(Dϕ), then (x̄, ȳ) is a saddle-point of ϕ: this will show that the condition
is sufficient and will imply that the set of saddle-points is S(P ϕ) × S(Dϕ).
We have

v(ϕ) = inf
x∈X

ϕ(x, ȳ) ≤ ϕ(x̄, ȳ) ≤ sup
y∈Y

ϕ(x̄, y) = v(ϕ),

so that ϕ(x̄, ȳ) = infx∈X ϕ(x, ȳ) ≤ ϕ(x, ȳ), ∀x ∈ X , the other saddle-point
inequality being proved likewise.

Now suppose that X , Y are convex subsets of R
n and R

m, respectively,
and that ϕ is of class C1. We will say that (x̄, ȳ) is a critical point of ϕ in
(X,Y ) when 




(x̄, ȳ) ∈ X × Y,
ϕ′

x(x̄, ȳ)(x− x̄) ≥ 0, for all x ∈ X ,
ϕ′

y(x̄, ȳ)(y − ȳ) ≤ 0, for all y ∈ Y .

The function ϕ is said to be convex-concave if x → ϕ(x, ŷ) and y → ϕ(x̂, y)
are convex and concave, respectively, for all (x̂, ŷ) ∈ X × Y .

Lemma 19.9. Suppose X and Y are convex. Then the set of saddle-points
of ϕ is contained in the set of its critical points, and the two sets coincide if
ϕ is convex-concave.
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Proof. Let (x̄, ȳ) be a saddle-point of ϕ, x ∈ X , y ∈ Y and σ ∈]0, 1[. Since X
and Y are convex, we have x̄+ σ(x − x̄) = (1− σ)x̄ + σx ∈ X , and likewise
ȳ + σ(y − ȳ) ∈ Y . Therefore

ϕ(x̄, ȳ + σ(y − ȳ))− ϕ(x̄, ȳ)

σ
≤ 0 ≤ ϕ(x̄ + σ(x− x̄), ȳ)− ϕ(x̄, ȳ)

σ
.

Letting σ tend to 0, we obtain the characterization of a critical point.
If (x̄, ȳ) is a critical point of ϕ, and if ϕ is convex-concave, use the fact

that a convex (resp. concave) function bounds its affine approximation from
above (resp. from below); we have for all (x, y) ∈ X × Y

ϕ(x̄, y) ≤ ϕ(x̄, ȳ) + ϕ′
y(x̄, ȳ)(y − ȳ) ≤ ϕ(x̄, ȳ)

≤ ϕ(x̄, ȳ) + ϕ′
x(x̄, ȳ)(x− x̄) ≤ ϕ(x, ȳ)

which proves that (x̄, ȳ) is a saddle-point of ϕ. The conclusion follows.

In our present linearly constrained optimization of a convex objective, we
haveX = R

n, Y = R
p×R

n
+, ϕ = L, and the LagrangianL is a convex-concave

function of (x, λ, s). A saddle-point (x̄, λ̄, s̄) is therefore characterized by
{L′x(x̄, λ̄, s̄)(x − x̄) ≥ 0, ∀x ∈ R

n,
L′λ,s(x̄, λ̄, s̄)(λ − λ̄, s− s̄) ≤ 0, ∀λ ∈ R

p, s ∈ R
n
+,

which, after some computations, appears to be equivalent to



L′x(x̄, λ̄, s̄) = ∇f(x̄) +A>λ̄− s̄ = 0,
L′λ(x̄, λ̄, s̄) = Ax̄− b = 0,
x̄ ≥ 0 and x̄s̄ = 0;

here again, the product of two vectors is understood as componentwise. Al-
together, we have shown

Theorem 19.10. A saddle-point of L is characterized by what we will call
the optimality system




∇f(x̄) +A>λ̄ = s̄,
Ax̄ = b,
x̄ ≥ 0, s̄ ≥ 0, x̄s̄ = 0.

If (x̄, λ̄, s̄) is a saddle-point of the Lagrangian, we will say that (λ̄, s̄) is
a Lagrange multiplier associated with x̄. This terminology suggests that the
multiplier appears in the Lagrangian through its product with the constraint.
The set of Lagrange multipliers associated with a solution of (P ) is the same
for all solutions, since it is just S(D).

Example 19.11. Consider the convex problem Min{e−x;x ≥ 0}. It has no
solution. The primal and dual values are equal and the dual problem has the
unique solution λ̄ = 0, which is therefore not a Lagrange multiplier.
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Theorem 19.12. If S(P ) 6= ∅, the set of Lagrange multipliers is nonempty.

Proof. Take x̄ ∈ S(P ) and x ∈ F (P ). Then, for σ ∈]0, 1[

0 ≤ f(x̄+ σ(x− x̄))− f(x̄)

σ
.

Pass to the limit; setting c̄ := ∇f(x̄), we obtain c̄>(x − x̄) ≥ 0, for all
x ∈ F (P ). This means that x̄ solves the linear problem

Min
x
c̄>x; Ax = b; x ≥ 0. (∗)

Thus, it suffices to show the existence of Lagrange multipliers for a linear
problem. At x ∈ F (P ), denote the set of active constraints and the tangent
cone to F (P ) respectively by

N(x) := {i = 1, · · · , n; xi = 0},
T (x) := {d ∈ N (A); di ≥ 0, ∀i ∈ N(x)}.

Let d ∈ T (x̄). Then x̄+ σd ∈ F (P ) for σ > 0 small enough, so that

c̄>d ≥ 0, ∀d ∈ T (x̄).

We will obtain the multiplier as solving the quadratic problem

Min
λ,s

g(λ, s) := 1
2‖c̄+A>λ− s‖2; s ≥ 0, si = 0, i 6∈ N(x̄).

This problem is feasible. Its objective function is everywhere nonnegative, so
its value is finite. Being quadratic and convex, the problem has an optimal
solution (λ̄, s̄) (Theorem19.1). Let us show that

r̄ := c̄+A>λ̄− s̄

is zero. The point (λ̄, s̄) minimizing g, it satisfies the optimality system

{
0 = g′λ(λ̄, s̄) = Ar̄,
0 ≤ g′s(λ̄, s̄)(s− s̄), ∀s ≥ 0, si = 0, i 6∈ N(x).

(∗∗)

The second relation is equivalent to r̄i ≤ 0, i ∈ N(x̄) and r̄>s̄ = 0, and hence,

0 ≤ ‖r̄‖2 = r̄>r̄ = c̄>r̄ + λ̄>Ar̄ − s̄>r̄ = c̄>r̄. (∗ ∗ ∗)

Set x(σ) := x̄− σr̄. Using (∗∗), we get

Ax(σ) = Ax̄− σAr̄ = b,

and for σ > 0 small enough we have xi(σ) > 0, i 6∈ N(x), and xi(σ) ≥ 0,
i ∈ N(x) (since r̄i ≤ 0, i ∈ N(x)), and hence, x(σ) ∈ F (P ). By (∗ ∗ ∗),
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c̄>x(σ) = c̄>x̄− σc̄>r̄ = c̄>x̄− σ‖r̄‖2.

Since x̄ solves (∗), this implies r̄ = 0. The point (λ̄, s̄) therefore satisfies

c̄+A>λ̄ = s̄ ≥ 0,

and if x̄i 6= 0, then i 6∈ N(x) ⇒ s̄i = 0, and hence, x̄s̄ = 0, so that (λ̄, s̄) is a
Lagrange multiplier.

If S(P ) is nonempty, the above result tells us that there exists a Lagrange
multiplier; hence the Lagrangian has a saddle-point and the primal and dual
values are equal. In the case of linear or quadratic optimization, we know
that S(QP ) is nonempty iff v(QP ) ∈ R. Being a concave quadratic problem,
the dual (QD) is equivalent to a convex quadratic problem whose dual is (P ).
Hence S(QD) 6= ∅ iff v(QD) ∈ R; in this case it can be shown that, with the
solutions of (D) are associated Lagrange multipliers, which solve (P ). Since
we always have v(D) ≤ v(P ), we deduce

Corollary 19.13. There holds v(QP ) = v(QD) ∈ R̄, except when

v(QP ) = +∞ and v(QD) = −∞.

Example 19.14. The linear problem Minx{−x; 0× x = −1; x ∈ R+} is not
feasible; neither is its dual Maxλ,s{λ; −1 + 0 × λ = s; s ∈ R+}. We are in
the situation where −∞ = v(LD) < v(LP ) =∞.

19.2.3 Other Formulations

With the primal and dual problems, can be associated the primal-dual or
mixed formulation

Min
x,λ,s

x>s; Ax = b, x ≥ 0, ∇f(x) +A>λ = s, s ≥ 0. (MP )

Its constraints are those appearing in the optimality conditions, and the
complementarity condition is taken care of by the objective function. Since
x ≥ 0 and s ≥ 0, the objective is nonnegative and therefore v(MP ) ≥ 0. If
(x̄, λ̄, s̄) ∈ S(MP ), then x̄, (λ̄, s̄) is a primal-dual solution iff v(MP ) = 0:
indeed, the optimality system is satisfied iff x>s = 0.

In the linear or convex quadratic case, problem (MP ) writes

Min
x,λ,s

x>s; Ax = b, x ≥ 0, c+Hx+A>λ = s, s ≥ 0, (MQ)

and we have: (i) the constraints of (MQ) are linear, and (MQ) is therefore a
quadratic problem; (ii) if (MQ) is feasible, then v(MQ) = 0 and S(MQ) 6= ∅
by virtue of Corollary19.13.
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Another approach to duality, called Wolfe duality [360], consists in intro-
ducing the dual problem

Max
x,λ,s

L(x, λ, s); ∇f(x) +A>λ = s, s ≥ 0. (D∗)

Said otherwise, the Lagrangian is maximized under the “dual constraint”.
For a quadratic problem, the classical dual (QD) is recovered. More generally,
v(D∗) ≤ v(D), and v(D∗) = v(D) = v(P ) if S(P ) is nonempty (since in this
case, L has a solution which solves (D∗)).

Remark 19.15. Let (x, λ, s), feasible for Wolfe’s dual, be such that x is fea-
sible for (P ). The difference between the associated costs is f(x)−L(x, λ, s) =
x>s. Problem (MP ) is therefore interpreted as the minimization of the differ-
ence between primal and dual costs, under the primal feasibility and (Wolfe)
dual constraints.

19.2.4 Strict Complementarity

A primal-dual solution (x, λ, s) is called strictly complementary when x+s >
0, or equivalently max(xi, si) > 0, ∀i ∈ {1, · · · , n}. This property plays an
important role in the analysis of the asymptotic behavior of interior-point
algorithms. A quadratic problem need not have any complementary solution,
even when a solution exists; a counter-example is Min{x2; x ≥ 0}. The
situation is different for linear optimization.

Proposition 19.16. (Goldman-Tucker, [167]) If (LP ) has a finite value,
then it has a strictly complementary solution. More precisely, there exist a
partition B̄ and N̄ of {1, · · · , n}, and a primal-dual solution (x̄, λ̄, s̄), such
that x̄B̄ > 0 and s̄N̄ > 0, and if (x, λ, s) is a primal-dual solution, then
xN̄ = 0 and sB̄ = 0.

Proof. Define

B̄ := {i ∈ {1, · · · , n}; ∃xi ∈ S(LP ); xi
i > 0}; N̄ := {1, · · · , n}\B̄.

Since S(LP ) is convex, the point x̄ := |B̄|−1
∑

i∈B̄ x
i lies in S(LP ) and

satisfies x̄B̄ > 0. Consider the linear problem

Min
x


−

∑

i∈N̄

xi


 ; Ax = b; c>x ≤ v(LP ); x ≥ 0. (∗)

Its feasible set is F (∗) = S(LP ). By definition of N̄ , if x ∈ S(LP ), then
xN̄ = 0, hence v(∗) = 0 and S(∗) = F (∗) = S(LP ).

The dual problem writes

Max
(λ,β,s)

−λ>b− βv(LP ); −
∑

i∈N̄

ei +A>λ+ βc = s ≥ 0, β ≥ 0,
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where ei is the ith basis vector and (λ, β, s) ∈ R
p×R+×R

n
+ is the multiplier.

Since v(∗) = 0, there exists a dual solution (λ̂, β̂, ŝ). Take (λ, s) ∈ S(LD);
then

(1 + β̂)c+A>(λ̂+ λ) = ŝ+ s+
∑

i∈N̄

ei.

Set
λ̄ := (1 + β̂)−1(λ̂+ λ) ; s̄ := (1 + β̂)−1(ŝ+ s+

∑

i∈N̄

ei).

Then

c+A>λ̄ = s̄ ≥ 0; s̄N̄ ≥ (1 + β̂)−1
∑

i∈N̄ ei > 0.

Besides, s̄ ≥ 0 and x̄s̄ = 0 (indeed x̄ ∈ S(∗), hence x̄>ŝ = 0); we deduce
(λ̄, s̄) ∈ S(LD). Finally, if (x, λ, s) is a primal-dual solution of (LP ), the
complementarity relation with x̄ and s̄ imply xN̄ = 0 and sB̄ = 0.

We will call (B̄, N̄) given above the optimal partition of the problem.

19.3 The Simplex Algorithm

The classical method for solving linear problems is the so-called simplex
method, which we now present. Despite the importance of interior-point al-
gorithms, a study of the simplex method is useful for three reasons. First,
this method is competitive in many cases, and gives a benchmark to assess
the performances of other methods. Second, to compute an exact solution
– which is on the boundary of the domain – interior-point methods need a
so-called purification process, which is a variant of the simplex method. Fi-
nally, stating the simplex algorithm allows an illustration of various concepts
intrinsically linked to linear problems themselves, and not to the techniques
used for solving them, as is the case for the existence of basic points.

19.3.1 Computing the Descent Direction

Let x̃ be a basic point. Denote by

B(x̃) := {1 ≤ i ≤ n; x̃i > 0}

the set of non-active positivity constraints; B(x̃) is called the basis. The set
of columns of A, indexed in a set I , will be denoted by AI . Set

B := B(x); N := {1, · · · , n}\B.

We assume |B| = p. Without loss of generality, we can assume B =
{1, · · · , p}. Partition x ∈ R

n and A according to their indices and columns,
so that
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x = (xB , xN ); A = (AB , AN ); Ax = ABxB +ANxN .

We call AB the basis matrix. Suppose AB invertible. Then, from the relation
Ax = b, we can extract xB as a function of xN :

xB(xN ) := A−1
B (b−ANxN ).

To compute a descent direction, the constraints xB ≥ 0 which are not active
at the current point x̃ can be ignored. Locally, our problem therefore writes
(using c>x = c>BxB + c>NxN ):

Min
xN

c>BA
−1
B (b−ANxN ) + c>NxN ; xN ≥ 0,

or equivalently

Min
xN

(cN −A>
NA

−t
B cB)>xN ; xN ≥ 0.

We call reduced cost the quantity r := cN − A>
NA

−t
B cB . Decomposing its

expression so as to disclose the multiplier estimate λ, we obtain

A>
Bλ = −cB; r = cN +A>

Nλ.

Combining the above two equalities, we observe that

c+A>λ = s where s :=

(
0
r

)
, and x>s = 0.

In case r ≥ 0, the optimality system is satisfied: (x, λ, s) is therefore a solution
of (MP ). From Theorem19.10, x solves (LP ). We can thus detect optimality.

By contrast, if there exists j such that rj < 0, let ej be the jth basis
vector, and let d ∈ R

n be given by

dN = ej ; dB = −A−1
B ANdN = −A−1

B Aj .

Then
Ad = 0; dN ≥ 0; d>c = d>r = rj < 0,

and thus, for small ρ > 0, the point x(ρ) := x+ ρd is feasible and c>x(ρ) :=
c>x + ρc>d < c>x. Since x has p nonzero components, and since dN = ej ,
x(ρ) has at most p + 1 nonzero components. Consider the largest feasible
step. If it is +∞, we deduce v(LP ) = −∞ since c>d < 0. If this step is finite,
it cancels one component (at least). A new basic point is thus obtained.

19.3.2 Stating the algorithm

Summing up the set of operations, we obtain the simplex algorithm:
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Algorithm 19.17. (Simplex algorithm)
Data: choose a basic point x0; k ← 0.
repeat
• Compute the multiplier, solving A>

Bλ = −cB .
• Compute the reduced cost r ← cN +A>

Nλ.
• If r ≥ 0, stop: x solves (LP ).
• Direction of move: j such that rj < 0, dN ← ej ; dB ← −A−1

B ANdN .
• If d ≥ 0, stop: v(LP ) = −∞.

• Stepsize: i← argmin{ xi

|di|
; di < 0}, and ρ← xi

|di|
.

• New point x] ← x+ ρd. B ← (B ∪ {j})\{i}; N ← (N ∪ {i})\{j}.
• k ← k + 1.

Remark 19.18. Call j the variable index entering the basis, and i the one
exiting the basis. A classical choice is j = argmin{rj}. Note that this choice
depends on the scaling of the variables.

The basic point x will be called a regular basic point when

|B(x)| = p and AB(x) has rank p.

As long as the basic points generated by the algorithm are regular, this algo-
rithm is well-defined. A singularity may appear if several basic variables reach
their bound simultaneously. On the other hand, the following lemma shows
that the basis matrix never becomes singular (at least in exact arithmetic;
if the computations are performed in finite arithmetic, a singularity may of
course appear).

Lemma 19.19. The basis matrix cannot become singular along the algorithm
iterations.

Proof. Let A[ and A] be the basis matrix at the beginning and at the end
of an iteration. We have to show that A] is invertible if A[ is such. We can
assume that the changed column is the last one. Let A]

n bet the last column
of A], and d 6= 0 be such that A]d = 0. Set d̃ := (d1, · · · , dn−1, 0). Then

A]d = A[d̃+A]
ndn = 0.

Since A[ is invertible, this implies dn 6= 0; we can assume dn = 1, so

0 = A]d = A[d̃+A]
n.

During one simplex iteration, we have computed a direction of move d̄ solving
A[d̄ = −A]

n. Since A[ is invertible, this implies d̄ = d̃, hence d̄n = 0, which
is impossible: the component of displacement associated with the variable
exiting the basis cannot be zero.
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Theorem 19.20. If the basic point x0 is regular, and if the variable exiting
the basis is defined unambiguously, then the simplex algorithm stops after
finitely many iterations.

Proof. In view of the above lemma, {xk} is a sequence of regular basic points.
Then it suffices to show that the number of regular basic points is finite. If
they are infinitely many, two of them are different, say x] and x[, associated
with the same basis B. Hence ABx

]
B = Ax] = b = Ax[ = ABx

[
B , so that

AB(x]
B−x[

B) = 0, hence x]
B = x[

B . Set N := {1, · · · , n}\B. Since x]
N = x[

N =
0, it follows that x] = x[, a contradiction with the initial hypothesis.

In general, no basic point of the problem to solve is available. Actually, it
is not even known whether this problem is feasible! Nevertheless, computing
a basic point can be formulated as an auxiliary problem, of which a basic
point is known. For example, consider the linear problem

Min
x,z

p∑

i=1

zi; Ax+ wz = b; x ≥ 0; z ≥ 0, (∗)

and take
x0 ∈ R

n
+; w := b−Ax0; z0 := 1 (in R

p).

Then the point (x0, z0) is feasible for (∗). In particular, chosing x0 = 0,
this point is basic. Finally, it is clear that v(∗) ≥ 0, and that v(∗) = 0 iff
(P ) is feasible. Moreover, the simplex algorithm yields a basic point for (P ),
which allows the initialization of a simplex algorithm to solve (LP ). We call
Phase I and Phase II the successive steps, seeking a feasible point, and then
minimizing the objective function.

19.3.3 Dual simplex

Sometimes one has to solve a sequence of linear programs, the kth problem
being identical to the (k−1)th except for some additional linear inequalities.
This happens for instance when integer linear programming problems are
solved by using continuous relaxations and integrality cuts. Then a (primal-
dual) solution of the (k − 1)th problem is dual feasible for the kth problem.
It is therefore useful to have a version of the simplex algorithm for the dual
problem, since we already know a feasible starting point. We briefly give the
main ideas of the dual simplex algorithm, and show that the implementation
is again based on a primal (B,N) partition. The dual program

Max
λ,s
−b>λ; c+A>λ = s; s ≥ 0

has n + p variables and n constraints. The multiplier λ will be in the dual
basis, and cannot leave it since it is unbounded. There are n− p components
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of s in the dual basis. For reasons that will appear soon, denote by N (resp.
B) the set of basic (resp. nonbasic) components of s. Observe that |B| = p
and |N | = n − p. With a dual feasible (λ, s), the dual simplex algorithm
associates the estimate x of the multiplier of the affine constraint, obtained
by expressing that the Lagrangian

L(x, λ, s) = −b · λ+ x · (c+A>λ− s) = c · x+ λ · (Ax− b)− s · x

has zero partial derivatives with respect to basic variables, i.e., Ax = b and
xN = 0. In other words, x is the (primal, not necessarily feasible) basic
solution of ABxB = b. The reduced gradient with respect to the nonbasic
variables sB is nothing but −xB . So the entering variable may be the most
negative component of xB .

The next step is to compute the direction of move of basic variables when
(nonbasic) component i ∈ B enters the basis. We have to solve in (dλ, ds

N )
the equations A>dλ = ds

N + ei, where here we identify ds
N and its extension

by zero over R
n, and ei is the ith basis vector in R

n. For that, compute first
dλ solution of A>

Bd
λ = ei, from which ds

N = A>
Nd

λ follows. The algorithm
performs then the greatest move in direction (dλ, ds

N ); it stops when the
primal estimate is feasible.

We see that, as for the primal simplex method, the main operations are the
factorization and the update of the (primal) basis matrix AB , and that the
dual simplex method can be interpreted as computing a sequence of “non
feasible basic points”, and trying to reduce the primal infeasibility while
keeping dual feasibility.

19.4 Comments

The (small) part of Lagrangian duality theory exposed here, also called min-
max duality, was developed by Von Neumann (see von Neumann and Morgen-
stein [274]). Another approach, based on perturbations of the optimization
problem can be found in Rockafellar [309] and Ekeland and Temam [117].
Bonnans and Shapiro [50] give an overview of some generalizations of linear
programming to infinite dimensional spaces.

The simplex algorithm is due to Dantzig [94]. Often, A is sparse, and
a sparse LU decomposition (Gauss method) of the basis matrix is used to
compute λ and dB . The operation of updating the factors from one iteration
to the next one is called pivoting. As only one column is changed at each
iteration, this can be done in O(p2) operations (compared to O(p3) for the
factorization). A whole literature is devoted to this subject (Reid [304]).

The process of updating the LU factors of the basis has two shortcomings:
an increase of the memory requirement to store the factorization of the basis
matrix, and a degradation of their numerical stability. After some tens or
hundreds of pivotings, it may therefore become necessary to re-factorize the
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basis matrix. It is important to control at each iteration the accuracy of the
direction and multipliers, in order to re-factor at appropriate times.

Most softwares perform their computations with floating-point numbers,
of length apriori fixed in the computer. In these conditions, everything can
happen! In particular, a certain basic variable (other than the one exiting the
basis) may take a slightly negative value. To remedy this situation, one can
either decide to get this variable off the basis, or to continue the algorithm,
after including in the objective a penalty term of the negative part of the
basic variables.

A natural extension of the simplex algorithm to quadratic problems, or
more generally linearly constrained problems, is the reduced-gradient method
(Luenberger [239]), which partitions the variables in three sets: a basis, guar-
anteeing satisfaction of the linear constraints, the variables called nonbasic,
stuck to their bound, and the remaining variables, called superbasic. Just as
the simplex method, this type of algorithm has the advantage of factoring the
basis matrix only, and the drawback of requiring many iterations, in order
to identify the active constraints at the optimum. In applications, one may
have to solve a sequence of optimization problems slightly different from each
other: such is the case, for example, in the study of the sensitivity of the so-
lution with respect to a small variation of the data. Then, reduced-gradient
methods can be very efficient.



20 Linear Monotone Complementarity

and Associated Vector Fields

Overview

We develop the theoretical tools necessary for the algorithms to follow. The
logarithmic penalty technique allows the introduction of the central path.
In the case of linear or quadratic optimization, the optimality system and
the central path are suitably cast into the framework of linear monotone
complementarity problems.

The analysis of linear monotone complementarity problems starts with
some results of global nature, involving the partition of variables, standard
and canonical forms. Then comes a discussion on the magnitude of the vari-
ables in a neighborhood of the central path. We introduce two families of
vector fields associated with the central path: the affine and centralization
directions. The magnitude of the components of these fields are analyzed in
detail. We also discuss the convergence of the differential system obtained by
a convex combination of the affine and centralization directions.

Since the results stated here are motivated by the analysis of algorithms
presented afterwards, a quick reading is sufficient for a first step. Besides,
a large part of the technical difficulties are due to the modified field the-
ory, useful for problems without strict complementarity. A reader interested
mainly by linear optimization (where strict complementarity always holds)
can therefore skip this part.

20.1 Logarithmic Penalty and Central Path

20.1.1 Logarithmic Penalty

We call logarithmic potential the strictly convex function

π(x) := −
n∑

i=1

logxi

defined on {x ∈ R
n; x > 0}. Consider the linearly constrained minimization

problem
Min

x
f(x); Ax = b, x ≥ 0, (P )
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with f : R
n → R convex and C1, and A a p × n matrix of rank p. When

f(x) = c>x+ 1
2x

>Hx, we find again a quadratic program in standard form.
The problem with logarithmic penalty associated with (P ) is

Min
x
f(x) + µπ(x); Ax = b, x > 0, (Pµ)

where µ > 0 is the penalty parameter. Under certain assumptions (not spec-
ified here), problem (Pµ) can be shown to have a unique solution, which
converges to a solution of (P ) when µ ↓ 0. Solving approximately a sequence
of problems (Pµ), with µ ↓ 0, therefore yields a means of solving (P ) approx-
imately.

20.1.2 Central Path

Since (Pµ) is a linearly constrained convex problem, x solves (Pµ) iff
there exists λ ∈ R

p such that (x, λ) solves the first-order optimality system
{
∇f(x)− µx−1 +A>λ = 0,
Ax = b, x > 0,

(20.1)

with x−1 := (x−1
1 , · · · , x−1

n )>. Set s := µx−1, then xs = µ1 and the optimal-
ity system is equivalent to





xs = µ1,
∇f(x) +A>λ = s,
Ax = b,
x ≥ 0, s ≥ 0.

(20.2)

For µ = 0 we obtain the optimality system associated with (P ). Note that
π(x) is strictly convex: (Pµ) has therefore one solution xµ at most. The so-
lution set of (20.2) has the form (xµ, sµ, λµ) with sµ = µ(xµ)−1. Moreover A
has rank p, is therefore onto and N (A>) = R(A)⊥ = {0}, so (20.2) defines
λµ in a unique way.

In the sequel, our analysis will involve (xµ, sµ). A way of eliminating λ
consists in noting that the second relation of (20.2) is equivalent to

∇f(x) − s ∈ R(A>) = N (A)⊥.

Since A has rank p, N (A) has dimension n − p. Let M be an n × (n − p)
matrix, whose columns form a basis of N (A); then

∇f(x)− s ∈ R(A>)⇔M>(∇f(x)− s) = 0.

Relation (20.2) is therefore equivalent to




xs = µ1,
M>(∇f(x) − s) = 0,
Ax = b,
x ≥ 0, s ≥ 0.

(20.3)
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Note that, in the case of a quadratic objective, the second relation of
(20.2) writes c+Hx+A>λ = s. Then (20.3) reduces to





xs = µ1,
M>(c+Hx− s) = 0,
Ax = b,
x ≥ 0, s ≥ 0.

(20.4)

The lemma below makes precise to which extent a solution of (20.3) ap-
proximates a solution of the associated minimization problem.

Lemma 20.1. If (x, s) solves (20.3), then f(x) ≤ v(P )+nµ. More generally,
if (x, s) only satisfies the last three relations of (20.3), then f(x) ≤ v(P ) +
x>s.

Proof. The dual problem of (P ) is written in terms of the Lagrangian

Max
λ

s≥0

inf
x
f(x) + λ>(Ax− b)− s>x. (D)

This Lagrangian is convex, it is minimal when ∇f(x) +A>λ = s, a relation
satisfied by any triple (x, s, λ) for which the last three relations of (20.3) hold;
so

f(x) + (λ)>(Ax − b)− (s)>x ≤ v(D) ≤ v(P ).

Since Ax − b = 0, we have that f(x) − v(P ) ≤ x>s. If, in addition, the first
relation of (20.3) is satisfied, then x>s = nµ, and the conclusion follows.

We call primal central path (resp. primal-dual, dual), the set of primal
(resp. primal-dual, dual) solutions xµ (resp. (xµ, sµ), sµ) to (20.3).

In figure 20.1 we represent the primal central path for the problem of
minimizing x2 + εx1 subject to x1 ∈ [0, 1] and x2 ≥ 0, both for ε = 0 (half-
line x1 = 1/2 and x2 ≥ 0) and for ε = 0.04. When ε > 0 the primal central
path converges to the point (0, 0). Therefore, when ε > 0 is small, there
is a sharp turn close to the point ( 1

2 , 0). We will see that efficient (central)
path-following algorithms exist, despite the existence of such sharp turns.

20.2 Linear Monotone Complementarity

We introduce a structure generalizing optimality systems of quadratic prob-
lems. It will ease our study of the algorithms to come.
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Central Path

Fig. 20.1. A central path with sharp turn

20.2.1 General Framework

We call linear complementarity problem the following set of relations:



xs = 0,
Qx+Rs = h,
x ≥ 0, s ≥ 0,

(LCP )

with Q and R matrices n×n and h ∈ R
n. The problem is said to be monotone

if
Qu+Rv = 0⇒ u>v ≥ 0.

