
bA,ani. "
Seventh Ed)n

merica

Patrick 0. Wheatley
California Polytechnic State University

Boston San Francisco New York

London Toronto Sydney Tokyo Singapore Madrid

Mexico City Munich Paris Cape Town Hong Kong Montreal

Publisher: Greg Tobin

Managing Editor: Karen Guardino

Acquisitions Editor: William Hoffman

Associate Editor: RoseAnne Johnson

Production Supervisor: Cindy Cody

Marketing Manager: Pamela Laskey

Marketing Coordinator: Heather Peck

Prepress Supervisor: Caroline Fell

Manufacturing Buyer: Evelyn Beaton

Cover Designer: Dennis Schaefer

Cover Photo Credit: CREATASPhotography

Compositor: Progressive Information Technologies

Library of Congress Cataloging-in-Publication Data

Gerald, Curtis F., 1915-
Applied numerical analysis1Curtis F. Gerald, Patrick 0. Wheat1ey.-7th ed.

p. cm.
Includes bibliographical references and index.
ISBN 0-321-13304-8

1. Numerical analysis. I. Wheatley, Patrick 0. 11. Title.

Copyright O 2004 Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in retrieval system, or transmitted,
in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written permission of the publisher. Printed in the United States of America.

Preface ix

0 Preliminaries 1

Contents of This Chapter 1

0.1 Analysis Versus Numerical Analysis 2

0.2 Computers and Numerical Analysis 4

0.3 An Illustrative Example 6

0.4 Kinds of Errors in Numerical Procedures 10

0.5 Interval Arithmetic 19

0.6 Parallel and Distributed Computing 21

0.7 Measuring the Efficiency of Numerical Procedures 26

Exercises 28

'I
Applied Problems and Projects 30

C

1 Solving Nonlinear Equations 32
-

Contents of This Chapter 33

1.1 Interval Halving (Bisection) 33

1.2 Linear Interpolation Methods 38

1.3 Newton's Method 42

1.4 Muller's Method 50

Contents

1.5 Fixed-Point Iteration: x = g(x) Method 54

1.6 Multiple Roots 60

1.7 Nonlinear Systems 63

Exercises 67

Applied Problems and Projects 71

2 Solving Sets of Equations 76

Contents of This Chapter 76

2.1 Matrices and Vectors 77

2.2 Elimination Methods 88

2.3 The Inverse of a Matrix and Matrix Pathology 106

2.4 Ill-Conditioned Systems 110

2.5 Iterative Methods 121

2.6 Parallel Processing 129

Exercises 135

Applied Problems and Projects 141

3 Interpolation and Curve Fitting 147

Contents of This Chapter 148

Interpolating Polynomials 149

Divided Differences 157

Spline Curves 168

Bezier Curves and B-Splines Curves 179

Interpolating on a Surface 188

Least-Squares Approximations 199

Exercises 209

Applied Problems and Projects 215

Approximation of Functions 220

Contents of This Chapter 220

Contents vii

4.1 Chebyshev Polynomials and Chebyshev Series 221

4.2 Rational Function Approximations 232

4.3 Fourier Series 240
Exercises 252

Applied Problems and Projects 254

5 Numerical Differentiation and ntegration 256

Contents of This Chapter 257

Differentiation with a Computer 258

Numerical Integration-The Trapezoidal Rule 272

Simpson's Rules 280

An Application of Numerical Integration-Fourier Series and Fourier Transforms 285

Adaptive Integration 297

Gaussian Quadrature 301

Multiple Integrals 307

Applications of Cubic Splines 3 17

Exercises 321

Applied Problems and Projects 326

6 Numerical Solution of Ordinary
Differential Equations 329

Contents of This Chapter 330

The Taylor-Series Method 332

The Euler Method and Its Modifications 335

Runge- Kutta Methods 340

Multistep Methods 347

Higher-Order Equations and Systems 359

Stiff Equations 364

Boundary-Value Problems 366

Characteristic-Value Problems 38 1

Exercises 394

Applied Problems and Projects 399

viii Contents

7 Optimization 485

Contents of This Chapter 405

Finding the Minimum of y = f(x) 406

Minimizing a Function of Several Variables 417

Linear Programming 428

Nonlinear Programming 442

Other Optimizations 449

Exercises 453

Applied Problems and Projects 458

Partial-Differential Equations 461

Contents of This Chapter 463

8.1 Elliptic Equations 463

.2 Parabolic Equations 48 1

.3 Hyperbolic Equations 499

Exercises 509

Applied Problems and Projects 513

lement Analysis 517

Contents of This Chapter 5 18

9.1 Mathematical Background 5 18

9.2 Finite Elements for Ordinary-Differential Equations 526

9.3 Finite Elements for Partial-Differential Equations 535

Exercises 562

Applied Problems and Projects 564

Appendixes

A Some Basic Information from Calculus 567

B Software Resources 571

Answers to Selected Exercises 575

References 599

In this seventh edition, we continue on the path established in previous editions. Quoting
from the preface of the sixth edition, we "retain the same features that have made the book
popular: ease of reading so that the instructor does not have to 'interpret the book' for the
student, many illustrative examples that often solve the same problem with different pro-
cedures to clarify the comparison of methods, many exercises from which the instructor
may choose appropriately for the class, more challenging problems and projects that show
practical applications of the material."

We have made substantial improvements on the previous edition. These include:

Theoretical matters that previously were in a separa1:e section near the end of each chap-
ter have been merged with the description of the procedures.

Example computer programs that admittedly were not of professional quality have
been deleted, with the idea that this is not normallly a programming course anyway.
Easy-to-read algorithms have been retained so that students can write programs if they
desire.

There is greater emphasis on computer algebra systems; MATLAB is the predominant
system, but this is compared with Maple and Mathcmatica. The use of spreadsheets to
solve problems is covered as well.

A new chapter on optimization (Chapter 7) has been added that includes multivariable
cases as well as single-variable situations. Linear programming has been included, of
course, but the treatment is intended to provide a real understanding of the simplex
method rather than to merely give a recipe for solving the problem. Nonlinear program-
ming is treated to contrast this with the simpler linear case.

Boundary value problems for ordinary diffferential equations have been separated from
those for partial differential equations and are inclutded in the chapter on ordinary dif-
ferential equations. Partial differential equations that satisfy boundary conditions (ellip-
tic equations) are combined with the other types of partial differential equations in a
single chapter.

Preface

Many exercises have been modified or rewritten to provide an even greater variety. New
exercises and projects have been added and some of these are more challenging than in
the previous edition.

As in previous editions, this book is unique in its inclusion of a thorough survey of
numerical methods for solving partial differential equations and an introduction to the
finite element method.

Many suggestions from reviewers have allowed us to clarify and extend the treatment of
several topics and we have made editorial changes to make the book easier to read and
understand.

We again quote from the preface to the sixth edition:

Applied Numerical Analysis is written as a text for sophomores and juniors in engi-
neering, science, mathematics, and computer science. It should be a valuable source
book for practicing engineers. Because of its coverage of many numerical methods, the
text can serve as a valuable reference.

Although we assume that the student has a good knowledge of calculus, appropriate
topics are reviewed in the context of their use. An appendix gives a summary of
the most important items that are needed to develop and analyze numerical procedures.
We purposely keep the mathematical notation simple for clarity. Furthermore, the
answers to exercises marked with a b are found in the back of the text.

Acknowledgements

Many instructors have given valuable suggestions and constructive criticism. We mention
those whose thorough reviews have helped make this edition better:

Todd Arbogast, University of Texas at Austin

Neil Berger, University of Zllinois at Chicago

Barbara Bertram, Michigan Technological Sciences

Herman Gollwitzer, Drexel University

Chenyi Hu, University of Houston-Downtown

Tim Sauer, George Mason University

Daoqi Yang, Wayne State University

Kathie Yerion, Gonzaga University

We also want to express our thanks to those at Addison-Wesley who have
worked extensively with us to ensure the publication of another quality edition:
Greg Tobin, Bill Hoffman, RoseAnne Johnson, Cindy Cody, Pam Laskey, Heather Peck,
and Barbara Atkinson.

relirnina

This book teaches how a computer can be used to solve problems that may not be solvable
by the techniques that are taught in most calculus courses. It also shows how those prob-
lems that you may have solved before can be solved in a different way. Our emphasis is on
problems that exist in the real world, although these examples will be simplified. Many of
these simplified examples can be solved analytically, which allows a comparison with the
computer-derived solution.

Modern mathematics began when Isaac Newton found mathematical models that
matched the empirical laws that Johannes Kepler had reached after about 20 years of
observation of the planets. Today, most of applied m~athematics is a repetition of what
Newton did: to develop mathematical relationships that: can be used to simulate some real-
world situation and to predict its response to different external factors.

The beauty of mathematics is that it builds on simple cases to arrive at more complex
and useful ones. This is true for this book-we start with mathematical applications that
are easily understood but that become the basis for other, more important applications of
numerical analysis.

C o n t e n t s o f fh , i s , C h a p t e r '

We begin each chapter of this book with a list of the topics that are discussed in that
chapter.

0.1 Analysis Versus Numerical Analysis
Describes how numerical analysis differs from analytical analysis and shows
where each has special advantages. It briefly lists the topics that will be
covered in later chapters.

Chapter Zero: Preliminaries

Computers and Numerical Analysis
Explains why computers and numerical analysis are intimately related. It
describes several ways by which a computer can be employed in carrying out
the procedures.

An Illustrative Example
Tells how a typical problem is solved and uses a special program called a
computer algebra system to obtain the solution.

Kinds of Errors in Numerical Procedures
Examines the important topic of the accuracy of computations and the
different sources of errors. Errors that are due to the way that computers store
numbers are examined in some detail.

Interval Arithmetic
Discusses one way to determine the effect of imprecise values in the
equations that are used to model a real-world situation.

Parallel and Distributed Computing
Explains how numerical procedures can sometimes be speeded up by
employing a number of computers working together on a problem. Some
special difficulties encountered are mentioned.

Measuring the Efficiency of Numerical Procedures
Tells how one can compare the accuracy of different methods, all of which
can accomplish a given task, and how they differ in their use of computing
resources.

0.1 Analvsis Versus urnerical Analvsis

The word analysis in mathematics usually means to solve a problem through equations. Of
course, the equations must then be reduced to an answer through the procedures of algebra,
calculus, differential equations, partial differential equations, or the like. Numerical analy-
sis is similar in that problems are solved, but now the only procedures that are used are
arithmetic: add, subtract, multiply, divide, and compare. Since these operations are exactly
those that computers can do, numerical analysis and computers are intimately related.

An analytical answer is not always meaningful by itself. Consider this simple cubic
equation:

n3 - x2 - 3x + 3 = 0.

It is not hard to find the factors that show that one of the roots is 6. That is fine, unless you
want to cut a board to that length. But rulers are not graduated in square-root values. So
what can you do? Maybe you have a calculator that lets you find the value, or you might

0.1: Analysis Versus Numerical Analysis 3

use logarithms, or look it up in a table. Numerical analysis has a rich store of methods to
find the answer by purely arithmetical operations.

Here's a challenge. You are on a desert island with nothing to work with but a sharp
stick that you can use to draw in the sand. You've forgotten everything about mathematics
except the four arithmetic operations and you can also compare values (much like a com-
puter). For some reason, maybe because you have nothing more interesting to do, you want
to get a good value for the cube root of 2. How would you go about this? One way would
be trial and error: You try a set of values to see which one gives a result of 2 when it is mul-
tiplied three times, something like this:

1 . 2 ~ = 1.728 too small

1 .43 = 2.744 too la.rge

1 Z3 = 1.9531 pretty close

1.26~ = 2.0004 really close!

This could go on for some time, but you begin to see that you could interpolate between the
last two trials and get an even better answer.

Now you say to yourself, "How good an answer do I really need? Maybe 1.26 is as
close as I need. After all, when multiplied, 1 .263 gives a result that differs from 2.0000 by
a very small number, 0.0004."

In this book, we will describe methods that can solve this little problem efficiently and
also methods for much more difficult ones. For example, this integral, which gives the
length of one arch of the curve y = sin(x), has no closed form solution:

Tr

J d l + cos2(x) dx.
0

Numerical analysis can compute the length of this curve by standardized methods that
apply to essentially any integrand; there is never a need to make a special substitution or to
do integration by parts. Further, the only mathematical operations required are addition,
subtraction, multiplication, and division, plus doing comparisons.

Another difference between a numerical result and the analytical answer is that the for-
mer is always an approximation. Analytical methods usually give the result in terms of
mathematical functions that can be evaluated for a specific instance. This also has the
advantage that the behavior and properties of the functl~on are often apparent; this is not the
case for a numerical answer. However, numerical results can be plotted to show some of
the behavior of the solution.

While the numerical result is an approximation, this can usually be as accurate as
needed. The necessary accuracy is, of course, determined by the application. The -?JZ
example suggests that the accuracy desired depends totally on the context of the problem.
(There are limitations to the achievable level of accuracy, because of the way that com-
puters do arithmetic; we will explain these limitations later.) To achieve high accuracy,
very many separate operations must be carried out, but computers do them so rapidly
without ever making mistakes that this is no significant problem. Actually, evaluating an
analytical result to get the numerical answer for a specific application is subject to the
same errors.

Chapter Zero: Preliminaries

The analysis of computer errors and the other sources of error in numerical methods is
a critically important part of the study of numerical analysis. This subject will occur often
throughout this book.

Here are those operations that numerical analysis can do and that are covered in this
book:

Find wherefix) = 0 for a nonlinear equation or system of equations.

Solve systems of linear equations, even large systems.

Interpolate to find intermediate values from a table of values and fit curves to experi-
mental data.

Approximate functions with polynomials or with a ratio of polynomials.

Approximate values for the derivatives of a function, even if this is known only by a
table of function values.

Evaluate the definite integral for any integrand, even if its values are known only from
experimental observations.

Solve differential equations when initial values are given; these can be of any order and
complexity. Numerical analysis can even solve them if conditions are specified at the
boundaries of a region.

Find the minima or maxima of functions, even when subject to constraints.

Solve all types of partial differential equations by several techniques.

0.2 Computers and Numerical Analysis

Numerical methods require such tedious and repetitive arithmetic operations that only
when we have a computer to carry out these many separate operations is it practical to
solve problems in this way. A human would make so many mistakes that there would be
little confidence in the result. Besides, the manpower cost would be more than could nor-
mally be afforded. (Once upon a time, military firing tables were computed by hand using
desk calculators, but that was a special case of national emergency before computers were
available.)

Of course, a computer is essentially dumb and must be given detailed and complete
instructions for every single step it is to perform. In other words, a computer program must
be written so the computer can do numerical analysis. As you study this book, you will learn
enough about the many numerical methods available that you will be able to write programs
to implement them. The specific computer language used is not very important; programs
can be written in BASIC (many dialects), FORTRAN, Pascal, C, C+ +, Java, and even
assembly language. Most of the methods will be described fully through pseudocode in
such a form that translating this code into a program is relatively straightforward.

Actually, writing programs is not always necessary. Numerical analysis is so important
that extensive commercial software packages are available. The IMSL (International
Mathematical and Statistical Library) MATHILIBRARY has hundreds of routines,
of efficient and of proven performance, written in FORTRAN and C that carry out the

0.2: Computers and Numerical Analysis 5

methods. Recently, LAPACK (Linear Algebra Package) has been made available at nominal
cost. This package of FORTRAN programs incorporates the subroutines that were con-
tained in the earlier packages of LINPACK and EISPACK. Appendix B of this book gives
information on these and other programs. The bimonthly newsletter of the Society for
Industrial and Applied Mathematics (SIAM News) contains discussions and advertisements
on some of the latest packages. A set of books, Nu?nerical Recipes, lists and discusses
numerical analysis programs in a variety of languages: FORTRAN, Pascal, and C.

One important trend in computer operations is the use of several processors working in
parallel to carry out procedures with greater speed than can be obtained with a single
processor. Some numerical analysis procedures can be carried out this way. Special
programming techniques are needed to utilize these fast computer systems. A recent devel-
opment is to utilize computers that are idle, even personal computers, to carry out compu-
tations. If these idle computers are connected in a network, a control computer can send a
portion of a large computation to them. After completmg its part of the task, the individual
computers transmit the results back to the control computer. Such an arrangement is
termed distributed computing. As you can imagine, cfoordinating and controlling this dis-
tributed system is a difficult task.

An alternative to using a program written in one of'the higher-level languages is to use
a kind of software sometimes called a computer algebra system (CAS). (This name is not
very standardized and not too descriptive.") This kind of program mimics the way humans
solve mathematical problems. Such a program is designed to recognize the type of func-
tion (polynomial, transcendental, etc.) presented and then to carry out requested mathe-
matical operations on the function or expression. It does so by looking up in tables the new
expressions that result from doing the operation or by using a set of built-in-rules. For
example, a program can use the ordinary rules for finding derivatives, employ tables of
integrals to do integrations, and factor a polynomial or expand a set of factors. These are
only a few of the capabilities. If an analytical answer cannot be given, most of these pro-
grams allow the user to get an answer by numerical methods.

In connection with numerical analysis, an important feature of many such programs is
the ability to write utility files that are essentially macros: A sequence of the built-in oper-
ations is defined to perform a desired larger task or one not inherent in the program. A suc-
cession of operations, each of which uses the results of the previous one-a procedure
called iteration-is also possible. Many numerical analysis procedures are iterative.

Many computer algebra systems are available. R7e will discuss only three of these:
Mathematics, MATLAB, and Maple. MATLAB will be used extensively; it will be sup-
plemented and compared to the other two. In this chapter, we will show how MATLAB can
plot a function and find where it is a minimum. We anticipate that you will use one of the
computer algebra systems as a tool to explore numerical procedures.

One special feature of most of these programs is their ability to carry out many opera-
tions with exact arithmetic. An interesting example is to see .ir displayed to 100 decimal
places. Ordinarily, we must be satisfied with a limited number of digits of precision when
a normal computer program is employed.

* Such programs are also called symbolic algebra systems

Chapter Zero: Preliminaries

Of particular importance in using such programs is that the plotting of functions, even
functions of two independent variables (which require a three-dimensional plot), is built in.
In Mathernatica this graphical capability is especially well developed.

Computer algebra systems, with their ability to perform mathematics symbolically and
to carry out numerical procedures with extreme precision, would seem to be almost a pre-
ferred tool for the numerical analyst. However, for the large "real-life" problems that a pro-
fessional analyst often deals with, they do not have the necessary speed. They are good for
"small problems" and are an excellent learning environment. However, in many "real
world" situations, such as weather prediction or the computation of space vehicle trajecto-
ries, the scientistlengineer will employ programs written in FORTRAN or C. And he or
she will almost always use the proven routines of IMSL or LAPACK.

Another alternative to writing a computer program to do numerical analysis is to
employ a spreadsheet program. Still another way to do numerical procedures is to utilize a
programmable calculator. Typcial of these advanced calculators are the TI-89 from Texas
Instruments and the HP-48G from Hewlett-Packard, These machines have much of the
power of a personal computer to do mathematics. They have limited memory, but built into
them are special facilities of interest to the numerical analyst. Programs that are coded in
their Read-only Memory (ROM) can plot functions in two- and three-dimensions, solve
for roots of a nonlinear equation, solve systems of linear equations, manipulate matrices,
do interpolation, differentiate and integrate (both numerically and analytically), and solve
ordinary differential equations as well as perform mathematical and statistical operations.
Expressions can include terms like sine, cosine, and other mathematical functions. They
not only handle numeric expressions; symbolic manipulations are also possible. We do not
discuss programmable calculators in this edition of Applied Numerical Analysis.

0.3 An Illustrative Example

We will introduce the subject of numerical analysis by showing a typical problem solved
numerically. If you worked for a mining company, Example 0.1 might be a problem you
would be asked to solve.

- -

EXAMPLE 0.1 The Ladder in the Mine. Two intersecting mine shafts meet at an angle of 123", as shown
in Figure O.l(a). The straight shaft has a width of 7 ft, and the entrance shaft is 9 ft wide.
What is the longest ladder that can negotiate the turn at the intersection of the two shafts?
Neglect the thickness of the ladder members, and assume the ladder is not tipped as it is
maneuvered around the corner. Provide for the general case in which the angle a is a vari-
able as well as for the widths of the shafts.

Steps in Solving the Problem

Whenever a scientific or engineering problem is to be solved, there are four general steps
to follow:

0.3: An Illustrative Example 7

(a)

Figure 0.1

1. State the problem clearly, including any sirnplifying assumptions.
2. Develop a mathematical statement of the problem in a form that can be solved for a

numerical answer. This process may involve, as in the present case, the use of calcu-
lus. In other situations, other mathematical proceclures may be employed. When this
statement is a differential equation, appropriate initial conditions and/or boundary
conditions must be specified.

3. Solve the equation(s) that result from step 2. Sometimes the method will be algebraic,
but frequently more advanced methods will be needed. This text may provide the
method that is needed. The result of this step is a numerical answer or set of answers.

4. Interpret the numerical result to arrive at a decision. This will require experience and
an understanding of the situation in which the problem is embedded. This interpreta-
tion is the hardest part of solving problems and must be learned on the job. This book
will emphasize step 3 and will deal to some extent with steps 1 and 2, but step 4 can-
not be meaningfully treated in the classroom.

The description of the problem has taken care of step 1. Now for step 2.
Here is one way to analyze our ladder problem. Visualize the ladder in successive loca-

tions as we carry it around the comer; there will be a critical position in which the two ends
of the ladder touch the walls while a point along the ladder touches the comer where the
two shafts intersect (see Fig. 0.lb). Let c be the angle between the ladder and the wall
when in this critical position. It is usually preferable to solve problems in general terms, so
we work with variables a, b, c, wl, and w2

Consider a series of lines drawn in this critical pos-ition-their lengths vary with the
angle c, and the following relations hold (angles are expressed in radian measure):

The maximum length of ladder that can negotiate the turn is the minimum of L as a
function of the angle c. If you were to solve for the minimum of L with respect to c by the
methods you learned in calculus, you would first find an expression for dLldc and then find

Chapter Zern: Prdiminaries

the value for c that makes this zero. We prefer to use a special function that MATLAB has
to get the answer.

MATLAB is command line driven, meaning that we type in commands that invoke
operations. It is a large and powerful "computing environment." Mathworks, the developer
of the program, calls it "The Language of Technical Computing." In later chapters we will
explore many of its capabilities, but for now we will only use it to (1) draw a plot of L ver-
sus c (from which we can estimate the minimum point), and (2) find the minimum more
accurately with the special MATLAB function.

We start by defining the function L. We know values for wl and w2 from Figure 0.1.
Angle c is given as 123" but we want the value in radians. We can ask MATLAB to do the
conversion; the value for pi is built into MATLAB, we use "pi" to get it:

EDU>>a = 123*2*pi/360

a =

2.1468

We could get more significant figures in the result but this seems good enough. Now we
define the function for L. There are other ways to do it, but this is an easy way:

EDU>>L = inline('g/sin(pi-2.1468-c) +7/sin(c) ')
L =

Inline function:

~ (c) = 9/sin(pi-2.1468-c) +7/sin(c)

We ask MATLAB to plot L versus c:

EDU>>fplot (L, [0.4,0.5]) ;grid on

and we see Figure 0.2. (The semicolon before the "grid on" command suppresses the plot
until the grid is created.)

From the graph, we can estimate that the minimum point is approximately L = 34.42,
c = 0.466. For this problem, this is perhaps an adequate answer. Still, MATLAB can get
the minimum more accurately. We ask for a numerical computation:

ans =

0.4677

Our estimate was really pretty good. But this is the value for c at the minimum-we really
want the value for L. So we do:

EDU>>LiO.4677)

ans =

33 .dl86

If we want to see how MATLAB found the c-value at the minimum point, we do:

EDU>>fminbnd(L,0.4,0.5,optimset('Display','iter1))
Func-count x f (x) Procedure

1 0.438197 33.5333 initial
2 0.461803 33.4231 golden

0.3: An Illustrative Example

Figure 0.2

3 0.476393 33.4284 golden
4 0.467721 33.4186 parabolic
5 0.467688 33.4186 parabolic
6 0.467654 33.4186 parabolic

Optimization terminated successfully:
the current x satisfies the termination criteria using
0PTIONS.TolX of 1.000000e-004
ans =

0.4677

The table that MATLAB displayed gives the successive steps in finding the minimum (x is
used as the name for the independent variable rather than c). In a later chapter, we will
explain the different "Procedures" that were used.

You should learn from this example three things about solving problems numerically:
(1) There is often more than one way to attack the problem; (2) there are prewritten pro-
grams that can help; and (3) the accuracy that is needed in the answer dictates how you
should get the solution. When a graph is sufficient, that may be the quickest and best way
and it may tell how sensitive the answer is to values of the parameters.

Chapter Zero: Preliminaries

Maple and Mathematics are two other computer algebra systems that can solve the ladder
problem. If these are available to you, you may want to see how they compare to MATLAB.

0.4 Kinds of Errors in Numerical Procedures

We have mentioned that it is critically important to realize that errors can occur in doing
numerical procedures. Some errors are due to the way that a computer does arithmetic but
there are other sources of error.

Error in Original Data

Real-world problems, in which an existing or proposed physical situation is modeled by a
mathematical equation, will nearly always have coefficients that are imperfectly known.
The reason is that the problems often depend on measurements of doubtful accuracy.
Further, the model itself may not reflect the behavior of the situation perfectly. We can do
nothing to overcome such errors by any choice of method, but we need to be aware of such
uncertainties; in particular, we may need to perform tests to see how sensitive the results are
to changes in the input information. Because the reason for performing the computation is
to reach some decision with validity in the real world, sensitivity analysis is of extreme
importance. As Hamming says, "the purpose of computing is insight, not numbers."

Blunders

You will likely always use a computer or at least a programmable calculator in your pro-
fessional use of numerical analysis. You will probably also use such computing tools
extensively while learning the topics covered in this text. Such machines make mistakes
very infrequently, but because humans are involved in programming, operation, input
preparation, and output interpretation, blunders or gross errors do occur more frequently
than we like to admit. The solution here is care, coupled with a careful examination of the
results for reasonableness, Sometimes a test run with known results is worthwhile, but it is
no guarantee of freedom from foolish error. When hand computation was more common,
check sums were usually computed-they were designed to reveal the mistake and permit
its correction.

On one occasion, a space flight was lost because someone typed into the program a sin-
gle value with digits reversed, a common mistake. Human error can be costly!

Truncation Error

The term truncation error refers to those errors caused by the method itself (the term orig-
inates from the fact that numerical methods can usually be compared to a truncated Taylor

0.4: Kinds of Errors in Numerical Procedures 11

series). For instance, we may approximate eX by the cubic

However, we know that to compute e" really requires an infinitely long series:

We see that approximating ex with the cubic gives an inexact answer. The error is due to
truncating the series and has nothing to do with the computer or calculator. For iterative
methods, this error can usually be reduced by repeated iterations, but because life is finite
and computer time is costly, we must be satisfied with an approximation to the exact ana-
lytical answer.

Propagated Error

Propagated error is more subtle than the other errors. By propagated error we mean an
error in the succeeding steps of a process due to an occurrence of an earlier error-such
error is in addition to the local errors. It is somewhat ar~alogous to errors in the initial con-
ditions. Some root-finding methods find additional zeros by changing the function to
remove the first root; this technique is called reducing or deflating the equation. Here the
reduced equations reflect the errors in the previous stages. The solution, of course, is to
confirm the later results with the original equation.

In examples of numerical methods treated in later chapters, propagated error is of criti-
cal importance. If errors are magnified continuously as the method continues, eventually
they will overshadow the true value, destroying its validity; we call such a method unsta-
ble. For a stable method-the desirable kind-errors made at early points die out as the
method continues. This issue will be covered more thoroughly in later chapters.

Each of these types of error, while interacting to a degree, may occur even in the
absence of the other kinds. For example, round-off m o r can occur even if truncation
error is absent, as in an analytical method. Likewise, truncation errors can cause inaccu-
racies even if we can attain perfect precision in the calculation. The usual error analysis
of a numerical method treats the truncation error as though such perfect precision
did exist.

Even in the absence of the errors we have discussed, there are errors inherent in the
architecture of the computer. We discuss this next.

Round-Off Error

All computing devices represent numbers, except for integers and some fractions, with
some imprecision. (MATLAB and similar programs cim work with integers and rational
fractions to achieve results of higher precision.) Digital computers will nearly always use

Chapter Zero: Preliminaries

floating-point numbers of fixed word length; the true values are usually not expressed
exactly by such representations. We call the error due to this computer imperfection the
round-off error. If numbers are rounded when stored as floating-point numbers, the round-
off error is less than if the trailing digits were simply chopped off.

Absolute Versus Relative Error, Significant Digits

The accuracy of any computation is always of great importance. There are two common
ways to express the size of the error in a computed result: absolute error and relative errol:
The first is defined as

absolute error = 1 true value - approximate valuel.

A given size of error is usually more serious when the magnitude of the true value is
small. For example, 1036.52 + 0.010 is accurate to five significant digits and may be of
adequate precision, whereas 0.005 ? 0.010 is a clear disaster.

Using relative error is a way to compensate for this problem. Relative error is defined as

absolute error
relative error = I true value I

The relative error is more independent of the scale of the value, a desirable attribute.
When the true value is zero, the relative error is undefined. It follows that the round-off
error due to a finite length of the fractional part of floating-point numbers is more nearly
constant when expressed as relative error than when expressed as absolute error. Most
people define these errors in terms of magnitudes, in which case the error is always a pos-
itive quantity.

Another term that is commonly used to express accuracy is signijkant digits, that is,
how many digits in the number have meaning. Extra digits that show up when numbers are
shifted to normalize them are meaningless; this is a real problem when there are trailing
zeros in a number. We may not know whether they are really zeros or just fillers.

A more formal definition of significant digits follows.

1. Let the true value have digits dldz . . . dndn+l . . . dp.
2. Let the approximate value have dld2 . . . dn en+l . . . ep.

where dl # 0 and with the first difference in the digits occurring at the (n + 1)st digit. We
then say that (1) and (2) agree to n significant digits if - en+l(< 5. Otherwise, we
say they agree to n - 1 significant digits.

EX AMPLE 0.7 Let the true value = 1013 and the approximate value = 3.333.

The absolute error is 0.000333 . . . = 113000.

The relative error is (113000)/(10/3) = 1110000.

The number of significant digits is 4.
I

0.4: Kinds of Errors in Numerical Procedures 13

Floating-point Arithmetic

Even though a computer follows exactly the instructions that it is given, when it performs
an arithmetic operation it does not get exact answers unless only integers or exact powers
of 2 are involved.

A computer stores numbers as floating-point* quantities that resemble scientific nota-
tion. For example, 13.524 is the same as the floating-point number .I3524 * lo2, which is
often displayed as .13524E2. Another example: -0.0442 is the same as - .442E- 1. In
both of these situations, we have normalized the floating-point representation, meaning
that we have shifted the decimal point to make the leading digit nonzero.

While not all computers store floating-point numbers in the IEEE standard that we now
describe (IBM mainframes are a notable exception), this IEEE standard is by far the most
common. A computer number has three parts:

the sign (either + or -),

the fraction part (called the mantissa),

the exponent part.

The IEEE standard specifies that the number will be stored as a binary quantity. One bit is
used for the sign.

There are three levels of precision and these are the number of bits used for mantissa
and exponent:

Number at bits in

Precision Length Sign Mantissa Exponent Range

Single 32 1 23(+ 1) 8 10238
Double 64 1 52(+ 1) 11 102308
Extended 80 1 64 15 10'4931

For single and double precision, a clever device is used to get one more bit in the mantissa
than the length accommodates: All numbers are normalized so the first bit of the mantissa
is always 1. This means that it does not have to be stored and that is why we show the man-
tissa length as "+ 1" more than the number of bits actually used.

We need very small numbers as well as large, so the IEEE standard provides for nega-
tive exponents. Rather than use one of the bits for the sign of the exponent, exponents are
"biased"; a bias value is added to the actual value of the exponent to make all exponents
range from zero to a maximum number. For single precision, the bias value is 127 (base
lo), so an exponent of - 127 is stored as zero; the largest exponent, 128, is stored as 255,

* Another name often used for floating-point numbers is real numbers, but we reserve the term real for the con-
tinuous (and infinite) set of numbers on the "number line." When printed as a number with a decimal point, it is
calledfixed point. The essential concept is that these are in contrast to integers.

Chapter Zero: Preliminaries

the largest value that 8 bits can signify. For double and extended precision, the bias values
are 1023 and 16383.

It is obvious that only a finite number of different values can be stored in a computer
that uses the IEEE standard. Since there is an infinite number of real numbers, it is clear
that there must be gaps between the stored values. This is the source of round-off error.
Numbers that cannot be stored exactly are approximated. The simplest way to do this is
just to chop off the digits beyond those that can be stored. A preferred way is to round to
the nearest storable number (with rounding to an even number if there is a tie: 0.1234
becomes 0.123 if we can have only three digits, 0.1235 becomes 0.124).

There is a largest number and smallest (in magnitude) number in the system. Quantities
that exceed the maximum cause overjZow; too small numbers cause underjZow. How these
cases are handled depends on the particular computer. When underflow occurs, many com-
puters replace the value with zero. If there is overflow, they replace the value with a special
bit pattern that represents infinity.

In single precision, the smallest and largest storable numbers are:

Smallest: 2.93873 E-39,

Largest: 3.40282 E+38.

The storage of zero is a special case. In the IEEE standard, zero is stored as all zeros: The
sign is zero, the mantissa is all zeros, the exponent is all zeros. Obviously, the value for
zero cannot be normalized.

Certain mathematical operations are undefined, such as 010, O*m, m. When a pro-
gram tries to do any of these, the IEEE standard substitutes another special bit pattern that
is displayed as NaN (meaning Not a Number).

The term eps is a shortened form of the Greek letter epsilon; it is used to represent the
smallest machine value that can be added to 1.0 that gives a result distinguishable from 1 .O.
MATLAB can tell what it is for your computer. For the computer used to write this book,
here is what MATLAB told us:

EDU>> eps

ans =

2.2204e-016

The value of eps depends, however, on the precision of the computer system; MATLAB
uses 32 digits and eps is the same as for IEEE double precision; a very small number. In
IEEE single precision, eps has the value 1.192E-07 = 2-23. It is not difficult to see that,
if E is just slightly smaller than eps, (1 + E) + E = 1 but 1 + (E + E) > 1.

Round-off Error Versus Truncation Error

We have seen that truncation error is caused by using a procedure that does not give precise
results even though the arithmetic is precise. Round off occurs, even when the procedure is

0.4: Kinds of Errors in Numerical Procedures 15

exact, due to the imperfect precision of the computer. What we might call computational
error is the sum of these.

In Chapter 5, we will show how the derivative of a function can be found numerically.
Analytically, dfldx is given by

We can find an approximate value for ft(x) by computing this ratio with a small value for
h. If we make h still smaller, the result is closer to the true value for the derivative (the trun-
cation error is reduced) but at some point, depending on the precision of the computer,
round-off errors will dominate and the results become kss exact. There is a point where the
computational error is least.

Well-Posed and Well-conditioned Problems

The accuracy of a numerical solution depends not only on the computer's accuracy; the
problem itself is a factor. A problem is well posed if a solution (a) exists, (b) is unique, and
(c) has a solution that varies continuously when the values of its parameters vary continu-
ously. Not all problems have this property. The remedy is to replace the problem with
another that has a solution close enough to be useful. A nonlinear problem could be
replaced by a linear one; one that extends to infinity might be changed to one that extends
to a large but finite extent; a complicated function may be simplified to one that has values
that are almost the same.

Some problems are particularly sensitive to changes in the values of the parameters; a
small change in the input causes a large change in the output. A well-conditionedproblem
is not so sensitive; the change in the output is not greater than the change in the input (or it
could even be little changed). Most applied problems ha,ve parameter values that are based
on measurements, so these may be not entirely accurate. The values may be numbers
based on past experience and today's situation may be different. Modeling and simulation
of the system are often used to explore its behavior and the model may be not a really good
one. A well-conditioned problem gives useful results in spite of small inaccuracies in the
parameters.

The procedure used (the algorithm) can sometimes amplify even small errors. In
Chapter 6, we will mention a method that seems to have particularly good accuracy but for
certain problems it exhibits instability - small initial errors are amplified. In Chapter 2, we
discuss how a system of linear equations can be solved and we show that some systems
(these are termed ill-conditioned) are so affected by round off that the answer is worthless.

Forward and Backward En-or Analysis

When we compute a value of a function, y = f(x), we may not get exactly the correct value
of y due to computational error. Call this computed value yclc. The forward error is

Chapter Zero: Preliminaries

defined as

where yexac, is the function value we would get if computational error were absent.
There is an x-value that will give yCal, when there is no computational error; call this

'talc:

The backward error is

Here is an example:
Compute y = x2 for x = 2.37 and use only two digits. We get ycalc = 5.6 while yexact =

5.6169. The forward error is

a relative error of about 0.3%. Because 6 6 = 2.3664 . . .,

a relative error of about 0.15%.

Examples of Computer Numbers

Working with 32- or 64-bit number representation is awkward, so we simplify. Assume
that only six bits are available; one bit for the sign, two bits for the exponent, leaving
3(+ 1) for the mantissa (we normalize). The exponent is biased by one, so we have these
translations of the actual exponents:

Actual exponent Stored in binary as

The smallest and largest positive numbers look like this:

Sign Mantissa Exponent Value

0.4: Kinds of Errors in Numerical Procedures 17

Here is how we got the fraction part of these quantities:

Smallest = 112 + 014 + 018 + 1116 = 9/16,

Largest = 112 + 114 + 118 + 1/16 = 15116.

Observe that the smallest cannot have a mantissa of all zeros because that bit pattern is
reserved for the number zero. The smallest and largest negative numbers have the same
magnitudes; they differ only in the sign bit. These range from -9132 to - 1514.

Suppose we draw the number line that shows all possible nonnegative computer num-
bers in this hypothetical system:

With this very simple computer arithmetic system, the gaps between stored values are very
apparent. The gap between zero and the first positive number is extremely large because
we have normalized. There is a larger gap between each "decade" as well. In each
"decade" there are seven values, so there are 4 * 7 = 28 positive numbers in all. There are
28 negative numbers, so the total of numbers is 28 + 2:3 + 1 (for zero) = 57 altogether.

Because of the gaps in this number system, many values cannot be stored exactly. For
example, the decimal number 0.601 falls between the first and second numbers in the sec-
ond "decade." It will be stored as if it were 0.6250 because it is closer to 10116, an error of
about 4%. In the IEEE system, gaps are much smaller but they are still present.

There is a most important consequence to this. Whlen you write a computer program,
never use a test such as

If A = B, then . . .

Instead, you should do something like this:

If I A - B(< = TOL, then .

Here is how numbers appear in the IEEE standard:

-(I - 2-24) * 2127 -2-126 0 2-126 (1 - 2-24) + 2'27
I I I I I

I I
_ _ _ J c '-\A;

Negative Negative / \ Positive Positive
overflow numbers Negative Positive numbers overflow

underflow underflow

Anomalies with Floating-point Arithmetic --
It may seem surprising that when a set of numbers is added, the order of adding them to the
running sum is important. Adding them in the order of smallest in magnitude to the largest

Chapter Zero: Preliminaries

gives a more accurate result than if they were added from largest to smallest. (However,
there are instances when the opposite is true!)

For some combinations of values, these statements are not true:

Other peculiar things may happen with floating point. For example, adding 0.0001 one
thousand times should equal 1.0 exactly but this is not true with single precision. To see for
yourself, try this on your computer.

Here is another unexpected result. If we compute values in single precision of this
expression:

with different values of X and Y, we get these answers:

The expression for Z can easily be seen to reduce to x2/x2, which must equal 1.00000000
(if X # 0).

Errors When Values Are Converted

The numbers that are input to a computer are normally base-10 numbers. These have to
be converted to the base-2 numbers that are stored in the computer. This conversion itself
can cause errors. For example, some terminating decimals are nontenninating in base 2:
(0.6),0 = (0.1001 1001 1001 . . .),.

You may have learned previously how numbers are converted from one base to another,
but, to refresh your memory, here are the procedures to convert from base 10 to base 2:

For decimal integers:
Divide repeatedly by 2 and use the remainders in reverse order as the successive
base-2 values.

For decimal fractions:
Multiply repeatedly by 2 and use the integer parts as the successive base-2 values.

0.5: Interval Arithmetic 19

Examples:

Convert (327)10 to binary:
32712 = 163, r l ; 16312 = 81, r l ; 8112 = 40, r l ;
4012 = 20, rO; 2012 = 10, rO, 1012 = 5, rO; 512 = 2, r l ;
212 = 1, rO; 112 = 0, rl. Combining remainders gives (327)10 = (101 000 11

Convert (0.3125)10 to binary:

0.3125 * 2 = 0.6250 (use 0); 0.6250 * 2 = 1.2500 (use 1);
0.2500 * 2 = 0.5000 (use 0); 0.500 * 2 = 1.000 (use I).
Combining the integer parts gives

(0.3125)10 = (0.0101),.

0.5 Interval Arithmetic

While there are errors from round off caused by the finite number of bits available for
floating-point numbers and errors may occur when the decimal fractions of input values
are converted to machine numbers, a major source of error is that the parameters of a math-
ematical model are from measured quantities that define the parameters. How can we han-
dle such uncertainties?

Internal arithmetic is a relatively new branch of mathlematics that allows us to find how
parameter errors are propagated through the sequence of computer operations of a pro-
gram. We discuss here only some elementary concepts.

Interval analysis uses values that fall within a range of numbers. For example, if a mea-
sured quantity is reported as 2.4, but this is uncertain by t 0.05, we should include the
uncertainties in the equations. Instead of putting the imperfect number 2.4 into the equa-
tion, we should use

an interval that does include the reported 2.4 but also shows the possible range for the true
values. The two numbers in brackets show the extreme points of the quantity, the endpoints
of the interval, if you will. We always write the lesser value first. (The notation for intervals
is not yet well established.)

You can more easily understand the rules for arithmetic operations on intervals if you
think of the "worst case" eventuality. We will write interval A as [aL, a R] To add interval
values A and B, we have:

A f B = [a,, aR] f [b,, bR] = [aL 4- bL, aR + bR]

(The least sum is aL + b,, the greatest is aR + bR.)

Example: [0.5,0.8]+ [-1.2,0.1]:= [-0.7,0.9]

A = 0.3 A = 1.3 A = 1.6

Notice that the width of the sum is the sum of the widths of the terms being added.

Chapter Zero: Preliminaries

For subtraction, we have

A - B = [aL, - [bL, bRl = [aL - bR, aR - bLl

Example: [OS, 0.81 - [- 1.2, 0.11 = [0.4,2.0]

A=O.3 A=1.3 A=1.6

Again, the width of the answer is the sum of the widths of the terms.
Multiplication is more complicated. The definition is easier to explain if we work with

a set of four values:

The members of S are the four possible products of the elements of A and B. Now define

S, = min (S),

SR = max (S).

The product of intervals A and B is then

A * B = (S,, S,).

Example: For [OS, 0.8]*[- 1.2,0.1], we have

A=0.3 A=1.3

S = (-0.6,0.05, -0.96, 0.08),

and the product is [-0.96,0.08].

A = 1.04

There is no obvious relation between the various widths.
Computing the product of two intervals through this definition may require more opera-

tions than the number actually required. Fewer multiplications and comparisons are required
if we use alternative definitions for the nine possible cases for intervals A and B. (We have
three possible situations for each of A and B: strictly less than zero, containing zero, and
strictly greater than zero.) We leave as an exercise the development of the nine definitions.

Division of intervals is reduced to using the rules for multiplication by using the defini-
tion of the reciprocal of an interval:

so that

AIB = A * (11B) = [a,, a,] * [llb,, llb,].

It is most important to remember that if B contains zero (even as an endpoint) division is
undefined.

We will not go further into the arithmetic of intervals here, but you may wish to develop
the relations for A > B, A < B, and A = B.

0.6: Parallel and Distributed Computing 2 1

Software has been written that performs interval arithmetic. This provides answers in
the form of intervals that show the possible range of solutions to the equations that model
the applied problems that are solved with numerical procedures. Mathernatica is one com-
puter algebra system that lets you use interval arithmetic. Here is a sample:

In[l]: =a: = Interval[{0.5, 0.8)]

In[2] : = b: = Interval[{-1.2, 0.9}]
In131 : = a + b
Out[3] = Interval[{-0.7, 1.711
In[4]: = a - b
Out [41 = Interval
In[5]: = a * b
Out [5 I = Interval
In[6] : = a/b

Out 161 = Interval [{-Infinity, -0.4166671, 10.555556, Infinity}]

Maple can do interval arithmetic too. In this, intervals are called "ranges" and are defined
as a : = INTERVAL (0 .5 . .0 .8) ; . To perform arithmetic, the command evalr is used.

A Visual Example

To see how the imprecision of parameters affects the result of a computation, consider the
graph of y = 2 + x12, a straight line of slope 112 and y-intercept of 2 if the coefficients are
exact. Suppose, though, that the coefficients come from a set of measurement and we know
only that the slope is 2 t 0.2 and the intercept is 0.5 t: 0.1. Figure 0.3 suggests that the
plot of y versus x is a band, not a line.

0.6 Parallel and Distributed Computing

Many applications of computers involve tremendously large problems and the solution
may be needed almost instantaneously, in so-called real time. Military applications are an
example: Victory in war may depend on getting answers quickly. The speed of today's
computer, though seemingly very great, is beginning to run into the limits to electron flow
in electronic circuits.

Most computer systems run their instructions in sequence-one after another-and
this limits their speed. Even though supercomputers are very fast, executing billions of
operations per second, in some cases this is not fast enough. The history of computers has
seen many techniques to get faster speed.

One of the first techniques to increase the operating speed of a computer was
"pipelining" -that is, performing a second instruction within the CPU before the previous
instruction is completed. This technique takes advantage of the fact that doing a single
"instruction" actually involves several micro-coded steps and that the initial micro-steps
can be applied to an additional instruction even though the first sequence of micro-steps
has not yet finished. Pipelining permits a speedup by a factor of two or more.

Chapter Zero: Preliminaries

Figure 0.3

Another technique has been to build vector processing operations into the CPU.
Because the individual steps required to solve sets of equations involve many multiplica-
tions of a vector by another vector, these machines offer significant speed improvements
but only by a factor of 5 or 10, not by the factor of 10,000 that is really desired. Further,
this feature increases the cost of mainframes considerably. The current trend is to use par-
allel processing, that is, to put several machines to work on a single problem, dividing the
steps of the solution process into many steps that can be performed simultaneously. Not all
problems permit such parallel operations, but many important problems of applied mathe-
matics can be so structured. Obtaining many or even several supercomputers is outra-
geously costly, however. An alternative is to employ a massive number of low-cost micro-
processors, of the order of a thousand (1024 is a practical number). Although the
individual speed of a microprocessor is not equal to that of a supercomputer, the difference
in speed is made up by the larger number of machines that are combined. Intel has been
very active in the area of massively parallel computers. Their ASCI Red computer consists
of over 9000 Pentium Pros and can run at a peak speed of 1.3 teraflops. At the other
extreme in this area is the Beowulf-class of supercomputers, which are PCs joined together
to compete with the dedicated supercomputers. For a description and discussion of one of

0.6: Parallel and Distributed Computing 23

these, the Loki supercomputer, check the Web sites http://loki-www.lanl.gov/index.html
and http:l/loki-www.lanl.gov/resultsl. The Loki computer consists of 16 Pentium Pro com-
puters working together to create a modestly priced supercomputer. We can imagine a
future of thousands of PCs working together and accessible through the Web.

Massively parallel computers are important in many applications. For example, as
stated in the Atlantic Monthly for January 1998, "big parallel computers have proved use-
ful for both global climate warming and detailed modeling of ocean circulation" to explain
why Europe has winter temperatures about nine to eighteen degrees warmer than compa-
rable latitudes elsewhere.

Recently, much work and interest are found in disl'ributed computing. The basic idea
here is to connect many different computers, which can work separately on their own tasks
as well as in conjunction with each other. In the classification of parallel computers we
implicitly assumed a single clock with all the parallel operations in step (synchronous),
whereas with distributed computers each machine runs under its own clock; interrupts con-
stantly occur throughout the system to coordinate the actions (asynchronous operations).
Moreover, each machine has its separate memory, and the data can flow from one com-
puter to another. Although this seems to complicate the whole business of parallel comput-
ing, there are good economic reasons for distributed computing. The hardware is not
specialized. One can make use of what is already at hand. The major effort and expense is
in software and in connecting the computers and this can be done in a variety of ways.

If many computers are networked together as is common, distributed computing can
utilize them when they are idle, such as at night. Not all problems lend themselves to such
parceling out of the computations, but one interesting application that uses distributed
computing is a program from the University of California, Berkeley, named SETI@home.
When a computer's screen saver initiates, a signal is sent to the host computer saying that
it is available to join in the Search for Extraterrestrial Intelligence. A chunk of cosmic
radio-frequency data is then downloaded for the PC to analyze. Other applications that are
being investigated are gene sequencing, weather forecasting, and the decoding of
encrypted messages.

Special Problems in Parallel Cornputirig

If parallel computing is to be used to solve a large problem rapidly, several new aspects
come into play. Is the data stream provided from a single shared memory, or do the sepa-
rate units have individual memories? If the memory is distributed, how is communication
between the units accomplished? What type of bus provides the data channels to the sepa-
rate units, and can separate units read and write data at the same time? What sort of inter-
communication is there between the individual processors, and can they exchange data
without going through memory?

Other questions remain. Do the units operate synchronously, with all controlled by a
single clock, or do they run asynchronously? If operation is asynchronous, how does one
unit know when to accept data from a prior operation of a different unit, or do all units
operate "chaotically"? How can the loads for the separate processors be balanced-will
some units sit idle while others are running at capacity? (It would be preferable for all units

Chapter Zero: Preliminaries

to run at full loading.) What about the programs for parallel processing? Does the pro-
grammer have to be concerned with synchronization and intercommunications? Is the code
portable to other machines?

The questions about programming a parallel system are not yet settled. If it were possi-
ble to have the compiler recognize parallelism within a conventional program written for
sequential operations and have it develop the changed code to be run on the parallel sys-
tem, the task of programming would be much easier. On the other hand, writing code that
specifically takes advantage of the parallel CPUs can be more efficient, but this task is
tricky and complicated. It requires a skill that few programmers currently have. This mode
would involve knowing exactly how the hardware is organized and what communications
problems are involved. Further, it is likely that the best algorithm (solution procedure) for
a parallel machine will not always be the optimal one for sequential processing.

Speedup and Efficiency

We do not intend to explain all these many aspects of parallel processing in this book. We
must be content to show where parallelism exists for the various kinds of problems that we
attack numerically. For example, here is a simple classical problem that exhibits the advan-
tage of parallel processing. Suppose we are to add together a values. We can show the suc-
cessive steps by a "directed acyclic graph" (dag), as shown in Figure 0.4. Now imagine that
we have many separate processors that can be applied to the job. Figure 0.5 shows that the
number of time steps can be decreased from seven to three. In both Figures 0.4 and 0.5 the
"directed acyclic graphs" (dags) have steps that indicate the sequence of the operations in
time. In both cases, step i t 1 cannot take place until step i is completed. The flow of oper-
ations is from the bottom to the top and one can characterize the dag as having a height of
7 in Figure 0.4 and a height of 3 in Figure 0.5. This is consistent with the definition of a
"tree." At each level, indicated by a step n, we have the maximum number of processors
used at the time. We see from Figure 0.5 that we only need 4 and not 8 processors to speed
up the addition of the eight numbers.

Step
7

Figure 0.4
Adding eight numbers sequentially

0.6: Parallel and Distributed Computing 25

Step

Figure 0.5
Adding eight numbers with parallel processors

The term speedup is used to describe the increased performance of a parallel system
compared to a single processor. It is the ratio of the execution time for the original sequen-
tial process, using a single processor, to the time tor the same job using parallel processors.
In the preceding simple example, the speedup is 713 =: 2.333. In computing the speedup
for n data items, we use the time for the optimal sequential procedure (or for the best-
known procedure if the actual optimal procedure is not known), Tl(n), and for the best
(known) parallel algorithm for p processors, Tp(n). With these defined, we can now define
speedup:

In our example, we have TI@) = 7 and T4(8) = 3, where 7 and 3 are the respective heights
of the dags in Figs. 0.4 and 0.5. Another term, the eficiency, is based on how the speedup
compares to the number of processors used, where

Theoretically, if we have p processors, we should be able to do the job y times as fast. In
our example, however, E,(8) = 2.33314 = 0.583.

We have less than an efficiency of 1 .OO because some of the processors are idle after the
first step. Sometimes the speedup and efficiency are reduced because the size of the prob-
lem does not fit to the number of processors. For example, if we were to add only seven
numbers in this example, we would still require four processors to get the sum in three
steps, but now the speedup would be only 613 = 2.000 and the efficiency would drop to
0.5. On the other hand, what if we were limited to four processors but had 15 numbers to
add? We would subdivide the problem and, although trivial in this example, it would have
a best solution that is not obvious.

26 Chapler Zero: Preliminaries

It is common that there are several different numerical methods to solve a problem. For
example, you will find in the next chapter several techniques to get the roots ofKx) = 0, its
"zeros." In Chapter 2, we will present several ways to solve a system of linear equations.
How can the relative efficiency of different methods be compared?

One comparison is of the number of mathematical operations that are needed to get the
answer with a given accuracy. Suppose, on analysis, a method is found to take f(n) multi-
plies and that f is related to n by

An equation that gets this sum is

As n gets large, the first term dominates and we say that f(n) is "of order n2." The common
symbol that is used is f(n) = 0(n2). The net effect is with large n, the number of multipli-
cations increases four times if n is doubled. This "order of ' measure of operational count
occurs often in comparing the efficiency of alternative procedures.

Even though it may seem confusing, there is a second, quite different use of the order
relation. Some numerical methods arrive at an answer by varying the size of a parameter.
In Chapter 6, we will describe methods for solving a differential equation numerically. The
equation is of the form

dyldx = f(x,y),

with a value given for y at some value for x. Many of these techniques add together a
weighted sum of estimated values for the derivative function at evenly spaced x-values,
values that differ by h (a commonly used variable for such spacing). For one method the
error in the answer is proportional to the third power of h:

M
Error = -h3,

6

where M depends on a value for the third derivative of the function f(x, y). Because h is the
only parameter of the process that can be chosen by the user, we say that "the error is of
order h3," and this is written as

Error = 0(h3).

Even though there are these two uses of the order relation, the context makes the meaning
clear.

Taylior Series

The expression for the order of error just given is found by comparison of the procedure
with a Taylor series. You will find that the Taylor series is often used in determining the

0.7: Measuring the EfFciency of Numerical Procedures 27

order of error for methods, and the series is itself the basis for some numerical procedures
(a particularly good example will be found in Chapter 6).

We remind you that a Taylor series is a power series that can approximate a function,
f(x), for values near to x = a. Its coefficients use the derivatives off at x = a:

In effect, the Taylor series says that if we know the values for all derivatives of f(x) at
x = a, we can approximate the function as closely as we desire. This implies that f(x) must
have derivatives of all orders and that these can be evaluated at x = a.

If a Taylor series is truncated while there are still nonzero derivatives of higher order,
the truncated power series will not be exact. The error term for a truncated Taylor series
can be written in several ways, but the most useful form when the series is truncated after
the nth term is

f"+ltR Error of TS = --
(n f I)!

where 5 is a value between x and (x + a). The value for 5 is ordinarily not known, so there
is some uncertainty in the exact value for the error. Still, this term can give bounds for the
error.

We observe that a truncated Taylor series is really just a polynomial in x and that the only
arithmetic operations used to compute it are precisely those that a computer can do. We
also see that if f(x) has discontinuities, the Taylor series cannot approximate it over the dis-
continuity.

Polynomials occur frequently in numerical analysis. You will encounter them in several
instances in this book: in the development of formulas for interpolation (Chapter 3), for
approximation of functions (Chapter 4), and for differentiation and integration (Chapter 5).

One reason for such prevalence is that the only mathematics needed for their evaluation
are addition and multiplication and this fits perfectly to a computer. A second reason is the
nice behavior of polynomials: They are everywhere continuous and have derivatives of any
order. A famous theorem states that any continuous function can be approximated uni-
formly over a finite interval by a polynomial!

Certain polynomials are especially useful; many of these have a property called orthog-
onality. Typical of these are the Chebyshev polynomials. Using these, we can approximate
a function better than with the standard Taylor series. A.nother set of polynomials that has
the orthogonality property is the set of Legendre polynomials, which are involved in a par-
ticularly good way to integrate a function numerically.

A ratio of polynomials, a so-called rational function, is also important in numerical
analysis. These also can be readily evaluated by a computer, but they may not be continu-
ous everywhere; the denominator polynomials can be zero for some x-values.

Chapter Zero: Preliminaries

When a polynomial is evaluated, it is inefficient to do it in the way that at first seems
obvious. Suppose that your polynomial is

P(x) = a. + alx + a2x2 + a3x3.

If you evaluate P(x) as a. + alx + a2x * x + a3x * x * x, six multiplications and three addi-
tions are required. Putting it into "nested form":

P(x) = ((a3x f- a2)x f- nix) + ao,

takes only three multiplications and three additions. Nested multiplication is not only
faster, but there is less error due to round off.

xercises

(Answers are given for problems marked with).)

Section 0.2

1. There are many programs and subroutines that have
been written to perform numerical analysis. An impor-
tant Internet resource is "Guide to Available
Mathematical Software" (GAMS). It is maintained by a
government agency. It can be accessed through the Web
address gams.nist.gov/.
Find answers to these questions from that Web site.

a. What is the name of the government agency?
b. Use the link to "Package name" to see a listing of

packages from many sources. How many different
sources are listed?

c. How many times is Fortran identified as the com-
puter language? How many times is the language C
mentioned?

2. Repeat Exercise 1, but now look at "Problem Decision
Tree."

a. How many subclasses in the tree?
b. Find a link to a program that gets the characteristics

of the floating-point operations of a computer.

3. Make a list of the books in your school's library that
deal with parallel computing. How many journal arti-
cles can you find that cover this subject?

4. Repeat Exercise 3, but for the topic "Distributed
Computing."

Section 0.3

5. If your version of MATLAB allows for symbolic oper-
ations, find dL/Dc for the ladder problem of Section
0.3. Plot this derivative function and see where it
crosses the x-axis. Does it give the same value for c at

the minimum point? (If MATLAB cannot do this for
you, use Mathematica.)

)6. Solve this variation to the ladder problem. The height
of both the inlet tunnel and the straight shaft are both
6 ft 7 in. If the ladder can be tipped as the corner is
negotiated, how much longer can the ladder be and still
be taken into the mine?

7. The parameters for the ladder problem must have been
determined from measurement; they can hardly be pre-
cise for an actual tunnel. Investigate how much the
length of the ladder is affected if:

a. The angle a can be in error by as much as 5 degrees.
b. The width of the inlet shaft can be in error by as

much as 4 inches.
c. The width of the straight shaft can be in error by as

much as 7 inches.

)8. A circular well is 5.6 ft in diameter and is 14.3 ft
deep and has a flat bottom. A ladder that is 17 in. wide
(outside measurement) has side rails that are 1 in. by 3
in. What is the longest ladder that can be placed in the
well if its top is to be exactly even with the surface of
the ground? Get the answer in two different ways.

Section 0.4

9. Develop the Maclawin series for cos(2x) up to terms in x4.

a. What is the greatest truncation error within
x = [-1,2]?

b. Plot the truncation error over this range.

10. Repeat Exercise 9 but expand about x = 1 (a Taylor
series). Also, find the x-values where the truncation
error is zero.

Exercises 29

11. Express these quantities in the form OXXXX . . . xEyy.

a. 1.234567
b. - 2.000001 11
c. 0.00001325
d. 123456789
e. 0.0000002

12. What is the largest interval between two IEEE numbers in

a. single precision.
b. double precision.

b13. Can you find examples in single precision where

14. Evaluate this cubic polynomial for x = 1.32, using both
rounding and chopping to three digits at each arithmetic
operation, getting both the absolute and relative errors:

a. Do it proceeding from left to right.
b. Do it from right to left. Is the answer the same?
c. Repeat part (a) but do it with "nested multiplica-

tion." Which takes fewer operations? The nested
form is:

b15. Write a computer program that does the following addi-
tions in single precision. What are the absolute and rel-
ative errors of each sum?

a. 0.001 added 1000 times
b. 0.0001 added 10,000 times
c. 0.00001 added 100,000 times

16. Are there times when round-off errors tend to cancel in
adding series of values?

17. Write a computer program that determines the relative
speeds of the four arithmetic operations. Be sure to do
enough repetitions so that the intervals between clock
ticks do not affect the results; also account for loop
overheads.

Section 0.5

b18. Given these interval numbers, perform the arithmetic.
How does the width of the answer compare to the
widths of the terms?

x = [2.33,2.54],y = [-1.19,0.11],z = [0,3.45].

a. What is x + y?
b. Whatisx- y + z ?

c. What is x * z: ?
d. What is ylz?

19. If x = 1.2345 is stored as a floating-point number, what
is the interval that includes it in IEEE single precision?

20. What is the smallest interval between two IEEE num-
bers?

a. In single precision.
b. In double precision.

21. Plot this function:

f i x) = [2.9,3.1] * x[1.9532.05] + [4.1, 4.31
22. Add to the plot of Exercise 21 the plot of g(x) = 3 2 +

4.2. At x = 3, how great is the distance between f(x)
and g(x)?

Section 0.6

23. Under what conditions can parallel processing not be
used to speed up a computation?

24. A vector is a quantity that has several values, called its
components. An example of a four-component vector is
V = [1.22, 2.33, 3.44, 4.551. The inner product of two
vectors is the sum of the products of the components
taken in order (ihe vectors must have the same number
of components--they must he of the same "size").

a. How can parallel processing speed the computation
of the inner product?

b. What is the speedup factor for vectors of size 5?
c. What is the speedup factor for vectors of size n?

b25. What are the conditions of problems that suggest that
distributed processing should be considered?

26. How does distributed computing differ from parallel
processing?

Section 0.7

27. When a sequence of n integers is added, the first being
1 and the last being n, the sum is

Sum = n2/2 + nl2 = 0(n2).

For n = 100, 11300, and 10,000, how much does the
value of Sum differ from n2/2?

28. The numbers of Exercise 27 are called an arithmetic
progression and A, the difference between successive
terms is 1. Find the formula for the following arithmetic
progressions, and their order expressions.

a. The sum of odd integers, starting with l?
b. The sum of even integers, starting with 2?
c. Repeat part (12) but for a starting value of s.

3 0 Chapter Zero: Preliminaries

29. Find a formula for the sum of the squares of integers
starting with 12 and its order expression. At what num-
ber of terms is the formula and the order expression
within 1% of each other?

30. Repeat Exercise 29 but for the sum of cubes.

b31. For a polynomial of degree n, show how many fewer
arithmetic operations are needed when it's evaluated in
nested form compared to doing it term by term.

32. Repeat Exercise 31 but for a polynomial where some
coefficients are zero, say, m zeros in a polynomial of
degree n. Are there times when evaluation in nested
form has no advantage?

b33. A rational function is a ratio of two polynomials.
Evaluating both the numerator and denominator in
nested form should require fewer operations than doing
them term by term. How many fewer operations when
the degrees are n and d?

Applied Problems and Projects

APPl.

APPS.
APP6.

This group of problems will challenge you more than the exercises do. When you are asked to write
a computer program, the language that you use is optional.
Write a computer program that finds a minimum of f(x) that lies between x = a and x = b. It does
this by stepping from a toward b in steps of (b - a)/l0 until the values of f(x) begin to increase. It
then reverses the direction with steps one-tenth as large to isolate the minimum more accurately. This
is repeated until the minimum is located within x-values that differ by less than lop6.

How can APPl be adapted to find a maximum value? Can the program be modified to permit the user
to do either?
a. Critique the procedure of APP1. Consider these questions and others that you think are important:

What if f(x) is discontinuous in [a, b]?
What if there are multiple minima?
What if there is no minimum point?

b. Propose a scheme that is more efficient. Define what you think should be the measure of "efficiency."

Repeat APPl but now to find where f(x) = 0, the point where the function crosses the x-axis.
Analyze this as in APP2, parts (a) and (b).

Do research on the Internet and make a list of at least ten references to parallel computing. Make
another list of references to distributed computing.

Use Maple andlor Mathematica to create a plot similar to Figure 0.2.

Get a formula for the number of mathematical operations needed to evaluate a polynomial of degree
n, doing it with:
a. nested multiplication.
b. in standard form.

Find the Taylor series forflx) = llx, expanded about the point x = 2. Write a program that displays
the computed value at x = 2.5, the absolute error, and the relative error, for:
a. A series of three terms.
b. A series of four terms.
c. A series of five terms.
d. Repeat parts (a), (b), and (c) for x = 3.
e. For what range of x-values is the infinite series convergent?

In finding the minimum of L versus c in the ladder problem, MATLAB used two applications of
"golden." This refers to the Golden Mean. What is the Golden Mean? Where does this value come from?
What other applications is there of this other than in finding a minimum? Why is it called "golden"?

Write a computer program that converts numbers tolfrom binary; octal; decimal; hexadecimal.
Compare the graphs of (1 - x)" for n = 2, 4, 6, 8, You will find that, for x-values near 1, the
graphs depart less and less from the x-axis as n increases. Determine how accurate the computer must

Applied Problems and Projects 3 1

be to get a nonzero value at x = 0.8 as a function of n. Then, find the values of x where the departure
from zero is just greater than eps when the computation is done in single precision.

APPl1. The ABC Manufacturing Company currently ships a product in a cardboard box that measures 6 X

7.5 X 2.5 in. The box is formed from a die-cut pattern using a piece of card stock that is 1132 in.
thick, 12.5 in. wide, and 18 in. high. After the card stock is cut, the unassembled box looks like the
figure. Part T forms the top, part B is the bottom, and parts S m&e the sides. The solid lines represent
cuts and the dashed lines represent folds. Flaps F are folded inside the box and are glued to the side
pieces. After the box has been filled, the top is folded over and flaps G (which are I in. wide) are
folded and glued to the outside of the box to seal the box.

You have been asked to lay out the pattern for a new prociuct. Following the same type of design
as in the figure, draw the pattern for die-cutting the box material. The box is to have the largest vol-
ume that can be made from card stock that measures 15 X 20 in. Flaps G are still to be 1 in. wide.

Sketch the pattern for the new box. Show how you determined the dimensions to achieve the
maximum volume for the box, proving that its volume is the maximum possible.

olvi inear E

An important problem in applied mathematics is to "solve f (x) = 0" where f (x) is a
function of x. The values of x that make f (x) = 0 are called the roots of the equation. They
are also called the zeros of f (x) . This chapter describes some of the many methods for solv-
ing f (x) = 0 by numerical procedures. We also treat the more complicated case wherein a
set of nonlinear equations are to be solved simultaneously:

For example, an engineer might want to find the pressure needed to cause a fluid suspen-
sion of particles to flow through a pipe (perhaps in a paper mill). The pressure required
depends on the length of the pipe, its diameter, the quantity of fluid that is to flow, and a
number called the "friction factor" that has been determined from experiments. This non-
linear equation can compute the friction factor, f:

where the parameter k is known and RE, the so-called Reynold's number, can be computed
from the pipe diameter, the velocity of flow, and the viscosity of the fluid. The equation for
f is not solvable except by the numerical procedures of this chapter.