In what follows, we will always suppose that (Q,R) satisfies this property.
The feasible set of (LCP ) is

F (LCP ) := {x ∈ R
n
+, s ∈ R

n
+; Qx+Rs = h},

and its solution set is

S(LCP ) := {x ∈ F (LCP ); xs = 0}.

We will say that (x, s) is an interior point if (x, s) ∈ F (LCP ), x ∈ R++ and
s ∈ R++.

Let us show that a convex quadratic problem is a particular case of linear
monotone complementarity. Relation (20.4) does include n inequality rela-
tions. Moreover, the associated homogeneous relation
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M>(Hu− v) = 0; Au = 0

is equivalent to (Hu−v ⊥ N (A); Au = 0), hence it implies 0 = u>(Hu−v),
i.e. u>v = u>Hu ≥ 0, and monotonicity follows. Note that in the case
of linear optimization, u and v are orthogonal: indeed u ∈ N (A) and v ∈
R(A>) = N (A)⊥.

Lemma 20.2. The solution set of a linear monotone complementarity prob-
lem is convex.

Proof. Let (x], s]) and (x[, s[) be two solutions, α ∈]0, 1[, and

(x, s) := α(x], s]) + (1− α)(x[, s[).

We have to show (x, s) ∈ S(LCP ). We obtain easily Qx+Rs = h, x ≥ 0 and
s ≥ 0, there remains to show xs = 0. From

Q(x] − x[) +R(s] − s[) = 0,

we deduce (x] − x[)>(s] − s[) ≥ 0, or equivalently

(x])>s[ + (x[)>s] ≤ (x])>s] + (x[)>s[.

Since (x], s]) and (x[, s[) solve (LCP ), the right-hand side is zero. Because
the left-hand side is a sum of nonnegative terms, each term is zero; thus
x]s[ = x[s] = 0. Developing xs and using the expressions of x and s, we do
obtain xs = 0.

The central path for (LCP ) is defined as the set of (x, s) such that, for
some µ > 0, 



xs = µ1,
Qx+Rs = h,
x ≥ 0, s ≥ 0.

It is easy to check that this definition extends the one given previously for
convex optimization problems. We define the proximity or centrality measure
as being

δ(x, s, µ) :=

∥∥∥∥
xs

µ
− 1

∥∥∥∥

where ‖ ‖ is the Euclidean norm. The central path is therefore the set of points
(x, s) feasible for (LCP ), of zero proximity for some µ. The (Euclidean) small
neighborhood of size α > 0 is defined as being

Vα :=

{
(x, s, µ); (x, s) ∈ F (LCP ), µ > 0;

∥∥∥∥
xs

µ
− 1

∥∥∥∥ ≤ α
}
. (20.5)

It is also useful to consider large neighborhoods of the type
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Nε :=

{
(x, s, µ); (x, s) ∈ F (LCP ); µ > 0; ε1 ≤ xs

µ
≤ ε−11

}
, (20.6)

with 0 < ε ≤ 1/2. The next proposition shows that the central path of a
linear complementarity problem can be interpreted as the locus of minima of
the mixed potential

∐
(x, s) := x>s− µ

n∑

i=1

logxisi = x>s+ µπ(x) + µπ(s)

on the interior of the feasible set.

Proposition 20.3. Every point (xµ, sµ, µ) of the central path is the unique
solution of the mixed centralization problem

Min
x,s

∐
(x, s); Qx+Rs = h, x > 0, s > 0.

Proof. a) We claim that the above mixed centralization problem has at least
one solution whenever it is feasible (if not, then obviously the central path
is empty). Indeed, we have that

∐
(x, s) =

∑n
i=1(xisi − µ log(xisi)), while

the function t → t − µ log t is bounded from below, and goes to +∞ when
t ↓ 0 or t ↑ +∞. It is then a simple exercise to prove that a minimizing
sequence (xk, sk) is bounded and none of the components of xk or sk has a
zero limit-point. Therefore, by standard arguments, (xk , sk) has at least one
limit-point, and the latter is solution of the mixed centralization problem.
b) Let (x, s) be solution of the mixed centralization problem. We claim that
xs = µ1. Indeed,there exists λ such that the following optimality system is
satisfied:

∇
∐

(x, s) + (Q R)>λ = 0; Qx+Rs = h, x > 0, s > 0,

and therefore

(∗)
{
s− µx−1 +Q>λ = 0,
x− µs−1 +R>λ = 0.

If λ = 0, we have s = µx−1, i.e. xs = µ1, and we are done. We now show
that λ = 0. Multiplying the first (resp. second) relation of (∗) by d =

√
x/s

(resp. d−1 =
√
s/x) and setting D = diag(d), we get:

√
xs− µ/√xs+DQ>λ = 0√
xs− µ/√xs+D−1R>λ = 0

}
⇒ (QD −RD−1)>λ = 0.

Then it suffices to show that (QD−RD−1) is invertible. Take ū ∈ N (QD−
RD−1). Set u := dū, v := −d−1ū. Then Qu + Rv = 0, hence 0 ≤ u>v =
−‖ū‖2, so ū = 0; the claim follows.
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c) We know that there exists (x̂, ŝ), solution of the mixed centralization prob-
lem, that satisfies x̂ŝ = 1. We end the proof of the lemma by checking that,
if (x, s, µ) satisfies the equation of the central path, then x = x̂ and s = ŝ.
Indeed, we have that

0 ≤ (x̂− x)>(ŝ− s) = 2nµ− x>ŝ− s>x̂,

or equivalently, eliminating ŝ and s from the central path relations,

n∑

i=1

(
xi

x̂i
+
x̂i

xi

)
= 2n.

Since (t, t′)→ t/t′ + t′/t is, if t and t′ are positive, always greater or equal 2,
with equality only if t = t′, we deduce that x = x̂, and hence, s = ŝ.

Remark 20.4. Solving a linear complementarity problem amounts to solving
the quadratic problem

Min
x,s

x>s; Qx+Rs = h, x ≥ 0, s ≥ 0.

The potential
∐

is interpreted as the objective with logarithmic penalty
associated with the above problem.

Remark 20.5. If a linear complementarity problem corresponds to the op-
timality conditions of the quadratic problem

Min c>x+ 1
2x

>Hx; x = b; x ≥ 0,

then from Remark 19.15,

∐
(x, s) = c>x+ 1

2x
>Hx− (−b>λ− 1

2x
>Hx) + µπ(x) + µπ(s)

(
c>x+ 1

2x
>Hx+ µπ(x)

)
+
(
b>λ+ 1

2x
>Hx+ µπ(s)

)

is interpreted as the difference between the primal and dual objective with
logarithmic penalty. In the linear case (H = 0), the primal and dual penalized
objectives are uncoupled.

20.2.2 A Group of Transformations

Let M be an invertible matrix. Clearly, (LCP ) is not changed if it is rewritten
as 




xs = 0,
MQx+MRs = Mh,

x, s ≥ 0.
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Nothing is changed either when permuting rows (same permutation applied
to the rows of Q and R, and to the components of h) or columns (same
permutation applied to the columns of Q and R, and to the components
of x and s). Let us introduce another family of transformations, consisting
in permuting some components of x and s. More precisely, let (I, J) be a
partition of {1, · · · , n}. We study the mapping (x, s) → (x′, s′), defined by
permuting the components of x and s indexed in J ; said otherwise,

x′I = xI , x
′
J = sJ ; s′I = sI , s

′
J = xJ .

Partition Q and R according to their columns in QI , QJ and RI , RJ , so that

Qx = QIxI +QJxJ ; Rs = RIsI +RJsJ .

Let Q′ and R′ be two n× n matrices, defined by the relation

Q′x′ = QIx
′
I +RJx

′
J ; R′s′ = RIs

′
I +QJs

′
J .

Consider the problem 



x′s′ = 0,
Q′x′ +R′s′ = h,

x′, s′ ≥ 0.
(LCP ′)

Then (LCP ′) is the image of (LCP ) under the above component permu-
tation, in the sense that (x, s) is feasible (resp. solution) of (LCP ) iff its image
is feasible (resp. solution) for (LCP ′). Besides, the small and large neighbor-
hoods of the central path (LCP ′) are the images of the neighborhood of size
α > 0 of (LCP ).

On the set of linear monotone complementarity problems of dimension n,
parameterized by (Q,R, h), consider the transformations obtained by per-
muting rows, columns, component-exchanges of x and s, and constraint-
composition by an invertible matrix. These transformations form a group,
which we will denote by T .

In Chapter 21, we study algorithm families that are invariant under this
type of transformation: more precisely, the algorithms applied to one form
or the other generate directions of move and sequences of points which are
invariant. These algorithms are therefore invariants of the group, and they
can be seen as defined on equivalence classes of the group (sets of problems
in mutual correspondence through a transformation).

20.2.3 Standard Form

The standard form of a linear complementarity problem (which has nothing
to do with the standard form of linear constraints) is defined as follows:





xs = 0,
s = Mx+ q,

x, s ≥ 0.
(SLCP )
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We will say that a transformation τ ∈ T reduces an (LCP ) problem in
standard form if the image of (LCP ) by τ is in standard form. We will check
that any problem of the type (LCP ) can be reduced to standard form.

Lemma 20.6. With any problem of the type (LCP ) is associated a transfor-
mation τ ∈ T which reduces this problem to standard form.

Proof. If R is invertible, reducing (LCP ) to standard form is done by taking
M := −R−1Q and q := R−1h. To obtain the conclusion, it therefore suffices
to prove that appropriate transformations in T can make R invertible.

Let r be the rank of Q. Reordering row and columns if necessary, Q can
be factored to Q = LU , with L invertible and U made as follows: its last
n− r rows are identically zero, and its r first contain an invertible block U1

of size r × r:
Q = L

(
U1 U2

0 0

)
.

Set D := L−1R. We denote by u1 and u2 the first r and last n−r components
of u, and likewise for v. The relation Qu+Rv = 0 is equivalent to:

{
U1u

1 + U2u
2 + D11v

1 + D12v
2 = 0,

D21v
1 + D22v

2 = 0,

where D has been partitioned in blocks. Let us check that D22 is invertible.
Take arbitrary v1 = 0, v2 in N (D22), and u2 = −v2. Since U1 is invertible,
there exists u1 such that Qu + Rv = 0. The monotonicity relation gives
0 ≤ u>v = −‖v2‖2, hence v2 = 0. Because the square matrixD22 is invertible,
the relation Qu+Rv = 0 is equivalent to

(
u1

v2

)
= −

(
U1 D12

0 D22

)−1(
U2u

2 +D11v
1

D21v
1

)
.

Taking the new s as (x1, s2), the result is obtained.

If an algorithm is invariant with respect to the transformations of T , its
study can therefore be limited to the standard form.

20.2.4 Partition of Variables and Canonical Form

We now introduce the notion of optimal partition for a monotone linear
complementarity problem.

Lemma 20.7. If S(LCP ) 6= ∅, then there exists a partition (B,N, T ) of
{1, · · · , n} such that, for all (x, s) ∈ S(LCP ), the following holds:

xi = 0, i ∈ N ∪ T , and sj = 0, j ∈ B ∪ T .
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In addition, there exists (x̄, s̄) ∈ S(LCP ) such that x̄B > 0 and s̄N > 0.

Proof. Define (B,N, T ) by

B := {i ∈ {1, · · · , n}; ∃(x, s) ∈ S(LCP ); xi > 0},
N := {j ∈ {1, · · · , n}; ∃(x, s) ∈ S(LCP ); sj > 0},
T := {1, · · · , n}\(B ∪N).

With each i ∈ B is associated (xi, si) ∈ S(LCP ) such that xi
i > 0. With

each j ∈ N is associated likewise (xj , sj) ∈ S(LCP ) such that sj
j > 0. Since

S(LCP ) is convex (Lemma 20.2), it contains the point

(x̄, s̄) :=
1

|B|+ |N |



∑

i∈B

(xi, si) +
∑

j∈N

(xj , sj)


 .

This point satisfies x̄B > 0 and s̄N > 0. From x̄s̄ = 0 we deduce B ∩N = ∅,
which implies that (B,N, T ) is a partition of {1, · · · , n}. If (x, s) ∈ S(LCP ),
we have by definition of B, N and T , that xi = 0, i /∈ B, and sj = 0, j /∈ N ;
the result follows.

We will say that the problem is in canonical form if N = ∅. A permutation
of components of x and s in N can reduce the problem to this form. Note
that a problem in canonical form need not be in standard form!

We say that (LCP ) satisfies the strict complementarity assumption if
T = ∅. In view or Lemma 20.7, this is equivalent to the existence of a strictly
complementary solution, i.e. an (x̄, s̄) ∈ S(LCP ) such that x̄i > 0 or s̄i > 0,
for all i ∈ {1, · · · , n}, or also x̄ + s̄ > 0. In the case of linear optimization,
this hypothesis always holds (Goldman-Tucker Theorem 19.16).

20.2.5 Magnitudes in a Neighborhood of the Central Path

Let us start with a compactness result. Recall that (x, s) is an interior point
of (LCP ) when (x, s) ∈ F (LCP ), x > 0 and s > 0.

Theorem 20.8. Suppose (LCP ) has an interior point. Then
(i) for all η ≥ 0, the set {(x, s) ∈ F (LCP ); x>s ≤ η} is bounded;
(ii) S(LCP ) is nonempty and bounded.

Proof. (i) Call (x̂, ŝ) the interior point, and

β := min{x̂i, ŝj , 1 ≤ i, j ≤ n}.

If (x, s) ∈ F (LCP ), we deduce from (x − x̂)>(s− ŝ) ≥ 0 that
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β




n∑

i=1

xi +
n∑

j=1

sj


 ≤ x̂>s+ ŝ>x ≤ x>s+ x̂>ŝ.

But x ≥ 0 and s ≥ 0, and hence, the set {(x, s) ∈ F (LCP ); x>s ≤ η} is
bounded.
(ii) Taking η = 0, it follows from (i) that S(LCP ) is bounded. Let us show
that it is nonempty. Set

µ̄ := inf{µ ≥ 0; ∃(x, s) ∈ F (LCP ); xs = µx̂ŝ}.

Then 0 ≤ µ̄ ≤ 1, since from µ̄ = 1, the point (x̂, ŝ) lies in the above set. From
(i), if µk ↓ µ̄ and (xk, sk) ∈ F (LCP ) satisfies xksk = µkx̂ŝ, then (xk , sk)
is bounded, and therefore has a cluster point (x̄, s̄) ∈ F (LCP ) satisfying
x̄s̄ = µ̄x̂ŝ.

If µ̄ = 0, then x̄s̄ = 0, hence (x̄, s̄) ∈ S(LCP ). To show nonemptiness
of S(LCP ) it therefore suffices to check that µ̄ cannot be positive. If so, we
would have x̄ > 0 and s̄ > 0. Apply the implicit function theorem to the
system {

xs = µx̂ŝ,
Qx+Rs = h.

Its Jacobian with respect to (x, s) is invertible. Indeed, let (u, v) be a nonzero
element of the kernel: {

su+ xv = 0,
Qu+Rv = 0.

Dividing the first relation by
√
xs, and because (u, v) 6= 0, it follows that

0 =

∥∥∥∥
√
s

x
u+

√
x

s
v

∥∥∥∥
2

> 2

(√
s

x
u

)>(√
x

s
v

)
= 2u>v;

this contradicts the monotonicity property implied by the second relation.
The implicit function theorem thus allows the local expression of (x, s) as a
function of µ. In particular, the system has a solution in F (LCP ) for µ-values
smaller than µ̄, which is a contradiction.

We will say that η ≈ δ, where η and δ are two scalars, when η = O(δ) and
δ = O(η). If x ∈ R

n, we will say that x ≈ δ when xi ≈ δ, for all i ∈ {1, · · · , n}.
The estimates of order of magnitude are understood for µ close to 0. If y is
a vector, O(y) means O(‖y‖).

Lemma 20.9. Suppose that (LCP ) (in canonical form: N = ∅) has an inte-
rior point. Let ε > 0. If (x, s, µ) ∈ Nε, then

xB ≈ 1, sB ≈ µ, xT ≈
√
µ, sT ≈

√
µ.
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Proof. From Theorem20.8 and Lemma20.7, there exists (x̄, s̄) ∈ S(LCP )
with x̄B > 0. Let (x, s) ∈ Nε; then (x − x̄)>(s − s̄) ≥ 0. Since x̄T and s̄ are
zero, we deduce x̄>BsB ≤ x>s ≤ ε−1nµ. Since x̄B > 0, this implies sB = O(µ).
But xs ≈ µ by definition of Nε, and x = O(1) by Theorem20.8, hence xB ≈ 1
and sB ≈ µ.

There remains to show that xT ≈ √µ and sT ≈ √µ. From Theorem20.8,
there exists (x̄, s̄) ∈ S(LCP ). Then, since N = ∅,

QBxB +QTxT +Rs = h = QBx̄B ,

hence
QTxT +Rs ∈ R(QB).

Set η := ‖xT ‖ + ‖s‖. If η = O(
√
µ), then xT = O(

√
µ) and sT = O(

√
µ).

Since xT sT ≈ µ, the conclusion follows.
Otherwise, since xT sT ≈ µ, we have that the upper limit of {η/√µ},

when µ ↓ 0, is +∞, the supremum being attained when µ → 0. Let (uT , v)
be a cluster point of η−1(xT , s) corresponding to a sequence µk ↓ 0 such
that lim ηk/µk = +∞. Then (uT , v) 6= 0 and sB ≈ µ implies vB = 0, hence
(uT , vT ) 6= 0. Passing to the limit in the relation

η−1(QTxT +Rs) ∈ R(QB),

and since R(QB) is closed, we obtain the relation

QTuT +Rv = −QuB

for a certain uB . Let u be the vector formed by uB and uT . Let us show
that (x̄ε, s̄ε) := (x̄, s̄) + ε(u, v) ∈ S(LCP ) if ε > 0 is small. Since (uT , v)
is nonnegative, this point lies in R

n
+ × R

n
+ (for ε > 0 small enough) and

it satisfies the linear constraints. Moreover, s̄ε
B = 0. Finally, if i ∈ T , then

ui > 0 ⇒ vi = 0 (because xT sT ≈ µ and lim ηk/
√
µk = ∞); the converse is

also true, therefore uT vT = 0, so

x̄εs̄ε = ε(x̄+ εu)v = 0.

We have shown (x̄ε, s̄ε) ∈ S(LCP ). However, (x̄ε
T , s̄

ε
T ) = ε2(uT , vT ) 6= 0,

which contradicts the definition of T .

20.3 Vector Fields Associated with the Central Path

In what follows, we study algorithms solving the central path equations by
Newton’s method. We analyze here the vector fields associated with the dis-
placements in Newton’s method.
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20.3.1 General Framework

Let us analyze the directions obtained by linearizing the central path equation
at a point (x, s, µ) of R

n
++ × R

n
++ × R++:

{
xs = µ1,
Qx+Rs = h.

Said otherwise, let us compute the displacement used in Newton’s method.
We will call

w := (x, s, µ)

the current point, supposed feasible. We aim at a new value of µ with value
γµ, γ ∈ [0, 1]. Denoting by (u, v) the displacement, the linearization at
(x, s) ∈ F (LCP ) writes:

{
su+ xv = γµ1− xs,
Qu+Rs = 0.

(20.7)

We will speak of centralization direction when we aim at the same µ (then
γ = 1) and of affine direction when γ = 0 (maximal reduction of µ). These
directions are therefore defined by

{
suc + xvc = µ1− xs,
Quc +Rvc = 0,

{
sua + xva = −xs,
Qua +Rva = 0.

We note the relation {
u = γuc + (1− γ)ua,
v = γvc + (1− γ)va.

20.3.2 Scaling the Problem

In the remainder of this chapter, except otherwise stated, we use the canonical
form N = ∅. We assume (x, s) ∈ Nε. Set

d :=

√
x

s
; φ :=

√
xs

µ
.

Note that dB ≈ 1/
√
µ and dT ≈ 1 (Lemma 20.9) and φ ≈ 1 (φ = 1 on

the central path). We scale the problem by multiplying the first equation of
(20.7) by 1/

√
xs, hence

{
d−1u+ dv =

√
µ(γφ−1 − φ),

Qu+Rv = 0.
(20.8)

Set D = diag(d). The first equation suggests to consider the change of vari-
ables

ū := d−1u, v̄ := dv, Q̄ := QD, R̄ := RD−1, (20.9)
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which corresponds to a change of variables in the (x, s)-space, mapping the
current points x and s onto the same image

x̄ = d−1x =
√
xs = ds = s̄.

We obtain the scaled equations

{
ū+ v̄ =

√
µ(γφ−1 − φ),

Q̄ū+ R̄v̄ = 0,
(20.10)

and ū>v̄ ≥ 0 when ū, v̄ satisfies the second relation of (20.10). This for-
mulation allows a first estimate of the magnitude of the components of the
directions:

Lemma 20.10. Let (x, s, µ) ∈ Nε. The solution of equation (20.10) satisfies

ū = O(
√
µ); uB = O(1); uT = O(

√
µ);

v̄ = O(
√
µ); vB = O(µ); vT = O(

√
µ).

Proof. From (20.10), we deduce

‖ū‖2 + ‖v̄‖2 + 2ū>v̄ = µ‖γφ−1 − φ‖2 = O(µ).

Since ū>v̄ = u>v ≥ 0, it follows ‖ū‖ = O(
√
µ) and ‖v̄‖ = O(

√
µ). Using

dB ≈ 1/
√
µ and dT ≈ 1, as well as u = dū and v = d−1v̄, we obtain the

conclusion.

20.3.3 Analysis of the Directions

The following lemmas will be useful in the asymptotic analysis of the algo-
rithms, and will allow an accurate analysis of the affine direction. First, let
us show that the move of the large variables is interpreted as perturbing a
certain projection. This requires a preliminary lemma.

Lemma 20.11. If (u, v) is such that Qu + Rv = 0, then v ∈ N (Q)⊥ =
R(Q>). Moreover, QB denoting the columns of Q indexed in B:

vB ∈ N (QB)⊥ = R(Q>
B).

Proof. Take u′ ∈ N (Q). Then Q(u+u′)+Rv = 0, hence (u+u′)>v ≥ 0. Since
u′ is arbitrary in N (Q), this implies v>u′ = 0, i.e. v ∈ N (Q)⊥ = R(Q>).
In particular, let u′B be arbitrary in N (QB). Set u′T = 0. Then 0 = v>u′ =
v>Bu

′
B , hence vB ∈ N (QB)⊥ = R(Q>

B).
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Define PA,qx to be the solution of the projection problem

Min
z
‖z − x‖2; Az + q = 0,

and set PAx := PA,0x. It is easily checked (for example by writing the opti-
mality system of the projection problem) that

PA,qx = PAx+ PA,q0.

Lemma 20.12. Let (x, s, µ) ∈ Nε and (u, v) solve (20.10). Set z := Rv +
QTuT . Then

ūB = PQ̄B ,z(γ
√
µφ−1

B ) = γ
√
µPQ̄B

φ−1
B + PQ̄B ,z0, (20.11)

uB = γ
√
µdBPQ̄B

φ−1
B +O(

√
µ) = O(γ) +O(

√
µ). (20.12)

If, in addition, T = ∅, then

u = γ
√
µdPQ̄φ

−1 +O(µ) = O(γ) +O(µ). (20.13)

In particular, ua = O(µ) if T = ∅, and ua = O(
√
µ) in the general case.

Proof. The optimality conditions of the least-square problem

Min
ūB

1
2‖ūB − γ

√
µφ−1

B ‖2; Q̄BūB + z = 0, (∗)

are
ūB − γ

√
µφ−1

B ∈ R(Q̄>
B); Q̄BūB + z = 0.

The second relation is obviously satisfied. In order to check the first one, note
that from (20.10),

ūB − γ
√
µφ−1

B = −√µφB − v̄B .

By the previous lemma, vB ∈ R(Q>
B); therefore v̄B ∈ R(Q̄>

B). Moreover,
let (x∗, s∗) ∈ S(LCP ). Then 0 = Q(x − x∗) + R(s − s∗), hence R(Q>

B) 3
(s− s∗)B = sB . It follows φB = dBsB/µ ∈ R(Q̄>

B). Problem (∗) is therefore
solved by ūB , and (20.11) follows.

Now let us show that dBPQ̄B ,z0 = O(‖z‖). Indeed, let Q−
B be a right

inverse of QB: a linear mapping from R(QB) to R
n such that QBQ

−
By = y,

∀ y ∈ R(QB). Then Q̄B(D−1
B Q−

Bz) = z, hence

‖PQ̄B ,z0‖ ≤ ‖ −D−1
B Q−

Bz‖ ≤ ‖D−1
B ‖‖Q−

B‖‖z‖ = O(
√
µ‖z‖). (∗∗)

Since dB = O(1/
√
µ), we do have dBPQ̄B ,z0 = O(‖z‖). Combining with

(20.11), we obtain

uB = dB ūB = γ
√
µdBPQ̄B

φ−1
B +O(‖z‖).

The conclusion is obtained by noting that, from Lemma 20.10, z = Rv = O(µ)
if T = ∅, and z = Rv +QTuT = O(

√
µ) otherwise.



386 20 Linear Monotone Complementarity and Associated Vector Fields

Lemma 20.13. Take (x, s, µ) ∈ Nε and let (x∗, s∗) be the element of S(LCP )
closest to (x, s) (for the Euclidean norm). Then

(x∗, s∗) = (x, s) +O(
√
µ). (20.14)

If strict complementarity holds, then

(x∗, s∗) = (x, s) +O(µ). (20.15)

Proof. One can check that, for µ small enough, the projection of (x, s) onto
S(LCP ) coincides with the projection onto

V := {(x, s) ∈ R
n; xT = 0; s = 0; Qx = h}.

Indeed, let (x∗, s∗) be the projection of (x, s) onto V . Then the amount

(x∗, s∗)− (x, s) = O(‖xT ‖+ ‖s‖) (∗)

converges towards 0 when µ ↓ 0, while xB ≈ 1; hence x∗B ≈ 1, which allows
to check (x∗, s∗) ∈ S(LCP ). Because S(LCP ) ⊂ V it is clear that (x∗, s∗)
is the projection of (x, s) onto S(LCP ). The conclusion is deduced from (∗)
and from Lemma20.9.

The next theorem estimates the result of an affine move.

Theorem 20.14. Let (x, s, µ) ∈ Nε. Then
(i) If strict complementarity holds, then

s+ va = O(µ2). (20.16)

(ii) If, on the contrary, T 6= ∅, then

sB + va
B = O(µ3/2) (20.17)

and
xT + 2ua

T = O(µ3/4); sT + 2va
T = O(µ3/4). (20.18)

Proof. From the affine step equation, we deduce s+ va = −sx−1ua. Combin-
ing with Lemma20.9, it follows that sB + va

B = O(µ‖ua‖). We then obtain
(20.16)–(20.17) with Lemma20.12.

Now let us establish (20.18). Call (xI , sI) the point obtained after a move
twice as long as the affine direction:

xI := x+ 2ua; sI := s+ 2va.

Let (x∗, s∗) be the point of S(LCP ) closest to (x, s). Then, from Lem-
mas 20.10, 20.12 and 20.13,
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‖(x∗, s∗)− (xI , sI)‖ ≤ ‖(x∗, s∗)− (x, s)‖+ 2‖(ua, va)‖ = O(
√
µ).

But Q(xI − x∗) +RsI = 0, hence (xI − x∗)>sI ≥ 0, i.e.

(xI
T )>(sI

T ) ≥ (x∗B − xI
B)>sI

B = O(µ3/2). (∗)

Now

d−1xI + dsI = d−1x+ ds+ 2(d−1ua + dva) = 2
√
xs− 2

√
xs = 0.

As a result, for all i ∈ {1, · · · , n} we have

0 = (d−1
i xI

i + dis
I
i )

2 ≥ 2xI
i s

I
i , (∗∗)

and the relation 0 ≥ xI
i s

I
i ≥ (xI

T )>(sI
T ) ≥ O(µ3/2), for all i ∈ T , follows from

(∗). Combining with (∗∗), we have for all i ∈ T

(d−1
i xI

i )
2 + (dis

I
i )

2 = −2xI
i s

I
i = O(µ3/2).

Since dT ≈ 1, we deduce (xI
i )

2 +(sI
i )

2 = O(µ3/2), and the conclusion follows.

Remark 20.15. The affine move does not preserve positivity of variables in
general: (x+ ua)(s+ va) = uava has no reason to be positive.

20.3.4 Modified Field

Theorem20.14 shows that, if T is empty, the affine move yields a new point
very close to S(LCP ). In fact, take again the proof of Lemma20.13: we see
that the estimate of the distance to S(LCP ) passes from O(µ) to O(‖s +
va‖) = O(µ2). On the other hand, if T 6= ∅, the estimate of the distance
remains

√
µ: this is due to the components of x and s in T which, because

(xT , sT ) ≈ √µ, are roughly divided by 2 (for small µ). We will see how to
construct a modified field which, added to the affine field, yields a point closer
to S(LCP ). This field uses explicitly the set T , which is of course unknown.
Let us check that it is possible to construct an estimate of T , which is exact
for µ small enough. The following lemma does not require N = ∅.

Lemma 20.16. (i) For (x, s, µ) ∈ Nε and µ ↓ 0, we have

ua
i /xi → 0 and va

i /si → −1, ∀i ∈ B,
ua

i /xi → −1 and va
i /si → 0, ∀i ∈ N,

ua
i /xi → −1/2 and va

i /si → −1/2, ∀i ∈ T.