We show a total of ten root-finding procedures in this chapter. Five of these are
described in detail, the others are only mentioned. Of these ten methods, six apply to any
type of equation, the others only to polynomials. Why so many? We do this to acquaint you
with them, to show that there are often many numerical methods for solving a problem,
and to point out why one method may be preferred over another. We even describe other
methods for solving nonlinear problems in Chapter 7!

C o n t e n t s o f T h i s C h a p r t r

Interval Halving (Bisection)
Describes a method that is very simple and foolproof but is not very efficient.
We examine how the error decreases as the method continues.

Linear Interpolation Methods
Tells how approximating the function in the vicinity of the root with a
straight line can find a root more efficiently. It has a better "rate of
convergence."

Newton's Method
Explains a still more efficient method that is very widely used but there are
pitfalls that you should know about. Complex roots can be found if complex
arithmetic is employed.

Muller's Method
Approximates the function with a quadratic polynomial that fits to the
function better than a straight line. This significantly improves the rate of
convergence over linear interpolation.

Fixed-Point Iteration: x = g(x) Method
Uses a different approach: The function f(x) is rearranged to an equivalent
form, x = g(x). A starting value, xo, is substituted into g(x) to give a new
x-value, xl. This in turn is used to get another x-value. If the function g(x) is
properly chosen, the successive values converge. It has important theoretical
implications.

Other Methods
Gives a brief description of five other methods that can be used to find the
roots of polynomials. Three of these have the advantage of not requiring a
starting value to obtain a root.

Nonlinear Systems
Applies Newton's method to systems of nonlinear equations, a much harder
problem than with a single equation.

ing (Bisection)

Interval halving (bisection), an ancient but effective method for finding a zero of f(x), is an
excellent introduction to numerical methods. It begins with two values for x that bracket a
root. It determines that they do in fact bracket a root because the function f(x) changes
signs at these two x-values and, if f(x) is continuous, there must be at least one root
between the values. A plot off (x) is useful to know where to start.

Chapter One: Solving Nonlinear Equations

The bisection method then successively divides the initial interval in half, finds in
which half the root(s) must lie, and repeats with the endpoints of the smaller interval. The
test to see that f(x) does changesign between points a and b is to see if f(a) * f(b) < 0.

We will compare this method with the others that are described in this chapter by this
same function for each:

It is a good plan to look at a plot of the function to learn where the function crosses the
x-axis. MATLAB can do it for us:

EDU>> f = inline('3*x+sin(x)-exp(x)')

f =
Inline function:
f (x) = 3*x + sin (x) - exp (x)

EDU>> f p l o t (f, [O 2 1) ;grid on

And we see this figure that indicates there are zeros at about x = 0.35 and 1.9.

Here is an algorithm for the bisection method:

To determine a root of f(x) = 0 that is accurate within a specified tolerance value,
given values xl and x2 such that f(xl) * f(xJ < 0,

Repeat
Set x3 = (xl + x2)/2.

1.1: Internal Halving (Bisection) 35

Iff (x3) * f (xl) < 0 Then
Set x2 = x3
Else Set xl = x3 End If.
Until ((xl - xZ1) < 2 * tolerance value).

The final value of x3 approximates the root, and it is in error by not more than
Jx, - x2J/2.
Note: The method may produce a false root if f(x) is discontinuous on [xl, x2].

A program that implements the method gave the results displayed in Table 1.1. To obtain
the true value for the root, which is needed to compute the actual error column, we again
used MATLAB:

EDU>> solve ('3*x + sin(x) - exp (x) ')
ans =

.36042170296032440136932951583028

which is really more accurate than we need.
MATLAB surely used a more advanced method than bisection to get the answer to the

example, but we can write a program in MATLAB that does bisection. We present this to
illustrate how you can create a MATLAB program. This is done through a so-called M-file.
Clicking on 'File/New/M-file' in MATLAB's toolbar brings up a form into which we enter
the commands on the following page:

Table 1.1 The bisection method for f (x) = 3x f sin(.x) - 8 = 0, starting from xl = 0,
x, = 1, using a tolerance value of 1E-4

Maximum Actual
Iteration X~ X2 x3 FW3) error error

- - - - --

1 0.00000 I .OOOOO 0.50000 0.33070 0.50000 0.13958
2 0.00000 0.50000 0.25000 -0.28662 0.25000 -0.11042
3 0.25000 0.50000 0.37500 0.03628 0.12500 0.01458
4 0 25000 0.37500 0.31250 -0.12190 0.06250 -0.04792
5 0.31250 0.37500 0.34375 -0.04196 0.03125 -0.01667
6 0.34375 0.37500 0.35938 -0.00262 0.01563 -0.00105
7 0.35938 0.37500 0 36719 0.01689 0.00781 0.00677
8 0.35938 0.36719 0.36328 0.00715 0.00391 0.00286
9 0.35938 0.36328 0.36133 0.00227 0.00195 0.0009 1

10 0.35938 0.36133 0.36035 -0.00018 0.00098 -0.00007
11 0.36035 0.36133 0.36084 0 00105 0.00049 0.00042
12 0.36035 0.36084 0.36060 0. DO044 0.00024 0.00017
13 0 36035 0.36060 0.36047 0.00013 0.00012 0.00005

Chapter One: Solving Nonlinear Equations

function rtn = bisec (fx ,xa ,xb ,n)
%bisec does n b isect ions to approximate
% a root of fx

x = xa; fa = eval (f x) ;

x = x b ; f b = e v a l (f x) ;

for i = l:n
x c = (x a + x b) / 2 ; x = x c ; f c = e v a l (f x) ;

X = [i , xa, xb, xc, fcl;

disp (X)
i f fc*fa < 0

xb = x c ;

e l s e xa = xc;
end % of i f / e l s e

end % of fo r loop

which we save with the name 'bisec.m.' Now if we enter these commands:

fx =

3*x + s i n (x) - exp (x)
EDU>> b i s e c (f x , 0 , 1 , 1 3)

we see a display similar to Table 1 .l, except the iteration numbers are not integers:

It may be interesting for you to see if you can modify the program to produce integers in
the first column.

The main advantage of interval halving is that it is guaranteed to work if f(x) is contin-
uous in [a, b] and if the values x = a and x = b actually bracket a root.* Another important
advantage that few other root-finding methods share is that the number of interations to
achieve a specified accuracy is known in advance. Because the interval [a, b] is halved

* This guarantee can be voided-if the function has a slope very near to zero at the root, the precision of the com-
putations may be inadequate.

I. 1 : Internal Halving (Bisection) 3 7

each time, the last value of x3 differs from the true root by less than the last interval. So
we can say with surety that

error after n iterations < / -- (b ?" a) 1.
The major objection of interval halving has been that it is slow to converge. Other methods
require fewer iterations to achieve the same accuracy (but then we do not always know a
bound on the accuracy).

Observe in Table 1.1 that the estimate of the root may be better at an earlier iteration
than at later ones. (The third iterate is closer to the true root than are the next two; we are
closer at iteration 6 than at iteration 7.) Of course, in this example we have the advantage
of knowing the answer, which is never the case. However, the values of f(x3) themselves
show that these better estimates are closer to the root. (This is not an absolute criterion-
some functions may be nearly zero at points not so near the root, but, for smooth functions,
a small value of the function is a good indicator that we are near to the root. This is espe-
cially true when we are quite close to the root.) The methods we consider in later sections
use the values of f(x) to find the root more rapidly.

With speedy computers so prevalent today the slowness of the bisection method is of
less concern. When the values of Table 1.1 were computed from a program, the results
were seen in less than a second.

When the roots of functions must be computed a great many times (this may be a
requirement of some other program that does engineering analysis), the efficiency of inter-
val halving may be inadequate. This will be particular1.y true if f(x) is not given explicitly
but, instead, is developed internally within the other program. In that case, finding values
of x that bracket the root may also be a problem.

In spite of arguments that other methods find roots ,with fewer iterations, interval halv-
ing is an important tool in the applied mathematician's arsenal. Bisection is generally rec-
ommended for finding an approximate value for the ro'ot, and then this value is refined by
more efficient methods. The reason is that most other root-finding methods require a start-
ing value near to a root-lacking this, they may fail completely.

Do not overlook other techniques that may seem mundane for getting a first approxima-
tion to the root. Graphing the function is always helpfull in showing where roots occur, and
with programs llke MATLAB (or a graphing calculator) that do plots so handily, getting
the graph before beginning a root-finding routine is a good practice. Searching methods
should also be considered as a preliminary step. Stepping through the interval [- 1, 11 and
testing whether f(x) changes sign will show whether there are roots in that interval. Roots
of larger magnitude can be found by stepping through that same interval with x replaced by
lfy, because the roots of this modified function are the reciprocals of the roots of the orig-
inal function. Experience with the particular types of problems that are being solved may
also suggest approximate values of roots. Even intuition can be a factor. Acton (1970)
gives an especially interesting and illuminating discuss:lon.

Chapter One: Solving Nonlinear Equations

When there are multiple roots, interval halving may not be applicable, because the func-
tion may not change sign at points on either side of the roots. Here a graph will be most
important to reveal the situation. In this case, we may be able to find the roots by working
with f ' (x) , which will be zero at a multiple root.

1.2 Linear Internolation Methods

Bisection is simple to understand but it is not the most efficient way to find where f (x) is
zero.

Most functions can be approximated by a straight line over a small interval. The two
methods of this section are based on doing just that.

The Secant Method

The secant method begins by finding two points on the curve of f (x) , hopefully near to the
root we seek. A graph or a few applications of bisection might be used to determine
the approximate location of the root. As Figure 1.1 illustrates, we draw the line through
these two points and find where it intersects the x-axis. The two points may both be on one
side of the root as seen in the figure but they could also be on opposite sides.

If f (x) were truly linear, the straight line would intersect the x-axis at the root. But f(x)
will never be exactly linear because we would never use a root-finding method on a linear
function! That means that the intersection of the line with the x-axis is not at x = r but that
it should be close to it. From the obvious similar triangles we can write

x2 / 'Rootr

Figure 1.1

1.;:: Linear Interpolation Methods 39

and from this solve for x i

Because f (x) is not exactly linear, x2 is not equal to r , lmt it should be closer than either of
the two points we began with.

If we repeat this, we have:

Because each newly computed value should be nearer to the root, we can do this easily
after the second iterate has been computed, by always using the last two computed points.
But after thefirst iteration there aren't "two last comput~ed points." So we make sure to start
with xl closer to the root than xo by testing f (xo) and f (x l) and swapping if the first func-
tion value is smaller." The net effect of this rule is to set xo = x l and xl = x2 after each iter-
ation. The exceptions to this rule are pathological cases, which we consider next.

The technique we have described is known as the secant method because the line
through two points on the curve is called the secant line. Here is pseudocode for the secant
method algorithm:

To determine a root of f (x) = 0, given two values, xo and x l , that are near the root,

If I f (x,,)l < I f (x1)l Then
Swap xo with x,.

Repeat

Set xo = x l .
Set x 1 = x2.

Until I f(x2)l < tolerance value.

Note: Iff (x) is not continuous, the method may fail.

An alternative stopping criterion for the secant method is when the pair of points being
used are sufficiently close together.

* I f(x,)l < I f(x,)i does not always mean that xo is closer to the root, but that is often the case. When it is, the
method is speeded up. In any case, the algorithm still converges to the root when f (x) is continuous and we start
near enough to the root.

Chapter One: Solving Nonlinear Equations

Table 1.2 Secant method on f (x) = 3x + sin(x) - eX

Iteration X1 X2 f(x2)

At x = .3604217, tolerance of .0000001 met!

An Example

Table 1.2 shows the results from the secant method for the same function that was used to
illustrate bisection. We know that the root is at 0.3604217. Notice that fewer iterations are
required compared to bisection. The efficiency of numerical methods is often measured by
how many times a function must be evaluated because that usually is the most time-
consuming part of the procedure.

An objection is sometimes raised about the secant method. If the function is far from
linear near the root, the successive iterates can fly off to points far from the root, as seen in
Figure 1.2.

If the method is being carried out by a program that displays the successive iterates, the
user can interrupt the program should such improvident behavior be observed. Also, if the
function was plotted before starting the method, it is unlikely that the problem will
be encountered, because a better starting value would be used. There are times when this
remedy is not possible: when the routine is being used within another program that needs
to find a root before it can proceed.

Linear Interpolation (False Position]

A way to avoid such pathology is to ensure that the root is bracketed between the two start-
ing values and remains between the succcessive pairs. When this is done, the method is

Figure 1.2
A pathologjcal case for the secant method

I.:!: Linear Interpolation Methods 41

known as linear interpolation, or, more often, as the method of false position (in Latin,
regula falsi). This technique is similar to bisection except the next iterate is taken at the
intersection of a line between the pair of x-values and the x-axis rather than at the midpoint.
Doing so gives faster convergence than does bisection, but at the expense of a more com-
plicated algorithm.

Here is the pseudocode for regula falsi (method of false position):

To determine a root of f(x) = 0, given two values of xo and xl that bracket a root: that
is, f(xo) and f(x,) are of opposite sign,

Repeat

Set x2 = xl - f (xl) * xo - x i
f b o) - f (x J

If f(x2) is of opposite sign to f(xo) Then
Set x1 = x2

Else
Set xo = xz
End If.

Until If (x2)l < tolerance value.

Note: Iff (x) is not continuous, the method may fail.

Table 1.3 compares the results of three methods-interval halving (bisection), linear
interpolation, and the secant method-on f(x) = 3x + sin(x) - eX = 0. Observe that the
speed of convergence is best for the secant method, poorest for interval halving, and

Table 5.13 Comparison of methods, f(x) = 3x 4 sin(x) - eX = 0, xo = 0, xl = 1 --- --.---- -- -me- - - - - -
Interval halving False position Secant method

- -- -- - -- -- - -

Error
after 5
iterations 0.01667 -1.17 * lo-' <-I * 10-7

(Exact value of root is 0.360421703.)

Chapter One: Solving Nonlinear Equations

intermediate for false position. Notice that false position converges to the root from only
one side, slowing it down, especially if that end of the interval is farther from the root.
There is a way to avoid this result, called modified linear interpolation. We omit the details
of this method.

,3 Newton's

One of the most widely used methods of solving equations is Newton's method. * Like the
previous ones, this method is also based on a linear approximation of the function, but does
so using a tangent to the curve. Figure 1.3 gives a graphical description. Starting from a
single initial estimate, xo, that is not too far from a root, we move along the tangent to its
intersection with the x-axis, and take that as the next approximation.? This is continued
until either the successive x-values are sufficiently close or the value of the function is suf-
ficiently near zero. **

The calculation scheme follows immediately from the right triangle shown in
Figure 1.3, which has the angle of inclination of the tangent line to the curve at x = xo as
one of its acute angles:

tan 0 = f '(xo) =
f (xo) f (~ 0) , xl=xo--.

xo - X I f ' (~ 0)

Figure 1.3

* Newton did not publish an extensive discussion of this method, but he solved a cubic polynomial in Principia
(1687). The version given here is considerably improved over his original example.
t The algorithm for Newton's method can be derived from a Taylor series. We suggest that you do it this way.
** Which criterion should be used often depends on the particular physical problem to which the equation
applies. Customarily, agreement of successive x-values to a specified tolerance is required.

1.3: Newton's Method 43

We continue the calculation scheme by computing

or, in more general terms,

Newton's algorithm is widely used because, at least in the near neighborhood of a root,
it is more rapidly convergent than any of the methods discussed so far. We show in a later
section that the method is quadratically convergent, by which we mean that the error of
each step approaches a constant K times the square of the error of the previous step. The
net result of this is that the number of decimal places of accuracy nearly doubles at each
iteration. However, there is the need for two function evaluations at each step, f(xJ and
fl(x,), and we must obtain the derivative function at the start."

When Newton's method is applied to f(x) = 3x + sin x - ex = 0, we have the follow-
ing calculations:

f(x) = 3x + sin x - ex,

f'(x) = 3 + cosx - cX

There is little need to use MATLAB to get this simple derivative, but, for practice, here
is how to do it:

EDU>> fx = '3*x i- sin(x) - exp(x)'
fx =

3*x + sin (x) - exp (x)

EDU>> dfx= diff (fx)
dfx =

3 + cos (x) - exp (x)
If we begin with xo = 0.0, we have

* Finding f'(x) may be difficult. Computer algebra systems can be a real help.

Chapter One: Solving Nonlinear Equations

After three iterations, the root is correct to seven digits; convergence is much more rapid
than any previous method. In fact, the error after an iteration is about one-third of the
square of the previous error. In comparing numerical methods, however, we usually count
the number of times functions must be evaluated. Because Newton's method requires two
function evaluations per step, the comparison is not as one-sided in favor of Newton's
method as at first appears; the three iterations with Newton's method required six function
evaluations. Five iterations with the previous methods also required six evaluations. If a
difficult problem requires many iterations to converge, the number of function evaluations
with Newton's method may be many more than with linear iteration methods because
Newton always uses two per iteration whereas the others take only one (after the first step
that takes two).

A more formal statement of the algorithm for Newton's method, suitable for implemen-
tation in a computer program, is shown here:

To determine a root off (x) = 0, given xo reasonably close to the root,

Computef (xo>, f' (xo).
If (f (xo) # 0) And (f'(xo) f 0) Then
Repeat

Set x1 = xo.
Set xo = xo - f(xo)lf'(x0).
Until ((xl - xol < tolerance value 1) Or
If (xo) 1 < tolerance value 2).
End If.

Note: The method may converge to a root different from the expected one or diverge
if the starting value is not close enough to the root.

When Newton's method is applied to polynomial functions, special techniques facilitate
such application. We consider these in a later section of this chapter.

In some cases Newton's method will not converge. Figure 1.4 illustrates this situation.
Starting with xo, one never reaches the root r because x6 = xl and we are in an endless
loop. Observe also that if we should ever reach the minimum or maximum of the curve, we
will fly off to infinity. We will develop the analytical condition for this in a later section
and show that Newton's method is quadratically convergent in most cases.

It is of interest to notice that the previous interpolation methods are closely related to
Newton's method. For linear interpolation, whose algorithm we can write as

1.3: Newton's Method 45

Figure 1.4

we see that the denominator of the fractional term is exactly the definition of the derivative
except not taken to the limit as the two x-values approach each other. This difference quo-
tient is an approximation to the derivative, as we will explain in detail in a later chapter.
Because the denominator of the fractional term is an approximation to the derivative off,
we see the close resemblance to Newton's method.

The secant method has exactly this same resemblance to Newton's method because it is
just linear interpolation without the requirement that the two x-values bracket the root.
Because these two values usually are closer together than for linear interpolation, the
approximation to the derivative is even better.

From this we see that there is an alternative way to get the derivative for Newton's
method. If we compute f (x) at two closely spaced values for x and divide the difference in
the function values by the difference in x-values, we have the derivative (nearly) without
having to differentiate. Although this sounds like spending an extra function evaluation,
we avoid having to evaluate the derivative function and so it breaks even. (Convergence
will not usually be as fast, however.)

Complex Roots

Newton's method works with complex roots if we give it a complex value for the starting
value. Here is an example.

Chapter One: Solving Nonlinear Equations

Figure 1.5
Plot of,f(x) = x" + 2x2 - x + 5

-- - - -- - - -

E X A M P L E 1 . l UseNewton'smethodonf(x)=x3+2x2-x+5.
Figure 1.5 shows the graph off (x). It has a real root at about x = - 3, whereas the other

two roots are complex because the x-axis is not crossed again.
If we begin Newton's method with xo = 1 + 1' (we used this in the lack of knowledge

about the complex root), we get these successive iterates:

Because the fourth and fifth iterates agree to six significant figures, we are sure that we
have an estimate good to at least that many figures. The second complex root is the conju-
gate of this: 0.462925 - 1.222531'. If we begin with xo = 1 - i, the method converges to
the conjugate.

If we begin with a real starting value-say, xo = -3-we get convergence to the root
at x = -2.92585.

I

Newton's Method for Polynomials

We have already pointed out that polynomials are of great importance in numerical analy-
sis because of their "nice" behavior and because they can be evaluated using only arith-
metic operations. Descartes's rule of signs (see Appendix A) lets us predict the number of
positive roots. Any root-finding method can get their roots but there are some special tech-
niques with Newton's method.

1.3: Newton's Method 47

As we have said, evaluating a polynomial at some x-value is best done by nested multi-
plication. The name for this is Horner's Method and MATLAB has a built-in function to
rearrange a polynomial into nested form:

EDU>> P=poly2syrn([2 1 -3 -31)

P =

2xA3 + x"2 - 3*x - 3
EDU>> horner (P)
ans =

((2 x t l) "x-3) "x-3

In the above, the first command created a symbolic representation of the polynomial from
the vector of coefficients and the second put this into nested form.

Evaluating a polynomial in nested form can be done in a computer program by synthetic
division. This procedure was done by hand before the advent of computers and perhaps
you have seen it before. While you may not do hand computations very often, synthetic
division is a good way to start a discussion of the computer algorithm.

Suppose we want to find the value at x = 2 of

Write the coefficients in a row and follow this pattern:

Here is what was done to get the tableau: Copy the first coefficient below the line, mul-
tiply this times the x-value and add to the second coefficient, multiply that result by the
x-value and add to the third coefficient, and do the same for the last coefficient. The last
row of numbers is the coefficients of the reduced polynomial and the remainder from the
division.

The final result, 11, which has been circled, is the value of the polynomial at x = 2!
This is also the remainder from the division:

If you study the steps in synthetic division, you will see that these are exactly what is done
if the polynomial is evaluated in nested form: Horner's method and synthetic division are
precisely the same.

The value of synthetic division in getting a root by Newton's method is that, if the
reduced polynomial is divided by (x - 2), the remainder from this is the value of the deriv-
ative at x = 2:

2 9 3

where the circled 25 is Pr(2).

Chapter One: Solving Nonlinear Equations

With the values of P(2) and P1(2) available, we can use them in Newton's method to
estimate a root starting with xl = 2:

which is closer to a root of P(x), which MATLAB tells us is at x = 1.3782:

P =
2 1 -3 -3

EDU>> r = roots (p)

MATLAB also told us that there are two complex-valued roots.
To divide two polynomials using MATLAB, we first define them as arrays of the coef-

ficients, then use the command 'deconv' (which really means to get the inverse of the con-
volution of two vectors, which is the equivalent of multiplying the polynomials). So, to
divide 2x3 + x2 - 3x - 3 by (x - 2), we do:

EDU>> N = [2 1 -3 -31; D = [l -21;
EDU>> [q,r] =deconv (N, D)

(2 =
2 5 7

r =

0 0 0 11

which is MATLAB's way of telling us that NID is (2x2 + 5x + 7) plus the remainder,
I ll(x - 21, exactly as the synthetic division gave us. A second division of the reduced
polynomial in the same fashion will give us P1(2).

Parallel Processing

Horner's method for evaluating a polynomial is one of the classic examples where we can
speed up a computation by using parallel processors. The directed acyclic graphs (dags)
for the sequential and parallel algorithms are shown in Figure 1.6. Although we have more
operations (five multiplies and three adds) with the parallel scheme (compared to three
multiplies and three adds), the time required to produce the result is reduced from six steps
to four steps. The time savings comes from doing some operations in parallel rather than in
succession, of course. Observe that the most efficient method for sequential processing
(Homer's method) is not used in parallel processing.

1.3: Newton's Method 49

Figure l .G
Dags fcr evaluating a polynomial of degree 3

thm for Synthetic Division
mainder Theorem

We can develop an algorithm for synthetic division and show that the remainders are the
value of the polynomial and its derivative by writing the nth-degree polynomial as

We wish to divide this by the factor (x - xl), giving a reduced polynomial Qn-l(x) of
degree n - 1, and a remainder, R, which is a constant:

Rearranging yields

which is the remainder theorem: The remainder on division by (x - xl) is the value of the
polynomial at x = xl, Pn(xl).

If we differentiate Pn(x), we get

Letting x = xl, we have

P;(xl> = Qn-l(xl>.

'We evaluate the Q-polynomial at xl by a second division whose remainder equals
Q,-,(xl). This verifies that the second remainder from synthetic division yields the value
for the derivative of the polynomial.

Chapter One: Solving Nonlinear Equations

We now develop the synthetic division algorithm, writing Q,-l(x) in form similar to
P,(x>:

P,(x) = anxn + a,-lxn-l + . . . + alx + a.

= (X - xl)Q,-l(x> + R

= (X - X ~) (~ ~ - ~ X ~ - ' + bn-2xn-2 + . . . + b,x + bO) + R.

Multiplying out and equating coefficients of like terms in x, we get

coef. of xn: a, = b,-l
Xn- l . - . aft-l - bn-2 - xlbn-l 1

x: al = bo - xlbl bo = a, + xlbl

const: a. = R - xlbo R = a. + xlbo

The general form is bi = ai,l + xlbi,l, by which all the b's may be calculated, provided
that we first set b, = 0. If this is compared to the preceding synthetic divisions, it is seen to
be identical, except that we now have a vertical array. The horizontal layout is easier for
hand computation. For evaluation of the derivative, a set of c-values is computed from the
b's in the same way in which the b's are computed from the a's.

Most of the root-finding methods that we have considered so far have approximated the
function in the neighborhood of the root by a straight line. Obviously, this is never true; if
the function were linear, finding the root would take practically no effort. Mziller's method
is based on approximating the function in the neighborhood of the root by a quadratic
polynomial. This gives a much closer match to the actual curve.

A second-degree polynomial is made to fit three points near a root, at xo, x l , x2, with xo
between xl and x2. The proper zero of this quadratic, using the quadratic formula, is used
as the improved estimate of the root. The process is then repeated using the set of three
points nearest the root being evaluated.

The procedure for Muller's method is developed by writing a quadratic equation that
fits through three points in the vicinity of a root, in the form av2 + bv + c. (See Fig. 1.7.)
The development is simplified if we transform axes to pass through the middle point, by
letting v = x - xo.

Let hl = xl - xo and h2 = xo - x2. We evaluate the coefficients by evaluating p2(v) at
the three points:

v = 0: a(0)' + b(0) + c = fo;

v = hl: ah; + bhl + c = f l ;

v = -h2: ah; - bh2 + c = f2.

1.4: Muller's Method 5 1

Figure 1.7

From the first equation, c = fo. Letting h2/hl = y, we can solve the other two equations
for a and b:

After computing a, b, and c, we solve for the root of av2 + bv + c = 0 by the quadratic
formula, choosing the root nearest to the middle point xo. This value is

2c
root = xo -

b L C G '

with the sign in the denominator taken to give the largest absolute value of the denomina-
tor (that is, if b > 0, choose plus; if b < 0, choose minus; if b = 0, choose either). The rea-
son for using this somewhat unusual form of the quadratic formula is to make the next iter-
ate closer to the root.

We take the root of the polynomial as one of a set of three points for the next approxi-
mation, taking the three points that are most closely spaced (that is, if the root is to the right
of xo, take xo, xl, and the root; if to the left, take xo, x2, and the root). We always reset the
subscripts to make xo be the middle of the three values.

An algorithm for Muller's method is shown here:

Given the points x2, xo, x1 in increasing value,

Evaluate the corresponding function values: f2, fa, fi

Chapter One: Solving Nonlinear Equations

Repeat

(Evaluate the coefficients of the parabola, ax2 + bx + c, determined by the three

points. { (~ ~ ' f *) ' (~,,'f,,)' (xpfl) 1 .)

Set hl = xl -xo; h2 = x,, - x2; y = h,lhl.
Set c = fo.

Set a =
Yh - a 1 + Y) +f ,

YhXl + Y)

Set b =
fi - "6 - ah?

hi

(Next, compute the roots of the polynomial.)

2c
Set root = xo -

b ? G

Choose root, x,, closest to x,, by making the denominator as large as possible; i.e. if
b > 0, choose plus; otherwise, choose minus.

If xr > x,,
Then rearrange to: xo, xl, and the root
Else rearrange to: x,,, x2, and the root

End If.

(In either case, reset subscripts so that x,,, is in the middle.)

Until 1 f(xr)l < Ftol.

Muller's method, like Newton's, will find a complex root if given complex starting values.
Of course, the computations must use complex arithmetic.

Muller's method can fail under some conditions. We leave as a challenge to the student
to find when this will happen. (Hint: What will make the denominator of the equation for
the root of the quadratic zero or nearly so?)

Experience shows that Muller's method converges at a rate that is similar to that for
Newton's method." It does not require the evaluation of derivatives, however, and (after we
have obtained the starting values) needs only one function evaluation per iteration. There is
an initial penalty in that one must evaluate the function three times, but this is frequently
overcome by the time the required precision is attained. (We do have to evaluate the coef-
ficients a, b, and c each time, of course.)

* Atkinson (1978) shows that each error is about proportional to the previous error to the 125th power.

1.4: Muller's Method 53

Here is an example of the use of Muller's method.

EXAMPLE 1.2 Find a root between 0 and 1 of the same transcendental function as before: f(x) = 3x +
sin(x) - 8. Let

Then

and

root = 0.5 -
2(0.330704)

2.12319 + d(2.12319)~ - 4(-1.07644)(0.330704) '

For the next iteration, we have

x, = 0.354914, f(xo) = -0.0138066 h , = 0.145086,

x, = 0.5, f(x,) = 0.330704 h2 = 0.354914,

xz = 0, f (xz) = - 1 y = 2.44623.

Then

root = 0.354914 -
2(-0.0138066)

2.49180 + d(2.49180)~ - 4(-0.808314)(-0.0138066)

After a third iteration, we get 0.3604217 as the value for the root, which is identical to that
from Newton's method after three iterations.

54 Chapter One: Solving Nonlinear Equations

1.5 Fixed-Point Iteration: x = g(x)

The method known as fixed-point iteration [we also call it the x = g(x) method] can be a
useful way to get a root of f(x) = 0. This method is also the basis for some important the-
ory. To use the method, we rearrange f (x) into an equivalent form x = g(x), which usually
can be done in several ways. Observe that iff (r) = 0, where r is a root of f(x), it follows
that r = g(r). Whenever we have r = g(r), r is said to be a fixed point for the function g.

Under suitable conditions that we explain later, the iterative form

converges to the fixed point r, a root of f(x).
Here is a simple example:

f(x) is easy to factor to show roots at x = - 1 and x = 3. (We pretend that we don't know
this.)

Suppose we rearrange to give this equivalent form:

If we start with x = 4 and iterate with the fixed-point algorithm, successive values of x are

and it appears that the values are converging on the root at x = 3.

earrangements

Another rearrangement of f(x) is

Let us start the iterations again with xo = 4. Successive values then are

1.5: Fixed-Point Iteration: x = g(x) Method 55

and it seems that we now converge to the other root, at x = - 1. We also see that the con-
vergence is oscillatory rather than monotonic as we saw in the first case.

Consider a third rearrangement:

Starting again with xo = 4, we get

and the iterates are obviously diverging.
This difference in behavior of the three rearrangements is interesting and worth further

study. First, though, let us look at the graphs of the three cases. The fixed point of x = g(x)
is the intersection of the line y = x and the curve y =- g(x) plotted against x. Figure 1.8
shows the three cases.

Observe that we always get the successive iterates by this construction: Start on the x-
axis at the initial xo, go vertically to the curve, then horizontally to the line y = x, then ver-
tically to the curve, and again horizontally to the line. Repeat this process until the points
on the curve converge to a fixed point or else diverge. It appears that the different behaviors
depend on whether the slope of the curve is greater, less, or of opposite sign to the slope of
the line (which equals + 1).

Here is pseudocode for the fixed-point (x = g(x)) method:

To determine a root of f(x) = 0, given a value xl reasonably close to the root,

Rearrange the equation to an equivalent form x = g(x).

Repeat
Set xz = xl.
Set xl = g(xl)
Until Ixl - x21 < tolerance value

Note: The method may converge to a root different from the expected one, or it may
diverge. Different rearrangements will converge at different rates.

Chapter One: Solving Nonlinear Equations

Figure 1.8

Order of Convergence

The fixed-point method converges at a linear rate; it is said to be linearly convergent,
meaning that the error at each successive iteration is a constant fraction of the previous
error. (Actually, this is true only as the errors approach zero.) If we tabulate the errors
after each step in getting the roots of the polynomial and its ratio to the previous error,
we find:

1.5: Fixed-I'oint Iteration: x = g (x) Method 57

Iteration Error Ratio Error Ratio

Notice that the magnitudes of the ratios seem to be leveling out at 0.3333. In fact, if the
iterations are continued, they become exactly one-third.

Accelerating Convergence

For any iterative process where the errors decrease proportionally, we can speed the con-
vergence by a technique known as Aitken acceleration. Based on the assumption that each
error is a constant times the previous error, we can write

or, because e, = R - x,, where R is the true value for the root,

Let us apply this to the first three computations from x = g(x), where g(x) = m.
Substituting the values for xo, xl , and x2, we get R = 3.00744, closer to the true value
of 3.0.

There is a better way to do this extrapolation, called the A2 process, that uses fewer
arithmetic operations. Define Axn = x,+~ - x and A2xll = Axn+ - Ax,, and the equation
for R can be written as

Let us apply this to the first three computations from x := g(x), where g(x) = m.

Chapter One: Solving Nonlinear Equations

Extrapolating, R = 4 - (0.6~338)~/0.47051 = 4 - 0.99256 = 3.00744, which is closer to
the true value than the fifth iterate when we didn't extrapolate. We could proceed from this
point to do two more iterations and then extrapolate again. For this simple definition of
g(x) it may not seem worth the effort; when g(x) is expensive to compute, it certainly is.

Some Theory

The above demonstrated that fixed-point iterations seem to converge linearly. We now
show when this is true. We have

x,+1 = g(x,),

and we can write this relation for the error after iteration n f 1, where R is the true value
of the root:

R - Xn+l = R - = g(R) - g(xJ

because, when x = R, R = g(R). Multiplying and dividing by (R - x,):

we can use the mean-value theorem* [if g(x) and gl(x) are continuous] to say that

R - x,+l = g1(Cn> * (R - x,),

where tn lies between x, and R.
Writing en for the error of the nth iterate, we have

k,+lI = lg'(S,)I * leal

because en, the error in x, is R - x,. (We take absolute values because the successive iter-
ates may oscillate around the root.)

Now suppose that lgl((,)l < K < 1 where K < 1 on some interval of size h around the
root R. If we begin with an x-value in this interval, fixed-point iterations will converge
because

\en/ = ~ \ e , - ~ l = ~ ~) e , - ~ / = ~ ~) e , - ~ / = . . . = Knleol.

* This theorem is covered in Appendix A.

1.5: Fixed-Point Iteration x = g(x) Method 59

This proves that the fixed-point method is line,arly convergent in the limit as x,
approaches R, provided that we start within the interval where I K I < 1.

Convergence of Newton's Method

Newton's method uses iterations that resemble fixed point:

Successive iterates will converge if Ig' (x)l < 1, and, doing the differentiation, we see that
the method converges if

which requires that f(x) and its derivatives exist and be continuous. Newton's method is
shown to be quadratically convergent by the following: As before,

R - x,,, = g(R) - g(x,).

Now we expand g(x,) as a Taylor series in terms of (R - x,), with the second derivative
term as the remainder, getting

because f (R) = 0 at the root and Eq. (1.2) reduces to

gb,) = g(R) + (g"(5Y2) * (R - xJ2.

Using en = R - x,, for the error of the nth iterate, Eq. (1.3) becomes
-

e,+l - R - X,+l = g(R) - dx,) = (gN(8/2) * (eJ2,
proving that Newton's method is quadratically convergent.

Convergence of the Secant Method and False Position

Both of the secant method and false position use iterations that can be written as

which is similar to x = g(x), except that x = g(x,, x,- j. When we apply Taylor series, the
derivatives are pretty complicated; we omit the details. It turns out that the error relation is

Chapter Onc: Solving Nonlinear Equations

showing that the error is proportional to the product of the two previous errors. We can
conclude that the convergence is better than linear but poorer than quadratic.

Pizer (1975) shows that the order of convergence of the secant method is (1 f 6)/
2 = 1.62.

A function can have more than one root of the same value. Look at Figure 1.9. The curve
on the left has a triple root at x = - 1 [the f~~nction is (x + The curve on the right has
a double root at x = 2 [the function is (x - 2)2]. If there were more than two or three roots,
the plots would be similar except they would be flatter near the x-axis and rise more
steeply away from the root.

The methods we have described do not work well for multiple roots. For example,
Newton's method is only linearly convergent at a double root. f(x) = (x - 1) (e(x-l) - 1 >
has a double root at x = 1, as seen in Figure 1.10. Table 1.4 gives the errors of successive
iterates and the convergence is clearly linear.

When Newton's method is applied to a triple root, convergence is still linear, as seen in
Table 1.5. With a triple root, the ratio of errors is larger, about 5, compared to for the dou-
ble root of Table 1.4.

In addition to a slow convergence, there is another disadvantage to using these methods
to find multiple roots: imprecision. Because the curve is "flat" in the neighborhood of the
root-f ' (x) will always be zero at a multiple root, as is apparent from Figure 1.9-there is
a "neighborhood of uncertainty" around the root where values off (x) are very small. Thus,
the imprecise arithmetic of almost all computational devices will find f(x) "equal" to zero
throughout this neighborhood; that is, the program cannot distinguish which x-value is
really the root. Using double precision will decrease the neighborhood of uncertainty. In

Figure 1.10
Plot of (x - 1) (e("') - 1) Figure 1.9

1.6: Multiple Roots 61

Table 1.4 Errors when finding a double root

Iteration Error Ratio

fact, MATLAB's 'vpa' command can give as much precision as desired, even to 100 sig-
nificant figures, so this "neighborhood" can be very small.

Remedies for Multiple Roots with N-ewton's Method

When f (x) has only one zero at x = R, we saw in Section 1.5 that Newton's method is qua-
dratically convergent. We did this by examining the Taylor expansion for g(x) about
(x - R) where

That series was

and we saw that gl (R) was zero.
However, if f (x) has a root of multiplicity k at x = R, we can factor out (x - R) ~ from

f (x> to get

Table 1.5 Successive errors with Newton's method,
for f(x) = (x + = 0

Iteration Error Iteration Error

Chapter One: Solving Nonlinear Equations

where Q(x) has no root at x = R. That means that Q(R) is nonzero, even though f (R) ,
f l(R), f "(R), . . . f (k - l) (R) are all zero, as is readily found by differentiating Eq. (1.6). We
then see that the denominator and numerator in Eq. (1.4) are both zero. While this is an
indeterminant form, we cannot say that gl(R) is zero, confirming that Newton's method
with multiple roots is only linearly convergent.

Look now at a different formulation of Newton's method:

As before, at f(R) = 0, gk(R) = R. Using the reformulation off (x) as given by Eq. (1.6),
and differentiate, we get

and we see that gl(R) = 0. From the preceding argument, then, the modified Newton's
method now converges quadratically at a multiple root. (It also does so at a simple root
with k = 1, of course.) Using this method to get the root of f(x) = (x - 1) * (dlc-') - 1 1,
we find that the third iterate is x = 1.00088 with f(x) = 0.00000. We also find that entl =
0.24 * e:, confirming quadratic convergence.

This algorithm would seem to solve the problem of multiple roots using Newton's
method, but we don't know the multiplicity of the root in advance! (This objection is a lit-
tle academic as the following argument shows.)

We might guess at the value for k and see whether we get quadratic convergence, or we
could try several values and see what happens. Better yet, we could compare a graph of
f(x) with the plots of (x - R) ~ , using an approximate value for R and various values for k.
The "flatness7' of the curves will be the same for f (x) and the plot of equivalent multiplic-
ity. We wonder, though, whether all such effort is justified-why not just live with the lin-
ear convergence? We will find the root with sufficient accuracy from that operation long
before we complete the alternative explorations.

Another solution to multiple roots is tempting to consider. We can divide f (x) by
(x - R) and deflate the function, reducing the multiplicity by one. The problem here is that
we don't know R. However, dividing by (x - s), where s is an approximation of R does
almost the same thing. We suggest that you might want to explore this idea. Be warned that
the division creates an indeterminate form at x = R and a strong discontinuity at x = s.

Acton (1970) gives another technique by which we may obtain a multiple root with
quadratic convergence. If f (x) has a root of multiplicity k at x = R, we have f (x) =

(R - xlk * Q(x). Let S(x) be f (x)/f1(x), so that

which has a simple root at x = R. When S(x) is used in the Newton formula, we get

1.7: Nonlinear Systems 63

and we see that we need to evaluate three functions at each iteration: f(x,), f'(x,), and
f"(x,). Acton also points out that there are nearly equal quantities being subtracted in the
denominator, a source of arithmetic error.

Nearly Multiple Roots

A problem related to multiple roots is a function that has two or more roots very close
together. If these roots are all within the region of uncertainty (which is a function of the
arithmetic precision we are using), they are effectively multiple roots, because for all of
them f (x) is computationally equal to zero.

Newton's method is again essentially linearly convergent when we have nearly equal
roots, provided that we start outside the interval that hjolds the roots. Unfortunately, modi-
fying the method by considering them to be multiple roots doesn't work; often an infinite
loop occurs. If we are so unlucky as to start between two almost equal roots, Newton's
method can fly off to "outer space," as we previously observed.

Whenever we want to find roots that are near f '(x) = 0, we are in trouble. We strongly
recommend that you graph the function, before jumping into a root-finding routine, to see
in advance whether such problems will arise.

1.7. Nonlinear Systems

When we have a system of simultaneous nonlinear equations, the situation is more diffi-
cult. In fact, some sets have no real solutions. Consider this example of a pair of equations:

Graphically, the solution to this system is represented by the intersections of the circle
x2 + y 2 = 4 with the curve y = 1 - 8. Figure 1.11 shows that these are near (-1.8,O.g)
and (1, - 1.7).

Newton's method can be applied to systems as well as to a single nonlinear equation.
We begin with the forms

Let x = r, y = s be a root, and expand both functior~s as a Taylor series about the point
(xi, yi) in terms of (r - xi), (s - yi), where (xi, yi) is a point near the root:

Chapter One: Solving Nonlinear Equations

Figure 1.1 1

Truncating both series gives

0 = f (xi?yi> + f x (x i , ~ J (r - xi) + f y (x i 9 y i) (S - Y J ?

0 = g (x i , yi) + gx (x i , yi) (r - xi) + gy (x i , Y J (S - yi),

which we can rewrite as

where Axi and Ayi are used as increments to xi and yi, SO that xicl = xi + hi and yi+l =
yi + Ayi are improved estimates of the (x, y) values. We repeat this until both f(x, y) and
g(x, y) are close to zero.

The extension to more than two simultaneous equations is straightforward, but solving
larger sets of equations requires information from the next chapter.

We illustrate by solving the example at the beginning of this section:

The partial derivatives are

f = - h f = -
x 3 , ZY>

g x = - e x , g = - I . Y

Beginning with x,, = 1, yo = - 1.7, where

1.7: Nonlinear Systems 65

we solve

-2 Ax, + 3.4Ayo = -0.1100,

-2.7183 Ax,, - 1.0 Ay, = 0.0183.

This gives Axo = 0.0043, Ay, = -0.0298, from which xl = 1.0043, yl = - 1.7298. These
agree with the true value within 2 in the fourth decimal place. Repeating the process once
more produces x2 = 1.004169, y2 = - 1.729637. The function values at this second itera-
tion are approximately - 0.000000 1 and - 0.00000001 .

Newton's method, as you would expect, converges quadratically when we are near the
solution but notice that it is rather expensive. For even this 2 X 2 system there are six func-
tion evaluations at each step. For a 3 X 3 system, there are twelve. For a n X n system, the
number is n2 + n.

For larger systems, the number of function evalualions can be reduced by not recom-
puting the partials at every step but only after n steps, reusing the same values n times (n
being the number of equations). We then only need to evaluate the n function values until
we again update the partials. We do sacrifice quadratic convergence thereby but it is usu-
ally better than linear. Unfortunately, this modification of Newton's method for a system
can diverge unless we are close to the roots.

With MATLAB, getting the solution to a system is easy:

EDU>> [x, yl = solve ('xA2 + y"2 = 4 ' , 'exp (x) + y = 1')
x =

-1.8162640688251505742443123715859

Y =
1-exp(-1.8162640688251505742443123715859)

but this is the leftmost intersection! We can get the one near (1, - 1.7) with

which reproduces the result from Newton's method with many more digits.

Solving a System by Iteration
- -

There is another way to attack a system of nonlinear equations. Consider this pair of equations:

ex - y = 0,

x y - 8 = 0 .

Chapter One: Solving Nonlinear Equations

We know how to solve a single nonlinear equation by fixed-point iterations- we rearrange
it to solve for the variable in a way that successive computations may reach a solution.
Sometimes we can do the same for a system. Let us solve the first of the pair for x and the
second for y:

To start, we guess at a value for y, say, y = 2. We enter this into the first rearranged equa-
tion and get an x-value that we use in the second. This gives a new value for y from which
we get a new value for x, and repeat. Here is what we get:

y-value x-value

which are precisely the correct results.
Here is another example for the pair of equations whose plot is Figure 1.1 1 :

If we will try this rearrangement:

x = In (1 - y),

and begin with x = 1.0, the successive values for y and x are:

and we are converging to the solution in an oscillatory manner.
Other rearrangements are possible. You may wish to see that this one diverges from the

starting point (1, - 1.7):

You may also want to see that both rearrangements diverge when used to find the intersec-
tion in the fourth quadrant, and to discover rearrangements that will converge to this point.

Exercises 67

Exercises

Section 1.1

1. The function f(x) = 2 * sin(x) - 814 - 1 is zero for
two values near x = -5. Use bisection to find both,
starting with [-7, -51 and [-5, -31. How many itera-
tions are needed to get results that agree to five signifi-
cant figures?

2. The quadratic (x - 0.3) '"x - 0.5) obviously has
zeros at 0.3 and 0.5.

a. Why is the interval [0.1,0.6] not a satisfactory starl-
ing interval for bisection?

b. What are good starting intervals for each root?
c. If you start with [0, 0.491 which root is reached with

bisection?

Which root from [0.3 1, 1.0]?

b3 . Where do the curves of y = cos(x) and y = x3 - I
intersect? Use bisection.

4. The function f (x) = x * sin((x - 2)/(x - 1)) has many
zeros, especially near x = 1 where the function is dis-
continuous. Find the four zeros nearest to x = 0.95 by
bisection, correct to five significant figures. How can
you find good starting intervals?

5. Suppose that your computing device has only 3 bits
(plus one hidden bit) for the fraction part. There are
large gaps between the numbers that can be stored, as
indicated by a sketch in Section 0.4. The relation
3 * sin(x) = x2 - 2 is true at a point very near to
x = 2.13. If you begin bisection with a starting interval
of [I, 31, what will be the successive x-values that are
used in finding the solution?

6. Exercise 5 is an extreme example that shows that every
computer that uses a finite number of bits to represent
the fraction part has gaps between the machine num-
bers. This limits the accuracy when finding where f (x)
is zero. What is the limit to the accuracy of getting a
zero by bisection if the number of fraction bits (includ-
ing the hidden bit) is m?

b 7 . How many iterations of bisection will be required to
attain an accuracy of if the starting interval is
[a, bl?

Section 1.2

8. Repeat Exercise 1 but use the secant method. How
many fewer iterations are required?

b 9 . Repeat Exercise 1 but now use regula falsi. Compare
the number of ilerations with Exercises 1 and 8.

10. Explain why the secant method usually converges to
reach a given stopping tolerance faster than either
bisection or linear interpolation.

11. In bisection and the method of false position, one tests
to see that a function changes sign between x = a and
x = b. If this is done by seeing if f (a) * f (b) < 0,
underflow may occur. Is there an alternative way to
make the test that avoids this problem?

Section 1.3

12. Solve Exercise 3 with Newton's method.

13. The functionf(x) = 4x3 - 1 - exp (x2/2) has values of
zero near x = 1.0 and x = 3.0.

a. What is the derivative off?
b. If you begin Newton's method at x = 2, which root

is reached? How many iterations to achieve an error
less than

c. Begin Newton's method at another starting point to
get the other zero.

d. For both parts (b) and (c), tabulate the number of
correct digits at each iteration.

b14. Apply Newton's method to the equation .w2 = N to
derive this algorithm for getting the square root of N:

15. Find algorithms for getting the third and fourth roots of
N that are similar to that in Exercise 14 for the square
root. Can this be generalized for the nth root?

16. If the algorithm of Exercise 14 is applied twice, show that

17. Show that the error of the approximation in Exercise 14
is nearly equal to

18. f(x) = (x - (x + 1) obviously has roots at + 1 and
- 1. Using starting values that differ from the roots by
0.2, compare the number of repetition of Newton's

6 8 Chapter One: Solving Nonlinear Equations

method required to reach the roots within 0.0001
Explain the difference.

19. Newton's method will find complex roots. Find the
roots of these relations including the complex ones:

a. x3 + 2 = 0.
b. 2x3 - 3x2 = 1.
c. x2 = (ep'X - 2)lx.

b20. The sum of two numbers is 20, the square root of their
product is 9. What are the numbers?

21. A fourth-degree polynomial, P4 (x), is

a. Use synthetic division (by hand) to get P (- 1) and
PI(- 1).

b. One of the real roots of P(x) is near to x = - 1. Use
the results of part (a) to get a first estimate of the root.
Then continue until you have the root to within 0.001.
How does each error compare to the previous error?

c. A second real root of P(x) is near 1.5. Perform
Newton's method with synthetic division on P(x) to
get this second root. Again compare the successive
errors.

d. Use the resuit of part (b) to deflate P(x) to obtain a
cubic polynomial. Then repeat part (b) on this cubic.
Do you get the same answer as you did in part (c)?

e. What are the last two roots?

22. P,(x) = (x - 1.1) (x - 2.2) (x - 3.3) (x - 4.4) has
four positive roots, of course. Expanded, P (x) is

a. Use Newton's method to get the roots, each correct to
only three significant digits. Do this by deflating the
polynomial after getting a root and then getting the
next from the deflated polynomial. Start each compu-
tation with an x-value 10% greater than the actual root.

b. Which gives more accuracy on the successive roots?
(1) Begin with the largest root and work down to the
smallest, or (2) work up from the smallest root.

23. Inaccuracies in the coefficients of a polynomial can
sometimes have a very great influence on the values of
the roots.

a. How do the roots of Exercise 22 change if the coeffi-
cient of x3 were - 11.1 1 (a 1% change)? Are any of
the roots relatively unaffected?

b. Investigate the effect of a 1% change in the other
coefficients. In which of the coefficients does a

change by this amount cause the greatest change in the
computed roots?
c. What if all the coefficients are increased by l%?

Does this cause an even greater change in the roots?

b24. Synthetic division finds P(a) by dividing P(x) by (x -
a), then gets Pr(a) by synthetic division of the reduced
polynomial. Does this mean that we can evaluate
PU(a), Pn'(a), . . . by repeated divisions?

25. This polynomial obviously has roots at x = 2 and at
x = 4; one is a double root, the other a triple root:

a. Which root can you get with bisection? Which root
can't you get?

b. Repeat part (a) with the secant method.
c. If you begin with the interval [l , 51, which root will

you get with (1) bisection, (2) the secant method, (3)
false position?

26. Use Newton's method on the polynomial of Exercise
25 with xo = 3. Does it converge? To which root? Is
convergence quadratic?

27. An equation in Section 1.6 shows how to restore qua-
dratic convergence when Newton's method is used for
multiple roots. Use this device to restore quadratic con-
vergence in getting both roots of the polynomial in
Exercise 25.

b28. Apply Newton's method to the derivative of the poly-
nomial of Exercise 25 to get the double root. Show that
the convergence is now quadratic. How can this tech-
nique be applied to get the triple roots with quadratic
convergence?

29. If P(x) is divided by Pr(x), the resulting polynomial is
effectively deflated and the multiplicity of roots is
reduced.

a. Plot the P(x) of Exercise 25.
b. Plot P(x)lP1(x). What is the multiplicity of the dou-

ble root of P(x)?
c. What is the multiplicity of the triple root?
d. If P(x) is divided by P'(x) and this quotient is

divided by P"(x), what is the result?

b30. This quadratic has two nearly equal roots:

P, (x) = x2 - 4x + 3.9999.

a. Which root do you get with Newton's method start-
ing at x = 2.1? Is convergence quadratic?

Exercises 69

b. Repeat part (a) but starting with x = 1.9.
c. What happens with Newton's method starting from

x = 2.0?
d. Repeat part (c) but change P(x) so it has roots at

2.01 and 2.03. If you start with xo = 2.02, are the
results similar to those of part (c)? If not, explain.

b37.
Section 1.4

Use Muller's method to find roots of these equations.

a. 4x3 - 3x2 + 2x - 1 = 0, root nearx = 0.6.
b. x2 + ex = 5, roots nearx = 1, x = -2.
c. sin (x) = x2, root near 0.9. What are other roots?
d. tan (x) + 3x2 - I, root near 0.8 and three others

near x = 0.

Muller's method can be started in a "self-starting" way.
One automatically begins with [-0.5, 0, 0.51 rather
than with x-values near the root. Use this technique on
a function with three roots near to zero. It has been said
that the root nearest x = 0 will be found. Is this true?

After one root of f(x) is found, another root can be
found from the deflated function. To deflate a function,
we form g(x) = f(x)l(x - r), where r is the first root;
g (x) has all the roots off (x) except r. To see that this is
true, compare the graphs of

h (x) = x (2x - 2),

When will Muller's method fail? Are there times when
the quadratic that is formed does not have a real solution?
If this occurs, what can you do to remedy the situation?

Muller's method can find complex roots if complex
arithmetic is used. Do this to find the complex roots of

Section 1.5

36. Most functions can be rearranged in several ways to
give x = g(x) with which to begin the fixed-point
method. For f(x) = eX - @, one g(x) is

x = - . @ E j .

a. Show that this converges to the root near 1.5 if the
positive value is used and to the root near -0.5 if the
negative is used.

b. There is a third root near 2.6. Show that we do not
converge to this root even though values near to the
root are used to begin the iterations. Where does it
converge if xo = 2.5? If xo = 2.7?

c. Find another rearrangement that does converge cor-
rectly to the third root.

Here are three different g(x) functions. All are
rearrangements of the same f(x). What is f(x)?

~,

c. (16 + x3)/(51?).
d. Which of these converge? What x-value is obtained?

Are there starting values for which one or more
diverge? Whtch diverge?

a. How many ikrations are needed to attain a tolerance
value of 1.OE-5, starting with xo = 1 .O?

b. If Aitken acceleration is used, is this speeded up?
c. The function has a second root. Will this g(x) con-

verge to it? If not, find another rearrangement that
does. See if Aitken acceleration will speed conver-
gence.

39. In Exercise 38, for what ranges of starting values does
the g(x) function converge? [If a division by zero
occurs, as it does with the first g(x) when x = -2, do
not stop but continue with the next iterate equal to zero.]

b40. The cubic x3 - 2x2 - x + 1 has three real roots; one is
negative.

a. Find a rearrangement that converges to the negative
root. Will this converge to either of the positive roots?

b. Find a rearrangement that will converge to the larger
positive root. Will this same rearrangement con-
verge to the o'ther roots?

c. Find a different rearrangement that converges to the
smaller positive root. Does it work for the other
roots?

41. Can 6 be apprc~ximated through fixed-point iteration?
Define a f(x) arld a g(x) to do this if it can. Can you
find several forms of g (x)?

Section 1.6

b42 . When a polynornial, P(x), has coefficients that are all
real numbers and a root that is complex, this root
comes with a calmpanion, its complex conjugate. The
product of these two roots is a quadratic with real coef-
ficients. Bairstow's method is a technique that uses

7 0 Chapter One: Solving Nonlinear Equations

synthetic division of P(x) by a trial quadratic, and from
the remainder of this division, a monomial, gets values
that are used in a two-dimensional Newton's method to
close in on the correct quadratic factor. The algorithm
for this synthetic division is somewhat complicated
(previous editions of this book give the details).
However, MATLAB makes it easy to divide P(x) by the
trial quadratic. The command '[p, r] = deconv (P, Q)'
divides polynomial P by quadratic Q to give the
reduced polynomial p and the remainder monomial r.

a. Use MATLAB to divide P by Q to get p (x) and r(x)
where

b. Part (a) gives a remainder that has nonzero coeffi-
cients, so you know that Q(x) is not a factor. Repeat
part (a), but now use Q(x) = x2 + 2x + 3. Do you
get a remainder? A zero remainder means that the
trial quadratic is an exact factor. The coefficients of
q are those of the other factor (a monomial, in this
instance).

43. Graeffe's root-squaring method has the advantage that
no initial estimate for the roots is necessary. It is based
on the fact that when P(x) is multiplied by P(-x), the
result has roots that are the squares of the roots of P(x)
and these are spread farther apart than those of the orig-
inal polynomial. (Of course, the signs of the roots are
lost in the process.) If this is repeated n times, the mag-
nitudes of the roots of P (x) are given by

I(ajlaj+,)l for j = 0 . . . (n - 1).

a. MATLAB's command 'conv (A, B)' gets the product
of polynomials A and B so this can be used to do the
multiplying. The trick is to get P(-x) easily. Use
Graeffe's method to show that the roots of this poly-
nomial are 1, -2, and 4:

b. What will the method do if there are complex roots?
c. Will the method work if some of the coefficients are

themselves complex numbers?

44. Laquerre's method starts with an estimate of a root of
P(x), say, x = a, which we hope is near to the desired
root of P(x). (One authority calls this a "sure-fire
method." It does make a pretty rash assumption about
all other roots than the one we seek, but the assumption
is valid.) To use the method, two quantities are first
computed:

From these two quantities, we compute another quan-
tity, d, by

where the positive sign is used if A is positive and the
minus sign if it is negative. If this value, d, is subtracted
from the original estimate, a , a - d is an improved esti-
mate. The procedure is continued until the adjustment,
d, is negligible.

a. For P(x) = x3 - 8.6x2 + 2 2 . 4 1 ~ - 16.236, use
Laguerre's method, starting with a = 1.0, to find a
root at x = 1.2.

b. Repeat part (a), but start with a = 5.0 to find a sec-
ond root.

c. From the results of parts (a) and (b), get the third
root without doing further approximations.

45. Do some research of the literature to find out about the
following methods. Neither of them require an initial
approximation.

a. Lehmer's method.
b. The QD algorithm.
c. Use one of the methods on a polynomial of degree 4.
d. Compare the efficiency of these methods to

Newton's method. How do they work for complex
roots?

Section 2.7

46. For this system of two equations

a. Plot the two equations and observe two intersections
thatoccurnearx= 2 a n d x = -1.

b. Substitute y from the first equation into the second,
getting an equation in only x. Solve this equation for
the x-value(s) by any of the methods in this chapter
to find where the function is zero, then substitute
this x-value in either of the original equations to get
y-values.

c. Repeat part (b) but now solve for x from one equa-
tion and use it to eliminate x from the other. You
should get the same solutions, of course, but which
is easier to use?

Applied Problems and Projects 7 1

d. Compute the partial derivatives of the equations and
use them to find the solutions by Newton's method
for a system, starting with the points [2, 0.21 and
[- 1,0.3].

e. When is the technique of part (b) not a good option
compared to using Newton's method?

47. MATLAB finds six solutions to this system and two are
complex valued. Two of the real solutions are near
(1, 1, 1) and (1.3,0.9, -1.2).

x - 3y - z2 = -3,

2x3 + y - 5z2 = -2,

4 x 2 + y t z = 7 .

a. What are the partial derivatives that would be used
in Newton's method?

b. The matrix of partial derivatives is called the
Jacobian matrix. For the starting vector [I , 1, 11,
what are its elements?

c. Complete getting the two solutions with Newton's
method. Find starting values that converge. Is con-
vergence quadratic?

48. Repeat Exercise 47, part (c). but now only recompute
the elements of the Jacobian after every third iteration
rather than each time. How does the rate of conver-
gence compare r o that of Exercise 47?

49. Compare the number of function evaluations with those
needed in both Exercises 47 and 48 to perform five iter-
ations.

b50. Can the system of Exercise 46 be solved by iteration?
Do this if you think it is possible, or explain why it can-
not be done this way.

51. Repeat Exercise 50, but for the equations in Exercise
47.

52. Use MATLAB to get the solutions referred to in
Exercise 47.

Applied Problems and Projects

APP1. If an initial amount of money is invested and earns interest compounded annually at the rate of i %,
the "Rule of 72" says that the money will double in about 72/i years. This is only approximately true,
the exact final amount is given by

where S is the final amount, P is the initial amount, and n is the number of years. Make a table com-
paring the exact values for the number of years for P to double with that from the rule. Do for i from
2% to 12%.

a. At what interest rate is the Rule of 72 exact?
b. Interest is often added to the account more frequently than annually. This makes the growth faster.

What would be a good "Rule" value if interest is compounded:
quarterly?
monthly?
daily?
continuously?

APP2. Given are

In solving this pair of simultaneous second-order differential equations by the Laplace transform
method, it becomes necessary to factor the expression.

so that partial fractions can be used in getting the inverse transform. What are the factors?

Chapter One: Solving Nonlinear Equations

APP3. DeSantis (1976) has derived a relationship for the compressibility factor of real gases of the form

where y = bl(4v), b being the van der Waals correction and v the molar volume. If z = 0.892, what is
the value of y?

APP 4. In studies of solar-energy collection by focusing a field of plane mirrors on a central collector, one
researcher obtained this equation for the geometrical concentration factor C:

n-(hIcos A)2F
C =

0.5.rrD2(1 + sin A - 0.5 cos A)

where A is the rim angle of the field, F is the fractional coverage of the field with mirrors, D is the
diameter of the collector, and h is the height of the collector. Find A if h = 300, C = 1200, F = 0.8,
and D = 14.

APP5. Lee and Duffy (1976) relate the friction factor for flow of a suspension of fibrous particles to the
Reynolds number by this empirical equation:

In their relation, f is the friction factor, RE is the Reynolds number, and k is a constant determined by
the concentration of the suspension. For a suspension with 0.08% concentration, k = 0.28. What is
the value off if RE = 3750?

APP6. Based on the work of Frank-Kamenetski in 1955, temperatures in the interior of a material with
embedded heat sources can be determined if we solve this equation:

Given that LC, = 0.088, find t.

APW. Suppose we have the 555 Timer Circuit

L Output

Applied Problems and Projects 73

whose output waveform is

where

f = frequency

Tl Duty cycle = --- X 100%.
T, + T,

It can be shown that

Given that RA = 8670, C = 0.01 X T2 = 1.4 X

a. Find T,, f, and the duty cycle.
b. Find RB using any program you have written.
c. Select an f and duty cycle, then find T, and T2.

APP8. In solving this boundary-value problem by the Fourier series method,

we must find the values of z where tan (z) = 2. Find three positive solutions where the equation is sat-
isfied. Make a graph to get approximate values. Compare several methods to see which is faster.

APP9. In Chapter 5, a particularly efficient method for numerical integration of a function, called Gaussian
quadrature, is discussed. In the development of formulas for this method, it is necessary to evaluate
the zeros of Legendre polynomials. Find the zeros of the Legendre polynomial of sixth order:

(Note: All the zeros of the Legendre polynomials are less than one in magnitude and, for polynomi-
als of even order, are symmetrical about the origin.)

APP10. The Legendre polynomials of APP9 are one set of a class of polynomials known as orthogonal poly-
nomials. Another set are the Laguerre polynomials. Find the zeros of the following:

a. L3(x) = x3 - 9x2 + 18x - 6
b. L,(x) = x4 - 16x3 + 72x2 - 96x + 24

APP11. Still another set of orthogonal polynomials are the Chebyshev polynomials. (We will use these in
Chapter 4.) Find the roots of

(Note the symmetry of this function. All the roots of Chebyshev polynomials are also less than one
in magnitude.)

APP12. A sphere of density d and radius r weighs 4q9d . The volume of a spherical segment is f n-(3rh2 - h3).

Chapter One: Solving Nonlinear Equations

Find the depth to which a sphere of density 0.6 sinks in water as a fraction of its radius. (See the accom-
panying figure.)

APP13. For several functions that have multiple roots; investigate whether Aitken acceleration improves the
rate of convergence. Do this for several methods.

APP14. Make experimental comparisons of the rates of conversion for Newton's method, for Newton's
method with the derivative estimated numerically, and for the secant method. Make a table that
shows how the errors decrease for each method, then make a log plot of the errors.

APP15. When two alternative machines, A and B, are considered for purchase, the choice is often based on
what is termed the "break-even time." If the machine will be used for less than this time, machine A
is purchased, if greater, it is B. Suppose these costs and benefits apply:

Machine A Machine B

Initial cost $3250 $5680
Annual expenses 510 830
Annual return 860 1070

In finding the answers, you should reduce all costs to their "present worth."

a. What is the break-even time?
b. Find the values of costslbenefits for several years before and after the break-even time.
c. Which is preferred if the machine will be used for only four years?

APP16. Muller's method is said to converge with an order of convergence equal to 1.85. Verify this experi-
mentally. Is it true if there is a multiple root?

APP17. Spreadsheet programs can perform iterated computations. Devise and test a spreadsheet program that
implements fixed-point iterations.

APP18. Repeat APP17, but for the

a. Bisection method,
b. Newton's method.

APP19. Fixed-point iterations sometimes converge (a) by "walking up a staircase" (Fig. 1.8a) or (b) "spi-
rally" (Fig. 1.8b), or they may diverge (Fig. 1 .8~) . The conditions for these cases are discussed in
Section 1.5, and we have shown that convergence is of order 1. This means that Aitken acceleration
applies. Jones (1982) discusses other ways to accelerate the convergence; so does Acton (1970).

Consider this problem: Where do the curves for eY + 1 = ex and x2 f y2 = 1 cross? One inter-
section is near (0.9, 0.4). Find rearrangements of the form x = g(x) that converge to this intersection
and compare how fast they converge. Apply several acceleration techniques to this.

APP20. a. The rate of flow of water through a stream is often measured by installing a weir. This amounts to

Applied Problems and Projects 75

building a dam across the stream with a vee-shaped notch near the center (the point of the notch is
down). If the upstream velocity is neglected, the flow Q (ft3/sec) is related to distance k (ft) from the
surface of the upstream water to the point of the vee and to the angle 0 (degrees) between the sides of
the notch by this formula:

Q = 0.59 * &) * tan (+) * dm * h",

where g is the gravitational constant, 32.2 ft/sec2. If Q = 200, make a table that shows how h is
related to 0 for values of 0 between 20 and 130 degrees. Can this be done without using one of the
methods of this chapter?

b. More often, weirs have a rectangular notch. Look up formulas for this case, but now the formula
should allow for the effects of the velocity of the incoming water, v. Make a table that shows how
h varies with v for several values of the width of the notch. Can you do this without using a
method of this chapter? (You might want to repeat this for other notch configurations.)

APP16. It once was thought that the planets revolved around the sun in circular orbits. Johannes, Kepler
(1571 - 1630), using the observations of Tycho Brahe, found tklat the orbits are really ellipses. He fur-
ther found that their speed was not constant; they move faster when nearer the sun than when farther
away. Kepler's equation relates time, t, and the central angle, A, measured from the sun (which is at
one of the foci of the ellipse):

where P i s the period of revolution (the planet's "year,") and 6 is the eccentricity of the ellipse.
You will remember that the equation of an ellipse with the center as the origin is

where a and b are one-half the major and minor diameters. The eccentricity, c is cla, where c is the
distance from the origin to the foci

The earth's orbit is almost circular, c = 0.02, while the planet Mercury's is much flatter,
F = 0.21. (The orbit of Halley's comet has an eccentricity of 0.97!) Mercury has a year of 88 earth
days and is 29 million miles from the sun at its closest point, the perigee.