(ii) Let T̂ (x, s, µ) be the estimate of T defined as follows:

T̂ (x, s, µ) :=
{
i = 1, · · · , n; ua

i /xi ∈
[
− 3

4 ,− 1
4

]
and va

i /si ∈
[
− 3

4 ,− 1
4

]}
.

Then T̂ (x, s, µ) = T if (x, s, µ) ∈ Nε and µ is small enough.
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Proof. It suffices to consider the case N = ∅, T 6= ∅. Combining Lem-
mas 20.9, 20.12 and Theorem20.14, we get

xB ≈ 1 and ua
B = O(

√
µ) ⇒ ua

B/xB = O(
√
µ),

sB ≈ µ and sB + va
B = O(µ3/2) ⇒ va

B/sB = −1 +O(
√
µ),

xT ≈
√
µ and xT + 2ua

T = O(µ3/4) ⇒ ua
T /xT = − 1

2 +O(µ1/4),

and an estimate similar to the last one holds for va
T /sT , hence (i); as for (ii),

it is an immediate consequence of (i).

For M ⊂ {1, · · · , n}, let us introduce the modified field (uM , vM ) defined
as solving {

suM + xvM = −xMsM ,
QuM +RvM = 0.

Here xM (resp. sM ) is the extension to R
n of the restriction of x (resp. s) to

M ; said otherwise

(xM )i = (sM )i = 0, i 6∈M ; (xM )i = xi, (sM )i = si, i ∈M.

If M = ∅, then xM = sM = 0 and the modified field is zero. In the general
case, we will see that, when M = T , then (uM

T , vM
T ) is close to − 1

2 (xT , sT ),
while uM

B and vM
B are small enough to guarantee that the sum of the affine

and modified fields yield a move substantially closer to S(LCP ).

Theorem 20.17. Let (x, s, µ) ∈ Nε and suppose M = T . Then
(i) the modified field has the following magnitude:

uM
B = O(

√
µ), vM

B = O(µ3/2), uM
T = O(

√
µ), vM

T = O(
√
µ);

(ii) there holds that

xT + 2uM
T = O(µ3/4); sT + 2vM

T = O(µ3/4).

Proof. Set ūM := d−1uM and s̄M := dvM . Proceeding as in the proof of
Lemma 20.10, we first check that

ūM = O(
√
µ); uB = O(1); uT = O(

√
µ);

v̄M = O(
√
µ); vB = O(µ); vT = O(

√
µ).

For M = T , we have with Lemma20.11

ūM
B = −v̄M

B ∈ DBR(Q>
B) = R(Q̄>

B).

Using the technique of proof of Lemma 20.10, we deduce that ūB = PQ̄B ,zM 0,

where zM := QTu
M
T + RvM = O(

√
µ), and that ‖uM

B ‖ = ‖dBū
M
B ‖ =

O(
√
µ). Finally, from (suM + xvM )B = 0 we deduce with Lemma 20.10
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vM
B = −sBu

M
B /xB = O(µ3/2); (i) follows. To prove (ii), we follow the proof

of Theorem20.14. Set

xI := x+ 2uM ; sI := s+ 2vM ,

and let (x∗, s∗) be the point of S(LCP ) closest to (x, s). By Lemma 20.13,
we have x∗ = x+O(

√
µ). From monotonicity,

0 ≤ (xI − x∗)>(sI − s∗) = (xI − x∗)>sI ,

hence, with (20.14): (xI
T )>sI

T ≥ (x∗B − xI
B)>sI

B ≥ O(µ3/2). Because d−1
T xI

T +
dT s

I
T = 0, we have

‖d−1
T xI

T ‖2 + ‖dT s
I
T ‖2 ≤ −2(xI

T )>sI
T = O(µ3/2).

With dT ≈ 1, we deduce that xI
T and sI

T are of order µ3/4, hence the conclu-
sion.

Combining Theorems20.14 and 20.17, we deduce

Corollary 20.18. Let (x, s, µ) ∈ Nε. The point

(x]], s]]) := (x, s) + (ua, va) + (uM , vM )

satisfies

dist
(
(x]], s]]), S(LCP )

)
= O(µ3/4) and (x]])>s]] = O(µ3/2).

Remark 20.19. The point thus obtained need not be feasible. In Chap. 21,
we will construct algorithms using the modified field, in which the sequence
of points is kept in a neighborhood of the central path. The new µ is then of
order µ5/4 only.

20.4 Continuous Trajectories

20.4.1 Limit Points of Continuous Trajectories

This section is devoted to the differential equations associated with the vector
fields studied previously. We will see that it “suffices” to integrate these dif-
ferential equations to obtain, depending on the value of a control parameter
γ(t), either a point on the central path, or a solution of (LCP ) whose distance
to the central path can be controlled. Of course, the numerical resolution of
the differential equation induces discretization errors which will have to be
coped with, to obtain an implementable algorithm; especially as one is inter-
ested by long steps, so as to converge more rapidly to a solution of (LCP ).
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The whole difficulty of “discretized” algorithms studied below is precisely to
take these various aspects into account. Studying continuous trajectories is
therefore only a first approach, which gives a hint of what can be hoped for
from discrete algorithms.

So we study the differential equation

d

dt
(x, s, µ) = (u(x, s), v(x, s),−(1− γ)µ) ,

where (u(x, s), v(x, s)) solves

{
su+ xv = γµ1− xs,
Qu+Rv = 0,

and γ takes its values in [0, 1], as a function of (x, s, µ, t) (smooth enough
so that the differential equation is well-defined). We will use the notation
γ(t) = γ(x(t), s(t), µ(t), t).

Proposition 20.20. There holds

(xs− µ1)(t) = e−t(xs− µ1)(0),

(
xs

µ
− 1)(t) = e−

R

t
0

γ(σ)dσ(
xs

µ
− 1)(0).

Proof. Using the derivative formulae of (x, s, µ), we obtain

d

dt
(xs− µ1)(t) = xv + su+ (1− γ)µ = −(xs− µ1),

d

dt
(
xs

µ
− 1)(t) = − 1

µ
(xs− µ1)− xs− µ1

µ2

dµ

dt
= −γ(t)(xs

µ
− 1)(t),

and the result follows.

Set

c1 :=

∫ ∞

0

(1− γ(t))dt and c2 :=

∫ ∞

0

γ(t)dt. (20.19)

Corollary 20.21. If c1 < ∞, then µ(t) ↓ µ∞ := e−c1µ(0) and (x(t), s(t))
converges to the point of the central path associated with µ∞. If c1 =∞, then
µ(t) ↓ 0.

The trajectories obtained by integrating the above system when γ = 0
are called affine. When γ = 1 we will speak of the centering trajectory. For
the affine trajectory, we obtain

x(t)s(t) = e−tx(0)s(0) and µ(t) = e−tµ(0).

Let R
B be the vector space spanned by the components in B of the elements

of R
n (RB is isomorphic to R

|B|). The logarithmic potential in R
B is π(xB) :=
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−∑i∈B logxi. We call analytic center of S(LCP ), denoted by (x̄∗, s̄∗), the
point of components s̄∗B = 0, x̄∗T = s̄∗T = 0, and x̄∗B solving

Min
xB>0

π(xB); QBxB = h.

The above problem is convex, with a strictly convex objective; it has at most
one solution, characterized by the optimality system

x̄∗B ∈ R
B
++; QBx̄

∗
B = h; ∇π(x̄∗B) = −(x̄∗B)−1 ∈ R(Q>

B).

More generally, let η ∈ R
n
++ be a weighting vector; the associated weighted

analytic center, solving

Min
xB>0

−
n∑

i∈B

ηi logxi; QBxB = h,

is characterized by

xη
B ∈ R

B
++; QBx

η
B = h; ηB(xη

B)−1 ∈ R(Q>
B).

Theorem 20.22. Let c2 be defined by (20.19). Set

η := e−c2

(
xs

µ
− 1

)
(0) + 1.

Then xB(t) → xη
B, the weighted analytic center associated with η. In partic-

ular, if c2 =∞, then (x(t), s(t)) converges to the analytic center of S(LCP ).

Proof. From Theorem20.8, x(t) is bounded. Take a cluster point x∗ of x(t)
when µ ↓ 0: we know that x∗B > 0 (Lemma 20.9). Let dB ∈ N (QB). Set
d := (dB , dT = 0). Then, for θ > 0 small enough, the point x(θ) := x∗ + θd
lies in S(LCP ) and Q(x − x(θ)) + Rs = 0, hence (x − x(θ))>s ≥ 0. By
Proposition20.20, we have that (xs/µ − 1)(t) → e−c2(xs/µ − 1)(0), and
hence, xs/µ→ η, so that (x∗B)−1η is a cluster point of sB/µ. As a result, for
the subsequence corresponding to this cluster point x∗,

0 ≤ lim (x− x(θ))>s/µ = lim (xB − xB(θ))>sB/µ = θd>(x∗B)−1η.

Since dB is arbitrary in N (QB), we deduce (x∗B)−1η ∈ N (QB)⊥ = R(Q>
B),

hence x∗B = xη
B . If c2 =∞, then η = 1, hence the result.

20.4.2 Developing Affine Trajectories and Directions

The next theorem expresses the development of the small variables and of
the affine field along an affine trajectory. It gives a motivation of the form of
line-search for modified-field algorithms to follow.
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Theorem 20.23. Let (x, s, µ) lie on the affine trajectory of weight y = xs/µ
and with end point (xy, 0, 0); let (ua, va) be the associated affine field. Then
(i) sB = µyB(x̄y

B)−1 + o(µ),
(ii) va

B = −µyB(x̄y
B)−1 + o(µ),

(iii) We have that {
xT =

√
µx̂T + o(

√
µ),

sT =
√
µŝT + o(

√
µ),

where (x̂T , ŝT ) is the unique solution of

x̂T ∈ R
n
++, ŝT ∈ R

N
++; x̂T ŝT = µyT ; QT x̂T +RT ŝT ∈ R(QB). (20.20)

Moreover, set ẑ := QT x̂T +RT ŝT and Q̌ := QBY
−1/2
B X̄y

B. Then

ua
B =

√
µPQ̌,ẑ0 + o(

√
µ).

(iv) If T = ∅, set z̃ := RY (Xy)−1. Then ua = µY −1/2XyPQ̌,z̃0 + o(µ).

Proof. Relation (i) is a consequence of the previous theorem and of the rela-
tion sBxB = µyB ; combined with Theorem20.14, we deduce (ii).

Another consequence of (i) is that

dB =
√
xB/sB = (Y

−1/2
B x̄y

B + o(1))/
√
µ.

Set d̄ :=
√
µxB/sB =

√
µdB and z := Rs+QTxT . Then d̄ = Y

−1/2
B xy

B +o(1).
From Lemma 20.12, we have

ua
B = DBPQBDB ,z0 = D̄PQBD̄,z0 = Y

−1/2
B Xy

BPQBY
−1/2

B X̄y
B ,z

0 + o(‖z‖). (∗)

If T = ∅, then z = Rs = µRYB(xy)−1 + o(µ), hence (iv).
Let us prove (iii). From Lemma 20.9 we know that xT ≈ √µ and sT ≈ √µ,

hence (xT , sT )/
√
µ has at least one cluster point (x̂T , ŝT ) and x̂T > 0, ŝT > 0.

Passing to the limit in

xT√
µ
× sT√

µ
= y; QTxT +RT sT = −QBxB −RBsB ∈ R(QB) +O(µ),

we deduce that (x̂T , ŝT ) satisfies (20.20). There remains to show that the
solution of (20.20) is unique. Let (x̃T , s̃T ) be another solution; there exists
x̂B , x̃B such that, completing the vectors ŝ and s̃ by 0 on sB , we have

Qx̂+Rŝ = 0 = Qx̃+Rs̃,

and therefore Q(x̂ − x̃) + R(x̂ − x̃) = 0, hence (x̂ − x̃)>(ŝ − s̃) ≥ 0. Since
(ŝ− s̃)B = 0, this reduces to (x̂T − x̃T )>(ŝT − s̃T ) ≥ 0. Using x̂ŝ = x̃s̃ = µy,
get x̂>T s̃T + x̃>T ŝT ≤ 2µ‖yT‖1. Substituting s̃T = µy(x̃−1

T ) and ŝT = µyx̂−1
T ,

we obtain
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x̂>T YT x̃
−1
T + x̃>T YT x̂

−1
T ≤ 2

∑

i∈T

yi.

In particular, there exists i ∈ T such that x̂iyi/x̃i + x̃iyi/x̂i ≤ 2yi, hence
x̂i/x̃i + x̃i/x̂i ≤ 2.

Since, for positive α and β, the function (α, β) → α/β+β/α is larger than
2, except if α = β, we deduce recursively that x̂T = x̃T , whence ŝT = s̃T ,
which proves (20.20). Combining with (∗), we obtain the formula for ua

B .

20.4.3 Mizuno’s Lemma

The Lemma below will be used many times.

Lemma 20.24. (Mizuno [259]). Let u and v of R
n be such that u>v ≥ 0.

Then

‖uv‖ ≤ 1√
8
‖u+ v‖2.

Proof. Take β and γ in R. From (β + γ)2 = β2 + 2βγ + γ2 = (β − γ)2 + 4βγ

we deduce βγ ≤ 1

4
(β + γ)2. Besides,

‖uv‖2 =

n∑

i=1

(uivi)
2 ≤

(
∑

uivi>0

uivi

)2

+

(
∑

uivi<0

uivi

)2

.

Since u>v ≥ 0, we have
∣∣∑

uivi<0 uivi

∣∣ ≤∑uivi>0 uivi and therefore

‖uv‖2 ≤ 2

(
∑

uivi>0

uivi

)2

≤ 2

(
∑

uivi>0

1

4
(ui + vi)

2

)2

,

≤ 2

42
(‖u+ v‖2)2 =

(
1√
8
‖u+ v‖2

)2

,

hence the result.

20.5 Comments

With the book by Fiacco and McCormick [122], one can follow the history
of the approach by logarithmic penalty. The first attempts to minimize the
objective with a log-penalty used quasi-Newton methods (for unconstrained
problems), that were available in the sixties. In this approach, it is difficult
to control the accuracy with which the problem with µ fixed must be solved.
Log-penalty methods were then abandoned, to the advantage of augmented
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Lagrangian algorithms (see Bertsekas [25]), and then of Newton-type meth-
ods, applied to the optimality system, that are presented in part III of this
book.

Linear complementarity problems, monotone or not, are discussed in Cot-
tle, Pang and Stone [91]. The asymptotic analysis of points and vector fields
in the large neighborhood is taken mainly from Monteiro and Tsuchiya [263],
Mizuno, Jarre and Stoer [260, 261]. Gonzaga [172] gives a good introduction
to the algorithmic consequences of the central path concept.
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21.1 Overview

Path-following algorithms take as direction of displacement the Newton di-
rection associated with the central-path equation. They use a parameter µ,
measuring the violation of the complementarity conditions. The algorithm’s
complexity is evaluated by the number of operations necessary to compute
a point associated with the target measure µ∞. The measure of the initial
point is µ0, and we set L̄ := log(µ0/µ∞). The predictor-corrector method
performs at each iteration a restoration (centralization) step, followed by an
affine step.

In the case of the small neighborhood, the restoration step reduces by at
least a half the proximity measure, while the affine step reduces by a term
of the order 1/

√
n the optimality measure, thus yielding a convergence in

O(
√
nL̄) iterations. The asymptotic analysis shows that lim supµk+1/µk ≤

1 − α1/2|T |−1/4/2, where T is the set of indices for which strict comple-
mentarity is not satisfied, and α is the size of the neighborhood. Besides,
under the strict complementarity assumption, µk converges quadratically to
0. To obtain superlinear convergence in the general case, the modified field of

Chap. 20 can be used; the algorithm thus obtained satisfies µk+1 = O(µ
5/4
k ).

Then we study a large-neighborhood algorithm. A centralization step of
order 1/n allows a reduction of the optimality measure µ, during the affine
step, of a term of order 1/n. Convergence therefore holds in O(nL) iterations.
The asymptotic analysis is similar to that of the small-neighborhood algo-
rithm: convergence is quadratic under strict complementarity assumption,
and a modification of the algorithm using the modified field allows the state-
ment of an algorithm with the same complexity and superlinear convergence
of order 5/4.

It is worth mentioning that these algorithms are feasible: they assume
the knowledge of a feasible starting point, close to the central path. This
assumption is of course excessive, and we will see later how to cope with it.
This will involve technical complications, and it is preferable to avoid them
in a first step.
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21.2 Statement of the Methods

21.2.1 General Framework for Primal-Dual Algorithms

We consider the framework of the monotone complementarity problem




xs = 0,
Qx+Rs = h,
x ≥ 0, s ≥ 0,

(LCP )

with u>v ≥ 0 if Qu+Rv = 0. Newton’s method applied to the resolution of
the central-path equation

{
xs = γµ1,
Qx+Rs = h,

where γ ∈ [0, 1] is the reduction factor of µ, and the current point is assumed
feasible, is, denoting by (u, v) the displacement:

{
su+ xv = γµ1− xs,
Qu+Rs = 0.

(21.1)

We will use the notation w := (x, s, µ) and θ > 0 will be the step in the
direction (u, v). We choose for the new value of µ the quantity

µ] := (1− θ)µ+ θγµ = µ+ θ(γ − 1)µ = (1− θ + θγ)µ,

so that the new value of µ equals the old one if γ = 1, and equals γµ if θ = 1.
The new point is denoted by

w] := (x], s], µ]),

with
x] := x+ θu; s] := s+ θv .

For γ = 1 (resp. γ = 0), we obtain the centralization (resp. affine) displace-
ment, of equation {

suc + xvc = µ1− xs,
Quc +Rvc = 0,

(21.2)

and {
sua + xva = −xs,
Qua +Rva = 0,

(21.3)

and we denote by wc, wa the centralized and affine points obtained with
θ = 1:

wc : = (xc, sc, µc) = (x + uc, s+ vc, µ),

wa : = (xa, sa, µa) = (x + ua, s+ va, 0).

The formula for µ] can be written as

µ] = (1− θ)µ+ θ(γµc + (1− γ)µa),

so that
w] = (1− θ)w + θ(γwc + (1− γ)wa).
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21.2.2 Weighting After Displacement

The following formulae allow the evaluation of the centralization of the point
obtained after a Newton displacement, independently of the algorithm. We
have

(x+ θu)(s+ θv) = xs+ θ(su+ xv) + θ2uv,

= (1− θ)xs+ θγµ1 + θ2uv,

and therefore

x]s]

µ]
− 1 =

(1− θ)xs + θγµ1 + θ2uv

(1− θ + θγ)µ
− 1 =

1− θ
1− θ + θγ

(
xs

µ
− 1

)
+ θ2

uv

µ]
.

In particular, for the centralization step (γ = 1, µ] = µ), and for the affine
step (γ = 0, µ] = (1− θ)µ), it gives

xcsc

µ
− 1 = (1− θ)

(
xs

µ
− 1

)
+ θ2

ucvc

µ
;

xasa

µ]
− 1 =

xs

µ
− 1 +

θ2

1− θ
uava

µ
.

21.2.3 The Predictor-Corrector Method

The generic predictor-corrector algorithm uses a neighborhood of the central
path G, which can be for example Vα or Nε. It simply consists in alternating
the centralization steps, so as to get closer to the central path, and the affine
steps in which θa is the largest step allowing to stay in G.
Algorithm 21.1. GPC (Generic Predictor-Corrector Algorithm)

Data: µ∞ > 0, (x0, s0, µ0) ∈ G. k ← 0.
repeat
• x← xk, s← sk, µ← µk;
• Centralization: compute (uc, vc) solving (21.2);
x(θ) := x+ θuc, s(θ) := s+ θvc.
Compute θc ∈]0, 1] such that (x(θc), s(θc), µ) ∈ G.
x← x(θc), s← s(θc).

• Affine displacement: compute (ua, va) solving (21.3);
x(θ) := x+ θua, s(θ) := s+ θva, µ(θ) := (1− θ)µ.
Compute θa, the largest value in ]0, 1[ such that
(x(θ), s(θ), µ(θ)) ∈ G, ∀ θ ∈ [0, θa].
xk+1 ← x(θa), sk+1 ← s(θa), µk+1 ← (1− θa)µk; k ← k + 1.

until µk < µ∞.

Remark 21.2. We stress the fact that the affine step is obtained by comput-
ing the affine direction at the point obtained after centering. Each iteration
therefore requires solving two linear systems, whose associated matrices are
different.
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21.3 A small-Neighborhood Algorithm

21.3.1 Statement of the Algorithm. Main Result

The small-neighborhood algorithm is a particular instance of the above general
algorithm, in which we choose G = Vα, with α ≤ 1/2, and a centering step
equal to 1. Said otherwise:

Algorithm 21.3. PC (Predictor-Corrector Algorithm)
Data µ∞ > 0, α ∈ (0, 1/2]; (x0, s0, µ0) ∈ Vα; k ← 0.

repeat
• x← xk, s← sk, µ← µk;
• Centralization: compute (uc, vc) solving (21.2);
x← x+ uc, s← s+ vc.

• Affine displacement: compute (ua, va) solving (21.3);
x(θ) := x+ θua, s(θ) := s+ θva, µ(θ) := (1− θ)µ.
Compute θa, the largest value in ]0, 1[ such that
(x(θ), s(θ), µ(θ)) ∈ Vα, ∀ θ ∈ [0, θa].
xk+1 ← x(θa), sk+1 ← s(θa), µk+1 ← (1− θa)µk; k ← k + 1.

until µk < µ∞.

Theorem 21.4. (i) If µ∞ > 0, set L̄ := log(µ0/µ∞). Then Algorithm PC

stops after at most O(
√
nL̄) iterations (more precisely

√
2n/αL̄ iterations).

(ii) If µ∞ = 0, then lim supµk+1/µk ≤ 1− α1/2|T |−1/4/2.
(iii) Suppose (LCP ) has a strictly complementary solution. If µ∞ = 0, then
{µk} converges quadratically to 0.

This theorem will be proved later. The complexity estimate O(
√
nL̄) is

the best known at present, even for linear programming. According to (ii), the
asymptotic speed can be slow if |T | is large. In case of linear programming,
T is empty: convergence is therefore quadratic.

21.3.2 Analysis of the Centralization Move

Combining formulae from §21.2.2 and Mizuno’s Lemma 20.24, an estimate of
the proximity measure after a centralization move is obtained. This estimate
shows that, if α ≤ 1/2, the centralization move with θc = 1 reduces the
proximity measure from α to α/

√
8.

Lemma 21.5. (i) Let w := (x, s, µ) be such that (x, s) lies in the interior of
(LCP ). Then

‖ucvc‖
µ

≤ 1√
8

∥∥∥ µ
xs

∥∥∥
∞
δ(w)2.

(ii) Set αc := α/
√

8. If δ(w) ≤ α ≤ 1/2, then wc ∈ Vαc and
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δ(wc) ≤ 1√
2
δ(w)2 ≤ 1√

8
δ(w).

Moreover, (x+ θuc, s+ θvc, µ) ∈ Vα for all θ ∈ [0, 1].

Proof. Dividing the equation suc + xvc = µ1− xs by
√
xs, get

√
s/xuc +

√
x/svc =

µ√
xs
−√xs.

But

(√
s

x
uc

)>(√
x

s
vc

)
= (uc)>vc ≥ 0. Hence, with Lemma 20.24,

‖ucvc‖
µ

=
1

µ

∥∥∥∥
(√

s

x
uc

)(√
x

s
vc

)∥∥∥∥ ≤
1√
8

∥∥∥∥
√

µ

xs
−
√
xs

µ

∥∥∥∥
2

≤ 1√
8

∥∥∥ µ
xs

∥∥∥
∞

∥∥∥∥1−
xs

µ

∥∥∥∥
2

which proves (i). If δ(w) ≤ 1/2, then
xisi

µ
≥ 1−δ(w) ≥ 1/2, hence

∥∥ µ
xs

∥∥
∞ ≤ 2

and δ(wc) ≤ δ(w)2/
√

2 ≤ δ(w)/
√

8.
It remains to prove that, if δ(w) ≤ 1/2, then xc > 0 and sc > 0. For this,

it suffices to check the last relation of the lemma. The centrality measure at
the new point w+θ(wc−w) is, in view of 21.2.2 and the relation just proved,

δ(wc) =

∥∥∥∥(1− θ)
(
xs

µ
− 1

)
+ θ2

ucvc

µ

∥∥∥∥ ,

≤ (1− θ)δ(w) + θ2 ‖ucvc‖
µ

≤ (1− θ)δ(w) +
θ2√
8
δ(w).

Bounding θ2/
√

8 from above by θ, we deduce that δ(wc) ≤ δ(w) ≤ 1/2.
Therefore

(x+ θuc)(s+ θvc) ≥ µ

2
1, ∀θ ∈ [0, 1].

The left-hand side is a continuous function of θ which, for θ = 0, belongs
to R

n
++. The inequality prevents each component from vanishing; we deduce

that, when θ increases from 0 to 1, (x+ θuc)(s+ θvc) stays strictly positive.
Each term of the product therefore keeps the same + sign, as was to be
proved.

21.3.3 Analysis of the Affine Step and Global Convergence

The problem is now to determine a value as large as possible for the affine step
θ. The condition to satisfy is δa ≤ α, knowing that the current step obtained
after centering has, in view of the above lemma, a proximity measure of at
most α/

√
8. The next lemma gives an estimate of θa allowing the polynomial

complexity of Theorem21.4. (The complexity estimate comes from item (iii);
items (i) and (ii) will be useful for asymptotic analysis.)
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Lemma 21.6. Take (x, s, µ) ∈ Vα/2, with α ≤ 1/2. Then

(i) ‖uava‖ ≤ x>s/
√

8, (ii)
(θa)2

1− θa
≥ αµ

2‖uava‖ , (iii) θa ≥
√

α

2n
.

Proof. Apply Mizuno’s Lemma 20.24 to the inequality sua+xva = −xs, after
the scaling obtained by dividing the preceding equation by

√
xs. It follows

that √
s

x
ua +

√
x

s
va = −√xs.

Since

(√
s

x
ua

)>(√
x

s
va

)
= (ua)>va ≥ 0, with Lemma 20.24, we obtain:

‖uava‖ =

∥∥∥∥
(√

s

x
ua

)(√
x

s
va

)∥∥∥∥ ≤
1√
8
‖√xs‖2 =

1√
8
x>s.

Item (i) follows. Using the expression of δa given in 21.2.2, we have

δa =

∥∥∥∥
xs

µ
− 1 +

θ2

(1− θ)
uava

µ

∥∥∥∥ ≤
∥∥∥∥
xs

µ
− 1

∥∥∥∥+
θ2

1− θ
‖uava‖
µ

≤ α

2
+

θ2

1− θ
‖uava‖
µ

.

The function θ2/(1 − θ) is nondecreasing in (0, 1), and the condition for
acceptation is δa ≤ α, we therefore have

(θa)2

1− θa

‖uava‖
µ

≥ α

2
,

hence (ii). We have

∥∥∥∥
xs

µ
− 1

∥∥∥∥ ≤
α

2
≤ 1

4
, hence xisi ≤

5

4
µ and with (i)

‖uava‖ ≤ 5/4√
8
nµ ≤ n

2
µ,

hence
µ

‖uava‖ ≥
2
n . Combining with (ii), we obtain

(θa)2

1− θa
≥ α

n
. If θa ≥ 1/2,

the conclusion follows (for α ≤ 1/2 and n ≥ 1). Otherwise, 1− θa ≥ 1/2,

hence (θa)2 ≥ (1− θa)
α

n
≥ α

2n
, hence (iii).

Complexity Estimate of the Algorithm Lemma21.5 shows that the centering
step divides the proximity step by at least 1/2, which allows us to check
(Lemma 21.6) that the affine step is at least

√
α/2n. From the formula of µ],

we have
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µk ≤
(

1−
√

α

2n

)k

µ0.

We will have that µk ≤ µ∞ as soon as

k log

(
1−

√
α

2n

)
+ logµ0 ≤ logµ∞,

i.e.

k

∣∣∣∣log

(
1−

√
α

2n

)∣∣∣∣ ≥ log
µ0

µ∞
= L̄.

But | log(1− β)| ≥ β if β ∈ [0, 1[, hence k =
√

2n
α L̄ = O(

√
nL̄) is (rounding

off to the least upper integer) an estimate larger to the number of iterations
of the algorithm.

21.3.4 Asymptotic Speed of Convergence

a) Consider first the case where strict complementarity holds. Lemmas 20.10
and 20.12 show that, under this assumption, we have that ua = O(µ) and
va = O(µ). In view of Lemma 21.6(ii), since θa ≤ 1, we have that

1

1− θa
≥ αµ

2‖uava‖ ,

and therefore

µ] = (1− θa)µ ≤ 2

α
‖uava‖ = O(µ2),

which is the required result.
b) Consider now the case without strict complementarity. From Theo-

rem20.14 and Lemmas 20.10 and 20.12, we have that

xT ≈ O(
√
µ); sT ≈ O(

√
µ); ua

B = O(
√
µ); va

B = O(µ);

ua
T = −1

2
xT +O(µ3/4); va

T = −1

2
sT +O(µ3/4).

As a result,

‖uava‖2 = ‖ua
T v

a
T ‖2 + ‖ua

Bv
a
B‖2 =

1

16
‖xT sT ‖2 + O(µ5/2),

and therefore

‖uava‖ =
1

4
‖xT sT ‖

(
1 +

O(µ5/2)

‖xT sT ‖2
)

=
1

4
‖xT sT ‖+O(µ3/2).