Plot the ellipse for Mercury. Then solve Kepler's equation for angle A to superimpose the posi-
lions of Mercury at ten equispaced intervals during its year. BE sure to remember that Kepler's equa-
tions has the sun at the focal point nearest the perigee. (You can save some computations by noticing
that the orbit is symmetrical.)

Solvin ets o ti

Solving sets of linear equations is the most frequently used numerical procedure when
real-world situations are modeled. Linear equations are the basis for mathematical models
of economics, weather prediction, heat and mass transfer, statistical analysis, and a myriad
of other applications. The methods for solving ordinary and partial-differential equations
depend on them. In this book, almost every chapter uses the algorithms that we discuss
here.

It is almost impossible to discuss systems of more than two or three equations without
using matrices and vectors, so we cover some of the concepts of these at the start. Other
aspects of the characteristics of a matrix are described in later chapters.

C o n t e n t s o f T h i s C h a p t e r

Matrices and Vectors
Reviews concepts of matrices and vectors in preparation for their use in this
chapter.

Elimination Methods
Describes two classical methods that change a system of equations to forms
that allow getting the solution by back-substitution and shows how the errors
of the solution can be minimized. These techniques are also the best way to
find the determinant of a matrix and they arrive at forms that permit the
efficient solution if the right-hand side is changed. Relations for the number
of arithmetic operations for each of the methods are developed.

The Inverse of a Matrix and Matrix Pathology
Shows how an important derivative of a matrix, its inverse, can be computed.

It shows when a matrix cannot be inverted and tells of situations where no
unique solution exists to a system of equations.

2.4 Ill-Conditioned Systems
Explores systems for which getting the solution with accuracy is very
difficult. A number, the condition number, is a measure of such difficulty; a
property of a matrix, called its norm, is used to compute its condition
number. A way to improve an inaccurate solution is described.

2.5 Iterative Methods
This section describes how a linear system can be solved in an entirely
different way, by beginning with an initial estimate of the solution and
performing computations that eventually arrive at the correct solution. It tells
how the convergence can be accelerated. An iterative method is particularly
important in solving systems that have few nonzero coefficients.

2.6 Parallel Processing
Tells how parallel computing can be applied to the solution of linear systems.
An algorithm is developed that allows a significant reduction in processing
time.

2.1]Matrices and Vectors

When a system of equations has more than two or three equations, it is difficult to discuss
them without using matrices and vectors. While you may already know something about
them, it is important that we review this topic in some detail.

A matrix is a rectangular array of numbers in which not only the value of the number is
important but also its position in the array. The size of the matrix is described by the num-
ber of its rows and columns. A matrix of n rows and m columns is said to be n X m. The
elements of the matrix are generally enclosed in brackets, and double-subscripting is
the common way of indexing the elements. The first subscript also denotes the row, and the
second denotes the column in which the element occurs. Capital letters are used to refer to
matrices. For example,

Chapter Two: Solving Sets of Equations

Enclosing the general element aij in brackets is another way of representing matrix A, as
just shown. Sometimes we will enclose the name of the matrix in brackets, [A], to empha-
size that A is a matrix.

Two matrices of the same size may be added or subtracted. The sum of

A = [aq] and B = [bq]

is the matrix whose elements are the sum of the corresponding elements of A and B:

Similarly, we get the difference of two equal-sized matrices by subtracting corresponding
elements. If two matrices are not equal in size, they cannot be added or subtracted. Two
matrices are equal if and only if each element of one is the same as the corresponding ele-
ment of the other. Obviously, equal matrices must be of the same size. Some examples will
help make this clear.

If

A = [-4 2 5] 12
and

B = [' 2 -6 4]. 3

we say that A is 2 X 3 because it has two rows and three columns. B is also 2 X 3. Their

The difference D of A and B is

Multiplication of two matrices is defined as follows, when A is n X m and B is m X r :

It is simplest to select the proper elements if we count across the rows of A with the left
hand while counting down the columns of B with the right. Unless the number of columns

2.1: Matrices and Vectors 7 9

of A equals the number of rows of B (so the counting co'mes out even), the matrices cannot
be multiplied. Hence, if A is n X rn, B must have rn rows or else they are said to be "non-
conformable for multiplication" and their product is undefined. In general AB # BA, so the
order of factors must be preserved in matrix multiplication.

If a matrix is multiplied by a scalar (a pure number), the product is a matrix, each ele-
ment of which is the scalar times the original element. TNe can write

A matrix with only one column, n X 1 in size, is termed a column vectol; and one of
only one row, 1 X m in size, is called a row vector. When the unqualified term vector is
used, it nearly always means a column vector. Frequently the elements of vectors are only
singly subscripted.

Some examples of matrix multiplication follow.

Because A is 2 X 3 and B is 3 X 2, they are conformable -for multiplication and their product
is 2 X 2. When we form the product of B * A , it is 3 X 3. Observe that not only is
AB Z BA; AB and BA are not even the same size. The product of A and the vector x (a 3 X 1
matrix) is another vector, one with two components. Similarly, Ay has two components. We
cannot multiply B times x or B times y; they are nonconformable.

The product of the scalar number 2 and A is

Because a vector is just a special case of a matrix, a column vector can be multiplied by
a matrix, as long as they are conformable in that the number of columns of the matrix
equals the number of elements (rows) in the vector. The product in this case will be another
column vector. The size of a product of two matrices, the first m X n and the second n X r,
is m X r. An m X n matrix times an n X 1 vector gives am m X 1 product.

The general relation for Ax = b is

No. of cols.

bi = aiflk, i = 1,2 , . . . , No. of rows.
k= 1

Chapter Two: Solving Sets of Equations

This definition of matrix multiplication permits us to write the set of linear equations

much more simply in matrix notation, as Ax = b, where u

For example, [-1 -1 i j * x = [' i j

is the same as the set of equations

Two vectors, each with the same number of components, may be added or subtracted.
Two vectors are equal if each component of one equals the corresponding component of
the other.

A very important special case is the multiplication of two vectors. The first must be a
row vector if the second is a column vector, and each must have the same number of com-
ponents. For example,

[l 3 -21 * [-:I = 1-51

gives a "matrix" of one row and one column. The result is a pure number, a scalar. This
product is called the scalar product of the vectors, also called the inner product.

If we reverse the order of multiplication of these two vectors, we obtain

2.1 : Matrices and Vectors 8 1

This product is called the outer product. Although not as well known as the inner product,
the outer product is very important in nonlinear optimization problems."

A vector whose length is one is called a unit vector.+ A vector that has all of its elements
equal to zero is the zero vector. If all elements are zero except one, it is a unit basis vector.
There are three distinct unit basis vectors of order-3:

S o m e Special Matrices and Their Properties

Square matrices are particularly important when a system of equations is to be solved.
Square matrices have some special properties.

The elements on the main diagonal are those from Ithe upper-left corner to the lower-
right corner. These are commonly referred to just as the diagonal elements; most often,
just the word diagonal is used. If all elements except those on the diagonal are zero, the
matrix is called a diagonal matrix.

If the nonzero elements of a diagonal matrix all are equal to one, the matrix is called the
identity matrix of order n where n equals the number of row and columns. The usual sym-
bol for this identity matrix is In and it has properties similar to unity. For example, the
order-4 identity matrix is

The subscript is omitted when the order is clear from the context.
An important property of an identity matrix, I, is that for any n X n matrix, A, it is

always true that

If two rows of an identity matrix are interchanged, it is called a transposition matrix. (We also
get a transposition matrix by interchanging two columns.) 'The name is appropriate because, if
transposition matrix P1 is multiplied with a square matrix of the same size, A, the product
PI * A will be the A matrix but with the same two rows interchanged. Here is an example:

"Another important product of three-component vectors is the vectorproduct, also !mown as the cross product.

The length of a vector is the square root of the sum of the squares of its components, an extension of the idea of
the length of a two-component vector drawn from the origin.

Chapter Two: Solving Sets of Equations

However, if the two matrices are multiplied in reverse order, A * PI, the result will be
matrix A but with the columns of A interchanged. You should check this for yourself with
the example matrices.

A permutation matrix is obtained by multiplying several transposition matrices.
A square matrix is called a symmetric matrix when the pairs of elements in similar posi-

tions across the diagonal are equal. Here is an example:

The transpose of a matrix is the matrix obtained by writing the rows as columns or by writ-
ing the columns as rows. (A matrix does not have to be square to have a transpose.) The
symbol for the transpose of matrix A is A ~ . Example 2.1 illustrates.

-- -- - - -

E X A M P L E 2.1 3 -1 0 1

4 -3 2

It should be clear that A = if A is symmetric, and that for any matrix, the transpose of
the transpose, is just A itself. It is also true, though not so obvious, that

(A * B) ~ = B~ * A ~ .

When a matrix is square, a quantity called its trace is defined. The trace of a square
matrix is the sum of the elements on its main diagonal. For example, the traces of the pre-
vious matrices are

It should be obvious that the trace remains the same if a square matrix is transposed.
If all the elements above the diagonal are zero, a matrix is called lower-triangular; it is

called upper-triangular when all the elements below the diagonal are zero. For example,
these order-3 matrices are lower- and upper-triangular:

Triangular matrices are of special importance, as will become apparent later in this chapter
and in several other chapters.

Tridiagonal matrices are those that have nonzero elements only on the diagonal and in
the positions adjacent to the diagonal; they will be of special importance in certain

2.1 : Matrices and Vectors 83

partial-differential equations. An example of a tridiagonal matrix is

For a tridiagonal matrix, only the nonzero values need to be recorded, and that means that
the n X n matrix can be compressed into a matrix of 3 columns and n rows. For this exam-
ple, we can write the matrix as

(The x entries are not normally used; they might be entered as zeros.)
In some important applied problems, only a few of' the elements are nonzero. Such a

matrix is termed a sparse matrix and procedures that take advantage of this sparseness are
of value.

Examples of Operations with Matrices

Here are some examples of matrix operations:

Division of matrices is not defined, but we will discuss the inverse of a matrix later in
this chapter.

Chapter Two: Solving Sets of Equations

The determinant of a square matrix is a number. For a 2 X 2 matrix, the determinant is
computed by subtracting the product of the elements on the minor diagonal (from upper
right to lower left) from the product of terms on the major diagonal. For example,

det(A) is the usual notation for the determinant of A. Sometimes the determinant is sym-
bolized by writing the elements of the matrix between vertical lines (similar to represent-
ing the absolute value of a number).

For a 3 X 3 matrix, you may have learned a crisscross way of forming products of terms
(we call it the "spaghetti rule") that probably should be forgotten, for it applies only to the
special case of a 3 X 3 matrix; it won't work for larger systems. The general rule that
applies in all cases is to expand in terms of the minors of some row or column. The minor
of any term is the matrix of lower order formed by striking out the row and column in
which the term is found. The determinant is found by adding the product of each term in
any row or column by the determinant of its minor, with signs alternating + and -. We
expand each of the determinants of the minor until we reach 2 X 2 matrices. For example,

4 1 3
Given A =

0 2 -1

In computing the determinant, the expansion can be about the elements of any row or
column. To get the signs, give the first term a plus sign if the sum of its column number and

2.1: Matrices and Vectors 8 5

row number is even; give it a minus if the sum is odd, with alternating signs thereafter. (For
example, in expanding about the elements of the third row we begin with a plus; the first
element agl has 3 + 1 = 4, an even number.) Judicious selection of rows and columns with
many zeros can hasten the process, but this method of calculating determinants is a lot of
work if the matrix is of large size. Methods that triarigularize a matrix, as described in
Section 2.2, are much better ways to get the determinant.

If a matrix, B, is triangular (either upper or lower), its determinant is just the product of
the diagonal elements: det(B) = mii, i = 1 , . . . , n. It is easy to show this if the determi-
nant of the triangular matrix is expanded by minors. The following example illustrates this:

Determinants can be used to obtain the characteristic polynomial and the eigenvalues of
a matrix, which are the roots of that polynomial. In Chapter 6, you will see that these are
important in solving certain differential equations. The (Greek symbol A is commonly used
to represent an eigenvalue. (Eigenvalue is a German word, the corresponding English term
is characteristic value, but it is less frequently used.)

The two terms, eigenvalue and characteristic polynomial are interrelated: For matrix A,
PA@) = det(A - AI).

For example, if - -

then

P,(A) = I A - AZl = det
4 (5 - A)

(The characteristic polynomial is always of degree n if AL is n X n.) If we set the character-
istic polynomial to zero and solve for the roots, we get the eigenvalues of A. For this exam-
ple, these are Al = 7, A2 = - 1, or, in more symbolic mathematical notation,

We also mention the notion of an eigenvector corrlesponding to an eigenvalue. The
eigenvector is a nonzero vector w such that

Aw = Aw, that is, (A - hl)w = 0. (2.1)

In the current example, the eigenvectors are

Chapter Two: Solving Sets of Equations

We leave it as an exercise to show that these eigenvectors satisfy Eq. (2.1).
Observe that the trace of A is equal to the sum of the eigenvalues: tr(A) = 1 + 5 = Al +

A2 = 7 + (- 1) = 6. This is true for any matrix: The sum of its eigenvalues equals its trace.
For now, we limit the finding of eigenvalues and eigenvectors to small matrices because

getting these through the characteristic polynomial is not recommended for matrices larger
than 4 X 4. In Chapter 6 we examine other, more efficient ways to get these important
quantities.

If a matrix is triangular, its eigenvalues are equal to the diagonal elements. This follows
from the fact that its determinant is just the product of the diagonal elements and its char-
acteristic polynomial is the product of the terms (aii - A) with i going from 1 to n, the
number of rows of the matrix. This simple example illustrates for a 3 X 3 matrix, A:

= (1 - A)(4 - A) (6 - A),

whose roots are clearly 1, 4, and 6. It does not matter if the matrix is upper- or lower-
triangular.

Using Computer Algebra Systems

MATLAB can do matrix operations. We first define two matrices and a vector, A, B, and v:

Now we so some operations:

EDU>> 3"A

ans =

12 3 -6
15 3 9
12 0 -3

2.1: Matrices and Vectors 87

EDU>> A + B
ans =

7 4 -1
3 2 8
6 2 -1

EDU>> B - A
ans =

-1 2 3

-7 0 2
-2 2 1

EDU>> A*B
ans =

6 9 9
19 22 10
10 10 4

EDU>> B*v
? ? ? Error using=> *
Inner matrix dimensions must agree.

We can't multiply by the row vector, but we could with a column vector-so we transpose
the vector:

ans =

4
12

and now it works. Here are some other operations:

EDU>> det (A)
ans =

2 1
EDU>> v*vt
ans =

14
EDU>> vt*v
ans =

4 -6 -2
- 6 9 3

- 2 3 1

Chapter Two: Solving Sets of Equations

EDU>> trace (A)
ans =

4

We can get the characteristic polynomial:

EDU>> poly (A)
ans =

1.0000 -4.0000 2.0000 -21.0000

where the coefficients are given. This represents

Using Maple

Maple and MATLAB are interrelated and MATLAB commands can be invoked in Maple and
vice versa, but Maple can do matrix manipulations on its own. Here are a few-Maple's
commands are somewhat different. Most need to be preceded by w i t h (1 inalg) .

matadd (A, B) does A + B
multiply (A, B) does A * B

(but evalm (. . .) is more versatile, does all arithmetic
operations with matrices, vectors, and scalars.)

trace (A) gets the trace
transpose (A) transposes
det (A) gets the determinant

lirnination

We now discuss numerical methods that are used to solve a set of linear equations. The
term linear equation means an equation in several variables where all of the variables
occur to the first power and there are no terms involving transcendental functions such as
sine and cosine.

It used to be that students were taught to use Cramer's rule, in which a system can be
solved through the use of determinants. However, Cramer's rule is inefficient and is almost
impossible to use if there are more than two or three equations. As we have said, most
applied problems are modeled with large systems and we present methods that work well
with them. Even so, we use small systems as illustrations.

Suppose we have a system of equations that is of a special form, an upper-triangular
system, such as

2.2: Elimination Methods 89

'Whenever a system has this special form, its solution is very easy to obtain. From the third
equation we see that x3 = 5 , Substituting this value into the second equation quickly gives
x2 = - 1. Then substituting both values into the first equation reveals that xl = 2; now we
have the solution: xl = 2, x2 = - 1, x3 = 5.*

The first objective of the elimination method is to chiange the matrix of coefficients so
that it is upper triangular. Consider this example of three equations:

Multiplying the first equation by 3 and the second by 4 and adding these will eliminate
x, from the second equation. Similarly, multiplying the first by - 1 and the third by 4 and
adding eliminates xl from the third equation. (We prefer to multiply by the negatives and
add, to avoid making mistakes when subtracting quantities of unlike sign.) The result is

We now eliminate x2 from the third equation by multiplying the second by 2 and the
third by - 10 and adding to get

Now we have a triangular system and the solution is readily obtained; obviously x3 = 3 from
the third equation, and back-substitution into the second equation gives x2 = -2. We continue
with back-substitution by substituting both x2 and x3 into the first equation to get xl = 2.

The essence of any elimination method is to reduce the coefficient matrix to a triangu-
lar matrix and then use back-substitution to get the solution.

We now present the same problem, solved in exactly the same way, in matrix notation:

The arithmetic operations that we have performed affect only the coefficients and the
right-hand-side terms, so we work with the matrix of' coefficients augmente(d with the

* A system that is lower-triangular is equally easy to solve. We then do forward-substitution rathl-r than back-
substitution.

Chapter Two: Solving Sets of Equations

right-hand-side vector:

(The dashed line is usually omitted.)
We perform elementary row transformations* to convert A to upper-triangular form:

The steps here are to add 3 times the first row to 4 times the second row and to add - 1
times the first row to 4 times the third row. The next and final phase (in order to get a tri-
angular system) is to add 2 times the second row to - 10 times the third row.

The array in Eq. (2.3) represents the equations

-10x,+19x3= 77, 12.4)

-72x3 = -216.

The back-substitution step can be performed quite mechanically by solving the equa-
tions of Eq. (2.4) in reverse order. That is,

Thinking of the procedure in terms of matrix operations, we transform the augmented
coefficient matrix by elementary row operations until a triangular matrix is created on the
left. After back-substitution, the x-vector stands as the rightmost column.?

These operations, which do not change the relationships represented by a set of
equations, can be applied to an augmented matrix, because this is only a different notation
for the equations. (We need to add one proviso: Because round-off error is related to
the magnitude of the values when we express them in fixed-word-length computer

-* Elementary row operations are arithmetic operations that obviously are valid rearrangements of a set of equa-
tions: (1) Any equation can be multiplied by a constant; (2) the order of the equations can be changed; (3) any
equation can he replaced by its sum with another of the equations.

f Making the matrix triangular by row operations is not a way to get its eigenvalues; the row operations change
them.

2.2: Elimination Methods 9 1

representations, some of our operations may have an effect on the accuracy of the com-
puted solution.)

An alternative to converting the system to upper-triangular is to make it lower-triangu-
lar. For example, if we have this set of equations (or an augmented matrix):

Here, we would solve for the variables in this order: ;cl, then x2, and finally S, with the
same number of computations as in the case of a lower-triangular system. Both the lower-
and upper-triangular systems play an important part in the development of algorithms in
the following sections, because these systems require fewer multiplications/divisions than
the general system. We shall also show that we can often write a general matrix A as the
product LU, a lower-triangular matrix times an upper-triangular matrix.

Note that there exists the possibility that the set of equations has no solution, or that the
prior procedure will fail to find it. During the triangularization step, if a zero is encoun-
tered on the diagonal, we cannot use that row to eliminate coefficients below that zero ele-
ment. However, in that case, we can continue by interchanging rows and eventually
achieve an upper-triangular matrix of coefficients. The real stumbling block is finding a
zero on the diagonal after we have triangularized. If that occurs, the back-substitution fails,
for we cannot divide by zero. It also means that the determinant is zero: There is no
solution.

It is worthwhile to explain in more detail what we mean by the elementary row opera-
tions that we have used here, and to see why they can be used in solving a linear system.
There are three of these operations:

1. We may multiply any row of the augmented coefficient matrix by a constant.

2. We can add a multiple of one row to a multilple of any other row.

3. We can interchange the order of any two rows (this was not used earlier).

The validity of these row operations is intuitively obvious if we think of then1 applied to
a set of linear equations. Certainly, multiplying one equation through by a coinstant does
not change the truth of the equality. Adding equal quantities to both sides of an equality
results in an equality, and this is the equivalent of the second transformation. Obviously,
the order of the set is arbitrary, so rule 3 is valid.

Gaussian Elimination

The procedure just described has a major problem. While it may be satisfactoiry for hand
computations with small systems, it is inadequate for a large system. Observe that the
transformed coefficients can become very large as we convert to a triangular system. The

Chapter Two: Solving Sets of Equations

method that is called Gaussian elimination avoids this by subtracting ailla] times the first
equation from the ith equation to make the transformed numbers in the first column equal
to zero. We do similarly for the rest of the columns.

We must always guard against dividing by zero. Observe that zeros may be created in
the diagonal positions even if they are not present in the original matrix of coefficients. A
useful strategy to avoid (if possible) such zero divisors is to rearrange the equations so as
to put the coefficient of largest magnitude on the diagonal at each step. This is called
pivoting. Complete pivoting may require both row and column interchanges. This is not
frequently done. Partial pivoting, which places a coefficient of larger magnitude on the
diagonal by row interchanges only, will guarantee a nonzero divisor if there is a solution to
the set of equations, and will have the added advantage of giving improved arithmetic pre-
cision. The diagonal elements that result are called pivot elements. (When there are large
differences in magnitude of coefficients in one equation compared to the other equations,
we may need to scale the values; we consider this later.)

We repeat the example of the previous section, incorporating these ideas and carrying
four significant digits in our work. We begin with the augmented matrix.

[The notation used here means to subtract (-314) times row 1 from row 2 and to subtract
(114) times row 1 from row 3 in reducing in the first column; to subtract (-0.51-2.5) times
row 2 from row 3 in the third column.]

The method we have just illustrated is called Gaussian elimination. (In this example, no
pivoting was required to make the largest coefficients be on the diagonal.) Back-substitu-
tion, as presented with Eq. (2.4), gives us, as before, x3 = 3, x2 = -2, xl = 2. We have
come up with the exact answer to this problem. Often it will turn out that we shall obtain
answers that are just close approximations to the exact answer because of round-off error.
When there are many equations, the effects of round-off (the term is applied to the error
due to chopping as well as when rounding is used) may cause large effects. In certain
cases, the coefficients are such that the results are particularly sensitive to round off, such
systems are called ill-conditioned.

In the example just presented, the zeros below the main diagonal show that we have
reduced the problem [Eq. (2.3)] to solving an upper-triangular system of equations as in
Eqs. (2.4). However, at each stage, if we had stored the ratio of coefficients in place of zero

2.2: Elimination Methods 9 3

(we show these in parentheses), our final form would have been

1 -2 15

(-0.75) -2.5 4.75 i 19.25
(0.25) (0.20) 1.80 5.4 I

Then, in addition to solving the problem as we have done, we find that the original matrix

L 1
can be written as the product:

-+
L U

This procedure is called a LU decomposition of A. In this case,

A = L * U,

where L is lower-triangular and U is upper-triangular. As we shall see in the next exam-
ple, usually L * U = A', where A' is just a permutation of the rows of A due to row inter-
change from pivoting.

Finally, because the determinant of two matrices, ,B * C, is the product of each of the
determinants, for this example we have

det(L * U) = det(L) * det(U) = det(U),

because L is triangular and has only ones on its diagonal so that det(L) = 1. Thus, for the
example given in Eq. (2.5), we have

det(A) = det(U) = (4) * (-2.5) * (1.8) = -18,

because U is upper-triangular and its determinant is just the product of the diagonal elements.
From this example, we see that Gaussian elimination does the following:

1. It solves the system of equations.
2. It computes the determinant of a matrix very efficiently.
3. 1t can provide us with the LU decomposition of the matrix of coefficients, in the

sense that the product of the two matrices, L * ZJ, may give us a permutation of the
rows of the original matrix.

With regard to item 2, when there are row interchanges,

det(A) = (- 1)" * ul l * . . . * 'nn'

where the exponent rn represents the number of row interchanges.
We summarize the operations of Gaussian elimination in a form that will facilitate the

writing of a computer program. Note that in the actual implementation of the algorithm,
the L and U matrices are actually stored in the space of the original matrix A.

Chapter Two: Solving Sets of Equations

To solve a system of n linear equations: Ax = b.

For j = 1 To (n - 1)
pvt = la[j,jll
pivot [j] = j
ipvt-temp = j

F o r i = j + 1Ton
IF la [i, j](> pvt

pvt = la[i,jll
ipvt-temp = i

End IF
End For i

(Find pivot row)
Then

(Switch rows if necessary)
IF pivot [j] < > ipvt-temp

[switch-rows(rows j and ipvt-temp)]

For i = j + 1 to n (Store multipliers)
a[i, jl = ali, j lla[j, j l

End For i

(Create zeros below the main diagonal)
F o r i = j + 1Ton

F o r k = j + 1Ton
a[i, k] = a[i, k] - a[i, j] * alj, k]

End For k
b [i] = b[i] - a[i, j] * blj]

End For i

End For j;

(Back Substitution Part)
x[n] = b[n]la[n, n]
Forj = n - 1 DownTo 1

x[jl = b[jl
Fork= nDownToj+ 1

x[j] = x b] - x[k] * a[j, k]
End For k
x[jl = d j 114 J, jl

End For j.

2.2: Elimination Methods 95

Interchanging rows in a large matrix can be expensive; there is a better way. We keep
track of the order of the rows in an order vector and, when a row interchange is indicated,
we only interchange the corresponding elements in the order vector. This vector then tells
which rows are to be worked on. Using an order vector saves computer time because only
two numbers of this vector are interchanged; we do not have to switch all the elements of
the two rows. However, we do not do this here in order to keep our explanations simple.
You will later see an example that uses an order vector.

The algorithm for Gaussian elimination will be clarified by an additional numerical
example. Solve the following system of equations using Gaussian elimination. In addition,
compute the determinant of the coefficient matrix and the LU decomposition of this matrix.

Given the system of equations, solve

The augmented coefficient matrix is

We cannot permit a zero in the all position because that element is the pivot in reducing
the first column. We could interchange the first row with any of the other rows to avoid a
zero divisor, but interchanging the first and fourth rows is our best choice. This gives

We make all the elements in the first column zero by subtracting the appropriate multiple
of row one:

-6 -5
0 1.6667 5 3.6667 -:I [i -:.6667 4 4.3333 -11 '

(2.9)

0 1 0

We again interchange before reducing the second column, not because we have a zero divi-
sor, but because we want to preserve accuracy." Interchanging the second and third rows

* A numerical example that demonstrates the improved accuracy when partial pivoting is used will be found in
Section 2.4.

Chapter Two: Solving Sets of Equations

puts the element of largest magnitude on the diagonal. (We could also interchange the
fourth column with the second, giving an even larger diagonal element, but we do not do
this.) After the interchange, we have

Now we reduce in the second column

No interchange is indicated in the third column. Reducing, we get

Back-substitution gives

1 The correct answers are -2, ,, 1, and -; for x4, x3, x2, and x l . In this calculation we
have carried five significant figures and rounded each calculation. Even so, we do not
have five-digit accuracy in the answers. The discrepancy is due to round off. The
question of the accuracy of the computed solution to a set of equations is a most impor-
tant one, and at several points in the following discussion we will discuss how to
minimize the effects of round off and avoid conditions that can cause round-off errors to
be magnified.

2.2: Elimination Methods 97

In this example, if we had replaced the zeros below the main diagonal with the ratio of
coefficients at each step, the resulting augmented matrix would be

This gives a LU decomposition as

It should be noted that the product of the matrices in Eq. (2.13) produces a permutation
of the original matrix, call it A', where

because rows 1 and 4 were interchanged in Eq. (2.8) and rows 2 and 3 in Eq. ((2.10). The
determinant of the original matrix of coefficients-the first four columns of Eq. (2.7)-
can be easily computed from Eq. (2.11) or Eq. (2.12) according to the formula

which is close to the exact solution: -234.* The exponent 2 is required, because there
were two row interchanges in solving this system. To summarize, you should n~ote that the
Gaussian elimination method applied to Eq. (2.6) produces the following:

1. The solution to the four equations.
2. The determinant of the coefficient matrix

* The difference is because the computed values have been rounded to four decimal places

Chapter Two: Solving Sets of Equations

3. A LU decomposition of the matrix, A', which is just the original matrix, A, after we
have interchanged its rows in the process.

MATLAB can get the matrices of Eq. (2.13) with its lu command:

In this, matrix P is the permutation matrix that was used to put the largest magnitude coef-
ficient in the pivot position. Observe that MATLAB got a more accurate solution.

We really desire the solution to Ax = b. MATLAB gets this with a simple command.
We define A and b (trailing semicolons suppress the outputs); the apostrophe on b gets the
transpose:

EDU>> A=[O 2 0 1; 2 2 3 2; 4 -3 0 1; 6 1 - 6 -51;

EDU>> b = [O 2 -7 61 ' ;
EDU>> A\b

ans =

-0.5000
1.0000
0.3333

-2.0000

Again, we obtained a more accurate solution.

2.2: Elimination Methods 99

The efficiency of a numerical procedure is ordinarily measured by counting the number of
arithmetic operations that are required. In the past, only multiplications and divisions were
counted because they used to take much longer to perform than additions and subtractions.
In today's computers using math coprocessors, all four of these take about the same time,
so we should count them all.

In a system of n equations with just one right-hand side, we compute the number of
operations as follows. The augmented matrix is n X n + 1 in size.

To reduce the elements below the diagonal in column 1, we first compute (n - 1) mul-
tiplying factors [takes (n - l) divides]. We multiply each of these by all the elements in
row 1 except the first element [takes (n) multiplies)] and subtract these products from the n
elements in each of the n - 1 rows below row 1, ignoring the first elements because these
are known to become zero [takes n * (n - 1) multiplies and the same number of subtracts].
In summary:

Divides = (n - I),

Multiplies = n * (n - l),

Subtracts = n * (n - 1) .

In the other columns, we do similarly except each succeeding column has one fewer ele-
ment. So, we have for column i:

Divides: (n - i),

Multiplies: (n - i + I) * (n - i),

Subtracts: (n - i + 1) (n - i).

We add these quantities together for the reduction in columns 1 through n - 1 tmo get:

n- l n-1

Divides = 2 (n - i) = 2 i = n2/2 - nl2,

n- 1 n- 1

Multiplies = (a - i + 1) (n - i) = 2 i(i + 1) = n3/3 - n/3.
i= 1 i = l

Subtracts are the same as multiplies = n3/3 - n/3. If we add these together, we get, for
the triangularization part, 2n3/3 + n2/2 - 7nI6 total operations. In terms of the (order rela-
tion discussed in Chapter 0, this is 0(n3/3). We still need to do the back-substitutions, A lit-
tle reflection shows that this requires

n-1

Multiplies = 2 i = n2/2 - nI2,
i= 1

Subtracts = same as number of multiplies,

Divides = n,

so the back substitution requires a total of n2 operations.
If we add the operations needed for the entire solution of a system of n equations:

Chaptcr Two: Solving Sets of Equations

we get:

2n3/3 t 3n2/2 - 7nI6.

Multiple Right-Hand Sides

Gaussian elimination can readily work with more than one right-hand-side vector. We just
append the additional column vectors within the augmented matrix and apply the reduction
steps to these new columns exactly as we do to the first column. If row interchanges are
made, the entire augmented matrix is included.

The Gauss -Jordan Method
-

There are many variants to the Gaussian elimination scheme. The back-substitution step
can be performed by eliminating the elements above the diagonal after the triangulariza-
tion has been finished, using elementary row operations and proceeding upward from the
last row. This technique is equivalent to the procedures described in the following
example. The diagonal elements may all be made ones as a first step before creating
zeros in their column; this performs the divisions of the back-substitution phase at an
earlier time.

One variant that is sometimes used is the Gauss-Jordan scheme. In it, the elements
above the diagonal are made zero at the same time that zeros are created below the diago-
nal. Usually, the diagonal elements are made ones at the same time that the reduction is
performed; this transforms the coefficient matrix into the identity matrix. When this has
been accomplished, the column of right-hand sides has been transformed into the solution
vector. Pivoting is normally employed to preserve arithmetic accuracy.

The previous example, solved by the Gauss-Jordan method, gives this succession of
calculations. The original augmented matrix is

Interchanging rows 1 and 4, dividing the new first row by 6, and reducing the first column
gives

1 0.1667 -1 -0.8333
0 1.6667 5 3.3667 -:I
0 -3.6667 4 4.3334 -11 '

0 1 0

Interchanging rows 2 and 3, dividing the new second row by -3.6667, and reducing the
second column (operating above the diagonal as well as below) gives

2.2: Elimination Methods 101

No interchanges now are required. We divide the third row by 6.8182 and zero the other
elements in the third column:

We complete by dividing the fourth row by 1.5599 and create zeros above:

The fourth column is now the solution. It differs slightly from that obtained with Gaussian
elimination; round-off errors have been entered in a different way.

While the Gauss-Jordan method might seem to re'quire the same effort as Gaussian
eliminat.ion, it really requires almost 50% more operations. As an exercise, you should
show that it takes (n2 - n)/2 divides, (n3 - n)/2 multiplies, and (n3 - n)/2 subtracts for a
total of n3 f n2 - 2n altogether. It is 0(n3) , compared to 0(2n3/3).

axtial Pivoting"

There are times when the partial pivoting procedure is inadequate. When some rows have
coefficients that are very large in comparison to those in other rows, partial pivoting may
not give a correct solution. The answer to this problem is scaling, which means that we
adjust the coefficients to make the largest in each row of the same magnitude.

Coefficients may differ in magnitude for several reasons. It might be caused by relations
where the quantities are in widely different units: microvolts versus kilovolts, seconds ver-
sus years, for example. It could be due to inherently large numbers in just one equation.
Here is a simple example to show how partial pivoting rnay not be enough:

3 2 100
Given:A= -1 3 100 b = 1 0 2 . [1 2 - J 9 r:1

whose correct answer obviously is x = [1.00, 1.00, 1.001~.

" Sometimes this is called virtual scaling.

Chapter Two: Solving Sets of Equations

If we solve this using partial pivoting but with only three digits of precision to empha-
size round-off enor, we get this augmented matrix after triangularization:

from which the solution vector is readily found to be the erroneous value of [0.939, 1.09,
1.001~.

The trouble here is that, while no pivoting appears to be needed during the solution, the
coefficients in the third equation are much smaller than those in the other two. We can do
scaled partial pivoting by first dividing each equation by its coefficient of largest magni-
tude. Doing so with the original equations gives (still using just three digits):

We now see that we should interchange row 1 with row 3 before we begin the reduction.
We could now solve this scaled set of equations but there is a better way that uses the

original equations, eliminating the rounding off that may occur in obtaining the scaled equa-
tions. This method begins by computing a scaling vector whose elements are the elements
in each row of largest magnitude. Calling the scaling vector S, we have for this example:

s = [loo, 100, 21.

Before reducing the first column, we divide each element by the corresponding element of
S to get R = [0.0300, -0.0300,0.500] in which the largest element is the third. This shows
that the third equation should be the pivot and that the third equation should be interchanged
with the first. (As you will see below, we do not have to actually interchange equations.) In
preparation for further reduction steps, we do interchange the elements of S to get:

Sf = [2, 100, 1001.

The reduced matrix after reducing in the first column (still using only three digits of preci-
sion) is

We now are ready to reduce in column 2. We divide the elements of this column by the ele-
ments of S to get R = [I, 0.0500, -0.04001. We ignore the first element of R, and see that
no interchange is needed. Doing the reduction we get this final matrix:

and back substitution gives the correct answer: x = r1.00, 1.00, 1.001.

2.2: Elimination Methods 103

Using an Order Vector

We now give an example of using an order vector to avoid the actual interchange of rows.
Our system in augmented matrix form is

4. -3 0 -7-
2 2 3 - 2 .

6 1 -6 6J

Initially, we set the order vector to [I , 2, 31. Looking at column 1, we see that A(3, 1)
should be the pivot; we exchange elements in the order vector to get [3,2, 11. In the reduc-
tion of column 1, we use row 3 as the pivot row to get

From here, we ignore row 3. We see that A(1,2) should be the next pivot. We exchange ele-
ments in the order vector to get [3, 1 ,2] so as to use row 1 as the next pivot row. Reducing
column 2, we then get

and "back-substituting" from the final set of equations in the order given by the final order
vector: f ~ s t 2, then 1, then 3, gives the solution: x2 = 1.5600, xl = -0.5800, x3 == - 1.3200.

Using the LU Matrix for Multiple Righ~t-Hand Sides

Many physical situations are modeled with a large set of linear equations: an example is
determining the internal temperatures in a nuclear reactor, and knowing the maximum tem-
perature is critical. The equations will depend on the geometry and certain external factors
that will determine the right-hand sides. If we want the solution for many different values
of these right-hand sides, it is inefficient to solve the system from the start with each one of
the right-hand-side values-using the LU equivalent of the coefficient matrix is, preferred.

Of course, getting the solutions for a problem with several right-hand sides can be done
in ordinary Gaussian elimination by appending the several right-hand vectors to the coeffi-
cient matrix. However, when these vectors are not known in advance, we might think we
would have to start from the beginning.

We can use the LU equivalent of the coefficient matrix to avoid this if we solve the sys-
tem in two steps. Suppose we have solved the system Ax = b by Gaussian elhination-
we now know the LU equivalent of A: A = L * U . Consider now that we want to solve
Ax = b with some new b-vector. We can write

Chapter Two: Solving Sets of Equations

The product of U and x is a vector, call it y. Now, we can solve for y from Ly = b and this
is readily done because L is lower-triangular and we get y by "forward-substitution." Call
the solution y = b!

Going back to the original LUX = b, we see that, from Ux = y = b: we can get x from
Ux = b: which is again readily done by back-substitution (U is upper-triangular). The
operational count for either forward- or back-substitution is exactly n2 operations, so solv-
ing Ax = b will take only 2n2 operations if the LU equivalent of A is already known, which
is significantly less than the 2n3/3 + 3n2/2 - 7n/6 operations required to solve Ax = b
directly.

What if we had reordered the rows of matrix A by pivoting? This is no problem if we
save the order vector that tells the final order of the rows of the matrix. We then use this to
rearrange the elements of the b-vector, or perhaps use it to select the proper elements dur-
ing the forward- and back-substitutions.

AN EXAMPLE Solve Ax = b, where we already have its L and U matrices:

Suppose that the b-vector is 16, -7, -2, OIT. We first get y = Ux from Ly = b by forward-
substitution:

y = [6, -11, -9, -3.121T,

and use it to compute x from Ux = y:

[This is the same system as Eq. (2.6) but with the equations reordered so pivoting is not
needed.]

Now, if we want the solution with a different b-vector:

we just do Ly = bb to get

y = [1 , 3.3333, -1.8182, 3.4IT,

and then use this y in Ux = y to find the new x:

2.2: Elimination Methods 105

Tridiagonal Systems

There are some applied problems where the coefficient matrix is of a special form. Most of
the coefficients are zero; only those on the diagonal and adjacent to the diagonal are non-
zero. Such a matrix is called tridiagonal. Here is an example from Chapter 6:

When this system is solved by Gaussian elimination, the zeros do not enter into the solu-
tion; only the non-zero coefficients are used. That means that there is no need to store the
zeros; we can compress the coefficients into an array of three columns and put the right-
hand-side terms into a fourth column. The number of arithmetic operations is reduced sig-
nificantly.

Here is an algorithm that carries out the solution of the problem:

Given the n X 4 matrix that has the right-hand side as its fourth column,

(LU decomposition phase)

For i = 2 To n
A[i, I] = A[i, l]lA[i - 1, 21
A[i, 21 = A[i, 21 - A[i, 11 * A [i - 1, 31
A[i, 41 = A[i, 41 - A[i, 11 * A[i - 1, 41

End For i

A[n, 41 = A[n, 4]lA[n, 21
For i = (n - 1) Down To 1

A[i, 41 = (A[& 41 - A[i, 31 * A[i + 1, 4])lA[i, 2]y
End For i

106 Chapter Two: Solving Sets of Equations

Division by a matrix is not defined but the equivalent is obtained from the inverse of the
matrix. If the product of two square matrices, A * B, equals the identity matrix, I, B is said
to be the inverse of A (and A is the inverse of B). The usual notation for the inverse of
matrix A is A-'. We have said that matrices do not commute on multiplication but inverses
are an exception: A * A-' = A-' * A .

One way to find the inverse of matrix A is to employ the minors of its determinant but
this is not efficient. The better way is to use an elimination method. We augment the A
matrix with the identity matrix of the same size and solve. The solution is A-l. This is
equivalent to solving the system with n right-hand sides, each column being one of the n
unit basis vectors in turn. Here is an example:

EXAMPLE 2.2 Given matrix A, find its inverse. First use the Gauss-Jordan method with exact arithmetic.

Augment A with the identity matrix and then reduce:

We confirm the fact that we have found the inverse by multiplication:

It is more efficient to use Gaussian elimination. We show only the final triangular
matrix; we used pivoting:

('1 Interchange the third and second rows before eliminating from the third row.
(*)Divide the third row by -5 before eliminating from the first row.

2.3: The Inverse of a Matrix and Matrix Pathology 107

- 1 2 1 0 0 0 1 0 1
(0.333) -1 1.667 1 -0.333

(0.333) (0) 1.667 0 -0.333 1

After doing the back-substitutions, we get

If we have the inverse of a matrix, we can use it to solve a set of equations, Ax = b,
because multiplying by A-I gives the answer:

This would seem like a good way to solve equations, and there are many references to it.
But this is not the best way to solve a system-getting the LU equivalent of A first and
then using the L and U to solve Ax = b requires only two back-substitutions and that
requires exactly the same work as multiplying the vector b by a matrix. Finding K1 means
solving a system with three right-hand sides.

The real importance of the inverse is to develop theory and is essential to understanding
many things in applied mathematics. For example, does every square matrix have an
inverse? The answer is no, and we look now at when this is true.

Pathological Systems

When a real physical situation is modeled by a set of linear equations, we can anticipate
that the set of equations will have a solution that matches the values of the quantities in the
physical problem, at least as far as the equations truly dio represent it." Because of round-
off errors, the solution vector that is calculated may imperfectly predict the physical quan-
tity, but there is assurance that a solution exists, at least in principle. Consequently, it must
always be theoretically possible to avoid divisions by zero when the set of equations has a
solution.

An arbitrary set of equations may not have such a guaranteed solution, however. There
are several such possible situations, which we term "pathological." In each case, there is no
unique solution to the set of equations.

" There are certain problems for which values of interest are determined from a set of equations that do not have
a unique solution; these are called eigenvalue problems and are discussed in Chapter 6.

Chapter Two: Solving Sets of Equations

First, here is an example of a matrix that has no inverse: What is the LU equivalent of

MATLAB can find this:

EDU>> A = [l - 2 3 ; 2 4 - 1 ; - 1 - 1 4 111

A =

1 -2 3

2 4 -1

-1 - 1 4 11

EDU>> l u (A)

ans =

2 . 0 0 0 0 4 . 0 0 0 0 - 1 . 0 0 0 0

- 0 . 5 0 0 0 - 1 2 . 0 0 0 0 1 0 . 5 0 0 0

0 . 5 0 0 0 0 . 3 3 3 3 0

It is obvious that we cannot ordinarily solve a system Ax = b that has this A matrix, for the
zero in element A(3, 3) cannot be used as a divisor in the back-substitution. That means
that we cannot solve a system with the identity matrix as the right-hand sides. And that
would have to be done to find A - l . What does MATLAB say if we ask it to find the
inverse?

EDU>> inv (A)
Warning: Matrix is singular to working precision.
ans =

Inf Inf Inf

In f Inf Inf
In£ Inf Inf

and we ask ourselves what the term singular means. Actually, the definition of a singular
matrix is a matrix that does not have an inverse!

Are there other ways to see if a matrix is singular without trying to triangularize it? Yes,
here are five other tests.

1. A singular matrix has a determinant of zero. This follows directly from the above
result, where we saw that elementA(3,3) was zero, and det (A) = (2) (- 12) (0) = 0.

2. The rank of the matrix is less than n, the number of rows. The rank is not as easy to
find, but MATLAB can find it:

EDU>> rank (A)
ans =

2

The rank of a matrix is really determined by the next two properties of a singular
matrix.

2.3: The Inverse of a Matrix and Matrix Pathology 109

3. A singular matrix has rows that are linearly dependent vectors. A set of vectors is
said to be linearly dependent if a weighted sum equals zero without using all weight-
ing factors equal to zero. For matrix A above,

-3[1, -2,3] + 2[2,4, -11 + I[-1, -114, 111 = [0, 0, 01.

4. A singular matrix has columns that are linearly dependent vectors. For maltrix A,

- 10[1,2, - l lT + 7[-2,4, - 141T + 8[3, - 1, 1 llT = [O, 0, OIT.

5. A set of equations with this coefficient matrix has no unique solution.

Redundant and Inconsistent Systems

Even though a matrix is singular, it may still have a solution. Consider again the same sin-
gular matrix:

Suppose we solve the system Ax = b where the right-hand side is b = 157, 1IT. MATLAB
then gives

EDU>> Ab= [l -2 3 5; 2 4 -1 7; -1 -14 11 11
Ab =

1 - 2 3 5
2 4 -1 7

- 1 -14 11 1
EDU>> lu(Ab)
ans =

2.0000 4.0000 -1.0000 7.0000
-0.5000 -12.0000 10.5000 4.5000
0.5000 0.3333 0 0

and the back-substitution cannot be done. The display suggests that x3 can have my value.
Suppose we set it equal to 0. We can solve the first two equations with that substitution;
that gives [17/4, -318, OIT. We get the same result from solving any other combhation of
two equations.

Suppose we set x3 to 1 and repeat. This gives [3, 112, llT, and this is another solution. In
fact, any linear combination of these two is a solution! While that may not be a saltisfactory
answer, we must agree that we have found a solution, actually, an infinity of them. The rea-
son for this is that the system is redundant: The third equation, given by the third row, is
just a linear combination of the first two:

Of course, this means that any one equation is a linear combination of the other two. What
we have here is not truly three linear equations but only two independent ones. The system
is called redunilant.

Chapter Two: Solving Sets of Equations

What if the right-hand vector is different, say, [5, 7, 21T? Solving with this vector, we
find this final array:

We now say, for this system, that it is inconsistent; there is no solution that satisfies the equa-
tions. In either case, there is no unique solution to a system with a singular coefficient matrix.

Here is a comparison of singular and nonsingular matrices:

For Singular Matrix A:

It has no inverse, A - ~

Its determinant is zero

There is no unique solution
to the system Ax = b

Gaussian elimination cannot avoid
a zero on the diagonal

The rank is less than n

Rows are linearly dependent

Columns are linearly dependent

itioned Systems

For Nonsingular Matrix A:

It has an inverse, A - ~ exists

The determinant is nonzero

There is a unique solution
to the system Ax = b

Gaussian elimination does not
encounter a zero on the diagonal

The rank equals n

Rows are linearly independent

Columns are linearly independent

We have seen that a system whose coefficient matrix is singular has no unique solution.
What if the matrix is "almost singular"? Here is an example:

The LU equivalent has a very small element in position (3, 3):

4.33 0.56 -1.78
= [0.6975 -1.4406 3.7715 .

-0.1917 0.3003 -0.0039 1
Let's look at the inverse:

5.6611 -7.2732 - 18.5503
200.5046 -268.2570 -669.9143 ,
76.851 1 - 102.6500 -255.8846 1

and we see that this has elements very large in comparison to A.

2.4: Ill-Conditioned Systems 1 11

Both of these results suggest that matrix A is nonsingular but is "almost singular."
Suppose we solve the system Ax = b, with b equal to [- 1.61,7.23, -3.381~. It ILS clear, if
you do the math, that the solution is x = 1.0000, 2.0000, - 1.0000.

Now suppose that we make a small change in just the first element of the b-vector: b =
[- 1.60, 7.23, -3.381. Now solve again; we get x = [1.0566, 4.0051, -0.23151. What a
difference! Let us try another small change in the b-vector: b = [-1.61, 7.22, -3.381~.
The solution now is x = [1.07271,4.6826, 0.02651 which also differs much from our first
answer.

A system whose coefficient matrix is nearly singular is called ill-conditioned When a
system is ill-conditioned, the solution is very sensitive to changes in the right-hand vector.
It is also sensitive to small changes in the coefficients. If A(1, 1) is changed from 3.02 to
3.00 and we solve the system again with the original b-vector, we now find a large change
in the solution: x = [1.1277, 6.5221, 0.7333IT. This means that it is also very sensitive to
round-off error.

This phenomenon shows up even more pointedly in large systems. But even this system
of only two equations shows the effect of near singularity:

The solution is clearly seen to be x = 1.00, y = 1.00.
However, if we make a small change to the b-vector, to r2.02, 1.981T, the solution now

is x = 2, y = 0. If we had another slightly different b-vector: L1.98, 2.02IT, we would have
x = O , y = 2 !

It is helpful to think of the system, Ax = b, as a line8ar system solver machine. In this
view, we have inputs to the machine, the b-vector, and outputs, the x-values. For an ill-
conditioned system, small changes in the input make large changes in the output.

Even though the three inputs are "close togetherw-bl = (2, 2)T, b2 = (2.02, 1.98)~, and
b13 = (1.98, 2.02)T-we get very "distant" outputs-xl = (1, I) ~ , x2 = (2, o) ~ , x3 = (0,
2)T. This modest example shows the basic idea of an ill-conditioned system: 27or small
changes in the input, we get large changes in the output.

In some situations, one can combat ill-conditioning by transforming the problem into an
equivalent set of equations that are not ill-conditioned. The efficiency of this scheme is
related to the relative amount of computation required for the transformation, compared to
the cost of doing the calculations in higher precision.

An interesting phenomenon of an ill-conditioned system is that we cannot test for the
accuracy of the computed solution merely by substituting it into the equations to see
whether the right-hand sides are reproduced. Consider a.gain the ill-conditioned example

Chaptpr Two: Solving Sets of Equations

we have previously examined:

3.02 -1.05 -1.61
4.33 0.56 -1.78 "'1. b = [7.231.

-0.83 -0.54 1.47 -3.38

If we compute the vector Ax, using the exact solution x = (1,2, - we of course get

However, if we substitute a clearly erroneous vector

X = (0.880, -2.34, -2.66)T,

we get Ax (- l.61Z7.2348, -3.3770)*, which is very close to b.

Effect of Precision

We have mentioned that it is difficult to get an accurate solution when a system is ill-
conditioned and have demonstrated that small changes in either the coefficients or the
right-hand side make large changes in the solution. The solution is also dependent on the
accuracy of the arithmetic computations. We use here the computer algebra system, Maple,
to show this. We begin by invoking the linalg "package" that enables many operations:

with (linalg)

Now we define the matrix:

We already have seen that this system is ill-conditioned. What does Maple say the solution
is?

z r r e f (A) ;

which is pretty close to the exact solution, x = [I, 2, - I]. Maple used its default precision
of ten digits in getting this answer. If we change the precision to 20, we get a more accu-
rate solution but it is still not exact. What if we change it to only three digits?

Digits : = 3 ; r r e f (A) ;

Digits: = 3

2.4: Ill-Conditioned Systems 1 13

and Maple tells us that the coefficient matrix is singular at that precision. If we change to
four digits:

Digits: = 4; rref (A) ;
Digits: = 4

we get a poor approximation to x = [I, 2, - 11, the exact solution.
The 'rref' command can be used in MATLAB also. It rather obviously uses the

Gauss - Jordan method.

Condition Numbers and Norms

The degree of ill-conditioning of a matrix is measured by its condition number. This is
defined in terms of its norms, a measure of the magnitude of the matrix. We discuss norms
before discussing condition numbers.

The magnitude of a single number is just its distance from zero: (-4.21 = 4.2. But a
matrix is not a single number; its norm is different. For any norm, these properties are
essential:

1. The norm must always have a value greater than or equal to zero, and must be zero
only when the matrix is the zero matrix (one with all elements equal to zero).

2. The norm must be multiplied by k if the matrix is multiplied by the scalar k.
3. The norm of the sum of two matrices must not exceed the sum of the norms.
4. The norm of the product of two matrices must not exceed the product of the norms.

More formally, we can state these conditions, using llA 1 1 to represent the norm of matrix A:

The third relationship is called the triangle inequality. The fourth is important when we
deal with the product of matrices.

Chapter Two: Solving Sets of Equations

For the special kind of matrices that we call vectors, our past experience can help us.
For vectors in two- or three-space, the length satisfies all four requirements and is a good
value to use for the norm of a vector. This norm is called the Euclidean norm, and is com-
puted by dx? + x$ + xi.

We compute the Euclidean norm of vectors with more than three components by
generalizing:

This is not the only way to compute a vector norm, however. The sum of the absolute
values of the xi can be used as a norm; the maximum value of the magnitudes of the xi will
also serve. These three norms can be interrelated by defining the p-norm as.

From this its is readily seen that

n

llx 1 1 = 2 1 xi 1 = sum of magnitudes;
i = l

112

]x12 = (i xj?) = Euclidean norm;

llxllrn = max I xi I = maximum-magnitude norm.
I S i S n

Which of these vector norms is best to use may depend on the probIem. In most cases,
satisfatory results are obtained with any of these measures of the "size7' of a vector.

EXAMPLE 2.3 Compute the I-, 2-, and a-norms of the vector x, if x = (1.25,0.02, -5.15, 0).

1 1 x I l l = 11.251 + 10.021 + 1-5.151 + 101 = 6.42.

1 1 ~ 1 1 ~ = [(1.25)2 + (0.02)~ + (-5.15)~ + (0)2]"2 = 5.2996.

llxllrn = 1-5.15) = 5.15.

Matrix Norms

The norms of a matrix are similar to the norms of a vector. Two norms that are closely
related are

2.4: Ill-Conditioned Systems 1 15

n

I ~ A 1 1 = max 1 ai j 1 = maximum column sum;
l S j 5 n . z=1

](A (1, = max I aV 1 = maximum row sum.
l S j 5 n . ~ = l

The matrix norm IIAlI2 that corresponds to the 2-norm of a vector is not readily com-
puted. It is defined in terms of the eigenvalues of the matrix AT * A. Suppose r is the largest
eigenvalue of AT * A. Then l l ~ 1 1 ~ = rl", the square root of r. This is called the spectral
norm ofA, and I I A ~ ~ ~ is always less than (or equal to) I I A I I ~ and IIA/I,.

For an m X n matrix, the Frobenius norm is defined as

E X AMPLE 2.4 Compute the Frobenius norms of A, B, and C, and the m-norms, given that

0.1 0
A = [9]; B = [1. and C = [::: :.I].

-2 1 0.2 0.1 '

The results of our examples look quite reasonable; certainly A is "larger" than B or C.
Although B # C, both are equally "small." The Frobenius norm is a good measure of the
magnitude of a matrix. ---

We see then that there are a number of ways that the norm of a matrix can be expressed.
Which way is preferred? There are certainly differences in their cost; for example, some
will require more extensive arithmetic than others. The spectral norm is usually the most
"expensive." Which norm is best? The answer to this question depends in part on the use
for the norm. In most instances, we want the norm that puts the smallest upper bound on
the magnitude of the matrix. In this sense, the spectral norm is usually the "best." We
observe, in the next example, that not all the norms give the same value for the magnitude
of a matrix.

MATLAB can compute all of the norms of a matrix:

Chapter Two: Solving Sets of Equations

EDU>> norm(A, ' fro')
ans =

15

EDU>> norm (A, inf)
ans =

17

EDU>> norm (A, 1)
ans =

16

EDU>> norm (A)
ans =

12.0301

EDU>> norm (A, 2)
ans =

12.0301

We observe that the 2-norm, the spectral norm, is the norm we get if we just ask for the
"norm." The smallest norm of the matrix is the spectral norm, it is the "tightest" measure.

Errors in the Solution and Norms

When we solve a system of equations, we hope that the result has little error but, as we
have seen, that is not always true. If the coefficient matrix is ill-conditioned, we cannot
check the accuracy by just substituting our answer into the equations, but we can use
norms to see how great the error is.

Let x be the computed solution, an approximation to the true solution. Define the resid-
ual, r, as r = b - Ax, the difference between the b-vector and what we get when the
approximate 2 is substituted into the equations. Let e be the error in x and x be the true
solution to the system (which we don't know), e = x - F. Because Ax = b, we have

r = b - A x = A x - Ax = A(x - 2) = Ae.

Hence,

e = ~ - ' r .

Taking norms and recalling Eq. (2.14), line 4, for a product, we write

From v = Ae, we also have I(r((5 ((A / / jJeJI, which combines with Eq. (2.15) to give

Applying the same reasoning to Ax = b and x = ~ - l b , we get

2.4: Ill-Conditioned Systems 117

Taking Eqs. (2.16) and (2.17) together, we reach a most important relationship:

umber of a Matrix

The product of the norm of A and the norm of its inverse is called the condition number of
matrix A and is the best measure of ill-conditioning. A small number means good-condi-
tioning, a large one means ill-conditioning. So, we usually write the previous equation as

1
I- I l ~ l l ' I

5 (Condition no.) -.
llbll

(2.18)
(Condition no.) 11 bl\ llxll

Equation (2.18) shows that the relative error in the computed solution vector x can be as
great as the relative residual multiplied by the condition number. Of course it can also be as
small as the relative residual divided by the condition number. Therefore, when the condi-
tion number is large, the residual gives little information about the accuracy of 2.
Conversely, when the condition number is near unity, the relative residual is a good mea-
sure of the relative error of T.

When we solve a linear system, we are normally doing so to determine values for a
physical system for which the set of equations is a model. We use the measured values of
the parameters of the physical system to evaluate the coefficients of the equations, so we
expect these coefficients to be known only as precisely as the measurements. When these
are in error, the solution of the equations will reflect these errors. We have already seen
that an ill-conditioned system is extremely sensitive to small changes in the coefficients.
The con~dition number lets us relate the change in the solution vector to such errors in the
coefficients of the set of equations Ax = b.

Assume that the errors in measuring the parameters cause errors in the coefficients of A
so that the actual set of equations being solved is (A + E)? = b, where ? represents the
solution of the perturbed system and A represents the true (but unknown) coefficients. We
let A = A +- E represent the perturbed coefficient matrix. We desire to know how large
x - X is.

Using Ax = b and & = b, we can write

Because A - A = E, we have

Chapter Two: Solving Sets of Equations

Taking norms, we get

so that

l l ~ l l 'IX - 'IJ 5 (Condition no.) -
ll'll l l ~ l l

This says that the error of the solution relative to the norm of the computed solutior,
can be as large as the relative error in the coefficients of A multiplied by the condition
number. The net effect is that, if the coefficients of A are known to only four-digit preci-
sion and the condition number is 1000, the computed vector x may have only one digit of
accuracy.

Iterative Improvement

When the solution to the system A x = b has been computed, and, because of round-off
error, we obtain the approximate solution vector 2, it is possible to apply iterative improve-
ment to correct F so that it more closely agrees with x. Define e = x - F. Define
r = b - A x .

If we could solve this equation for e, we could apply this as a correction to F. Furthermore,
if IleII/II F 11 is small, it means that F should be close to x. In fact, if the value of 11 e 111 Ilxll is
10-J', we know that F is probably correct top digits.

The process of iterative improvement is based on solving Eq. (2.19). Of course this is
also subject to the same round-off error as the original solution of the system for F, so we
actually get Z, an approximation to the true error vector. Even so, unless the system is so
ill-conditioned that Z is not a reasonable approximation to e, we will get an improved esti-
mate of x from F + 2. One special caution is important to observe: The computation of the
residual vector r must be as precise as possible. One always uses double-precision arith-
metic; otherwise, iterative improvement will not be successful. An example will make this
clear.

We are given

2.4: Ill-Conditioned Systems 1 19

whose true solution is

If inadequate precision is used, we might get this approximate solution vector: Y = (0.991,
0.997, 1.000)~. Using double precision, we compute Ax, storing this product in a register
that holds six digits, then we get the residual.

5.2451 1 0.0349
A i = [5.222461. r = [-0.002461.

-2.59032 0.0103

We now solve A 2 = r, again using three-digit precision, and get

0.00822
Z = [0.00300 1.

-0.00000757

Finally, correcting 2 with Y + 2 gives almost exactly the correct solution:

0.999
x f e = 1.000 .

. ood

In the general case, the iterations are repeated until the corrections are negligible.
Because we want to make the solution of Eq. (2.19) as economical as possible, we should
use an LU method to solve the original system and apply the LU to Eq. (2.19).

Pivoting and Precision

We have previously said that pivoting reduces the errors due to round off. We examine this
further with a small system, one with only two equations:

with E a. very small number. If this is solved without pivoting and the first column is
reduced (-Dl& is the multiplier), we get

and, solving for y, we see that

F - CDIE CD =-=- if E is very small.
y = E - DBIE DB B

Chapter Two: Solving Sets of Equations

Substituting this for y in the first equation, we find

showing that x = 0 for any values of C and F if F is small enough. Now, suppose that
F = D + E and C = E + B and we do pivot by interchanging the equations:

(Obviously, the correct solution must be x = 1 , y = 1.) Now, reducing the first column
(-&ID is the multiplier) we have:

D x + E y = D + E

ED + BD - ED - FE BD - EE
(B - (r/D)E)y = F + B - (€ID) (D + E) = - -

D D '

so that

(BD - 8E)lD
= (BD - sE)lD

= 1.

We get x by substituting y = 1 into the first equation, so that

which demonstrates how pivoting may be very necessary.
Here is a numerical example of the same thing. The augmented matrix is

which must yield x = 1 , y = 1 . If precision is infinite, pivoting is not required. Let's
reduce in the first column without pivoting (- 1010.02 = -500 is the multiplier):

which gives y = (-4990)/(-4990) = 1.
Now, substituting y = 1 into the first equation,

The result for x is 1 if the numerator equals 0.02. But suppose we have only three digits of
precision-that means the numerator does not equal 0.02 but is 0.00 and x is zero!

2.5: Iterative Methods 121

Gaussian elimination and its variants are called direct methods. An entirely different way
to solve many systems is through iteration. In this, we start with an initial estimate of the
solution vector and proceed to refine this estimate. There are times when this is preferred
over a direct method. This is especially true when the coefficient matrix is sparse.

The two methods for solving Ax = b that we shall discuss in this section are the Jacobi
method and the Gauss-Seidel method. These methods not only can solve a system of
equations but they are also the basis for other accelerated methods that we shall. introduce
in later chapters of this book. When the system of equations can be ordered so that each
diagonal entry of the coefficient matrix is larger in magnitude than the sum of the magni-
tudes of the other coefficients in that row-such a system is called diagonally dominant-
the iteration will converge for any starting values. Formally, we say that an n X n matrix A
is diagonally dominant if and only if for each i = 1, 2, . . . , n,

Although this may seem like a very restrictive condition, it turns out that there are very
many applied problems that have this property (steady-state and transient heat transfer are
two). Our approach is illustrated with the following simple example of a system.

The solution is xl = 2, x2 = 1, x3 = 1. However, before we begin our iterative scheme we
must first reorder the equations so that the coefficient matrix is diagonally dominant.

The iterative methods depend on the rearrangement of the equations in this manner:

Each equation is now solved for the variables in succession:

We begin with some initial approximation to the value of the variables. (Each compo-
nent might be taken equal to zero if no better initial estimates are at hand.) Substituting

Chapter Two: Solving Sets of Equations

these approximations into the right-hand sides of the set of equations generates new
approximations that, we hope, are closer to the true value. The new values are substituted
in the right-hand sides to generate a second approximation, and the process is repeated
until successive values of each of the variables are sufficiently alike. We indicate the itera-
tive process on Eq. (2.20), as follows, by putting superscripts on variables to indicate suc-
cessive iterates. Thus our set of equations becomes

xp'') = 1.8333 + 0.3333xP) - 0.1667x?),

xP") = 0.7143 + 0.2857xm) - 0.2857xp),

xP+') = 0.2000 + 0.2000xf" + 0.4000xP).

Starting with an initial vector of x(O) = (0,0, 0), we get

Successive estimates of solution (Jacobi method)

First Second Third Fourth Fifth Sixth . . . Ninth

Note that this method is exactly the same as the method of fixed-point iteration for a single
equation that was discussed in Chapter 1, but it is now applied to a set of equations; we see
this if we write Eq. (2.21) in the form of

x(n+l) = ~ (~ (" 1) = b' - Bx(n),

which is identical to xn+ = g(x,) as used in Chapter 1.
In the present context, of course, x@) and x(,+l) refer to the nth and (n + 1)st iterates of

a vector rather than a simple variable, and g is a linear transformation rather than a nonlin-
ear function. For the preceding example, we restate Eq. (2.20) in matrix form:

Now, let A = L + D + U, where

Then Eq. (2.22) can be rewritten as

Ax = (L f D + U)x = b, or

Dx = -(L + U)x + b, which gives

= -D-1(~ + U)X + D-16.

2.5: Iterative Methods 123

From this we have, identifying x on the left as the new iterate,

= - D - ~ (L + ~) ~ (n) + ~ - 1 b .

In Eqs. (2.21) we see that

-0.3333 0.1667
0.2857 . I

The procedure we have just described is known as the Jacobi method, also called "the
method of simultaneous displacements" because each of the equations is simultaneously
changed by using the most recent set of x-values.

We can write the algorithm for the Jacobi iterative method as follows:

We assume that the system Ax = b has been rearranged so that the matrix A is diag-
onally dominant. That is, for each row of A:

This is a sufficient condition for convergence both for this method and for the one
that .we discuss next. We begin with an initial approximation to the solution vector,
which we store in the vector: old-x.

For i = 1 To n
b[i] = b[i]la[i, i]
new-x[i] = old-x[i]
a[i, j] = a[i, j]la[i, i]; j = 1 . . . n and i <> j

End For i

Repeat

For i = 1 To n
old-x[i] = new-x[i]
new-x[i] = b[i]

End For i

For i = 1 To n
Forj = 1 Ton

Chapter Two: Solving Sets of Equations

If (j < > i) Then
new-x[i] = new-x[i] - a[i, j] * old-x[j]

End For j
End For i

Until new-x and old-x converge to each other.

Observe that we never use the values new-x in the algorithm for Jacobi iteration until we
have found all of its components. Even though we have new-x [l] available, we do not use
it to compute new-x [2] even though in nearly all cases the new values are better than the
old and ought to be used instead. When this is done, the procedure known as Gauss-Seidel
iteration results.

We begin exactly as with the Jacobi method by rearranging the equations, solving each
equation for the variable whose coefficient is dominant in terms of the others. We proceed
to improve each x-value in turn, using always the most recent approximations of the other
variables. The rate of convergence is more rapid than for the Jacobi method, as shown by
reworking the previous example [Eq. (2.20)].

Successive estimates of solution (Gauss-Seidel method)

First Second Third Fourth Fifth Sixth

These values were computed by using this iterative scheme:

xm+') = 1.8333 + 0.3333x,(n) - 0.1667xf),

x,(n") = 0.7143 + 0.2857x1(n+') - 0.2857xf),

x ~ (~ ~ '1 = 0.2000 + 0 . 2 0 0 0 ~ ~ + ~) + 0.4000xP+~),

beginning with x(') = (0, 0, O)T.
The algorithm for the Gauss-Seidel iteration is as follows:

We assume as we did in the previous algorithm that the system Ax = b has been
rearranged so that the coefficient matrix, A, is diagonally dominant. As before, we begin
with an initial approximation to the solution vector, which we store in the vector: x.

2.5: Iterative Methods 125

For i = 1 To n
b[i] = b[i]la[i, i]
afi, j] = a[i, j]la[i, i]; j = 1 . . . n and i <> j

End for i;

While Not (yet convergent) Do
For i = 1 To n

x f i] = b[i];
Forj = 1 Ton

If (j < > i) Then
x[i] = x[i] - a[i, j] * x[i]

End For j
End For i

End While

The matrix formulation for the Gauss-Seidel method is almost the same as the one
given in Eq. (2.23). For Gauss-Seidel, Ax = b can be rewritten as

and from this we get

The usefulness of this matrix notation will become apparent in Chapter 6 where the eigen-
values of matrices D-"L + U) of Eq. (2.23) and (L f D)-~ U of Eq. (2.25) will be stud-
ied. The eigenvalues of the two matrices indicate how fast the iterations will converge. We
emphasize, however, that without diagonal dominance, neither Jacobi nor Gauss-Seidel is
sure to converge. (Some authors use the term row diagonal dominance for our term diago-
nal dominance. Their term is perhaps more accurate.)

There are some instances of the system Ax = b where the coefficient matrix does not
have (row) diagonal dominance but still both Jacobi and Gauss-Seidel methods do
converge. It can be shown that, if the coefficient matrix, A, is symmetric and positive
definite," the Gauss-Seidel method will converge from any starting vector. In another
class of problems, where matrix A has diagonal elements that are all positive and off-
diagonal elements that are all negative, both Jacobi and Gauss -Seidel methods will either
converge or diverge. When both methods converge, the Gauss - Seidel method converges
faster. Datta (1995) discusses this and gives examples.

For a general coefficient matrix, there is little that can be said. In fact, there are exam-
ples where Jacobi converges and Gauss-Seidel diverges from the same starting vector!
Still, returning to the focus of this section, we can say that, given row diagonal dominance
in the coefficient matrix, the Gauss-Seidel method is often the better choice. Having said

* Matrix A is positive definite if x * Ax > 0 for all nonzero vectors x.

Chapter Two: Solving Sets of Equations

that, we may still prefer the Jacobi method if we are running the program on parallel
processors because all n equations can be solved simulaneously at each iteration.

Accelerating Convergence

Convergence in the Gauss-Seidel method can be speeded if we do what is called overvelax-
ing. The term comes from an old hand method where a set of "residuals" (the right-hand-side
values for a rearrangement of the equations when the unknowns were given certain values)
were "relaxed" to zero. Overelaxation will be encountered again in Chapter 8, where we
solve partial-differential equations.

The standard relationship for Gauss-Seidel iteration for the set of equations Ax = b,
for variable xi, can be written

where the superscript (k + 1) indicates that this is the (k f l)st iterate. On the right side
we use the most recent estimates of the xj, which will be either xj(") or xj(k+').

An algebraically equivalent form for Eq. (2.26) is

because is both added to and subtracted from the right side. Overrelaxation can be
applied to Gauss-Seidel if we will add to some multiple of the second term. It can be
shown that this multiple should never be more than 2 in magnitude (to avoid divergence),
and the optimal overrelaxation factor lies between 1.0 and 2.0. Our iteration equations take
this form, where w is the overrelaxation factor:

Table 2.1 shows how the convergence rate is influenced by the value of w for the system

2.5: Iterative Methods 127

Table 2.1 Acceleration of convergence of
Gauss - Seidel iteration

w , the overrelaxation Number of iterations to
factor reach error <1 X

24
18
13
1 1 +Minimum
14 of iterations
18
24
35
55

loo+

starting with an initial estimate of x = 0. The exact solution is

Sparse Matrices and Banded Matrices

It has already been said that many applied problems are solved with systems whose coeffi-
cient matrix is sparse-only a fraction of the elements are nonzero. In Chapters 6 and 8
you will see several instances. The tridiagonal system of Section 2.2 is the prime example.
In other applications the coefficient matrix may be sparse and have elements situated in
selected positions. A banded matrix is one where the nonzero elements lie on diagonals
parallel to the main diagonal. A tridiagonal matrix is obviously banded.

Some sparse matrices are not as compact as a tridiagonal one. It often happens that the
nonzero coefficients lie on diagonals but some or all of these bands are not adjacent to the
main diagonal. Algorithms similar to the one for a tridiagonal matrix can be developed.
However, one usually finds that the nonzero elements between the bands and the main
diagonal do not stay zero and more arithmetic operations are needed to get a solution or to
find an LU equivalent to the coefficient matrix.

Fortunately, most sparse systems have a main diagonal that is dominant so it is easy to
set up the rearranged equations that can be solved quickly by iteration. And these iterations
can be speeded up by overrelaxation. Here is an example of a small system:

Chapter Two: Solving Sets of Equations

whose solution is

x = [-1.7040, 17.9737, -19.1286, 10.8118, -14.3019, 7.84831T.

which we found by Gaussian elimination. It would be good practice to get this solution by
an iterative method.

Iteration Is Minimizing

Getting successive improvements to an initial x-vector, xo, that converge to the solution to the
system Ax = b can be considered to be minimizing the errors in the x-vectors, the residuals:

rn = b - Ax,

For a special class of problems, those whose coefficient matrix is symmetric and positive
definite, there is a method that is extremely rapidly convergent, the conjugate gradient
method. In Chapter 7 we discuss this method of finding the minimum of a function of sev-
eral variables.

When matrix A is multiplied with vector x, a new transformed vector results. Because
the product of matrix A with vector x depends on x, we can say that the product is a func-
tion of x because it changes when x is varied-Ax is then a "function of x." Our statement
that iteration is minimizing makes sense.

We will not give a full explanation of the conjugate gradient method at this point, only
give one example where it works and another where it doesn't.

Consider this small system whose coefficient matrix is symmetric and positive
definite: *

whose solution is x = [3.9167, 3.5833, -2.08331~. If we start with xo = [O, 0, OIT,
Gauss-Seidel iterations converge in 20 iterations. With the Jacobi method, there is no con-
vergence; the successive x-vectors after 34 iterations oscillate about the true answer:

Iteration 34: x = [3.5833, 3.9166, - 1.75001T,

Iteration 35: x = [4.2500, 3.2500, -2.41661T,

whose averages are exactly the solution.
If the conjugate gradient method is applied, again with xo = [O, 0, OIT, we get these results:

and we obtain the exact solution in three tries!

* A matrix is positive definite if and only if the determinants of all its leading minors are positive. The leading
minors are the submatrices whose upper-left elements are the diagonal elements of the matrix. This matrix is
clearly symmetric. It is positive definite because the determinants of it leading minors are 24, 11, and 3.

2.6: Parallel Processing 129

The conjugate gradient method will always converge in n tries with a system of
n-equations; it is the preferred iterative method for systems that have the necessary condi-
tions. Still, each iteration of the conjugate gradient method is more expensive than Jacobi
or Gauss-Seidel.

If we attempt to use the method when the coefficient matrix is not symmetric, it fails.
With this set of two equations:

which obviously is solved with x = [I , 1IT, the conjugate gradient method actually
diverges from xo = [O, OIT, while Gauss-Seidel converges in 7 iterations and Jacobi in 12.

We have mentioned that the operation of many numerical methods can be speeded up by
the proper use of parallel processing or distributed systems. In this section, we describe
how vectorlmatrix operations, Gaussian elimination, and Jacobi iteration can be efficiently
performed in a parallel or distributed processing environment. We shall show how much
the performance can be improved depending on the topology of the network in each case
and pay special attention to the implementation of Gaussian elimination.

VectalrlMatrlx Operations

For inner products, a very elementary case, we assume we have two vectors, v , LL, of length
n, and an equal number of parallel processors, proc(i), i = 1 . . . n, where each proc(i) con-
tains the components, vi, ui. Then the multiplication of all the vi * ui can be done in paral-
lel in one time unit. In Section 0.6, we found that if the processors are connected suitably
we can actually do the addition part in log(n) time units. Thus, we can estimate the time for
an inner product as 1 + log(n) = O(log(n)).

This assumes a high degree of connectivity between the processors. There has been
much study of such connectivity. These different designs are referred to as the topologies
of the systems. In our present example, we assume the topology of a hypercube. However,
before we describe that design, we shall introduce the simpler topology of the linear array.
Suppose our processors were only connected as a linear array in which the communication
sendlreceive is just between two adjacent processors:

P,++P,---.. -Pn-l -Pn.

Then our addition of then elements would be nl2 time steps, because we could do an addi-
tion at each end in parallel and proceed to the middle.

The n-dimensional hypercube is a graph with 2n vertices in which each vertex has n
edges (is connected to n other vertices). This graph can be easily defined recursively
because there is an easy algorithm to determine the order in which the vertices are
connected.

Chapter Two: Solving Sets of Equations

0-dimensional hypercube: 1-dimensional hypercube:

2-dimensional hypercube: 3-dimensional hypercube:

Two vertices are adjacent if and only if the indices differ in exactly one bit. We can get to
the (r z + 1)-dimensional hypercube by making two copies of the n-dimensional hypercube
and then adding a zero to the leftmost bit of the first n-dimensional cube and then doing the
same with a 1 to the second cube. It was this kind of connectivity that allowed us to make
the addition of n numbers in log(n) time steps in Section 0.6. There are many other designs
for connecting the processors. Such designs include names like star, ring, torus, mesh, and
others. However, for the rest of this section, we shall assume that we have the processors
optimally connected.

For the matrix/vectorpuoduct, Ax, we assume that processor proc(i) contains the ith row
of A as well as the vector, x. Because one processor is performing this dot product of row i
of A and of vector x, this could be done in 212 units of time. However, because the other
processors are proceeding in parallel, the whole operation will only take O(n) units of
time. We would have had a less efficient algorithm had we made use of the inner product
algorithm above on the individual rows of A and the vector x.

For a linear array of processors, Bertsekas and Tsitsiklis give the following time for our
more simplified case. The time is

where cr is the time for an addition or multiplication, @ is the time for a transmission of the
product along the link, and y is a positive constant.

For the rnatrix/matrix product, AB, for two n X n matrices, we suppose that we have
n2 processors. Before we start our computations, each processor, Pij , will have received
the values for row i of A and column j of B. Based on our previous discussion, we can
expect the time to be O(n). For n3 processors, this can be reduced to just O(log(n)) time.
Here each processor, proc(i,k,j), would store the elements, Ai,k, Bk,j. Then all the
multiplications can be done in parallel, and the additional (log(n)) time units are for
the additions.

2.6: Parallel Processing 13 1

Gaussian Eliminatisav

Recall how we achieve a solution to a system of linear equations through Gaussian elimi-
nation. We first perform a sequence of row reductions on the augmented matrix (A : b)
until the coefficient matrix A is in upper-triangular form. Then we employ back-substitu-
tion to find the solution.

To see how this can be done in a parallel-processing environment, we must examine the
row-reduction phase and the back-substitution phase in some detail.

We begin with the row-reduction phase: Consider the following example of the first
stage of row reduction of a 4 X 4 system with one right-hand side:

Although each of these row reductions depends on the elements of row 1, they are com-
pletely independent of one another. For example, the elements of rows 2 and 4 play no part
in the row operations performed on row 3. Thus, the row reductions on rows 2.3, and 4 can
be computed simultaneously.

If we are computing in a parallel processing environment, we can take advantage of this
independence by assigning each row-reduction task to a different processor:

Suppose each row assignment statement requires 4 time units, one for each element in a
row. Then the sequential algorithm performs this stage of the row reduction in 12 time
units, whereas we need only 4 time units for the parallel algorithm. This example of paral-
lel processing on the first stage of row reduction of a 4 X 4 system matrix generalizes to
any row reduction in stage j of an n X n system matrix.

Recall that there are n - 1 row-reduction stages in Gaussian elimination, one for each
of the n columns of the coefficient matrix except for the last column. This suggests that we
need n - 1 processors to do the reduction in parallel." Also recall that each row-reduction
stage j creates zeros in every cell below the diagonal in the jth column. The following two
pseudocodes compare the use of a single processor with the use of n processors to perform
the entire row-reduction phase of Gaussian elimination.

I
1 2 1 3 4 -
2 5 4 3 4
1 4 2 3 3
3 2 4 1 8-

* Even so, we will need n processors in the final algorithm, as will be seen

4 Processor 1: R, - (211) * R ,
4 Processor 2: R, - (111) * R , -+

-+ Processor 3: R, - (311) * R1

Chapter Two: Solving Sets of Equations

Sequential Processing (without pivoting)

For j = 1 To (n - 1)
F o r i = (j + 1)Ton

Fork = jTo(n + 1)
a[i, k] = a[i, k] - a[i, j]la[j , j] * a [j , k]

End For k
End For i

End For j

Parallel Processing

Fori = 1 To(n - 1) (Counts stages = columns)
For k = i To (n + 1) (On Processor j = (i + 1) To n)

a[i, k] = a[i, k] - a[i, j]la[j, j] * a [j , k]
End For k

End For i

If we total the arithmetic operations to carry out the reduction of an n X n coefficient
matrix to upper-triangular form, we find that the sequential algorithm requires 0(n3) suc-
cessive operations and that the parallel algorithm with n processors accomplishes the same
task in 0(n2) successive operations.

What happens if we have more than n processors? As indicated in our earlier discussion,
we can speed up the reduction process even more. Suppose we increase the number of
processors from n to, say, n2 + n. We can effectively use this extra power for Gaussian elim-
ination just as we did for the matridvector operations earlier. The complete algorithm for
the row-reduction phase of Gaussian elimination on these processors runs only O(n) suc-
cessive steps, and each step requires just three time steps for one subtraction, one division,
and one multiplication. If, as before, we label each processor as proc(i, j), i = 1, . . . , n,
j = 1, . . . , n + 1, proc(i, j) is responsible for each element aij of the matrix [A: b]. We can
now rewrite the algorithm for parallel processing to reflect this improvement:

For i = 2 To n
{On Processor (j , k) J
a [j , k] = a [j , k] - a[j, illafi, il * a [j , kl

End For i

The row-reduction phase of Gaussian elimination leaves us with an upper-triangular
coefficient matrix and an appropriately adjusted right-hand side. In the sequential algo-
rithm we now find a solution using back-substitution. Before we consider parallelization of

2.6: Parallel Processing 133

back-substitution, let us examine the activity of the processors during row reduction in
greater detail.

As we have observed, the processors responsible for computations on the elements of
row 1 sit idle during row reduction, because those elements of the matrix never change. In
addition, after the first row-reduction stage in which zeros are placed in the first column,
the processors for row 2 also sit idle. In fact, each stage of row reduction frees n + 1
processors.

It is natural to wonder if these idle processors could be employed in our algorithm.
Indeed, they can. We use them to perform row reductions above the diagonal at the same
time that corresponding row reductions occur below the diagonal. Thus at each stage j of
the reduction, zeros appear in all but the diagonal element of the jth column.

This diagram illustrates our improved procedure, continuing the simple 4 X 4 example
examined before and doing stages 3 and 4:

The result of n such reductions-one for each column of the coefficient matrix A-is
[D : 6'1, where D is a diagonal matrix and b' is an appropriately adjusted right-hand-side
vector.

Specifically, the solution x for Dx = b' also satisfies Ax = b. This solution is the vector
x whose elements are xi = bi11dii for i = 1, . . . , n. We can use n processors to perform
these n divisions simultaneously. Notice that the back-substitution phase of Gaussian elim-
ination is no longer necessary! We find that the Gauss - Jordan procedure is preferred when
doing parallel processing!

The parallel algorithm for n2 processors required n time units for row reduction, and
one additional time unit for division. Recall that the sequential algorithm required 0 (n 3)
time units. To understand the magnitude of the improvement in running time, consider that
a solution achieved in 10 seconds via the parallel algorithm would require around 15 min-
utes via the sequential algorithm.*

Our final parallel algorithm for solving a system of linear equations more closely
resembles the Gauss-Jacobi solution technique than it does Gaussian elimination. This is
not surprising. It is not uncommon for good parallel algorithms to differ dramatically from
their speediest sequential counterparts.

* This neglects the overhead of interprocessor communications

134 Chapter Two: Solving Sets of Equations

Problems in Using Parallel Processors

It is essential to mention some important concerns that have been neglected in the preced-
ing discussion. When we actually implement this parallel algorithm, we must w o w about
four issues.

1. The algorithm described here does not pivot. Thus, our solution may not be as
numerically stable as one obtained via a sequential algorithm with partial pivoting.
In fact, if a zero appears on the diagonal at any stage of the reduction, we are in big
trouble. Bertsekas and Tsitsiklis observe that Gaussian elimination with pivoting can
have an upper bound of O(n Iog(n)) time when n2 + n processors are used, and still
0(n2) time in the case of n processors.

2. The coefficient matrix A is assumed to be nonsingular. It is easy to check for singu-
larity at each stage of the row reduction, but such error-handling will more than dou-
ble the running time of the algorithm.

3. We have ignored the communication and overhead time costs that are involved in
parallelization. Because of these costs, it is probably more efficient to solve small
systems of equations using a sequential algorithm.

4. Other, perhaps faster, parallel algorithms exist for solving systems of linear equa-
tions. One technique, which is easily derived from ours, involves computing A-l via
row operations and simply multiplying the right-hand side to get the solution
x = A-lb . Another technique requires computing the coefficients of the characteris-
tic polynomial and then applying these coefficients in building A-l from powers of
A. This method finds a solution in only [2 log2 n + O(log n)] time units, but it
requires n4/2 processors to do so. In addition, it often leads to numeric instability.*

Despite these concerns, our algorithm is an effective approach to solving systems of linear
equations in a parallel environment

Iterative Solutions -The Jacobi Method

The method of simultaneous displacements (the Jacobi method) that was discussed in
Section 2.5 is adapted very simply to a parallel environment. Recall that at each iteration of
the algorithm a new solution vector dn+') is computed using only the elements of the solu-
tion vector from the previous iteration, dn). In fact, the elements of the vector dn) can be
considered fixed with respect to the iteration (n + 1). Thus, though each element xi(n+l) in
the vector x("+l) depends on the elements in x@), these xi (n+l) are independent of one
another and can be computed simultaneously.

Suppose the solution vector x has rn elements. Then each iteration of the Jacobi algo-
rithm in a sequential environment requires rn assignment statements. If we have m proces-
sors in parallel, these rn assignment statements can be performed simultaneously, thereby
reducing the running time of the algorithm by a factor of rn.

* J d a (1992) describes these alternative algorithms in some detail.

Exercises 135

Notice also that each assignment statement is a summation over approximately m terms.
As demonstrated in Section 0.6, this summation can be performed in log2 m time units with
m parallel processors, compared to m time units for sequential addition. If m2 processors
are available, we can employ both of these parallelizations and reduce the time for each
iteration of the Jacobi algorithm to log2 m time units. This is a significant speedup over the
sequential algorithm, which requires m2 time units per iteration.

As seen in Section 2.5, the actual running time of the algorithm (the number of itera-
tions) depends on the degree of diagonal dominance of the coefficient matrix.
Parallelization decreases only the time required for each iteration.

Because Gauss-Seidel iteration requires that the new iterates for each variable be used
after they have been obtained, this method cannot be speeded up by parallel processing.
Again, the preferred algorithm for sequential processing is not the best for parallel
processing.

Exercises

Section 2.1

1. For these four matrices:

a. Which pairs can be added? Find the sums.
b. Which pairs can be subtracted? Get their differ-

ences, then repeat in opposite order.
c. Which pairs can be multiplied? Find the products.
d. Which of these has a trace? Compute the traces.

2. Get the transpose for each matrix in Exercise 1. Then
repeat each part of Exercise I with the transposes.

b 3. For these vectors:

a. Which pairs can be multiplied? Find the products.
b. Using the matrices in Exercise 1, which matrices

can multiply these vectors? Compute the products.
c. Can any of these vectors multiply with one of the

matrices of Exercise 1 in the order v * M? Get the
products for those that do.

d. Find the product of each vector times its transpose.
Repeat with the transpose as the first factor.

4. Given the matrices:

a. Find BA, B ~ , A A ~ .
b. Get det (A) and det (B).
c. A square matrix can always be expressed as the sum

of a lower-triangular matrix L and an upper-triangu-
lar matrix U. Find two different combinations of
L and U for both A and B.

b5. Let

a. Find the characteristic polynomials of both A and B.
b. Find the eigenvalues of both A and B.
c. Is [0.2104, 0.84011 an eigenvector of A?

6 . Write this as a set of equations:

7. Write these equations in matrix form:

136 Chapter Two: Solving Sets of Equations

8. It is true that (A * B) ~ = BT * AT.

a. Test this statement with two 3 X 3 matrices of your
choice.

b. Is this true ifA is 3 X 2 and B is 2 X 3.
c. Prove the statement.

a. Row 3 with row 5.
b. Column 2 with column 1.

) c. Both row 3 with row 5 and column 4 with column 2.
d. Multiply A with each of your matrices in parts (a), (b),

and (c) to confirm that the correct interchanges occur.
e. What happens if the transposition matrix of part (a) is

used to postmultiply withA rather than to premultiply?

9. For matrix A, write the transposition matrices that per-
form the interchanges.

10. Confirm that pT * P = I and that PT = P for each
transposition matrix of Exercise 9.

A =

Section 2.2

-
3 5 - 2 - 1 0

-2 3 4 -5 3

5 2 -1 3 - 6 .

2 - 3 4 2 0

--5 5 3 -3 4 -

a. Solve by back-substitution:

3 x , + 3 x 2 + x 3 = 12,

-4x2 - 3x3 = -10:

2x3= 4.

b. Solve by forward-substitution:

3x1 = 15,
2x, - X2 = 10,

5x1 + x2 - 2x3 = 5.

The first procedure described in Section 2.2 is some-
times called "Naive Gaussian Elimination." Use it to
solve Exercises 13 and 14.

Solve the following (given as the augmented matrix):

3 1 - 4 1

-2 3 1 , '1.
2 0 5 1 10

Here is a system of equations that is called "ill-
conditioned," meaning that the solution is not easy to
get accurately. Section 2.4 discusses this; here, we give
a "taste" of the problem. This is the system as an aug-
mented matrix:

You can see thatx = [I, 1, 1ITis the solution.

a. Confirm the solution by doing naive Gaussian elim-
ination using exact arithmetic (use fractions
throughout).

b. Now get the solution using only three significant
figures in your computations. Observe that the solu-
tion is different.

c. Compute the solution when the system is changed
only slightly: Change the coefficient in the first col-
umn of the first row to 3.1. Use more precise compu-
tations, perhaps single or even double precision.
Observe that this makes a large change in the solution.

b15. Use Gaussian elimination with partial pivoting to solve
the equations of Exercise 13. Are any row interchanges
needed?

16. In which column(s) are row interchanges needed to
solve the equations in Exercise 6 by Gaussian elimina-
tion with partial pivoting?

17. Solve this system by Gaussian elimination with partial
pivoting:

a. How many row interchanges are needed?
b. Solve again but use only three significant digits of

precision.
c. Repeat part (b) without any row interchanges. Do

you get the same results?

18. Solve the system

2 . 5 1 ~ + 1.48~ + 4.532 = 0.05,

1 . 4 8 ~ + 0 . 9 3 ~ - 1.302 = 1.03,

2 . 6 8 ~ + 3 . 0 4 ~ - 1.48~ = -0.53.

a. Use Gaussian elimination, but use only three signifi-
cant digits and do no interchanges. Observe the small
divisor in reducing the third column. The correct solu-
tion is x = 1.45310, y = - 1.58919, z = -0.27489.

b. Repeat part (a) but now do partial pivoting.
c. Repeat part (h) but now chop the numbers rather

than rounding.
d. Substitute the solutions found in (a), (b), and (c) into

the equations. How well do these match the original
right-hand sides?

Exercises 137

19. Use the Gauss-Jordan method to solve the equations
of Exercise 17.

20. Use the Gauss-Jordan method to solve the equations
of Exercise 18.

b21. Confirm that the Gauss-Jordan method requires 0(n3)
total arithmetic operations.

22. What if we solve a system with m right-hand sides
rather than just one? How many total operations are
then required for both Gaussian elimination and the
Gauss- Jordan method?

23. Suppose that multiplication takes twice as long to do as
an addition/subtraction and that division takes three
times as long (which used to be true). For a system of
ten equations, how much longer does it take to get a
solution compared to when each operation takes the
same amount of time? Do this for both Gaussian elimi-
nation and for Gauss-Jordan.

24. Write an algorithm for the Gauss-Jordan method.
Provide for partial pivoting.

a. When there is only one right-hand side.
b. When there are m right-hand sides.

25. Modify the algorithm for Gaussian elimination to
incorporate scaled partial pivoting.

26. Repeat Exercise 25 but now employ an order vector to
avoid actually interchanging the rows.

27. Use scaled partial pivoting to solve:

a. Employ six significant digits.
b. Repeat with only three significant digits. Is the solu-

tion much different?

b28. If a comparison takes one-half as long as an
addition/subtraction and to interchange two numbers
takes twice times as long, how much time is saved by
using an order vector rather than doing the actual row
interchanges? Express the answer in terms of addition
times for a system of n equations.

29. A system of two equations can be solved by graphing
the two lines and finding where they intersect.
(Graphing three equations could be done, but locating
the intersection of the three planes is difficult.) Graph
this system; you should find the intersection at (6, 2).

0 . 1 ~ + 5 1 . 7 ~ = 104,

5 . 1 ~ - 7 . 3 ~ = 16.

a. Now, solve using three significant digits of precision
and no row interchanges. Compare the answer to the
correct value.

b. Repeat part (a) but do partial pivoting.
c. Repeat part (a) but use scaled partial pivoting.

Which of part (a) or (b) does this match, if any?
d. Complete pivoting chooses the largest of all of the

coefficients at the current stage as the pivot element.
Repeat part (a) with complete pivoting. How does
this answer compare to those of parts (a), (b), and (c)?

30. The determinant of a matrix can be found by expanding
in terms of its minors. Compare the number of arith-
metic operations when done this way with the number
if the matrix is reduced to a triangular one by Gaussian
elimination. Do this for a 4 X 4 matrix. Then find a
relation for an n X n matrix.

b31. When you solved Exercise 17, you could have saved
the row multipliers and obtained a LU equivalent of the
coefficient matrix. Use this LU to solve Exercise 17 but
with right-hand sides of:

a. [I, -3 , 51T.
b. [- 3 , 7 , -2IT.

32. Repeat Exercise 17, but now use the LU.

33. Repeat Exercise 27, but now use the LU.

b34. Given this tridiagonal system:

a. Solve the system using the algorithm for a com-
pacted system matrix that has n rows but only four
columns.

b. How many arithmetic operations are needed to solve
a tridiagonal system of n equations in this com-
pacted arrangement? How does this compare to
solving such a system with Gaussian elimination
without compacting?

35. The system of Exercise 34 is an example of' a symmet-
ric matrix. Because the elements at opposite positions
across the diagonal are exactly the same, it can be
stored as a matrix with n rows but only three columns.

a. Write an algorithm for solving a symmetric tridiago-
nal system that takes advantage of such compacting.

138 Chapter Two: Solving Sets of Equations

b. Use the algorithm from part (a) to solve the system
in Exercise 34.

c. How many arithmetic operations are needed with
this algorithm for a system of n equations?

b36. Write the algorithm for LU reduction that puts ones on
the diagonal of U.

37. When are row interchanges absolutely required in
forming the LU equivaIent of matrix A?

38. Given system A:

Find the LU equivalent of matrix A that has 2's in each
diagonal position of L rather than 1's.

39. Repeat Exercise 38, but now make the diagonal ele-
ments of L equal to [I, 2, 3,4].

40. If you were asked to create a LU reduction of matrix A
that has at least one zero on a diagonal,

a. When can you do this, putting the zero(s) on the
diagonal of L?

b. When can you do this, putting the zero(s) on the
diagonal of U?

c. Give examples where A is 3 X 3.

Section 2.3

b41. Which of these matrices are singular?

b.

C.

42. For this matrix:

3 5

a. Find values for a and b that make A singular.
b. Find values for a and b that make A nonsingular.

43. The matrix in Exercise 41, part (b), is singular.

a. That means its rows form vectors that are linearly
dependent. Find the weighting factors for the rows
that makes their sum zero.

b. Repeat part (a), but with the columns.

44. Do these equations have a solution? Find the solution if
it exists. Explain why when it doesn't.

a. - 2 x + 3 y + z = 2,

-3x + y f z = 5 ,

x + y - z = - 5 ,

3y + z = 0.

b45. The Hilbert matrix is a classic case of the pathological
situation called "ill-conditioning." The 4 X 4 Hilbert
matrix is

For the system Hx = b: with bT = [25/12, 77/60,
57/60, 319/420], the exact solution is xT = [I, 1, 1, 11.
a. Show that the matrix is ill-conditioned by showing

that it is nearly singular.
b. Using only three significant digits (chopped) in your

arithmetic, find the solution to Hx = b. Explain why
the answers are so poor.

c. Using only three significant digits, but rounding,
again find the solution and compare it to that obtained
in part (b).

46. For this system of equations

a. What value of a gives a unique solution to the system?
b. What value of a makes the system have no

solution?

Exercises 139

c. What value of a makes the system have an infinity
of solutions?

47. Solve this pair of equations by Gaussian elimination:

a. Use only four significant digits in the solution.
b. Compare the solution using seven significant digits

with that of part (a). Explain why the solutions are
different.

48. Use the Gaussian elimination method to triangularize
this matrix and from that get its determinant:

49. Repeat Exercise 48 but convert matrix A to a LU that
has ones on the diagonal of U rather than on L.

b50. Change the element in row 3, column 3 of Exercise 48
from +5 to -5 and repeat Exercise 48. Explain why
this causes the determinant to become smaller.

51. For this matrix:

a. Show that the matrix is singular.
b. Change the element in row 4 column 4 from 5.0 to

5.1 and get its determinant. Even though this matrix
is larger than the matrix in Exercise 48 and most of
its elements are greater, .why is the determinant a
smaller number than for Exercise 48?

52. First show that det (A * B) = det(A) * det(B) for two
4 X 4 matrices that you compose, then prove that this
will always be true for any two square matrices of the
same size.

53. If some of the elements of a matrix are very small in
magnitude and others are very large, will the value of its
determinant be large or small? What if only one element
is very large and the rest very small? What if only one is
very small and the rest very large? Are there situations
where the magnitudes of the ellements are not important?

b54. Get the inverse of the matrix in Exercise 48.

a. Do it through Gaussian elimination.
b. Repeat, but with the Gauss-Jordan method.

c. How many arithmetic operations are used in parts
(a) and (b)?

55. Find the inverse of the matrix in part (b) of Exercise 5 1.

a. Do this using only three significant digits of preci-
sion.

b. Repeat part(a), but now use seven digits. Why are
the results different?

56. Repeat Exercise 55, but for the matrix in Exercise 48.
Why are the results with three digits the same as those
with seven when rounded?

57. Find the determinant of matrix A and the determinant
of its inverse.

Section 2.4

)58. Evaluate the I-, 2- and m-norms of these vectors:

a. [3.06, -2.1 1, 8.12, -4.451.
b. [-5, -3, 2, 71.

59. Verify the relations of Eq. (2.14) for each of the defini-
tions of a vector norm.

60. Which vector norm usually gives the smallest value? Is
there an instance when all vector norms have the same
value?

b61. Evaluate the I-, 2-, and a-norms of these matrices:

62. Is the spectral norm of a matrix always the smallest
norm? Is there a case where all matrix norms have the
same value?

63. For the matrices of Exercise 61, compare these norms:

a. norm (A + B) with norm (A) + norm(B).
b. norm (A * B) with norm (A) * norm(B).
c. norm (A2) with norm (A) * norm(A).
d. What conclusion do you draw from these results?

b 64. Find the a-norm of the Hilbert matrix of Exercise 45.

65. If a matrix is nearly singular, how does its norm com-
pare to the norm of its inverse?

140 Chapter Two: Solving Sets of Equations

Given this system of equations:

! 6.03 1.99 3.01
4.16 -1.23 1.27 1 ,

-4.81 9.34 0.987 1

a. Solve with a precision of ten significant digits.
b. Solve again with a precision of four significant digits.
c. What happens if you solve with a precision of only

three significant digits?
d. Let x be the solution from part (a) and let 5 be the

solution from part (b). Let e = x - 5. What are the
norms of e?

e. Is the system ill-conditioned? What is the condition
number of the coefficient matrix? Compute this for
each definition of condition number.

Repeat Exercise 66 after changing element a32 to
-9.34. Why are the results so different?

What if we discover that one of the coefficients in
Exercise 66 is slightly in error due to measuring errors?
Specifically, suppose that a13 should be 3.02 rather
than 3.01. How does this affect the answers to parts (a)
and (b) of Exercise 66?

What are the residuals for the imperfect solutions of
Exercises 66,67, and 68?

What is the condition number for the coefficient matrix
of Exercise 67. Why is it so different from that for
Exercise 66?

Verify Eq. (2.16) with the residuals from Exercises 66
and 67.

Verify Eq. (2.18) with the residuals from Exercises 66
and 67.

Apply iterative improvement to the solution from
Exercise 66, part (b).

Compare the condition numbers for the Hilbert matrix
of order-4:

a. Using exact numbers (use fractional numbers
throughout).

b. Using floating-point values with only three signifi-
cant digits.

Prove that cond (A) 2 1 for any square matrix. Are
there any exceptions to this?

For what values of a does this matrix have a condition
number greater than loo?

77. Find a 2 X 2 matrix whose condition number is exactly
289 using infinity norms.

Section 2.5

b78. Solve this system with the Jacobi method. First
rearrange to make it diagonally dominant if possible.
Use [0, 0, 0] as the starting vector. How many iterations
to get the solution accurate to five significant digits?

b79. Repeat Exercise 78 with the Gauss-Seidel method.
Are fewer iterations required?

80. Is convergence faster in Exercises 78 and 79 if the start-
ing vector is [-0.26602, -0.26602, -0.266021 which is
the average value of the elements of the solution vector?

81. Solve this system of equations, starting with the initial
vector of [O,O, 01:

4 . 6 3 ~ ~ - 1.21x,+3.22x3= 2.22,

-3.07x, + 5 . 4 8 ~ ~ + 2 . 1 1 ~ ~ = -3.17,

1 .26~, + 3 . 1 1 ~ ~ + 4 . 5 7 ~ ~ = 5.11.

a. Solve using the Jacobi method.
b. Solve using the Gauss - Seidel method.

82. The coefficient matrix of Exercise 81 is diagonally
dominant. If the value of the element in position (2, 2)
is smaller in magnitude than 5.48, it is no longer diago-
nally dominant. How small can it be and still converge
to a solution by iterating with

a. The Jacobi method?
b. The Gauss-Seidel method?

83. This 2 X 2 matrix is obviously singular and is almost
diagonally dominant. If the right-hand-side vector is [0,
01, the equations are satisfied by any pair where x = y.

a. What happens if you use the Jacobi method with
these starting vectors: [I, 11, [l , -11, [-I, 11, [2, 51,
[5,21?

b. What happens if the Gauss-Seidel method is used
with the same starting vectors as in part (a)?

c. If the elements whose values are -2 in the matrix
are changed slightly, to - 1.99, the matrix is no
longer singular but is almost singular. Repeat parts
(a) and (b) with these new matrix.

Applied Problems and Projects 141

84. For the system of equations in Exercise 78, find the
matrices that correspond to Eqs. (2.23) and (2.25). For
which method is the norm of the multiplier of x(") a
smaller number?

85. What is the optimal values of the overrelaxation factors
that speed the solutions of Exercise 81?

Section 2.6

86. Section 2.6 says that the time to compute the inner
product of two n-component vectors is proportional to
1 + log@), when n processors are available and each
processor holds just one component of each vector.

However, we can multiply an n X n matrix times a vec-
tor in 2n units of time if each processor holds one entire
row of the matrix as well as the vector. Make a table
that compares the times for these alternative methods
for values of n = 10 * e for e = 1 to 5.

b87. Develop an algorithm for inverting an n X n matrix by
parallel processing with approximately n2 processors.

88. The final algorithm developed in Section 2.6 used n2 + n
processors. Show that this can be further improved so that
only (n + 1) (n - 1) = n2 - 1 processors are required.

89. Develop an algorithm for doing Jacobi iterations to
solve a system of n linear equations using n2 processors.

Applied Problems and Projects

APP1. In considering the movement of space vehicles, it is frequently necessary to transform coordinate
systems. 'The standard inertial coordinate system has the N-axis pointed north, the E-axis pointed
east, and the D-axis pointed toward the center of the earth. A second system is the vehicle's local
coordinate system (with the i-axis straight ahead of the vehicle, the j-axis to the right, and the k-axis
downward). We can transform the vector whose local coordinates are (i, j, k) to the inertial system by
multiplying by transformation matrices:

cos a -sin a 0 cos b 0 sin b 0 [= [a c; a [0 1 0 j [i cos c -!; J [:I.
-sin b 0 cos b 0 sin c

Transform the vector 12.06, -2.44, -0.47IT to the inertial system if a = 27", b = 5", c = 72".

APP2. Exercise 45 showed the pattern for a Hilbert matrix. The n X n Hilbert matrix can be defined more
formally as:

a. Use this in a program that displays the Hilbert matrix of order-5.
b. What is the condition number of the 9 X 9 Hilbert matrix, H9?
c. Solve H9x = [l, 1, 1, 1, 1, 1, 1, 1, llT. Then change the first component of the right-hand side to

1.01 and solve again. Which component of x is most changed?

APP3. Electrical engineers often must find the currents flowing and voltages existing in a complex resistor
network. Here is a typical problem.

Seven resistors are connected as shown, and voltage is applied to the circuit at points 1 and 6 (see
Fig. 2.1) You may recognize the network as a variation on a Wheatstone bridge.

Although we are especially interested in finding the current that flows through the ammeter, the
computational method can give the voltages at each numbered point (these are called nodes) and the
current through each of the branches of the circuit. Two laws are involved:

Kirchhoff's law: The sum of all currents flowing into a node is zero.

Ohm's law: The current through a resistor equals the voltage across it divided by its resistance.

Chapter Two: SoIving Sets of Equations

Figure 2.1

We can set up 11 equations using these laws and from these solve for 11 unknown quantities (the
four voltages and seven currents). If Vl = 5 volts and V6 = 0 volts, set up the 11 equations and solve
to find the voltage at each other node and the currents flowing in each branch of the circuit.

APP4. A square matrix can be partitioned into submatrices. We write

where A and D are square. Suppose that

Ralston shows that we can get M-' in the following way:

1. InvertA togetAP1.
2. Compute D - C * A-l * B.
3. Invert D - C * A-I * B, which gives H.
4. Compute -A-I * B * H, which gives F.
5. Compute - H * C * A- I, which gives G.
6. compute A-I - A-' * B * G, which gives E.

We then get the inverse of M by inverting two smaller matrices and doing some arithmetic operations
on matrices that are smaller than M. In this, matrices A and D must not be singular.

Choose some 4 X 4 matrix. Call it M. Then,
a. Partition M into submatrices. This can be done in three different ways.
b. Get the inverse of M with Ralston's technique. Do all partitionings give the same result?
c. Is Ralston's technique more or less efficient than inverting M directly? Does the difference in

operational count depend on the size of M? Does it depend on the way that M is partitioned?

APPS. Mass spectrometry analysis gives a series of peak height readings for various ion masses. For each
peak, the height hj is contributed to by the various constituents. These make different contributions cij
per unit concentration pi so that the relation

Applied Problems and Projects 143

Table 2.2 -
Component

-
Peak

number (3 3 4 'zH4 'zH6 C3H6 C3%3

holds, with n being the number of components present. Carnahan (1964) gives the values shown in
Table 2.2 for cij.

If a sample had measured peak heights of hl = 5.20, hz = 61.7, h, = 149.2, h, = 79.4, h, = 89.3,
and h6 = 69.3, calculate the values of pi for each component. The total of all the pi values was 21.53.

APP6. Figure 2.2 shows a structure that might support a bridge (a "truss"). The support at point a is con-
strained so that it cannot move; the one at point f can move horizontally. There are two external loads,
at joints b and d.

In analyzing a truss, the members are assumed not to bend, so the forces within them act only in
the direction of the member; these are considered to act from the joint toward the center.

This truss has nine members, so there are nine member forces, 6, i = 1, . . . ,9 . If we set the sum
of all forces acting either vertically or horizontally within each member, nine equations can be writ-
ten. Solving these equations gives the values for the nine forces, the Fi.
a. Set up the equations and solve.
b. The matrix is sparse. Is it banded?
c. Can the band width be reduced by reordering the equations?

APP7. The truss in APP6, Figure 2.2, is called statically determinant, because nine linearly independent
equations can be set up to solve for the nine forces. If a tenth member is added to give better stability
to the structure, as shown in Figure 2.3, there are ten member forces to be determined but only nine
force equations can be written. This truss is called statically indeterminant.

Figure 2.2

Chapter Two: Solving Sets of Equations

Figure 2.3

A solution can be found if the stretching or compression of the members is considered. We need
to solve a set of equations that gives the displacement of each joint; these are of the form ASATx = P.
We get the tensions in the members,f, by the matrix multiplication sATx = f

The required matrices and vectors are

S is a diagonal matrix with values (from upper left to lower right) of

(These quantities are the values of aEIL, where a is the cross-sectional area of a member, E is the
Young's modulus for the material, and L is the length.)

Solve the system of equations to determine the values off for each of three loading vectors:

P, = [O, -1000,0,0,500,0,0, -500, 0lT,

P, = [lOOO, O,O, -500,0, 1000,0, -500, 0lT,

P, = [O, O,O, -500,0,0,0, -500, 0lT.

APPS. For turbulent flow of fluids in an interconnected network (see Fig. 2.4) the flow rate Vfrom one node
to another is about proportional to the square root of the difference in pressures at the nodes. (Thus,
fluid flow differs from flow of electrical current in a network in that nonlinear equations result.) For
the conduits in Figure 2.4, find the pressure at each node. The values of b represent conductance fac-
tors in the relation vq = bq(pi - Pj)1'2.

Applied Problems and Projects

0
Figure 2.4

These equations can be set up for the pressures at each node:

At node 1: 0.3- = 0 . 2 s + 0 . l f i ;

node2: 0.2- = ~.lv[p,-p, t 0 . 2 G ;

node 3: 0 . 1 G t 0.2= = 0 . 1 f i 4 ;

node 4: 0 . 1 G 4 + 0 . 1 G 4 = 0.2IjP4-0.

APP9. a. The elements in the matrix equation Ax = B may be complex valued. Write a program to do
Gaussian elimination in some computer language that permits complex values and solve a few
examples. How will you determine the proper pivot rows in this program? Does the coefficient
matrix have an inverse? If so, multiply this inverse by the original coefficient matrix but, before
doing this, try to predict the result.

b. It is not necessary to use complex arithmetic to solve a system that has complex-valued elements.
How can this be done? Solve the examples that you used in part (a) in this way. You should get the
same solutions; do you?

APP10. Electrical circuits always have some capacitance and inductance in addition to resistance. Suppose
that a 500 pF capacitor is added to the network of APP3 between nodes 1 and 2 and a 4 mH induc-
tance is added between nodes 5 and 6. Of course, if the voltage source E is a direct current source, no
current will flow after the capacitance becomes saturated, but if E is an alternating voltage source,
there will be continuous (though fluctuating) current in the network. Set up the equations that can be
solved for the voltages at the nodes and the currents in each branch of the network. You may need to
consult a reference to handle this mixture of resistors, capacitors, and inductance.

APP11. We have shown how a tridiagonal system is especially advantageous in that it can be solved with
fewer arithmetic operations than a full n X n system. A banded matrix is similarly advantageous, and
this is particularly true if the coefficient matrix is symmetric. What are the number of multiplies and
divides for a symmetrical system of n equations that has m elements to the right and to the left of the
diagonal? Your answer should be expressed in terms of n and m.

APP12. It has been claimed that the National Weather Service uses extremely large sets of equations to fore-
cast the weather. Do research to see if this is true and if these equations are linear or nonlinear. There
are several models in use. Five of these are

Chapter Two: Solving Sets of Equations

1. NGM (Nested Grid Model-also called RAFS or Regional Analysis Forecast System).
2. ETA-forecast out to 48 hours.
3. MESO-ETA-forecast to 33 hours.
4. AVN-aviation model to 72 hours.
5. MRF-medium range forecast.

You may find the answer to this question from NWSICIO (the Office of the Chief Information
Officer); the Internet may provide a link to this office. If this is a group project, one member might
send an inquiry to:

National Weather Service, NOAA

1325 West-West Highway

Silver Spring, MD 20910

APP13. MATLAB has commands that give you quantitative information on sparse matrices. A tridiagonal
matrix is sparse if there are many equations. Generate a large tridiagonal matrix in MATLAB, name
it A, and then use these commands to investigate it. What is the information given by each command?

nnz (A)
nonzeros (A)
nzmax (A)

SPY (A)
[i, j, S) = find (A) ;

[rn, n) = size (A) ;
B = sparse (i, j, s, m, n)

APP14. Can Gaussian elimination be used to solve a system where there are inequalities in addition to equal-
ities? Try to do it with this small system. (4, 0) is a solution; what other points are a solution?
(Chapter 7 discusses this type of problem in detail.) A graphical solution is easy.

It once was the case that students found values for sines, logarithms, and other non-
algebraic functions from tables rather than getting the values using a computer or calcula-
tor, as one commonly does today. Those earlier tables had values of the f~mction at
uniformly spaced values of the argument. One most often interpolated linearly: The value
for x = 0.125 was computed as at the half-way point between x = 0.12 and x = 0.13. If the
function does not vary too rapidly and the tabulated points are close enough together. this
linearly estimated value would be accurate enough.

If you don't have to use tables and interpolate from them, why do we devote a lengthy
chapter to a topic that may seem obsolete? There are four reasons: (1) Interpolation meth-
ods are the basis for many other procedures that you will study in this course, such as
numerical integration and differentiation; (2) they are behind the ways that we use to solve
ordinary and partial-differential equations; (3) they demonstrate important theory about
polynomials and the accuracy of numerical methods; and (4) they are one of the more
important ways that curves are drawn on your computer screen. In addition, history itself
may hold a special fascination for some.

There is a rich history behind interpolation. It really began with the early studies of
astronomy when the motion of heavenly bodies was determined from periodic observa-
tions. The names of many famous mathematicians are associated with interpolation:
Gauss, Newton, Bessel, Stirling.

An application of interpolation that you see every day is in weather forecasting. When
you watch the weather forecasts on television, you may wonder where these (usually) cor-
rect projections come from. The weather service people collect information on tempera-
ture, wind speed and direction, humidity, and barometric pressure from hundreds of
weather stations around the United States. Added to these are cloud data from satellites
that are in elevated orbits above the earth. All of these data items are entered into a mas-
sive computer program that models the weather. Up to a million pieces of data are
involved.

Chapter Three: Interpolation and Curve Fitting

There is a problem, however. The locations where the data is collected are not uni-
formly distributed. These places are at various towns and cities and some remote locations
where the data are obtained and transmitted automatically. It is a complex problem, one of
several dimensions because the various weather stations are also at different elevations.
The problem is that the computer models are massive, partial-differential equations that
require the data to be at points on a uniform grid.

In this chapter, you will learn how such scattered data can be interpolated to estimate
values at uniformly positioned grid points. This chapter will also compare several ways
that one can do interpolation and contrast these with other techniques for fitting functions
to imprecise data and for drawing smooth curves.

3.1 Interpolating Polynomials
Describes a straightforward but computationally awkward way to fit a
polynomial to a set of data points so that an interpolated value can be
computed. The cost of getting the interpolant with a desired accuracy is
facilitated by a variant, Neville's method.

3.2 Divided Differences
These provide a more efficient way to construct an interpolating polynomial-
one that allows one to readily change the degree of the polynomial. If the data
are at evenly spaced x-values, there is some simplification.

3.3 Spline Curves
Using special polynomials, splines, one can fit polynomials to data more
accurately than with an interpolating polynomial. At the expense of added
computational effort, some important problems that one has with interpolating
polynomials is overcome.

3.4 Bezier Curves and B-Splines
Are modem techniques for constructing smooth curves. They are used widely
in computer graphics. They are not interpolating polynomials but are closely
related.

3.5 Interpolating on a Surface
When the function has two independent variables, the points lie on a surface.
Interpolating at points on the surface between the given points is more difficult
but the previous techniques can be applied.

3.6 Least-Squares Approximations
Are methods by which polynomials and other functions can be fitted to data
that are subject to errors likely in experiments. These approximations are
widely used to analyze experimental observations.

3.1 : Interpolating Polynomials 149

3.1 Interpolating Polynomials

It has been mentioned that weather prediction requires that scattered data must be interpo-
lated to estimate values at uniformly positioned grid points. That is a multidimensional
problem-we start with simpler problems that have only one dimension, where y is a
function of x.

In this simpler problem, for example, we have a table of x and y-values. Two entries in this
table might be y = 2.36 at x = 0.41 and y = 3.1 1 at x = 0.52. If we desire an estimate for y
at x = 0.43, we would use the two table values for that estimate. The quickest and easiest
way to get this estimate would be to use the value at the point closest to x = 0.43, which
would bey = 2.36. You are thinking, "Yes, that is quick and easy but surely not the best esti-
mate. Why not interpolate as if y (x) was linear between the two x-values?'That is a good
suggestion. We will explore this and other even better ways to interpolate in this chapter.

We will be most interested in techniques adapted to situations where the data are far
from linear. The basic principle is to fit a polynomial curve to the data. The reason for
using polynomials has already been stated-they are "nice" functions and their evaluation
requires only those arithmetic operations that computers can do.

In this section through Section 3.5, we assume that the tabulated data are exact. In
Section 3.6, we consider the case where the data may have errors of measurement, which
is true for most experimental results.

Fitting a Polynomial to Data

Suppose that we have the following data pairs-x-values and f (x)-values- where f(x) is
some unknown function:

First, we need to select the points that determine our polynomial. (The maximum degree of
the polynomial is always one less than the number of points.) Suppose we choose the first
four points. If the cubic is ax3 + bx2 + cx + d, we can write four equations involving the
unknown coefficients a, b, c, and d:

whenx = 3.2: ~ (3 . 2) ~ + b(3.2)2 + c(3.2) + d = 22.0,

i fx = 2.7: ~ (2 . 7) ~ + b(2.7)2 + c(2.7) -t d = 17.8,

Chapter Three: Interpolation and Curve Fitting

Solving these equations by the methods of the previous chapter gives us the polynomial.
We can then estimate the values of the function at some value of x-say, x = 3.0 -by
substituting 3.0 for x in the polynomial.

For this example, the set of equations gives

and our polynomial is

At x = 3.0, the estimated value is 20.212.
We seek a better and simpler way of finding such interpolating polynomials. This

procedure is awkward, especially if we want a new polynomial that is also made to fit at
the point (5.6, 51.7), or if we want to see what difference it would make to use a qua-
dratic instead of a cubic. Furthermore, this technique leads to an ill-conditioned system
of equations."

Lagrangian Polynomials

We will first look at one very straightforward approach-the Lagrangian polynomial. The
Lagrangian polynomial is perhaps the simplest way to exhibit the existence of a polyno-
mial for interpolation with unevenly spaced data. Data where the x-values are not equi-
spaced often occur as the result of experimental observations or when historical data are
examined.

Suppose we have a table of data with four pairs of x- and f(x)-values, with xi indexed by
variable i:

Here we do not assume uniform spacing between the x-values, nor do we need the
x-values arranged in a particular order. The x-values must all be distinct, however. Through
these four data pairs we can pass a cubic. The Lagrangian form for this is

* For this example, the condition number is about 2700. If a quartic were fitted to all five points, it would be about
62,000!

3.1: Interpolating Polynomials 15 1

Note that this equation is made up of four terms, each of which is a cubic in x; hence the
sum is a cubic. The pattern of each term is to form the numerator as a product of linear fac-
tors of the form (x - xi), omitting one xi in each term, the omitted value being used to form
the denominator by replacing x in each of the numerator factors. In each term, we multiply
by the& corresponding to the xi omitted in the numerator factors. The Lagrangian polyno-
mial for other degrees of interpolating polynomials employs this same pattern of forming a
sum of polynomials all of the desired degree; it will have n + 1 terms when the degree is n.

It is easy to see that the Lagrangian polynomial does in fact pass through each of the
points used in its construction. For example, in the preceding equation for P3(x), let x = x2.
All terms but the third vanish because of a zero numerator, while the third term becomes
just (1) *fi. Hence, P3(x2) = S;. Similarly, P3(xi) = f , for i = 0, 1,3.

EXAMPILE 3. P Fit a cubic through the first four points of the preceding table and use it to find the interpo-
lated value for x = 3.0.

Carrying out the arithmetic, P3(3.0) = 20.21.

Observe that we get the same result as before. The arithmetic in this method is tedious,
although hand calculators are convenient for this type of computation. Writing a computer
program that implements the method is not hard to do. Both MATLAB and Mathematics
can get interpolating polynomials of any degree (but high degrees are usually undesirable).

Using MATLAJ3

MATLAB gets interpolating polynomials readily. The cubic fitted to the first four points,
in Example 3.1 is done by:

Chapter Three: Interpolation and Cunre Fitting

EDU>> x = [3.2 2.7 1.0 4.81; y = [22.0 17.8 14.2 38.31;
EDU>> p = polyfit (x, y, 3)

P =

-0.5275 6.4952 -16.1177 24.3499

which are the coefficients of the same cubic as before:

If we want the value of the polynomial at x = 3.0:

EDU>> xval = polyval (p, 3.0)
xval =

20.2120

exactly what we got in Example 3.1.

Error of Interpolation

When we fit a polynomial P,(x) to some data points, it will pass exactly through those
points, but between those points P,(x) will not be precisely the same as the function f (x)
that generated the points (unless the function is that polynomial). How much is PJx) dif-
ferent from f (x)? How large is the error of P,(x)?

We begin the development of an expression for the error of P,(x), an nth-degree inter-
polating polynomial, by writing the error function in a form that has the known property
that it is zero at the n + 1 points, from xo through x,, where P,(x) and f (x) are the same. We
call this function E(x):

E(x) = f(x) - P,(x) = (x - xO)(x - x I) . . . (x - xn)g(x).

The n + 1 linear factors give E(x) the zeros we know it must have, and g(x) accounts for
its behavior at values other than at xo, x l , . . . , x,. Obviously, f (x) - P,(x) - E(x) = 0, so

f (x) - PJx) - (x - x(,)(x - x l) . (X - x,)g(x) = 0. (3.2)

To determine g(x), we now use the interesting mathematical device of constructing an
auxiliary function (the reason for its special form becomes apparent as the development
proceeds). We call this auxiliary function W(t), and define it as

W(t) = f(t) - P,(t) - (t - xo)(t - xl) . - (t - x,)g(x).

Note in particular that x has not been replaced by t in the g(x) portion. (W is really a func-
tion of both t and x, but we are only interested in variations of t.) We now examine the
zeros of W(t).

Certainly at t = xo, x l , . . . , x,, the W function is zero (n + 1 times), but it is also zero if
t = x b y virtue of Eq. (3.2). There are then a total of n + 2 values of t that make W(t) = 0.
We now impose the necessary requirements on W(t) for the law of mean value to hold. W(t)
must be continuous and differentiable. If this is so, there is a zero to its derivative W'(t)
between each of then + 2 zeros of W(t), a total of n + 1 zeros. If WU(t) exists, and we sup-

3.1 : Interpolating Polynomials 153

pose it does, there will be n zeros of W"(t), and likewise n - 1 zeros of WU'(t), and so on,
until we reach w("+ ')(t), which must have at least one zero in the interval that has x0, x,, or
x as endpoints. Call this value o f t = (. We then have

dn+l
w'""'(() = 0 = -

d t n f '
[f(t> - Pn(t) - (t - xo) - . . (t - x,)g(x)l,=[

(3.3)

The right-hand side of Eq. (3.3) occurs because of the following arguments. The
(n + 1)st derivative f (t) , evaluated at t = <, is obvious. The (n + 1)st derivative of P,(t) is
zero because every time any polynomial is differentiated its degree is reduced by one, so
that the nth derivative is of degree zero (a constant) and its (n + 1)st derivative is zero. We
apply the same argument to the (n + 1)st-degree polynomial in t that occurs in the last
term-its (n + 1)st derivative is a constant that results from the tn+' term and is (n + I)!.
Of course, g(x) is independent of t and goes through the differentiations unchanged. The
form of g(x) is now apparent:

f '"+
g") = (n + 111 < between (x,, x,, x).

The conditions on W(t) that are required for this development (continuous and differen-
tiable n + 1 times) will be met if f(x) has these same properties, because PIZ(x) is continu-
ous and differentiable. We now have our error term:

with (on the smallest interval that contains {x, xo, xl, . . . , x,}.
The expression for error given in Eq. (3.4) is interesting but is not always extremely

useful. This is because the actual function that generates the x,,& values is often unknown;
we obviously then do not know its (n + 1)st derivative. We can conclude, however, that if
the function is "smooth," a low-degree polynomial should work satisfactorily. (The smaller
the higher derivatives of a function, the smoother it is. For example, for a straight line, all
derivatives above the first are zero.) On the other hand, a "rough" function can be expected
to have larger errors when interpolated. We can also conclude that extrapolation (applying
the interpolating polynomial outside the range of x-values employed to construct it) will
have larger errors than for interpolation. It also follows that the error is smaller iFx is cen-
tered within the x,, because this makes the product of the (x - xi) terms smaller.

Here is an algorithm for interpolation with a Lagrangian polynomial of degree N.

Given a set of n + 1 points [(xi, fi), i = 0, . . . , n] and a value for x at which the poly-
nomial is to be evaluated:

Chapter Three: Interpolation and Curve Fitting

Set Sum = 0.
For i = 0 To n Step 1 Do

Set P = 1.
For j = 0 to n step 1 Do

If (j # i) Then
Set P = P * (x - xj)l(xi -

End If.
End Do j.

Set Sum = Sum + P * f i
End Do i.

Sum is the interpolated value at x.

A Word of Caution

It is most important that you never fit a polynomial of a degree higher than 4 or 5 to a set
of points. If you need to fit to a set of more than six points, be sure to break up the set into
subsets and fit separate polynomials to these. Figure 3.18, a part of Applied Problem 11,
illustrates why this is so necessary. A still better way to fit a large number of data points is
to use spline curves, as described in Section 3.3.

Recognize also that you cannot fit a function that is discontinuous or one whose deriva-
tive is discontinuous with a polynomial. This is because every polynomial is everywhere
continuous and has continuous derivatives. A Fourier series that we discuss in Chapter 4
can approximate such functions.

In Example 3.1, we have fitted a cubic polynomial that matches the table exactly at four
points. Is f (x), a function whose form is not given, really a polynomial of degree-3? If it is,
the error of the Lagrangian polynomial would be zero because the fourth derivative term in
Eq. (3.4) would be zero. How can we tell? One way is to see if the fifth point (5.6, 51.7) is
on the cubic. MATLAB says it is not:

EDU>> x2 = polyval (f , 5.6)
x2 =

45.1473

and we see that P3(5.6) is not equal to f(5.6) = 51.7. Another way would be to use (5.6,
51.7) as one of four points with any three others to see if that interpolating polynomial is
the same. Still another technique would be to plot the interpolating polynomial and see if
the fifth point lies on the curve.

This discussion also points out that extrapolation with an interpolating polynomial
incurs a larger error than does interpolation, a fact that can be observed from Eq. (3.2).

3.1: Interpolating Polynomiak 1 55

Neville's Method

The trouble with the standard Lagrangian polynomial technique is that we do not know
which degree of polynomial to use. If the degree is too low, the interpolating polynomial
does not give good estimates off (x). If the degree is too high, undesirable oscillations in
polynomial values can occur. (More on this later, in the section on spline curves.)

Neville's method can overcome this difficulty. It essentially computes the interpolated
value with polynomials of successively higher degree, stopping when the successive values
are close together." The successive approximations are actually computed by linear inter-
polation from the previous values. The Lagrange formula for linear interpolation to get f (x)
from two data pairs, (x l , fi) and (x2, f2), is

which can be written more compactly as

We will use Eq. (3.5) in Neville's method.
If we examine Eq. (3.4) for the error term of Lagrangian interpolation, we see that the

smallest error results when we use data pairs where the xi's are closest to the x-value we are
interpolating. Neville's method begins by arranging the given data pairs, (xi,&), so the suc-
cessive values are in order of the closeness of the xi to x.

- -

EXAMPLE 3.2 Suppose we are given these data:

X f (XI

and we want to interpolate for x = 27.5. We first rearrange the data pairs in order of close-
ness to x = 27.5:

* Neville's method is not the most efficient method to compute an interpolated value. It is better to obtain the
interpolating polynomial by the procedures of the next section and then evaluate it for the desired n-value.

Chaptcr Three: Interpolation and Curve Fitting

Neville's method begins by renaming the& as P,. We build a table by first interpolating
linearly between pairs of values for i = 0, 1, i = 1,2, i = 2,3, and so on. These values are
written in a column to the right of the first P of each pair. The next column of the table is
created by linearly interpolating from the previous column for i = 0, 2, i = 1, 3, i = 2, 4,
and so on. The next column after this uses values for i = 0, 3, i = 0, 4, . . . , and continues
until we run out of data pairs.

Here is the Neville table for the preceding data:

The general formula for computing entries into the table is

Thus, the values of Pol and PII are computed by

Once we have the column of Pil's, we compute the next column. For example,

The remaining columns are computed similarly by using Eq. (3.6).
The top line of the table represents Lagrangian interpolates at x = 27.5 using polyno-

mials of degree equal to the second subscript of the P's. Each of these polynomials uses the
required number of data pairs, taking them as a set starting from the top of the table. (An
exercise asks you to prove that the top line does represent Lagrangian interpolates with
polynomials of increasing degree.)

The preceding data are for sines of angles in degrees and the correct value for x = 27.5
is 0.46175. Observe that the top line values get better and better until the last, when it
diverges. This divergence becomes apparent when we notice that the successive values get
closer to a constant value until the last one. (If the table is not arranged to center the
x-value within the x., the convergence is not as quick.)

3.2: Divided Differences 157

If we instead do this computation by hand, we can save computing time by computing,
not the entire table, but only as much as required to get convergence to the desired number
of decimal places. We therefore do only the computations needed to compute those top row
values that are required. In a computer program it is hardly worth the added programming
complications because the entire table is computed so quickly.

Parallel Processing

The several terms of a Lagrange polynomial, as shown in Eq. (3.11, can all be computed
simultaneously with parallel processing. Each entry in the successive columns of the table
for Neville's method can be computed simultaneously. An exercise asks you to determine
the number of time steps that are saved.

3.2 Dividled Differences

There are two disadvantages to using the Lagrangian polynomial or Neville's method for
interpolation. First, it involves more arithmetic operations than does the divided-difference
method we now discuss. Second, and more importantly, if we desire to add or subtract a
point from the set used to construct the polynomial, we essentially have to start over in the
computations. Both the Lagrangian polynomials and Neville's method also must repeat all
of the arithmetic if we must interpolate at a new x-value. The divided-difference method
avoids all of this computation.

Actually, we will not get a polynomial different from that obtained by Lagrange's tech-
nique. As we will show later on, every nth-degree polynomial that passes through the same
n + 1 points is identical. Only the way that the polynomial is expressed is different.

Our treatment of divided-difference tables assumes that the function, f (x), is known at
several values for x:

We do not assume that the x's are evenly spaced or even that the values are arranged in any
particular order (but some ordering may be advantageous).

Consider the nth-degree polynomial written in a specla1 way:

If we chose the ai so that P,(x) = f(x) at the n + 1 known points, (x , ,h) , i = 0, . . . , n, then
P,(x) is an interpolating polynomial. We will show that the ai's are readily determined by
using what are called the divided differences of the tabulated values.

Chaptcr Three: Interpolation and Curve Fitting

A special standard notation for divided differences is

called thefirst divided dzference between xo and xl. The function

is the first divided difference between xl and x2. (We use f [xo] = fo = f (x,).)
In general,

is the first divided difference between xs and x,. Observe that the order of the points is
immaterial:

Second- and higher-order differences are defined in terms of lower-order differences. For
example,

1 I

The concept is even extended to a zero-order difference:

f [x,I = f,.
Using the standard notation, a divided-difference table is shown in symbolic form in
Table 3.1. Table 3.2 shows specific numerical values. (These data are the same as in the
first table of Section 3.1 .)

Table 3.1

3.2: Divided Differences 159

Table 3.2 --

We are now ready to establish that the ai of Eq. (3.7) are given by these divided differ-
ences. We write Eq. (3.7) with x set equal to xo, xl, . . . , xn in succession, giving

x = x,: P,(xn) = a. + (x, - x0)al + (x, - xO)(xn - xl)a2 + . . .
+ (x, - xo) . . . (xn - xn-,) an.

If Pn(x) is to be an interpolating polynomial, it must match the table for all n + 1 entries:

Pn(xi) =f i for i = 0, 1, 2 , . . . , n.

If the Pn(xi) in each equation is replaced by fi, we get a triangular system, and each ai can
be computed in turn.

From the first equation,

a. = f a = f [xo] makes Pn(xo) = fo.

If al = f [xo, x l] , then

If a, = f [xo, xl , x2], then

= f2.

One can show in similar fashion that each Pn(xi) will equalfi if ai = f [xo, x,, . . . , xi].

Chapter Three: Interpolation and Curve Fitting

We then can write:

EXAMPLE 3.3 Write the interpolating polynomial of degree-3 that fits the data of Table 3.2 at all points
from xo = 3.2 to x3 = 4.8.

What is the fourth-degree polynomial that fits at all five points? We only have to add one
more term to P3(x):

When this method is used for interpolation, we observe that nested multiplication can be
used to cut down on the number of arithmetic operations, for example, for x = 3:

If we compute the interpolated value at x = 3.0 for each of the third-degree polynomi-
als in Section 3.1, we get the same result: P3(3.0) = 20.2120. This is not surprising,
because all third-degree polynomials that pass through the same four points are identical.
They may look different but they can all be reduced to the same form.

An algorithm for constructing a divided-difference table is

Given a set of n + 1 points [(xl, f,), i = 0, . . . , n] and a value x = u at which the
interpolating polynomial is to be evaluated:

We first find the coefficients of the interpolating polynomial. These are stored in
vector dd.

For i = 0 To n Step 1 DO
Set dd[i] = f [i]

End For i.
Forj = 1 To n Step 1 Do

Set temp1 = ddlj - 11.

3.2: Divided Differences 161

F o r k = j T o n S t e p l D o
Set temp2 = dd[k].
Set dd[k] = (dd[k] - templ)l(x[k] - x[k - j]).
temp1 = temp2

End For k.
End For j.

Now we compute the value of the polynomial at u. We do this by nested multiplica-
tion from the highest term.