Since (x, s, µ) ∈ Vα:
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‖xT sT ‖
µ

≤ ‖xT sT ‖∞
µ

√
|T | ≤ (1 + α/2)

√
|T |.

Combining Lemma 21.6(ii) with the above two inequalities, we obtain

(θa)2

1− θa
≥ αµ

2‖uava‖ ≥
2α|T |−1/2

(1 + α/2)
+O(µ1/2) ≥ α|T |−1/2 +O(µ1/2). (21.4)

If θa ≥ 1/2, the conclusion follows, otherwise (1− θa) ≥ 2/3, hence

(θa)2 ≥ (1− θa)α|T |−1/2 +O(µ1/2) ≥ α

2
|T |−1/2 +O(µ1/2).

Then µk+1 = (1− θa)µk ≤ (1− α1/2|T |−1/4/2)µk + O(µ
3/2
k ), and the result

follows.

21.4 A Predictor-Corrector Algorithm
with Modified Field

21.4.1 Principle

If strict complementarity does not hold, the asymptotic speed of the small-
neighborhood predictor-corrector algorithm presented in the previous section
is after all rather low, especially if |T | is large (we have given only an upper
estimate of the convergence speed, but a lower estimate of the same order can
be found in Mizuno [260]). However, we have studied in Chap. 20 a modified
field (uM , vM ) solving the linear system

{
suM + xvM = −xMsM ,
QuM +RvM = 0.

(21.5)

In this equation M ⊂ {1, · · · , n} is an estimate of T computed by the al-
gorithm, and xM , sM is the restriction of x and s to M , identified to its
extension by 0 on the whole of R

n. It has been established that, if µ is small
and M = T , then the sum of the affine field and of the modified field allows
the computation of a point whose distance to S(LCP ) is of order µ3/4 (while
the distance from the current point to S(LCP ) is of order µ1/2). However,
this modified field is useful only in a neighborhood of S(LCP ). Close to the
starting point of the algorithm, it can produce a useless direction, and impair
convergence. To obtain an efficient implementable algorithm, it is therefore
necessary to conceive a mechanism to eliminate the influence of the modified
field if it does not produce an interesting direction, so as to preserve global
convergence, while ensuring a step close to 1 when approaching S(LCP ). A
classical mechanism in such a situation consists in seeking the point along a
trajectory of the type
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(x(θ), s(θ)) := (x, s) + θ(ua, va) + ϕ(θ)(uM , vM ), (21.6)

where ϕ is a continuous function satisfying ϕ(0) = ϕ′(0) = 0 and ϕ(1) = 1.
The usual choice is ϕ(θ) = θ2; however, the convergence analysis to follow
works with a specific choice of ϕ only, suggested by Theorem20.23. One
checks in this latter result that, along the affine trajectory,

xT =
√
µx̂T + o(

√
µ) and sT =

√
µŝT + o(

√
µ),

where x̂T and ŝT are defined in this theorem. Let θ be the step-value. Denote
by xθ and sθ the values of x and s along the affine trajectory, associated with
the parameter µθ := (1−θ)µ (not to be confused with x(θ) and s(θ); likewise,
the notations uθ, vθ should not be confused with the notations u(θ) and v(θ)
defined in (21.10)). Set

u(θ) := xθ − x; v(θ) := sθ − s.
It would be ideal to compute a move (u, v) close to (u(θ), v(θ)). For this, we
will evaluate the quantity su(θ) + xv(θ). Note first that

uT (θ) := xθ
T − xT = (

√
1− θ− 1)

√
µx̂T + o(

√
µ) = (

√
1− θ − 1)xT + o(

√
µ),

and likewise
vT (θ) := (

√
1− θ − 1)sT + o(

√
µ),

so that
uT (θ)vT (θ) = (

√
1− θ − 1)2xT sT + o(µ).

Besides

su(θ) + xv(θ) = xθsθ − xs− (xθ − x)(sθ − s) = −θxs− u(θ)v(θ), (21.7)

and therefore
{
sBuB(θ) + xBvB(θ) = −θxs+ o(µ),

sTuT (θ) + xT vT (θ) = −
(
θ + (

√
1− θ − 1)2

)
xT sT + o(µ).

Said otherwise

su(θ) + xv(θ) = θ(sua + xva) + ϕ(θ)(suM + xvM ) + o(µ),

where (uM , vM ) solves (21.5) with M = T and

ϕ(θ) := (
√

1− θ − 1)2. (21.8)

Note that ϕ(0) = ϕ′(0) = 0 and ϕ(1) = 1. This suggests to search a point
along the path defined by (21.6), with ϕ as above. We set

f(θ) = (1 +
√

1− θ)−2. (21.9)

Then ϕ(θ) := θ2f(θ), and (21.6) writes




(x(θ), s(θ)) := (x, s) + θ(uθ, vθ)

(uθ, vθ) := (ua, va) + θf(θ)(uM , vM ).
(21.10)
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21.4.2 Statement of the Algorithm. Main Result

The predictor-corrector algorithm with modified field goes as follows:

Algorithm 21.7. PCM (Predictor-Corrector Algorithm, Modified Field)
Data: µ∞ > 0, α ∈ (0, 1/2]; (x0, s0, µ0) ∈ Vα; k ← 0.
repeat
• w ← wk .
• Centralization: compute (wc) solving (21.2); w ← wc.
• Affine move: compute M . Compute (ua, va) and (uM , vM ) solving

(21.3) and (21.5). Define x(θ), s(θ) by (21.10); µ(θ) := (1− θ)µ.
Compute θa, the largest value in ]0, 1[ such that
(x(θ), s(θ), µ(θ)) ∈ Vα, ∀ θ ∈ [0, θa].
xk+1 ← x(θa), sk+1 ← s(θa), µk+1 ← (1− θa)µk; k ← k + 1.

until µk < µ∞.

Theorem 21.8. Let (xk , sk, µk) be computed by Algorithm PCM, with M
obtained by the estimate in Lemma20.16. Then
(i) If µ∞ > 0, set L̄ := log(µ0/µ∞). Algorithm PCM stops after at most
O(
√
nL̄) iterations (more precisely after at most 4

√
n/αL̄ iterations).

(ii) If µ∞ = 0, then the algorithm identifies the set T (i.e. we have M = T )

after finitely many iterations, and moreover µk+1 = O(µ
5/4
k ). If, in addition,

T = ∅, convergence of the sequence {µk} is quadratic.

This theorem is proved below.

21.4.3 Complexity Analysis

We will show that the affine step θa is at least 1
4

√
α/n at each iteration. Since

the centering step is the same as in Algorithm21.3, we know that the point
obtained after centering lies in Vα/2. Accordingly, let us study the affine step.
From (21.10)

x(θ)s(θ) = xs+ θ
(
suθ + xvθ

)
+ θ2uθvθ = (1− θ)xs− θ2f(θ)xM sM + θ2uθvθ.

As a result, setting µθ := (1− θ)µ:

x(θ)s(θ)

µθ
− 1 =

xs

µ
− 1− θ2f(θ)

(1− θ)
xM sM

µ
+

θ2

(1− θ)
uθvθ

µ
. (21.11)

Using f(θ) ≤ 1, and setting d :=
√
x/s, we get with Mizuno’s Lemma 20.24

‖uθvθ‖ = ‖d−1uθ dvθ‖ ≤ 1√
8
‖d−1uθ + dvθ‖2,

=
1√
8

∥∥−√xs− θf(θ)
√
xM sM

∥∥2 ≤ 1√
8

(
‖√xs‖+ ‖√xM sM‖

)2
,

≤ ‖√xs‖2
√

2,
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and hence,
‖uθvθ‖
µ

≤ x>s

µ

√
2. (21.12)

In particular, since (x, s, µ) ∈ Vα/2, we have

‖uθvθ‖
µ

≤ n(1 + α/2)
√

2 ≤ 2n.

On the other hand,

‖xMsM‖
µ

≤ ‖xMsM‖∞
µ

√
|M | ≤ (1 + α/2)

√
|M | ≤ 5

4

√
n.

If θ ≥ 1/2, we obtain the result; otherwise, using (1 − θ)−1 ≤ 2 if θ ≤ 1/2
and f(θ) ≤ 1 for θ ∈ (0, 1), we get with (21.11)

∥∥∥∥
x(θ)s(θ)

µθ
− 1

∥∥∥∥ ≤
α

2
+

θ2

1− θ

(
5

4

√
n+ 2n

)
≤ α

2
+ 7nθ2.

As a result

θa ≥
√

α

14n
≥ 1

4

√
α

n
,

which was to be proved.

21.4.4 Asymptotic Analysis

If T = ∅, then, after a finite number of iterations, M = ∅ by lemma 20.16, so
that the iterates are the same as those computed by algorithm PC. Therefore,
by theorem 21.4(iii), the quadratic convergence of {µk} towards 0 occurs.

It remains to deal with the case when T 6= ∅. Write f instead of f(θ), and
note the key relation

f = 1
4 (1 + θf)2.

In view of Lemma 20.10 and Theorems 20.14 and 20.17, when M = T (which
is true for M large enough) we have

ua
T = uM

T +O(µ3/4) = − 1
2xT +O(µ3/4);

va
T = vM

T +O(µ3/4) = − 1
2sT +O(µ3/4),

‖ua
B‖+ ‖uM

B ‖ = O(
√
µ); ‖va

B‖ = O(µ); ‖vM
B ‖ = O(µ3/2);

Therefore

uθvθ = (ua + θfuM )(va + θfvM )

= 1
4 (1 + θf)2xT sT +O(µ5/4) = fxT sT + O(µ5/4).

Combining with (21.11), we get

x(θ)s(θ)

µθ
− 1 =

xs

µ
− 1 +

1

(1− θ)O(µ1/4). (21.13)

Since δ(x, s, µ) ≤ α/2, we deduce that (1−θ)−1O(µ1/4) ≥ α/2, and therefore
µ] = (1− θ)µ ≤ O(µ5/4), which was to be proved.
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21.5 A Large-Neighborhood Algorithm

21.5.1 Statement of the Algorithm. Main Result

As before, the algorithm alternates centering steps and affine moves. Unfor-
tunately, using large neighborhoods is no longer a guarantee that a centering
step with θ = 1 does improve the centering. A stepsize must be computed,
to sufficiently re-enter Nε, so that the subsequent affine step is large enough.
The algorithm leaves a choice between computing the optimal stepsize and
estimating a simple suboptimal stepsize.

The statement of the following algorithm includes the choice at each it-
eration of a set M ⊂ {1, · · · , n} which approximates T . If M = ∅, the modi-
fied direction (uM , vM ) vanishes and the move corresponds to the predictor-
corrector method without modified field. Otherwise, the search for the new
point is done on an arc as in the small-neighborhood algorithm. The distance
function in this section is computed using the norm ‖x‖∞ = maxi |xi|. The
algorithm is stated as follows:

Algorithm 21.9. PCL (Predictor-Corrector in Large Neighborhood)

Data µ∞ > 0, ε ∈ (0, 1/2]; (x0, s0, µ0) ∈ Nε. θ̄ := (1− ε)ε3
√

2/n. k ← 0.
repeat
• w ← wk .
• Centralization: compute wc;

take either θ equal to θ̄, or to the solution of

Max
θ∈]0,1[

dist(θwc + (1− θ)w, ∂Nε); θwc + (1− θ)w ∈ Nε,

w ← θwc + (1− θ)w.
• Affine move: Choose M and compute (ua, va) and (uM , vM ) solving

(21.3) and (21.5). Define x(θ), s(θ) by (21.10).
Compute θa, the largest value in ]0, 1[ such that
(x(θ), s(θ), (1 − θ)µ) ∈ Nε, ∀ θ ∈ [0, θa].
xk+1 ← x(θa), sk+1 ← s(θa), µk+1 ← (1− θa)µk; k ← k + 1.

until µk < µ∞.

Theorem 21.10. Let (xk, sk, µk) be computed by Algorithm 21.7. Then
(i) If µ∞ > 0, set L̄ := log(µ0/µ∞). Algorithm PCL stops after at most
O(nL̄) iterations (more precisely 7ε−2nL̄ iterations).
(ii) If (LCP ) has a strictly complementary solution, M = ∅ at each iteration
and µ0 = 0, then {µk} converges quadratically to 0.
(iii) If µ∞ = 0, and if M is the estimate of T of Lemma 20.16, then the
algorithm identifies the set T (i.e. M = T ) after finitely many iterations,

and moreover µk+1 = O(µ
5/4
k ). If, in addition, T = ∅, then {µk} converges

quadratically to 0.

Remark 21.11. If one chooses M = ∅ while T 6= ∅, an estimate of the
asymptotic speed can be given, of the type of that obtained in Theorem21.4.
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21.5.2 Analysis of the Centering Step

We will prove

Lemma 21.12. Let w ∈ Nε and wc be the associated centering step. Set

wθ := θwc + (1− θ)w and θ̄ := (1− ε)ε3
√

2

n
.

Then wθ̄ ∈ Nε and dist(wθ̄ , ∂Nε) ≥
ε3

8n
.

Proof. From 21.2.2, we know that

x]s]

µ]
− 1 = (1− θ)

(
xs

µ
− 1

)
+ θ2

ucvc

µ
.

Since w ∈ Nε, we have
(

(1− θ)(ε− 1)− θ2 ‖ucvc‖∞
µ

)
1 ≤ x]s]

µ]
− 1

≤
(

(1− θ)(1

ε
− 1) + θ2

‖ucvc‖∞
µ

)
1,

and therefore
(
ε+ (1− ε)θ − θ2 ‖ucvc‖∞

µ

)
1 ≤ x]s]

µ]
≤
(
θ +

1− θ
ε

+ θ2
‖ucvc‖∞

µ

)
1,

(∗)
According to Lemma 21.5, we have

‖ucvc‖
µ

≤ 1√
8

∥∥∥ µ
xs

∥∥∥
∞

∥∥∥∥1−
xs

µ

∥∥∥∥
2

≤ n

ε
√

8

∥∥∥∥1−
xs

µ

∥∥∥∥
2

∞
≤ n

ε3
√

8
.

Since ‖ucvc‖∞ ≤ ‖ucvc‖, it follows with (∗)
(
ε+ (1− ε)θ − nθ2

ε3
√

8

)
1 ≤ x]s]

µ]
≤
(
θ +

1− θ
ε

+
nθ2

ε3
√

8

)
1.

Set

∆ := min

(
(1− ε)θ − nθ2

ε3
√

8
, (ε−1 − 1)θ − nθ2

ε3
√

8

)
= (1− ε)θ − nθ2

ε3
√

8
.

If ∆ ≥ 0, we have w] ∈ Nε and dist(w], ∂Nε) ≥ ∆. The maximal value of ∆
is obtained for θ = θ̄. Using ε ≤ 1/2, we obtain

dist(w], ∂Nε) ≥
1

2
(1− ε)2 ε

3
√

2

n
≥
√

2

8

ε3

n
≥ ε3

8n
.
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21.5.3 Analysis of the Affine Step

During the affine step, we have from (21.11), the relation f(θ) ≤ 1, θ ∈ (0, 1)
and the preceding lemma:

θ2

1− θ

(‖xMsM‖∞
µ

+
‖uθvθ‖∞

µ

)
≥ ε3

8n
.

Using (21.12) and the fact that (x, s, µ) ∈ Nε, we get

‖xMsM‖∞
µ

+
‖uθvθ‖∞

µ
≤ ‖xs‖∞

µ
+
x>s

µ

√
2 ≤ 1

ε
+ n

√
2

ε
≤ 3n

ε
, (21.14)

and therefore
θ2

1− θ ≥
ε4

24n2
. (∗)

In particular, if θ ≤ 1/2, we will have θ2 ≥ ε4/48n2, hence θ ≤ ε2/7n which is

indeed smaller than 1/2. We therefore have µk ≤ (1− ε2

7n
)kµ0. The condition

µk ≤ µ∞ is satisfied as soon as (1− ε2

7n
)k ≤ µ∞/µ0, which in turn is satisfied

when (barring roundoff)

k ≥ log(µ∞/µ0)

| log(1− ε2/7n)| ≥
L̄

ε2/7n
=

7

ε2
nL̄,

which was to be proved.

21.5.4 Asymptotic Convergence

The argument is completely similar to that of the predictor-corrector method
with small neighborhood. In fact, the relation (21.13) is valid in a large
neighborhood. With Lemma 21.12, we deduce that (1− θ) = O(µ1/4), hence
µ] = (1− θ)µ = O(µ5/4).

21.6 Practical Aspects

The two non-trivial steps in the algorithm are the computation of the direc-
tion of move and the line-search. We have seen that the direction (u, v) solves
(21.1). In the case of a quadratic problem, solving this problem amounts to
computing (u, v, η), where η represents the variation of the multiplier, solving

{
su+ xv = γµ1− xs,
Au = 0, Hu+A>η = v.

(21.15)

After scaling, we obtain (in the feasible case) the system
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{
ū+ v̄ = f̄ ,
Āū = 0, H̄ū+ Ā>η − v̄ = 0,

(21.16)

with f̄ := (γµ1−xs)/√xs, Ā := AD and H̄ := DHD. Eliminating v̄, we get
{

(I + H̄)ū+ Ā>η = f̄ ,
Āū = 0.

(21.17)

Then, eliminating ū, we obtain the reduced system

Ā(I + H̄)−1Ā>η = Ā(I + H̄)−1f̄ . (21.18)

One can thus solve the symmetric (but not positive definite) system (21.17),
which is equivalent to the quadratic problem

Min
ū
f̄>ū+

1

2
ū>(I + H̄)ū; Āū = 0,

or the reduced system. If the data A and H are sparse, then the system
(21.17) is sparse. Such is not always the case of the reduced system, and this
for two reasons. First, (I + H̄)−1 can be dense; however, in the case of linear
programming, and more generally if H is diagonal, this matrix is diagonal.
Then the matrix of the reduced system has the same sparsity as AA>. On
the other hand, AA> is dense as soon as A has at least one dense column.

The matrix AA> is positive definite if A has full rank. In this case, it
can be factorized by the Cholesky method. The factorization being stable
independently of the order of the pivots, this order can be chosen so as to
minimize the density of the Cholesky factor, by a “symbolic” factorization
which will be performed only once.

If A has full (almost) columns, then AA> is (almost) full. Therefore dense
columns of A are treated separately, through a recursive use of the Morrison-
Sherman-Woodbury formula, see Wright [366].

21.7 Comments

The first primal-dual methods, based on decreasing the primal-dual potential

q logx>s+ π(x) + π(s)

with q > 0 fixed, also have a complexity of O(
√
nL) iterations, see Kojima et

al. [217]. The advantage of methods based on the concept of neighborhood is
to allow a fast asymptotic convergence.

The predictor-corrector method is due to Mizuno, Todd and Ye [262].
This is the first algorithm enjoying at the same time a complexity of O(

√
nL̄)

iterations and a quadratic convergence. The large-neighborhood algorithm of
this chapter, including the modified field, seems to be new. An analysis of
the large-neighborhood algorithm, without modified field, but with possible
errors in the computation of directions, is presented in Bonnans, Pola and
Rebäı [47]. The theory of modified field is stated in Mizuno [260], in the
non-feasible framework that we present in the next chapter.
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22.1 Overview

Let us study the resolution of the linear monotone complementarity problem
without assuming the knowledge of a starting point in a given neighborhood
of the central path. The algorithm is based on solving by Newton’s method
the central path equations, starting from a non-feasible point. Implementing
the algorithm is as simple as in the feasible case. Unfortunately, the com-
plexity estimate in small neighborhoods in now O(nL̄) iterations, compared
to O(

√
nL̄) in the feasible case.

A large part of the analysis is similar to that of the feasible case. The
specific difficulties lie in the estimate of the affine step to obtain the desired
complexity.

22.2 Principle of the Non-Feasible Path Following

22.2.1 Non-Feasible Central Path

Recall the format of the monotone complementarity problem




xs = 0,
Qx+Rs = h,
x ≥ 0, s ≥ 0,

(LCP )

where monotonicity is defined by the implication

Qu+Rv = 0⇒ u>v ≥ 0.

While it is in general impossible to obtain simply a feasible starting point
(and a fortiori close to the central path), we can always compute (x0, s0) ∈
R

n
++ × R

n
++ and µ0 > 0 such that x0s0 = µ01. One can for example take

x0 = µ011 and s0 = µ021, with µ01 > 0 and µ02 > 0 such that µ01µ02 = µ0.
Set

g :=
1

µ0
(h−Qx0 −Rs0).
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Then (x0, s0, µ0) lies in the perturbed central path associated with g, defined
by

Cg(LCP ) := {(x, s, µ) ∈ R
n
++×R

n
++×R++ ; xs = µ1, Qx+Rs = h−µg}.

If we can construct a sequence of points close enough to the perturbed central
path, with µk → 0, then every cluster point of this sequence solves (LCP ).

The algorithmic family to be studied computes displacements via New-
ton’s method applied to the equation of the perturbed central path. Accord-
ingly the linear equation

Qx+Rs = h− µg

will be satisfied at each iteration. Said otherwise, the sequence thus con-
structed will stay in the set

F g(LCP ) := {(x, s, µ) ∈ R
n
++ × R

n
++ × R++ ; Qx+Rs = h− µg}

which plays the role of a feasible set perturbed by g. Then the proximity to
the perturbed central path can be measured, as in the feasible case, by

δ(x, s, µ) =

∥∥∥∥
xs

µ
− 1

∥∥∥∥ ,

and the small and large neighborhoods associated with the perturbed central
path will be defined as

Vg
α :=

{
(x, s, µ) ∈ F g(LCP );

∥∥∥∥
xs

µ
− 1

∥∥∥∥ ≤ α
}
,

N g
ε :=

{
(x, s, µ) ∈ F g(LCP ); ε1 ≤ xs

µ
≤ 1

ε
1

}
.

In this approach, infeasibility is reduced at the same speed as x>s, which
is of course arbitrary, these two quantities being of different natures. This
suggests an appropriate magnitude for µ0: in fact, if µ01 and µ02 are of same
order, then if µ0 ↓ 0 we have ‖g‖ → ∞ (in general), while if µ0 ↑ ∞, we have
‖g‖ → 0. It seems therefore reasonable to choose µ01 and µ02 so that µ0 and
‖g‖ are of same order.

22.2.2 Directions of Move

The problem is to solve the system
{
xs = µ1,
Qx+Rs = h− µg,

by a Newton method. We will denote by w := (x, s, µ) the current point
satisfying the linear constraint. We aim at a new value of µ equal to γµ,
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γ ∈ [0, 1]. Newton’s method writes, linearizing at (x, s) ∈ F g(LCP ), and
denoting by (u, v) the displacement:

{
su+ xv = γµ1− xs,
Qu+Rs = (1− γ)µg. (22.1)

We call θ > 0 the step in the direction (u, v). The new point is

w] := (x], s], µ]); x] := x+ θu; s] := s+ θv, µ] := (1− θ + θγ)µ.

The centering and affine steps are obtained by taking respectively γ equal
to 1 and 0, and their equations are therefore

{
suc + xvc = µ1− xs,
Quc +Rvc = 0,

(22.2)

{
sua + xva = −xs,
Qua +Rva = µg.

(22.3)

The general case is obtained by convex combination of the preceding two
values. As in the feasible case, we obtain





w] = (1− θ)w + θ(γwc + (1− γ)wa),

x]s]

µ]
− 1 =

(1− θ)xs+ θγµ1 + θ2uv

(1− θ + θγ)µ
− 1

=
1− θ

1− θ + θγ

(
xs

µ
− 1

)
+ θ2

uv

µ]
.

As a result, for the centering step (θ = 1, γ = 1, µ] = µ) and for the affine
step (γ = 0, µ] = (1 − θ)µ), we obtain the same formulae as in the feasible
case

xcsc

µ
− 1 =

ucvc

µ
;

xasa

(1− θ)µ − 1 =
xs

µ
− 1 +

θ2

1− θ
uava

µ
.

The analysis of the centering steps is strictly identical to that of the
feasible case. By contrast, the relation (ua)>va ≥ 0 is destroyed, which sub-
stantially complicates the estimates of the affine step.

Before stating the algorithm, let us establish some properties of neighbor-
hoods of the perturbed central path.

22.2.3 Orders of Magnitude of Approximately Centered Points

We start with a compactness result. We will say that (x0, s0) dominates
(x∗, s∗) if x0 ≥ x∗ and s0 ≥ s∗.



414 22 Non-Feasible Algorithms

Lemma 22.1. Take (x, s, µ) and (x0, s0, µ0) in N g
ε , with µ ≤ µ0, and

(x∗, s∗) ∈ S(LCP ). Then

x>s0 + s>x0 ≤ (µ+ µ0)
n

ε
+
µ0 − µ
µ0

(
(x0)>s∗ + (s0)>x∗

)
.

If, in addition, (x0, s0) dominates (x∗, s∗), then

x>s0 + s>x0 ≤ 2µ0
n

ε
.

Proof. Due to the invariance properties discussed in chapter 20, we can with-
out loss of generality assume N = ∅, and therefore s∗ = 0. Let (x, s, µ) ∈ N g

ε .
Then

Q(µ0x− µx0 − (µ0 − µ)x∗) +R(µ0s− µs0) = 0.

The pair (Q,R) being monotone, we deduce that

(µ0x− µx0 − (µ0 − µ)x∗)>(µ0s− µs0) ≥ 0.

Using x>s ≤ nµ/ε, (x0)>s0 ≤ nµ0/ε, s
>x∗ ≥ 0 and µ ≤ µ0, we get

µµ0(x
>s0 + s>x0) ≤ µ2

0x
>s+ µ2(x0)>s0 − (µ0 − µ)(µ0s− µs0)>x∗,

≤ n

ε
µ2

0µ+
n

ε
µ2µ0 + µ(µ0 − µ)(s0)>x∗.

Dividing by µµ0, we obtain the first relation (taking s∗ = 0 into account). If
(x0, s0) dominates (x∗, s∗), then

(x0)>s∗ + (s0)>x∗ = (s0)>x∗ ≤ (s0)>x0 ≤ µ0
n

ε
.

Combining with the first part of the lemma, the conclusion follows.

It is convenient to disclose a couple (x̃, s̃) such that

Qx̃+Rs̃ = g. (22.4)

Lemma 22.2. If w = (x, s, µ) ∈ N g
ε , then

xB ≈ 1, sB ≈ µ, xT ≈
√
µ, sT ≈

√
µ.

Proof. From Lemma22.1, we know that x = O(1) and s = O(1). By definition
of N g

ε , xs ≈ µ. Let (x∗, s∗) be a solution of (LCP ) such that x∗B > 0. From

Qx+Rs+ µg = h = Qx∗

and (22.4), we deduce

Q(x− x∗ + µx̃) +R(s+ µs̃) = 0.
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Therefore 0 ≤ (x−x∗+µx̃)>(s+µs̃), i.e., using again s = O(1) and x = O(1):

(x∗B)>sB = (x∗)>s ≤ x>s+ µx̃>s+ µ(x− x∗ + µx̃)>s̃
= x>s+O(µ) = O(µ).

Since x∗B > 0, we deduce that sB = O(µ); but xB = O(1) and xBsB = O(µ),
hence sB ≈ µ and xB ≈ 1.

Proving the relations xT ≈ √µ and sT ≈ √µ is done as in the feasible
case (Lemma 20.9).

We now study orders of magnitude of the Newton direction. As with
feasible algorithms, the aim of the analysis is to obtain a formula allowing
the asymptotic evaluation of the size of the move and, in particular, that of
the affine move. Let us scale the system, as in the feasible case. For this, set

d =

√
x

s
, φ =

√
xs

µ
, ū := d−1u, v̄ := dv, Q̄ := QD, R̄ := RD−1.

(22.5)
From the previous lemma and the definition of N g

ε , we have dB ≈ µ−1/2,
dT ≈ 1 and φ ≈ 1. Dividing the first equation by

√
xs, we obtain the equation

of the scaled direction
{

ū+ v̄ =
√
µ(γφ−1 − φ),

Q̄ū+ R̄v̄ = µ(1− γ)g. (22.6)

22.2.4 Analysis of Directions

The next lemmas will allow us to analyze accurately the directions of dis-
placement. The two lemmas below estimate the size of the displacement and
interpret the displacement of large variables as a perturbation of a certain
projection.

Lemma 22.3. The Newton direction satisfies

(i) ū = O(
√
µ); v̄ = O(

√
µ),

(ii) vB = O(µ); uT = O(
√
µ), vT = O(

√
µ).

Proof. Take (x̃, s̃) satisfying (22.4). Set

û := ū− µ(1− γ)d−1x̃, v̂ := v̄ − µ(1− γ)ds̃. (22.7)

By (22.6), we have that

{
û+ v̂ =

√
µ(γφ−1 − φ)− µ(1− γ)(d−1x̃+ ds̃) = O(

√
µ),

Q̄û+ R̄v̂ = 0.
(22.8)

Mizuno’s Lemma 20.24 implies û = O(
√
µ) and v̂ = O(

√
µ), hence ū =

O(
√
µ), v̄ = O(

√
µ) and
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vB = d−1
B v̄B = O(µ), uT = dT ūT = O(

√
µ), vT = d−1

T v̄T = O(
√
µ),

which was to be proved.