Set sum = 0
For i = n DownTo 1 Step 1 Do

Set sum = (sum + dd[i]) * (u - x[i - 11)
Set sum = sum + dd[O]

End For i.
ddvalue = sum.

ddvalue is the value of the polynomial at u, p,(u).

Observe that parallel processing can compute all entries in the successive columns simulta-
neously. If there are N + 1 data pairs and a full table is constructed, the number of time steps
equals the number of new columns, N. Sequential processing would require N(N + 1)/2
steps.

Divid.ed Differences for a Polynomial

It is of interest to look at the divided differences for f(x) = P,(x). Suppose that f(x) is the
cubic

f(x) = 2 ~ 3 -x2 + x - 1.

Here is its divided-difference table:

Observe that the third divided differences are all the same. (It then follows that all higher
divided differences will be zero.) We can take advantage of this fact by not using

Chapter Three: Interpolation and Curve Fitting

differences beyond the column where the values are essentially constant, because this indi-
cates that the function behaves nearly like a polynomial of that degree.

It is most important to also observe that the third derivative of a cubic polynomial is also
a constant. (In this instance, P(~)(x) = 2 * 3! = 12.) The relationship between divided dif-
ferences and derivatives will be explored in detail in Chapter 5. For now, we just state that
for an nth-degree polynomial, P,(x), whose highest-power term has the coefficient a,, the
nth divided differences will always be equal to a,. Because the nth derivative of this poly-
nomial is equal to a, * n!, the relationship between derivatives and divided differences
seems to involve n!. We exploit this later.

Identical Polynomials

The interpolating polynomials obtained by the Lagrangian method and through divided
differences look different but they are really identical. We will explore other methods for
constructing polynomials. It is important to recognize that every polynomial of degree n
that has the same value at n + 1 distinct points is exactly the same.

When a polynomial of the nth degree is developed from n + 1 data points, we have
exactly enough data to determine the n + 1 coefficients, so the conclusion that any result-
ing polynomial is the same is intuitively true. Further, every expression of the polynomial
can be reduced to standard form and this must always be identical.

A more formal and compelling proof is by contradiction:

Suppose there are two different polynomials of degree n that agree at n + 1 distinct
points. Call these P,(x) and Q,(x), and write their difference:

where D(x) is a polynomial of at most degree n. But because P and Q match at the
n + 1 points, their difference D(x) is equal to zero at all n + 1 of these x-values; that
is, D(x) is a polynomial of degree n at most but has n + 1 distinct zeros. However,
this is impossible unless D(x) is identically zero. Hence P,(x) and Q,(x) are not
different-they must be the same polynomial.

A most important consequence of this uniqueness property of interpolating polynomials is
that their error terms are also identical (though we may want to express the error terms in
different forms). We only have to derive the error term for one form of interpolating poly-
nomial to have the error term for all forms of interpolating polynomials.

Error of Interpolation from Differences

The error term for an interpolating polynomial derived from a divided-difference table is
identical to that for the equivalent Lagrangian polynomial because, as we have just

3.2: Divided Differences 163

observed, all polynomials of degree n that match at n + 1 points are identical. That means
that the error term associated with the nth-degree polynomial PJx) of Eq. (3.8) is simply
Eq. (3.4), which we repeat here:

It is still not convenient to use this error expression, because the derivative off that appears
is unknown. However, iff (x) is almost the same as some polynomial of degree n (and we
will know that this is true because the nth divided differences will be almost constant),
interpolating with an nth-degree polynomial should be nearly exact. The reason is that the
(n + 1)st derivative off (x) will be nearly zero and the error of the nth-degree interpolating
polynomial will be very small.

What if we use a lower-degree polynomial? The error should be larger. Iff (x) is a
known function, we can use Eq. (3.4) to bound the error. Here is an example.

EXAMPLE 3.4 Here is a divided difference table for f(x) = x2e-~I2:

Find the error of the interpolates for f (1.75) using polynomials of degrees-I, -2, and -3.
The results are shown in Table 3.3, for which Eq. (3.8) was used to do the interpola-

tions. (MATLAB helped in finding the derivatives and evaluating the maximum and mini-
mum values within the intervals.) The error formula does bracket the actual errors, as
expected. In this case, observe that the use of a cubic polynomial does not improve the
accuracy. In part, this is because we do not have the x-value well centered within the tabu-
lated values; also, the value of the derivative is not decreasing. - _I

'Fable 3.3 Errors of interpolation for f (1.75)

Interpolated Actual f @+I) f (n+U Upper Lower
Degree value error maximum minimum bound bound

Chapter Three: Interpolation and Curve Fitting

Error Estimation When f (x) Is Unknown -
The Next-Term Rule

Occasionally, almost always when dealing with experimental data, the function is
unknown. Still, there is a way to estimate the error of the interpolation. This is because the
nth-order divided difference is itself an approximation for f (n)(x)ln!, as will be demon-
strated in Chapter 5. What this means is that the error of the interpolation is given approx-
imately by the value of the next term that would be added!

This most valuable rule for estimating the error of interpolation we call the next-term
rule. It is easy to state and to use:

En(x) = (approximately) the value of the next term that would be added to P,(x).

Here is how it works for the preceding example:

Exact Estimate from
Degree error next-term rule

As you can see, the agreement is at least fair.

Interpolation Near the End of a Table

Thus far, we have assumed that the entries are indexed from the top to the bottom of the table.
This would appear to indicate that our formulas do not work well for constructing polynomi-
als from divided differences at the end of the table. Remember, however, that the ordering of
the points is immaterial. We can just as well begin at the bottom and number the entries going
upward, with no adjustment of Eq. (3.8) required. The table is really not changed at all, just
the symbols that we use. We now use Eq. (3.8) with the newly indexed values.

Table 3.4a Conventional divided-difference table

3.2: Divided Differences 165

Table 3.4b Divided-difference table indexed upwardly

Tables 3.4a and b compare the two different numbering schemes. The entries in the
rows of Table 3.4b are exactly the same numbers as in the upward diagonals of Table 3.4a.

Evenly Spaced Data

If the x-values are evenly spaced, getting an interpolating polynomial is considerably
simplified. Instead of using divided differences, "ordinary differences" are used; the
differences in f-values are not divided by the differences in x-values. A delta symbol is
used to write them and, for a table of N + 1 (x, f(x)) pairs, differences up the Nth order
can be computed.

We suppose that the table has entries indexed from 0 to N. First-order differences are
then written as A& and are computed as Af2 = - f2., i = 0, . . . , (N - I). Second-order
differences, A x , are the differences of the first-order differences: A? = A(4&+, - A&),
which is easily shown to be A? = &+2 - 2f2+l + fi, i - 0, . . . , (N - 2). Higher-order dif-
ferences are again the differences of the next lower-order differences. They can be com-
puted from the originalf-values:

n(n - 1)
An& = f 2 + n - + 2! fl+n-2 - . . . Zfi, i = 0 , . . . , (N - n).

Observe that the coefficients are the familiar binomial coefficients.
An interpolating polynomial of degree n can be written in terms of these ordinary dif-

ferences, with x evaluated at x,:

where s = (x - xJh, with h = Ax, the uniform spacing in x-values. Observe again that
the coefficients are the familiar binomial coefficients.

This form of the interpolating polynomial is called the Newton-Gregory forward poly-
nomial. We will use this type of interpolating polynomial several times in later chapters.
Several other forms of interpolating polynomials can be written in terms of the differences
of the table. We do not pursue this topic further because the divided difference formulas
apply to evenly spaced data, although earlier editions of this text go into considerable detail.

Chapter Thrcc: Interpolation and Curve Fitting

The next-tern rule applies to this Newton-Gregory polynomial: The error of interpola-
tion is approximated by the next term that would be added. Here is an example.

Given this table of x, f(x) values, and the columns of differences, find f(0.73) from a
cubic interpolating polynomial.

x f (4 Af Azf A3f A4f

In order to center the x-values around x = 0.73, we must use the four entries beginning
with x = 0.4. That makes xo = 0.4 and s = (0.73 - 0.4)/0.2 = 1.65. Inserting the proper
values into the expression for the Newton-Gregory polynomial, we get

The function is actually for f(x) = tan(x), so we know that the true value of f(O.73) is 0.895;
the error is 0.002. The next-term rule estimates the error as 0.004. This estimate is very good.

One nice feature of a table of ordinary differences is that an error in an entry for f (x) can
be readily detected. Such an error causes a disruption to the regular progression of values
in the columns of differences. For example, if the entry for x = 0.6 has two digits reversed
(0.648 rather than 0.684) and the table is recomputed, the columns for A2fand A3flose
their regularity.

MATLAB's 'diff' command gets the differences between the elements of a vector, so the
columns of the above table are generated readily. We exhibit these as rows to save space:

EDU>> diff

ans =

0.2030

EDU>> di f f
ans =

0.0170 0.0410 0.0850 0.1810 0.4880

EDU>> dif f (ans)
ans =

0.0240 0.0440 0.0960 0.3070
EDU>> dif f (ans)
ans =

0.0200 0.0520 0.2110

3.2: Divided Differences 167

Table 3.5a Table of function differences for f (x) = 2x3, h = 0.5

Function Dii'ferences Versus Divided Differences

Obviously, the table of function differences that we have been discussing is closely related
to the table of divided differences. Except for dividing function differences by a difference
of x-values in the latter, these two tables are the same when the x-values are evenly spaced.
To make this crystal clear, compare the tables for the simple case off (x) = 2x3 with
h = 0.5, as shown in Tables 3.5a and b.

As expected, the columns of third differences are constant in both tables. For divided
differences, this constant is equal to just 2, the coefficient of x3. For the difference table, it
is equal to that coefficient times (3!)(h3), or 2 * 6 * 0S3 = 1.5.

For first differences, the divided differences are equal to the function differences
divided by h (0.5 here). Second divided differences are equal to second function differ-
ences divided by (h)(2h) (0.5 in this example). Third divided differences are equal to third
function differences divided by (h)(2h)(3h) (0.75 in this instance). The pattern should now
be clear:

Table 3.5b Table of divided differences for f(x) = 2x3, h = 0.5

Chapter Three: Interpolation and Curve Fitting

If the values are not evenly spaced, a comparison is impossible because the table of func-
tion differences is not defined.

This difference between the two kinds of tables has a great effect on the relation
between differences and derivatives, a topic that we explore in Chapter 5.

There are times when fitting an interpolating polynomial to data points is very difficult.
Here is an example where we try to fit to data pairs from a known function. Figure 3.la is a
plot of f(x) = coslO(x) on the interval [-2, 21. It is a nice, smooth curve but has a pro-
nounced maximum at x = 0 and is near to the x-axis for I x I > 1. The curves of Figure 3.1 b,
c, d, and e are for polynomials of degrees-2, -4, -6, and -8 that match the function at evenly
spaced points. None of the polynomials is a good representation of the function. In particu-
lar, observe how the eighth-degree polynomial deviates widely near Ix l = 2. Polynomials

(a) Original function (b) Fitted with quadratic

(c) Fitted with P4(x)

(d) Fitted with P6(x)

Figure 3.1

(e) Fitted with Ps(x)

3.3: Spline Curves 169

Figure 3.2

of degree higher than 8 will exhibit even greater deviations because, when we try to match
f(x) where it is flat, the polynomials must have many zeros.

One might think that a solution to the problem would be to break up the interval [-2,2]
into subintervals and fit separate polynomials to the function in these smaller intervals.
Figure 3.2 shows a much better fit if we use a quadratic between x = -0.65 and x = 0.65,
with P(x) = 0 outside that interval. That is better (and one could further improve the fit),
but there are discontinuities in the slope where the separate polynomials join.

An answer to the dilemma is to use spline curves. It borrows from the idea of a device
used in drafting. A draftsman fits curves such as our example by bending a flexible rod to
conform to the curve; the rod is held in place by placing weights on it. This device is bet-
ter than using a French curve, for how the French curve is moved to conform is very sub-
jective and is not effective where the curvature is great.

Spline curves may be of varying degrees. Suppose that we have a set of n + 1 points
(which do not have to be evenly spaced):

(xi y) with i = 0, 1, 2, . . . , n.

A spline fits a set of nth-degree polynomials, gi(x), between each pair of points, from xi to
The points at which the splines join are called knots.

If the polynomials are all of degree-1, we have a linear spline and the "curve" would
appear as in the accompanying figure. As you can see, the slopes are discontinuous where
the segments join. Splines of degree greater than 1 do not have this problem. Most often
cubic splines are used.

170 Chapter Three: Interpolation and Curve Fitting

The Equation for a Cubic Spline

The drafting spline, from which the concept of spline curves is taken, bends according to
the laws of beam flexure, so both the slope and curvature are everywhere continuous. Our
mathematical spline curve must have this same behavior, requiring that they be of at least
degree-3.

We will create a succession of cubic splines over successive intervals of the data. (There
is no requirement that the points be evenly spaced.) Each spline must join with its neigh-
boring cubic polynomials at the knots where they join with the same slope and curvature.
(The end splines have only one neighbor, so their slope and curvature is not so constrained.
This factor will be covered later.)

We write the equation for a cubic polynomial, g,(x), in the ith interval, between points
(xi, yi), (xi+l, It looks like the solid curve shown here. The dashed curves are other
cubic spline polynomials. It has this equation:

Thus, the cubic spline function we want is of the form

g(x) = g,(x) on the interval [xi, xi+l], for i = 0, 1, . . . , n - 1

and meets these conditions:

gi(xi) = yi, i = 0, 1 , . . . , n - 1 and g,-,(x,) = y,; (3.10a)

gi(xi+l) = gi+l(x,+l), i = 0, 1, . . . , n - 2; (3.10b)

g i (~ ~ + ~) = g~+l(x,,l), i = 0, 1, . . . , n - 2; (3.10~)

g y (~ ~ + ~) = g;+l(xi+,), i = 0, I , . . . , n - 2. (3.10d)

[Equation (3.10) says that the cubic spline fits to each of the points (3.10a), is continuous
(3.10b), and is continuous in slope and curvature (3 . 1 0 ~) and (3.10d), throughout the
region spanned by the points.]

If there are n + 1 points, the number of intervals and the number of gi(x)'s are n. Thus,
there are four times n unknowns, which are the {ai, bi, ci, di} for i = 0, 1, . . . , n - 1.
Equation (3.10a) immediately gives

3.3: Spline Curves 17 1

Equation (3.10 b) then gives

[In the last part of Eq (3.12), we used hi = (xi+l - xi), the width of the ith interval.]
To relate the slopes and curvatures of the joining splir~es, we differentiate Eq. (3.9):

gI(x) = 3ai(x - xJ2 + 2bi(x - xi) + ci, (3.13)

gy(x) = 6ai(x - xi) + 2bi, for i = 0 , 1, . . . , n - 1. (3.14)

Observe that the second derivative of a cubic is linear, so g"(x) is linear within [xi,
The development is simplified if we write the equations in terms of the second

derivative-that is, if we let Si = gM(xi) for i = 0 , 1, . . . , n - 1 and S, = gl_l (x,).
From Eqs. (3.10d) and (3.14), we have

Hence we can write

We substitute the relations for ai, bi, di given by Eqs. (3.1. I) , (3.15) and (3.16) into Eq. (3.9)
and then solve for ci:

We now invoke the condition that the slopes of the two cubics that join at (xi, yi) are the
same. For the equation in the ith interval, Eq. (3 . 1 0 ~) becomes, with x = xi,

In the previous interval, from xi- to xi, the slope at its right end will be

Chapter Three: Interpolation and Curve Fitting

Equating these, and substituting for a, b, c, d their relationships in terms of S and y, we get

Simplifying this equation, we get

i
hi_,Si-, + (2h,-, + 2hi)Sj +

= 6 (Yi+l - Y i - Yi - Yi-1

I hi h i - 1 (3.17)

The last part of Eq. (3.17) involves divided differences.
Equation (3.17) applies at each internal point, from i = 1 to i = n - 1, there being

n + 1 total points. This gives n - 1 equations relating the n + 1 values of Si. We get two
additional equations involving So and S, when we specify conditions pertaining to the end
intervals of the whole curve. To some extent, these end conditions are arbitrary. Four*
alternative choices are often used: Observe that the fourth end condition is "not a knot
condition."

1. Take So = 0 and S, = 0. This makes the end cubics approach linearity at their
extremities. This condition, called a natural spline, matches precisely to the
drafting device. This technique is used very frequently.

2. Another often used condition is to force the slopes at each end to assume spec-
ified values. When that information is not known, the slope might be estimated
from the points. Iff '(xo) = A and f '(x,) = B, we use these relations (note that
divided differences are employed):

At left end: 2hoSo + hoSl = 6 (f [x o , x,] - A).

At right end: h,-lSn-l + 2h,- lS, = 6(B - f [x,-~, x,]).

3. Take So = S,, SIZ = S,_,. This is equivalent to assuming that the end cubics
approach parabolas at their extremities.

4. Take So as a linear extrapolation from S1 and S2, and S, as a linear extrapola-
tion from S,-I and SnP2. Only this condition gives cubic spline curves that
match exactly to f (x) when f (x) is itself a cubic. For condition 4, we use these
relations:

*A fifth condition is sometimes encountered-a function is periodic and the data cover a full period. In this case,
So = S, and the slopes are also the same at the first and last points.

3.3: Spline Curves 173

SI - SO - SZ - S1 i(ho + hJS1 - hoS2
At left end: ------ - ------, S = - 0

ho hl h l

1 This is called ''not a knot condition.''

Relation 1, where So = 0 and S, = 0, is called a natural spline. It is often felt that this
flattens the curve too much at the ends; in spite of this, it is frequently used. Relation 4 fre-
quently suffers from the other extreme, giving too much curvature in the end intervals.
Probably the best end condition to use is condition 2, provided reasonable estimates of the
derivative are available.

If we write the equation of S1, S2, . . . , Sn-l [Eq. (3.17)] in matrix form, we get

In this matrix array there are only n - 1 equations, but n + 1 unknowns. We can eliminate
two unknowns (So and S,) using the relations that correspond to the end-condition assump-
tions. In the first three cases, this reduces the S vector to n - 1 elements, and the coefficient
matrix becomes square, of size (n - 1 X n - 1). Furthermore, the matrix is always tridiago-
nal (even in case 4), and hence is solved speedily and can be stored economically.

For each end condition, the coefficient matrices become

Condition 1 So = 0, S, = 0:
-

2(h0 + 4) h1

h1 2(h, + h,) h2

h2 2(h2 + h,) h3

1zne2 2(hn-2+ h n P L) -

Chapter Three: Interpolation and Curve Fitting

Condition 2 f ' (xo) = A and f '(x,) = B:

Condition 3 So = S,, Sn = S,-,:

- (ho + hl)(ho + 2hl) h: - hi
-

hl hl

hl 2(h, + h,) h2

h2 2(h2 + h,) h3

2 2
- 2 - - 1 (h,-1 + h,-l)(h,-, + 2hn-2)

hn-2 hn-2 - -
With condition after 4, solving the set of equations, we must compute So and Sn using

Eq. (3.18). For conditions 1, 2, and 3, no computations are needed. For each of the first
three cases, the right-hand-side vector is the same; it is given in Eq. (3.17). If the data are
evenly spaced, the matrices reduce to a simple form.

After the Si values are obtained, we get the coefficients ai, bi, cj , and di for the cubics in
each interval. From these we can compute points on the interpolating curve.

EXAMPLE 3.5 Fit the data of Table 3.6 with a natural cubic spline curve, and evaluate the spline values
g(0.66) and g(1.75). [The true relation is f(x) = 2 8 - x2.] We see that ho = 1.0, hl = 0.5,
and h2 = 0.75. The divided differences that we can use to get the right-hand sides of our
equations are f [O, 11 = 2.4366, f [I, 1.51 = 4.5536, and f [l S , 2.251 = 9.5995.

3.3: Spline Curves 175

Table 3.6

X f (4 12 -

0.0 2.0000 10 -
1 .O 4.4366
1.5 6.7134 8 -
2.25 13.9130

P

Figure 3.3

For a natural cubic spline, we use end condition 1 and solve

giving S1 = 2.2920 and S2 = 11.6518. (So = Sj = 0, uf course.) Using these S's, we com-
pute the coefficients of the individual cubic splines to asrive at

i Interval g ; (4

Figure 3.3 shows the cubic spline curve. (You should verify that these equations satisfy all
the conditions that were given for cubic spline curves.)

We use go to find g(0.66): It is 3.4659. (True = 3.4340)
We use g2 to find g(1.75): It is 8.7087. (True = 8.4467)
Some observations on this example: (a) We were given four points that define three

intervals, (b) on each of the three intervals a g(x) is defined, and (c) because each g has four
coefficients, we must evaluate 12 unknown coefficients. However, by introducing the S's,
we only had to solve two equations ! -

Using MATLAB

If you have access to MATLAB's spline toolbox, you can construct a spline curve that is
almost exactly the same as Figure 3.3 by

Chapter Three: Interpolation and Curve Fitting

EDU>> x = [0.0 1.0 1.5 2.251;
EDU>> y = [2.0 4.4366 6.7134 13.91391;

EDU>> cs = csapi (x, y);

EDU>> fnplt (cs) ; hold on; plot (x, y, 'or)

We can interpolate to get y-values from the spline at x = 0.66 and x = 1.75 by

EDU>> csapi (x, y, .66)

ans =

3.5115

EDU>> csapi (x, y, 1.75)
ans =

8.4994

which are not identical to those in Example 3.5. The reason is that MATLAB uses a different
end condition, called the "not a knot" end condition. (It is the same as condition 4.) The value
at x = 0.66 is less accurate but that at x = 1.75 is better. MATLAB has another command
that works the same and is avaliable from the student edition without the spline toolbox:

EDU>> yi = interpl (x, y, 0.66, 'spline')
yi =

3.5114

EDU>> yi = interpl(x, y, 1.75, 'spline')
yi =

8.4993

Mathernatica and Maple can get spline fits to data as well. Maple uses the natural cubic
spline.

Here is another example in which we compare using all four end conditions. The data
appear to be periodic. As a project, see if you can develop the equations and solve the
example for a periodic spline. (Is there much difference in interpolated values?)

EXAMPLE 3.6 The data in the following table are from astronomical observations of a type of variable
star called a Cepheid variable and represent variations in its apparent magnitude with time:

Time 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1.0

Apparent
magnitude 0.302 0.185 0.106 0.093 0.240 0.579 0.561 0.468 0.302

Use each of the four end conditions to compute cubic splines, and compare the values
interpolated from each spline function at intervals of time of 0.05.

The augmented matrices whose solutions give values for S1, S2, . . . , S7 are shown in
Table 3.7. A computer program was used to obtain the results shown in Table 3.8.

The results from the four end conditions between x = 0.2 and x = 0.8 are nearly identi-
cal; they differ by less than 0.001. Only in the end portions is there some difference.

3.3: Spline Curves 177

Table 3.7

Condition 1 Condition 2

Matrix coefficients are
- 0.60 0.10 - 1.23

0.10 0.40 0.10 3.96
0.10 0.40 0.10 9.60
0.10 0.40 0.10 11.52
0.10 0.40 0.10 -21.42
0.10 0.40 0.10 -4.50
0.10 0.60 - 0.60

Matrix coefficients are
- 0.40

0.20 0.60
0.10 0.40
0.10 0.40
0.10 0.40
0.10 0.40
0.10 0.40
0.10 0.60
0.10 0.40

Condition 3

-
Condition 4

Matrix coefficients are
- 0.80 0.10 - 1.23

0.10 0.40 0.10 3.96
0.10 0.40 0.10 9.60
0.10 0.40 0.10 11.52
0.10 0.40 0.10 -21.42
0.10 0.40 0.10 -4.50
0.10 0.80 - 0.60

Matrix coefficients are
- 1.20 -0.30 - 1.23
0.10 0.40 0.10 3.96
0.10 0.40 0.10 9.60
0.10 0.40 0.10 11.52
0.10 0.40 0.10 -21.42
0.10 0.40 0.10 -4.50

-0.30 1.20 - 0.60 -

Figure 3.4 shows the points for the four conditions from x = 0.0 to x = 0.2. Condition
4 gives values that are significantly different from the others.

Fitting Splines to a Hump

At the beginning of the section, it was pointed out that a function with a sharp rise from a
base line does not lend itself to being fitted with interpolating polynomials and that cubic
splines are preferred. The example function was f (x) = coslO(x) between x = -2 and
x = 2 (Fig. 3.la). Example 3.7 shows that a cubic spline gets a very good fit.

-
EXAMPLE 3.7 Fit cubic splines to f (x) = coslO(x) with knots at -2, - I , -0.5,0,0.5, 1, and 2. Figure 3.5

shows the points superimposed on the spline function, and Table 3.9 compares the values
from the splines with the true values for the function at several points. The agreement is
excellent. (The figure and table are on p. 179.)

Chapter Three: Interpolation and Curve Fitting

Table 3.8

Values, Values, Values, Values,
t condition 1 condition 2* condition 3 condition 4

* Note that in the values for condition 2 we used forward and backward differences to approximate the slope at either end of the
curve; that is, V'(O.0) = -0.585 and V'(l.O) = -0.830.

Figure 3.4

3.4: Bezier Curves and B-Spline Curves 179

Figure 3.5

ezier Curves and B-Spline Curves

In addition to the splines we have studied in the previous section, there are others that are
important. In particular, Bezier curves and B-splines are widely used in computer graphics
and computer-aided design. B-splines are often used to numerically integrate and differen-
tiate functions that are defined only through a set of data points. These two types of curves
are not really interpolating splines, because the curves do not normally pass through all of
the points. In this respect, they show some similarity to least-squares curves, which are dis-
cussed in a later section. However, both Bezier curves and B-splines have the important
property of staying within the polygon determined by the given points. We will be more
explicit about this property later. In addition, these two new spline curves have a nice

Table 3.9 A cubic spline fitted to the function f (x) = c o ~ ' ~ (x) , end condition A

x-value

- --

Spline value f (x) Error

Chapter Three: Interpolation and Curve Fitting

geometric property in that in changing one of the points we change only one portion of the
curve, a "local" effect. For the cubic spline curve of the previous section, changing just one
point has a "global" effect in that the entire curve from the first to the last point is affected.
Finally, for the cubic splines just studied, the points were given data points. For the two
curves we study in this section, the points in question are more likely "control" points that
we select to determine the shape of the curve we are working on.

For simplicity, we consider mainly the cubic version of these two curves. In what fol-
lows, we will express y = f (x) in parametric form. The parametric form represents a rela-
tion between x and y by two other equations, x = Fl(u), y = F2(u). The independent vari-
able u is called the parameter. For example, the equation for a circle can be written, with 8
as the parameter, as

x = r cos(O),

If we express x and y in terms of a parameter, u, the point (x, y) becomes (x(u), y(u)). We
will use this with values of the parameter u between 0 and 1.

We discuss Bezier curves first. Bezier curves are named after the French engineer
P. Bezier of the Renault Automobile Company. He developed them in the early 1960s to
fill a need for curves whose shape can be readily controlled by changing a few parameters.
Bezier's application was to construct pleasing surfaces for car bodies.

Suppose we are given a set of control points, pL = (xi, yi), i = 0, 1, . . . , n. (These points
are also referred to as Bezier points.) Figure 3.6 is an example.

These points could be chosen on a computer screen, using a pointing device. The points
do not necessarily progress from left to right. We treat the coordinates of each point as a
two-component vector,

The set of points, in parametric form, is

The nth-degree Bezier polynomial determined by n + 1 points is given by

Figure 3.6

3.4: Bezier Curves and B-Spline Curves 18 1

1 where
n!

i!(n - i)! '

P(u) is actually a Bernstein polynomial. Bernstein showed in 1912 that a weighted sum of
these polynomials will converge uniformly to any contir~uous function on the interval [O,
11 as n approaches infinity. (Maple knows the Bernstein polynomials. The command is in
a library: 'bernstein' .)

When n = 2, P(u) is a quadratic equation defined by three points, po, p,, and y2:

because, for n = 2 and i = 0, 1,2, we have (i) = 1, (f) = 2, (i) = 1. The preceding equa-
tion represents the pair of equations

Observe that, if u = 0, x(0) is identical to xo and similarly for y(0). If u = 1, the point
referred to is (x2, y2). AS u takes on values between 0 and 1, a curve is traced that goes from
the first point to the third of the set. Ordinarily the curve will not pass through the central
point of the three. (If the points are collinear, the curve is the straight line through them
all.) In effect, the points of the second-degree Bezier curve have coordinates that are
weighted sums of the coordinates of the three points that are used to define it. From
another point of view, one can think of the Bezier equations as weighted sums of three
polynomials in u, where the weighting factors are the coordinates of the three points.

In one of the exercises, you are to find the Bezier curve for seven points, with (x(O),
~ (0)) = Po, (~ (~ 1 , Y (~)) = P3' and (~ (~ 1 , Y (~)) = Pfj.

Applying the general defining equation for n = 3, we get the cubic Bezier polynomial
that we now consider in some detail. The properties of other Bezier polynomials are the
same as for the cubic. Here is the Bezier cubic:

Observe again that (x(O), y(0)) = po and (x (l) , y(1)) = p3, and that the curve will not
ordinarily go through the intermediate points. As illustrated in the example curves in
Figure 3.7, changing the intermediate "control" points changes the shape of the curve. The

182 Chapter Three: Interpolation and Curve Fitting

' 9 4

(4
Figure 3.7
Bezier curves defined by four and seven points

3.4: Bezier Curves and B-Spline Curves 183

examples are in Figure 3.7a through e. The first three of these show Bezier curves defined
by one group of four points.

Figure 3.7d and e demonstrate how cubic Bezier curves can be continued beyond the
first set of four points; one just subdivides seven points (po to p6) into two groups of four,
with the central one (p,) belonging to both sets. Figure 3.7e shows that p2, p,, andp4 must
be collinear to avoid a discontinuity in the slope at p,.

It is of interest to list the properties of Bezier cubics:

1. P(0) = Po, P(l) = p,.
2. Because dxldu = 3(x1 - xo) and dyldu = 3(yl - yo) at u = 0, the slope of the

curve at u = 0 is dy lh = b1 - yo)l(xl - xo), which is the slope of the secant
line between po and p l . Similarly, the slope at u = 1 is the same as the secant
line between the last two points. This is indicated in the figures by dashed
lines.

3. The Bezier curve is contained in the convex hull determined by the four points.

The convex hull of a set of points is the smallest convex set that contains the points. A
set, C, is convex if and only if the line segment between any two points in the set lies
entirely in set C. The following sketches show examples of the convex hull of four points.

It is often convenient to represent the Bezier curve In matrix form. For Bezier cubics,
this is

Mathematics can draw Bezier curves as well as the splines of the previous section. In
what follows, the first command defines some x, y pairs, the second invokes a graphics
package. One must be sure to use back quotes in this. Then, in [3], a spline curve is set up
which is displayed by [4].

Chapter Three: Interpolation and Curve Fitting

C{l,l}, {2,4}, {3,3}, 14,4}}
In[2] : =

<<Graphics 'Spline'

In[3] : =

splin = Spline [spdata, cubic1

Out [3] : =

spline[{{l,l}, i2,4), {3,3}, {4,4}},Cubic,<>l
In[4] : =

Show{Graphics[{Line[spdatal,splin}ll

We use the same data to draw a Bezier curve:

In[51 : =

Show [Graphics [{Line [spdata] , Spline [spdata, ~ezierl }I 1

B-Spline Curves

We now discuss B-splines. These curves are like Bezier curves in that they do not ordinar-
ily pass through the given data points. (The least-squares curves that are described in
Section 3.6 are similar in this respect.) They can be of any degree, but we will concentrate
on the cubic form. Cubic B-splines resemble the ordinary cubic splines of the previous sec-
tion in that a separate cubic is derived for each pair of points in the set. However, the
B-spline need not pass through any points of the set that are used in its definition.

3.4: Bezier Curves and B-Spline Curves 185

We begin the description by stating the formula for a cubic B-spline in terms of para-
metric equations whose parameter is u.

Given the points p i = (xi, yi), i = 0, 1, . . . , n, the cubic B-spline for the interval
(pi,pi+,), i = l , 2 , . . . , n - 1,is

2

Bi(u) = 2 bkpi+k, where
k = - l

As before, pi refers to the point (xi, yi); it is a two-ctomponent vector. The coefficients,
the bk's, serve as a basis and do not change as we move from one set of points to the next.
Observe that they can be considered weighting factors applied to the coordinates of a set of
four points. The weighted sum, as u varies from 0 to 1, generates the B-spline curve.

If we write out the equations for x and y from Eq. (3.19), we get

Note the notation here: xi(u) and yi(u) are functions (of u) and xi, yi are components of the
point p. (The end portions are a special situation that we discuss later.)

As we have said, the u-cubics act as weighting factors on the coordinates of the four
successive points to generate the curve. For example, at u = 0, the weights applied are 116,
213, 116, and 0. At u = 1, they are 0, 116, 213, and 116. These values vary throughout the
interval from u = 0 to u = 1. As an exercise, you are asked to graph these factors. This
will give you a visual impression of how the weights change with u.

Let us now examine two B-splines determined from a set of exactly four points.
Figure 3.8a and b shows the effect of varying just one of the points. As you would expect,
whenp2 is moved upward and to the left, the curve tends to follow; in fact, it is pulled to the
opposite side of p,. You may be surprised to see that the curve is never very close to the two

Chapter Three: Interpolation and Curve Fitting

Figure 3.8

intermediate points, though it begins and ends at positions somewhat adjacent. It will be
helpful to think of the curve generated from the defining equation for B1 as associated with
a curve that goes from nearpl top2. It is also helpful to remember that points po, pl, p,, and
p3 are used to get B1.

Because a set of four points is required to generate only a portion of the B-spline, that
associated with the two inner points, we must consider how to get the B-spline for more
than four points as well as how to extend the curve into the region outside of the middle
pair. We use a method analogous to the cubic splines of Section 3.3 marching along one
point at a time, forming new sets of four. We abandon the first of the old set when we add
the new one.

The conditions that we want to impose on the B-spline are exactly the same as for ordi-
nary splines: continuity of the curve and its first and second derivatives. It turns out that the
equations for the weighting factors (the u-polynomials, the 6,) are such that these require-
ments are met. Figure 3.9 shows how three successive parts of a B-spline might look.

We can summarize the properties of B-splines as follows:

/ 1. Like the cubic splines of Section 3.4, B-splines are pieced together so they
i

i agree at their joints in three ways:

c. BY(1) = BY+l,l(0) = p i - 2pi+l + pi+,.

The subscripts here refer to the portions of the curve and the points in Figure 3.9.

2. The portion of the curve determined by each group of four points is within the
convex hull of these points.

3.4: Bezier Curves and B-Spline Curves 187

Figure 3.9
Successive B-splines joined together

Now we consider how to generate the ends of the joined B-spline. If we have points
from po top,, we already can constmct B-splines B1 through B,z-2 We need Bo and
Our problem is that, using the procedure already defined, we would need additional points
outside the domain of the given points. We probably also want to tie down the curve in
some way -having it start and end at the extreme points of the given set seems like a good
idea. How can we do this?

First, we can add more points without creating artifiiciality by making the added points
coincide with the given extreme points. If we add not just a single fictitious point at each
end of the set, but two at each end, we will find that the new curves not only join properly
with the portions already made, but start and end at the extreme points as we wanted. (It
looks like we have added two extra portions, but reflection shows these are degenerate,
giving only a single point.)

In summary: We add fictitious points P - ~ , P - ~ , P,+~, and^^+^, with the first two iden-
tical withp, and the last two identical withp,. (There are other methods to handle the start-
ing and ending segments of B-splines that we do not cover.)

The matrix formulation for cubic B-splines is helpful. Here it is:

This applies on the interval [0, 11 and for the points (pi, pi+ ,).

Chapter Three: Interpolation and Curve Fitting

B-splines differ from Bezier curves in three ways:

1. For a B-spline, the curve does not begin and end at the extreme points.

2. The slopes of the B-splines do not have any simple relationship to lines drawn
between the points.

3. The endpoints of the B-splines are in the vicinity of the two intermediate given
points, but neither the x- nor the y-coordinates of these endpoints normally
equal the coordinates of the intermediate points.

An algorithm for drawing a B-spline curve is as follows:

Given a set of n + 1 points, Pi = (xp yi), i = 0, . . . , n:

Set p-, = p P l = po.
- set^,,^ = P,+z - P,

For i = 0 To n Step 1 Do
For u = [O, . . . , 11
Compute

x(u) = (1 - u) ~ ~ , - ~ / 6 + (3u3 - 6u2 + 4)x2/6
+ (-3u3 + 3u2 + 3u + I) ~ , + ~ / 6 + u ~ x , + ~ / ~ .

y(u) = (1 - ~) ~ y , _ , / 6 + (3u3 - 6u2 + 4)yj6
+ (-3u3 + 3u2 + 3u + 1)y,+l/6 + u3yif2/6.

Plot (x(u), y(u)
End For u.

End For i.

We conclude this section by looking at several examples of B-splines. The five parts of
Figure 3.10 show B-splines that are defined by the same sets of points as the Bezier curves
in Figure 3.7. (Fictitious points have been added to complete the end portions of these
B-splines.) There are significant differences.

3.5 Interpolating on a Surface

In the opening of this chapter, we mentioned an interpolation problem that is faced by the
National Weather Service, that of interpolating from scattered data to get values at points
on a uniform grid. (The chapter on partial-differential equations will tell why this is

3.5: Interpolating on a Surface 189

Figure 3.10

Chapter Three: Interpolation and Curve Fitting

important.) This very multidimensional problem is not an easy one. We begin therefore
with the simpler case where data values, z = f (x, y), are taken from a table that has the
independent variables, x and y, spaced uniformly.

When a function z is a polynomial function* of two variables x and y-say, of
degree-3 in x and degree-2 in y - we would have

Such a function describes a surface; (x, y, z) is a point on it. The functional relation is seen
to involve many terms. If we are concerned with four independent variables (three space
dimensions plus time, say), even low-degree polynomials would be quite intractable.
Except for special purposes, such as when we need an explicit representation, perhaps to
permit ready differentiation at an arbitrary point, we can avoid such complications by han-
dling each variable separately. We will treat only this case.

Note the immediate simplification of Eq. (3.21) if we let y take on a constant value, say,
y = c. Combining they factors with the coefficients, we get

This suggests that we can interpolate for z at (x, y) = (a, b) by holding one of the indepen-
dent variables constant, say, y = yl, making a table in which there is only one independent
variable, x. Any procedure that we have explained previously can then be used. We can
repeat this at other values for y, y = y2, ys, . . . , y, so that we develop a table for z at x = a
and various y-values. From this we interpolate for y = b.

Example 3.8 illustrates this attack.

EXAMPLE 3.8 Estimate f(l .6, 0.33) from the values in Table 3.10. Use quadratic interpolation in the
x-direction and cubic interpolation for y. We select one of the variables to hold constant,
say, x. (This choice is arbitrary because we would get the same result, except for
differences due to round off, if we had chosen to hold y constant.) We decide to interpolate

Tabk 3.10 Tabulation of a function of two variables z = f (x, y)

* We approximate a nonpolynomial function by a polynomial that agrees with the function, just as we have done
with a function of one variable.

3.5: Interpolating on a Surface 19 1

Table 3.11 Tabulations at three x-values - --

for y within the three rows of the table at x = 1.0, 1.5, and 2.0, because the desired value at
x = 1.6 is most nearly centered within this set. We choose y-values of 0.2,0.3, 0.4, and 0.5
so that y = 0.33 is centralized.

Because the x-values are evenly spaced, we elect to use Newton-Gregory forward poly-
nomials. Table 3.1 1 shows the ordinary differences that we need.

We need the subtables from y = 0.2 to y = 0.5, because, for a cubic interpolation, four
points are required. Using any convenient formula (remember that all cubics that agree at
four points are identical), we get Table 3.12. In the last tabulation we carry one extra deci-
mal to guard against round-off errors. Interpolating again, we get z = 1.8406, which we
report as z = 1.841.

The function tabulated in Table 3.10 is f(x, y) = eX sin y + y - 0.1, so the true value is
f(1.6, 0.33) = 1.8350. Our error of 0.0056 occurs because quadratic interpolation for x is
inadequate in view of the large second difference. In retrospect, it would have been better
to use quadratic interpolation for y, because the third differences of the y-subtables are
small, and let x take on a third-degree relationship. (You may want to verify that this
reduces the error to 0.0022.)

Table 3.12 Tabulation at y = 0.33

Chapter Three: Interpolation and Curvc Fitting

It is instructive to observe which of the values in Table 3.10 entered into our computa-
tion. The shaded rectangle covers these values. This is the "region of fit" for the interpo-
lating polynomial that we have used. The principle of choosing values so that the point at
which the interpolating polynomial is used is centered in the region of fit obviously applies
here in exact analogy to the one-way table situation. It also applies to tables of three and
four variables in the same way. Of course, the labor of interpolating in such multidimen-
sional cases soon becomes burdensome.

A rectangular region of fit is not the only possibility. We may change the degree of
interpolation as we subtabulate the different rows or columns. Intuitively, it would seem
best to use higher-degree polynomials for the rows near the interpolating point, decreasing
the degree as we get farther away. The coefficient of the error term, when this is done, will
be found to be minimized thereby, although for multidimensional interpolating polynomi-
als the error term is quite complex. The region of fit will be diamond-shaped when such
tapered degree functions are used.

We may adapt the Lagrangian form of interpolating polynomial to the multidimensional
case also. It is perhaps easiest to employ a process similar to the preceding example.
Holding one variable constant, we write a series of Lagrangian polynomials for interpola-
tion at the given value of the other variable, and then combine these values in a final
Lagrange form. The net result is a Lagrangian polynomial in which the function factors are
replaced by Lagrangian polynomials. The resulting expression for the previous example
would be

The equation is easy to write, but its evaluation by hand is laborious. If one is writing a
computer program for interpolation in such multivariate situations, the Lagrangian form is

3.5: Interpolating on a Surface 193

recommended. There is a special advantage in that equal spacing in the table is not
required. The Lagrangian form is also perhaps the most straightforward way to write out
the polynomial as an explicit function.

When the given points are not evenly spaced, Lagraingian polynomials or the method
of divided differences should be used for interpolation. With the latter, exactly the same
principle is involved: Hold one variable constant while snbtables of divided differences
are constructed, then combine the interpolated values from these subtables into a
new table.

Parallel processing can save many time steps in the preceding computations. Each value
in the column of differences of Tables 3.11 and 3.12 can be computed at the same time.
(We must wait for the interpolations from Table 3.11 to be completed before we do Table
3.12, of course.) Every factor of Eq. (3.22) can be evaluated in parallel.

Interpolation for the Weather Service

Here is a simplified form of interpolation that might be used to estimate a predicted value
for the temperature at a grid point from data from weather stations located in its neighbor-
hood. Suppose that the stations where the temperature is known are as in Table 3.13. The
coordinates of the known temperatures are relative to our desired grid point (so the origin
is there). Because weather comes generally from the vvest, the data from stations in that
direction are given double weight. One way to give them this weight is to consider them to
be duplicated.

If these data were to be entered into a table like Table 3.9, we would find entries only
along the diagonal, so we cannot solve this in the same manner as Example 3.8. Still, all
methods for interpolation are really finding a weighted average of data. [Examination of
Eq. (3.1) shows this clearly; the ratios of x-values are weights applied to thef-values.] So
this simplified weather problem gets the predicted temperature at the grid point [coordi-
nates of (0, O)] by

The Weather Service must have more sophisticated ways of doing this.

Table 3.13 Temperature data at weather stations --
Station 1: Coordinates: - 14.2,25.6, Temperature 56°F
Station 2: Coordinates: -22.7, - 12.1, Temperature 62°F
Station 3: Coordinates: -33.6,-2.5, Temperature 59°F
Station 4: Coordinates: 4.7, -8.3, Temperature 64°F
Station 5: Coordinates: 13.4, 15.7, Temperature 61°F

194 Chapter Three: Interpolation and Curve Fitting

Using Cubic Splines, Bezier Surfaces,
and B-Spline Surfaces

Another alternative is to use cubic splines for interpolation in multivariate cases. Here
again, it is perhaps best to hold one variable constant while constructing one-way splines,
then combine the results from these in the second phase. The computational effort would
be significant, however.

Interpolating for values of functions of two independent variables can also be thought
of as constructing a surface that is defined by the given points. Rather than finding values
on a surface that contains the given points, we can construct surfaces that are analogous to
Bezier curves and B-spline curves where the surface does not normally contain the given
points.

So far, we have been able to interpolate on simple surfaces where we are given z as a
function of x and y. Suppose now we are given a set of points, pi = {(x,, y,, z,), i = 0, . . . ,
n}, and we wish to fit a surface to those points. This would be the case if we were trying to
draw a mountain, an airplane, or a teapot. But first we consider the representation of more
general surfaces. Letp = (x, y, z) be any point on the surface. Then the coordinates of each
point are represented as the equations

X = X(U, v),

where u, v are the independent variables that range over a given set of values and x, y, z
are the dependent variables. This is a slight change of notation from the first part of this
section.

An example of this would be the equations of a sphere of radius r about the origin:
(0, 0,O). Here any point on the surface of the sphere is given by

where u ranges in value from 0 to 2~ and v ranges from 0 to T. Figure 3.1 1 illustrates this.
MATLAB can interpolate on a surface, z = f(x, y). One of four methods can be speci-

fied: 'nearest,' 'linear,' 'cubic,' and 'spline.' The 'linear' method is the default. The meth-
ods do interpolations in the following ways:

'nearest'-nearest neighbor interpolation

'linear' -bilinear interpolation

'cubic' - bicubic interpolation

'spline' -spline interpolation

Here is an example that uses a known function: z = 2xy + e(lc-y), so we can see how good
the interpolated results are. We will estimate ~(1.7, 2.0).

3.5: Interpolating on a Surface 195

Figure 3.1 1

We begin by creating a table of z-values for a set of x-values: x = [O, 1.2, 2.5, 2.91 with
y = [O, 0.9, 1.8, 3.21. We will get a matrix of z-values in a very simple way-we first
define the y-vector and compute rows of the table in turn for each x-value.

EDU>> 2 2 = 2*x*y + exp (x - y)
22 =

3.3201 3.5099 4.8688 7.8153

Chapter Three: Interpolation and Curve Fitting

Now we join these to get a matrix of z-values:

EDU>> z = [z l ; 2 2 ; 2 3 ; z 4]

z =

1 . 0 0 0 0 0 . 4 0 6 6 0 . 1 6 5 3 0 . 0 4 0 8

3 . 3 2 0 1 3 . 5 0 9 9 4 . 8 6 8 8 7 . 8 1 5 3

1 2 . 1 8 2 5 9 . 4 5 3 0 1 1 . 0 1 3 8 1 6 . 4 9 6 6

1 8 . 1 7 4 1 1 2 . 6 0 9 1 1 3 . 4 4 4 2 1 9 . 3 0 0 8

We need the x-values in a vector:

EDU>> x = [0 1 . 2 2 . 5 2 . 9 1

X =

0 1 . 2 0 0 0 2 . 5 0 0 0 2 . 9 0 0 0

and we are ready to do the interpolation. First, using the 'linear' method (the default
method):

EDU>> z i l = i n t e r p 2 (x , y , z , 1 . 7 , 2 . 0)

z i l =

1 0 . 4 6 4 3

which does not match well to the correct value of z = 7.5408. Will the cubic interpolant be
better?

EDU>> z i c = i n t e r p 2 (x , y , z , l . 7 , 2 . 0 , ' c u b i c ')
z i c =

9 . 0 9 7 8

which is better but still not very good. We would get results closer to the true value if th
table were more closely spaced. A plot of the function shows that the z-values change
rapidly at (x, y) = (1.7, 2.0).

Creating a B-Spline Surface

We now describe constructing a B-spline surface. [A most interesting and informative
description of Bezier surfaces can be found in Crow (1987). See also Pokorny and
Gerald (1989).]

From the previous section, we know that a cubic B-spline curve segment starting near
the point pi to near the point is determined by the four points

3.5: Interpolating on a Surface 197

wherepJu) = (xi(u), yi(u)) in two dimensions, or pi(u) == (xi(u), yi(u), zi(u)) if we had been
working in three dimensions. The segment was then extended by introducing pi+3, deleting
pi- l, and generating the curve for 0 5 u 5 1.

The process is continued until we have BnP2. Finally, the first and last segments are gener-
ated by starting with po, po, po, pl and ending with pn- pn, pn, pn.

In an analogous manner the interpolating B-spline surface patch depends on 16 points,
as Figure 3.12 shows. Here p i , = yij. qy), a point in E ~ . This patch is generated
by computing the points pi,j (u, v), for 0 5 u 5 1 and 0 2; v 5 1. Here we have changed the
subscripts on the points p i j SO as to fit into matrix notation.

For simplicity, we will consider only the x-coordinate in detail. Comparable formula-
tions hold for the y- and 2-coordinates. The simplest formulation for x&u, v) is based on the
matrix formulation of Eq. (3.20) and is given by

rv31

where Xi,j is the 4 X 4 matrix

x;-],j xi-l,j+l xi -1 , j+2

Xi , j xi,j+l X i , j + 2

xi+l,j-1 xi+l,j X i + l , j + l X i + l , j + 2

xi+2,j-l X i + 2 , j X i + 2 , j + l X i + 2 , j + 2

Figure 3.12

Chapter Three: Interpolation and Curve Fitting

which are just the x-coordinates of the 16 points of Figure 3.12. The matrix Mb is the
matrix we saw before in Eq. (3.20)

The y and z equations are then obtained merely by substituting the corresponding matrices
Yij and Zi,? which are formed from they and z components of the 16 points. Because each
of these equations is cubic in u and v, they are referred to as bicubic equations. The
coordinates of the points on a patch are given by

as u and v range between 0 and 1. It is easily verified that the weights applied to each of the
16 points are

I: ': :I At piJj(u, v) (for u = 0, v = O), and

where each (i, j)th element is the coefficient for the corresponding point in Figure 3.12. In
effect, these matrices are templates that overlay the points shown in Figure 3.12.

The surface patch is extended by adding another row or column of points and deleting a
corresponding row or column of points. One should verify that the current and previous
patches are connected smoothly along the edge where they join. An initial or final patch
can be obtained by repeating a corner, as was suggested for the B-spline curve. This will
ensure that the patch actually starts or ends at a point. For the surface, we would repeat a
point nine times, instead of three times as was done for the curve.

For a more detailed and informative discussion of interpolating curves and surfaces, the
reader should consult Pokorny and Gerald (1989).

3.6: Least-Squares Approximations 199

3.6 Least-Squares Approximations

Until now, in this chapter we have assumed that the data are accurate, but when these values
are derived from an experiment, there is some error in the measurements. This section
explains the usual method of treating such inaccurate dat,a. We begin with a simple example.
Some students are assigned to find the effect of temperature on the resistance of a metal
wire. They have recorded the temperature and resistance values in a table and have plotted
their findings, as seen in Figure 3.13. The graph suggest a linear relationship. If so, then

and values for the parameters, a and b, can be obtained from the plot.
If someone else were given the data and asked to draw the line, it is not likely that they

would draw exactly the same line and they would get d!fferent values for a and b.
We would like a way of fitting a line to experimental data that is unambiguous and that,

in some sense, minimizes the deviations of the points firom the line. The usual method for
doing this is called the least-squares method. The deviations are determined by the dis-
tances between the points and the line. How these distances are measured depends on
whether there are experimental errors in both variables or in just one of them.

In analyzing the data from the students' experiments, we will assume that the tempera-
ture values are accurate and that the errors are only in the resistance numbers; we then will
use the vertical distances. (If both measurements were in error, we might use the perpen-
dicular distances and would modify the following. If this is done, the problem becomes
more complicated. We treat only the simpler case.)

We might first suppose we could minimize the deviations by making their sum a mini-
mum, but this is not an adequate criterion. Consider the case of only two points (Fig. 3.14).

I J r T, oc R, ohms

700 i
I I I I X

20 40 60 80 100
Temperature, ' (2

Figure 3.13

Chapter Three: interpolation and Curve Fitting

Figure 3.14 Figure 3.15

Obviously, the best line passes through each point, but any line that passes through the
midpoint of the segment connecting them has a sum of errors equal to zero.

Then what about making the sum of the magnitudes of the errors a minimum? This also
is inadequate, as the case of three points shows (Fig. 3.15). Assume that two of the points
are at the same x-value (which is not an abnormal situation, as frequently experiments are
duplicated). The best line will obviously pass through the average of the duplicated tests.
However, any line that falls between the dotted lines shown will have the same sum of the
magnitudes of the vertical distances. We wish an unambiguous result, so we cannot use
this as a basis for our work.

We might accept the criterion that we make the magnitude of the maximum error a min-
imum (the so-called minimax criterion), but for the problem at hand this is rarely done.
This criterion is awkward because the absolute-value function has no derivative at the ori-
gin, and it also is felt to give undue importance to a single large error. The usual criterion
is to minimize the sum of the squares of the errors, the "least-squares" principle.*

In addition to giving a unique result for a given set of data, the least-squares method is
also in accord with the maximum-likelihood principle of statistics. If the measurement
errors have a so-called normal distribution and if the standard deviation is constant for all
the data, the line determined by minimizing the sum of squares can be shown to have val-
ues of slope and intercept that have maximum likelihood of occurrence.

Let Yi represent an experimental value, and let yi be a value from the equation

yi = axi + b,

where xi is a particular value of the variable assumed to be free of error. We wish to deter-
mine the best values for a and b so that the y's predict the function values that correspond
to x-values. Let ei = Yi - yi. The least-squares criterion requires that

* The various criteria for a "best fit" can be described by minimizing a norm of the error vector. Relate each
criterion to its corresponding vector norm to review the definition of such norms.

3.6: Least-Squares Approximations 201

be a minimum. N is the number of (x, Y)-pairs. We reach the minimum by proper choice of
the parameters a and b, so they are the "variables" of the problem. At a minimum for S, the
two partial derivatives dSlda and &Slab will both be zerlo. Hence, remembering that the xi
and Yi are data points unaffected by our choice of values for a and b, we have

Dividing each of these equations by -2 and expanding the summation, we get the so-
called normal equations

All the summations in Eq. (3.25) are from i = 1 to i = N. Solving these equations simulta-
neously gives the values for slope and intercept a and b.

For the data in Figure 3.13 we find that

Our normal equations are then

From these we find a = 3.395, b = 702.2, and hence write Eq. (3.24) as

MATLAB gets a least-squares polynomial with its 'polyfit' command, the same one that
fits an interpolating polynomial to data defined in vectors x and y:

e q x p o l y f i t (x, y , N)

When the numbers of points (the size of x) is greater than the degree plus one, the polyno-
mial is the least squares fit. So, to solve for the equation for the least squares line with the
data of Figure 3.13, we do

EDU>> x = [20.5 32.7 51.0 73.2 95.71;
EDU>> y = [765 826 873 942 10321 ;

EDU>> eq = polyfit (x , y, 1)
eq =

3.3949 702.1721

which give us the coefficients of the equation with somewhat more precision.

202 Chapter Three: Interpolation and Curve Fitting

Nonlinear Data

In many cases, of course, data from experimental tests are not linear, so we need to fit to
them some function other than a first-degree polynomial. Popular forms that are tried are
the exponential form

We can develop normal equations for these analogously to the preceding development
for a least-squares line by setting the partial derivatives equal to zero. Such nonlinear
simultaneous equations are much more difficult to solve than linear equations. Thus, the
exponential forms are usually linearized by taking logarithms before determining the
parameters:

lny = Ina f b l n x

In y = In a + bx.

We now fit the new variable z = In y as a linear function of In x or x as described earlier.
Here we do not minimize the sum of squares of the deviations of Y from the curve, but
rather the deviations of In Y. In effect, this amounts to minimizing the squares of the per-
centage errors, which itself may be a desirable feature. An added advantage of the lin-
earized forms is that plots of the data on either log-log or semilog graph paper show at a
glance whether these forms are suitable by whether a straight line represents the data when
so plotted.

In cases when such linearization of the function is not desirable, or when no method of
linearization can be discovered, graphical methods are frequently used; one merely plots the
experimental values and sketches in a curve that seems to fit well. Special forms of graph
paper, in addition to log-log and semilog, may be useful (probability, log-probability, and so
on). Transformation of the variables to give near linearity, such as by plotting against
Ilx, ll(ax + b), 1/x2, and other polynomial forms of the argument may give curves with
gentle enough changes in slope to allow a smooth curve to be drawn. S-shaped curves are
not easy to linearize; the Gompertz relation

y = ab'

is sometimes employed. The constants a, b, and c are determined by special procedures.
Another relation that fits data to an S-shaped curve is

In awkward cases, subdividing the region of interest into subregions with a piecewise fit in
the subregions can be used.

The objection to the graphical technique is its lack of uniqueness. Two individuals will
usually not draw the same curve through the points. One's judgment is frequently distorted

3.6: Lcast-Squares Approximations 203

by one or two points that deviate widely from the remaining data. Often one tends to pay
too much attention to the extremities in comparison to the points in the central parts of the
region of interest.

Further problems are caused if we wish to integrate or differentiate the function. Our
discussion of least-squares polynomials is one solution to these difficulties.

Least-Squares Polynolmials

Because polynomials can be readily manipulated, fitting such functions to data that do not
plot linearly is common. We now consider this case. It will turn out that the normal
equations are linear for this situation, which is an added advantage. In the development, we
use n as the degree of the polynomial and N as the number of data pairs. Obviously, if
N = n + 1, the polynomial passes exactly through each point and the methods discussed
earlier in this chapter apply, so we will always have N > n + 1 in the following.

We assume the functional relationship

with errors defined by

We again use Yi to represent the observed or experimental value corresponding to xi, with
xi free of error. We minimize the sum of squares,

At the minimum, all the partial derivatives dslda,, a s l d a , , . . . , d S / d a , vanish. Writing the
equations for these gives n + 1 equations:

Dividing each by -2 and rearranging gives the n + I normal equations to be solved
simultaneously:

Chapter Three: Interpolation and Curve Fitting

Putting these equations in matrix form shows an interesting pattern in the coefficient
matrix.

All the summations in Eqs. (3.27) and (3.28) run from 1 to N. (We will let B stand for the
coefficient matrix.)

Equation (3.28) represents a linear system; how this can be solved was covered in
Chapter 2. However, you need to know that this system is ill-conditioned and round-off
errors can distort the solution: the a's of Eq. (3.26). Up to degree-3 or -4, the problem is not
too great. Special methods that use orthogonal polynomials are a remedy. We do not pur-
sue this because degrees higher than 4 are used very infrequently. It is often better to fit a
series of lower-degree polynomials to subsets of the data.

Matrix B of Eq. (3.28) is called the normal matrix for the least-squares problem. There
is another matrix that corresponds to this, called the design matrix. It is of the form

It is easy to show that AAT is just the coefficient matrix of Eq. (3.28). It is also easy to see
that Ay, where y is the column vector of Y-values, gives the right-hand side of Eq. (3.28)
(You ought to try this for, say, a 3 X 3 case to reassure yourself.) This means that we can

3.6: Least-Squares Approximations 205

rewrite Eq. (3.28) in matrix form, as

AATa = Ba = Ay.

We can use Gaussian elimination to solve the system (but only for low-degree polynomi-
als). However, because B has special properties, anothe,r method can be used that avoids
the problem of ill-conditioning.

1. The matrix B = is symmetric and positive definite. An n X n matrix, M, is said
to be positive semidefinite if, for every n-component vector, xTMx 2 0. If we add the
condition that x T ~ x = 0 only if x is the zero vector, M is said to be positive definite.
(You should show that B is positive definite and symmetric.)

2. In linear algebra, it is shown that B can be diagonalized by an orthogonal matrix P:

where the diagonal elements of D are the eigenvalues of B. Note that orthogonality
implies that PPT = I, the identity matrix.

3. B is positive definite, so all of its eigenvalues are nonnegative. This means that we
can define a matrix S as

The diagonal elements of S are called the singular values of A.
4. We can rewrite Eq. (3.28) and its solution as follows:

AATa = PTDPa = (SP)~(SP)I~ = Ay,

a = P ~ D - ~ P A ~ .

This last eliminates having to multiply out AAT and, by extending this approach, leads to
an important method for solving Eq. (3.28) called singular-value decomposition. [See
Press, Numerical Recipes (1992) on this topic.]

MATLAB has a command ' (U , S , V] = svd (A) ' that computes the singular value
decomposition of matrix A. The combination U * S * v is equal to A and the singular val-
ues of A are on the diagonal of S. Mathematica can do th~e same. (When A is symmetric and
semidefinite, the singular values are the eigenvalues.) We do not pursue this idea further.

We illustrate the use of Eqs. (3.27) to fit a quadratic to the data of Table 3.14. Figure 3.16
shows a plot of the data. (The data are actually a perturbation of the relation y = 1 - x + 0.2x2.

Table 3.14 Data to illustrate curve fitting -

Chapter Three: Interpolation and Curve Fitting

Figure 3.16

It will be of interest to see how well we approximate this function.) To set up the normal
equations, we need the sums tabulated in Table 3.14. The equations to be solved are:

The result is a. = 0.998, al = - 1.018, a2 = 0.225, so the least squares method gives

which we compare to y = 1 - x + 0.2x2. Errors in the data cause the equations to differ.

Use of Orthogonal Polynomials

We have mentioned that the system of normal equations for a polynomial fit is ill-
conditioned when the degree is high. Even for a cubic least-squares polynomial, the condi-
tion number of the coefficient matrix can be large. In one experiment, [Atkinson (1985),
p. 2631 a cubic polynomial was fitted to 21 data points. When the data were put into the coef-
ficient matrix of Eq. (3.28), its condition number (using 2-norms) was found to be 22,000!
This means that small differences in the y-values will make a large difference in the solution.
In fact, if the four right-hand-side values are each changed by only 0.01 (about 0.1%), the
solution for the parameters of the cubic were changed significantly, by as much as 44%!

3.6: Least-Squares Approximations 207

However, if we fit the data with orthogonal polynomials* such as the Chebyshev poly-
nomials that are described in the next chapter, the condition number of the coefficient
matrix is reduced to about 5 and the solution is not much affected by the perturbations. We
will postpone further discussion of orthogonal polynomials.

at Degree of Polynomial Should

In the general case, we may wonder what degree of polynomial should be used. As we use
higher-degree polynomials, we of course will reduce the deviations of the points from the
curve until, when the degree of the polynomial, n, equals N - 1, there is an exact match
(assuming no duplicate data at the same x-value) and we have an interpolating polynomial.
The answer to this problem is found in statistics. One increases the degree of approximat-
ing polynomial as long as there is a statistically significant decrease in the variance, 9,
which is computed by

For the preceding example, when the degree of the polynomial made to fit the points is
varied from 1 to 7, we obtain the results shown in Table 3.15.

The criterion of Eq. (3.29) chooses the optimal degree as 2. This is no surprise, in view
of how the data were constructed. It is important to realiz,e that the numerator of Eq. (3.29),
the sum of the deviations squared of the points from the curve, should continually decrease
as the degree of the polynomial is raised. It is the denominator of Eq. (3.29) that makes a2
increase as we go above the optimal degree. In this example, the smallest value for a2 is at
degree-2 as we expect. The small value when the degree is 5 may be due to ill-
conditioning, even though double precision was used to get the values in Table 3.15.

Before leaving this section, we illustrate how to apply these methods to a more compli-
cated function.

Table 3.15 -
'T2

Degree Equation (Eq. 3.27) - e2

* A sequence of polynomials is said to be orthogonal with respect to the interval [a, b] if

j PJx) * PI&) dx = 0 when n # rn.

208 Chapter Three: Interpolation and Curve Fitting

EXAMPLE 3.9 The results of a wind tunnel experiment on the flow of air on the wing tip of an airplane
provide the following data:

RIC: 0.73,0.78,0.81,0.86,0.875, 0.89,0.95, 1.02, 1.03, 1.055, 1.135, 1.14, 1.245,
1.32, 1.385, 1.43, 1.445, 1.535, 1.57, 1.63, 1.755;

where R is the distance from the vortex core, C is the aircraft wing chord, V, is the vortex
tangential velocity, and V, is the aircraft free-stream velocity. Let x = RIC and y = V,/V,.
We would like our curve to be of the form

and our least-squares equation becomes

Setting SA = SA = 0 gives the following equations:

When this system of nonlinear equations is solved, we get

For these values of A and A, S = 0.000016. The graph of this function is presented in
Figure 3.17.

I

Here is an algorithm for obtaining a least-squares polynomial:

Exercises 209

Vo versus V ,

i

Figure 3.17

Given N data pairs, (xi, Yi) i = 1, . . . , N, obtain an nth-degree least-squares polyno-
mial by the following:
Form the coefficient matrix, M, with n + 1 rows (r) and n + 1 columns (c) , by

N

Set M , = z ~ : + " - ~ .
1 = 1

Form the right-hand-side vector b, with n + 1 rows (r), by:
N

Set b, = zxr-'~,,
1 = 1

Solve the linear system Ma = b to get the coefficients in

y = a,, + a,x + a2x2 + - . . + anxn,
which is the desired polynomial that fits the data.

Section 3.1 a.

1. Write out the Lagrangian polynomial from this table:
b.
C.

x Y d.

Confirm that it reproduces the y's for each x-value.
Interpolate with it to estimate y at x = 3.
Extrapolate for x = 8.
Plot the polynomial between x = 0 and x = 10
together with the original points and the interpolates
in parts (b) and (c).

2. Suppose in Exercise 1 that the y-value for x = 4.1 is mis-
takenly entered as 7.2 rather than 7.3. Repeat Exercise 1

210 Chapter Three: Interpolation and Curve Fitting

with this incorrect value. How much difference does this
make to the answers for parts (b) and (c)?

Multiply out the Lagrangian polynomials in Exercises
1 and 2 to get the quadratics in the form ax2 + bx + c.
How different are the values for a, b, and c?

Given the four points (2, I), (4, 3), (3,5), (8,9),

a. Find the cubic that passes through them, in
Lagrangian form.

b. Multiply out to express as ax3 + bx2 + cx + d.
c. How many arithmetic operations (addition, subtrac-

tion, multiplication, division) are required to use the
Lagrangian polynomial to interpolate at x = 6.5?

d. How many operations are required to convert the
Lagrangian form to the cubic equation in part (b)?

e. How many operations are used to interpolate at
x = 6.5 with the cubic of part (b)?

f. Interpolating as in part (c) requires more operations
than in part (e), but to use the polynomial as in part
(d) means that part (b) must be done first. But if we
must interpolate many times, using the cubic of part
(b) would be more efficient. How many interpola-
tions does it take to overcome the overhead work?

Plot the coefficients of each term of the Lagrangian
polynomial of Exercise 4 to see their form. Then super-
impose each of these together with the plot of the cubic
of Exercise 4, part (b).

If is approximated by Lagrangian interpolation
from the values for e0 = 1, el = 2.7183, and e2 =

7.3891, what are the minimum and maximum estimates
for the error? Compare to the actual error.

Repeat Exercise 6, but now extrapolate to get e2.7

Use the following data to construct the Neville table
that interpolates at x = 0.6.

a. Compare the result to those when only the first three
data points are used.

b. Repeat part (a), but with the three points from x =

0.5 to 0.9.

c. Repeat with the first four points.
d. Repeat again with the last four points.
e. The table is for f (x) = x * 8. Which of the answers

is closest to the correct result, f(0.6) = 1.09327?
Why this one?

9. Repeat Exercise 8, but after rounding the function val-
ues to four significant digits. Does this make a notice-
able difference in the answers?

b10. If parallel processing with n processors is used to inter-
polate at some x-value from a Lagrangian polynomial
constructed from n (x, f (x)) values, how much comput-
ing time can be saved compared to sequential process-
ing? Express in terms of T, the time it takes to compute
one term of the polynomial by itself. If we have 2n
processors, can the solution be obtained more rapidly?

11. Repeat Exercise 10, but now for Neville's method
where T is the time to compute one term in a column.
What should be the order in which terms are computed
in getting the table? Assume that there are enough
processors to give maximum speedup. How many
processors can be usefully employed? Can this take
advantage of the fact that not all n points may be
needed?

Section 3.2

12. Construct the divided-difference table from these data:

13. Repeat Exercise 4, but now do it with divided differ-
ences (use the divided-difference polynomial wherever
the Lagrangian polynomial is mentioned). Omit
Part (el.

14. Use the divided-difference table from Exercise 12 to
interpolate for f(O.4)

a. Using the first three points.
b. Using the last three points.
c. Using the best set of three points. Which points

should be used?
d. Using the best set of four points.
e. Using all of the points.
f. Explain why the results are not all the same.

b15. Is this table of values from a polynomial? If so, how do
you know that f(x) is truly a polynomial? What is its
degree? What is the polynomial? Use divided differ-
ences to answer the questions.

Exercises 211

16. After you have solved Exercise 15, you are told that
f(0) = 5. With this new information, repeat Exercise 15.

b17. Complete the table of ordinary differences from these
data:

x 1.20 1.25 1.30 1.35 1.40 1.45 1.50

f (x) 0.1823 0.2231 0.2624 0.3001 0.3365 0.3716 0.4055

a. What degree of polynomial is required to exactly fit
all seven points to within three significant digits?

b. What polynomial of lesser degree will almost fit to
the same precision?

c. Justify your answer to part (b).

18. Using the data in Exercise 17,

a. Compute f [xo, xl, x2, x3] directly from the data with-
out making a divided-difference table if xo is 1.30.

b. Repeat part (a), but now get A3 fo. Verify from the
divided-difference table you created in Exercise 17.

c. Construct the divided-difference table for the data in
Exercise 17 and verify your answer to part (a).

19. Estimate the value off (1.33) from the data in Exercise
17 using the third-degree Newton-Gregory interpolat-
ing polynomial. Use the best starting point. Estimate
the error from the next-term rule.

20. Repeat Exercise 19, but now estimate f(0.67). Is the
estimated error greater than in Exercise 19? If so,
explain.

)21. The function tabulated in Exercise 17 is not known but
you can still use the data to interpolate. Estimate
f(1.32) using the best set of three points. Estimate the
error from the next-term rule.

22. What are the bounds to the error in the result from
Exercise 7? Compare to the actual error.

23. Repeat Exercise 8, but now from a divided-difference
table. Compare the error of the estimate to the bounds
on the error.

24. Show how nested multiplication can be used to evalu-
ate the polynomial PJx) of Eq. (3.8). How many fewer

operations are needed when n = 2? When n = 3?
When n = 4?

25. Prove that the divided difference of order n is always a
constant if f(x) is a polynomial of degree n.

b26. Suppose you have a table of x, f(x) values that has
seven entries.

a. How many computer operations are used in comput-
ing the divided-difference table up to the third
order?

b. How many operations are used to compute the ordi-
nary differences?

27. Given three points from which polynomial P2(x) has
been found. You Imow the function that gives the three
points.

a. Show that f "(x) = 2 * f [xl, x2, x3] for any three dis-
tinct points.

b. What is the relation if the points are evenly spaced
and you use the table of ordinary differences?

28. Given the f(x) values at three distinct x-values, x,, x2,
x3. There are six different ways in which the points can
be ordered. Show that the second-order divided differ-
ences are identical for all permutations of the ordering.

29. In a table of (x, .y) values, one point is a duplicate of
another point. What happens when the divided-difference
table is constructed? What happens with an ordinary
difference table?

30. Use this ordinary difference table:

a. Estimate f(0.231) from the Newton-Gregory poly-
nomial of degree-2 with xo = 0.12.

b. Add one term to part (a) to get f(0.231) from the
third-degree polynomial.

c. Estimate the errors of both parts (a) and (b).
d. Is it better to start with xo = 0.24 or with xo = 0.36

when getting jF(0.42) from a quadratic? Justify your
answer.

212 Chapter Three: Interpolation and Curve Fitting

e. Demonstrate that the precision of the data can have
a large effect on the table by recomputing it with the
function values chopped after three decimal places.

b31. You have these values for x and y(x):

x 0 . 1 0.3 0.5 0.7 0.9 1.1 1.3

y 0.003 0.067 0.148 0.248 0.370 0.518 0.697

a. Find y(0.54) from a cubic that starts from x = 0.1.
b. Repeat part (a) but start fromx = 0.3. Should this be

a better value?
c. What is the minimum degree of polynomial that fits

all the data?
d. Construct the difference table, then construct the

divided difference table. How do these differ?

Section 3.3

Fit this function with interpolating polynomials that
match f (x) at equal intervals in [- 1, I]:

a. A polynomial of degree 2.
b. A polynomial of degree 3.
c. A polynomial of degree 4.
d. Plot the function and each of the polynomials.

Fit the function in Exercise 32 with a natural cubic
spline that matches to f(x) at five evenly spaced points
in [- 1, 11. Plot the spline curve together with f(x).

Repeat Exercise 33 but now use end conditions 3 and 4
as defined in Eq. (3.18). Which end condition gives the
best fit to the function?

Repeat Exercise 33, but now force the slopes at the
ends to be zero. Which spline fits better, this one or one
from Exercises 33 or 34?

Find the coefficient matrix and the right-hand-side vec-
tor for the cubic spline that fits to these data:

Solve the equations of Exercise 36 to get the equations
for the cubics. Use this to interpolate at x = 0.31,
x = 0.85, and x = 2.05. Compare these interpolates
with the values of ERF(x), the so-called error function,
which you can find in tables.

Develop the equations to get the coefficients of qua-
dratic splines. What end conditions are appropriate for
these quadratic splines?

39. Repeat Exercise 33 with the equations of Exercise 38.
Use the end conditions that you provided for in
Exercise 38.

b40. A cubic spline with end condition 1 is called a "free
spline." If the slopes at the ends are specified (condi-
tion 2), it is called a "clamped spline." Suppose that
f(x) is a third-degree polynomial:

a. Show that f(x) is its own clamped spline.
b. Show that f(x) is not its own free spline.

41. When data for a periodic function are tabulated, the
first and last points are identical. Develop the equations
for fitting a cubic spline to such periodic data, taking
into account the matching of endpoints.

42. What if end condition 1 is used at one end (So = 0) but
end condition 4 is used at the other end? What are the
first and last rows of the coefficient matrix for such a
spline?

43. Is,f(x) a linear spline?

)44. For the function of Exercise 43, fit the four points
f (- I), f(l), f (2), and f (4) with a cubic spline. What is
the maximum deviation of this spline from f(x) in the
interval [- 1,4]? At what x-value does this occur?

Section 3.4

45. Show that the matrix form of the equations for the
Bezier curve is equivalent to the algebraic form in
Section 3.4.

46. Repeat Exercise 45 for B-splines.

)47. What is the matrix form for a Bezier curve of order-4?

48. Compute the connected Bezier curve from this set of
points:

Point #

a. Draw the graph determined by the ten points.
b. Why is the graph smoothly connected at points 3

and 6?
c. Rewrite the Bezier equations so that the parameter u

Exercises 2 13

is defined on [0, 11 for points 0 to 3, on [I, 21 for points
3 to 6, and on [2,3] for points 6 to 9.

49. Repeat Exercise 48 for a B-spline curve.

50. Plot the weighting factors that produce a cubic Bezier
curve by letting u vary between zero and one.

51. Repeat Exercise 50, but for a cubic B-spline.

b52. Prove that the slopes at the ends of a cubic B-spline
curve are the same as the slope between the two
endpoints.

53. If these four points are connected in order by straight
lines, a zigzag line is created:

a. Using the two interior points as controls, find the
cubic Bezier curve. Plot this together with the
zigzag line.

b. Use this cubic equation to find interpolates at x =

0.5, x = 0.75, and x = 2.5. How close are these to
the zigzag line?

c. If the second and third points (the control points) are
moved, the Bezier curve will change. If these are
moved vertically, where should they be located so
that the Bezier curve passes through all of the origi-
nal four points?

54. Repeat Exercise 53, but for B-spline curves. Add ficti-
tious points at the end so the end portions are com-
pleted.

b55. If one of the points used in constructing a connected B-
spline curve is changed, what parts of the curve are
affected? Is there a change that does not affect the
curve? Do the terms local control and global control'
apply to what you observe?

56. Repeat Exercise 55 for a connected Bezier curve.

57. A fourth-degree B-spline is a natural extension of the
cubic B-spline. Can the degree be reduced to two?
What assumptions are reasonable for such a quadratic?

58. The function y = d(x3 + 115) is discontinuous near
x = -0.6, is zero at x = 0, and has a sharp maximum
near x = 0.5. Find the seven evenly spaced points near
x = 0.5 that define a B-spline that goes through the
endpoints and matches to the maximum within
2 0.002.

Section 3.5

b59. In Section 3.5, it is asserted that interpolation can be
done by making subtables with x held constant or,
alternatively, from subtables with y held constant.

Example 3.8 did it the first way. Recompute f(1.6,
0.33) in the second way. Do you get the same result?

60. After Example 3.8 was completed, it was observed that
a cubic in x and a quadratic in y might be preferred. Use
this preferred attack to estimate f (l.6,0.33). How does
this compare to the answer in Exercise 59? How much
is it in error from the true value, 1.8350? Was the "pre-
ferred attack" really better?

61. In Example 3.8 and in Exercises 59 and 60, a rectangu-
lar set of points from the table was used. Is it advanta-
geous to use a more nearly circular set of points?
Estimate f(l.6,O 33) from a set of the 12 points closest
to (x, y) = (1.6, 0.33) and compare with the results
from Example 3.8, and from Exercises 59 and 60.

b62. From this table, estimate z(x, y) for x = 2.8 and
y = 0.54 using an array of nine points nearest to the
point of interpolation to construct interpolating polyno-
mials. (There may he several ways to choose these
points; try them all.) The function whose values are
tabulated is z = x + e y .

63. Using the data from Exercise 62, construct the B-spline
surface from the rectangular array of 16 points nearest
to (2.8, 0.54) and find z(2.8, 0.54). Compare to the
result of Exercise 62.

64. Repeat Exercise 63, but now for a Bezier surface.

65. Repeat Exercise 63, but now use cubic splines

Section 3.6

66. Figure 3.13 plot:; data that appear to be linear and the
least-squares line that fits is R = 702.2 + 3.395T. A
line drawn by eye that also seems to fit the data is
R = 700 + 3.5T.

a. Draw both lines on a copy of Figure 3.13 to confirm
that both equations are reasonable representations.

b. Compute the deviations of the R-values of the data
from each of these lines. Find the sum of squares of
the deviations and compare. Which sum is smaller?
By how much?

214 Chapter Three: Interpolation and Curve Fitting

c. Compare the maximum of the deviations for each
equation. Are they much different? How do the
averages of the errors compare?

b67. Show that (X, Y) where X is the average of the x-values
and Y is the average of the y-values for any set of data
points is a point on the least-squares line that fits to the
data.

68. Fit these six (x, y)-values with a straight line:

a. Do this assuming that the x-values are free of errors,
given y = f(x).

b. Repeat but now assume that the y-values are error
free.

c. Part (b) gives x = gb). Translate this toy = h(x). Is
h(x) the same as the result of part (a)?

d. For which line is the sum of the squares of the devi-
ations smaller?

69. The equation of a plane is z = ax + by + c. We can fit
experimental data to such a plane using the least-
squares technique. Here are some data for z = f(x, y):

a. Develop the normal equations to fit the (x, y) data to
a plane.

b. Use these equations to fit z = ax + by + c.
c. What is the sum of the squares of the deviations of

the points from the plane?

b70. Plot the line between (2, 5) and (6, -1) and get its
equation. Now add a third point at x = 4 and find the
least-squares line for the three points. For which y-
value does the line shift the most

a. If the y-value at the third point is 5?
b. If the y-value is O?
c. If the y-value is 4?
d. Find the equations of the least-squares lines for

each.

71. These data are measured solubilities of n-butane in liq-
uid anhydrous hydrofluoric acid. Fit to the equation
S = a * exp (b * T) using least squares. (This is impor-
tant in a process that converts n-butane to
i-butane, which gives a higher octane number to gaso-
line.)

T, OF 77 100 185 239 285

S, wt. % 2.4 3.4 7.0 1.1 19.6

72. Plot the data of Exercise 7 1 :

a. On ordinary graph paper. Observe the points do not
fall on a line.

b. On semi-log paper. Observe that the points fall near
to a line.

c. Part (b) suggest that fitting a line to

will give the same results as in Exercise 71. Do this
to confirm.

73. y = ax2 + bx + c is a quadratic equation, of course.
Compute z = y + a random number within the range
[0, .2] for six x-values chosen randomly within the
range [2, 71.

a. Fit the least-squares line to these points.
b. Fit the least-squares quadratic to them.
c. Fit the least-squares cubic to them.
d. Compare the sum of squares of the deviations for

each part.

74. If A is the design matrix defined in Section 3.6,

a. Show that A * AT gives the coefficient matrix of Eq.
(3.28).

b. Show that A * y, where y is the column vector of
y-values, gives the right-hand side of Eq. (3.28).

c. Is it more economical to compute the values for Eq.
(3.28) by using the design matrix rather than com-
puting them with Eq. (3.28)?

b75. From theoretical considerations, it is suspected that the
rate of flow from a fire hose is proportional to some
power of the pressure at the nozzle. Do these data con-
firm that? Get the least-squares values for the exponent
and the proportionality factor.

Flow rate 94 118 147 180 230

Pressure 10 16 25 40 60

76. If the data of Exercise 75 are plotted on log-log paper,
the points appear to be nearly linear with a slope of 2.
That means that a quadratic, F = aP2 + bP + c,
should fit the data.

a. Get the coefficients of the quadratic by least
squares.

b. Is the sum of squares of the deviations less than for
the relation of Exercise 75?

Applied Problems and Projects 2 15

b77. Fit a polynomial of optimal degree to these points:

x 1.1 1.6 11.4 4.1 5.3 17.5 9.4 11.5 12.1

f(x) 7.9 24.8 -28.8 42.6 29.6 -34.6 -3.1 -28.7 -39.6

78. Repeat Exercise 77,

a. Using only every other point.
b. Using the other half of the points.
c. Compare the results of parts (a) and (b) with that of

Exercise 77.

79. Suppose you want to use least squares to fit the data of
Exercise 77 with this equation:

f(x) = a + b * sin(c*x) .

a. What difficulties will be experienced if the normal
equations for a polynomial are used?

b. If it were known that c = d10, would it then be eas-
ier to get values for a and b?

c. Does part (b) suggest that it would be preferred to
obtain least-squares values for a and b using a suc-
cession of c-values and thus finding good values for
a, b, and c by seeing when the sum of squares of
deviations is smallest?

80. In Section 3.6 it was pointed out that the coefficient
matrix in Eq. (3.28) is ill-conditioned if the degree of
the polynomial is more than 3 or 4. If experimental data
are available at ten evenly spaced x-values from x = 3
to x = 7, it is possible to find least-squares polynomials
P,(x) for n from 1 to 8.

a. What is the condition number for P4(x)?
b. For P,(x)?
c. For P,(x)?

Appliied Problems and Projects

In Section 3.2, we described how the Newtonaregory interpolating polynomial can be constructed
from a table of ordinary differences. There are other ways to get interpolating polynomia.1~ from such
a table and these bear the names of famous mathematicians-Gauss-Forward, Gauss-Backward,
Stirling, Bessel. There is even a Newton-Gregory backward polynomial. Do research to find how
these differ from one another.

The cost of government welfare programs adds significantly to our taxes. The table belolw gives data
for several years:

Expenditures
Year in billions of dollars

Use the data between 1991 to 1994 to estimate what the value would be in 1995 and compare to the
value in the table. Do this

Chapter Three: Interpolation and Curve Fitting

a. From a cubic interpolating polynomial.
b. From the least-squares line.
c. From the least-squares quadratic.
d. From a cubic spline.

From each of these, project to find what one would anticipate the expenditures for the year 2000
might be; then find what the actual expenditures were for comparison.

APP3. Use the data of APP2 with several approaches to extrapolate backward to estimate the expected
expenditure for 1980. How do these values compare to 492 billion, the amount actually spent?

APP4. S. H. P. Chen and S. C. Saxena report experimental data for the emittance of tungsten as a function of
temperature [Ind. Eng. Chem. Fund. 12,220 (1973)l. Their data follow. They found that the equation

correlated the data for all temperatures accurately to three digits. What degree of interpolating poly-
nomial is required to match to their correlation at points midway between the tabulated tempera-
tures? Discuss the pros and cons of polynomial interpolation in comparison to using their correlation.

APPS. In studies of radiation-induced polymerization, a source of gamma rays was employed to give mea-
sured doses of radiation. However, the dosage varied with position in the apparatus, with these fig-
ures being recorded:

Position, in. from base point I 0 0.5 1.0 1.5 2.0 3.0 3.5 4.0

Dosage, lo5 r a d s h

For some reason, the reading at 2.5 in. was not reported, but the value of radiation there is needed. Fit
interpolating polynomials of various degrees to the data to supply the missing information. What do
you think is the best estimate for the dosage level at 2.5 in.?

APP6. Studies of the kinetics of elution of copper compounds from ion-exchange resins gave the following
data. The normality of the leaching liquid was the most important factor in determining the diffusiv-
ity. The data were obtained at convenient values of normality; we desire a table of D for integer val-
ues of normality (N = 0.0, 1.0,2.0, 3.0,4.0,5.0). Use the data to construct such a table.

Applied Problems and Projects 2 17

APP7. When the steady-state heat-flow equation is solved numerically, temperatures u(x, y) are calculated
at the nodes of a gridwork constructed in the domain of interest. (This is the content of Chapter 8.)
When a certain problem was solved, the values given in the following table were obtained. This pro-
cedure does not give the temperatures at points other than the nodes of the grid; if they are desired,
one can interpolate to find them. Use the data to estimate the values of the temperature at the points
(0.7, 1.2), (1.6,2.4), and (0.65,0.82).

APP8. The interpolating polynomials that have been described in this chapter have all fit the polynomial
to match certain function values. One can also fit a polynomial that fits not just to values of the
function but also to values of its derivative. Such an interpolating polynomial is called a Hermite
polynomial.

Develop the relations to construct a cubic Hermite polynomial from [x,, f(xl)], [xl, f'(xl)], [xz,
f(xz)], and [xZ, f1(xZ)]. Then use your formula to find the cubic polynomial that interpolates from
these data

to estimate f (l.5), f (2.0), and f (2.5).
The data are for the function f(x) = @lx. How great are the errors of the interpolants? Are these

errors less than those from the cubic interpolating polynomial that fits the function at x = 1, 1.5,2.4,
and 3.0?

Superimpose the graphs of (a) the function, (b) the Hermite polynomial, and (c) the interpolating
polynomial.

APP9. Exercise 44 asked you to fit a spline to the four points where the function has changes in its slope.
Experiment with fitting the spline to four other points on the function to find a set that matches bet-
ter to the function throughout its range. Can you conclude from this how a broken-line function
should be fitted?

If you have the graph of a function whose derivative is continuous, where should points be cho-
sen to get the best fit with a cubic spline?

APP10. Star S in the Big Dipper (Ursa Major) has a regular variation in its apparent magnitude. Leon
Campbell and Laizi Jacchia give data for the mean light curve of this star in their book The Story of
Variable Stars (Blakeston, 1941). A portion of these data is given here.

Phase 1 - 1 1 0 -80 - 40 - 10 30 80 110

Magnitude 1 7.98 8.95 10.71 11.70 10.01 8.23 7.86

Chapter Three: Interpolation and Curve Fitting

The data are periodic in that the magnitude for phase = - 120 is the same as for phase = f 120. The
spline functions discussed in Section 3.4 do not allow for periodic behavior. For a periodic function,
the slope and second derivatives are the same at the two endpoints. Taking this into account, develop
a spline that interpolates the preceding data.

Other data given by Campbell and Jacchia for the same star are

Phase 1 -100 -60 - 20 20 60 100

How well do interpolants based on your spline function agree with this second set of observations?

APP11. A fictitious chemical experiment produces seven data points:

a. Plot the points and interpolate a smooth curve by intuition.
b. Plot the unique sixth-degree polynomial that interpolates these points.

Cubic spline interpolation: -

Figure 3.18

A.pplied Problems and Projects 2 19

c. Use a spline program to evaluate enough points to plot this curve.
d. Compare your results with the graph in Figure 3.18.

APP12. In Exercise 30, what if the entry at x = 0.36 was mistakenly entered as 0.73471, rather than the cor-
rect value of 0.74371? How does this affect the computations of that exercise? How do values in the
difference table change? Is there a pattern to the changes in the table?

APP13. The figure below is the profile of a pretty girl. (It is a tracing from a photograph of a daughter-in-law
of one of the authors, taken by Elsie F. Gerald.) What is the best way to construct a sequence of poly-
nomials that essentially duplicate the outline? Where will you choose the points where the polyno-
mials join or what "knots" or "control points" will you specify? Pay particular attention to the por-
tions of the figure at the lips and teeth.

You will want to trace the drawing on graph paper to find the coordinates of the outline. Do this
and use your result to reproduce the figure.

When your software program asks the computer to get the value of sin(2.113) or e-3.5,
have you wondered how it can get the values if the most powerful functions it can compute
are polynomials? It doesn't look these up in tables and interpolate! Rather, the computer
approximates every function other than polynomials from some polynomial that is tailored
to give the values very accurately.

This chapter describes how such approximating polynomials are developed. We want
the approximation to be efficient in that it obtains the values with the smallest error in the
least number of arithmetic operations. Our approach will be gradual, building toward the
more efficient methods from a less powerful starting point.

This chapter includes a second topic of great importance in applied mathematics-
representing a function with a series of sine and cosine terms. In view of the above, this
may seem a very roundabout way of doing the job. Still, such a series, a Fourier series, is
usually the best way to represent a periodic function, something that cannot be done with
a polynomial or a Taylor series. A Fourier series can even approximate functions with dis-
continuities and discontinuous derivatives.

The origin of the subject began with studies of vibrating strings. It reached fuller devel-
opment with Jean Baptiste Joseph Fourier (1768- 1830), who used them in solving heat
conduction problems. The theory behind Fourier series has been extended to methods for
solving other partial-differential equations.

One of the most important applications is in the analysis of the vibrational modes of a
structure to determine which frequencies are of most importance. If external forces act
with one of these frequencies, severe damage can occur.

C o n t e n t s o f Th' i s C h a p t e r

4.1 Chebyshev Polynomials and Chebyshev Series
Chebyshev polynomials are orthogonal polynomials that are the basis for
fitting nonalgebraic functions with maximum efficiency. They can be used to

modify a Taylor series so that there is greater efficiency. A series of such
polynomials converges more rapidly than a Taylor series.

4.2 Rational Function Approximations
Are the ratio of two polynomials that can be developed from a Taylor series;
the result is a Pad6 approximation, a better match to the function being
approximated. If the rational function is developed from a Chebyshev series,
an even better approximation results. Even more improved approximations are
mentioned-a minimax approximation.

4.3 Fourier Series
These are series of sine and cosine terms that can be used to approximate a
function within a given interval very closely, even functions with
discontinuities. Fourier series are important in many areas, particularly in
getting an analytical solution to partial-differential equations.

4.1 Chebvshev Polvnomials and Chebvshev Series

If we want to represent a known function as a polynomial, one way to do it is with a Taylor
series. This you learned in your calculus course: Given a function, f(x), we write

where ai = f ci) (a)li! (we remember that f (O) is just f(a)). Unless f(x) is itself a polynomial,
the series may have an infinite number of terms. Terminating the series incurs an error, the
truncation error. The error after the (x - a)" term can be written in different ways but a
most useful form is

(X - a)"+'
Error = f (El7 5 in [a, XI.

(n + I)!

A problem with using the Taylor series to get polynomial approximations to a transcen-
dental function is that the error grows rapidly as x-values depart from x = a.

For f(x) = ex, the Taylor series is easy to write because the derivatives are so simple:
(a) = ea for all orders and we have, for a = 0 (which is then called a Maclaurin series),

if we use only terms through x3; the error term shows tlhat the error of this will grow about
proportional to x4 as x-values depart from zero. There is a way to combat this rapid growth
of the errors, and that is to write the polynomial a.pproximation to f(x) in terms of
Chebyshev polynomials. Chebyshev was a Russian mathematician; an older spelling of his
name is Tschebycheff.

222 Chapter Four: Approximation of Functions

Chebyshev Polynomials

A Maclaurin series can be thought of as representing f(x) as a weighted sum of polynomi-
als. The kind of "polynomials" that are used are just the successive powers of x: 1, x, x2,
x3, Chebyshev polynomials are not as simple; the first 11 of these are

The members of this series of polynomials can be generated from the two-term recursion
formula

(Using the symbol T for these derives from the older spelling of Chebyshev.)
Note that the coefficient of xn in Tn(x) is always 2n-1. In Figure 4.1 we plot the first four

polynomials of Eq. (4.1).
These polynomials have some unusual properties. They form an orthogonal set, in that

The orthogonality of these functions will not be of immediate concern to us.
The Chebyshev polynomials are also terms of a Fourier series," because

TJx) = cos no,

where 0 = arccos x. Observe that cos 0 = 1, cos 8 = cos(arccos x) = x.

* We discuss Fourier series later in this chapter.

4.1: Chebyshev Polynomials and Chebyshev Series 223

Figure 4.1

To demonstrate the equivalence of Eq. (4.4) to Eqrs. (4.1) and (4.2), we recall some
trigonometric identities, such as

cos 28 = 2 cos2 8 - 1,

TJx) = 2x2 .- 1;

cos 38 = 4 c0.s3 8 - 3 cos 8,

T,(x) = 4x3 - 3x;

cos(n + 1)8 + cos(n - 1)8 = 2 cos 6 cos no,

Tn+ l(x) + Tn- ,(x) = 2xTJx).

Because of the relation Tn(x) = cos(n8), the Chebyshev polynomials will have a suc-
cession of maxima and minima of alternating signs, as Figure 4.1 shows. It follows from
Eq. (4.4), because lcos n8l = 1 for no = 0, T, 2 ~ , . . . , and because 8 varies from 0 to rr as
x varies from 1 to - 1, that Tn(x) assumes a maximum magnitude of one n + 1 times on the
interval [- 1, I]. For example, as seen in Figure 4.1, T4(x) has three maxima an~d two min-
ima, a total of five, and all are of magnitude 1.

It is most important that, of all polynomials of degree n that have a coefficient of one on
xn, the polynomial

has a smaller upper bound to its magnitude in the interval [- 1, 11 than any other. Because
the maximum magnitude of Tn(x) is one, the upper bound is l/2n-1 (we must make the coef-
ficient of xn equal to one). This is important because we will be able to write power function
approximations to functions whose maximum errors are given in terms of this upper bound.

Error Bounds for Chebyshev Polynom.ials

We have asserted that, of all polynomials of degree n whose highest power of x has a coefficient
of one, ~,(x)/2"-l has the smallest error bounds on [- 1, I I. The proof is by contradiction.

Chapter Four: Approximation of Functions

Let Pn(x) be a polynomial whose leading term* is xn and suppose that its maximum
magnitude on [- 1, I] is less than that of ~ , (x) / 2 ~ - l . Write

where PnPl(x) is a polynomial of degree n - 1 or less, as the xn terms cancel. The poly-
nomial Tn(x) has n + 1 extremes (counting endpoints), each of magnitude 1 , so
~ , (x) / 2 ~ - l has n + 1 extremes each of magnitude 1 1 2 ~ - l , and these successive extremes
alternate in sign. By our supposition about Pn(x), at each of these maxima or minima, the
magnitude of Pn(x) is less than 112~- ' ; hence, Pn-l(x) must change its sign at least for
every extreme of Tn(x), which is then at least n + 1 times. Hence, Pn- l (x) crosses the axis
at least n times and would have n zeros. However, this is impossible if Pn-l(x) is only of
degree n - 1, unless it is identically zero. The premise must then be false and Pn(x) has a
larger magnitude than the polynomial we are testing or, alternatively, Pn(x) is exactly the
same polynomial.

Using Computer Algebra Systems

The computer algebra systems that we have described in earlier chapters can get
Chebyshev polynomials. Suppose we want T5 (x).

In Maple, the command to get a Chebyshev polynomial is included in Maple's
orthopoly package. That package provides several related commands. To use them, we
must first invoke the package; its commands are then available:

with (orthopoly);

T(5,x)
1 6 ~ 5 - 2ox3 + 5~

and we see the fifth-degree polynomial exactly as in Eq. (4.1) . Mathernatica can also do
this with a built-in function:

ChebyshevT [5, XI
5x - 20x3 + 16x5

which is the same except the terms are in reverse order.
MATLAB has no commands for these polynomials but this M-file will compute them:

function T = Tch (n)
if n == 0

disp('ll)
elseif n == 1

disp ('x')
else

* We restrict the polynomials to those whose leading term is x" so that all are scaled alike.

4.1 : Chebyshev Polynomials and Chebyshev Series 2 2 5

to = '1';
tl = 'x' ;

for i = 2 :n
T = symop('2*x1, '*',tl, ' - ' ,to);
to = tl;
tl = T;

end % for

end % for

We invoke this by

EDU>> Tch (5)
ans =

2*x* (2*x* (2*xX (2*xA2 - 1) -x) - 2*xA2 +- 1) - 2*x* (2*xA2 - 1) + x
which is hard to read, but we can input

EDU>> collect (ans)
ans =

16*xA5 - 20*xA3 + 5*x
to see the polynomial.

Economizing a Power Series

We begin a search for better power series representations of functions by using Chebyshev
polynomials to "economize" a Maclaurin series. This example will give a modification of
the Maclaurin series that produces a fifth-degree polynomial whose errors are only slightly
greater than those of a sixth-degree Maclaurin series. We start with a Maclaurin series
for ex:

If we would like to use a truncated series to approximate eX on the interval [O, 11 with a pre-
cision of 0.001, we will have 'to retain terms through that in x6, because the error after the
term in x5 will be more than 1/720. Suppose we subtract

from the truncated series. We note from Eq. (4.1) that this will exactly cancel the x6 term
and at the same time make adjustments in other coefficients of the Maclaurin series.
Because the maximum value of T6 on the interval [0, 11 is unity, this will change the sum

Chapter Four: Approximation of Functions

of the truncated series by only

1 * - < 0.00005.
720 32

which is small with respect to our required precision of 0.001. Performing the calculations,
we have

- (L)(32x6 - 48x4 + 18x2 - l),
720 32

The resulting fifth-degree polynomial approximates ex on [0, 11 nearly as well as the sixth-
degree Maclaurin series: Its maximum error (at x = 1) is 0.000270, compared to 0.000226
for the Maclaurin polynomial. We "economize" in that we get about the same precision
with a lower-degree polynomial.

By subtracting & (T5/16) we can economize further, getting a fourth-degree polynomial
that is almost as good as the economized fifth-degree one. It is left as an exercise to do this
and to show that the maximum error is now 0.000781, so that we have found a fourth-degree
power series that meets an error criterion that requires us to use two additional terms of the
original Maclaurin series. Because of the relative ease with which they can be developed,
such economized power series are frequently used for approximations to functions and are
much more efficient than power series of the same degree obtained by merely truncating a
Taylor or Maclaurin series. Table 4.1 compares the errors of these power series.

Observe in Table 4.1 that even the economized polynomial of degree-4 is more accurate
than a fifth-degree Maclaurin series. Also notice that near x = 0, the economized polyno-

Table 4.1 Comparison of economized series with Maclaurin series

Maclaurin of degree Economized of degree

Maximum error 0.00023 0.00162 0.00995 0.00027 0.00078

4.1: Chebyshev Polynomials and Chebyshev Series 227

mials are less accurate; in effect, we permit small errors at points within the range but get
a smaller maximum error. We return to this later. Also notice that the desired accuracy of a
maximum error less than 0.001 is met with the economized fourth-degree polynomial.

Computer Algebra Systems Can Economize a Series

All three of the computer algebra systems can get Maclaurin series and Chebyshev poly-
nomials. It follows that they should be able to economize the Maclaurin one. In this
demonstration, we omit the intermediate results.

Maple gets the Maclaurin series for ex with

and if Order is set at 7, we get the sixth-degree polynomial that we have been working
with. However, this includes the error term. We can remove it with

p: = convert (% , polynom) ;

where ' % ' refers to the previous answer. Now, doing

p - orthopoly [TI (6, x) /6! /2^5;

produces Eq. (4.5) but with the coefficients expressed as ratios of integers:

Now, if we do eval f (%) we get the coefficients in floating point:

Mathernatica is similar but we do not have to remove the error term:

Series [Exp [XI , {x, 0,6]] - ChebyshevT [6, x: /6 ! /2^5

We can get the economized series with MATLAB by employing our M-file for the
Chebyshev series. We must start with x as a symbolic variable, then get the Maclaurin
series and subtract the proper multiple of the Chebyshev series:

EDU>> syms x

EDU>> ts = taylor (exp (x) ,7)

1 + x + 1/2*xA2 + l/6*xA3 + l/24*xA4 + l/120*xA5 + l/720*xA6
EDU>> cs = Tch(6) ;

EDU>> es = ts-cs/factorial(6) /2^5
es =

23041/23040 + x + 639/1280*xA2 + l/6*x"3 + 7/160*xA4 + l/120*xA5

Chapter Four: Approximation of Functions

which duplicates the others. If we prefer to see this in floating point with seven digits:

EDU>> vpa (c s ,7)

ans =

l.000043 + x + . 4992188*xA2 + . 1666667*xA3 + .4375000e - 1*xA4
+ .8333333e - 2 * x A 5

Chebyshev Series

By rearranging the Chebyshev polynomials, we can express powers of x in terms
of them:

By substituting these identities into an infinite Taylor series and collecting terms in Ti(x),
we create a Chebyshev series. For example, we can get the first four terms of a Chebyshev
series by starting with the Maclaurin expansion for ex. Such a series converges more
rapidly than does a Taylor series on [- 1, 11:

4.1: Chebyshev Polynomials and Chebyshev Series 229

Replacing terms by Eq. (4.6), but omitting polynomials beyond T3(x) because we want
only four terms,* we have

To compare the Chebyshev expansion with the Maclaurin series, we convert back to
powers of x, using Eq. (4.1):

Table 4.2 and Figure 4.2 compare the error of the Chebyshev expansion, Eq. (4.7), with the
Maclaurin series, using terms through x3 in each case. The figure shows how the
Chebyshev expansion attains a smaller maximum error by permitting the error at the origin
to increase. The errors can be considered to be distributed more or less uniformly through-
out the interval. In contrast to this, the Maclaurin expansion, which gives very small errors
near the origin, allows the error to bunch up at the ends of the interval.

Table 4.2 Comparison of Chebyshev series for 8 with Maclaurin series:
eX = 0.9946 + 0.9973~ + 0.5430x2 + 0.1'772x3;
ex = 1 + x + 0.5x2 + 0.1667x3 -

x eX Chebyshev Error Maclaurin Error

* The number of terms that are employed determines the accuracy c~f the computed values, of course.

Chapter Four: Approximation of Functions

t ~rro:of Chebyshev series

Figure 4.2

If the function is to be expressed directly as an expansion in Chebyshev polynomials,
the coefficients can be obtained by integration. Based on the orthogonality property, the
coefficients are computed from*

and the series is expressed as

A change of variable will be required if the desired interval is other than [- 1, I]. In some
cases, the definite integral that defines the coefficients can be profitably evaluated by the
numerical procedures that we discuss in the next chapter.

Because the coefficients of the terms of a Chebyshev expansion usually decrease even
more rapidly than the terms of a Maclaurin expansion, we can get an estimate of the mag-
nitude of the error from the next nonzero term after those that were retained. For the trun-
cated Chebyshev series given by Eq. (4.7), the T4(x) term would be

Because the maximum value of T4(x) on [- 1, I] is 1 .O, we estimate the maximum errors of
Eq. (4.7) to be 0.00525. The maximum error in Table 4.2 is 0.0062. This good agreement
is caused by the very rapid decrease in coefficients in this example.

Only Maple has a built-in command to get a Chebyshev series:

w i t h (numapprox) ;
chebyshev (exp (x) , x = -1 . . 1) ;

* The integration is not easy because the integrand is infinite at the endpoints.

4.1: Chebyshev Polynomials and Chebyshev Series 23 1

which produces a series up to terms in T9(x). The first four terms of this match Eq. (4.7):

The computational economy to be gained by economizing a Maclaurin series, or by
using a Chebyshev series, is even more dramatic when the Maclaurin series is slowly
convergent. The previous example for f (x) = ex is a case in which the Maclaurin series
converges rapidly. The power of the methods of this section is better demonstrated in the
following example.

Table 4.3 compares the accuracy of truncated Maclaurin series with the economized series
derived from them.

In Table 4.3, we see that the error of the Maclaurin series is small for x = 0.2, and this
also would be true for other values near x = 0, whereas the economized polynomial has
less accuracy. At x = 0.8, the situation is reversed, however. Economized polynomials of
degrees 8 and 6 , derived from truncated Maclaurin series of degrees 10 and 8, actually
have smaller errors than their precursors. Further economization, giving polynomials
of degrees 6 and 4, have lesser or only slightly greater errors than their precursors, at

Table 4,3 Comparison of errors: Maclaurin, Chebyshev, and economized
series for 141 f x) -

Maclaurin Chebyshev Economized*

Degree Value Error Value Error Value Error

* Economized series were derived from Maclaurin series whose degree is greater by 2.
** A series o f degree equal to 4 has a value of 0.658246 with an error o f 0.102691.
*** A series o f degree equal to 6 has a value of 0.598199 with an error o f 0.042644.

Chapter Four: Approximation of Functions

significant savings of computational effort and with smaller storage requirements in a
computer's memory for the coefficients of the polynomials.

4.2 Rational Function Approximations

Approximating a known function with a Chebyshev series is much better than with a
Taylor series in that it has a smaller maximum error in the interval [- 1, 11. (We would
have to make transformations to the function to allow us to translate the x-value into this
interval). Still, there is a way to improve even further.

As has been mentioned several times, the most complicated function that a computer
can directly evaluate is a polynomial. This means that it can also evaluate a ratio of poly-
nomials. Using a rational function permits this further improvement.

We approach this topic in stages: the first is Pad6 approximations.

Pade Approximations

A Pad6 approximation is a rational function, the quotient of two polynomials, the numera-
tor of degree n and the denominator of degree rn, which we can write as

,

The constant term in the denominator can be taken as unity without loss of generality,
because we can always convert to this form by dividing numerator and denominator by bo.
The constant bo will generally not be zero, for, in that case, the fraction would be undefined
at x = 0. The most useful of the Pad6 approximations are those with the degree of the
numerator equal to, or one more than, the degree of the denominator. Note that the number
of constants in R f i) is N + 1 = n + m + 1.

The Pad6 approximations are related to Maclaurin expansions in that the coefficients
are determined in a similar fashion to make f(x) and RN(x) agree at x = 0 and also to make
the first N derivatives agree at x = 0."

We begin with the Maclaurin series for f (x) (we use only terms through fl) and write

* A similar development can be derived for the expansion about a nonzero value of x, but the manipulations are
not as easy. By a change of variable we can always make the region of interest contain the origin.

4.2: Rational Function Approximations 233

The coefficients c j are f(i)(0)l(i!) of the Maclaurin expansion. Now if f(x) = RN(x) at x = 0,
the numerator of Eq. (4.8) must have no constant term. Hence

Co - a. = 0.

For the first N derivatives of f(x) and RN(x) to be equal at x = 0, the coefficients of the
powers of x up to and including fl in the numerator must all be zero also. This gives N
additional equations for the a's and b's. The first n of these involve a's, the rest only b's
and c's:

b m c ~ - m + bm-lc~-m+l + ... t- c N = 0.

Note that, in each equation, the sum of the subscripts on the factors of each prolduct is the
same, and is equal to the exponent of the x-term in the numerator. The N + 1 eiquations of
Eqs. (4.8) and (4.9) give the required coefficients of the Pad6 approximation. We illustrate
by an example.

EXAMPLE 4.2 Find arctan(x) .= Rlo(x) Use degree-5 in both numerator and denominator.
The Maclaurin series through x10 is

arctan(x) .= x - 1/3x3 + 1/5x5 -1/7x7 + 1/9x9. (4.10)

We form f (x) - Rlo(x):

(x - 1/3x3 + 1/5x5 - 1/7x7 + 1/9x9) (1 + b , x + b2x2 + b3x3 + b4x4 + b5x5) - (a o + a , x + a2x2 + a g 3 + a4x4 + a5x5)

If we multiply out in the numerator and set the coefficients of the x-terms through x1° to
zero, we get for the a's:

Chapter Four: Approximation of Functions

and for the b's:

1/5bl - 1/3b, = 0,

- 117 + 1/5b2 - 1/3b4 = 0,

-117b, + 1/5b3 - 1/3b, = 0,

119 - 117b2 t 1/5b, = 0,

119bl - 117b, t 1/56, = 0.

We solve the last five equations for the b's. The matrix is

whose solution is

b, = 0, b, = 1019, b, = 0, b4 = 5/21,b, = 0.

We get the a's from the first six equations:

a. = 0, al = 1, a2 = 0, a3 = 719, a4 = 0, a5 = 641945.

A rational function that approximates arctan x is then

arctan

In Table 4.4 we compare the errors for this Pad6 approximation (Eq. 4.12) to the Maclaurin
series expansion (Eq. 4.10). Enough terms are available in the Maclaurin series to give
five-decimal precision at x = 0.2 and 0.4, but at x = 1 (the limit for convergence of the
series) the error is sizable. Even though we used no more information in establishing it, the
Pad6 formula is surprisingly accurate, having an error only 11275 as large at x = 1. It is
then particularly astonishing to realize that the Pad6 approximation is still not the best one
of its form, for it violates the minimax principle. If the extreme precision near x = 0 is
relaxed, we can make the maximum error smaller in the interval.

Figure 4.3 shows how closely the Pad6 approximation matches arctan(x), especially on
[- I , 11.

The error of a Pad6 approximation can often be roughly estimated by computing the
next nonzero term in the numerator of Eq. (4.12). For Example 4.2, the coefficient of x1° is

4.2: Rational Function Approximations 2 3 5

Table 4.4 Comparison of Pad6 approximation to Maclaurin series for arctan x

True Pad6 Maclaurin
x value (Eq. 4.12) Error (Eq. 4.10) Error

zero, and the next term is

= -0.0014x1'

Dividing by the denominator, we have

-0.0014~"
Error =

1 + 1.1111x2 + 0.2381x4 '

At x = 1 this estimate gives -0.00060, which is about three times too large, but still of the
correct order of magnitude. It is not unusual that such estimates are rough; analogous esti-
mates of error by using the next term in a Maclaurin series behave similarly. The validity
of the rule of thumb that "next term approximates the error" is poor when the coefficients
do not decrease rapidly.

The preference for Pad6 approximations with the degree of the numerator the same as
or one more than the degree of the denominator rests on the empirical fact that the errors
are usually less for these. There are, however, even more efficient rational functions.

Here is how we can get a Pad6 approximation to arctan(x) with fifth-degree polynomi-
als in both numerator and denominator from Maple:

Arctan (x) Pad6 approximation

be====

Figure 4.3

Chapter Four: Approximation of Functions

numapprox [paddl (arctan (x) , x = 0, [5,51) ;

to give a result very much like Eq. (4.12):

Mathernatica can do it too, if we first load a package called

and then do

which gives a result exactly like Eq. (4.12):

MATLAB does not have a command to get a Pad6 approximation.
A special feature of rational approximations like a Pad6 ratio is that these can approxi-

mate a function that is discontinuous. For example, a Pad6 approximation to tan(x) of
degree-3 in both numerator and denominator is

x - x3/15
tan (x) =

1 - 2x2/5 '

If you compare the plot of this with that for tan(x), you will find an excellent match
between x = - 1.8 and x = 1.8, even though the tangent function is infinite at x = + n/2 =
+ 1.5708; the portions of the branches beyond x = rt T are well fitted.

Continued Fractions

Because small differences in computational effort accumulate for a frequently used func-
tion, it is of interest to see if we can reduce the effort to evaluate Eq. (4.12). If we evaluate
it as it stands, using nested form for the polynomials, we have

Numerator = (0.0677x2 + 0.7778)x3 + x

Denominator = (0.2381x2 + 1.11 1 1)x2 + 1

We need to count adds, subtracts, multiplies, and divides because today's computers
take about the same time to process each of these operations. For the numerator, there are
three multiplies plus one for x2 and two adds. The denominator takes two multiplies and
two adds (x2 is reused). There is one division. The total is

4.2: Rational Function Approximations 237

Multiplies = 3 + 1 + 2 - 6,

Adds = 2 + 2 = 4,

Divides = 1;

Total = 1 1.

Using the nested form of the Maclaurin series takes sir; multiplies and four addhubtracts
for a total of ten. The divide required for the Pad6 approximation means it takes one more
operation but it gives greater precision.

However, by doing a number of successive divisions, we can express Eq. (4.12) in con-
tinued fraction form: *
0.0677x5 + 0.7778x3 + x 0.2844x5 + 3.2667x3 -t. 4 . 2 ~ - -
0.2381x4 + 1.1111x2 + 1 x4 + 4.6667x2 + 4 2

- -
0.2844x(x4 + 11.4846x2 + 14.7659)

x4 + 4.6667x2 + 4.2

- - 0.2 844x

(x4 + 4.6667x2 + 4.2)/(x4 + 11.4846x2 + 14.7659)

- - 0.2844~

I - (6.8179x2 + 10.5659)/(x4 + 11.4846x2 + 14.7659)

- - 0.2844~

I - 6.8179(x2 + 1.5497)/(x4 + 1 l.4846x2 + 14.7659)

- - 0.2844~

1 - 6.8179/[(x4 + 1 1.4846x2 + 14.7659)/(x2 + 1.5497)]

- - 0.2844~

1 - 6.8179/[x2 + 9.9348 - 0.6304/(x2 + 1.549%

To evaluate this last formulation, we need one multiply. three divides, and four addsubtracts
for a total of nine operations, one less than for the Maclaurin series and two less than if we did
not put Eq. (4.12) into continued fraction form. In most cases, there is a greater advantage to
continued fractions; the missing powers of x in this example favored evaluation as polynomials.

Only Maple can get a continued fraction from a ratio of polynomials. I[f we have
obtained the Pad6 approximation to arctan(x) as above, with: numapprox [pad&]
(arctan(x) ,x= 0, [5,51); andthendo

numapprox [conf racf orm] (" , x) ;

we see

x + --l/x
1249

which is not in the same form but is equivalent.

* Acton (1970) is an excellent reference.

238 Chapter Four: Approximation of Functions

A Better Rational Function for ex

If we start with the third-degree Chebyshev series of Eq. (4.7) and use it to get a Padt-like
rational function, we can get a better approximation to the function. We have

and form

- -
(1.2661 + 1.302T1 + 0.2715T2 + 0.0443T3)(1 + b,T,) - (a, + a,T, + a2T,)

1 + blT,

where we have taken n = 2, m = 1.
We expand the numerator; we will set the coefficients of each degree of the T's to zero.
Before we can equate coefficients to zero, we need to resolve the products of

Chebyshev polynomials that occur. Recalling that T,(x) = cos no, we can use the trigono-
metric identity

1
cos no cos mtl = - [cos(n + m)8 + cos(n - m)B],

2

The absolute value of the difference n - m occurs because cos(z) = cos(-z). Using this
relation we can write the equations

Solving, we first get bl = -0.3263, then we get a. = 1.0817, al = 0.6727, a2 = 0.0799, and

4.2: Rational Function Approximations 239

Table 4.5 Comparison of rational approximations [Eq. (4.13)1
with Chebyshev series for eX

Rational
x ex Chebyshev Error function Error

The last part of Eq. (4.13) results when we rewrite the T's in powers of x. Table 4.5 shows
that we have a better appproximation than the original third-degree Chebyshev series.

Maple can get this same P2(x)lQl(x):

with (numapprox) :
chebpade (exp (x) ,x, (2,lI) ;
1.086272879T (0, x) + .6843619105T (1, x) + .08464994161T (2, x)

which is more accurate than Eq. (4.13) because Maple reduced it from a Chebyshev series
of higher order. We could have had it expressed in powers of x if we inserted the command:

w i t h (orthopoly)

which would have given

If we should tabulate the values from this rational function as done in Table 4.5, we would
find that the maximum error is -0.0026, about 60% as great.

It was mentioned that the error of a Pad6 rational function is often less if the numerator
is of greater degree than the denominator. Let us test this, using Maple:

we get

and the maximum error is greater; it is -0.0032.

2 40 Chapter Four: Approximation of Functions

Minimax Approximations

We have made several improvements over a Maclaurin series approximation to a function:
by economizing it, forming a Chebyshev series, developing a Pad6 rational function, and,
last, creating a Chebyshev-Pad6 rational function.

Still, none of these is "optimal." A theorem, due to Chebyshev, tells us whether a given
approximation is optimal. This states that, in order to be optimal, an approximation of
degree N is minimax if and only if there are at least N + 2 maxima and minima and all are
of equal magnitude. (For a rational function, N is the sum of the degrees of the numerator
and denominator.) Table 4.5 shows five maxima and minima, the correct number, but they
are not equal in magnitude. The same is true in Table 4.2 for the Chebyshev series.

A consequence of the minimax theorem is that a bound to the error of the minimax
approximation is given by the magnitudes of the smallest and largest errors of an approxi-
mation with the correct number of maximahinima. Thus, we see, from Table 4.5, that the
error of a minimax approximation of degree-3 lies between 0.0006 and 0.0044.

Finding a truly minimax approximation is not an easy task;" nonlinear equations are
involved. An algorithm due to Remes is the usual way to find it; it begins with an approxi-
mation that has the correct number of maximdminima and, by iterations, converges on the
minimax one. The Chebyshev of Eq. (4.7) could be a good starting point, as illustrated by
Figure 4.2. The rational function of Eq. (4.13) would work but is far from minimax, as seen
in Table 4.5.

Actually, Maple and Mathematica will do the work for us. Maple gets a minimax ratio-
nal approximation to eX of degrees 2 and 1:

numapprox [minimax] (exp (x) , x = 0 . . l , [2,11) ;

We leave it to the student to do this in Mathematica.

4.3 Fourier Series

Polynomials are not the only functions that can be used to approximate known functions.
Another means for representing known functions are approximations that use sines and
cosines, called Fourier series after the French mathematician who first proposed, in the
early 1800s, that "any function can be represented by an infinite sum of sine and
cosine terms."

Fourier used these series in his studies of heat conduction. His belief that any function
can be represented in the form of a sum of sine and cosine terms with the proper coeffi-
cients, possibly with an infinite number of terms, was disputed by other mathematicians
because he did not adequately develop the theory. Actually, the belief is false, for there are

* Ralston is an excellent reference.

4.3: Fourier Series 24 1

functions (mostly esoteric) that do not have a representation as a Fourier series. However,
most functions can be so represented.

Representing a function as a trigonometric series is important in solving some partial-
differential equations analytically. In this section we will see how to determine the coeffi-
cients of a Fourier series.

Because a Fourier series is a sum of sine and/or cosine terms, it will obviously always
be a periodic function.

We will only summarize the important theorems concerning Fourier series. Proofs can
be found in Conte and de Boor (1980), Fike (1968), Brigham (1974), Ramirez (1985), and
Ralston (1965). In the following theorems, f (x) refers to the periodic function being repre-
sented or to the periodic extension given by a redefinition. It is essential that f (x) be
integrable if we are to compute the coefficients of a Fourier series.

1. f (x) is said to be piecewise continuous on (0, L) if it is continuous on (0, L) except for
a finite number of finite discontinuities. If f(x) andlor f '(x) is piecewise continuous
on (0, L), f(x) is said to be piecewise smooth. An infinite series is said to converge
pointwise to f(x) if the sum of n terms of the series converges to f(x) at the point in
(0, L) as n + a. An infinite series is said to converge uniformly if it converges point-
wise to f (x) at all points in (0, L).

2. Iff (x) is continuous and piecewise smooth, its Fourier series converges uniformly to
f(x). Iff (x) is piecewise smooth, the series converges pointwise to f(x) at all points
where f(x) is continuous and converges to the average value where f(x) has a finite
discontinuity.

3. If f(x) is piecewise continuous, its Fourier series can be integrated term by term to
yield a series that converges pointwise to the integral of f(x).

4. Iff(x) is continuous and f '(x) is piecewise smooth, then the Fourier series off (x) can
be differentiated term by term to give a series that converges pointwise tofr(x) wher-
ever f "(x) exists.

The theory of Fourier series is a major topic in mathematics. Most mathematical texts that
cover Fourier series at least outline proofs of the preceding theorems.

Any function, f(x), is periodic of period P if it has the same value for any two x-values
that differ by P, or

Figure 4.4 shows such a periodic function. Additional occurrences are shown as dashed
on the plot. Observe that the period can be started at any point on the x-axis. Sin(x) and
cos(x) are periodic of period 2 ~ ; sin(2x) and cos(2x) are periodic of period IT; sin(nx)
and cos(nx) are periodic of period 2.rrln.

We now discuss how to find the A's and B's in a Fourier series of the form

'40 "
f(x) = - + [A, cos(nx) + B, sin(nx)].

2 .=,
[We read the symbol "=" in Eq. (4.14) as "is represented by."] The determination of the
coefficients of a Fourier series [when a given function, f (x), can be so represented] is based

Chapter Four: Approximation of Functions

Figure 4.4
Plot of a periodic function of period P

on the property of orthogonality for sines and cosines. For integer values of n, m:

Although the term orthogonal should not be interpreted geometrically, it is related to the
same term used for orthogonal (perpendicular) vectors whose dot product is zero. Many
functions, besides sines and cosines, are orthogonal, such as the Chebyshev polynomials
that were discussed previously.

To begin, we assume that f (x) is periodic of period 2~ and can be represented as in Eq.
(4.14). We find the values of A, and B, in Eq. (4.14) in the following way.

1. Multiply both sides of Eq. (4.14) by cos(0x) = 1, and integrate term by term between
the limits of - n and T. (We assume that this is a proper operation; you will find that
it works.)

Because of Eqs. (4.15) and (4.16), every term on the right vanishes except the first,
giving

4.3: Fourier Series 243

Hence, A. is found and it is equal to twice the average value of f(x) over one
period.

2. Multiply both sides of Eq. (4.14) by cos(mx), where m is any positive integer, and
integrate:

cos(mx) f (x) dx = A, cos(mx) cos(nx) dx
n = 1

(4.22)

+ E 1;: B, cos(mx) sin(nr) dx.
n = l

Because of Eqs. (4.16), (4.17), and (4.19), the only nonzero term on the right is when
m = n in the first summation, so we get a formula for the A's:

3. Multiply both sides of Eq. (4.14) by sin(mx), where m is any positive integer, and
integrate:

Because of Eqs. (4.15), (4.17), and (4.18), the only nonzero term on the right is when
m = n in the second summation, so we get a formula for the B's:

I

f (x)sin(nx) dx, n = l ,2 ,3 ,

By comparing Eqs. (4.21) and (4.23), you now :see why Eq. (4.14) had Ao/2 as its
first term. That makes the formula for all of the A's the same:

1 "
.,=-I f (XI cos(nx> dx, n = 0, 1, 2, (4.26)

-7r

It is obvious that getting the coefficients of Fourier series involves many integrations.
We observe that this can be facilitated by a computer algebra system.

The integrations to find the coefficients of a Fourier series can be done numerically, as
we explain in Chapter 5. This allows one to get a series that approximates to experimental
data, a specially important application. The fast Fourier transform (FFT) is the efficient
way to do this.

Fourier Series for Periods Other Than? 21i-

What if the period off (x) is not 2n-? No problem-we just make a change of variable. If
f (x) is periodic of period P , the function can be considered to have one period between

Chapter Four: Approximation of Functions

-PI2 and Pl2. The functions sin(2mlP) and cos(2mlP) are periodic between -PI2 and
Pl2. (When x = -P/2, the angle becomes - rr, when x = Pl2, it is T.) We can repeat the
preceding developments for sums of cos(2nmlP) and sin(2n~xlP), or rescale the preced-
ing results. In any event, the formulas become, for f (x) periodic of period P:

Because a function that is periodic with period P between -PI2 and PI2 is also periodic
with period P between A and A + P, the limits of integration in Eqs. (4.27) and (4.28) can
be from 0 to P.

EXAMPLE 4.3 Let f(x) = x be periodic between -T and T. (See Figure 4.5.) Find the A's and B's of its
Fourier expansion.
For Ao:

For the other A's:

For the B's:

Figure 4.5
Plot of f (x) = x, periodic of period 2 n

Figure 4.6
Plot of Eq. (4.32) for N = 2,4, 8

4.3: Fourier Series 245

We then have

Figure 4.6 shows how the series approximates to the function when only two, four, or eight
terms are used.

2

EXAMPLE 4.4 Find the Fourier coefficients for f(x) = I X I on - T to -rr:

1 O
A,, = -I (-x>cos(nx) dx + - x cos(nx) dx

T -" I" 0

Because the definite integrals in Eq. (4.34) are nonzero only for odd values of n, it sim-
plifies to change the index of the summation. The Fourier series is then

Figure 4.7 shows how the series approximates the function when two, four, or eight terms
are used.

Figure 4.7
Plot of Eq. (4.36) for N = 2,4, 8

Chapter Four: Approximation of Functions

When you compare Eqs. (4.32) and (4.36) and their plots in Figures 4.6 and 4.7, you
will notice several differences:

1. The first contains only sine terms, the second only cosines.
2. Equation (4.32) gives a value at both endpoints that is the average of the end values

for f(x), where there is a discontinuity.
3. Equation (4.36) gives a closer approximation when only a few terms are used.

Example 4.5 will further examine these points.

EXAMPLE 4.5 Find the Fourier coefficients forflx) = x(2 - x) = 2x - x2 over the interval [-2,2] if it is
periodic of period 4. Equations (4.27) and (4.28) apply.

-4 16 " (-ly" 8 (-l>nil
x (Z - x) = - + ~ 3 n=l n2 cos (" F) + G ~ ~ - n sin(?) (4.40)

You will notice that both sine and cosine terms occur in the Fourier series and that the
discontinuity at the endpoints shows itself in forcing the Fourier series to reach the average
value. It should also be clear that the series is the sum of separate series for 2x and -x2.
Figure 4.8 shows how the series of Eq. (4.40) approximates to the function when 40 terms
are used. It is obvious that many more terms are needed to reduce the error to negligible
proportions because of the extreme oscillation near the discontinuities, called the Gibbs
phenomenon. The conclusion is that a Fourier series often involves a lot of computation as
well as awkward integrations to give the formula for the coefficients.

Figure 4.8
Plot of Eq. (4.40) for N = 40

4.3: Fourier Series 247

Mathernatica has a built-in command to get the Fourier series for a function; the others can
get the coefficients by integration, of course. (Maple's f o u r i e r command gets the
Fourier transforms, not the series.)

With Mathernatica, we must first load a package:

<<Calculus'FourierTransform'

and, because there is a warning message, do

Clear [FourierTrigSeries] ; Remove [FourierTrigSeries]

and then

FourierTrigSeries [x* (2 - x) , {x, -2,2 },4]

which gives the series. However, the sine terms are hard to interpret until we do'

Collect [%,Pi]

which gives a correct result [see Eq. (4.40)], but all the cosine terms are grouped together
with a denominator of p i 2 and the sine terms are similarly grouped with a denominator
of pi.

All of the computer algebra systems can do the required integrations to get the coeffi-
cients of a Fourier series. If f(x) = x(2 - x) over [-2, 21 and we want A3, hare are the
commands that are used:

In Maple, we do

2/4*int (x* (2 - X) *COS (3*Pi*x/2), x = -2. .2) ;

Mathernatica 's command is

2/4*Integrate[x* (2 - X) *Cos [3*Pi*x/2], {x, -2,211

With MATLAB, two commands are needed because the first result is symbolic and the
integration operation does not permit a multiplier (although the 214 could be included in
the integrand):

a3 = int ('x* (2 - X) *COS (3*pi*x/2) ' , -2, 2)
symmul (a3, '2/4')

In all cases, the correct result is obtained.

d
Fourier Series for Nonperiodic Fumc tions

I ange Expansions
n --
!

The development until now has been for a periodic function. Whz it if f(x) is not periodic?
Can we approximate it by a trigonometric series? We assume that we are interested in
approximating the function only over a limited interval and we do not care whether the
approximation holds outside of that interval. This situation frequently occurs when we
want to solve partial-differential equations analytically.

Chapter Four: Approximation of Functions

Figure 4.9
A function, f(x), of interesi on 10, 31

Figure 4.10
Plot of a function reflected abw l the y-axis, an even
function

Suppose we have a function defined for all x-values, but we are only interested in repre-
senting it over (0, L).* Figure 4.9 is typical. Because we will ignore the behavior of the
function outside of (0, L), we can redefine the behavior outside that interval as we wish.
Figures 4.10 and 4.11 show two possible redefinitions.

In the first redefinition, we have reflected the portion of f(x) about the y-axis and have
extended it as a periodic function of period 2L. This creates an even periodic function. If
we reflect it about the origin and extend it periodically, we create an odd periodic function
of period 2L. More formally, we define even and odd functions through these relations:

f (x) is even iff (-.w) = f (x),

f (x) is odd iff (-x) = -f (x).

Figure 4.1 I
Plot of a function reflected about the origin, an odd
function

* If the range of interest is [a, b], a simple change of variable can make this [0, L].

4.3: Fourier Series 249

It is easy to see that cos(Cx) is an even function and that sin(Cx) is an odd function for any
real value of C.

There are two important relationships for integrals of even and odd functions. (If you
think of the integrals in a geometric interpretation, these relationships are obvious.)

L

Iff (x) is even, JPL fo dx = 2 (4.43)

It is also easy to show that the product of two even functions is even, that the product of
two odd functions is even, and that the product of an even and an odd function is odd.
This means that, if f(x) is even, f (x)cos(nx) is even and f(x)sin(nx) is odd. Further, iff (x)
is odd, f(x)cos(nx) is odd and f(x)sin(nx) is even. Because of Eq. (4.41), the Fourier series
expansion of an even function will contain only cosine terms (all the B-coefficients are
zero). Also, if f(x) is odd, its Fourier expansion will contain only sine terms (all the A-
coefficients are zero). These facts are important when we develop the "half-range" expan-
sion of a function.

Therefore, if we want to represent f(x) between 0 and L as a Fourier series and are inter-
ested only in approximating it on the interval (0, L), we can redefine f within the interval
(-L, L) in two importantly different ways: (1) We can redefine the portion from --L to 0 by
reflecting about the y-axis. We then generate an even function. (2) We can reflel-t the por-
tion between 0 and L about the origin to generate an odd function. Figures 4.10 and 4.1 1
showed these two possibilities.

Thus two different Fourier series expansions of f(x) on (0, L) are possible, one that has
only cosine terms or one that has only sine terms. We get the A's for the even extension of
f(x) on (0, L) from

We get the B's for the odd extension of f(x) on (0, L) from

EXAMPLE 4.6 Find the Fourier cosine series expansion of f(x), given that

Figure 4.12 shows the even extension of the function.
Because we are dealing with an even function on (-2, 2), we know that the Fourier

series will have only cosine terms. We get the A's with

Chapter Four: Approximation of Functions

Figure 4.12
Plot of Eq. (4.47) reflecred about the y-axis

n even,

An = 2 = - l I ~ n + l Y 2 , n odd.
12%-

Then the Fourier cosine series is

ier sine series expansion for the same function as in Example 4.6. Figure 4.13
shows the odd extension of the function.

Figure 4.13
Plot of Eq. (4.47) ref ecied dboLir :he origin

4.3: Fourier Series 25 1

We know that all of the A-coefficients will be zero, so we need to compute only the B's:

The term in brackets gives the sequence 1, -2, 1, 0, 1, -2, 1, 0, Because this
sequence is awkward to reduce (except by use of the mod function), we simply write

Summary of Formula~s for Computation
of Fourier Coefficients

A function that is periodic of period P and meets certain criteria (see below) can be repre-
sented by Eq. (4.52):

The coefficients can be computed with

(The limits of the integrals can be from a to a + P.)
Iff (x) is an even function, only the A's will be nonzero. Similarly, iff (x) is odd, only

the B's will be nonzero. If f(x) is neither even nor odd, its Fourier series will contain both
cosine and sine terms.

Even iff (x) is not periodic, it can be represented on just the interval (0, L) by redefining
the function over (-L, 0) by reflecting f (x) about the y-axis or, alternatively, ablout the ori-
gin. The first creates an even function, the second an odd function. The Fourier series of
the redefined function will actually represent a periodic function of period 2L that is
defined for (-L, L).

When L is the half-period, the Fourier series of an even function contains only cosine
terms and is called a Fourier cosine series. The A's can be computed by

Chapter Four: Approximation of Functions

The Fourier series of an odd function contains only sine terms and is called a Fourier sine
series. The B's can be computed by

If f(x) (or its redefined extension) has a finite discontinuity, the Fourier series will converge
to the average of the two limiting values at the discontinuity. The Fourier series converges
slowly at a point of discontinuity and exhibits more pronounced oscillations (the Gibbs
phenomenon) near that point. Ifflx) (or the redefined function) has a discontinuity in its
first derivative, convergence will be slower at that point.

Exercises

Section 4.1

1. Write a computer program that generates TJx) when
the value of n is an input quantity.

2. Extend the graphs of several of the Chebyshev polyno-
mials to [-3, 31 and observe that the maximum magni-
tudes are larger than one outside of [- 1, I].

3. Show that Eq. (4.3) is true for several combinations of n
and m. How can you handle the discontinuity at x = l ?

4. Graph T5(x) for x between - 1 and 1. Read approximate
values for the zeros from the graph. Then use Newton's
method to find the values to a precision of 20.0001.

b 5. Expand cos(6x) and compare this to T&x) The formula
for the cosine of the sum of two angles will help you in
this.

b 6. T4(x)/8 has four zeros in [- 1, I]. What are their val-
ues? Create some other fourth-degree polynomial
whose coefficient of x4 is unity that has different zeros
in [- 1, I]. Compare the graphs of this with that of
T4(x)/8 to verify that it has a larger upper bound to its
magnitude within the interval.

7. Verify that the values in Table 4.1 are accurate.

8. For the interval 10, I], superimpose the graph for the
economized polynomial of degree-4 on the graph of the
Maclaurin series of the same degree for f (x) = ex. Do it
again for those of degree-5.

9. Repeat Exercise 8, but for the interval [- 1, 01.

10. Make a table equivalent to Table 4.1 but for the func-
tion f (x) = ex cos(x).

b11. Extend Eq. (4.6) to include equations for x'O and xl'.