Lemma 22.4. Let (x̃, s̃) satisfying (22.4). Set z := Rv+QTuT . The solution
(u, v) of (22.1) satisfies

ūB = γ
√
µPQ̄B

(φ−1
B +

√
µdB s̃B) + PQ̄B ,z0, (22.9)

uB = γ
√
µdBPQ̄B

(φ−1
B +

√
µdB s̃B) +O(

√
µ). (22.10)

If, in addition, strict complementarity holds (T = ∅), then

u = γ
√
µdPQ̄(φ−1 +

√
µds̃) +O(µ). (22.11)

In particular, ua = O(µ) if T = ∅, and ua = O(
√
µ) in the general case.

Proof. Let us show (22.9). The optimality conditions of the least-squares
problem

Min
ūB

1
2‖ūB − γ

√
µφ−1

B − µdB s̃B‖2; Q̄BūB + z = 0,

are
ūB − γ

√
µφ−1

B − µdB s̃B ∈ R(Q̄>
B); Q̄BūB + z = 0.

The second relation is obviously satisfied. To check the first, take again the
variables (û, v̂) defined in (22.7). From (22.8) and Lemma20.11, it follows
that v̂B ∈ R(Q̄>

B). From

{
ū+ v̂ =

√
µγ(φ−1 +

√
µds̃)−√µ(φ +

√
µds̃),

Q̄BūB + z = 0,

we deduce that

uB =
√
µdBPQ̄B

(
γ(φ−1

B +
√
µdB s̃B)−√µ(φB +

√
µdB s̃B)

)
+ dBPQ̄B ,z0.

Let us show that PQ̄B
(φB +

√
µds̃B) = 0, i.e.

φB +
√
µdB s̃B ∈ N (Q̄>

B)⊥ = R(Q̄>
B). (22.12)

Since φ/d = s/
√
µ, this is just sB +µs̃B ∈ R(Q>

B), which is a consequence of

Q(x+ µx̃) +R(s+ µs̃) = h ∈ R(Q)

and of Lemma 20.11. This proves (22.9).
One can check that dBPQ̄B ,z0 = O(‖z‖) proceeding as in the feasible case

(Lemma 20.12). The conclusion then follows by combining (22.9) with the
above relation, and noting that, from Lemma 22.3, z = Rv = O(µ) if T = ∅,
and z = Rv +QTuT = O(

√
µ) if not.
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Lemma 22.5. Take (x, s) ∈ N g
ε and (x∗, s∗) be the element of S(LCP ) clos-

est to (x, s) (for the Euclidean norm). If strict complementarity holds, then

(x∗, s∗) = (x, s) +O(µ). (22.13)

In the general case, we have that

(x∗, s∗) = (x, s) +O(
√
µ). (22.14)

Proof. Proceeding as in the feasible case, check that for µ small enough, the
projection of (x, s) onto (LCP ) coincides with the projection onto

V := {(x, s) ∈ R
n ;xT = 0; s = 0; Qx = h}.

We therefore have that (x∗, s∗)−(x, s) = O(‖xT ‖+‖s‖), hence the conclusion
follows with Lemma22.2.

The next theorem gives an accurate estimate of the result of an affine
move.

Theorem 22.6. If strict complementarity holds, then

s+ va = O(µ2). (22.15)

In the general case, we have that

sB + va
B = O(µ3/2) (22.16)

and

xT + ua
T = 1

2xT +O(µ3/4); sT + va
T = 1

2sT +O(µ3/4). (22.17)

Proof. From the equation of the affine step, we deduce that s+va = −sx−1ua.
Combining with Lemmas 22.2 and 22.4, we get sB + va

B = O(µ‖ua
B‖), which

is of order µ2 if T = ∅, and µ3/2 if not; hence (22.15)–(22.16).
Now let us establish (22.17). Call (xI , sI) the point twice as far as the

affine direction:
xI := x+ 2ua; sI := s+ 2va.

Let (x∗, s∗) be the point of S(LCP ) closest to (x, s). From Lemmas 22.3, 22.4
and 22.5,

‖(x∗, s∗)− (xI , sI)‖ ≤ ‖(x∗, s∗)− (x, s)‖+ ‖(ua, va)‖ = O(
√
µ).

Supposing s∗ = 0, obtain

Q(xI − x∗ − µx̃) +R(sI − µs̃) = 0,
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hence (xI − x∗ − µx̃)>(sI − µs̃) ≥ 0, or equivalently

(xI − x∗)>sI ≥ µx̃>sI + µs̃>(xI − x∗ − µx̃) = O(µ3/2),

and thus, using x∗T = 0:

(xI
T )>(sI

T ) ≥ (x∗B − xI
B)>sI

B +O(µ3/2) = O(µ3/2).

We end the proof as in the feasible case: we have

d−1xI + dsI = d−1x+ ds+ 2(d−1ua + dva) = 2
√
xs− 2

√
xs = 0.

As a result, for all i ∈ I we have

0 = (d−1
i xI

i + dis
I
i )

2 ≥ 2xI
i s

I
i , (∗∗)

and with (∗), 0 ≥ xI
i s

I
i ≥ (xI

T )>(sI
T ) ≥ O(µ3/2). Combining with (∗∗), we get

(d−1
i xI

i )
2 + (dis

I
i )

2 ≤ −2xI
i s

I
i = O(µ3/2).

Since dT ≈ 1, we deduce that (xI
i )

2 + (sI
i )

2 = O(µ3/2) and the conclusion
follows.

22.2.5 Modified Field

As in the feasible case, the affine displacement yields, if T = ∅, a new point
very close to S(LCP ); while if T 6= ∅, the estimate of the distance remains
of order

√
µ. Accordingly, we will build a modified field theory analogous to

that of the feasible case. Let T̂ (x, s, µ) be defined as follows:

T̂ (x, s, µ) :=
{
i = 1, . . . , n; ua

i /xi ∈
[
− 3

4 ,− 1
4

]
and va

i /si ∈
[
− 3

4 ,− 1
4

]}
.

(22.18)
We have T̂ (x, s, µ) = T if (x, s, µ) ∈ N g

ε and µ is small enough.
The modified field (uM , vM ) is defined as solving

{
suM + xvM = −xMsM ,
QuM +RvM = 0,

(22.19)

where xM and sM are the restrictions to M of x and s, identified with their
extension by 0 to the whole of R

n; said otherwise

(xM )i = (sM )i = 0, i 6∈M ; (xM )i = xi, (sM )i = si, i ∈M.

Theorem 22.7. Assume M = T . Then:
(i) The modified field is of the following order:

uM
B = O(

√
µ), vM

B = O(µ3/2), uM
T = O(

√
µ), vM

T = O(
√
µ).

(ii) We have that

xT + uM
T = 1

2xT +O(µ3/4); sT + vM
T = 1

2sT +O(µ3/4).
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Proof. The proof is identical to that of the feasible case. Indeed, the latter
uses orders of the variables that are identical and the monotonicity relation
QuM +RvM = 0, which still holds.

Combining Theorems22.7 and 22.9, we deduce that the point

(x]], s]]) := (x, s) + (ua, va) + (uM , vM )

is at a distance from S(LCP ) of order O(µ3/4).

22.3 Non-Feasible Predictor-Corrector Algorithm

During the affine step, the new point is chosen on the path

(x(θ), s(θ)) = (x, s) + θ(uθ, vθ) (22.20)

with
(uθ, vθ) = (ua, va) + θf(θ)(uM , vM ),

where f(θ) is defined by (21.9): f(θ) = (1+
√

1− θ)−2. As in the feasible case,
the algorithm alternates centering steps (θ = 1) with affine steps, in which θ
is the largest step staying inside the neighborhood of fixed size α ∈]0, 1/2].
In other words:

Algorithm 22.8. IPC (Infeasible Predictor-Corrector Algorithm)
Data: µ∞ > 0, α ∈ (0, 1/2]; w0 := (x0, s0, µ0) ∈ Vg

α. k ← 0.

repeat
• w ← wk .
• Centralization: compute wc; w ← wc.
• Affine step: choose M . Compute (ua, va) and (uM , vM ) solving (22.3)

and (22.19). Define x(θ), s(θ) by (22.20); µ(θ) := (1− θ)µ.
Compute θa, the largest value in ]0, 1[ such that
(x(θ), s(θ), µ(θ)) ∈ Vg

α, ∀ θ ∈ [0, θa].
xk+1 ← x(θa), sk+1 ← s(θa), µk+1 ← (1− θa)µk; k ← k + 1.

until µk < µ∞.

Recall that the point (x0, s0) dominates a solution of (LCP ) if there exists
(x∗, s∗) ∈ S(LCP ) such that x0 ≥ x∗ and s0 ≥ s∗. This assumption is used
in the following theorem, while it was not required in the theory of feasible
algorithms.

Theorem 22.9. (i) If µ∞ > 0, set L̄ := log(µ0/µ∞). If (x0, s0) dominates a
solution of (LCP ), then Algorithm IPC stops after at most O(nL̄) iterations
(more precisely 24α−1/2nL̄ iterations).
(ii) If µ∞ = 0 and M is the estimate T̂ stated in (22.18), then the algorithm
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identifies the set T after finitely many iterations (i.e. M = T ), and moreover

µk+1 = O(µ
5/4
k ). If, in addition, T = ∅, convergence of the sequence {µk} is

quadratic.
(iii) If µ∞ = 0 and T = ∅, and if M = ∅ at each iteration, then convergence
of µk to 0 is quadratic.

This theorem will be proved below.

22.3.1 Complexity Analysis

The centering step being the same as in the feasible case, we have that

Lemma 22.10. If δ(w) ≤ 1/2, then wc ∈ Vg
α and δ(wc) ≤ 1

2
δ(w).

To study global convergence, it is necessary to estimate the size of the
Newton displacement, and in particular of the product uava. The relation
(ua)>va ≥ 0 needs no longer hold, it is therefore necessary to start the
analysis from the beginning. A first result in this direction is as follows.

Lemma 22.11. Let (ǔ, v̌) solve

ǔ+ v̌ = f ; Qǔ+Rv̌ = g,

and x̃, s̃ be such that Qx̃+Rs̃ = g. Then





‖ǔ‖ ≤ ‖f‖+ ‖x̃‖+ ‖s̃‖,

‖v̌‖ ≤ ‖f‖+ ‖x̃‖+ ‖s̃‖.

Proof. (i) Let us first check the result when g = 0; then ǔ>v̌ ≥ 0 so

‖f‖2 = ‖ǔ+ v̌‖2 ≥ ‖ǔ‖2 + ‖v̌‖2,

hence ‖ǔ‖ ≤ ‖f‖ and ‖v̌‖ ≤ ‖f‖, which implies the conclusion.
(ii) Now we pass to the general case. Let (u1, v1), (u2, v2) and (u3, v3) solve

{
u1 + v1 = x̃,
Qu1 +Rv1 = 0,

{
u2 + v2 = s̃,
Qu2 +Rv2 = 0,

{
u3 + v3 = f,
Qu3 +Rv3 = 0.

Set {
û := ǔ− (x̃− u1 − u2 + u3) ;
v̂ := v̌ − (s̃− v1 − v2 + v3) ;

Then {
û+ v̂ = 0,
Qû+Rv̂ = 0,

hence û = 0, so that
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ǔ = x̃− u1 − u2 + u3 = v1 − u2 + u3.

Combining with (i) applied to an upper bound of the norm of v1, u2 and u3,
get

‖ǔ‖ ≤ ‖v1‖+ ‖u2‖+ ‖u3‖ ≤ ‖f‖+ ‖x̃‖+ ‖s̃‖,
and similarly for v̌.

In the lemma below, we use the absolute value of a vector: this is the
vector formed with absolute values of components.

Lemma 22.12. Let (x̃, s̃) satisfy Qx̃+Rs̃ = g, and (x, s, µ) ∈ N g
ε . Then

(i)
‖uθvθ‖
µ

≤ 1

ε

(
2
√
n+ x>|s̃|+ s>|x̃|

)2
.

If, in addition, (x0, s0, µ0) ∈ N g
ε dominates a solution of (LCP ), and µ ≤ µ0,

then

(ii)
‖uθvθ‖
µ

≤ 16
n2

ε3
and θa ≥

√
α

3n
.

Proof. Set {
ūθ := d−1uθ = d−1(ua + θf(θ)uM ),
v̄θ := dvθ = d(va + θf(θ)vM ).

Then {
ūθ + v̄θ = −√xs− θf(θ)

√
xM sM ,

QDūθ +RD−1v̄θ = µg,

and QD(µd−1x̃) +RD−1(µds̃) = µg. Lemma 22.2 implies

‖ūθ‖ ≤ ‖√xs+ θf(θ)
√
xMsM‖+ µ‖d−1x̃‖+ µ‖ds̃‖.

Let us estimate the terms in the right-hand side. We have

‖√xs+ θf(θ)
√
xMsM‖ ≤ 2‖√xs‖ = 2

√
x>s ≤ 2

√
nµ/ε.

µ‖d−1x̃‖ = µ

∥∥∥∥
sx̃√
xs

∥∥∥∥ ≤
√
µ

ε
‖sx̃‖ ≤

√
µ

ε
‖sx̃‖1 =

√
µ

ε
s>|x̃|,

and likewise µ‖ds̃‖ ≤
√

µ
ε x

>|s̃|, hence

‖ūθ‖ ≤
√
µ

ε

(
2
√
n+ x>|s̃|+ s>|x̃|

)
;

Writing a similar inequality for ‖vθ‖, it gives

‖uθvθ‖
µ

=
‖ūθv̄θ‖
µ

≤ ‖ū
θ‖‖v̄θ‖
µ

≤ 1

ε

(
2
√
n+ x>|s̃|+ s>|x̃|

)2
,
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hence (i). Now, from Qx0 +Rs0 = h− µ0g = Qx∗ − µ0g, we conclude that

Q

(
x∗ − x0

µ0

)
+R

(
− s

0

µ0

)
= g.

We can therefore take (x̃, s̃) = ((x∗ − x0),−s)/µ0.
Then, if (x0, s0) dominates (x∗, s∗ = 0), we get with Lemma 22.1

x>|s̃|+ s>|x̃| ≤ (x>s0 + s>x0)/µ0 ≤ 2
n

ε
,

and with (i)
‖uθvθ‖
µ

=
1

ε
(2
√
n+

2n

ε
)2 ≤ 16n2

ε3
.

Formula (21.11) is still valid; hence, using Vα ⊂ Nε for ε = 1− α:

∥∥∥∥
x(θ)s(θ)

(1− θ)µ − 1

∥∥∥∥ ≤
α

2
+

θ2

1− θ

(‖xMsM‖
µ

+
‖uθvθ‖
µ

)
,

≤ α

2
+

θ2

1− θ

( √
n

1− α +
16n2

(1− α)3

)
,

and therefore if θa ≥ 1/2

(θa)2 ≥ α

4

( √
n

1− α +
16n2

(1− α)3

)−1

≥ α

4
× 1

(12n)2

so that θa ≥
√
α

24n
.

From the above lemma, and more precisely the lower estimate on θa, we
deduce that the algorithm converges in O(nL̄) iterations.

22.3.2 Asymptotic Analysis

The analysis is identical to the one of the feasible case (see 21.4.4).

22.4 Comments

The results presented here are due to Mizuno, Jarre and Stoer [261, 260].
Let us also mention the approaches by Bonnans and Potra [48], Potra [287],
Wright [364, 365], and Zhang [375].

The complexity theory presented in Chap. 25 gives a means to estimate
the order of the solutions of (LCP ). In practice, it is hard to know whether
the initial point dominates a solution.
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A large-neighborhood non-feasible algorithm of complexity O(n3/2L) is
presented in Bonnans, Pola, and Rebäı [47]. This reference gives bounds on
the accuracy with which the directions are computed to preserve the same
complexity, and if there exists a strictly complementary solution, to obtain a
given asymptotic convergence rate.



23 Self-Duality

23.1 Overview

A linear problem is said to be self-dual if it coincides with its dual. For
example, the problem

Min
x∈Rn

c>x; Ax+ c ≥ 0, x ≥ 0,

where A is n × n skew-symmetric, is self-dual. The interest of the family
of self-dual problems is that one can embed any linear problem into a self-
dual problem for which one knows a point on the central path. Moreover,
computing a strictly complementary solution (of the self-dual problem) allows
one either to show that the original problem has no solution, or to compute
simply a solution.

Furthermore, solving the self-dual problem by a path-following method is
performed by solving linear systems of the same size as those obtained by a
direct resolution of the original problem. Roughly speaking, self-duality thus
allows a reduction to the case where a point of the central path is known. In
particular, complexity is O(

√
nL̄). The numerical performances obtained by

this process are very competitive. We present first the theory for problems
with linear inequalities, and then problems in standard form.

In the case of linear complementarity problems, there also exists a theory
of embedding into a problem for which an interior point is known. This theory,
slightly more complex than the one of linear programming, allows also an
O(
√
nL̄) complexity estimate.

23.2 Linear Problems with Inequality Constraints

23.2.1 A Family of Self-Dual Linear Problems

Consider the following problem, where A is a p× n matrix:

Min
x∈Rn

c>x; Ax ≥ b; x ≥ 0.

The associated Lagrangian is
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c>x+ y>(b−Ax) − s>x,
where y ∈ R

p
+ and s ∈ R

n
+ are the multipliers associated with the constraints.

The dual is therefore

Max
y,s

b>y; c−A>y = s; y ≥ 0, s ≥ 0,

or, eliminating the variable s,

Max
y

b>y; −A>y + c ≥ 0; y ≥ 0.

Since maximizing b>y is equivalent to minimizing −b>y, the primal and
dual formulations coincide if

b = −c and A = −A>,

in other words cost and right-hand side are opposite and the constraint matrix
is skew-symmetric. In this case we will say that the linear problem is self-dual.
For future reference, the self-dual problem will be written

Min
x
ĉ>x̂; Âx̂+ ĉ ≥ 0; x̂ ≥ 0, (AD)

with Â skew-symmetric.
The following lemma shows a very important property: a sel-dual linear

problem is equivalent to a monotone complementarity problem in standard
form, which has the same dimensions as the starting problem.

Lemma 23.1. The self-dual problem (AD) satisfies the following properties:
(i) Either v(AD) = 0, or v(AD) = +∞,
(ii) x̂ solves (AD) if and only if, for some ŝ ∈ R

n, (x̂, ŝ) solves the linear
monotone complementarity problem

x̂ŝ = 0; x̂ ≥ 0; ŝ ≥ 0; ŝ = Âx̂+ ĉ. (23.1)

Proof. (i) If v(AD) <∞, then (AD) is feasible; therefore its dual is feasible
as well. From Corollary19.13, their values are finite and equal. By self-duality,
these values are opposite, hence v(AD) = 0.

(ii) If x̂ ≥ 0 and ŝ ≥ 0, x̂ŝ = 0 is equivalent to x̂>ŝ = 0. Eliminating
ŝ = Âx̂+ ĉ, the linear complementarity problem (23.1) is thus equivalent to

x̂>(Âx̂+ ĉ) = 0; x̂ ≥ 0; Âx̂+ ĉ ≥ 0.

Since A is skew-symmetric, this is in turn

x̂>ĉ = 0, x̂ ≥ 0, Âx̂+ ĉ ≥ 0.

We have seen that if (AD) is feasible, v(AD) = 0. Hence x ∈ S(AD) if
and only if c>x = 0 and x ∈ F (AD), wich amounts to the above relation.

To finish, let us check that (23.1) is monotone: if v = Âu, then v>u =
u>Âu = 0.
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Remark 23.2. If ĉ ≥ 0, then x̄ := 0 is feasible and ĉ>x̄ = 0, hence
v(AD) = 0 and S(AD) contains 0. However, computing a strictly comple-
mentary solution is not trivial and we will see later that this is the type of
solution that is interesting.

23.2.2 Embedding in a Self-Dual Problem

Take again a general linear problem, written in the following format:

Min
x
c>x; Ax ≥ b, x ≥ 0 (LP )

where A is p× n, as well as the dual problem which is

Max
y

b>y; A>y ≤ c; y ≥ 0.

We know that (x, y) is a primal-dual solution if and only if x is feasible
for the primal, y for the dual, and b>y ≥ c>x. In other words, (x, y) solves
the system 




Ax − bτ ≥ 0,
− A>y + cτ ≥ 0,
b>y − c>x ≥ 0,
y ∈ R

p
+, x ∈ R

n
+, τ ∈ R+.

when τ = 1. If this homogeneous system has a solution (x, y, τ) with x ≥ 0,
y ≥ 0 and τ > 0, then (x/τ, y/τ) is a primal-dual solution of (LP ).

Let us formulate a problem close to the previous one, but for which we
have a feasible point. This new problem has now an auxiliary variable θ,
introduced as follows. Let (x0, y0, s0, u0) satisfy:

x0 ∈ R
n
++, s

0 ∈ R
n
++, y

0 ∈ R
p
++, u

0 ∈ R
p
++,

with which we associate the parameters (c̄, b̄, α, β) defined as follows:





b̄ := b−Ax0 + u0, c̄ := c−A>y0 − s0, α := c>x0 − b>y0 + 1,

β := α+ b̄>y0 − c̄>x0 + 1 = (y0)>u0 + (x0)>s0 + 2 > 0.

The interpretation of these variables is the following:
x0, y0 estimates the primal-dual solution,
u0, s0 estimates the gap (Ax0 − b, A>y0 − c).

Note that
if x0 is feasible for the primal: s0 = Ax0 − b⇒ b̄ = 0,
if y0 is feasible for the dual: u0 = c−A>y ⇒ c̄ = 0.

Consider the linear problem
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Min
y,x,θ,τ

βθ;





Ax + b̄θ − bτ ≥ 0,
− A>y − c̄θ + cτ ≥ 0,
− b̄>y + c̄>x − ατ ≥ −β,
b>y − c>x + αθ ≥ 0,

y ∈ R
p
+, x ∈ R

n
+, θ ∈ R+, τ ∈ R+ .

(AD)
Its constraint matrix is skew-symmetric and its positive cost is opposite

to the right-hand side term. It is therefore self-dual and has 0 value. Besides,
the point

(y0, x0, θ0 := 1, τ0 := 1)

is feasible for (AD). Incidentally, note that we obtain the format (AD), by
setting

Â :=




0 A b̄ −b
−A> 0 −c̄ c
−b̄> c̄> 0 −α
b> −c> α 0


 , x̂ :=




y
x
θ
τ


 , ĉ :=




0
0
β
0


 .

The dual variable associated with this starting point is

ŝ0 = Âx̂0 + ĉ =




u0

s0

1
1


 .

Taking (x0, y0, u0, s0) with all components equal to 1, the point (x̂, ŝ) is
therefore on the central path of problem (23.1), associated with µ0 = 1.
The problem can therefore be solved by a feasible path-following algorithm,
applied to problem (23.1), of the type described in Chap. 21, which converges
in O(

√
nL̄) iterations. There remains to know how to use the solution thus

obtained.

Lemma 23.3. Let (ȳ, x̄, θ̄, τ̄) solve (AD). Then θ̄ = 0. Besides:
(i) If τ̄ > 0, then (x̄/τ̄ , ȳ/τ̄) is a primal-dual solution of (LP ).
(ii) If τ̄ = 0 and if (ȳ, x̄, θ̄, τ̄ ) is strictly complementary, then b>ȳ > 0 or
c>x̄ < 0 (or both). In the first case, the primal problem is infeasible. In the
second, the dual is infeasible.

Proof. From v(AD) = 0 = βθ̄ and β > 0, we deduce that θ̄ = 0. If τ̄ > 0,
set (y∗, x∗) := (ȳ, x̄)/τ̄ . Reviewing one by one the constraints of (AD), we
obtain

Ax∗ − b ≥ 0 primal feasibility,
−A>y∗ + c ≥ 0 dual feasibility,
b>y∗ − c>x ≥ 0 dual larger than primal cost.

This implies that (x∗, y∗) is a primal-dual solution of the original problem.



23.3 Linear Problems in Standard Form 429

On the other hand, if τ̄ = 0, it holds that

Ax̄ ≥ 0; −A>ȳ ≥ 0; b>ȳ ≥ c>x̄,

and the last inequality is strict for a strictly complementary solution (for it
is associated with the variable τ̄ = 0). Then b>ȳ > 0 or c>x̄ < 0. In the first
case, from −A>ȳ ≥ 0 and b>ȳ > 0 we deduce that the primal is infeasible
(if x is primal-feasible, then x ≥ 0 and Ax ≥ b, hence 0 < b>ȳ ≤ (Ax)>ȳ ≤
x>A>ȳ ≤ 0, a contradiction). In the second case, the dual is infeasible.

In summary, computing a strictly complementary solution of (AD) allows
us either to compute a solution of the original problem, if there is one, (indeed
it is not difficult to check that this solution is itself strictly complementary
for the original problem) or to conclude that the primal and/or the dual is
infeasible.

23.3 Linear Problems in Standard Form

Now we present a theory, similar though slightly more complex, which applies
to problems in standard form.

23.3.1 The Associated Self-Dual Homogeneous System

With the problem in standard form

Min
x∈Rn

c>x; Ax = b; x ≥ 0 (LP )

associate the Lagrangian

c>x− λ>(Ax− b)

which gives birth to the dual problem

Max
λ∈Rp

b>λ; −A>λ+ c ≥ 0. (LD)

We have seen in Chap. 19 that, if x ∈ F (LP ) and λ ∈ F (LD), then
c>x ≥ b>λ, with equality if and only if x ∈ S(LP ) and λ ∈ S(LD). Comput-
ing a primal-dual solution therefore amounts to solving the problem: to find
(x, λ) ∈ R

n
+ × R

p such that





Ax − b = 0,
− A>λ + c ≥ 0,
b>λ − c>x ≥ 0.



430 23 Self-Duality

The above problem can be considered as a linear optimization problem
with 0 cost. In contrast to the previous situations, the system mixes equality
and inequality constraints. Let us homogenize it by introducing a variable
τ ≥ 0:

Min 0;





Ax − bτ = 0,
− A>λ + cτ ≥ 0,
b>λ − c>x ≥ 0.

(λ, x, τ) ∈ R
p × R

n
+ × R+

(LH)

Note that the associated matrix is skew-symmetric.

Lemma 23.4. Problem (LH) is self-dual, and v(LH) = 0. If (x̄, λ̄, τ̄ ) is a
strictly complementary solution of (LH), then
(i) If τ̄ > 0, the point (x̄/τ̄ , λ̄/τ̄) is a primal-dual solution of (LP ).
(ii) If τ̄ = 0, then at least one of the two properties below is satisfied: either
b>λ̄ > 0 and (LP ) is infeasible, or c>x̄ < 0 and (LD) is infeasible.

Proof. Associate with (LH) the Lagrangian (note the sign convention for y)

−y>(Ax− bτ)− s>(−A>λ+ cτ) − ν(b>λ− c>x).

The resulting dual problem writes

Min 0;





As −bν = 0,
−A>y +cν ≥ 0,
b>y −c>s ≥ 0.

(y, s, ν) ∈ R
p × R

n
+ × R+

(LH)

It appears that the dual problem coincides with the primal. In other
words, the homogenized problem (LH) is self-dual. This problem is feasible (0
is a feasible point) hence v(LH) = 0. Point (i) is straightforward. Concerning
(ii), if τ̄ = 0, we have by complementarity b>λ̄ > c>x̄, hence either b>λ̄ > 0 or
c>x̄ < 0. If, for example, b>λ̄ > 0 and x ∈ F (LP ), then 0 < b>λ̄ = (Ax)>λ̄ =
(A>λ̄)>x ≤ 0, hence F (LP ) = ∅, i.e. v(LP ) = +∞; same argument for the
second case.

23.3.2 Embedding in a Feasible Self-Dual Problem

Let us embed (LH) in a problem containing an additional scalar variable,
and for which a feasible point is available. This problem is parameterized by
an arbitrary triple

(x0, λ0, s0) ∈ R
n
++ × R

p × R
n
++,

and the corresponding parameters

b̄ := b−Ax0; c̄ := c−A>λ0 − s0; z̄ := c>x0 − b>λ0 + 1.
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It is formulated as

Min((x0)>s0 + 1)θ;





Ax − bτ + b̄θ = 0,
− A>λ + cτ − c̄θ ≥ 0,
b>λ − c>x + z̄θ ≥ 0,

− b̄>λ + c̄>x − z̄τ = −(x0)>s0 − 1.
(λ, x, τ, θ) ∈ R

p × R
n
+ × R+ × R.

(LHE)

Lemma 23.5.
(i) Problem (LHE) is self-dual and v(LHE) = 0.
(ii) The point (λ0, x0, τ0 := 1, θ0 := 1) is feasible for (LHE).
(iii) If (x̄, λ̄, τ̄ , θ̄) is a strictly complementary solution of (LHE), then
(x̄, λ̄, τ̄ ) is a strictly complementary solution of (LH) (and then Lemma23.4
applies).

Proof. Self-duality is checked by computations similar to those above. Fea-
sibility of (x0, λ0, τ0, θ0) is straightforward. It implies v(LHE) = 0; (i) and
(ii) are proved. Let now (x̄, λ̄, τ̄ , θ̄) be a strictly complementary solution of
(LHE). Since v(LHE) = 0, we have θ̄ = 0, hence the point (x̄, λ̄, τ̄) is feasible
for (LH) and the complementarity relations write

x̄(−A>λ̄+ τ̄ c) = 0 and τ̄ (b>λ̄− c>x̄) = 0.

We recognize the complementarity relations of (LH). These relations being
satisfied strictly, the point (x̄, λ̄, τ̄ ) is indeed a strictly complementary solution
of (LH).