12. The function arctan(x) can be represented by this power
series:

Economize this three times to give a third-degree poly-
nomial. Graph the errors, and compare this graph to the
errors of the ninth-degree expansion.

13. Find the first few terms of the Chebyshev series for cos(x)
by rewriting the Maclaurin series in terms of the T(x)'s
and collecting terms. Convert this to a power series in x.
Compare the error of both the Chebyshev series and the
power series after truncating each to the fourth degree.

b14. A series expansion for (1 + ~ / 5) " ~ is

Convert this to a Chebyshev series, including terms to
T2. What is the maximum error of the truncated
Chebyshev series? Compare this to the error of the
power series when it is truncated to second degree.

15. Make a table similar to Table 4.2 but for f(x) =

sin (x)lexp(x). Also do a graph similar to Figure 4.2.

16. Compute the coefficients of Eq. (4.7) from the integra-
tion formula for a i given in Section 4. l .

17. To get the smaller error of a Chebyshev series or an
economized power series requires that the approxima-
tion be for the interval [-I, 11. Show what change of
variable will change f(x) on [a, b] to f(y) on [- 1, I].

b18. The Legendre polynomials (which we will discuss in
the next chapter) resemble the Chebyshev polynomials

Exercises

in that they have the same number of zeros within [- 1,
I] and the same number of maxima and minima. These
Legendre polynomials can be obtained through this
recursion formula:

Compare the graphs of several of these polynomials
with Chebyshev polynomials of the same degree. Why
are the Legendre polynomials less suited to economiz-
ing a power series?

Verify Eq. (4.3) after making the substitution from Eq.
(4.4). Do this analytically.

sin(nx) is orthogonal over [-m, n-] [see Eq. (4.18)].
Male a change of variable so that it is orthogonal over
[- 1, 11. What value of n causes this new function to
have exactly five minimalmaxima on [-I, I].
Compare its graph to that of T4(x). Then do the same
for cos(x).

Section 4.2

Find Pad6 approximations for these functions, with
numerators and denominators each of the third degree:

cos2(x), sin(x4 - x), xe".

Compare the errors in [- 1, I] for each of the approxi-
mations of Exercise 2 with the errors of the corre-
sponding sixth-degree Maclaurin series.

Express the following rational fractions in continued-
fraction form. In each part, compare the number of
multiplication and division operations with that result-
ing from evaluating the polynomials by Horner's
method (in nested form).

Convert each of the Pad6 approximations of Exercise
21 to continued fractions.

Estimate the errors of each of the Pad6 approximations
of Exercise 21 by computing the coefficient of the next
nonzero term in the numerator. Compare to the actual
errorsatx= -1 a n d x = 1.

26. A Chebyshev series for c o s (d 4) is

Use this series to develop a Pad6-like rational func-
tion by the method of Section 4.2 where the function
is R3,3.

b27. Fike (1968) gives this example of a rational fraction
approximation to T (1 + x) on [0, 11:

Is this a minimax approximation? If not, what are the
bounds of the errors of the R3,4 minimax approximation?

28. The rational function of Exercise 27 is R.% 4. Getting
R4,3 should have a smaller error. Is this true?

29. The approximations obtained in Exercise 21 are not
minimax. However, you can set bounds to the errors of
the corresponding minimax approximations from them.
What are these bounds?

Section 4.3

b30. Which of these functions is periodic? What is the
period if it is periodic?

a. sin(2x) + 2 cos(x) c. sin3(x)

b. e-'OX cos(x) d. eZix, where i =

31. Duplicate Example 4.3 and Figures 4.5 and 4.6, but for
f(x) = (X + I)*.

32. Example 4.4 gets the Fourier series for f(x) = 1x1
between x = - 7r and x = n-. f (x) is also periodic with a
period of 2 ~ . Extend the function to the range [- 8, 81
and duplicate Figure 4.7 for this larger range.

33. Duplicate the plot of Figure 4.6, but for the extended
range of [- 10, 101.

b34. Find the Fourier coefficients for f (x) = x3 if it is peri-
odic and one period extends from x = - l to x = 2.

35. Find the Fourier coefficients for f(x) = x2 - 1 if it is
periodic and one period extends from x = - 1 to x = 2.

36. Show that the Fourier series for

f (x)=x3 t x 2 - 1,

between x = - 1 and x = 2, is just the sum of the
series in Exercises 34 and 35.

b37. Is the Fourier se.ries for f(x) * g(x) equal to the product
of the series for,f(x) and g(x)?

254 Chapter Four: Approximation of Functions

38. What are the plots of the functions in Exercises 34 and
35 when reflected about the x-axis? When reflected
about x = - l ? When reflected about x = 2? Are any
of these odd functions?

39. Repeat Exercise 38 but reflect about the y-axis. Are the
results even or odd?

40. Suppose we are interested in f(x) = e-' sin(2x - 1)
only in the interval [O, 21. Sketch the half-range exten-
sions that give

a. An even function.

b. An odd function.

41. Repeat Exercise 40, but for the range [- 1 , 31.

42. Find the Fourier coefficients for the periodic functions
of Exercise 40.

43. Repeat Exercise 42 for the functions of Exercise 41. Is
there any relation between these and the series of
Exercise 42?

)44. As Figure 4.7 shows, a finite Fourier series does not
match to f (0) = 0 for f (x) = I x 1.
a. How many terms are needed for it to match to within

0.00001?

b. Looking at Figure 4.7 again, a finite Fourier series
does not match f (T) = Tat x = 71: HOW many terms
are needed to match within 0.00001?

c. Is the error of a given finite series the same at these
two points?

)45. Figure 4.6 shows how a Fourier series behaves at a
discontinuity -it equals the average value of the func-
tion. The figure also shows, for f (x) = x, that the series
matches exactly to f (x) 2N + 1 times when there are N
terms in the series. For this example, what are the x-
values where there is match for N = 4?

46. Reproduce Figure 4.6, but for N = 3 and 5. Based on
the figure, it would appear that these two series should
match exactly to f (x) at 7 and 11 x-values.

a. Is this true?
b. At what x-values do the series match to f (x)?
c. Using this together with the result of Exercise 45,

what can you say about the location of points where
the series and the function agree?

d. Is the conclusion of part (c) true for other definitions
off (x)?

APP1. In Section 4.2, the Pad6 rational functions were developed to approximate f (x) on the interval [- 1,
11. If we want to approximate f (x) on a different interval, say, [a, b], a simple linear transformation
can change the interval to [- 1, I]. What if we want to approximate a function on an interval with one
or both endpoints infinite? Devise a transformation for such cases.

APPZ. Investigate, for some computer system available to you, how some or all of the following transcen-
dental functions are approximated in Fortran 90. Classify these into Taylor series formulas,
Chebyshev polynomials, rational functions, or other types. Which of these are minimax?

a. sin(x)
b. cos(x)
c. tan(x)
d. atan(x)
e. exp(x)
f. ln(x)

APP3. Repeat APP2 for other computer languages: BASIC, Pascal, and C.

APP4. As illustrated by Figure 4.8, the sum of n terms of the Fourier series for a function that has a jump
discontinuity has larger oscillations near the discontinuity -the Gibbs phenomenon. For f (x) equal
to a square wave, investigate whether the departure of the sum of the series from f(x) for the last
"hump" in the curve (the "ear"), decreases when n is increased. What can you conclude about the
size of the ear?

Applied Problems and Projects 255

APPS. One way to eliminate the Gibbs phenomenon (see APP4) is to abolish the jump discontinuity by sub-
tracting a linear function from f (x). Suppose the linear function is L(x). For f(x) equal to square wave,
find the L(x) for which f(x) - L(x) has no jump discontinuities. Compare the accuracy of the sum of
10 terms of the Fourier series for f(x) with that for the sum of 10 terms of the Fourier series for
g(x) = f (4 - L(4.

APP6. Another way to ameliorate the problem of the Gibbs phenomenon is to use the so-called Lanczos's
factors. Search the literature to find out more about this method. Apply it to obtain an improved
approximation to a square wave.

APW. Chapter 3 described the fitting of functions with polynomials and this chapter describes fitting them
with sinusoids (Fourier series). Another possibility is to fit with exponentials, y(x) = Cci exp(ai x). Is it
possible to do this? Under what conditions is it possible? How can the values of ci and ai be determined?
Specifically, fit a four-term sum to these data and compare to the exact solution, y = sin(m/6):

The heart of calculus is to find derivatives and integrals of functions that are exploited in
many applications. We show in this chapter how derivatives and definite integrals can be
computed with a computer program. Of course, computer algebra systems such as
MATLAB, Maple, or Mathematica can obtain analytic results through their symbolic
capabilities.

In this chapter, as in the previous two, we continue to exploit the useful properties of
polynomials to develop methods for a computer to do integrations and to find derivatives.
Because we can use an interpolating polynomial to approximate a function even if it is
known only through a table of values, these methods find application when working with
experimental data.

When the function is explicitly known, we can emulate the methods of calculus. But
doing so in getting derivatives requires the subtraction of quantities that are nearly equal
and that runs into round-off error. However, integration involves only addition, so round
off is no problem; of course, we cannot often find the true answer numerically because the
analytical value is the limit of the sum of an infinite number of terms. We must be satisfied
with approximations for both derivatives and integrals but, for most applications, the
numerical answer is adequate.

If we are working with experimental data that are displayed in a table of [x, f(x)] pairs,
emulation of calculus is impossible; we must approximate the function behind the data in
some way. The polynomial approximations of Chapter 3 are an obvious approach. Still,
even if the experimental data are exact, approximating the function with a polynomial is
itself inexact. If there is experimental error in the data, there is additional error due to this.

The topics of this chapter are important enough that there are many techniques and
these have been implemented in libraries of computer programs in various languages. The
history of the methods is rich and goes back more than 300 years; names of famous math-
ematicians like Newton, Gauss, Lagrange, and Legendre are associated with them.

C o n t e n t s o f T h i s C h a p t e r

Differentiation with a Computer
Employs the interpolating polynomials of Chapter 3 to derive formulas for
getting derivatives. These can be applied to functions known explicitly as well
as those whose values are found in a table. Based on a consideration of the
error term, a method for getting improved estimates can be found, a procedure
called Richardson extrapolation.

Numerical Integration-The Trapezoidal Rule
Approximates the integrand function with a linear interpolating polynomial to
derive a very simple but important formula for numerically integrating
functions between given limits. The method can be applied to tabular data.
Romberg integration, an extrapolation technique, can improve the accuracy.

Simpson's Rules
Develops more accurate integration formulas based on approximating the
integrand with quadratic or cubic polynomials.

An Application of Numerical Integration-Fourier Series and Fourier
Transforms
Shows how the methods for numerical integration can be used to compute the
terms of a Fourier series. When a Fourier series is developed from
experimental measurements of periodic phenomena, a discrete Fourier series
can be obtained. This is a transformation of the data to reveal the fundamental
vibrational frequencies of the system.

Adaptive Integration
Describes a way to reduce the number of function evaluations when
Simpson's rule is used. A kind of binary search is used to locate sub~regions
where the size of intervals can be larger. An interesting bookkeeping problem
is involved.

Gaussian Quadrature
Gives the development of an integration method that uses fewer function
evaluations by properly selecting the points where the value of the function is
computed. The section introduces a representative of orthogonal polynomials,
the Legendre polynomials.

Multiple Integrals
Explains how numerical methods can evaluate a multiple integral, with either
fixed or variable limits.

Application of Cubic Splines
Gives the details for using a spline approximation to compute derivatives and
integrals.

258 Chapter Five: Numerical Differentiation and Integration

5. ifferentiation with a

When you studied calculus, you learned that the derivative of a function, f(x) at x = a, is
defined as

(This is called a forward-difference approximation. The limit could be approached from
the opposite direction, giving a backward-difference approximation.)

It should be clear that a computer can calculate an approximation to the derivative from

if a very small value is used for Ax. What if we do this, recalculating with smaller and
smaller values of Ax starting from an initial value that is not small? We should expect to
find an optimal value for Ax because round-off errors in the numerator will become great
as Ax approaches zero, and these are magnified by the small value in the denominator.

When we try this for f(x) = eX sin(x) at x = 1.9, starting with Ax = 0.05 and halving Ax
each time, we find that the errors of the approximation decrease as Ax is reduced until
about Ax = 0.051128. The analytical answer is 4.1653826. Table 5.1 gives the results from
a computer program. Notice that each successive error is about 112 of the previous error as
Ax is halved until Ax gets quite small, at which time round off affects the ratio. At values
for Ax smaller than 0.051128, the error of the approximation increases due to round off. If
double precision is used, a more accurate estimate is achieved. In effect, the best value for
Ax is when the effects of round-off and truncation errors are balanced.

le 5.1 Forward-difference approximations for f(x) = 8 sin(x)

Approximation Error
Ratio of
errors

* At this point, round-off and truncation errors are in balance, but we still do not achieve
six-digit accuracy.

5.1: DiEFerentiation with a Computer 259

If a backward-difference approximation is used:

similar results are obtained.
MATLAB knows a lot about derivatives. First, it can get the analytical answer to the

function of Table 5.1 :

EDU>> f = 'exp (x) *sin (x) '
f =
exp (x) *sin (x)
EDU>> df =diff (f,'xl)
df =

exp (x) *sin (x) + exp (x) *cos (x)
EDU>> numeric (subs (df, 1.9, 'x'))
ans =

4.1654

Of course it can compute numerically:

x = [1.9 1.9 1.9 1.9 1.9 1.9 1.9 :1.9 1.91;
del = [.05 .05/2 .05/4 .05/8 .05/:L6 .05/32 . . .
.05/64 .05/128 .05/256];

xplus = x + del;
f = exp (x) . *sin (x) ;
f plus = exp (xplus) . *sin (xplus) ;
num= £plus - f;
deriv = num. /del
deriv =

4.0501 4.1096 4.1379 4.1518 4.1586

4.1620 4.1637 4.1645 4.1650

In this, we first created several vectors: the x-values, and values for Ax, x + Ax, f(x), f(x +
Ax), and the numerator values. This last was divided by the Ax's to give essentially the
same results as in Table 5.1.

You may want use Maple to see how round off causes the results to be less accurate
when the precision of the computations is poorer. We found that with a precision of only
five digits, the best estimate was 4.1600 at Ax = 0.01518. The ratio of errors was again
about 2 to 1.

It is not by chance that the errors are about halved each time. Look at this Taylor series
where we have used h for Ax:

where the last term is the error. The value of 5 is at some point between x and x + h. If we
solve this equation for f'(x), we get

Chapter Five: Numerical Differentiation and Integration

which shows that the errors should be about proportional to h, precisely what Table 5.1
shows. In terms of the order relation, we see that error is O(h). If we repeat this but begin
with the Taylor series for f (x - h), it turns out that

where 5 is between x and x - h, so the two error terms are not identical though both are

O(h).
Now, if we add Eqs. (5.2) and (5.1), then divide by 2, we get the central-difference

approximation to the derivative:

f t (x) = (f (x + h) - f (x - h))l(2h) - f"'(()h2/6.
(5.3)

Error is 0(h2).

We had to extend the two Taylor series by an additional term to get the error because the
f " (x) terms cancel.

This shows that using a central-difference approximation is a much preferred way to
estimate the derivative; even though we use the same number of computations of the func-
tion at each step, we approach the answer much more rapidly. Table 5.2 illustrates this,
showing that errors decrease about four fold when Ax is halved [as Eq. (5.3) predicts] and
that a more accurate value is obtained.

All of this reminds us that it is best to center the x-value within the points used in the
estimate, as we found for interpolation.

What we have found is also in accord with the mean-value theorem for derivatives:

f (b) - f (a) = f t (<) , where a < (< b.
b - a

The forward-difference approximation will give a value for f ' (x) at a point between x and
x + h; the backward approximation gives a value at a point between x - h and x; the cen-
tral approximation at a point between x - h and x + h. Unless the function behaves wildly
near the point x, these three points are close to x + h/2, x - h/2, and x.

Table 5.2 Central-difference approximations for f (x) = eX sin(x)

Ratio of
Ax Approximation Error errors

5.1: Differentiation with a Computer 261

Deriv aatives from Divided- ifference Tables

There is another way to get derivatives numerically. We can build a table of values for the
function, get an interpolating polynomial from appropriate entries, and then differentiate
this polynomial. If the x-values are evenly spaced, we could employ a polynorrial derived
from ordinary differences. If the entries are unevenly spaced, we use divided differences.
Because divided differences apply in either case, we do this first. Recall that

f(x) = Pn(x) + error

= f bol + f [xo, xJ(x - xo)

i = O

+ error.

If the polynomial is a good match to the function near the x-value where we want the derivative,
we should get a good match to the derivative by differentiating Eq. (5.4). Doing this* we get:

To get the error term for Eq. (5.5) we have to differentiate the error term for Pn(x):

When this error term is differentiated, we will find a sum that has in one of its terms

which is impossible to evaluate because 5 depends on x in an unknown way. However, if
we take x = xi (where xi is one of the tabulated points). the difficult term drops out and we
get this expression for the error:

Error of the approximation to f'(x), when x = xi, is

* Recall that the derivative of a product of n factors is a sum of n terms, where each term in this sum is the same
n factors but one of the factors is replaced by its derivative in succession. For example,

Chapter Five: Numerical Differentiation and Integration

Observe that the error is not zero even when x is a tabulated value, although the interpolat-
ing polynomial agrees with f(x) at this point. In fact, the error of the derivative is less at
some x-values between the points.

It is not surprising that the next-term rule applies here as it did for interpolating polyno-
mials.

Suppose we have the table given in Table 5.3. The table is for f(x) = eX sin(x), so we can
compare with the previous computations.

Remember that the first divided differences are computed as

which are precisely the forward differences of&. Hence, between each successive pairs of
the entries in the table, the estimates of ff(x) are just these first differences that are
constants. Figure 5.la shows these estimates superimposed on the curve of analytical
values for f'(x). The value of x where fl(x) = 4.631 1 (the first entry in the table for the
first-order difference) is 1.7527, almost exactly halfway between the x-values used to com-
pute it. That is true as well for the other estimates in that column.

If we use two terms of Eq. (5.5) we can compute the estimated derivatives from succes-
sive triples of the data. These give linear relations in x as shown in Figure 5.lb. Three terms
of Eq. (5 3 , which involve groups of four entries from the table, produce the quadratic
relations shown in Figure 5. lc. Notice that the estimated derivatives are very close to the
analytical when three terms are used.

As we saw in Chapter 3 for interpretation, if we want to estimate the derivative for an
x-value near the end of the table, we appear to be severely limited in the degree of interpo-
lating polynomial. We can overcome this limitation by reordering i-values, putting them in
reverse order. Our formulas still work correctly, but we must remember to go diagonally
upward to get the values for a given value of i.

Because an interpolating polynomial fits better to the function if the x-values used in its
construction are such that the x-value for the derivative is centered within them, we should
choose the starting point (the i-value) to make this true. (If the x-values are in order, our
task is easier.)

Table 5.3 Divided-difference table for ex sin(x)

5.1: Differentiation with a Computer 263

Figure 5.1

(Create Table of Divided Differences)
For i = 0 To n Step 1 Do

Set f(i, 0) = f (i) End Do (For i)
Forj = 1 To n Step 1 Do

For i=OTon- jS t ep1Do
f(i, j) = [f(i + 1, j - 1) - f(i, j - l)]l[x(i + j) - x(i)]

EndDo (For i)
EndDo (For j)

(Now get user inputs)
u = value to be chosen for f '(u)
Deg = chosen degree of the polynomial

(Compute the derivative)

Chapter Five: Numerical Differentiation and Integration

Set PolySum = 0
For j = Deg To 2 Step - 1 Do

Set Sum = 0
Fork=OToj - 1S tep lDo

(p computes the value: [(u - x,) . . . (u - xk)])
Setp = 1
For 42 = 0 to j - 1 Step 1 Do

(evaluates the product: [(u - x,) . . . (U - X~-~)]I(U - x,)
If t # k Then

p = p * [u - x,] End If
End Do (For e)
Set Sum = Sum + AO, j) * p

End Do (For k)
Set PolySum = Polysum + Sum

End Do (For j).
PolySum = PolySum + f (0, 1)

Display PolySum as derivative value at u.

venly Spaced

Even though divided differences can handle any table, it is instructive to see how ordinary
differences can estimate the derivative when a table is evenly spaced. Recall from Chapter 3
that we can write an interpolating polynomial in terms of the differences [in this, s =

(x - xi)lh, which means that x = xi + s * h]:

Error = n (s - j) [in [x, xl, . . . , x,].
(n + l)! '

(In this formula, i is the index value where we enter the difference table.)
The derivative of PJs) should approximate f '(x). We do exactly the same as we did for

the polynomial constructed from a divided-difference table, getting

(The llh factor comes from dsldx = dldx(x - xi)lh = llh.)

5.1: Differentiation with a Computer 265

Again, the error term involves an unknown quantity unless x is one of the tabulated
values. When x = xi, s = 0. In this case, we get this analog of Eq. (5.7) when an interpo-
lating polynomial of degree n is used:

Equation (5.8) is a formula for estimating derivatives from a table of differences that we
enter at index value i.

We will illustrate with the data from Table 5.4, which again are for f(x) = elC sin(x).
The values of the first order differences, A&, give ?the forward-difference approxima-

tions to f i t when divided by Ax = 0.2 (we do not have to divide with divided
differences). If we use two terms of Eq. (5.8), we get linear approximations; three terms
give quadratics. Plots similar to those in Figure 5.1 result if these are graphed together
with f'(x).

Simpler Formulas

Equation (5.8) is awkward to use, but if we stipulate that the x-value where we want the
value of the derivative is one of the tabulated values, there is great simplification. To get
f ' (xi) we just use

because at x = xi, s = 0. Equation (5.10) is easy to use because the multiplierls of the dif-
ferences are so simple. In addition, the errors are very conviently expressed as "order of."
For example, with just one term of Eq. (5.6) we have

With two terms,

fl(xi) = (llh)[Ai - (1/2)A3] + (1/3)hy(3)((), error is 0(h2).

So, we see that with n terms, the error is O(hn). We also see that we can estimate the error
with the next-term rule. It is easy to show that the use of two terms of Eq. (5.10) gives the
central-difference formula for f'(xi+ and that this has an error of 0(h2).

Table 5.4 Differences of f(x) = eX sink)

266 Chapter Five: Numerical Differentiation and Integration

rder Derivatives

If we want formulas to estimate the second and higher-order derivatives of tabulated
values, we could differentiate Eq. (5.5) or Eq. (5.8). However, we prefer to show you
another way to do the job, a technique that has wide applicability. This is the method of
undetermined coefficients. It is easiest to demonstrate this for a table of evenly spaced
x-values.

We begin by getting a formula for the first derivative, one that we have seen already.
Suppose we have three values of f(x) with the x-values differing by a uniform amount,

h. We can tabulate these:

where x- = xo - h and x+ = xo + h. We want a formula for fr(xo) in terms of the three
function values. The arithmetic is simplified if we translate axes to make xo = 0, so the
values of x becomes - h, 0, +h.

A second-degree polynomial, P(x), can be fitted to the three points and P(x) is then an
approximation to f(x). The derivative of P(x), Pr(x), is then an approximation to f'(x). We
will want it for f'(O), the derivative at x = 0, the center of the x-values:

where A, B, and C are the unknown coefficients. We write P(x) as the general quadratic

We look at three instances of Eq. (5.1 1):
Case 1, P(x) = 1 implies:

Case 2, P(x) = x implies:

Case 3, P(x) = x2 implies:

In matrix form, these three equations are:

5.1: Differentiation with a Computer 267

We can write the solution to Eq. (5.12) by inspection: From the third equation, A = -C;
then, from the second, A = - 1/(2h) and C = + 1/(2h); substituting into the first, B = 0.
We then have this equation that approximates the derivative:

which is the central-difference formula, as we would expect.
We now do the same for the second derivative. The cases are the same, but now, when

P(x) = 1, P"(0) = 0; when P(x) = x, P"(0) = 0; when P(x) = x2, P"(0) = 2. The coeffi-
cient matrix is identical to that in Eq. (5.12), so we get

Again, the solution is easy: from the second equation, A = C; from the third, A = C =

llh2; from the first, B = -2/h2. The formula for the second derivative is

If we want the error term for Eq. (5.14), we work with the Taylor series for f (x + h) and for
f(x - h). The result is that the error is 0(h2) , which we leave as an exercise.

We also leave as exercises to show that

f "'(x,) =
f2 - 211 + 2f-1 - f -2 + o (~ ') ,

2h3

Higher Derivatives with rVIATLM

We saw earlier that MATLAB can get the analytical derivatives of a function. It: can do the
same for higher derivatives. Here we find the second and eighth derivatives of f(x) = eVx
and evaluate these at x = 3.

EDU>> f = 'exp (x) / x r ;

EDU>> df2 = d i f f (f , ' x r , 2)
df2 =

exp (x) /x - 2*exp (x) /xA2 + 2*exp (x) /:cA3
EDU>> d f 8 = d i f f (f , 8)

df8 =

exp (x) /x-8*exp (x) /xA2 + 56*exp (x) / p 3 -

Chapter Five: Numerical Differentiation and Integration

336*exp (x) /xA4 + 1680*exp (x) /xA5 -
6720*exp (x) /xA6 + 20160*exp (x) /xA7 -
40320*exp (x)/xA8 + 40320*exp (x) /xA9

The expression for the eighth derivative is pretty complicated. We can get the numerical
values of these at x = 3:

EDU>> numeric (subs (df 2, 3))

ans =

3.7195

EDU>> numeric (subs (df 8, 3))

ans =

3.7563

Extrapolation Techniques

We found earlier that the errors of a central-difference approximation to f ' (x) were of
0(h2). In effect, that suggests that the errors are proportional to h2 although that is true only
in the limit as h + 0. Unless h is quite large, we can assume the proportionality. So, from
two computations with h being half as large in the second, we can estimate the proportion-
ality factor which we call C. For example, in Table 5.2 we had:

h Approximation

0.05 4.15831

0.025 4.16361

If errors were truly c(h2), we can write two equations:

True value = 4.15831 + C(0.05')

True value = 4.16361 + ~ (0 . 0 2 5 ~)

from which we can solve for the m e value, eliminating the unknown "constant" C, getting:

True value = 4.16361 + (113) * (4.16361 - 4.15831)

= 4.16538,

which is very close to the exact value for f '(l .9), 4.165382.
You can easily derive the general formula for improving the estimate, when errors

decrease by O(hn):

Better = more + (1/(2n - l))(more - less), (5.15)
estimate accurate

where more and less in the last term are the two estimates at hl and h2 = hl 12. "More accu-
rate" is the estimate at the smaller value of h and n is the power of h in the order of the errors.

As a second example, let us apply this to values from Table 5.1 which were from for-
ward-difference approximations. Here the errors are O(h).

5.1: DiFferentiation with a Computer 269

h Approximation

0.05 4.05010

0.025 4.10955

Using Eq. (5.15), we have

Better estimate = 4.10955 + (4.10955 - 4.050lO) (1/(2' - 1))

= 4.16900,

which shows considerable improvement but not as good as from the central differences.
This extrapolation technique applies to any set of computations where the order of the

error is known, and we will see later in this chapter that we can apply it to integration
methods. Of course it also applies to the computation of higher derivatives, such as from
Eq. (5.14).

ichardson Extrapolation

When we compute an extrapolation from two estimates of the derivative using, say, h =

0.1 and h = 0.05, both of which are of 0(h2), the improved estimate has an error 0(h4) as
we show below. If we do another computation off '(x) at h = 0.025 to get a third estimate
of f'(x) and use this with the estimate at h = 0.05 to extrapolate, we get a second further
improved estimate also of error 0(h4). What is the error if we use these two improved esti-
mates to extrapolate again?

Consider the difference between the pair of Taylor :series that gave rise to Eq. (5.3) but
with more terms:

(The terms on the right after the first represent the error of the central difference approxi-
mation; the odd powers of h drop out through cancellations.)

If we compute a second approximation for fi' but with h cut in half, we get a better
approximation:

Adding 113 of the difference between Eqs. (5.17) and (5.16) to Eq. (5.17) gives Eq. (5.15),
but now we see that n will be 4 because the first of the errors terms cancel.

Using the two improved estimates for the derivative, but now adding 1/15 of the differ-
ence to the better estimate, results in canceling the next error term; it will be of 0(h6).
Continuing in the same fashion gives estimates of 0(/z8), O(hlO), . . . , until there is no
change in the improvements. Doing these successive extrapolations is called Richardson
extrapohtion.

Here is an example with f(x) = x2 * cos(x) for which f(l.O) = 0.23913363. The original
values of f'(l.O) are from central differences so they are of 0(h2).

Chapter Five: Numerical Differentiation and Integration

Value First Second Third
of h f'(l.0) extrapolations extrapolations extrapolations

There really was no point in doing the third extrapolation because the second one did not
change the value.

The merit of Richardson extrapolation is that we get greatly improved estimates without
having to evaluate the function additional times. We can use this technique to extrapolate
higher derivatives as well.

Given a function f (x):

Input
x = value for x
h = starting value for stepsize h
MaxStage = maximum number of stages (lines of table)
To1 = tolerance value for termination
d(0, 1) = 0: the initial value of the table

(Compute lines, (stages) of the table)
For stage = 1 To MaxStage Step 1 Do

Set d(stage, 1) = [Ax + h) - f(x - h)]/(2h).
For j = 2 to stage Step 1 Do

Set d(stage, j) = d(stage, j - 1)
+ [d(stage, j - 1) - d(stage - 1, j - 1)]/(2~j - 1)

EndDo (For j).
If ld(stage, stage) - d(stage, stage - 1)1 < To1
Then Exit EndIf.
Seth = h/2

EndDo (For stage).

On termination, the last computed value is the extrapolated estimate of the derivative.

If we only have an evenly spaced table of (x, f (x)) values, as we might have from a set of
experiments, we have no way to get new function values where the differences in x are
halved. However, if there are enough entries in the table, we may be able to double the
Ax's. Table 5.5 is an example.

5.1: Differentiation with a Computer 27 1

Table 5.5

Suppose we want the derivative at x = 2.4. The ce.ntra1 difference approximation is
-0.12819 from f(2.3) and f(2.5), h = 0.1. Now, if we compute the value again, but use the
values at x = 2.2 and 2.6, where h = 0.2, we get -0.12824, a poorer estimate because h is
twice as large. However, since we known that both are of 0(h2), we can employ Eq. (5.15)
to get an improvement:

f'(2.4) [improved] = -0.12819 + (-0.12819 + 0.12824)/3

= -0.12817.

[The function in Table 5.5 is for f(x) = e-X sin(x) for, which f '(2.4) = -0.128171.]
For convenience, here we collect formulas for computing derivatives.

Formulas for the first derivative:

Formulas for the second derivative:

Central difference

Central difference

Chapter Five: Numerical Differentiation and Integration

Central difference f " (~ 0) =
h - ' f o ' f - 1 + o(h2)

h2

-f? + % - 5fi + 2 f o + o(h2) f " (~ 0) = h2
-f2 + 16fi - 30fo + 16f-l - f-z

f "(xo) = + 0(h4) Central difference 12h2

Formulas for the third derivative:

Formulas for the fourth derivative:

6 4 f ? + 6 f z - % + f o +O(h)
f ' " (~ 0) =

h4

Averaged difference

Central difference

Integral calculus is a most important branch of calculus. It is used to find the velocity
of a body when its acceleration is known, to find the distance traveled using the
velocity, to compute areas, to predict population growth, and in many other important
applications.

In your calculus course, you learned many formulas to get the indefinite integral of
function f(x), the antiderivative. [Given the function, f(x), the antiderivative is a function
F(x) such that F1(x) = f(x).] You learned that the definite integral,

can be evaluated from the antiderivative. Still, there are functions that do not have an anti-
derivative expressible in terms of ordinary functions.

All of our computer algebra systems can find the antiderivative if its table of integrals
has it. For example, in Maple,

but, if the antiderivative in unknown, it just returns J f (x) dx:

5.2: Numerical Integration-The Trapezoidal Rule 273

> i n t (exp (x) / l n (x) , x) ;

If we give limits for the integral,

>int (x*sin (x) , x = 1. . 2) ;

s i n (2) - 2 cos (2) - s i n (1) + cos(1)

Maple gives us F(b) - F(a), which we can evaluate with

Now we ask, "Is there any way that the definite integral can be found when the zmtideriva-
tive is unknown?'The answer is "Yes, we can do it numerically."

You learned that the definite integral is the area between the curve of f(x) and the x-axis.
That is the principle behind all numerical integration-we divide the distance from x = a
.to x = b into vertical strips and add the areas of these stnps (the strips are often made equal
in widths but that is not always required).

The Trapezoidal Rule

When the area between the curve of f(x) and the x-axis is subdivided into strips, one way
to draw the strips is to make the top of the strips touch the curve, either at the left corner or
the right corner, but that is less accurate than making the top of the strip even with the
curve at its midpoint. In effect, these schemes replace the curve for f(x) with a sequence of
horizontal lines. We can think of these lines as interpolating polynomials of degree zero.

A much better way is to approximate the curve with a sequence of straight lines; in
effect, we slant the top of the strips to match with the curve as best we can. We are approx-
imating the curve with interpolating polynomials of degree-1. The gives us the trapezoidal
rule. Figure 5.2 illustrates this.

Figure 5.2

Chapter Five: Numerical Differentiation and Integration

From Figure 5.2, it is intuitively clear that the area of the strip from xi to xi+l gives an
approximation to the area under the curve:

We will usually write h = (xi+l - xi) for the width of the interval.

erivation sf the Trapezoidal Rule

An alternative way to obtain the trapezoidal rule is to fit f (x) between pairs of x-values with
polynomials of degree-1 and integrate those polynomials. We learned in Chapter 3 that a
first-degree Newton-Gregory interpolating polynomial between points xi and xi+ was

f(x) - Pl(x) = fi + sA& + error,

where s = (x - xi)lh and the error is given by

(h2/2)(s)(s - l)f"(t).

We can estimate Jf(x) between the two points by integrating Pl(x) :

where we have replaced dx with h * ds, and noted that s = 0 at xi and s = 1 at
Carrying out the integration, we find that

exactly as we found intuitively. The real reason for this development is to find the error
term for one application of trapezoidal integration. We get this by integrating the error
term. Doing so, we find

Error = -(1/12)h3f"'(() = 0(h3).

ompssite Trapezoidal Rule

If we are getting the integral of a known function over a larger span of x-values, say, from
x = a to x = b, we subdivide [a, b] into n smaller intervals with Ax = h, apply the rule to
each subinterval, and add. This gives the composite trapezoidal rule:

* In a computer program, you should do h(fo /2 + fi + fi + . . . + fn-i + fn/2) in order to reduce the number of
operations.

5.2: Numerical Integration-The Trapezoidal Rule 275

The error now is not the local error 0(h3) but the global errol; the sum of n local errors:

Global error = (- l/12)h3[f "(tl) + f"(c2) + ' ' + f "((J].

In this equation, each of the ti is somewhere within each subinterval. Iff "(x) is continuous
in [a, b], there is some point within [a, b] at which the sum of the f "(ti) is equal to f "(e) ,
where 5 is in [a, 61. We then see that, because nh = (b - a),

-(b -- a)
Global error = (- 1/12)h3nf" (5) = -- h2fu (5) = o(hZ).

12.

The fact that the global error is 0(h2) while the local error is 0(h3) seems reasonable
because, for example, if we double the number of subintervals, we add together twice as
many local errors.

H,E 5 . 1 Given the values for x and f(x) in Table 5.6, use the trapezoidal rule to estimate the integral
fromx = 1.8 tox = 3.4.
Applying the trapezoidal rule:

The data in Table 5.6 are for f(x) = eX and the true value is e3.4 - = 23.9144. The
trapezoidal rule value is off by 0.08; there are three digits of accuracy. How does this com-
pare to the estimated error?

1
Error = --h3nf "(t), 1.8 5 5 r 3.4,

12

- - 1
-- (0.2)3(8)* {zi:: (mad (. } = { -0.0323 (max)

12 min) -0.1598 (min)

Chapter Five: Numerical Differentiation and Integration

Alternatively,

1 (max) -0.03231
Error = ---- (0.2)2(3.4 - 1.8)*

12 {e3* (min)} = (-0.1598,

The actual error was -0.080.

If we had not known the function for which we have tabulated values, we would have
estimated 1z2 fn ([) from the second differences.

Given a function f (x):

(Get user inputs).
Input

a, b = endpoints of interval
n = number of intervals

(Do the integration)
Seth = (b - a)ln.
Set sum = 0
Fori = 1 ton - 1 Step 1 Do

S e t x = a + h * i ,
Set sum = sum + 2 * f(x)

End Do (For i).
Set sum = sum + f(a) + f(b).
Set ans = sum * ,412.

The value of the integral is given by ans.

Unevenly Spaced

Data from experimental observations may not be evenly spaced. The trapezoidal rule still
applies. Suppose there are five points:

There is no simple way to express this.

Romberg Integration

We can improve the accuracy of the trapezoidal rule integral by a technique that is similar
to Richardson extrapolation. This technique is known as Romberg integration.

5.2: Numerical Integration-The Trapezoidal Rule 277

First set ,. ,. " "
of points:

o = New points
Second set _,,
of points: I x = o l d points I
Third set ,.
of points: "

"

Because the integral determined with the trapezoidal method has an error of 0(h2), we
can combine two estimates of the integral that have h-values in a 2:l ratio by E<q. (5.15),
which we repeat here:

1
Better estimate = more accurate + --- (more accurate - less accurate)." (5.19)

2" - 1

When we apply this equation to get the integral of a known function, we begin with an
arbitrary value for h in Eq. (5.18). A second estimate is then made with the value of h
halved. From these two estimates we extrapolate to get an improved estimate using Eq.
(5.19). This has an error of 0(h4).

Obviously, this can be extended to produce a table of successively better estimates.
When we find that the values converge, we have the best estimate that we can mtake in the
light of round-off error. As shown before, each new extrapolation has error orders that
increase: 0(h4), 0(h6), 0(h8),

We can reduce the number of computations because, when h is halved, all of the old
points at which the function was evaluated to get Eq. (5.18) appear in the new computation
and we thus can avoid repeating the evaluations. Figure 5.3 illustrates this point.

This next example shows how the Romberg table appears for the functionfi(x) = e - ~ '
integrated between the limits of 0.2 and 1.5. This integral has no closed form solution. It is
closely related to the errorfunction, a quantity that is so important in statistics and other
branches of applied mathematics that values have been tabulated.

EXAMPLE 5.2 Use Romberg integration to find the integral of e-"' bletween the limits of a = 0.2 and
b = 1.5. Take the initial subinterval size as h = (b - a)/2 = 0.65.

Our first estimate is

h
Integral = - [f (a) + 2f (a + h) + f(b)]

2

* In Eq. (5.19), n is the order of the error. In the first extrapolation, n = 2. In successive extrapolations, it
i s 4 , 6 , 8 ,

Chapter Five: Numerical Differentiation and Integration

Table 5.3 Romberg table of integrals over interval from 0.2
to 1.5 with an initial h of 0.65

= 0.66211.

The next estimate uses h = 0.6512 = 0.325:

h
Integral = - [f (a) + 2f(a + h) + 2f(a + 2h) + 2f(a + 3h) + f (b)]

2

Observe that only two new function evaluations appear in the second estimate.
We now extrapolate:

1
Improved = 0.65947 + - [0.65947 - 0.662111

3

= 0.65859.

Table 5.7 exhibits the calculations when we repeat the estimations, halving the h-value
each time.

The Romberg Method for a Tabulated Function

We can apply the Romberg method to integrate a function known only as a table of evenly
spaced function values, but now we cannot make h smaller. Instead, we use estimates of
the integral with h doubled each time, just as we did to improve the estimates of derivatives
in Section 5.1. Here is an example.

EXAMPLE 5.3 Use the Romberg method to get an improved estimate of the integral from x = 1.8 to x =

3.4 from the data in Table 5.6. In Example 5.1, we found an estimate of 23.9944 when
h = 0.2. If we now use h = 0.4, we compute

Integral = (0.412) [6.050 + 2(9.025) + 2(13.464) + 2(20.086) + 29.9641

= 24.2328.

5.2: Numerical Integration-The Trapezoidal Rule 279

Table 5.8 Romberg table for Example 5.3

We can extrapolate from these two estimates:

Improved = 23.9944 + (23.9944 - 24.2328)/3 = 23.9149.

Now, if we use h = 0.8, we get

Integral = (0.812) [6.050 + 2(13.464) + 29.9641

= 25.1768.

Using this with the estimate when h = 0.4:

Improved = 24.2328 + (24.2328 -- 25.1768)/3

= 23.9181.

We can use these two improved estimates to extrapolate a second time:

Further improved = 23.9149 f (23.9149 - 23.9181)/15

= 23.9147.

Table 5.8 shows the results. Considering that the function values in Table 5.6 are given
only to three decimals, this compares well to the analytical answer of 23.9144 ;and this is
much better than the result from the single estimate with h = 0.2, which was 23.9944.

The Romberg method is applicable to a wide class of functions. Smoothness and conti-
nuity are not required. However, when f (x) is discontinuous, we should make the evenly
spaced points fall on the discontinuities. This can be done if we break the interval into
subintervals that are bounded by the discontinuities.

Given a function f (x):

(Get user inputs).
Input

a , b = endpoints of interval
Maxstages = number of refinements

(Do the integration)

Seth = (b - a)/2.

Chapter Five: Numerical Differentiation and Integration

(Do the lines of the table)
Setsum = f(a) + 2 * f(a + h) + f(b).
Set integral(0,O) = sum * h12 (first value)
Set distance = 2 * h (distance between added points)
For stage = 1 To Maxstages Step 1 Do

Seth = hl2.
Set distance = distancel2.
For i = 1 To 2Stage Step 1 Do

Set x = a - h + i * distance.
Set sum = sum + 2 * f(x).

End Do (For i).
Set integral(stage,O) = sum * hl2.

(Now extrapolate)
For j = 1 To stage Step 1 Do

Set integral(stage, j) = integral(stage, j - 1) +
[integral(stage, j - 1) - integral(stage - 1, j - 1)]1(2j - 1)

End Do (For j).
End Do (For stage)

The last computed value is the estimate of the integral.

An alternative stopping criterion is when two successive computations in a line
differ by less than some tolerance value.

5.3 Simpson's

The trapezoidal rule is based on approximating the function with a linear polynomial. We
can fit the function better if we approximate it with a quadratic or a cubic interpolating
polynomial. Simpson's rules are based on these approximations. There are two of these
rules: Simpson's 1/3 rule and Simpson's 3/8 rule, so-named because the values 113 and 318
appear in their formulas.

We get the 113 rule by integrating the second-degree Newton-Gregory forward polyno-
mial, which fits f(x) at x-values of xo, xl, x2, which are evenly spaced a distance h apart:

5.3: Simpson's Rules 28 1

We get the error by integrating the error of the polynomial:

Error = -

It is convenient to think of the strips defined by successive x-values as panels. For
Simpson's 113 rule, there must be an even number of panels.

We get the 318 rule similarly, by integrating the third--degree Newton-Gregory interpo-
lating polynomial that fits to four evenly spaced points, and its error term:

If the number of panels is divisible by 3, the 318 rule applies. Observe that the error of the
318 rule is actually larger than for the 113 rule and both have a local error of 0(h5). The
global errors will be 0(h4) for the same reason as with the trapezoidal rule.

You may wonder why we use the 318 rule when it has a larger error. One useful applica-
tion of it is to find the integral from a table of values 1.hat has an odd number of panels.
Still, the error should be less for a table with an odd nuinber of points by applying the 318
rule for the first or last set of three panels and then using the 113 rule for the rest. Where the
318 rule is used, it is best to choose the panels at one end or the other, or at intermediate
points where the function is most nearly straight.

In the example below, we compare the three rules. We will obtain the integral of
exp(-x2) between x = 0.2 and x = 2.6 with different values for h, the even spacing
between points. This integral has no closed form; it is required to get values for the error
fincrion, a special function that is important in certain statistical applications and is related
to another special function, the gammajimction.

First, we will use MATLAB to get the true value of the integral:

EDU>> f = sym('exp(-xA2) ')

f =
exp (-xA2)

EDU>> f i n t = i n t (f)

f i n t =

1/2*piA (l/2) *erf (x)
EDU>> f i n t d e f = i n t (f , .2,2.6)
f i n tde f =

* This is the way that the rule is usually written and is responsible for its being called the 113 Rule. If the
coefficient is written 2hl6, it more closely parallels the trapezoidal rule and the 318 rule.

Chapter Five: Numerical Differentiation and Integration

TaKe 5.9 Comparison of integration methods for the integral of exp(-x2) between x =

0.2 and 2.6

Trapezoidal
rule

Number
of panels Value Error

Simpson's Simpson's
113 rule

--
318 rule

Value Error Value Erorr

1/2*erf (l3/5) *piA (l/2) - 1/2*erf (l/5) *piA(1/2)

EDU>> digits (10)

EDU>> vpa (f intdef)

ans =

.6886527145

In this, we define the function symbolically, ask for the indefinite integral (which does
involve the error function), get the definite integral (but this is not numeric), and finally get
the numeric answer with the vpa command.

LE 5.4 Find the integral of exp(-x2) between x = 0.2 and x = 2.6. Compare the results at varying
values for h with the trapezoidal rule, Simpson's 113 rule, and Simpson's 318 rule.

Table 5.9 gives the results. With the trapezoidal method, five significant digits of accu-
racy are not obtained until almost 300 panels have been used. The 113 method is better than
the 318, as we would expect. The ratio of errors when the h-value is halved is close to 24 for
the 113 rule, not quite that for the 318 rule (we do not have enough data for a good value),
and almost exactly 22 for the trapezoidal rule.
-- -

Trapezoidal rule:

5.3: Simpson's Rules 283

Simpson's rule:

(requires an even number of panels)

Simpson's rule:

(requires a number of panels divisible by 3)

These formulas, based on approximating the integrand with a polynomial of different
degree, are known as Newton- Cotes formulas.

It is of interest to see that each of these integration formulas is just the width of the
interval, (b - a), times an average value for the function within that interval. That average
value is a sum of the weighted values divided by the sum of the weights. For example, if
there are six panels (seven points),

Trapezoidal rule: Weights are [1 2 2 2 2 2 11, whose sum is 12 and (b - a)/12 =

h * (112).

Simpson's 113 rule: Weights are [l 4 2 4 2 4 11, whose sum is 18 and (b - a)/18 is
h * (113).

Simpson's 318 rule: Weights are [l 3 3 2 3 3 11, whose sum is 16 and (b - a)/16 is
h * (318).

If the function being integrated is discontinuous or whose slope is discontinuous, it is
essential that the region be broken up into subintervals bounded by the discontinuities. (It
could be that the chosen points within the interval fall at the points of discontinuity and
that takes care of this.)

An improper integral is (a) one whose integrand becomes infinite at one or more points
on the region of interest, or (b) one with infinity at one or both of the endpoints of the inte-
gration. Some improper integrals have a finite value; the integral is said to converge. If the
limiting value of the integration as we approach the point of singularity is infinite, it is said
to diverge. It is obvious that none of the integration rules that we have described will work

Chapter Five: Numerical Differentiation and Integration

for improper integrals, although we can approximate the answer by gradually closing in on
the point of singularity. This is not an easy way to get a good value; there are other inte-
gration techniques (called open formulas) that we do not discuss here that are better
adapted. [Numerical Recipes (W.H. Press et al., 1992) is a good reference.] When an
improper integral is integrable, often a change of variable will make it proper.

Another problem that is somewhat related is finding the value of the integral for a func-
tion that increases exponentially. Formulas that use evenly spaced points will not be ade-
quate. We should use points that are much closer together in the subregion(s) where the
slope is great. A plot of the function will reveal this.

Getting Integration Formulas in a Different Way

In Section 5.1, we used the method of undetermined coefficients to get formulas for differ-
entiation. We can use this technique to get formulas for integration. We will illustrate it by
starting with the simplest formula.

Suppose we want a formula to estimate the integral of f(x) between x = xl and x = x2,
where x2 - xI = h, using only the function values f(xl) and f(x2), and is of the form

where A and B are coefficients to be determined. The two pairs of points, (xl, f(xl)) and
(xz, f(x2)), permit us to write an interpolating polynomial, P(x), of degree-1:

It simplifies the arithmetic if we translate axes to make xl = 0 so that x2 = h. There are
two cases to consider:

Case 1: P(x) = 1 requires b = 1, a = 0, so

Case 2: P(x) = x requires a = 1, b = 0, so

[P(x) dx = [(x) dr = (h2)12 = A * P(0) + B * P(h) = A * (0) + B * (h).

We can set up these two equations in matrix form:

whose solution is easy: From the second equation, B = hl2; from the first A + B = h, so
A = h - B = h - hl2 = hl2. Our formula is the familiar trapezoidal rule:

Now for another formula. If we use three evenly spaced values of f(x), at xPl = -h,
xl = h, and the midpoint, xo = 0 (which we get after translating the axes), the interpolating

5.4: An Application of Numerical Integration-Fourier Series and Fourier Transforms 285

polynomial, P(x) [which is an approximation to f (x)] , is now a quadratic,

P(x) = ax2 + bx + c.

The formula we desire is

We have three cases for P(x):

Case 1: P(x) = 1 requires c = 1, a = b = 0 , so

I-: P(x) dn = I:h (I) dx = 22 = A * P(-h) + B * P(0) + C * P(h)

= A * (1) + B * (I) + C * (I).

Case 2: P(x) = x requires b = 1, a = c = 0 , so

\hh P(X) dx = (x) dr = o = A * P(-h) + B * P(O) + c * ~ (h)

= A * (-h) + B * (0) + C * (h).

Case 3: P(x) = x2 requires a = 1, b = c = 0, so

I-: P(x) dr = I;h (x2) dl- = 2h3/3 = A * P(--h) + B * P(0) + C * P(h)

The matrix is

whose solution is easy: From the second equation, A = C; from the third, A = C = hl3;
from the first, B = 41513, so we get Simpson's 113 rule:

Simpson's 318 rule can be derived if one uses four evenly spaced points of (x, f(x)) . We
leave this as an exercise.

5.4 An Application of Numerical Integration -
Series and Fourier Transforms

In Chapter 4, we saw that a Fourier series can approximate functions, even those with dis-
continuities. The coefficients of the terms of the series are determined by definite integrals.
There are functions for which the necessary integrals cannot be found analytically; for
these, numerical procedures can be employed.

Chapter Five: Numerical Differentiation and Integration

In this next example, we compare the accuracy of computing Fourier coefficients by the
trapezoidal rule and by Simpson's 113 rule in a case where the analytical values are possible.

EXAMPLE 5.5 Evaluate the coefficients for the half-range expansions forfix) = x on [0, 21 numerically
and compare to the analytic values. Do this with both 20 intervals and 200 intervals.

For the even extension (the Fourier cosine series), we use Eq. (4.55) to get the A's (all
B's are zero):

For the even extension (the Fourier sine series), we use Eq. (4.56) to get the B's (all A's are
zero):

Tables 5.10 and 5.1 1 show the results. Observe that the accuracy is poorer as the value of
n increases.

There are a number of applications when measurements of a periodic phenomenon are
studied: musical chords, vibrations of structures, shock in automobiles, outputs in electri-
cal and electronic circuits, for example. In analyzing such phenomena, we want to know
the frequency spectrum.

When the data are from measurements of the system, we do not know the "function"
that generates the information; we only have samples. Most often, this sampling is at
successive intervals of time, with At being constant. When we fit such data with
sinelcosine terms, it is called Fourier analysis. Other names are harmonic analysis and the

.I0 Comparison of numerical integration with analytical results:
20 subdivisions of 10.21

Trapezoidal rule Simpson's rule Analytical integration

5.4: An Application of Numerical Integration-Fourier Series and Fourier Transforms 287

Be 5.11 Comparison of numerical integration with analytical results:
200 subdivisions of [O, 21

--.- ----------- ~

Trapezoidal rule Simpson's rule Analytical integration

finite Fourier transform. This is a "transform" because we change data that are a function
of time to a function of frequencies. We form what is called a discrete Fourier series.

Why should we want to so transform a set of experimental data? Because knowing
which frequencies of a Fourier series are most significant (have the largest coefficients)
gives information on the fundamental frequencies of th~e system. This knowledge is impor-
tant because an applied periodic external force that includes components of th~e same fre-
quency as one of these fundamental frequencies causes extremely large disturbances.
(Such a periodic force may come from vibrations from rotating machinery, from wind, or
from earthquakes.) We normally want to avoid such extreme responses for fear that the
system will be damaged.

It is clear from Example 5.5 that the coefficients of a Fourier series can be computed
numerically. Example 5.6 demonstrates getting the coefficients from measurements:

-- ----- -em-- --- ----
EXAMPLE 5 . 6 An experiment (actually, these are contrived data) showed the displacements given in

Table 5.12 when the system was caused to vibrate in its natural modes. The values represent
a periodic function on the interval for t of [2, 101 because they repeat themselves after t = 10.

We will use trapezoidal integration to find the Fourier series coefficients fix the data.
Doing so gives these values for the A's and B's:

Chapter Five: Numerical Differentiation and Integration

Table 5.12 Measurements of displacements versus time

t Displacement t Displacement

This shows that only Ao, Al, B1, and B4 are important. There would be no amplification of
motion from forces that do not include the frequencies corresponding to these.
(Table 5.12 was constructed from

plus a small random variation whose values ranged from -0.01 to +0.01. It is the random
variations that cause nonzero values for the insignificant A's and B's.)

The Fast Fourier Tramform

If we need to do a finite Fourier transform on lots of data, the amount of effort used in
carrying out the computations is exorbitant. In the preceding examples, where we
reevaluated cosines and sines numerous times, we should have recognized that many of
these values are the same. When we evaluate the integrals for a finite Fourier transform,
we compute sines and cosines for angles around the origin, as indicated in the figure on
the following page.

When we need to find cos(nx) and sin(nx), we move around the circle; when n = 1, we
use each value in turn. For other values of n, we use every nth value, but it is easy to see
that these repeat previous values. The fast Fourier transform (often written as FFT) takes
advantage of this fact to avoid the recomputations.

In developing the FFT algorithm, the preferred method is to use an alternative form of
the Fourier series. Instead of

5.4: An Application of Numerical Integration-Fourier Series and Fourier Transforms 289

A0
m

f(x) = -- + [A,cos(nx) + B,sin(nx)], (period = 2 ~) , (5.23)
2 .=I

we will use an equivalent form in terms of complex exponentials. Utilizing Euler's identity
(using i as m),

we can write Eq. (5.52) as

Angles used in computing for 16 points

We can match up the A's and B's of Eq. (5.23) to the c':s of (5.24):

When f(x) is real valued it is easy to show that co = F o and c . = Ej, where the bars rep-
J

resent complex conjugates.
For integers j and k, it is true that

O fork f -j,
2 : ~ f o r k = - j .

(You can verify the first of these through Euler's identity.) This allows us to evaluate the c's
of Eq. (5.24) by the following.

Chapter Five: Numerical Differentiation and Integration

For each fixed k, we get

PEE 5 .7 (You should verify each of these.)

1. Let f(x) = x; then

2. Let f(x) = x (2 ~ - x); then

3. Let f(x) = cos(x); then

Note that for Eq. (5.23) this makes Al = 1 and all the other Aj's = 0.
m-. =--

Thus, for a given f(x) that satisfies continuity conditions, we have

The magnitudes of the Fourier series coefficients Icj I are the power spectrum of8 these
show the frequencies that are represented in f(x). If we know f(x) in the time domain, we
can identify f by computing the cj7s In getting the Fourier series, we have transformed
from the time domain to the frequency domain, an important aspect of wave analysis.

Suppose we have N values for f(x) on the interval [0, 271-1 at equispaced points, xk =

2.rrklN, k = 0, 1, . . . , N - 1. Because f(x) is periodic, fN = fO, fNfl = fl, and SO on. Instead
of formal analytical integration, we would use a numerical integration method to get the
coefficients. Even if f(x) is known at all points in [O,27r], we might prefer to use numerical
integration. This would use only certain values of f(x), often those evaluated at uniform
intervals. It is also often true that we do not know f(x) everywhere, because we have sam-
pled a continuous signal. In that case, however, it is better to use the discrete Fourier trans-
form, which can be defined as

5.4: An Application of Numerical Integration-Fourier Series and Fourier Transforms 29 1

In Eql. (5.25), we have changed notation to conform more closely to the literature on
FFT. X(n) corresponds to the coefficients of N frequency terms, and the xo(k) are the N
values of the signal samples in the time domain. You can think of n as indexing the
X-terms and k as indexing the xo-terms. Equation (5.25) corresponds to a set of N linear
equations that we can solve for the unknown X(n). Because the unknowns appear on the
left-hand side of Eq. (5.25), this requires only the multiplication of an N-component vec-
tor by an N X N matrix.

It will simplify the notation if we let W = e-12dN, making the right-hand-side terms of
Eq. (5.25) become xo(k)wnk. To develop the FFT algorithm, suppose that N = 4. We write
the four equations for this case:

In matrix form:

In solving the set of N equations in the form of Eq. (5.26) we will have to make N~ com-
plex multiplications plus N(N - 1) complex additions. Using the FFT, howevler, greatly
reduces the number of such operations. Although there are several variations on the algo-
rithm, we will concentrate on the Cooley -Tukey formulation.

The matrix of Eq. (5.26) can be factored to give an equivalent form for the set of equa-
tions. At the same time we will use the fact that l@ = l and wk = Wk

You should verify that the factored form [Eq. (5.27)] is exactly equivalent to Eq. (5.26) by
multiplying out. Note carefully that the elements of the X-vector are scrambled. (The develop-
ment can be done formally and more generally by representing n and k as binary vadues, but it
will suffice to show the basis for the FFT algorithm by expanding on this simple N = 4 case.)

By using the factored form, we now get the values of X(n) by two steps (stages), in each
of which we multiply a matrix times a vector. In the first stage, we transform xo into xl by

Chapter Five: Numerical Differentiation and Integration

Figure 5.4

multiplying the right matrix of Eq. (5.27) and xO. In the second stage, we multiply the left
matrix and xl, getting x2. We get X by unscrambling the components of x2. By doing the
operation in stages, the number of complex multiplications is reduced to N[log2 (N)]. For
N = 4, this is a reduction by one-half, but for large N it is very significant; if N = 1024,
there are 10 stages and the reduction in complex multiplies is a hundredfold!

It is convenient to represent the sequence of multiplications of the factored form [Eq. (5.27)
or its equivalent for larger N] by flow diagrams. Figure 5.4 is for N = 4 and Figure 5.5 is for N
= 16. Each column holds values of xST, where the subscript tells which stage is being com-
puted; ST ranges from 1 to 2 for N = 4 and from 1 to 4 for N = 16. [The number of stages, for
N a power of 2, is log2(N).] In each stage, we get x-values of the next stage from those of the
present stage. Every new x-value is the sum of the two x-values from the previous stage that

Figure 5.5

5.4: An Application of Numerical Integration-Fourier Series and Fourier Transforms 293

connect to it, with one of these multiplied by a power of W. The diagram tells which xST terms
are combined to give an xSTfl term, and the numbers shown within the lines are the powers of
Wthat are used. For example, looking at Figure 5.5 we see that

x2(6) = ~ ~ (2) + W8x1(6),

~ ~ (1 3) = x2(13) t w6x2(15),

x4(9) = ~ ~ (8) + w9x3(9), and so on.

The last columns in Figures 5.4 and 5.5 indicate how the final x-values are unscrambled
to give the X-values. This relationship can be found by expressing the index k of x in the last
stage as a binary number and reversing the bits; this gives n in X(n). For example, in Figure
5.5 we see that x4(3) = X(12) and x4(l 1) = X(13). From the bit-reversing rule, we get

Observe also that the bit-reversing rule can give the powers of W that are involved in
computing the next stage. For the last stage, the powers are identical to the numbers
obtained by bit reversal. At each previous stage, however, only the first half of the powers
are employed, but each power is used twice as often. It is of interest to see how we can gen-
erate these values. Computer languages that facilitate bit manipulations make this an easy
job, but there is a good alternative. Observe how the powers in Figure 5.4 differ from those
in Figure 5.5 and how they progress from stage to stage. The following table pinpoints this:

Stage N = 4 N = 16
- ---

Can you see what a similar table for N = 2 would look like? Its single row would be
0 1. Now we see that the row of powers for the last stage can be divided into tvvo halves,
with the numbers in the second half always one greater than the corresponding entry in the
first half. The row above is the left half of the current row with each value repetated. This
observation leads to the following algorithm:

For N a power of 2, let Q = log2(N)

Initialize an array P of length N to all zeros.
Set st = 1.
Repeat

Double the values of P(k) for k = 1. . 2St-1,

Chapter Five: Numerical Differentiation and Integration

~ e t each ~ (k + 2St-1) = P(k) + 1 for k = 1 . . 2St-1 - 1.
Increment stage

Until stage > Q.

The successive new values for powers of Ware now in array P.

---- -- -- -- - -- - - ---

EXAMPLE 5.8 Use the algorithm to generate the powers of W for N = 8:

Initial P array: 0 0 0 0 0 0 0 0
ST = 1, doubled: 0 0 0 0 0 0 0 0

add 1 : 0 1 0 0 0 0 0 0
ST = 2, doubled: 0 2 0 0 0 0 0 0

add 1 : 0 2 1 3 0 0 0 0
ST = 3, doubled: 0 4 2 6 0 0 0 0

add 1: 0 4 2 6 1 5 3 7

The last row of values corresponds to the bits of the binary numbers 000 to 11 1, after reversal.

Our discussion has assumed that N is a power of 2; for this case, the economy of the FFT
is a maximum. When N is not a power of 2 but can be factored, there are adaptations of the
general idea that reduce the number of operations, but they are more than Nlog2(N). See
Brigham (1974) for a discussion of this as well as a fuller treatment of the theory behind FFT.

More recently, there has been interest in another transform, called the discrete Hartley
transform. A discussion of this transform would parallel our discussion of the Fourier trans-
form. Moreover, it has been shown that this transform can be converted into a fast Hartley
transform (FHT) that reduces to N log2(N) computations. For a full coverage of the FHT, one
should consult Bracewell (1986). The advantages of the FHT over the Fourier transform are
its faster and easier computation. Moreover, it is easy to compute the FFT from the Hartley
transform. However, the main power of the FHT is that all the computations are done in real
arithmetic, so that we can use a language like Pascal that does not have a complex data type.
An interesting and easy introduction into the FHT is found in 07Nei11 (1988).

Given n data points, (x,, fi), i = 0, . . . , n - 1 (with n a power of 2) and x on
[O . . 2 4 :

5.4: An Application of Numerical Integration-Fourier Series and Fourier Transforms 295

Se ty i i=O, i=O , . . . , n - 1.
Set ci = cos(2i~ln), i = 0, . . . , n - 1.
Set si = sin(2i~ln), i = 0, . . . , n - 1.
Set numstages = log2(n)
Se tp i=O, i=O, . . . , a - 1
For stage = 1 To numstages Do

Set pi = 2p., i = 1, . . . , 2Stage-1
Setp,,, = bi + 1, i = 0, . . . ,2stage-l

End Do (For stage)

Set stage = 1
Set nsets = 1
Set del = nl2
Setk = 0
Repeat

For set = 1 To nsets Do
For i = 0 To nlnsets - 1 Do

(These are the trigonometric
values that are used.:)
(The number of stages)
(Use the previous alogrithm
to get "bit reversal" values)

(These values
are for the
first stage-

k indexes the y-values to be computed.)

Set j = i Mod del + (set - 1) * del * 2 (Indexes old y-values)

Set ' = Plnt(~de1) (Indexes ci, si values)
Set yyrk = yr. + c, * yrj+,,, - s, * yij+,,

J
Set yyik = Y$ ' c[* yJ+del - s(* yrj+del.
S e t k = k f 1

End Do (For i).
End Do (For set).

Setyri=yyri, i=O, . . . , n - 1. (Reset
Set yii = yyii, i = 0, . . . , n - 1. values

Set stage = stage + 1. for
Set nsets = nsets * 2. next
Set del = de112. stage.)
Set k = 0.

Until stage > numstages.

When terminated, the A's and B's of the Fourier series are contained in the yr and yi
arrays. These must be divided by 1112 and should be unscrambled using the p-array
values as indices.

Note: If the& are complex numbers, set the imaginary parts into array yi.

EXAMPLE 5.9 Use the FFT algorithm to obtain the finite Fourier series coefficients for the same data as in
Table 5.12 [These are perturbed values from

Chapter Five: Numerical Differentiation and Integration

A computer program that implements the algorithm gave these results:

The results are essentially the same as those of Example 5.6, which were computed by the
trapezoidal rule.

Observe that we compute exactly as many A's and B's as there are data points. This is
not only reasonable (we cannot "manufacture" information) but is in accord with informa-
tion theorv.

Information Theory - The Sampling Theorem

In performing a discrete Fourier transform, we work with samples of some function of t ,
f (t). We normally have data taken at evenly spaced intervals of time. If the interval between
samples is D sec, its reciprocal, 1/D, is called the sampling rate (the number of samples per
second).

Corresponding to the sampling interval, D, is a critical frequency, called the Nyquist
critical frequency, f,, where

The reason this is a critical frequency is seen from the following argument. Suppose we
sample a sine wave whose frequency is f, and get a value corresponding to its positive
peak amplitude. The next sample will be at the negative peak, the next beyond that at
the positive peak, and so on-that is, critical sampling is at a rate of two samples per
cycle. We can construct the magnitude of the sine wave from these two samples. If the

5.5: Adaptive Integration 297

frequency is less than f,, we will have more than two samples per cycle and again we
can construct the wave correctly. On the other hand, if the frequency is greater than f,,
we have fewer than two samples per cycle and we have inadequate information to
determine f (t).

The significance of this theorem is that if the phenomenon described by f (t) has no fre-
quencies greater than f,, then f (t) is completely determined from samples at the rate 11D.
Unfortunately, this also means that if there are frequencies in f(t) greater than]:, all these
frequencies are spuriously crowded into the range [0, f,], causing a distortion of the power
spectrum. This distortion is called aliasing.

All of this is very clear if we think of the results of an FFT on the samples. If we have N
samples of the phenomenon, we certainly cannot determine more than a total of exactly N
of the Fourier coefficients, the .A's and B's. The last of these will be Ani2 (assuming an even
number of samples). We see that this corresponds to the Nyquist frequency.

5.5 Adaptive Integration

The trapezoidal rule and Simpson's 3 rule are often used to find the integral of f(x) over a
fixed interval [a, b] using a uniform value for Ax. When f(x) is a known function, we can
choose the value for Ax = h arbitrarily. The problem is that we do not know a priori what
value to choose for h to attain a desired accuracy. Romberg-type integration IS a way to
find the necessary h. We start with two panels, h = hl = (b - a)/2, and apply one of the
formulas. Then we let h2 = h,/2 and apply the formula again, now with four panels, and
compare the results. If the new value is sufficiently close, we terminate and use a
Richardson extrapolation to further reduce the error. If the second result is not close
enough to the first, we again halve h and repeat the procedure. We continue m this way
until the last result is close enough to its predecessor.

We illustrate this obvious procedure with an example.

EXAMPLE 5.10 Integrate f (x) = 1/x2 over the interval [0.2, 11 using Simpson's rule. Use a tolerance value
of 0.02 to terminate the halving of h = Ax. From calculus, we know that the ex.act answer
is 4.0.