23.4 Practical Aspects

We consider the case of problems in standard form. Set

Â :=




0 A −b b̄
−A> 0 c −c̄
b> −c> 0 z̄
−b̄> c̄> −z̄ 0


 ;

ŝ :=




sλ

sx

sτ

sθ


 ; x̂ :=




λ
x
τ
θ


 ; ĉ :=




0
0
0

(x0)>s0 + 1


 .

Arguing as in Lemma23.1, one checks that (LHE) is equivalent to

xsx = 0; τsτ = 0; sλ = 0; sθ = 0;
ŝ = Ax̂+ c; x ≥ 0, τ ≥ 0, sλ ≥ 0, sτ ≥ 0.
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This problem generalizes the linear complementarity format, because the
sign- and complementarity-constraints involve only a part of the variables.
It can be reduced to a standard linear complementarity problem anyway, by
elimination of λ and θ. This process allows the extension to the framework
of (LHE) of the concept of central path and the associated path-following
algorithms. The equation of the central path is





(
xsx

τsτ

)
= µ1; ŝ = Âx+ ĉ.

x ≥ 0, τ ≥ 0, sλ ≥ 0, sτ ≥ 0.

Note that, if x0 = 1 et s0 = 1, then the initial point is

x̂ =




1
λ0

1
1


 ; ŝ =




0
1
1
0


 .

This point lies on the central path.
Besides, the computation of the path-following direction can be decom-

posed as follows. Let u(λ), u(x), · · · , v(sx), · · · be the directions. Partition
the computation of (u, v) as

sxu(x) + xv(sx) = · · · ,
Au(x) = bu(τ)− b̄u(θ),

−A>u(λ)− v(sx) = −cu(τ) + c̄u(θ).

and

sτu(τ) + τv(sτ ) = · · · ,
b>u(λ)− c>u(x) + z̄u(θ)− v(sτ ) = 0,

−b̄>u(λ) + c̄>u(x)− z̄u(τ) = 0,

where · · · represents a certain quantity, known but depending on the algo-
rithm. With respect to the unknowns (u(x), v(sλ), u(λ)), the first system has
a structure identical to that obtained in a feasible path-following algorithm.
This system can be solved by giving to the parameters (u(τ), u(θ)) the val-
ues (0, 1) and (1, 0), which gives explicitly (u(x), v(sλ), u(λ)) as a function
of (u(τ), u(θ)). Substituting these values in the second system, we obtain a
3-dimensional system giving the values of (u(τ), u(θ)).

Embedding in a self-dual problem thus does not increase the dimension
of the linear systems to solve.

Remark 23.6. Since the computations are actually made in floating-point
arithmetic, the solution obtained for (AD) is by necessity corrupted; so it can
be difficult to check whether it satisfies τ̄ = 0. A rigorous conclusion requires
a purification procedure.
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23.5 Extension to Linear Monotone
Complementarity Problems

We present now a partial extension of the preceding results to linear monotone
complementarity problems. This extension, due to Ye [371], gave birth to
the first non-feasible method converging in O(

√
nL̄) iterations. Consider the

linear monotone complementarity problem (LCP ), written in standard form:





xs = 0,
s = Mx+ q,
x ≥ 0, s ≥ 0,

(23.2)

with M ≥ 0. Choose x0 = 1 and s0 ∈ µ01, µ0 > 0 so that

s0 − (M +M>)x0 ≥ 1 et s0 ≥Mx0 + q.

Set
θ0 := 1, τ0 := 1; κ0 := µ0,

r̄ := s0 −Mx0 − qτ0; z̄ := q>x0 + κ0,

n̄ := (x0)>s0 + τ0κ0 − (x0)>Mx0 > 0.

Consider the linear complementarity problem





xs = 0,
τκ = 0,

s
κ
0


 =




M q r̄
−q> 0 z̄
−r̄> −z̄ θ





x
τ
0


+




0
0
n̄




(ELCP )

(x, s, τ, κ) ≥ 0, θ ∈ R.

Then (s0, κ0, x0, τ0, θ0) is an interior feasible point of this quadratic prob-
lem, which is equivalent to a linear monotone complementarity problem in
standard form. In fact, r̄ et z̄ cannot vanish simultaneously, since n̄ > 0.
One can therefore eliminate θ in one of the equations, and one obtains 2n+2
equations; moreover, if (x′, s′, τ ′, κ′, θ′) also satisfies the linear equations, then

(x− x′)>(s− s′) + (τ − τ ′)(κ− κ′) = (x− x′)>M(x− x′) ≥ 0,

hence monotonicity.
Note that, if M is skew-symmetric, the matrix associated with (ELCP ) is

skew-symmetric as well. The problem is then very similar to those previously
studied.

One can also consider (ELCP) as a liner complementarity problem in
standard form. The initial point (x0, s0, τ0, κ0) lies on the central path. It is
therefore possible to solve (ELCP) by a path-following algorithm. However,
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it is possible that θ changes of sign along the iterations. In fact, we have at
the optimum

0 = x>s+ τκ = (x>Mx+ τq>x+ θr̄>x) + (−τq>x+ τ z̄θ)

= x>Mx+ (r̄>x+ τ z̄)θ = x>Mx+ n̄θ.

But x>Mx ≥ and n̄ > 0, hence θ ≤ 0, and θ = 0 if and only if x>Mx = 0.

Then the algorithmic procedure distinguishes two cases:

(i) If a negative value of θ is obtained at some iteration, the stepsize is
reduced to compute a point (x, s, τ, κ) associated with θ = 0. This point
will be feasible for (23.2), and close to the central path. The original
problem can then be solved by a feasible-point algorithm.

(ii) Otherwise, we have θ ↓ 0. Let (x∗, s∗, τ∗, κ∗) be a cluster-point of
(xk , sk, τk , κk). If τ∗ > 0 then (x∗/τ∗, s∗/τ∗) solves (23.2). If not, and
if the solution is strictly complementary, we have κ∗ > 0, hence

s∗ = Mx∗ ≥ 0 and q>x∗ < 0.

But

0 = (s∗)>x∗ = (x∗)>Mx∗ =
1

2
(x∗)>(M +M>)x∗.

The matrix M+M> is symmetric positive semi-definite. The above rela-
tion implies that x∗ is in its kernel, hence M>x∗ = −Mx∗ ≤ 0. Let now
x ∈ F (LCP ). Then

0 ≤ (x∗)>(Mx+ q) = x>M>x∗ + q>x∗ < 0,

a contradiction. We conclude that (LCP ) is infeasible.

Let us summarize the above results. As seen in Lemma 20.6, a linear
complementarity problem can be written in standard form (in O(n3) opera-
tions). The latter can be solved by a feasible algorithm in O(

√
nL̄) iterations,

through an embedding in a self-dual problem.

23.6 Comments

The present theory for inequality-constrained problems is taken from Jansen,
Roos and Terlaky [199]. The theory for problems in standard form is due to
Ye, Todd and Mizuno [372]. The extension to the framework of monotone
complementarity was made by Ye [371].

Self-duality is an elegant and efficient way of fixing the question of choos-
ing a starting point. In fact, non-feasible algorithms of the type of Chap. 22
have a complexity of at best O(nL̄) iterations. Besides, the tests reported in
Xu, Hung, and Ye [369] clearly assess the efficiency of the self-dual method,
at least for linear programming. As for quadratic programming, it seems that
much remains to be done.
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24.1 Overview

In the predictor-corrector algorithms studied so far, the moves aimed at im-
proving centralization are clearly separated from those allowing a reduction
of the parameter µ. It is tempting to consider algorithmic families in which
the same move reduces µ while controlling centralization.

Section 24.2 presents two feasible algorithms, based on the following idea.
In the case of small neighborhood Vα, with α ≤ 1/2, we know that the
centering step yields a very well-centered point wc. This suggests a search of
the new point on the segment [wc, wa]. To obtain a maximal reduction of µ,
the point of [wc, wa]∩ Vα closest to wa is chosen. This point lies on the edge
of Vα. Such a largest-step algorithm therefore computes at each iteration the
value of one single scalar parameter, as in the predictor-corrector algorithm.
The complexity remains unchanged: O(

√
nL). If a strictly complementary

solution exists, and if α ≤ 1/4, the sequence of points converges, which
implies that the optimality measure converges superlinearly.

Then we present a variant, called largest-step algorithm with safeguard ,
which works in the neighborhood Vα, for α ≤ 1/2. The modification of the
algorithm lies in the possibility of performing centering moves. The algo-
rithm still has complexity O(

√
nL). If there exists a strictly complementary

solution, there are only finitely many centering moves (so, after some itera-
tion, the operations become identical to those of the largest-step algorithm)
and the optimality measure converges superlinearly. The advantage over the
previous algorithm is that these properties hold in the neighborhood V1/2.
Convergence of the sequence of points still holds, but as a consequence of
specific estimates.

Section 24.3 is devoted to results of general interest, concerning conver-
gence of the sequence of points computed by path-following algorithms. After
discussing the problem of centering the large variables, it is shown that, in
the neighborhood V1/4, the first-order estimate of the centering step decreases
the logarithmic potential associated with the large variables. It follows that,
under strict complementarity assumption, the sequence of points converges
for any small-neighborhood algorithm (α ≤ 1/4) for which {µk} converges
linearly. Finally, we give estimates of the relative distances in the space of
large variables.
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The proofs of the main results are based on previous statements, and are
given in §24.4.

24.2 The Largest-Step Sethod

24.2.1 Largest-Step Algorithm

We recall the notation w = (x, s, µ), wa and wc being the points obtained
after an affine or centering move with a step θ = 1. The idea is to take as
new point the element of the segment [wc, wa] which is closest to wa (so as
to reduce µ) while staying in a small neighborhood of the central path.

Algorithm 24.1. LS (Largest Step)
Data: µ∞ > 0, α ∈ (0, 1/2]; (x0, s0, µ0) ∈ Vα; k ← 0.

repeat
• w ← wk . Compute wc and wa; w(γ) := γwc + (1− γ)wa;

Compute the smallest value γk in ]0, 1[ such that
w(γ) ∈ Vα, ∀ γ ∈ [γk, 1].
wk+1 ← w(γk), k ← k + 1.

until µk < µ∞.

Theorem 24.2. (i) If µ∞ > 0, set L̄ := log(µ0/µ∞). Then Algorithm LS
stops after at most O(

√
nL̄) iterations (more precisely 5α−1

√
n iterations).

(ii) Suppose that (LCP ) has a strictly complementary solution. If α ≤ 1/4
and µ∞ = 0, then the sequence {µk} converges superlinearly to 0.

The proof will be given later in this chapter.

24.2.2 Largest-Step Algorithm with Safeguard

The change in the algorithm lies in the possibility of performing centering
steps. This safeguard step is based on testing the proximity of the point
obtained by taking γ = 0.1. If this proximity is small enough (more precisely
smaller than 0.42) safeguarding does not occur. It does not occur either if the
proximity is larger than 1. Indeed, if there exists a strictly complementary
solution, it can be proved that, after finitely many iterations, this condition
is never satisfied. The algorithm is then as follows:

Algorithm 24.3. SLS (Safeguarded Largest Step)
Data: µ∞ > 0, α ∈ (0, 1/2]; (x0, s0, µ0) ∈ Vα; ε > 0, k ← 0.

repeat
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• w ← wk ; Compute wc and wa.
Safeguard: If δ(0.1wc + 0.9wa) ∈ [0.42, 1] do: w ← wc; compute wc

and wa.
w(γ) := γwc + (1− γ)wa;
Compute the smallest value γk in ]0, 1[ such that
w(γ) ∈ Vα, ∀ γ ∈ [γk, 1].
wk+1 ← w(γk); k ← k + 1.

until µk < µ∞.

Theorem 24.4. (i) If µ∞ > 0, set L̄ := log(µ0/µ∞). Then Algorithm SLS
stops after at most O(

√
nL̄) iterations (more precisely 5α−1

√
n iterations).

(ii) Suppose that (LCP ) has a strictly complementary solution. If µ∞ = 0,
the safeguard occurs finitely many times and {µk} converges superlinearly to
0.

The proof will be given later in this chapter.

24.3 Centralization in the Space of Large Variables

We state a few lemmas concerning the centralization of large variables; they
will be used to prove Theorems 24.2 and 24.4.

24.3.1 One-Sided Distance

Our analysis supposes that S(LCP ) is nonempty. The partition (B,N, T ) was
defined in Chap. 20. In the sequel we assume (LCP ) to be in canonical form,
i.e. N = ∅. This can be done without loss of generality, since this algorithm
is invariant with respect to the corresponding transformation. We define the
proximity measure of the large variables as follows:

δB(x) := ‖PQBXB1‖.

Let us motivate this quantity by relating it to the problem of centering the
large variables, stated as

Min
xB

π(xB); QBxB = h−QTxT −Rs.

The solution of this problem is called the analytic center of the correspond-
ing feasible set. (The analytic center of the set of solutions of (LCP ) was
discussed in Chap. 20, and is the solution of the above problem when xT = 0
and s = 0.) The Newton direction dNewton associated with this problem,
computed at the point x, is the solution of

Min
d
−d>x−1

B +
1

2
d>X−2

B d; QBd = 0.
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The unique solution of this strictly convex problem is characterized by

X−2
B dNewton − x−1

B ∈ R(Q>
B); QBdNewton = 0,

or also

x−1
B dNewton ∈ 1 +R((QBXB)>); QBXB(x−1

B dNewton) = 0,

i.e. x−1
B dNewton = PQBXB1. In other words, δB(x) := ‖x−1

B dNewton‖ is a
weighted measure of the norm of the Newton direction dNewton.

The next lemma links the proximity measure δ with the proximity measure
of the large variables:

Lemma 24.5. Take (x, s, µ) ∈ Vα. Then δB(x) ≤ δ(x, s, µ) =

∥∥∥∥
xs

µ
− 1

∥∥∥∥.

Proof. By definition of an orthogonal projection, we have that

δB(x) = ‖PQBXB1‖ = min{‖1− z‖} z ∈ R(XQ>).

Take (x∗, s∗) ∈ S(LCP ). From Q(x − x∗) + Rs = 0, we deduce from
Lemma 20.11 that R(XBQ

>
B) 3 sBxB/µ, hence the conclusion.

Set

d̄ :=
√
µxB/sB ; Q̃ := QBD̄; Q̂ := QBXB ;

uc
P := d̄PQ̃φ

−1
B ; dNewton := xBPQ̂1.

In view of Lemma20.9, we have that d ≈ 1 in Nε. On the other hand
(Lemma 20.12)

u = γuc
P +O(

√
µ) and v = O(

√
µ);

if T = ∅, then u = γuc
P +O(µ) and v = O(µ).

Accordingly, we will call uc
P the linear estimate of the centering step. The re-

sult below shows that, in the neighborhood V1/4, u
c
P decreases the logarithmic

potential associated with the large variables.

Proposition 24.6. If (x, s) ∈ Vα, with α ≤ 1/4, then

π(xB + uc
P ) ≤ π(xB)− 6

100‖dNewton‖2.
Let us first prove some lemmas. The first one is due to Gonzaga and Tapia

[176].

Lemma 24.7. Let g ∈ R
n satisfy ‖g − 1‖∞ ≤ α, with α ∈ (0, 1). Set

G = diag(g), ĥ = PAq, h = gPAG(gq).

Then

‖h− ĥ‖ ≤ α(1 + α)
2− α
1− α‖ĥ‖.
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Proof. The relation ĥ = PAq implies q ∈ ĥ + R(AT ), hence gq ∈ gĥ +
R((AG)T ), and therefore

g−1h = PAG(gq) = PAG(gĥ).

Since g−1ĥ ∈ N (AG), we have g−1(h− ĥ) = PAG[(g − g−1)ĥ]. Whence

‖g−1(h− ĥ)‖ = ‖PAG(g − g−1)ĥ‖ ≤ ‖(g − g−1)ĥ‖ ≤ ‖g − g−1‖∞‖ĥ‖.

As a result

‖h− ĥ‖ ≤ ‖g‖∞‖g−1(h− ĥ)‖ ≤ ‖g‖∞‖g−1 − g‖∞‖ĥ‖.

Finally

‖g‖∞‖g−1 − g‖∞ ≤ (1 + α)

(
1

1− α − (1− α)

)
= α(1 + α)

2− α
1− α,

and the conclusion follows.

Let us now give a useful bound on the variation of π in a neighborhood
of 1.

Lemma 24.8. Take h ∈ R
n, ‖h‖ < 1. Then

π(1 + h) ≤ −1>h+
‖h‖2

2
+

1

3

‖h‖3
1− ‖h‖ .

In particular, if ‖h‖ ≤ 1/2, then

π(1 + h) ≤ −1>h+ ‖h‖2.

Proof. Since |hi| < 1, we have

− log(1 + hi) = −hi +
(hi)

2

2
− (hi)

3

3
+

(hi)
4

4
+ · · · ,

≤ −hi +
(hi)

2

2
+
|hi|3

3

(
1 +

3

4
|hi|+

3

5
|hi|2 + · · ·

)
,

≤ −hi +
(hi)

2

2
+
|hi|3

3
(1 + |hi|+ |hi|2 + · · · ),

= −hi +
(hi)

2

2
+

1

3

|hi|3
1− |hi|

,

hence, summing up the components,

π(1 + h) = −1>h+
‖h‖2

2
+

1

3

n∑

i=1

|hi|3
1− |hi|

.
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But |hi| ≤ ‖h‖, therefore

n∑

i=1

|hi|3
1− |hi|

≤
n∑

i=1

‖h‖
1− ‖h‖|hi|2 =

‖hi‖3
1− ‖h‖ ,

hence the first result. If ‖h‖ ≤ 1/2, then

‖h‖2
2

+
1

3

‖h‖3
1− ‖h‖ ≤

‖h‖2
2

+
1

3

1
2 × ‖h‖2
1− 1

2

=
5

6
‖h‖2,

hence the conclusion.

Proof of Proposition 24.6 First apply Lemma24.7 with

g := d̄x−1
B = φ−1

B , q := 1, A := Q̂ = QBXB.

We then have AG = QBD̄ = Q̃, and therefore

ĥ = PAq = PQ̂1 = x−1
B dNewton, h = gPAG(gq) = d̄x−1

B PQ̃φ
−1
B = x−1

B uc
P .

Since (x, s, µ) ∈ Vα, we have ‖φ2 − 1‖∞ ≤ ‖φ2 − 1‖ ≤ 1
4 , and therefore

3

4
1 ≤ φ2 ≤ 5

4
⇒ 2√

5
1 ≤ φ−1 ≤ 2√

3
1.

As a result,

‖φ−1
B − 1‖∞ ≤ max(1− 2√

5
,

2√
3
− 1) =

2√
3
− 1 <

155

1000
.

Applying Lemma 24.7, we obtain ‖h−ĥ‖ ≤ 4
10‖ĥ‖. Lemma 24.5 implies ‖ĥ‖ =

δB(x) ≤ 1/4, and thus ‖h‖ ≤ 0.35. Using

π(x+ l)− π(x) = π(1 + x−1l) = π(1 + h)

and ‖h‖ < 1, we have with Lemma 24.8

π(x+ l)− π(x) ≤ −1>h+
‖h‖2

2
+

1

3

‖h‖3
1− ‖h‖ .

Now 1>ĥ = 1>PQ̂1 = ‖PQ̂1‖2 = ‖ĥ‖2, hence, setting z := h− ĥ:

π(x+ l)− π(x) ≤ −‖ĥ‖2 − 1>z +
‖ĥ‖2 + ‖z‖2 + 2ĥ>z

2
+

1

3

‖h‖3
1− ‖h‖ ,

= −‖ĥ‖
2

2
+ (ĥ− 1)>z +

‖z‖2
2

+
1

3

‖h‖3
1− ‖h‖ .
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Let us check that (ĥ−1)>z = 0. Since ĥ = PQ̂1, we have ĥ−1 ∈ R(Q̂>).

To conclude, we show that z ∈ R(Q̂>)⊥ = N (Q̂). Indeed

Q̂z = Q̂(h− ĥ) = Q̂φ−1
B PQ̃(φ−1

B )− Q̂PQ̂1 = Q̃PQ̃(φ−1
B ) = 0.

Using ‖z‖ = ‖h− ĥ‖ ≤ 4
10‖ĥ‖ we deduce

π(x+ l)− π(x) ≤ −‖ĥ‖
2

2
+
‖z‖2

2
+

1

3

‖h‖3
1− ‖h‖ ,

≤
(
−1

2
+

0.16

2
+

1

3

‖h‖
1− ‖h‖

‖h‖2
‖ĥ‖2

)
‖ĥ‖2.

Combining with ‖ĥ‖ ≤ 1/4 and ‖h‖ ≤ 0.35, we obtain the conclusion.

The next result gives characterizations of convergence to the analytical

center of S(LCP ). Set d̄k :=
√
µxk

B/s
k
B and

Q̃k := QBD̄
k; Q̂k := QBX

k
B ; uc,k

P := d̄kPQ̃k (φk
B)−1; dk

Newton := xk
BPQ̂k1.

(24.1)

Lemma 24.9. Take {(xk, sk, µk)} ∈ Nε such that µk → 0. Then the fol-
lowing properties are equivalent: (i) xk

B → x∗, (ii) π(xk
B) → π(x∗B), (iii)

dk
Newton → 0, (iv) uc,k

P → 0, (v) (uc)k → 0.

Proof. It is easy to see that (i)⇒(ii) (continuity of π(xB) at x∗B), that
(ii)⇒(iii) (the Newton direction in the large-variable centering problem tends
to 0 at the optimum x∗B , because the Hessian of π is invertible there), and
that (iv)⇔(v) (Lemma 20.12). It therefore suffices to show (iii)⇒(iv)⇒(i).

Suppose (iii) holds. Extracting a subsequence if necessary, we can assume
xk → x̄B and x̄B > 0 (Lemma 20.10). Hence dk

Newton → 0 if and only if

PQ̂k1 → 0, i.e. 1 ∈ R((Q̂k)>) + o(1), and therefore (φk
B)−1 = d̄k(xk

B)−1 ∈
R((Q̃k)>) + o(1), hence PQ̃k (φk

B)−1 = o(1). Since d̄k ≈ 1, we deduce that

uc,k
P → 0, which is (iv).

Suppose (iv) holds. Again we can assume xk → x̄B > 0. Using similar
arguments as above, we check that (xk

B)−1 ∈ R(Q>) + o(1). Passing to the
limit, we get (x̄B)−1 ∈ R(Q>), hence x̄ = x∗, which proves that xk → x∗,
hence (i).

24.3.2 Convergence with Strict Complementarity

Consider a sequence {(xk, sk)} fitting the general framework of primal-dual
algorithms (Chap. 21):
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(xk+1, sk+1) = (xk , sk) + θk(uk, vk),

with θk ∈ [0, 1], γk ∈ [0, 1], and (uk, vk) solving the Newton equations asso-
ciated with the central-path equation:

{
skuk + xkvk = γkµk1− xksk,
Quk +Rvk = 0,

Suppose {µk} summable:
∑

k µk < +∞ (this property has been established
for predictor-corrector algorithms; we will check it for largest-step algo-
rithms). The next theorem shows that, in the neighborhood V1/4, convergence
of the sequence is guaranteed. This result will allow us too check that the
largest-step algorithm in V1/4, to be described later, converges superlinearly.

Theorem 24.10. Suppose strict complementarity holds. If {µk} is summable,
and if {(xk, sk)} ⊂ Vα, with α ≤ 1/4, then {(xk, sk)} converges to a strictly
complementary solution (x∗, s∗). If

∑∞
k=0 θkγk = +∞, this solution is the

analytic center of S(LCP ).

Proof. By Lemma 20.12), uk = θkγku
c,k
P + O(µk). Since {uc,k

P } is bounded
in Vα and µk is summable, {xk} converges when

∑∞
k=1 θkγk < +∞. There

remains to prove that, when
∑∞

k=1 θkγk = +∞, the sequence {xk} converges
to the analytic center of the optimal face. From Lemma24.9, it suffices to
show that π(xk) converges to π(x∗). Using Proposition24.6, the fact that
θkγk ∈ [0, 1], and convexity of π, we have

π(xk + θkγku
c,k
P ) ≤ π(xk)− 6

100θkγk‖dk
Newton‖2.

The function π is Lipschitz-continuous in Vα, hence

π(xk+1) ≤ π(xk)− 6
100θkγk‖dk

Newton‖2 +O(µk). (∗)

A first consequence of this inequality is that

π(xk) ≤ π(xk0

) +O




k∑

j=k0

µj


 , ∀k0 ∈ IN, k > k0,

and therefore, since µk is summable,

lim supπ(xk) ≤ π(xk0

) +O




∞∑

j=k0

µj


 ⇒ lim supπ(xk) ≤ lim inf π(xk),

so that π(xk) converges. On the other hand, since π is bounded from below
on Nε, we deduce from (∗), using summability of µk, that

∞∑

k=1

θkγk‖dk
Newton‖2 <∞.
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Since
∑∞

k=1 θkγk =∞, a subsequence {xk}k∈K satisfies limk∈K ‖dk
Newton‖2 =

0. From Lemma 24.9, {xk}k∈K → x∗. Since the whole sequence π(xk) con-
verges, this implies that the sequence {xk} converges to the analytic center
of the optimal face, which was to be proved.

24.3.3 Convergence without Strict Complementarity

Proposition24.6 can also be applied to the analysis of predictor-corrector
algorithms in the neighborhood V1/4. Convergence of the sequence to the
analytic center of the optimal face follows, without the strict complementarity
assumption.

Proposition 24.11. The predictor-corrector algorithm PC (presented in
21.3) in the neighborhood V1/4 produces a sequence converging to the ana-
lytic center of S(LCP ).

Proof. Define uc,k
P and dk

Newton as in (24.1). From Lemma20.12, we have

uc
B = uc,k

P +O(
√
µk); ua = O(

√
µk).

Using the fact that π(xB) is Lipschitz-continuous in Vα, and combining with
Proposition24.6, we get

π(xk
B + uc

B) ≤ π(xk
B)− 6

100‖dk
Newton‖2 +O(

√
µk).

The affine move having size O(
√
µ), we have

π(xk+1
B ) ≤ π(xk

B)− 6
100θkγk‖dk

Newton‖2 +O(
√
µk).

Take ε > 0. From Lemma24.9, there exists ν > 0 such that we have (for k
large enough)

‖dk
Newton‖2 ≥ ν if π(xk) ≥ π(x∗B) + ε.

For k large enough, we will have

π(xk+1
B ) ≤ π(xk

B)− 6
100θkγk‖dk

Newton‖2 + min(ε, 1
100ν).

Depending whether π(xk
B) ≤ π(x∗B) + ε or not, we deduce that

π(xk+1
B ) ≤ max

(
π(x∗B) + 2ε, π(xk

B)− 5
100ν

)
.

As long as π(xk
B) > π(x∗B)+2ε, therefore, the values of π(xk

B) decrease down
to a value smaller than π(x∗B) + 2ε; afterwards, π(xk

B) never increases above
this value. Since ε was arbitrary, we deduce that π(xk

B)→ π(x∗B). Lemma24.9
implies the conclusion.
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24.3.4 Relative Distance in the Space of Large Variables

The technical points below will be useful for the largest-step algorithm with
safeguard. Recall that the point on the central path associated with µ > 0
is denoted by wµ = (xµ, sµ, µ). The following concept will be useful. Take
(x, s) ∈ F (LCP ). The relative distance in the x-space is

dist(x, µ) =

∥∥∥∥
x− xµ

xµ

∥∥∥∥ . (24.2)

The relative distance in the s-space is defined likewise. Since xµsµ = µ1, an
equivalent expression is

dist(x, µ) =

∥∥∥∥
xsµ

µ
− 1

∥∥∥∥ . (24.3)

The lemma below (see Gonzaga and Bonnans [175]) links relative dis-
tances and proximity measure.

Lemma 24.12. Let w = (x, s, µ) ∈ F (LCP ) be such that δ(w) =

∥∥∥∥
xs

µ
− 1

∥∥∥∥
is smaller than

√
2/2. Then

dist(x, µ) + dist(s, µ) ≤
√

2

(
1−

√
1−
√

2δ(w)

)
.

Proof. Set

dx :=
x− xµ

xµ
; ds :=

s− sµ

sµ
; δ = δ(w).

We can write
x = xµ(1 + dx), s = sµ(1 + ds).

The relative distance in the x-space is, using dx>ds ≥ 0:

dist(x, µ) = ‖dx‖ ≤ ‖dx+ ds‖.

The proximity measure to the central path satisfies

δ =

∥∥∥∥
xs

µ
− 1

∥∥∥∥ =
∥∥∥ x
xµ

s

sµ
− 1
∥∥∥ = ‖dx+ ds+ dxds‖.

In view of Mizuno’s Lemma 20.24, we have ‖(dx)(ds)‖ ≤ ‖dx+ds‖2/
√

8, and
therefore

δ ≥ ‖dx+ ds‖ − ‖(dx)(ds)‖ ≥ ‖dx+ ds‖ − ‖dx+ ds‖2/
√

8.

Set z = ‖dx+ ds‖. Then

z2 −
√

8z +
√

8δ ≥ 0.
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The solutions of this equation are z =
√

2
(
1±

√
1−
√

2δ
)
. Since δ ≤

√
2/2,

these solutions are real. The inequality is satisfied for

z =
√

2

(
1−

√
1−
√

2δ

)
≤
√

2 or z =
√

2

(
1 +

√
1−
√

2δ

)
>
√

2.

(24.4)
Since dist(x, µ)+dist(s, µ) = ‖dx‖+‖ds‖ ≤ z, it suffices to check that, when
δ(w) ≤

√
2/2, we have ‖dx+ ds‖ ≤

√
2.

We argue by contradiction. Let w̃ ∈ F (LCP ) be such that δ(w̃) ≤
√

2/2
and ‖d̃x+ d̃s‖ >

√
2.

The mapping x, s ∈ F 0 7→ δ2(x, s, µ̃) is smooth and attains its minimum
at a unique point (xµ̃, sµ̃). Construct a smooth curve α 7→ (x(α), s(α)) in F 0,
linking (x̃, s̃) and (xµ̃, sµ̃), along which δ(x(α), s(α), µ̃) decreases strictly. It
suffices to integrate the differential equation

d

dt
(dx, ds) = (u(x, s), v(x, s))

where (u(x, s), v(x, s)) is the centering direction at (x, s). Then

d

dt
δ(x, s, µ̃) =

2

µ̃

(
xs

µ̃
− 1

)>
(su(x, s) + xv(x, s)) = −2δ(x, s, µ̃),

so that δ(x, s, µ̃) decreases exponentially along the trajectory. Since ‖d̃x +
d̃s‖ >

√
2 and ‖dxµ̃ + dsµ̃‖ = 0, there is a point (x̂, ŝ) on the curve such that

δ(x̂, ŝ, µ̃) <
√

2/2 and z = ‖d̂x+ d̂s‖ =
√

2. This contradicts (24.4).

24.4 Convergence Analysis

24.4.1 Global Convergence of the Largest-Step Algorithm

Recall that, if w = (x, s, µ) is the current point of the largest-step algorithm,
then w] = (x], s], µ]) and δ] make up the point obtained after one iteration
of the algorithm and the associated proximity. From 21.2.2, we have δ] =
1

γµ
‖uv‖. Set

d :=

√
x

s
, ū := d−1u, v̄ := dv.

Then

ū+ v̄ = d−1u+ dv =
1√
xs

(su+ xv) =
1√
xs

(γµ1− xs) =
γµ√
xs
−√xs.

Since ū>v̄ = u>v ≥ 0, by Mizuno’s Lemma20.24,
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δ] =
1

γµ
‖uv‖ =

1

γµ
‖d−1udv‖ =

1

γµ
‖ūv̄‖ ≤ 1

γµ
√

8
‖ū+ v̄‖2,

=
1

γµ
√

8

∥∥∥∥
γµ√
xs
−√xs

∥∥∥∥
2

=
1

γ
√

8

∥∥∥∥(γ − 1)

√
µ

xs
+

√
µ

xs
−
√
xs

µ

∥∥∥∥
2

,

≤ 1

γ
√

8

(
(γ − 1)

∥∥∥∥
√

µ

xs

∥∥∥∥+

∥∥∥∥
√

µ

xs
−
√
xs

µ

∥∥∥∥
)2

.

Using ∥∥∥∥
√

µ

xs

∥∥∥∥ ≤
√
n

∥∥∥∥
√

µ

xs

∥∥∥∥
∞
≤
√

n

1− α
and ∥∥∥∥

√
µ

xs
−
√
xs

µ

∥∥∥∥ ≤
∥∥∥∥
√

µ

xs

∥∥∥∥
∞

∥∥∥∥
xs

µ
− 1

∥∥∥∥ ≤
α√

1− α,

we get for α ≤ 1/2

δ] ≤ 1

γ(1− α)
√

8
[(1− γ)√n+ α]2 ≤ 1

γ
√

2
[(1− γ)√n+ α]2.

We analyze this expression for γ ∈
[

1.2√
2
, 1

]
. Then

1

γ
√

2
≤ 1

1.2
, hence δ] ≤ α

as soon as
[(1− γ)√n+ α]2 ≤ 1.2α,

i.e.

γ ≥ 1−
√

1.2α− α√
n

.

The step γ̄ realizing the equality δ] = α will therefore be at most (using√
1.2α ≥ 1.2α)

γ̄ ≤ max

(
1.2√

2
, 1−

√
1.2α− α√

n

)
≤ max

(
1.2√

2
, 1− α

5
√
n

)
= 1− α

5
√
n
.

We thus obtain global convergence in 5α−1
√
nL̄ iterations.

24.4.2 Local Convergence of the Largest-Step Algorithm

From 21.2.2, since θ = 1, we have γ] =
1

γµ
‖uv‖. Also, using δc =

1

µ
‖ucvc‖

and γ ∈ [0, 1]:

δ] =
1

γµ
‖(γuc + (1− γ)ua)(γvc + (1− γ)va)‖,

=
γ

µ
‖ucvc‖+

1− γ
µ
‖ucva + uavc‖+

(1− γ)2
γµ

‖uava‖,

≤ γδc +
1

µ
‖ucva + uavc‖+

1

γµ
‖uava‖.
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Under strict complementarity, we have proved (Lemmas 20.10 and 20.12) that
ua = O(µ), vc = O(µ) and va = O(µ). On the other hand, we know that
δc ≤ α/2 (Lemma 21.5). Hence

α = δ] ≤ α

2
+O(‖uc‖) +O

(
µ

γ

)
.

Since Theorem24.10 applies, we know that {xk} converges and that, if∑
k γk = +∞, then xk converges to the analytic center of S(LCP ).
Then uc → 0 from Lemma 24.9. We deduce from the above relation that

O

(
µ

γ

)
≥ α

2
+ o(1),

hence γ = O(µ), which was to be proved.

24.4.3 Convergence of the Largest-Step Algorithm with Safeguard

The global convergence analysis follows immediately from that of the largest-
step algorithm. By contrast, the asymptotic analysis requires accurate esti-
mates of the centering of variables. Recall that the point on the central path
associated with µ > 0 is denoted by wµ = (xµ, sµ, µ).

We have seen that, at least in the small neighborhoods, a centering step
considerably reduces the proximity measure. It can therefore be expected that
sc and sµ are close enough to ensure closeness of the quantities dist(x, µ) =
‖xsµ/µ − 1‖ and ‖xsc/µ − 1‖. The following lemma establishes a relation
between these quantities.

Lemma 24.13. Take w ∈ Vα and let wc be the point obtained after a cen-
tering step. Then

∥∥∥∥
xsc

µ
− 1

∥∥∥∥ ≤ dist(sc, µ) + (1 + dist(sc, µ)) dist(x, µ).

Proof. Set sc = sµ(1 + dsc). Then

∥∥∥∥
xsc

µ
− 1

∥∥∥∥ = ‖dx+ dsc + dxdsc‖ ≤ ‖dsc‖+ (1 + ‖dsc‖)‖dx‖.

Since dist(x, µ) = ‖dx‖ and dist(sc, µ) = ‖dsc‖, the conclusion follows.

The next result is a direct application of the previous lemmas. It involves
numerical values which will be useful in the analysis of the algorithms.

Lemma 24.14. (i) If δ(w) ≤ 0.5, we have

dist(x, µ) ≤ 0.65, δ(wc) ≤ 0.177, dist(sc, µ) ≤ 0.1895, ‖xsc/µ− 1‖ ≤ 0.97.
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(ii) If δ(w) ≤ 0.177 (which is the case, when α ≤ 0.5, after centering a point
of Vα), then

dist(x, µ) ≤ 0.1898, δ(wc) ≤ 0.014, dist(sc, µ) ≤ 0.014, ‖xsc/µ−1‖ ≤ 0.206.

(iii) If δ(w) ≤ 0.5 and if dist(x, µ) ≤ 0.2 then ‖xsc/µ− 1‖ ≤ 0.43.

The preceding results do not assume B = {1, · · · , n} and are valid without
strict complementarity. These two properties, however, are necessary for what
follows.

Because x corresponds to large variables, and because the strict com-
plementarity assumption holds, S(LCP ) has an analytic center (x∗, s∗), for
which x∗ ∈ IRn

++ and s∗ = 0. We can define

dist(x, 0) :=

∥∥∥∥
x− x∗
x∗

∥∥∥∥ . (24.5)

Since d
dtx

µ is the affine displacement computed at the point (xµ, sµ, µ), and
the latter is of order µ by Lemma20.12, xµ = x∗ +O(µ). We deduce

dist(x, 0) =

∥∥∥∥
x− xµ +O(µ)

xµ +O(µ)

∥∥∥∥ = dist(x, µ) +O(µ). (24.6)

Lemma 24.15. Take w ∈ Vα and γ ∈ (0, 1]. Then

x]s]

γµ
− 1 = γ

(
xcsc

µ
− 1

)
+ (1− γ)

(
xsc

µ
− 1

)
+
O(µ)

γ
(24.7)

and

δ(w) ≤ 0.1 δ(wc) + 0.9

∥∥∥∥
xsc

µ
− 1

∥∥∥∥+O(µ).

Moreover, the output w̃ of a Newton move with γ = 0.1 satisfies
(i) If δ(w) ≤ 0.5 then δ(w̃) ≤ 0.89 +O(µ).
(ii) If δ(w) ≤ 0.177 then δ(w̃) ≤ 0.19 +O(µ).
(iii) If δ(w) ≤ 0.5 and dist(x, 0) ≤ 0.2 then δ(w̃) ≤ 0.403 +O(µ).

Remark 24.16. The next lemmas use several bounds on µ, like µ̄1, µ̃j , etc.
These quantities are constants depending on problem’s data: (Q,R, h), but
not on the initial point w0.

Lemma 24.17. There exists µ̄1 > 0 such that, if µ ≤ µ̄1, then
(a) during the safeguarding step, we have δ(0.1wc + 0.9wa) < 1;
(b) after safeguard (be it active or not),

δ(0.1wc + 0.9wa) < 0.42 and ‖xsc/µ− 1‖ ≤ 0.49 +O(µ),

(c) when the iteration is complete, x] − x = O(µ) and γ = O(µ).
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Proof. Set w̃ = 0.1wc + 0.9wa. Item (a) follows from Lemma 24.15(i) when
µ ≤ µ̃1.
If the safeguard is not activated, we have δ(w̃) < 0.42 by construction; oth-
erwise, we have after a centering step δ(w) ≤ 0.177 (Lemma 24.14(i)) and
then δ(w̃) ≤ 0.19 + O(µ) (Lemma 24.15(ii)). In either case, δ(w̃) < 0.42 for
µ ≤ µ̃2 ≤ µ̃1. Combining with (24.7), we get when µ ≤ µ̃2,

0.42 ≥ −0.1 δ(wc) + 0.9

∥∥∥∥
xsc

µ
− 1

∥∥∥∥+O(µ).

But δ(wc) ≤ 0.177 by Lemma24.14(i), and therefore ‖xsc/µ− 1‖ ≤ 0.487 +
O(µ), hence (b).

There remains to prove (c). From (b), we have that

0.5 = δ(w) ≤ γδ(wc) + (1− γ)
∥∥∥∥
xsc

µ
− e
∥∥∥∥+

O(µ)

γ
,

≤ 0.177γ + 0.49(1− γ) +O(µ)/γ,

≤ 0.49 +O(µ)/γ.

This implies γ = O(µ), hence the result.

Lemma 24.18. There exists µ̄ > 0 such that the safeguard is activated at
most once when µk ≤ µ̄.

Proof. It suffices to check that, if the safeguard is activated once, the hy-
pothesis of point (iii) of Lemma 24.15 applies. In that case, the safeguard is
never activated again when µk is small enough.

By Lemma24.14, xk+1 = xk +O(µk). Therefore,

dist(xk+1, 0) =

∥∥∥∥
xk +O(µk)

x∗
− 1

∥∥∥∥ =

∥∥∥∥
xk

x∗
− 1

∥∥∥∥+O(µk)

= dist(xk, 0) +O(µk).

As a result
dist(xk+1, 0) ≤ dist(xk, 0) +O(µk). (24.8)

On the other hand, let k be an iteration at which the safeguard is activated,
and let k̄ > k be the first iteration at which it is activated again. From
Lemma 24.14(ii), we have after centering

dist(xk , 0) ≤ 0.19 +O(µk).

Combining with Lemma 24.17(c), we obtain for k̄ > k

dist(xk̄ , 0) ≤ 0.19 +O(µk) +K

k̄−1∑

j=k

µj .
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Since {µk} converges linearly to 0, we have that
∑∞

j=k µj = O(µk), so that

dist(xk̄ , 0) ≤ 0.19 +O(µk).

If µk is small enough, namely µk ≤ µ̄ ≤ µ̃1, then dist(xk̄, 0) < 0.2. Thus, the
safeguard cannot be activated at iteration k̄, and the conclusion follows.

24.5 Comments

The largest-step method is due to McShane [251]. The convergence analysis
of the large variables in the neighborhood V1/4, which produces superlinear
convergence, is due to Bonnans and Gonzaga [44]. Gonzaga [174] shows that
the safeguarding mechanism allows a convergence analysis in V1/2. Finally,
Gonzaga and Bonnans [175] have established estimates of the relative dis-
tance, and have studied a modified method, in which each iteration is made
up of several displacements, computed with the same Jacobian. A super-
quadratically convergent algorithm is then obtained.

Extensions to the large neighborhood have not been studied. The study of
Algorithm21.9 has established that, if w ∈ Nε, then w+(ε3/4n)(wc−w) lies
in the interior of Nε. An algorithm can therefore be stated, in which the new
point is searched on the segment [w + (ε3/4n)(wc − w), wa]. This algorithm
might well have an O(nL̄) complexity; but its superlinear convergence seems
more difficult to establish.



25 Complexity of Linear Optimization

Problems with Integer Data

25.1 Overview

The aim of complexity theory is to evaluate the minimal number of operations
required to compute a solution of a given problem (and to determine the
corresponding algorithm). This theory is far from being closed, since the
answer is not known even for solving a linear system Ax = b, with A a matrix
n×n invertible: classical factorization methods have an O(n3) complexity but
certain fast algorithms have an O(nα) complexity, with α < 2.5; the minimal
value of α (proved to be larger than 2) is still unknown (see Coppersmith
and Winograd [87]).

Furthermore, the available complexity estimates are only upper bounds of
the number of operations to be performed in the worst case; they do not nec-
essarily reflect the actual behavior of algorithms. Despite these weaknesses,
complexity theory has been a main instigator for algorithmic research; so it
is useful to know its general concepts, in order to read the literature. We
will present the basis of complexity theory for the linear problem in standard
form

Min
x∈Rn

c>x; Ax = b, x ≥ 0 (LP )

(with b ∈ R
p), when the components of (A, b, c) are integers. Rational compo-

nents of (A, b, c) can be reduced to this case via an appropriate scaling. This
theory gives an upper bound of ‖x‖ and of c>x on the feasible set F (LP ),
as well as a lower bound of (c>x− v(LP )) when x is a non-optimal extreme
point of the feasible set. It also gives a so-called purification process which,
starting from a point x ∈ F (LP ) “almost” optimal, allows the computation
of a solution of (LP ) in O(n3) operations. Combining these results with the
estimates of speed of convergence for specific algorithms, one deduces the
number of iterations (barring purification, which is cheap) required by these
algorithms to yield an exact solution of a linear problem.
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25.2 Main Results

25.2.1 General Hypotheses

In this chapter, we will assume that (i) A has rank p ≤ n (eliminating depen-
dent equalities, any problem can be reduced to this case), (ii) the feasible set
F (P ) is nonempty and bounded, (iii) the components of (A, b, c) are integers.

25.2.2 Statement of the Results

We define the following amounts:

– ` is the total number of bits required to encode (A, b, c); it is the amount
of memory necessary to store (A, b, c),

– L := `+ n+ 1 is the length of (LP ).

Let E be a convex subset of R
n. We say that x is an extreme point of E if

x ∈ E and if x is an endpoint of every segment contained in E and containing
x; in other words

x ∈ E ; if y, z ∈ E, α ∈]0, 1[ and x = αy + (1− α)z, then x = y = z.

We set
B(x) := {i = 1, · · · , n; xi > 0}.

It is easy to check that any extreme point of F (P ) is a basic point (it cannot
have more than p nonzero components).

Theorem 25.1. (i) Any point x ∈ F (LP ) satisfies |c>x| ≤ 2L, as well as∑n
i=1 xi ≤ 2L.

(ii) If, in addition, x is an extreme point, then

(a) xi = 0 or xi > 2−L,

(b) c>x = v(LP ) or c>x > v(LP ) + 2−2L.

Theorem 25.2. Let x0 ∈ F (LP ) be such that c>x0 < v(LP ) + 2−2L. Then
there exists an algorithm, said of purification (specified later in the proof)
which, starting from x0, computes in O(n3) operations a solution of (LP ).

The theorems will be proved in the remainder of the chapter.
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25.2.3 Application

Consider an algorithm in which the cost converges R-linearly to the optimal
cost: a sequence xk of feasible points is constructed such that, for a certain
α ∈]0, 1[:

c>xk − v(LP ) ≤ αk [c>x0 − v(LP )]. (25.1)

In view of Theorem 25.1, c>x0−v(LP ) ≤ 2L+1. The relation c>xk−v(LP ) ≤
2−2L will therefore hold as soon as

αk2L+1 ≤ 2−2L ⇔ k ≥ 3L+ 1

| log2 α|
.

This is the proof of

Lemma 25.3. Let a feasible point of (LP ) be known. Neglecting purification,
a feasible interior-point algorithm satisfying (25.1) finds a solution in at most
(3L+ 1)| log2 α|−1 (rounded up) iterations.

If the number α has the form 1 − ε(n), with 0 < ε(n) ≤ 1, then
| log2 α|−1 = | log2(1 − ε(n))|−1 ≤ 1/ε(n), and the algorithm converges in
(3L+ 1)/ε(n) iterations.

Another result applies to the family of primal algorithms studied in
Chap. 21.

Lemma 25.4. Let a sequence {(xk, sk, µk)} ⊂ Vα satisfy µk ≤ (1−ε(n))µk−1.
Suppose µ0 = O(2L). Then (neglecting purification), the algorithm converges
in O(L/ε(n)) iterations.

Proof. Suppose first µ0 is arbitrary. We have that

c>xk − v(LP ) ≤ (xk)>sk ≤ n

ε
µk ≤ (1− ε(n))kµ0,

and a 2−2L-optimal point is obtained as soon as (1−ε(n))kµ0 ≤ 2−2L, which
holds if k = (2L+ log2(µ0))/ε(n). If µ0 = O(2L), we obtain k = O(L/ε(n)).

Now we present the tools necessary to prove the above results.

25.3 Solving a System of Linear Equations

With a vector g or a matrix G with integer components, is associated the
memory length necessary to store g or G in binary; it is denoted by L(g) or
L(G).

Lemma 25.5. Take α ∈ R++. Then α ≤ 2L(α). In other words, L(α) ≥
log2 α.
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Proof. Let L be a positive integer. The largest number α ∈ R++ requiring
not more than L binary positions is

2L−1 + 2L−2 + · · ·+ 2 + 1 = 2L − 1 ≤ 2L,

hence the result.

Lemma 25.6. Let G be an n× n invertible matrix with integer components.
Then detG ≤ 2L(G).

Proof. It is known that detG is the volume of a portion of R
n: the paral-

lelotope constructed on the vectors that are the columns of G, denoted by
G.j . This volume is maximal when the column vectors are orthogonal, and
therefore

detG ≤
n∏

j=1

‖G.j‖.

Since L(G) =
n∑

j=1

L(G.j), it suffices to prove that ‖g‖ ≤ 2L(g), ∀g ∈ R
n.

Set Li := L(gi), i = 1, · · · , n. According to Lemma 25.4, we have gi ≤ 2Li.
Since L ≥ 1, and hence, 2Li ≥ 2, and

‖g‖2 =

n∑

i=1

g2
i ≤

n∑

i=1

22Li ≤
n∏

i=1

22Li = 22L(g),

the result follows.

Proposition 25.7. Let G be an n × n invertible matrix and g ∈ R
n, both

with integer components. Then x := G−1g satisfies
(i) maxi |xi| ≤ 2L(G)+L(g),

(ii) xi ≤ 0 or xi ≥ 2−L(G), ∀i = 1, · · · , n.
Proof. Recall Cramer’s formula: x = G−1g satisfies

xi =
det(G1, · · · , Gi−1, g, Gi+1, · · · , Gn)

detG
.

Proof of (i): Since G is invertible and has integer elements, we have that
| detG| ≥ 1. The conclusion follows via Cramer’s formula combined with
Lemma 25.6.
Proof of (ii): Since G and g have integer components, we have from Cramer’s
formula:

xi > 0 ⇒ | det(G1, · · · , Gi−1, g, Gi+1, · · · , Gn)| ≥ 1.

If xi > 0, combining with Lemma 25.6 we obtain xi ≥ 1
|det G| ≥ 2−L(G).
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25.4 Proofs of the Main Results

25.4.1 Proof of Theorem25.1

Because F (P ) is nonempty closed and bounded,
∑

i xi attains its maximum
on a nonempty set S1. Let x ∈ S1 have a minimal number of nonzero compo-
nents. One easily checks that {A.i}i∈B(x) has rank |B(x)|. Proposition25.7
can be applied to the linear system

∑

i∈E

A.ixi = b

(or rather to |B(x)| independent rows extracted from this system). We then
deduce ‖x‖∞ ≤ 2L(A)+L(b), hence

n∑

i=1

xi = ‖x‖1 ≤ n‖x‖∞ ≤ 2L(A)+L(b)+log2 n.

On the other hand,

|c>x| ≤ ‖c‖‖x‖ ≤ 2L(c) ×√n‖x‖∞ ≤ 2L(A)+L(b)+L(c)+3
2

log2 n,

and (i) is proved.
To prove (ii), consider two extreme points x1 and x2. With each of them is

associated a linear system with invertible matrix of rank at most p, obtained
by extracting from the relation Ax = b the zero components of x and then
the independent rows. With Cramer’s formula we deduce that x1 and x2 have
the form xk = yk/ detGk , k = 1, 2 where yk ∈ R

n has integer components,
Gk is an invertible matrix of rank at most p, and L(Gk) ≤ L, k = 1, 2. Hence

x1−x2 =
y1 detG2 − y2 detG1

(detG1)(detG2)
; c>x1− c>x2 =

c>y1 detG2 − c>y2 detG1

(detG1)(detG2)
.

The numerator has integer components. Thus, for i ∈ {1, · · · , n}, if
c>x1 6= c>x2, then |c>x1 − c>x2| ≥ |(detG1)−1(detG2)−1| ≥ 2−2L.

25.4.2 Proof of Theorem25.2

The process in this theorem resembles the search for a basic point in Chap. 19,
Proposition19.2. We start from an interior point x0, and we construct a se-
quence {xk} such that {xk} has k zero components and c>xk+1 < c>xk , until
k = n − p: then x̄ := xn−p is basic and c>x̄ ≤ c>x0. By Theorem25.1(ii)b,
this point x̄ solves (LP ).

To construct x1, a direction d in the kernel of A is constructed by LU -
factorization of an invertible submatrix AB , with |B| = p; cost: O(n3) op-
erations, which gives a basis. One single nonbasic component is changed;
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changing d to −d if necessary, one may assume c>d ≤ 0. Going as far as pos-
sible in the direction d while staying feasible, one hits a constraint (at least),
say j1, which gives the point x1. At step k of the algorithm, the simplex
pivoting procedure then yields a new basic variable. Since only one column
of the basis matrix changes, updating the LU -factorization can be done in
O(p2) iterations (through techniques which even preserve sparsity to a large
extent, see Reid [304]). The process can then be repeated.

If the basis matrix AB is invertible, this point is extreme in F (P ). Oth-
erwise, the process can be repeated to cancel components, until an extreme
point is obtained.

25.5 Comments

Purification is discussed in Kortanek and Jishan [218]. The above results as-
sume computations to be done in exact arithmetic. But the rational numbers
involved in the algorithms can have a very long representation. This must be
taken into account to evaluate the time necessary to solve a linear problem.
A finer approach (and closer to actual computations) is to take into account
the error propagation due to finite arithmetic. It can be shown that, if each
number is coded with a memory of length (L), convergence speed keeps the
same order of magnitude.

On the other hand, the simplex algorithm solves in finitely many oper-
ations a problem with real data. Complexity estimates have therefore been
sought after, which do not involve the length of the problem, but only its
dimension n, p. Some results exist, in which a concept of problem condition-
ing comes into play. The question of estimating complexity as a function of
dimension only is still widely open.



26 Karmarkar’s Algorithm

26.1 Overview

The algorithm of Karmarkar [204] is important from a historical point of view.
In fact, it raised an impetus of research which ended in the path-following
algorithms presented here. It is therefore interesting to have an idea of it.

This algorithm applies to linear problems in projective form

Min
x∈Rn

c>x; Ax = 0, a>x = 1, x ≥ 0 (PLP )

with A p × n matrix of rank p and a ∈ R
n. The constraint Ax = 0 will be

referred to as the homogeneous one. An essential concept of the algorithm is
the potential function, homogeneous of degree 0 in x, called the Karmarkar
potential :

ϕv(x) := n log(c>x− va>x)−
n∑

i=1

logxi = log(c>x− va>x)n + π(x),

where v ∈ R is a lower estimate of v(PLP ) (i.e. v ≤ v(PLP )). The algorithm
minimizes ϕv , while adjusting the value of the parameter v at each iteration.
Convergence of the cost to v(PLP ) follows. The algorithm has the remarkable
property of reducing ϕ by at least 1/4 at each iteration. The displacement is
computed as follows:

1. Scaling of variable moving x to the point 1 := (1, . . . , 1)> ∈ R
n.

2. Computation of the direction d, opposite to the orthogonal projection of
the gradient of x 7→ ϕv(x) onto the kernel of the homogeneous constraint.

3. Line-search along the direction d. A point x̂ is obtained such that ϕv(x̂) <
ϕv(x) and Ax̂ = 0 (however, a>x̂ 6= 0 in general).

4. Shift back: x← x̂/a>x̂.

26.2 Linear Problem in Projective Form

26.2.1 Projective Form and Karmarkar Potential

We call projective form of a linear problem the (PLP )-format. It is easy to
pass from the standard to the projective form. In fact, the standard form is
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Min
y∈Rn+1

(c1, . . . , cn, 0)>y; (A,−b)y = 0; yn+1 = 1; y ≥ 0,

which is indeed a particular projective form.
We call potential of Karmarkar-type the function parameterized by q > 0

and v ∈ R:

ϕv(x) = q log(c>x− va>x)−
n∑

i=1

logxi.

For q = n we find back the Karmarkar potential. It is positively homoge-
neous of degree 0 in x:

∀α > 0, ϕv(αx) = n log[α(c>x− va>x)]−
n∑

i=1

logαxi = ϕv(x).

26.2.2 Minimizing the Potential and Solving (PLP )

We will see that minimizing ϕ allows the resolution of (PLP ). The next
lemma uses the length L (defined in Chap. 25) of a problem with integer
data.

Lemma 26.1. If F (PLP ) is bounded, then π(x) is bounded from below on
F (PLP ). In particular, if (A, a) has integer components, then

π(x) ≥ −nL log 2.

Proof. If F (PLP ) is bounded, then − logxi is bounded from below, and π(x)
as well. Since the function − log is convex, we have

− log

(
n∑

i=1

αiβi

)
≤ −

n∑

i=1

αi logβi whenever β ∈ R
n
++, α ∈ R

n
+,

n∑

i=1

αi = 1.

Then

1

n

(
π(x) + n log

n∑

i=1

xi

)
=

1

n

n∑

i=1


− logxi + log

n∑

j=1

xj




= −
n∑

i=1

1

n
log

xi∑n
i=1 xi

≥ − log
1

n
= logn ≥ 0,

and therefore, with Theorem25.1: π(x) ≥ −n log
∑n

i=1 xi ≥ −nL log 2.

Now construct an estimate of c>x− v(PLP ) when ϕv(x) is known.
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Lemma 26.2. Suppose F (PLP ) is bounded and v ≤ v(PLP ). Then

c>x− v(PLP ) ≤ c>x− v ≤ e 1
n [ϕv(x)−inf{π(x);x∈F (PLP )}.

In particular, if (A, a) has integer components, then

c>x− v(PLP ) ≤ e 1
n [ϕv(x)+nL log 2].

Proof. If x ∈ F (LPL), then a>x = 1, hence

n log(c>x− v) = ϕv(x) +
n∑

i=1

logxi = ϕv(x) − π(x).

Thus,
n log(c>x0 − v) ≤ ϕv(x)− inf

x∈F (PLP )
π(x),

hence the result (with a use of the previous lemma, when (A, a) has integer
components).

From Lemma26.2, to construct a minimizing sequence, it suffices to con-
struct {xk} ∈ F (PLP ) and {vk} ≤ v(PLP ) such that ϕvk (xk)→ −∞.

To compute a 2−2L-optimal solution when (A, a) has integer components
(and an exact solution can then be computed via purification, see Chap. 25),
it suffices to obtain

e
1
n [ϕv(x)+nL log 2] ≤ 2−2L

i.e. ϕv(x) ≤ −3nL log 2. Karmarkar’s algorithm enables the construction of
such a point.

26.3 Statement of Karmarkar’s Algorithm

We are now in a position to state the algorithm. We first limit ourselves to
the case where the optimal cost is known. Updating a lower bound of the
cost is discussed in §26.4.3. The constant L in the algorithm below represents
a stopping criterion, which can be taken to the length of the problem when
the latter has integer data and must be solved exactly.

Algorithm 26.3. Karmarkar’s algorithm
Data: x0 ∈ F (PLP ), L > 0; k := 0

repeat
• Direction of the projected gradient: compute

dk := −XkPAXkXk∇ϕv(xk).

• Line-search. Compute ρk > 0 such that xk+1 := xk + ρkdk satisfies

ϕv(x̂
k+1) ≤ ϕv(x̂k)− 1/4.

• Shift back: xk+1 := x̂k+1/a>x̂k+1.
until ϕv(xk) > −3nL log 2.
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26.4 Analysis of the Algorithm

26.4.1 Complexity Analysis

In the form the algorithm is stated, estimating the complexity is easy: since
ϕv is positively homogeneous, we have from the line-search that

ϕv(x
k+1) = ϕv(x̂k+1) ≤ ϕv(xk)− 1/4,

hence ϕv(xk) ≤ ϕv(x0) − k/4. For a problem with integer data, in view of
Theorem25.1:

ϕv(x
0) ≤ n log(2L + 2L)−

n∑

i=1

log 2−L

= n(2L log 2 + log 2) = n(2L+ 1) log 2 ≤ 3nL log 2.

To obtain a value −3nL log 2 of the potential function, at most 24nL log 2
iterations are therefore required. Complexity is indeed O(nL) iterations.

26.4.2 Analysis of the Potential Decrease

The difficulty is to check that the potential does decrease by a fixed amount
in the direction dk. The lemma below analyses this decrease.

Lemma 26.4. (i) If ρ‖(xk)−1dk‖ ≤ 1/2, we have

ϕv(1 + ρ(xk)−1dk) ≤ ϕv(1) + (ρ2 − ρ)‖(xk)−1dk‖2.

(ii) If ρ‖(xk)−1dk‖ = 1/2, then ϕv(x
k + ρdk) ≤ ϕv(xk)− 1

4
.

Proof. (i) Set hk := (xk)−1dk = −PAXkXkϕ′
v(xk). We have that

π(xk + ρdk)− π(xk) = π(1 + ρhk)− π(1). (26.1)

Using the lower bound of Lemma24.8, we get

∆ ≤ −ρ1>hk + ρ2‖hk‖2.

The first part of the cost is concave; bounding it from above by its lineariza-
tion and combining with the above relation, we obtain

ϕv(xk + ρdk)− ϕv(xk) ≤ ρ∇ϕv(x
k)>dk + ρ2‖hk‖2.

By definition of hk, we have xk∇ϕv(xk) + hk ∈ N (AXk)⊥, and therefore

∇ϕv(xk)dk = (xk∇ϕv(xk))>hk = −‖hk‖2,

hence the first relation.
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(ii) If ρ‖hk‖ = 1
2 , we deduce from (i)

ϕ(xk + ρdk)− ϕ(xk) ≤ (ρ‖h‖k)2 − ρ‖h‖k × ‖h‖k =
1

4
− ‖h‖

k

2
.

If ‖hk‖ ≥ 1, the last relation follows. It therefore remains to show that, if
v = v(PLP ), then ‖hk‖ ≥ 1. The gradient of ϕv at xk is

∇ϕv(xk) =
n

c>xk − v (c− va)− (xk)−1,

hence

hk = −PAXkxk∇ϕv(xk) =
−n

c>xk − v PAXkxk(c− va) + PAXk1.

Since 0 = Axk = AXk1, we have that PAXk1 = 1 and

hk = 1− n

c>xk − vPAXkxk(c− va). (26.2)

Now c>xk − v > 0; to prove ‖hk‖ ≥ 1, it suffices to show that at least one
of the components of PAXkxk(c− va) is nonpositive. But if x̄ ∈ S(PLP ), we
have

0 = c>x̄− v = (c− va)>x̄ = [xk(c− va)]>(xk)−1x̄,

i.e. xk(c−va) ⊥ (xk)−1x̄. Since 0 = Ax̄ = AXk(xk)−1x̄, and hence, (xk)−1x̄ ∈
N (AXk), and since the projection is a symmetric operator,

[PAXkxk(c− va)]>[(xk)−1x̄] = [xk(c− va)]>PAXk (xk)−1x̄,

= [xk(c− va)]>(xk)−1x̄ = 0.

As x̄ ≥ 0 and a>x̄ = 1, we have that x̄ 6= 0; PAXk [xk(c−va)] > 0 is therefore
impossible.

26.4.3 Estimating the Optimal Cost

Since the optimal cost is in general unknown, we are led to construct an
increasing sequence {vk} such that lim vk ≤ v(PLP ). We choose vk such
that the vector

hk := 1− n

c>xk − vk
PAXkxk(c− vka)

has norm at least 1 (we will see how in a moment). Taking again the proof
of Lemma 26.4, we then obtain

ϕvk
(xk+1) ≤ ϕvk

(xk)− 1
4 .
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Since ϕv is a decreasing function of v, we get

ϕvk+1
(xk+1) ≤ ϕvk

(xk+1) ≤ ϕvk
(xk)− 1

4

and therefore by induction, setting v̄ := v(PLP ):

ϕv̄(xk) ≤ ϕvk
(xk) ≤ ϕv0

(x0)− 1
4k.

For a problem with integer data, we can take

v0 = −2L ⇒ ϕv0
(x0) ≤ 3nL log 2,

so that we obtain the same complexity estimate as when the optimal cost is
supposed to be known: 24nL log 2 = O(nL).

To compute vk such that ‖hk‖ ≥ 1, it can be observed that, from the proof
of Lemma 26.4, we have ‖hk‖ ≥ 1 if one of the components of PAXkxk(c−vk)
is nonpositive, which is true if v = v(PLP ). It therefore suffices to compute

ĉ := PAXkxkc; â := PAXkxka

and to take

vk+1 =

{
vk, if min

i
(ĉ− vkâ)i ≤ 0

sup{v] ≥ vk}; min
i

(ĉ− vâ)i ≥ 0, ∀v ∈ [vk, v]], otherwise.

In the second case, vk can be computed with the formula

vk+1 = min{ĉi/âi; âi > 0}.

26.4.4 Practical Aspects

The two nontrivial steps of the algorithm are the computation of d and the
line-search. The latter is able to accelerate the calculations. Let us analyze
in detail the computation of d. Set

δ := x−1d; g := X∇ϕv(x
k).

Then δ = PAXg, which is equivalent to the existence of λ ∈ R
p such that

{
δ + (AX)>λ = g,
AXδ = 0.

Multiply the first equation by AX to eliminate δ; we get

AX2A>λ = g.

Once this linear system is solved, we obtain δ = g − XA>λ. The linear
systems to be solved are therefore of the same type as in predictor-corrector
and largest-step algorithms.
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26.5 Comments

This presentation of the Karmarkar algorithm is inspired from Gonzaga [173].
It is important to stress that the same type of complexity can be obtained
by computing a descent direction for the Karmarkar potential in an “affine”
framework (Gonzaga [171]), i.e. using the standard form instead of the projec-
tive form. The key element of the method, allowing a polynomial complexity,
is therefore the potential function, and not the projective form as it was long
believed. Adler, Resende, and Veiga [1] discuss the numerical properties of
the algorithm.
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tion (second edition). Masson, Paris, 1988.

80. F.H. Clarke. Optimization and Nonsmooth Analysis. John Wiley & Sons, New
York; reprinted by SIAM, 1983.

81. T.F. Coleman and A.R. Conn. Nonlinear programming via an exact penalty
function: asymptotic analysis. Mathematical Programming, 24:123–136, 1982.

82. T.F. Coleman and A.R. Conn. Nonlinear programming via an exact penalty
function: global analysis. Mathematical Programming, 24:137–161, 1982.

83. T.F. Coleman and D.C. Sorensen. A note on the computation of an orthonor-
mal basis for the null space of a matrix. Mathematical Programming, 29:234–
242, 1984.

84. L. Conlon. Differentiable Manifolds – A first Course. Birkhauser, Boston,
1993.

85. A.R. Conn, N.I.M. Gould, and Ph.L. Toint. LANCELOT: A Fortran Package
for Large-Scale Nonlinear Optimization (Release A). Number 17 in Compu-
tational Mathematics. Springer Verlag, Berlin, 1992.

86. A.R. Conn, N.I.M. Gould, and Ph.L. Toint. Trust-Region Methods.
MPS/SIAM Series on Optimization. MPS/SIAM, Philadelphia, 2000.

87. D. Coppersmith and S. Winograd. On the asymptotic complexity of matrix
multiplications. SIAM J. Computation, 11:472–492, 1982.

88. G. Corliss and A. Griewank, editors. Automatic Differentiation of Algorithms:
Theory, Implementation, and Application. Proceedings in Applied Mathemat-
ics 53. SIAM, Philadelphia, 1991.
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144. J.Ch. Gilbert. Mise à jour de la métrique dans les méthodes de quasi-
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tion Algorithms. Number 305-306 in Grundlehren der mathematischen Wis-
senschaften. Springer-Verlag, Berlin, 1993.

196. J.-B. Hiriart-Urruty and C. Lemaréchal. Fundamentals of Convex Analysis.
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235. C. Lemaréchal and C. Sagastizábal. Practical aspects of the Moreau-Yosida
regularization: theoretical preliminaries. SIAM Journal on Optimization,
7(2):367–385, 1997.
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Société Mathématique de France, 93:273–299, 1965.

269. W. Murray and M. L. Overton. Steplength algorithms for minimizing a class
of nondifferentiable functions. Computing, 23(4):309–331, 1979.

270. W. Murray and F.J. Prieto. A sequential quadratic programming algorithm
using an incomplete solution of the subproblem. SIAM Journal on Optimiza-
tion, 5:590–640, 1995.

271. W. Murray and M.H. Wright. Projected Lagrangian methods based on the
trajectories of penalty and barrier functions. Technical Report SOL-78-23,
Department of Operations Research, Stanford University, Stanford, CA 94305,
1978.

272. A.S. Nemirovskii and D. Yudin. Problem Complexity and Method Efficiency
in Optimization. Wiley-Interscience Series in Discrete Mathematics, 1983.
(Original Russian: Nauka, 1979).

273. Y.E. Nesterov and A.S. Nemirovskii. Interior-Point Polynomial Algorithms in
Convex Programming. Number 13 in SIAM Studies in Applied Mathematics.
SIAM, Philadelphia, 1994.

274. J. Von Neumann and O. Morgenstein. Theory of games and economic behavior.
Princeton University Press, Princeton, 1944.

275. J. Nocedal. Updating quasi-Newton matrices with limited storage. Mathe-
matics of Computation, 35:773–782, 1980.

276. J. Nocedal and M.L. Overton. Projected Hessian updating algorithms for
nonlinearly constrained optimization. SIAM Journal on Numerical Analysis,
22:821–850, 1985.

277. J. Nocedal and S.J. Wright. Numerical Optimization. Springer Series in Op-
erations Research. Springer, New York, 1999.

278. J.M. Ortega and W.C. Rheinboldt. Iterative Solution of Nonlinear Equations
in Several Variables. Academic Press, New York, 1970.

279. A. Ouorou. Epsilon-proximal decomposition method. Math. Program., 99(1,
Ser. A):89–108, 2004.

280. U.M. Garcia Palomares and O.L. Mangasarian. Superlinear convergent quasi-
Newton algorithms for nonlinearly constrained optimization problems. Math-
ematical Programming, 11:1–13, 1976.

281. E.R. Panier and A.L. Tits. Avoiding the Maratos effect by means of a non-
monotone line search I: General constrained problems. SIAM Journal on
Numerical Analysis, 28:1183–1195, 1991.

282. E.R. Panier and A.L. Tits. On combining feasibility, descent and superlinear
convergence in inequality constrained optimization. Mathematical Program-
ming, 59(2):261–276, 1993.

283. E.R. Panier, A.L. Tits, and J. Herskovits. A QP-free, globally convergent, lo-
cally superlinearly convergent algorithm for inequality constrained optimiza-
tion. SIAM Journal on Control and Optimization, 26:788–811, 1988.

284. T. Pietrzykowski. An exact potential method for constrained maxima. SIAM
Journal on Numerical Analysis, 6:299–304, 1969.



480 References

285. E. Polak. Optimization – Algorithms and Consistent Approximations. Number
124 in Applied Mathematical Sciences. Springer, 1997.

286. B.T. Polyak. Introduction to Optimization. Optimization Software, New York,
1987.

287. F.A. Potra. An O(nL) infeasible-interior-point algorithm for LCP with
quadratic convergence. Annals of Operations Research, 62:81–102, 1996.

288. M.J.D. Powell. A method for nonlinear constraints in minimization problems.
In R. Fletcher, editor, Optimization, pages 283–298. Academic Press, London,
New York, 1969.

289. M.J.D. Powell. On the convergence of the variable metric algorithm. Journal
of the Institute of Mathematics and its Applications, 7:21–36, 1971.

290. M.J.D. Powell. Some global convergence properties of a variable metric algo-
rithm for minimization without exact line searches. In R.W. Cottle and C.E.
Lemke, editors, Nonlinear Programming, number 9 in SIAM-AMS Proceed-
ings. American Mathematical Society, Providence, RI, 1976.

291. M.J.D. Powell. Algorithms for nonlinear constraints that use Lagrangian func-
tions. Mathematical Programming, 14:224–248, 1978.

292. M.J.D. Powell. The convergence of variable metric methods for nonlinearly
constrained optimization calculations. In O.L. Mangasarian, R.R. Meyer, and
S.M. Robinson, editors, Nonlinear Programming 3, pages 27–63, 1978.

293. M.J.D. Powell. A fast algorithm for nonlinearly constrained optimization cal-
culations. In G.A. Watson, editor, Numerical Analysis Dundee 1977, number
630 in Lecture Notes in Mathematics, pages 144–157. Springer-Verlag, Berlin,
1978.

294. M.J.D. Powell. Nonconvex minimization calculations and the conjugate gradi-
ent method. In Lecture Notes in Mathematics 1066, pages 122–141. Springer-
Verlag, Berlin, 1984.

295. M.J.D. Powell. Convergence properties of algorithms for nonlinear optimiza-
tion. SIAM Review, 28:487–500, 1985.

296. M.J.D. Powell. On the quadratic programming algorithm of Goldfarb and
Idnani. Mathematical Programming Study, 25:46–61, 1985.

297. M.J.D. Powell. The performance of two subroutines for constrained optimiza-
tion on some difficult test problems. In P.T. Boggs, R.H. Byrd, and R.B.
Schnabel, editors, Numerical Optimization 1984, pages 160–177. SIAM Pub-
lication, Philadelphia, 1985.

298. M.J.D. Powell. A view of nonlinear optimization. In J.K. Lenstra, A.H.G. Rin-
nooy Kan, and A. Schrijver, editors, History of Mathematical Programming,
A Collection of Personal Reminiscences, pages 119–125. CWI North-Holland,
Amsterdam, 1991.

299. M.J.D. Powell and Y. Yuan. A recursive quadratic programming algorithm
that uses differentiable exact penalty functions. Mathematical Programming,
35:265–278, 1986.

300. B.N. Pshenichnyj. Algorithm for a general mathematical programming prob-
lem. Kibernetika, 5:120–125, 1970.

301. B.N. Pshenichnyj. The Linearization Method for Constrained Optimization.
Number 22 in Computational Mathematics. Springer-Verlag, 1994.

302. B.N. Pshenichnyj and Yu.M. Danilin. Numerical Methods for Extremal Prob-
lems. MIR, Moscow, 1978.

303. W. Queck. The convergence factor of preconditioned algorithms of the Arrow-
Hurwicz type. SIAM Journal on Numerical Analysis, 26:1016–1030, 1989.



References 481

304. J.K. Reid. A sparsity-exploiting variant of the Bartels-Golub decomposition
for linear programming bases. Mathematical Programming, 24:55–69, 1982.

305. P.A. Rey and C.A. Sagastizábal. Dynamical adjustment of the prox-parameter
in variable metric bundle methods. Optimization, 51(2):423–447, 2002.

306. S.M. Robinson. A quadratically convergent algorithm for general nonlinear
programming problems. Mathematical Programming, 3:145–156, 1972.

307. S.M. Robinson. Perturbed Kuhn-Tucker points and rates of convergence for
a class of nonlinear-programming algorithms. Mathematical Programming,
7:1–16, 1974.

308. S.M. Robinson. Generalized equations and their solutions, part II: applications
to nonlinear programming. Mathematical Programming Study, 19:200–221,
1982.

309. R.T. Rockafellar. Convex Analysis. Number 28 in Princeton Mathematics Ser.
Princeton University Press, Princeton, New Jersey, 1970.

310. R.T. Rockafellar. New applications of duality in convex programming. In
Proceedings of the 4th Conference of Probability, Brasov, Romania, pages 73–
81, 1971.

311. R.T. Rockafellar. Augmented Lagrange multiplier functions and duality in
nonconvex programming. SIAM Journal on Control, 12:268–285, 1974.

312. R.T. Rockafellar. Augmented Lagrangians and applications of the proximal
point algorithm in convex programming. Mathematics of Operations Research,
1:97–116, 1976.

313. R.T. Rockafellar. Monotone operators and the proximal point algorithm.
SIAM Journal on Control and Optimization, 14:877–898, 1976.

314. R.T. Rockafellar and R.J.-B. Wets. Variational Analysis. Springer Verlag,
Heidelberg, 1998.

315. T. Rusten and R. Winthier. A preconditioned iterative method for saddle
point problems. SIAM Journal on Matrix Analysis and Applications, 13:887–
904, 1992.

316. A. Ruszczyński. Decomposition methods in stochastic programming. In Math-
ematical Programming, volume 79, 1997.
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Index

active set method, 88
adjoint, see state
admissibility of the unit stepsize, 48,

63, 307, 322, 337
admissible, see point, set
algorithm, see also method
– BFGS, see BFGS
– Bunch & Kaufman, 231
– bundle, see bundle method,

constrained bundle
– conjugate gradient, 84, 86
– – preconditioned, 76
– – truncated, 300, 303
– cutting-planes, see cutting-planes

method
– descent, 120
– ellipsoid, 129
– Karmarkar, 457
– largest step, 435
– – with safeguard, 435
– Newton, see Newton’s algorithm
– predictor-corrector, 397
– quasi-Newton, see quasi-Newton or

secant (algorithm)
– simplex, 364
– SQP, see sequential quadratic

programming algorithm
– subgradient, see subgradient method
– Uzawa, 232
analytic center, 391, 437
Armijo, 47, 80, 84, 138, 295, 304, 305
automatic differentiation, see computa-

tional differentiation
auxiliary problem principle, 171

basis matrix, 365
BFGS, 55, 58, 75, 85, 86, 325
– limited memory, 195

bisection, 40
black box, 11, 126
– constrained, 178
– dynamic, 173
bracket, 39
Bunch & Kaufman, 231
Bunch & Parlett, 53
bundle, 137, 144
– aggregation, 139, 143
– compression, 147, 149
– disaggregate, 166
– selection, 149
bundle method
– constrained, see constrained bundle

method
– dual, 147
– dynamic, 175
– – finite termination, 176
– for generalized equations, 182
– general, 138
– level, 141
– penalized, 141
– – convergence, 155, 156
– – implementation, 186
– – parameter update, 150
– trust region, 140

Cauchy-Schwarz inequality, 205
– generalized, 279
central path, 373, 375
– perturbed, 412
chain, see hanging chain project
Cholesky, 53, 269, 317, 320
code n1cv2, 153
coercive, 117, 171
combinatorial optimization, 3, 10, 96,

163
complementarity condition, 115, 200
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– strict, 201, 380

complementarity problem (linear), 89,
371, 374

– canonical form, 379, 380

– monotone, 374
– standard form, 378

complexity, 451
computational differentiation, 19, 20,

95

cone, 202
– critical, 202

conjugate, see algorithm, direction
constrained bundle method
– feasible, 179

– filter, 180
– infeasible, 178

constraint, 3

– active, 4, 89, 192, 194
– equality, 3

– inequality, 3
– strongly active, 201

– weakly active, 201
constraint qualification, 113, 116
– (A-CQ), 201

– (S-CQ), of Slater, 201
– (LI-CQ), 201

– (MF-CQ), of Mangasarian-
Fromovitz, 201

control, see also state

– problem, 4, 7, 8, 16, 224
– variable, 7, 16
convergence

– global, 12, 26, 45, 52, 53, 74, 296,
306

– in p steps, 204
– linear, 14, 204
– local, 14, 206, 227, 229, 241, 259, 262

– of bundle method, 155, 156
– of cutting-planes method, 133

– of subgradient method, 128
– quadratic, 14, 204, 253
– speed of, 14, 33, 51, 86, 88, 203–204

– superlinear, 14, 204, 265
convex, see function, problem, set

convex hull, 110
correction
– Powell, 328, 330, 332, 340

– second-order, 310

critical, see cone, direction, point
cubic fit, 40

curvature condition, 325
curvilinear search, see also line-search,

85, 141, 153, 333
cuts
– feasibility, 170
– optimality, 170
cutting-planes method, 131
– convergence, 133
– implementation, 186

Davidon, Fletcher & Powell, 55
decomposition
– Benders, 169
– Dantzig-Wolfe, 166
– energy application, 187
– price, 162, 165
– – algorithm, 164
– proximal, 172
– resource, 162, 167
decomposition of R

n

– by partitioning, 224
– oblique, 226
– orthogonal, 225, 253
Dennis & Moré, 60, 63, 82
dilation, 129
direct communication, 211
direction, 12, 85
– affine, 383
– centralization, 383
– conjugate, 69, 74
– critical, 202
– of ε-descent, 125
– of descent, 29, 37, 75, 111, 127, 289,

321
– of steepest descent, 30, 121, 123
– quasi-negative curvature, 300
directional derivative, 109, 198
divergent series, 129
duality, 356
– gap, 113, 114, 116
– weak, 114, 168

elliptic, see function
equivalent sequences, 204
Everett, 113
existence of solution, 25, 199
extrapolation, 40, 47
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feasible, see point, set
Fermat, 99, 111
filter strategy, 180
finite difference, 101, 119
Finsler, 285
Fletcher (initialization of), 39, 48
Fletcher-Reeves, 73
Fromovitz, see constraint qualification
function
– maxanal, 184
– maxquad, 153, 183
– affine, 4, 26, 83
– convex, 25, 26, 57
– – strongly, 27, 61, 63, 65, 67
– convex-concave, 359
– dual, 112
– elliptic, 27, 48, 53, 74
– improvement, 177
– inf-compact, 25

– lower semi-continuous, 25

– merit, 13, 29, 37, 79, 271
– penalty, 271
– – exact, 272
– value, 167, 169

Gauss, 101
Gauss-Newton, 83, 86
Gauss-Seidel, 29
generalized equation, 180
globalization of an algorithm, 271
– by line-search, 52, 289
– by trust regions, 77
gradient, 3, 13, 23, 26
– projected, 90
– reduced, 233
group, 378
growth condition (quadratic), 27, 33,

46

hanging chain project, 208–213,
245–250, 267–270, 316–320, 340–344

Hessian, see also reduced Hessian, 3,
26, 27, 51–53, 57, 63–65, 73, 82, 83,
95, 102, 103

– of the Lagrangian, 227

I0(x), 194
I0
∗ , I0+

∗ , I00
∗ , 201

identification, see parameter identifica-
tion

inf-compact, see function
instability
– of cutting-planes method, 134
– of steepest-descent, 31, 122
interpolation, 40, 296, 305, 317

invariant, 378
inverse problem, see also parameter

identification, 7, 101

Karush, Kuhn, and Tucker (KKT), see
multiplier, optimality conditions

Lagrange multiplier, see multiplier
Lagrangian, 11, 78, 112, 200, 272, 274,

357
– augmented, 118, 163, 272, 276, 285,

330
– relaxation, 10, 112, 163, 173
– – dynamic, 173
length of a linear problem, 452
Levenberg-Marquardt, 84
line-search, see also curvilinear search,

12, 72, 77, 78, 91
– Armijo, 295, 305
– backtracking, 296, 304, 305, 329
– nonmonotone, 321
– piecewise (PLS), 336
– watchdog, 321
– Wolfe, see also Wolfe conditions, 58,

63, 65, 75, 83, 85, 87, 326
linear complementarity problem, see

complementarity problem
linearization error, 144
local minimum, see solution

Mangasarian, see constraint qualifica-
tion

Maratos effect, 308, 329
master program, 161, 165, 167
matrix
– basis, 222
– inertia, 252
– positive definite, 26, 27, 67, 82, 83,

86, 88
– right inverse, 222, 252, 253
method, see also algorithm
– local, 216
– multiplier, 163
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– primal-dual, 217
minimax
– finite, 116
– infinite, 117
minimizing sequence, 13, 140, 147, 154,

155
minimum, see solution
model, 12, 52, 77, 85
– cutting-planes, 130, 137, 144
– – aggregate, 150
– – disaggregate, 166
– – improving, 139
– piecewise affine, 130
modified field, 387, 388, 418
monotone, 374
Moreau-Yosida regularization, 150
multifunction, 124
– closed, 124

– continuous, 124
multiplier, 112, 116, 166, 200

– first-order, 235
– Lagrange, 12, 103, 200, 360
– least-squares, 228, 235, 253
– second-order, 235

neighborhood, 397
– large, 375, 406
– small, 375, 398
Newton’s algorithm, 39, 79
– for equality constrained problems
– – primal version, 229
– – primal-dual version, 221
– – reduced Hessian, 239
– – simplified Newton, 240
– for inequality constrained prob-

lems, see sequential quadratic
programming

– for nonlinear equations, 51, 205
– for unconstrained optimization, 207
Newton’s step
– longitudinal component, 223
– transversal component, 223
nominal decrease, 49, 80, 131, 147
norm, 321
– associated with a scalar product, 205
– dual, 279, 286

O(·), big O, 203
o(·), little o, 14, 203

objective function, 3, 16
optimal control, see control
optimal partition, 364, 379
optimal stepsize, 30
optimality conditions, 13
– necessary
– – 1st order (NC1), 26
– – 2nd order (NC2), 26, 202
– – Karush, Kuhn, and Tucker (KKT),

200
– – reduced, 236
– sufficient
– – 2nd order (SC2), 26, 203
– – semi-strong 2nd order, 203, 286
– – strong 2nd order, 203
– – weak 2nd order, 203, 286
optimality system, 360
oscillation, 31, 122
osculating quadratic problem, 219, 232,

256, 259
– equality constrained, 218
– inequality constrained, 257
– unconstrained, 208

parameter
– augmentation, 276
– penalty, 279
parameter identification, 6, 82, 100
partition of variables, 379
penalization, see also function (penalty)
– exact, 272
– – augmented Lagrangian, 277, 287
– – Fletcher, 285, 320
– – `1, 287
– – Lagrangian, 274
– – of the objective, 272
– logarithmic, 371
– quadratic, 101
performance profile, 341
piecewise line-search (PLS), see

line-search
pivoting, 92, 368
point
– basic, 355
– – regular, 366
– critical or stationary, 26, 27, 52, 82,

201, 359
– feasible or admissible, 89, 193
– interior, 374
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– optimal, 111
Polak-Ribière, 73
potential
– Karmarkar, 457
– logarithmic, 371, 390
Powell, see correction
preconditioning, 34
problem
– constrained convex, 26, 194
– convex, 88, 113, 116
– dual, 112, 357, 358
– least-squares, 82, 253
– linear, 354
– osculating quadratic, see osculating

quadratic problem
– (PE), 215
– (PEI), 193
– primal, 111, 358
– quadratic, 354
– saddle-point, 358
project, see seismic reflection to-

mography project, hanging chain
project

projection onto a convex set, 205
proximal point, 151
– implementable form, 151, 180
proximity measure, 375, 437

quasi-Newton or secant
– algorithm
– – quasi-Newton SQP, 328
– – reduced, for equality constrained

problems, 338
– equation, 54, 325
– matrix, 54
– method, 56, 78, 86
– – poor man, 75, 84, 151

R
∗
+, 276

reduced cost, 365
reduced Hessian of the Lagrangian,

221, 233, 237, 252
reflection tomography, see seismic

reflection tomography project
regular stationary point, 221, 252
relative distance, 444
relative interior, 113
row/column generation, 166

saddle-point, 274

safeguard, 41, 436
scaling, 35

search, see curvilinear search,
line-search

secant, see quasi-Newton
seismic reflection tomography project,

97–103

self-duality, 425
separating hyperplane, 111, 121

sequential quadratic programming
(SQP) algorithm, 191

– line-search SQP, 292
– local, 257

– truncated (TSQP), 305
set

– convex, 26
– feasible or admissible, 193, 353, 374

– – perturbed, 412
set-valued map, see multifunction

simulator, 11, 16, 37, 67, 100, 211
Slater, see also constraint qualification,

113, 116, 201
slice, 25, 46, 58

solution, see also existence, uniqueness,
199, 353

– global, 12, 199

– local, 26, 82, 199
– primal-dual, 201

– strict local, 199
– strong, 203

speed of convergence, see convergence
spline (cubic), 98

SQP, see sequential quadratic
programming algorithm

stabilization principle, 12, 30, 37, 137
standard form

– of linear constraints, 353
state

– adjoint, 18
– – equation, 17, 18

– constraint on the -, 9
– equation, 7

– variable, 7
stationary, see point

step
– null, 139

– serious, 138
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stopping test, 34, 41
– formal, 120
– implementable, 131, 138, 147
subdifferential, 110
– approximate, 124, 125
subgradient, 110
– inequality, 110
– smeared, 147
subgradient method, 127
– convergence, 128
– implementation, 186
submersion, 193

test problem, see seismic reflection
tomography project, hanging chain
project

tomography, see seismic reflection
tomography project

trap of nonsmooth optimization, 119

trust region, 53, 84, 87, 138, 140

uniqueness of solution, 199
update criterion, 339

value, 353
variable
– control, decision, 3, 224
– dual, 112
– state, 224

weak duality, see duality
Wolfe
– duality, 363
Wolfe conditions, 43

– generalized, 80, 334

zigzag, 31, 94, 122, 123, 129
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