We introduce a special notation that will be used throughout this section:

SJa, b] = the computed value using Simpson's $ rule with Ax = hn over /:a, b].

If we use this notation, the composite Simpson rule becomes

Using this with hl = (1.0 - 0.2)/2 = 0.4, we compute S1 [0.2, 1.01. We continue halv-
ing h, hn+l = hJ2, computing its corresponding Sn+l[a, b] until - sn1 .< 0.02, the

Chapter Five: Numerical Differentiation and Integration

tolerance value. The following table shows the results:

From the table we see that, at n = 5, we have met the tolerance criterion, because - s4(
< 0.02. A Romberg extrapolation gives

(We use RS[a, b] to represent the Romberg extrapolation from Simpson's rule.)

Using the same value for h throughout the interval may be disadvantageous because the
behavior of f(x) may not require such uniformity. Consider Figure 5.6. It is obvious that, in
the subinterval [c, b], h can be much larger than in subinterval [a, c], where the curve is
much less smooth. We could subdivide the entire interval [a, b] nonuniformly by personal
intervention after examining the graph of f(x). We prefer to avoid such intervention.

Adaptive integration automatically allows for different h's on different subintervals of
[a, b], choosing values adequate for a specified accuracy. We do not specify where the size

Figure 5.6

5.5: Adaptive Integration 299

change for h occurs; this can occur anywhere within it. We use something like a binary
search to locate the point where we should change the size of h. Actually, the total interval
[a, b] may be broken into several subintervals, with different values for h within each of
them. This depends on the tolerance value, TOL, and the nature of f(x).

To describe this strategy, we repeat the preceding example to find the integral of f(x) =

1/x2 between x = 0.2 and x = I. We choose a value for TOL of 0.02, and do the: computa-
tions in double precision to minimize the effects of round off.

We begin as before by specifying just two subinterv,als in [a, b]. The first calmputation
is a Simpson integration over [0.2, 11 with hl = 0.4. The result, which we call S1 [0.2, I] , is
4.94814815. The next step is to integrate over each half of [0.2, 11 but with h half as large,
h, = 0.2. We get

S2[0.2, 0.61 = 3.51851852 and S2[0.6, 11 = 0.66851852.

We now test the accuracy of our initial computations by seeing whether the difference
between S1[0.2, 11 and the sum of S2[0.2, 0.61 and S2[0.6, 11 is greater than TOL.
(Actually, we compare the magnitude of this difference.)

Because this result is greater than TOL = 0.02, we mus:t use a smaller value for h.
We continue by applying the strategy to one-half of the original interval. We arbitrarily

choose the right half and compute S2[0.6, 11 with h = 12, = (1 - 0.6)/2 = 0.2, comparing
it to S3[0.6, 0.81 + S,[0.8, 11 (both of these use h3 = h!/2 = 0.1). We also halve the value
for TOL, getting

S2[0.6, 11 - (S3[0.6, 0.81 + S3[0.8, 11) = 0.6685185;! - (0.41678477 + 0.25002572)

= 0.6685185% - 0.66681049

= 0.001708 versus TOL = 0.01.

This passes the test, so we take advantage of the results that we have availabl~e and do a
Richardson extrapolation to get

1
RS[0.6, 11 = 0.66681049 + 15(0.66681049 - 0.66851852)

We now move to the next adjacent subinterval, [0.2,0.6], and repeat the procedure. We
compute

S2[0.2, 0.61 = 3.51851852, with h2 = 0.2;

S3[0.2, 0.41 = 2.52314815; S3[0.4, 0.61 = 0.83425926;

S2[0.2,0.6]-(S3[0.2,0.4]+S3[0.4,0.6])=0.161111 versusTOL=0.01,

which fails, so we proceed to another level with the right half:

S3[0.4, 0.61 = 0.83425926, with h, = 0.1;

s4[o.4, 0.51 = 0.50005144; S4[0.5, 0.61 = 0.33334864;

S3[0.4, 0.61 - (S4[0.4, 0.51 + S4[0.5, 0.61) = 0.000859 versus TOL = 0.005,

Chapter Five: Numerical Differentiation and Integration

which passes. We extrapolate:

RSr0.4, 0.61 = 0.8333428.

The next adjacent interval is r0.2, 0.41. For this we use TOL = 0.005. We find that this
does not meet the criterion, so we next do [0.3,0.4]. We do meet the TOL level of 0.0025:

S4[0.3, 0.41 0.83356954, with h, = 0.05;

S5[0.3, 0.351 = 0.47620166; S5[0.35, 0.41 = 0.35714758;

S4[0.3, 0.41 - (S5[0.3, 0.351 + S5[0.35, 0.41) = 0.000220 versus TOL = 0.0025,

which passes, so

RS[0.3, 0.41 = 0.83333492.

Our last subinterval is [0.2, 0.31. We find that we again meet the test. We give only the
extrapolated result

RS10.2, 0.31 = 1.666686.

Adding all of the RS-values gives the final answer:

Integral over [0.2, 11 = 4.00005957.

By employing adaptive integration, we reduced the number of function evaluations from
33 to 17.

Bookkeeping and Avoiding
Repeating Function Evaluations

It should be obvious that we recomputed many of the values of f(x) in the previous inte-
gration. We can avoid these recalculations if we store these computations in such a way as
to retrieve them appropriately. We also need to keep track of the current subinterval, the
previous subintervals that we return to, and the appropriate value for h and TOL for each
subinterval. The mechanism for storing these quantities is a stack, a data structure that is a
last-in, first-out device that resembles a stack of dishes in a restaurant. Actually, we use
just a two-dimensional array of seven columns and as many rows as levels that we wish to
accommodate. (Often a large number of levels is provided-say, 200-even though we
hardly ever need so many.)

After an initial calculation to get hl = (b - a)/2, c = a + hl , f(a), f(c), f(b), and Sl[a,
b] , we store a set of seven values: a, f(a), f(c), f(b), h, TOL, S[a, b]. We retrieve these val-
ues into variables that represent these quantities and continue with the first stage of the
computations.

Whenever the test fails after computing for the current subinterval, we store two sets of
values in two rows of the seven columns:

First row: a,f(a),f(d>,f(c>, h,, TOL, $a, cl,

Next row: c, f (c), f (e) , f (b), h,, TOL, S[c, b] +- TOP,

5.6: Gaussian Quadrature 30 1

where the letters a, d, c, e, b refer to points in the last subinterval that are evenly spaced from
left to right in that order. We also use a pointer to the last row stored. It is named TOP to indi-
cate it is the "top" of the stack (even though it points to the last row stored as we normally view
an array). Whenever we store a set of values, we add one to TOP; whenever we retrieve a set of
values, we subtract one so that TOP always points to the rvw that is next available for retrieval.

We begin each iteration by retrieving the row of quantities pointed to by TOP (the one
labeled "Next row" above). In this way, we can reuse the previously computed function
values to get values for computing the rightmost remaining subinterval. (Observe that the
next subinterval begins at the c-value for the last subinterval.)

The following algorithm implements the adaptive integration scheme that we have
described.

Set Value = 0.0.
Evaluate: hl = (13 - a)/2, c = a + hl, Fa = f(a),

Fc = f(c), F(b) = f(b), Sab = ,Sl(a, 6)
Store (a, Fa, Fc, Fb, hl, Tol, Sab).
Set top = 1.

Repeat
Retrieve (a, Fa, Fc, Fb, hl, Tol, Sab).
Set top = top - 1.
Evaluate: h2 = h1/2, d = a + h2, e = a + 3h2, Fd = f (d) ,

Fe = f(e),
Sac = S2(a, c), Scb = S,(C, b), S,(a, b) == Sac + Scb.
If lS2(a, b) - Sl(a, b)l < To1 Then

Compute RS(a, b),
Value = Value + RS(a, b),

Else
hl = h,, To1 = To112,
Set top = top + 1,
Store(a, Fa, Fd, Fc, hl, Tol, Sac),
Set top = top + 1,
Store(c, Fc, Fe, Fb, hl, Tol, Scb),

Until top = 0.

I(f), the value of the integral, is in variable Value.

5.6 Gaussian

Our previous formulas for numerical integration were all predicated on evenly spaced
x-values; this means the x-values were predetermined. With a formula of three terms?
then, there were three parameters, the coefficients (weighting factors) applied 1.0 each of

Chapter Five: Numerical Differentiation and Integration

the functional values. A formula with three parameters corresponds to a polynomial of
the second degree, one less than the number of parameters. Gauss observed that if we
remove the requirement that the function be evaluated at predetermined x-values, a
three-term formula will contain six parameters (the three x-values are now unknowns,
plus the three weights) and should correspond to an interpolating polynomial of degree-
5. Formulas based on this principle are called Gaussian quadratuve formulas. They can
be applied only when f(x) is known explicitly, so that it can be evaluated at any desired
value of x.

We will determine the parameters in the simple case of a two-term formula containing
four unknown parameters:

The method is the same as that illustrated in the previous section, by determining unknown
parameters. We use an integration interval that is symmetrical about the origin, from - 1 to
1 to simplify the arithmetic, and call our variable t. (This notation agrees with that of most
authors. As the variable of integration is only a dummy variable, its name is unimportant.)
Our formula is to be valid for any polynomial of degree-3; hence it will hold if f(t) = t3,
f(t) = t2, f(t) = t,andf(t) = 1:

r l

Multiplying the third equation by tf, and subtracting from the first, we have

We can satisfy Eq. (5.29) by either b = 0, t2 = 0, tl = t2, or tl = -tZ Only the last of
these possibilities is satisfactory, the others being invalid, or else reduces our formula to
only a single term, so we choose tl = -t2. We then find that

It is remarkable that adding these two values of the function gives the exact value for the
integral of any cubic polynomial over the interval from - 1 to 1.

5.6: Gaussian Quadrature 303

Suppose our limits of integration are from a to b, and not - 1 to 1 for which we derived
this formula. To use the tabulated Gaussian quadrature parameters, we must change the
interval of integration to (- 1, 1) by a change of variable. We replace the given variable by
another to which it is linearly related according to the following scheme:

If we let

(b - a)t + b + a
x = so that dr = (v) dt,

2

then

b - a (b - a)t + b + a
2

) dl.

- -

EXAMPLE 5 .11 Evaluate I = J{l2 sin x dx. (It is not hard to show that I = 1.0, so we can readily see the
error of our estimate.)

To use the two-term Gaussian formula, we must change the variable of integration to
make the limits of integration from - 1 to 1.

Let

Observe that when t = - 1, x = 0; when t = 1, x = d 2 . Then

The Gaussian formula calculates the value of the new integral as a weighted sum of two
values of the integrand, at t = -0.5773 and at t = 0.5773. Hence,

T
I = - [(1 .O)(sin(O. 10566~)) + (l.O)(sin(0.39434~))]

4
= 0.99847.

The error is 1.53 X
P

The power of the Gaussian method derives from the fact that we need only two func-
tional evaluations. If we had used the trapezoidal rule, which also requires only two evalu-
ations, our estimate would have been (44)(0.0 + 1.0) = 0.7854, an answer quite far from
the mark. Simpson's 5 rule requires three functional evaluations and gives I == 1.0023,
with an error of - 2.3 X somewhat greater than for Gaussian quadrature.

Gaussian quadrature can be extended beyond two terms. The formula is then given by

1

l l f (t) dt = 2 wf(t,), for n points.
I

I = 1

Chapter Five: Numerical Differentiation and Integration

This formula is exact for functions f (t) that are polynomials of degree 2n - 1 or less!
Moreover, by extending the method we used previously for the 2-point formula, for each n
we obtain a system of 2n equations:

This approach is obvious. However, this set of equations, obtained by writing f (t) as a suc-
cession of polynomials, is not easily solved. We will use an approach that is easier than the
methods for a nonlinear system that we used in Chapter 1.

It turns out that the ti's for a given n are the roots of the nth-degree Legendre polyno-
mial. The Legendre polynomials are defined by recursion:

(n + l)L,+,(x) - (2n + l)xL,(x) + nLn-l(x) = 0,

with L&X) = 1, L1(x) = x.

Then L2(x) is

whose zeros are t .\ii = t 0.5773, precisely the t-values for the two-term formula.
By using the recursion relation, we find

35x4 - 30x2 + 3
L4(4 = , and so on. 8

The methods of Chapter 1 allow us to find the roots of these polynomials. After they
have been determined, the set of equations analogous to Eq. (5.28) can easily be solved for
the weighting factors because the equations are linear with respect to these unknowns.

Table 5.13 lists the zeros of Legendre polynomials up to degree-5, giving values that we
need for Gaussian quadrature where the equivalent polynomial is up to degree-9. For
example, L3(x) has zeros at x = 0, +0.77459667, and -0.77459667.

Before continuing with another example of the use of Gaussian quadrature, it is of inter-
est to summarize the properties ot Legendre polynomials.

1. The Legendre polynomials are orthogonal over the interval [- 1, 11. That is,

5.6: Gaussian Quadrature 305

Table 5.13 Values for Gaussian quadrature

Number of Weighting Valid up to
terms Values oft factor degree

This is a property of several other important functions, such as {cos(nx), n = 0,
1, . . .). Here we have

In this case, we say that this function is orthogona.1 over the interval [0, 2 4 .
2. Any polynomial of degree n can be written as a sum of the Legendre polynomials:

3. The n roots of LJx) = 0 lie in the interval [- 1, 111.

Using these properties, we are able to show that Eq. (5.30) is exact for polynomials of
degree 2n - 1 or less.

The weighting factors and t-values for Gaussian quadrature have been tabulated. [Love,
(1966) gives values for up to 200-term formulas.] We are content to give a few of the val-
ues in Table 5.13.

Maple can produce the Legendre polynomials:

>with (orthopoly) ;
>f (x) : = P(4,x) ;

Chapter Five: Numerical Differentiation and Integration

and we see from the plot that the graph crosses the x-axis at the values of the t-values of
Table 5.13.

Example 5.12 illustrates the use of the four-term formula.

-- ---
.,XARIPLE 5.12 Repeat Example 5.4, but use the four-term Gaussian formula. Compare to the result of

Example 5.4. We are to evaluate

We change to variable t for limits [- 1, 11:

So that

= 0.68833, whose error is -0.00032.

This error is less than the error from Simpson's 113 Rule with six intervals (its error
is -0.00041) and less than the error with the trapezoidal rule with 18 intervals (its error is

5.7: Multiple Integrals 307

Because Gaussian quadrature does not use the value of the integrand at the endpoints, it
would seem that it could evaluate some improper integrals, those with a singuliarity at an
end of the interval of integration. Analytically, a convergent improper integral is handled
by substitutions and taking limits. How does the Gaussian technique work on

Using the fourth-order formula with endpoints of [O, 41 gives 3.6127 as a result--not very
good. If we add the results for two intervals, [O, 3.91 and [3.9, 41, we get 3.8883. This is
better, but still not close. This could be extended. As with the other kinds of numerical
integration, when the integrand increases extremely rapidly, we have trouble.

We might hope to evaluate

if we use a very large number for the upper limit. The four-term formula gets 0.03992
when the interval is [O, 10001. Adding the results for [10100, 100001, which is only 0.00856,
and that for [10000, 100000] which is 0.000085 still does not help. Even though the inte-
grand is very small at large values of x, there is still considerable area under the curve.

When we need the definite integral of z = f(x, y) over a region defined by limit values for
x and y, we do multiple integration. In calculus, you leaned that a double integral can be
evaluated as an iterated integral. So we write

In Eq. (5.31), the region is the rectangle bounded by the: lines

The region does not have to be a rectangle; the limits rnay not be constants, but we post-
pone that situation. In computing the iterated integrals, we hold x constant while integrat-
ing with respect to y (vice versa in the second case).

We can easily adapt the previous integration formulas to get a multiple integral. Recall
that any one of the integration formulas is just a linear combination of values of the func-
tion, evaluated at varying values of the independent variable. In other words, a quadrature
formula is just a weighted sum of certain functional values. The inner integral is written
then as a weighted sum of function values with one vasiable held constant. We then add
together a weighted sum of these sums. If the function is known only at the nodes of a
rectangular grid through the region, we are constrained to use these values. The

308 Chapter Five: Numerical Differentiation and Integration

Newton-Cotes formulas are a convenient set to employ. There is no reason why the same
formula must be used in each direction, although it is often particularly convenient to do so.

EXAMPLE 5.13 We illustrate this technique by evaluating the integral of the function of Table 5.14 over the
rectangular region bounded by

Let us use the trapezoidal rule in the x-direction and Simpson's 3 rule in the y-direction.
(Because the number of panels in the x-direction is not even, Simpson's 5 rule does not
apply readily.) It is immaterial which integral we evaluate first. Suppose we start with y
being constant:

= 5.0070.

Similarly, at

We now sum these in the y-direction according to Simpson's rule:

Table 5.14 Tabulation of a function of two variables, u = f (x , y)

5.7: Multiple Integrals 309

(In this example, our answer does not check well with the analytical value: of 2.5944
because the n-intervals are large. We could improve our estimate somewhat by fitting a
higher-degree polynomial than the first to provide the integration formula. We can even
use values outside the range of integration for this, using undetermined coefficients to get
the formulas.)

The previous example shows that double integration by numerical means reduces to a
double summation of weighted function values. The calculations we have just made could
be written in the form

+ 4(f1,2 + 2f2,2 + 2$32 + f4,2) + ' ' '

+ (fl,5 + 2&,5 + 2f3,5 +f4,5)1.

It is convenient to write this in pictorial operator form, in which the weighting factors are
displayed in an array that is a map to the location of the functional values to which they are
applied.

We interpret the numbers in the array of Eq. (5.32) in this manner: We use the values 1,
4, 2, 4, and 1 as weighting factors for functional values in the top row of the portion of
Table 5.14 that we integrate over (values were x = 1.5 and y varies from 01.2 to 0.6).
Similarly, the second column of the array in Eq. (5.32) represents weighting factors that
are applied to a column of function values where y = 0.4 and x varies from 1.5 to 3.0.
Observe that the values in the pictorial operator of Eq. (5.32) follow immediately from the
Newton-Cotes coefficients for single-variable integration.

Other combinations of Newton-Cotes formulas give similar results. It is probably eas-
iest for hand calculation to use these pictorial integration operators. Pictorial integration is
readily adapted to any desired combination of integration formulas. Except for the diffi-
culty of representation beyond two dimensions, this operator technique also applies to
triple and quadruple integrals.

There is an alternative representation to such pictonla1 operators that is easier to trans-
late into a computer program. We also derive it somewh,at differently. Consider the numer-
ical integration formula for one variable

We have seen in Section 5.3 that such formulas can be made exact if f(x) is any polynomial
of a certain degree. Assume that Eq. (5.33) holds for polynomials up to degree r;.

Chapter Five: Numerical Differentiation and Integration

We now consider the multiple integral formula

We wish to show that Eq. (5.34) is exact for all polynomials in x, y, and z up to degree
s. Such a polynomial is a linear combination of terms of the form x" yP z y , where a, p, and
y are nonnegative integers whose sum is equal to s or less. If we can prove that Eq. (5.34)
holds for the general term of this form, it will then hold for the polynomial.

To do this we assume that

Then, because the limits are constants and the integrand is factorable,

= ([, x a d.) (LI Y dY) (/ _ I I z' d z) -

Replacing each term according to Eq. (5.34), we get,

We need now an elementary rule about the product of summations. We illustrate it for a
simple case. We assert that

The last equality is purely notational. We prove the first by expanding both sides:

On removing parentheses, we see the two sides are the same. Using this principle, we can
write Eq. (5.35) in the form

5.7: Multiple Integrals 3 1 1

n n n

I = x C, x aiajakxq$z;,
i = l j = l k = l

which shows that the questioned equality of Eq. (5.34) is valid, and we can write a program
for a triple integral by three nested DO loops. The coefficients ai are chosen from any
numerical integration formula. If the three one-variable formulas corresponding to Eq.
(5.34) are not identical, an obvious modification of Eq. (5.36) applies. In some cases a
change of variable is needed to correspond to Eq. (5.33).

If we are evaluating a multiple integral numerically where the integrand is a known
function, our choice of the form of Eq. (5.33) is wider. Of higher efficiency than the
Newton-Cotes formulas is Gaussian quadrature. Because it also fits the pattern of Eq.
(5.33), the formula of Eq. (5.36) applies. We illustrate this with a simple example.

P E E 5 . 1 4 Evaluate

by Gaussian quadrature using a three-term formula for x and two-term formulas for y and
z. We first make the changes of variables to adjust the limits for y and z to (- 1, 1):

1 1
z = - (V + I), dz = - dv.

2 2

Our integral becomes

I = I(I' I' (u - l) (v + I)ex dx du dv.
16 - 1 - 1 - 1

The two- and three-point Gaussian formulas are, from Section 5.6,

The integral is then

and values of u, v, and x as given.

Chapter Five: Numerical Differentiation and Integration

A few representative terms of the sum are

On evaluating, we get I = -0.58758. The analytical value is

MATLAB can solve Example 5.14:

EDU>> int(int(int('y*z*exp(x) ' , 'x',-l,l), 'y', -1,O) , 'Zr,orl)
ans =

-1/4*exp (1) +l/4*exp (-1)
EDU>> numeric (ans)
ans =

-0.5876

and both the analytical and numeric results are obtained.

Variable Limits

As we said, the region for which we want the integral does not have to be a rectangle.
Suppose we want to integrate

over the region bounded by the lines x = 0, x = 1, y = 0, and the curve y = x2 + 1.
The region is sketched in Figure 5.7. If we draw vertical lines spaced at Ax = 0.2 apart,
shown as dashed lines in Figure 5.7, it is obvious that we can approximate the inner
integral at constant x-values along any one of the vertical lines (including x = 0 and
x = 1). If we use the trapezoidal rule with five panels for each of these, we get the
series of sums

5.7: Multiple Integrals 3 13

Figure S.7

The subscripts here indicate the values of the function at the points so labeled in
Figure 5.7. The values of the hi are not equal in each of the equations, but in each they are
the vertical distances divided by five. The combination of these sums to give an estimate of
the double integral will then be

0 2
Integral = - (S1 + 2S2 + 2s3 + 2,S4 + 2S5 + S6).

2

To be even more specific, suppose that f (x , y) = xy. Then,

1.015
S , = -

2
(0 + 0 + 0 + 0 + 0 + 0) = 0 ,

Chapter Five: Numerical Differentiation and Integration

0.2
Integral = -(O + 0.2164 + 0.5382 + 1.1098 + 2.1516 + 2.0)

2

= 0.6016 versus analytical value of 0.583333.

The extension of this to more complicated regions and the adaptation to the use of
Simpson's rule should be obvious. If the functions that define the region are not single-
valued, we must divide the region into subregions to avoid the problem, but we must also
do this when we integrate analytically.

The previous calculations were not very accurate because the trapezoidal rule has rel-
atively large errors. Gaussian quadrature should be an improvement, even using fewer
points within the region. Let us use three-point quadrature in the x-direction and four-
point quadrature in the y-direction. As in Section 5.6, we must change the limits of
integration:

I' r ' l X y dy dx

to

in which we make the following substitutions:

The integral is approximated by the sum

where the wi's, Wj's, si3s, and tj's are the values taken from Table 5.13. Using that table, we
set w, = 0.55555555, w, = wl, and w2 = 0.88888889; we set s, = -0.77459667,
S, = -sl, and S, = 0.0. The values for the Wj's and tj's are obtained in the same way. For
each fixed i, i = 1, 2, 3, let Si be the corresponding value obtained using Gaussian quadra-
ture for a fixed si, where Si = X;= (Wj f(si, 3).

The following intermediate values are easily verified:

5.7: Multiple Integrals 3 15

We sum these values as follows:

which agrees with the exact answer to seven places. In this case, we used only 12 evalua-
tions of the function (exceptionally simple to do here, but usually more costly), compared
to the 36 used with the trapezoidal rule.

To keep track of the intermediate computations, it is convenient to use a template such as

and to compute the Si7s along the verticals. The points, (si, ti) within the region are often
called Gauss points.

MATLAB has no trouble in solving this problem:

EDU>> int(int('xhy', 'y', 0, ' x A 2 + 1 ') , 'x', 0, 1)
ans =

7/12
EDU>> numeric (ans)

ans =

0.5833

Errors in Multiple Integration and Extrapolations

The error term of a one-variable quadrature formula is. an additive one just like the other
terms in the linear combination (although of special form). It would seem reasonable that
it would go through the multiple summations in a similar fashion, so we should expect
error terms for multiple integration that are analogous to the one-dimensiona.1 case. We
illustrate that this is true for double integration using the trapezoidal rule in both directions,
with uniform spacings, choosing n intervals in the x-direction and m in the y-direction.

Chapter Five: Numerical Differentiation and Integration

From Section 5.2 we have

In developing Romberg integration, we observed that the error term could be written as

Error = 0(h2) = ~h~ + 0(h4) = ~h~ + ~ h ~ ,

where A is a constant and the value of B depends on a fourth derivative of the function.
Appending this error term to the trapezoidal rule, we get

Summing these in the y-direction and retaining only the error terms, we have

k h " " k Jjd L f (x , y) dx dy = - - aiaj i , j + - (A, + 2A, + 2A2 + . . . + Am)h2
2 2 i=, j= , 2

k + - (B, + 2B, + 2B2 + . . . + B,)h4 + Ak2 + Bk4,
2

In this, 2 and B are the coefficients of the error term for y. The coefficients A and B for the
error terms in the x-direction may be different for each of the (m + 1) y-values, but each of
the sums in parentheses is 2n times some average value of A or B, so the error terms
become

k k
Error = - (nA,,)h" - (n ~ , ,) h ~ + 2k2 + gk4.

2 2

Because both Ax and Ay are constant, we may take Ay = k = aAx = ah, where a =

AylAx, and the equation can be written, with nh = (b - a),

Here, K2 will depend on fourth-order partial derivatives. This confirms our expectation that
the error term of double integration by numerical means is of the same form as for single
integration.

Because this is true, a Romberg integration may be applied to multiple integration,
whereby we extrapolate to an 0 (h 4) estimate from two trapezoidal computations at a
2 : 1 interval ratio. From two such 0 (h 4) computations we may extrapolate to one of
0 (h 6) error.

5.8: Applications of Cubic Splines 3 17

In addition to their obvious use for interpolation, splines (Chapter 3) can be used for find-
ing derivatives and integrals of functions, even when the function is known only as a table
of values. The smoothness of splines can give improveid accuracy in some cases, because
of the requirement that each portion have the same first and second derivatives as its neigh-
bor where they join.

For the cubic spline that approximates f(x), we can write, for the interval xi 5: x 5 xi+ l,

where the coefficients are determined as in Section 3.3. The method outlined in that sec-
tion computes Si and Si+l, the values of the second derivative at each end of the subin-
terval. From these S-values and the values of f(x), we compute the coefficients of the
cubic:

Approximating the first and second derivatives is straightforward; we estima.te these as
the values of the derivatives of the cubic:

f'(x) = 3ai(x - + 2bi(x -- xi) + ci, (5.37)

f "(x) - 6ai(x - xi) + 2bi. (5.38)

At the n + 1 points xi where the function is known and the spline matches f(x)., these for-
mulas are particularly simple:

(We note that a cubic spline is not useful for approximating derivatives of order higher
than second. A higher degree of spline function would be required for these valiues.)

Approximating the integral of f(x) over the n intervals where f(x) is approximated by
the spline is similarly straightforward:

Chapter Five: Numerical Differentiation and Integration

If the intervals are all the same size, (h = xi+l - xi), this equation becomes

We illustrate the use of splines to compute derivatives and integrals by a simple example.

LE 5.15 Compute the integral and derivatives of f(x) = sin .irx over the interval 0 5 x 5 1 from the
spline that fits at x = 0, 0.25,0.5,0.75, and 1.0. (See Table 5.15.) We use end condition 1:
S1 = 0, S5 = 0. Solving for the coefficients of the cubic spline, we get the results shown in
Table 5.16.

The estimated values for f '(x) and f "(x) computed with Eqs. (5.37) and (5.38) are
shown in Table 5.17. The errors of these estimates from the exact values (f1(x) = .ircos(m)
and f"(x) = - .ir2 sin(.irx)) are shown in the last two columns.

In general, the cubic spline gives good estimates of the derivatives, the maximum error
being 2.5% for the first derivative and 5.0% for the second.

It is of interest to compare these values with estimates of the derivatives from a fourth-
degree interpolating polynomial that fits f(x) at the same five points. Table 5.18 exhibits
these estimates. For the first derivative, the spline curve gives better results near the ends of
the range for f(x); the polynomial gives better results near the midpoint. Both are very
good in this example.

Comparison of estimates for the second derivative shows a similar relationship, except
for the fourth-degree polynomial, which is very bad at the endpoints.

We readily compute the integral from the cubic spline:

= 0.6362 (exact = 0.6366; error = +0.0004).

i, point
number x f (x)

5.8: Applications of Cubic Splines 3 19

The value for the integral using splines is better than getting it with Simpson's $ rule using
the same panels (Ax = 0.25), which gives a value of 0.6381. The error there is -0.0015,
almost four times greater than from the spline fit.

Observe that the error in the integral is only 0.24%, while the maximum enrors in the
derivatives are about 2.5% and 5.0%. This is generally true-numerical differentiation,
in the words of many authorities, is basically an unsfable process. We have seen how
round-off error is terribly important when a numerical value for the derivative is
computed.

Differentiation of "noisy" data encounters a similar problem. If the data being differen-
tiated are from experimental tests, or are observations subject to errors of measurement,

Tabk 5. $7 Estimates off '(x) and f "(x) from a cubic spline

Error in Error in
X f '(x) f "(XI f '(XI

-- f "(4 --

0.00 3.1344 0.0000 0.007146 0.000000
0.05 3.0977 - 1.4689 0.005 191 -0.075053
0.10 2.9876 -2.9378 0.000275 -0.1 12090
0.15 2.8039 -4.4067 -0.004766 -0.074028
0.20 2.5469 -5.8756 -0.005287 0.074363
0.25 2.2164 -7.3445 0.005053 0.365600
0.30 1.8340 -7.9529 0.01 2627 -0.031778
0.35 1.421 1 -8.5613 0.005155 -0.2325461
0.40 0.9778 -9.1698 -0.007015 -0.216781
0.45 0.5041 -9.7782 -0.01 2668 0.0301 14
0.50 -0.0000 - 10.3866 0.000000 0.517038
0.55 -0.5041 -9.7782 0.01 2668 0.0301 13
0.60 -0.9778 -9.1698 0.007015 -0.216781
0.65 -1.4211 -8.5613 -0.005155 -0.232547
0.70 - 1.8340 -7.9529 -0.01 2628 -0.031778
0.75 -2.2164 -7.345 -0.005053 0.365598
0.80 -2.5469 -5.8756 0.005287 0.074362
0.85 -2.8039 -4.4067 0.004766 -0.074028
0.90 -2.9876 -2.9378 -0.000275 -0.1 12088
0.95 -3.0977 - 1.4689 -0.005 190 -0.07505 1
1 .OO -3.1344 0.0000 -0.007 146 0.000003

Chapter Five: Numerical Differentiation and Integration

Table 5.18 Estimates of f'(x) and f "(x) from a polynomial, P4(x)

Error in
f ' (4

Error in
f "(x)

the errors so influence the derivative values calculated by numerical procedures that they
may be meaningless. The usual recommendation is to smooth the data first, using methods
that are discussed in Chapter 3. Passing a cubic spline through the points and then getting
the derivative of this approximation to the data has become quite popular. A least-squares
curve may also be used. The strategy involved is straightforward-we don't try to repre-
sent the function by one that fits exactly to the data points, because this fits to the errors as
well as to the trend of the information. Rather, we approximate with a smoother curve that
we hope is closer to the truth than the data themselves. The problem, of course, is how
much smoothing should be done. One can go too far and "smooth" beyond the point where
only errors are eliminated.

A final situation should be mentioned. Some functions, or data from a series of tests, are
inherently "rough." By this we mean that the function values change rapidly; a graph
would show sharp local variations. When the derivative values of the function incur rapid
changes, a sampling of the information may not reflect them. In this instance, the data indi-
cate a smoother function than actually exists. Unless enough data are at hand to show the
local variations, valid values of the derivatives just cannot be obtained. The only solution is
more data, especially near the "rough" spots. And then we are beset by problems of accu-
racy of the data!

Fortunately, this problem does not occur with numerical integration. As you have seen,
all the integration formulas add function values together. Because the errors can be positive

Exercises

or negative and the probability for each is the same, errors tend to cancel out. That means
that integration is a smoothing process. We assess integration as inherently stable. This is
generally true of computations that are global, in contrast to those that are local in nature,
such as differentiation.

Section 5.4

1. Duplicate Table 5.1, but with double precision arith-
metic. At what value for Ax is round-off error apparent?

2. Computer algebra systems permit you to use a speci-
fied number of digits in the computations. Repeat
Exercise 1, but with only three digits of precision.

3. What is the effect of the precision of arithmetic on
Table 5.2 where central differences are used?

4. Make a graph for f(x) = eKXi3 * cos(x) from x = - 1 to
x = 3.

a. From the graph, predict for what x-value(s) the
accuracy of a forward-difference approximation
to the derivative with h = 0.05 will be most
accurate.

b. Confirm your prediction by doing computations.

5. Repeat Exercise 4 but for backward differences.

6. Repeat Exercise 4 but for central differences.

b 7. Make a divided-difference table similar to Table 5.3,
but for the function f(x) = 2x * cos(2x). Use the data in
the table to compute f '(2.0)

a. Using a forward-difference approximation.
b. Using a backward-difference approximation.
c. Using a central-difference approximation.

8. Find bounds to the errors of each of the computations
of Exercise 7 from Eq. (5.7). What are the actual
errors?

9. Duplicate Figure 5.1a, b, and c with the function of
Exercise 7.

10. Compute a difference table like Table 5.4 but for the
same function as in Exercise 7, f(x) = 2x * cos(2x).
Use one, two and three terms of Eq. (5.10) to construct
graphs similar to Figure 5.1a, b, and c.

b11. Compute a value for f '(0.268) from a quadratic inter-
polating polynomial that fits the table at the three
points that should give the most accurate answer.
Which points are these?

12. The function In Exercise 11 is for f (x) = 1 +
log,&).
a. What is the error of your answer in Exercise 1 I?
b. How does this compare with that estimated from the

next-term rule?
c. Compute f '(0.268) from other sets of three points

and repeat pai-ts (a) and (b) for each of these.

b13. The differences m the table of Exercise 1 I are actually
the divided differences of f(x) accurate to six decimal
places, even though the function values are shown to
only four decimals. Recompute the differences using
the tabulated function values and repeat Elxercise 12.
How much does the rounding affect the. errors? Is
rounding more important than truncation?

14. Repeat Exercise 11, but this time for f '(x) ;at x = 0.21,
0.22,0.23,0.24,0.25,0.26, and 0.27. Plot the estimates
and compare to a graph of the true values. Make
another plot of the errors versus x. At what point is the
error smallest?

15. As described in Exercise 13, the differences tabulated
in Exercise 11 are based on more accurate function val-
ues. Recompute the divided-difference tablle using the
tabulated function values, then repeat Exercise 14.
How does rounding change the errors you found in
Exercise 14?

16. Use Eq. (5.7) to find bounds for the errors at x = 0.21,
0.23, and 0.27 in Exercise 14. Do these bounds bracket
the errors found in Exercise 14?

322 Chapter Five: Numerical Differentiation and Integration

17. Use the next-term rule to estimate the error in Exercise
14. Compare these errors with the actual errors. Are the
estimates always larger?

18. Repeat Exercise 17, but with the recomputed table
done in Exercises 13 and 15.

b19. The following ordinary difference table is for f(x) =
x + sin(x)/3. Use it to find

a. f '(0.72) from a cubic polynomial.
b. f '(1.33) from a quadratic.
c. f'(0.50) from a fourth-degree polynomial.

In each part, choose the best starting i-value.

Use the next-term rule to estimate the errors in
Exercise 19. Compare these to the actual errors. Are
the estimates always larger?

Show that the error of Eq. (5.14) is 0(h2).

Use the method of undetermined coefficients to obtain
the formulas for f "(x), f "'(x) and f (4)(~) at xo using five
evenly spaced points from x2 to X-2, together with their
error terms.

Get estimates for the second third and fourth deriva-
tives of f(x) at x = 0.90 from the data of the table of
Exercise 19. What are the errors?

Extrapolate to get f"(0.90) from the table of Exercise
19 as many times as you can. What is the error? How
much of this is due to the precision of the data?

Show that the first extrapolation for fl(xo) with
h-values differing by 2 to 1 is the same as the formula

where H i s the smaller of the h's.

Can extrapolations similar that of Eq. (5.15) be used
for unevenly spaced data? (A Taylor series expan-

sion may be helpful.) If you succeed in getting a for-
mula, use it to estimate a better value for f '(0.27)
from the table of Exercise 11. What order of error
results?

b27. Apply Richardson extrapolation to get f '(0.32) accu-
rate to five significant figures for f(x) = sin2(x/2), start-
ing with h = 0.1 and using central differences. When
the extrapolations agree to five significant figures, are
they that accurate?

28. Repeat Exercise 27, but now for f"(O.32).

29. Can Richardson extrapolation be used with forward
differences? If you can do this, repeat Exercise 27
employing forward differences.

30. Create a Richardson table with a computer algebra sys-
tem. The trick is how to get a display similar to that in
Section 5.1.

Section 5.2

b31. The global error of the integral, Jf(x) dx, between two
x-values by the trapezoidal rule is

-(1/12)h3fn((),

where (lies inside the two x-values. For these functions
and x-values, find the value for (?

a. f(x) = x3, x = [0.2,0.5].
b. f(x) = 8 , x = [-.I, 0.21.
c. f(x) = sin(x),x = [O, 0.41.

32. The global error of the trapezoidal rule is

(-(b - a)/12)h2f"((),

where (lies within the range for the integral. Repeat
Exercise 3 1 when the step size, h, is

a. 0.1.
b. 0.01.
c. What are the limiting values as h -+ O?

33. Repeat Example 5.1, but now use only four values, for
x = 1.6, 2.2,2.8, and 3.4.

34. How small must h be for the trapezoidal rule to attain
an error less than 0.001 for

Jx2 sin(x) du, between x = 0.2 and 2.8?

b35. Use the data in the table to find the integral between
x = 1.0 and 1.8, using the trapezoidal rule:

a. With h = 0.1.
b. With h = 0.2.
c. With h = 0.4.

Exercises 323

36. The function tabulated in Exercise 35 is cos h(x). What
are the errors in parts (a), (b), and (c)? How closely are
these proportional to h2? What errors are present
besides the truncation error?

37. Extrapolate from the results of Exercise 35 to get an
improved value for the integral (Romberg integration).
What is the order of error for this extrapolated answer?
How accurate is it?

b38. If the integral of Example 5.1 is wanted correct to five
decimal places (error < 0.000005), how small should h
be? Recompute the table with this value for h and ver-
ify that this gives the desired accuracy.

39. Repeat Exercise 38, but now use Romberg integration.
What is the degree of improvement over Exercise 38?

40. Use Romberg integration to evaluate the integral of f(x)
= llx between x = 1 and x = 3. Using six significant
digits in your computations, continue until there is no
change in the fourth decimal place. Is this answer that
correct?

Section 5.3

b41. Repeat Exercise 35, but now use Simpson's 113 rule.

42. Use the error term for Simpson's 113 rule to bound the
errors in Exercise 41 for each application of the rule.
What are the values for for each value of h?

43. Simpson's 318 rule cannot be applied directly to
Exercise 41 because the number of panels is not divisi-
ble by three. Still, you can use it in combination with
the 113 rule over two panels. There are several choices
of where to use the 113 rule. Which of these choices
gives the most accurate answer?

44. The function f(x) = x2 * sin(2x) is zero at the origin

a. Use Simpson's 113 rule to approximate the integral
under the first "hump." How large can h lbe and still
attain a value with an error less than 0.001?

b. Repeat part (a) but now get the integral from x = 0
to x = n.

45. Repeat Exercise 44, but now use Simpson's 318 rule.

b46. Show that extrapolating once with the trapezoidal rule
is equivalent to using Simpson's 113 rule with a compa-
rable value for h.

47. Is there an eq~~ivalent relation, between extrapolations
of the trapezoidal rule and Simpson's 318 rule as found
in Exercise 46? Find such a relationship if it exists or
prove that there is none.

48. Simpson's rule, although based on passing a quadratic
through three evenly spaced points, actually gives the
exact answer if f(x) is a cubic. The implication is that
the area under any cubic between x = a and x = b is
identical to the ar'ea of a parabola that matches the cubic
at x = a; x = b, and x = (a + b)/2. Prove this.

49. Simpson's rules are derived by fitting polynomials of
degrees 2 and 3 to the integrand. Obtain a formula that
results from fitting a fourth-degree polynomial and its
error term. Would this have any advantage over the
Simpson's rules?

b50. In solving differential equations, one method finds the
integral of the derivative function from a linear sum of
past values for the derivative. One example iis

What values should be used for the c's?

51. Compute the integral of f(x) = sin(x)lx between x = 0
and x = 1 using Simpson's rule with h = 0.5 and then
with h = 0.25. (Remember that the limit of r;in(x)lx at x
= 0 is I.) From these two results, extrapolate to get a
better result. What is the order of the error after the
extrapolation? Compare your answer with the true
answer.

b52. Repeat Exercise 51, but use Simpson's 318 rule.

53. Prove that all integration methods that are based on
even-order interpolation formulas (quadratic, quartic,
etc.) have a global error order equal to two more than
the order of the polynomial, while those based on a
polynomial of odd order have a global errlor just one
more than the order of the polynomial.

54. A way to derive integration formulas (as well as formu-
and is zero again at multiples of 57-12, las for differentiation) is the symbolic method. Do

324 Chapter Five: Numerical Differentiation and Integration

research to find out about this method and use it to
derive several of the formulas of this chapter.

Section 5.4

b55. Use trapezoidal integration with 24 panels to get the
first nine Fourier coefficients for these functions and
compare to those from analytical integration:

a. f(x) = x3 - 1 on [O, 31.
b. f(x) = 2x2 + 1 on [-2, 11.
c. f(x) = ex cos (3x) on [O, 51.

56. Repeat Exercise 55, but with Simpson's 113 rule. How
much more accurate are these than the results of
Exercise 55?

57. Repeat Exercise 55, but with Simpson's 318 rule. Are
these less accurate than those from Exercise 57?

58. How many panels would be needed to match to the
analytical coefficients to within 0.00001

a. in Exercise 55?
b. in Exercise 56?
c. in Exercise 57?

b59. Verify that Eqs. (5.26) and (5.27) are truly identical.

60. Make a diagram similar to Figure 5.5 for n = 8.

61. Use the algorithm given in Section 5.4 that generates
the powers of W to be used in an FFT to obtain the val-
ues for n = 16. These should agree with those in Figure
5.5; do they?

62. Repeat Exercise 61 but now with the bit-reversing rule.

63. Write a procedure in a computer algebra system that
does an FFT, with up to 33 pairs of t, f(t) values as an
input. Test it by duplicating Example 5.9.

Section 5.5

64. Repeat Example 5.10, but use the trapezoidal rule. At
what value for h do the computations terminate? How
many function evaluations are required compared to
Simpson's 113 rule?

65. Repeat Exercise 64, but now use Simpson's 318 rule.

66. Solve the problem of Example 5.10 with an adaptive
trapezoidal rule. Compare the number of function eval-
uations with that for Simpson's 113 rule.

67. Repeat Exercise 66, but now with Simpson's 318 rule.

b68. Use adaptive Simpson's 113 rule to obtain the integral
of eX cos(2x) over the interval [0, d 4] . Use a value for
TOL, the tolerance value, sufficiently small to attain an
answer within 0.001 of the exact answer, 0.677312.

69. Repeat Exercise 68, but now use adaptive trapezoidal
rule. Compare the number of function evaluations with
that used in Exercise 68.

b70. Most programs for adaptive integration will compute
the appropriate step size if they use the procedure of
Section 5.5. However, in some cases this leads to sig-
nificant errors. For instance, the integral of sin2(16x)
between x = 0 and x = d 2 is d 4 , but it is easy to see
that the values of S1[O, ~ 1 2 1 and S2[0, ~ 1 2 1 both equal
zero, where hl = d 4 and h2 = ~ 1 8 .

How can we solve this problem correctly with the
adaptive method of Section 5.5? (It is interesting to
know that the HP-15C calculator avoids this error.)

Section 5.6

71. The integral of eX between 0 and 3 is (e3 - eO) = e3 -
1 = 19.085537. How many terms of Gaussian quadra-
ture must be used to obtain the result correct to within
0.001?

72. If Simpson's 113 rule were used to get the integral of
Exercise 7 1, how many more function evaluations
would be needed?

73. What is the error if the integral of sin(x)lx over x = [O,
21 is evaluated with a four-term Gaussian formula?
How many intervals would be needed with Simpson's
113 rule to get the value with the same accuracy?

b74. By using Gaussian formulas of increasing complexity,
determine how many terms are needed to evaluate the
integral of x3 * sin(x2)eXp3 over the interval [- 1.5,2.7]
to get accuracy to six significant figures.

75. An n-term Gaussian formula assumes that a polyno-
mial of degree 2n - 1 is used to fit the function
between x = a and x = b. Does this mean that the error
is the same as for a Newton-Cotes integration formula
based on a polynomial of degree 2n - l ?

b76. Confirm that the values for t in Table 5.13 are correct
by getting the zeros of the appropriate Legendre poly-
nomials. Use any method from Chapter 1.

77. Repeat Exercise 76, but get the zeros with a computer
algebra system.

78. Two improper integrals are given in Section 5.6 as
examples where Gaussian quadrature can be applied.
How many terms are needed to get the integrals correct
to within 0.0001?

79. Instead of using a Gaussian quadrature formula of
higher degree to evaluate an integral, one could break

Exercises 3 2 5

up the interval of integration into subintervals and com-
bine the results from a formula of lower degree. Is there
merit to this idea? Find a function where this is of
advantage and find another where it is not.

80. The statement is made in Example 5.13 that "it is
immaterial which integral we evaluate first." Confirm
that this is true by repeating Example 5.13, but inte-
grate first with respect toy.

Write pictorial operators similar to Eq. (5.32) for

85. Solve Exercise 84 by performing the trapezoidal rule
integrations first with h = 0.2 (in both directions), then
with h = 0.1. and extrapolate. The answer should
match part (b) of' the exercise. Does it?

)86. Integrate with varying values of Ax and Ay using the
trapezoidal rule in both directions, and show that the
error decreases about in proportion to h2:

87. Apply Romberg integration to Exercise 86 to get a
value of 0(h6).

a. Simpson's f rule in the x-direction and the trape- 88. Repeat Exercise 86, but now use Simpson's 113 rule.
zoidal rule in the y-direction. How do errors decrease with h?

b. Simpson's rule in both directions. 89. Extrapolate from two results of Exercise 138. What is
c. Simpson's $ rule in both directions. the order of the error of the extrapolation?

d. What conditions are placed on the number of panels
in both directions by parts (a), (b), and (c)? Section 5.8

Because Simpson's $ rule is exact whenf(x) is a cubic,)90. The following table is for f(x) = ll(x + 2). Find values
evaluation of the following triple integral should be for f'(x) andf"(.x) at x = 1.5, 2.0, and 2.5 from cubic
exact. Confirm by evaluating both numerically and spline functions that approximate f (x). Compare to the
analytically. Use Eq. (5.36) adapted for this integral. true values to determine the errors. Also compare to

derivative v a l ~ ~ e s computed from central-difference for-
mulas.

Draw a pictorial operator that represents the formula a. Use end condition 1.

used in Exercise 82. You may want to do this on three b. Use end condition 3.

widely separated planes, such as c. Use end condition 4.

Evaluate the following integral,
answers to the analytical solution.
directions in parts (a) and (b),

91. Plot the values of f'(x) and f"(x) from the cubic splines
of Exercise 90 on [1.0,3.0], and compare to plots of the
true values.

92. The comparisons in Exercise 90 may favor the cubic
and compare your spline because they are based on cubic polynomials,
Use h = 0.1 in both whereas the central-difference formulas are based on

quadratics. Repeat Exercise 90, but now use interpolat-
a. using the trapezoidal rule in both directions. ing polynomials of degrees 3 and 4.
b. using Simpson's rule in both directions. 93. Repeat Exercise 90, but this time use cubic splines that
c. using Gaussian quadrature, three-term formulas in have the correct slopes at the ends, condition 2.

both directions.
b94. Integrate sech(x) over [O, 21 by integrating the natural I'o: [46 i sin(2y) dy cubic spline curve (end condition 1) that fits at five

evenly spaced points on [O, 21. Compare the result to

326 Chapter Five: Numerical Differentiation and Integration

the analytical value. Also compare to the integral from 96. Repeat Exercise 94 but now force the values off "(x) at
Simpson's 4 rule. the ends to the analytical values of the second deriva-

95. Repeat Exercise 94 using end conditions 2, 3, and 4. tive of sech(x).
For condition 2, use the analytical values for f '(x).

APP1. When one first hears of Gaussian quadrature, it seems remarkable that just adding the value of the
integrand at two points is equivalent to integrating from an interpolating polynomial of degree-3, and
that adding a weighted sum of three points is equivalent to using a polynomial of degree-5.

Table 5.13 gives values that determine where to select the points. What if we use values that are
slightly incorrect? How much is the approximation of the integral affected if the selected points are
off by l%? By 5%?

APP2. Differential thermal analysis is a specialized technique that can be used to determine transition tem-
peratures and the thermodynamics of chemical reactions. It has special application in the study of
minerals and clays. Vold [Anal. Chem. 21,683 (1949)l describes the technique. In this method, the
temperature of a sample of the material being studied is compared to the temperature of an inert ref-
erence material when both are heated simultaneously under identical conditions. The furnace hous-
ing the two materials is normally heated so that its temperature (Tf) increases (approximately) lin-
early with time (t), and the difference in temperatures (AT) between the sample and the reference is
recorded. Some typical data are

t, min 0 1 2 3 4 5 6 7

AT, O F 0.00 0.34 1.86 4.32 8.07 13.12 16.80 18.95
Tf' O F 86.2 87.8 89.4 91.0 92.7 94.3 95.9 97.5

The AT values increase to a maximum, then decrease, due to the heat evolved in an exothermic reac-
tion. One item of interest is the time (and furnace temperature) when the reaction is complete. Vold
shows that the logarithm of AT should decrease linearly after the reaction is over; while the chemical
reaction is occurring, the data depart from this linear relation. Vold used a graphical method to find
this point. Perform numerical computations to find, from the preceding data, the time and the furnace
temperature when the reaction terminates. Compare the merits of doing it graphically or numerically.

APP3. The temperature difference data in APP2 can be used to compute the heat of reaction. To do this, the
integral of the values of AT is required, from the point where the reaction begins (which is at the

Applied Problems and Projects 327

point where AT becomes nonzero) to the time when the reaction ceases, as found in APP2.
Determine the value of the required integral. Which of the methods of this chapter should give the
best value for the integral?

APP4. There is a way to integrate numerically called the midpoint rule. The estimates the integral of f(x) on
the interval [a, b] by this equation:

a. Derive this formula in three different ways.
b. Find its error term.
c. Find at least three functions for which this gives the exact answer. State the condition for this to be

true.
d. What is the composite rule for the midpoint rule? What is the error term for it?
e. Outline how adaptive integration would be used for this method.

APP5. The stress developed in a rectangular bar when it is twisted can be computed if one knows the values
of a torsion function U that satisfies a certain partial-differential equation. Chapter 8 describes
a numerical method that can determine values of U. To compute the stress, it is necessary to integrate
J J U dx dy over the rectangular region for which the data given here apply. Determine the stress.
(You may be able to simplify the integration because of the symmetry in the data.)

APP6. Fugacity is a term used by engineers to describe the available: work from an isothermal process. For
an ideal gas, the fugacity f is equal to its pressure P, but for real gases,

where C is the experimentally determined compressibility factor: For methane, values of C are

Chapter Five: Numerical Differentiation and Integration

Write a program that reads in the P and C values and uses them to compute and print f corresponding
to each pressure given in the table. Assume that the value of C varies linearly between the tabulated
values (a more precise assumption would fit a polynomial to the tabulated C values). The value of C
approaches 1.0 as P approaches 0.

APP7. The highway patrol uses a radar gun to clock the speed of a motorist. The gun is equipped with a
device that records the speed at 4-second intervals as given in the table below.

a. What is the total distance traveled by the car?
b The speed limit is 65 mph. What fraction of the time is he speeding?
c. When do you think the motorist noticed the officer?

Time 0 4 8 12 16 20 24 28 32 36 40
Speed(mph) 64 68 71 74 76 72 64 63 68 73 72

APP8. A cardiod curve is heart-shaped. It can be drawn from the equation

Use a numerical method to compute the length of the curve if a = 3 and compare to the analytical
answer.

APP9. A variation on APP8 is a lemniscate; the equation is

Draw the curve for a = 3. Then repeat APP8 for this curve using Gaussian quadrature.

APP10. Outline a procedure for an adaptive Gaussian quadrature that uses the three-term formula.

Most problems in the real world are modeled with differential equations because iais easier
to see the relationship in terms of a derivative. An obvio~us example is Newton's Law-f =

M * a-where the acceleration a is the rate of change of the velocity. Velocity is also a
derivative, the rate of change the position, s, of an object of mass, M, when it is acted on by
force,$ So we should think of Newton's Law as

a second-order ordinary differential equation. It is ordinary because it does not involve
partial differentials and second order because the ordeir of the derivative is two. The solu-
tion to this equation is a function, s(t). This is a particularly easy problem to solve analyti-
cally when the acceleration is constant:

The solution contains two arbitrary constants, vo and so, the initial values for the veloc-
ity and position. The equation for s(t) allows the computation of a numerical value for s,
the position of the object, at any value for time, the independent variable, t.

Many differential equations can be solved analytically and you probably learned how to
do this in a previous course. The general analytical solution will include arbitrary constants
in a number equal to the order of the equation. If the same number of condittons on the
solution are given, these constants can be evaluated.

When all of the conditions on the problem are specified at the same value for the
independent variable, the problem is termed an initial-value problem. If these are at two
different values for the independent variable, usually ait the boundaries of some region of
interest, it is called a boundary-value problem.

This chapter describes techniques for solving ordinary differential equations by numer-
ical methods. To solve the problem numerically, the required number of conditions must be
known and these values are used in the numerical solution. We will begin the chapter with
a Taylor series method that is not only a good method in itself but serves as the basis for

several other methods. We start with first-order initial-value problems and later cover
higher-order problems and boundary-value problems.

With an initial-value problem, the numerical solution begins at the initial point and
marches from there to increasing values for the independent variable. With a boundary
problem, one must march toward the other boundary and match with the condition(s)
there. This is not as easy to accomplish. Certain boundary-value problems have a solution
only for characteristic values for a parameter; these are known as characteristic-value
problems.

When we attempt to solve a differential equation, we must be sure that there really is a
solution and that the solution we get is unique. This requires that f(x, y) in dyldx = f(x, y)
meet the Lipschitz condition:

Let f(x, y) be defined and continuous on a region R that contains the point (xo, y o) We
assume that the region is a closed and bounded rectangle. Then f(x, y) is said to satisfy the
Lipschitz condition if:

There is an L > 0 so that for all x, yl , y2 in R, we have

For most problems and all examples of this chapter, the condition is met.
There is a similar set of conditions for the solution to a boundary-value problem to exist

and be unique. A linear problem of the form

d2u
--

d 2
- pu' + qu + r, for x on [a, b] ,

with

where p, q, and r are functions of x only, has a unique solution if two conditions are met:

p, q, and r must be continuous on [a, b],

and

q > 0 on [a, b].

If the problem is nonlinear, more severe conditions apply that involve the partial deriva-
tives of the right-hand side with respect to u and u'.

C o n t e n t s o f T h i s C h a p t e r

6.1 The Taylor-Series Method
Adapts this method from calculus to develop a power series that, if
truncated, approximates the solution to a first-order initial-value problem.
Unless many terms are used, the solution cannot be carried far beyond the
initial point.

The Euler Method and Its Modifications
Describes a method that is easy to use but is not very precise unless the step
size, the intervals for the projection of the solution, is very small.
Modifications permit the use of a larger step size or give greater accuracy at
the same size of steps. These methods are based on low-order Taylor series.

Runge -Kutta Methods
Presents methods that are based on more terms of a Taylor series than the
Euler methods and are thereby much more accurate. A very widely used
method, the Runge-Kutta-Fehlberg method (RKF) allows an estimation of
the error as computations are made so tihe step size can be clhanged
appropriately.

Multistep Methods
Covers methods that are more efficient than tlhe previous methods, which are
called single-step methods. They require a number of starting values in
addition to the initial value. A Runge-Kutta method is frequently used to get
these starting values. A valuable adjunct to a multistep method is to first
compute a predicted value and then do a second computation to get a
corrected value. Doing this monitors the accuracy of the computations.

Higher-Order Equations and Systems
Describes how the methods previously covered can solve an equation of
order higher than the first. This is done by converting the equation to a
system of first-order problems. Hence, even a system of higher-order
problems can be handled.

Stiff Equations
Discusses a type of problem that poses difficulties in avoiding instability, the
growth of initial error as the solution proceeds.

Boundary-Value Problems
Extends the methods previously described 1.0 solve a differential equation
whose conditions are specified at not just the initial point. This section also
describes how the solution can be approximated if the derivatives are
replaced by difference quotients, as explained in Chapter 5.

Characteristic-Value Problems
Shows how that class of boundary-value problems that have a solution only
for certain values of a parameter can be solved. These certain values are the
eigenvalues of the system; eigenvalues and their associated eigen~ec~tors are
essential matrix-related quantities that have applications in many fields. Two

- -

different ways to obtain eigenvalues are desciribed.

332 Chapter Six: Numerical Solution of Ordinary Differential Equations

As you have seen before, a Taylor series is a way to express (most) functions as a power
series. When expanded about the point x = a, the coefficients of the powers of (x - a)
include the values of the successive derivatives of the function at x = a. This means that if
we know enough about a function at some point x = a, that is, its value and the value of all
of its derivatives, we can (usually) write a series that has the same value as the function at
all values of x. We will use xo to represent x = a.

In the present application, we are given the function that is thk first derivative of
y(x): yr = f (x, y), and an initial value, y(xo) With this information we can write the
Taylor series for y(x) about x = xo. We just differentiate yr(x) = f(x, y) as many times as
we desire and evaluate these derivatives at x = xo. The problem is that, when yf(x)
involves not just x but the unknown y as well, the higher derivatives may not be easy to
come by.

Even so, these higher derivatives can be written in terms of x and the lower derivatives
of y. We only want their values at x = xo. Here is an example:

(This particularly simple example is chosen to illustrate the method so that you can readily
check the computational work. The analytical solution,

y(x) = -3eCX - 2x + 2

is obtained immediately by application of standard methods and will be compared with our
numerical results to show the error at any step.)

We develop the relation between y and x by finding the coefficients of the Taylor series
in which we expand y about the point x = xo:

If we let x - xo = h, we can write the series as

Because y(xo) is our initial condition, the first term is known from the initial condition
y(0) = - 1. (Because the expansion is about the point x = 0, our Taylor series is actually
the Maclaurin series in this example.)

We get the coefficient of the second term by substituting x = 0, y = - 1 in the equation
for the first derivative, Eq. (6.1):

We get the second- and higher-order derivatives by successively differentiating the
equation for the first derivative. Each of these derivatives is evaluated corresponding to
x = 0 to get the various coefficients:

6.1: The Taylor-Series Method. 33 3

Table 6.1
-

x Y Anal Error

We then write our series solution for y, letting x = h be the value at which we wish to
determine y:

y(h) = -1 + 1.0h - 1.5h2 + 0.5h3 - 0.125h4 + error.

Table 6.1 shows how the computed solutions compare to the analytical between x = 0
and x = 0.6. At the start, the Taylor-series solution agrees well, but beyond x = 0.3 they
differ increasingly. More terms in the series would extend the range of good agreement.

The error of this computation is given by the next term in the series, evaluated at a point
between 0 and x:

Error = (~ ~ / 1 2 0) y (~) (~) , 0 < (< x.

We have used the so-called next-term rule before. How good is this estimate of the error at
x = 0.6? The next term is (31120) * (0 .6)~ = 0.00194, comparing well to the actual error
of 0.00177.

We stated earlier that the analytical solution of the example differential equation can be
obtained by "the application of standard methods." MATLAB can do this:

which is the same as the above with terms in a different order.
Maple can get the Taylor-series solution:

>deq : =diff(y(x),x) =-2*x-y(x):
>dsolve ({deq, y (0) = -11, y(x), series);

which is the series of order 6 and the error order.

Chapter Six: Numerical Solution of Ordinary Differential Equations

When the function that defines yl(x) is not as simple as this, getting the successive
derivatives is not as easy. Consider

You will find that the successive derivatives get very messy.
Even though computers are not readily programmed to produce these higher derivatives,

computer algebra systems like Maple and Mathematics do have the capabilities that we need.
There is another approach-automatic differentiation. This is different from the sym-

bolic differentiation that computer algebra systems use. It produces machine code that
finds values of the derivatives when dyldx is defined through a code list.

We will not give a thorough explanation, only an example, but L. R. Rall (1981) and
Corliss and Chang (1982) are good sources for more information. Here is our example:

X
Solve y' = f (x, y) = using automatic differentiation with y(0) = 1

Oi - -8
To do this, we first create a code list, which is just a name for a sequence of statements that
define dyldx, with only a single operation on each line:

T1 = x*x
T2 = y - T1
dy/dx = x/T2 [which is f (x , y)].

We will use a simplified notation for the terms of the Taylor series:

And we will use (x) ~ = xo. We then have = y(xo).
The software for automatic differentiation includes the standard rules for differentiation

in recursive form, such as the derivatives of (u + v) ~ , (U - v) ~ , (u * v) ~ , and (~ l v) ~ , plus the
elementary functions, including sin, cos, In, exp, and so on.

In our example, we have (x) ~ = 0, (x)~ = 1 (because dxldx = I), so that (x) ~ = 0 for all
higher derivatives of x. From the initial condition, (Y) ~ = 1 and from the expression for
yf(x), (Y) ~ = 0. It is not hard to determine that (Y) ~ = 0.5. The automatic differentiation
software develops a recursion formula for the additional coefficients of the Taylor series.
This formula is something like this:

k- l

(~) k = ffk i(~)i(y)k- 1,
i = 1

where the multiplier, ak, is a complicated function of k.
Similar recursion formulas will be derived by the software for any differential equation

that can be compiled into a code list, and these can have any initial condition.
For our example, all the odd-order terms are zero; the even-order terms are:

Order 0 2 4 6 8

1 1 1 - 1
Coefficient 1 - - - -

2 8 48 384

6.2: The Euler Method and Its Modifications 335

Using this in the Taylor series produces y(0.1) = 1.0050125, y(0.2) = 1.0202013.
The authors are especially grateful to Professor Ramon E. Moore of Ohio State University

for calling our attention to this method for solving ordinary differential equations.
While getting the higher derivatives of y' = xl(y - ;c2) is awkward by hand, Maple has

no trouble. If we want these up to the 22nd power of x, we must first reset the Order from
its default value, then use the series option of dsolve.

>Order: = 22:
>deq: = diff (y(x), x) =x/(y(x) -xA2) :
> dsolve ({deq, y (0) = I}, y (x) , series) ;

The Taylor series is easily applied to a higher-order equation. For example, if we are given

yfl = 3 + x - y2, y(0) = 1, y1(0) = -2,

we can find the derivative terms in the Taylor series as follows:

y(O), and yl(0) are given by the initial conditions.

yV(O) comes from substitution into the differential equation from y(0) and y'(0).

y"'(0) and higher derivatives are found by differentiating the equation for the previous
order of derivative and substituting previously computed values.

The first tmly numerical method that we discuss is the Ehler method. We can solive the dif-
ferential equation

dyldx = f (4 Y) , y(x,) = Yo,

by using just one term of the Taylor-series method:

y(x) = y(xo) + yl(xo) (x - xo) + error,

error = (h2/2)y"(<) = 0(h2).

This is known as the Euler method. In effect, we project along the tangent lin~e from the
starting point, y(xo). If the increment to x, (x - xo) = h, is small enough, the error will be
small. Once we have y at xo f h, we can repeat to get more y-values:

Y,+1 = Y , f hy; f 0(h2).* (6.3)

The method is easy to program for we know the formula for yl(x) and a starling value,
Yo = Y (xo).

" This error is just the local error. Over many steps, the global error becomes O(h).

Chapter Six: Numerical Solution of Ordinary Differential Equations

Table 6.2

0.0 - 1.00000 1 .ooooo 0.10000
0.1 -0.90000 0.70000 0.07000
0.2 -0.83000 0.43000 0.04300
0.3 -0.78700 0.18700 0.01870
0.4 -0.76830 -0.03170

(Analytical answer is -0.81096, error is -0.04266.)

To see this in action, we apply it to the sample equation:

where the computation can be done rather simply. It is convenient to arrange the work as in
Table 6.2. Here we take h = 0.1.

Each of the yn values is computed using Eq. (6.3), adding hy; and yn of the previous
line. Comparing the last result to the analytical answer y(0.40) = -0.81096, we see that
there is only one-decimal-place accuracy, even though we have advanced the solution only
four steps! To gain four-decimal-place accuracy, we must reduce the error by more than
400-fold. Because the global error is about proportional to h, we will need to reduce the
step size about 426-fold, to <0.00024.

Improving the Simple Eu

The trouble with this most simple method is its lack of accuracy, requiring an extremely
small step size. Figure 6.1 suggests how we might improve this method with just a little
additional effort.

In the simple Euler method, we use the slope at the beginning of the interval, y;, to
determine the increment to the function. This technique would be correct only if the func-
tion were linear. What we need instead is the correct average slope within the interval. This
can be approximated by the mean of the slopes at both ends of the interval.

Suppose we use the arithmetic average of the slopes at the beginning and end of the
interval to compute

This should give us an improved estimate for y at x,+~. However, we are unable to employ
Eq. (6.4) directly, because the derivative is a function of both x and y and we cannot evalu-
ate yA+l with the true value of yn+l unknown. The modified Euler method works around
this problem by estimating or "predicting" a value of Y , + ~ by the simple Euler relation,
Eq. (6.3). It then uses this value to compute Y : + ~ , giving an improved estimate

',

6.2: The Euler Method and Its Modifications 337

wlth x,, y, (from Euler)

Yo- - - - - -

I I
I I
I 1
I I X

xo X1

(a "corrected" value) for Y , + ~ Because the "predicted" value for yn+i is not usually very
accurate, the value for yL,I that we compute from it is also inaccurate. One might be
tempted to recorrect, using the first "corrected" value to recompute yL+I to get a better
value for yh+l and repeat this until there is no significant change. However, this is less effi-
cient than using a more powerful method, as we describe in the next section.

Table 6.3 shows the results of this modified Euler method on this same proble~n, dyldx =

-2x - y, y(0) = -1.
We can find the error of the modified Euler method by comparing it with the Taylor

series:

1 Y "'(5)
yn+,=yn+y ' , ,h+Ty:h2+-h3 , x n < E < x n + h .

/
6

Replace the second derivative by the fonvard-difference approximation for y ", (y l,+ I - y L)lh,
which has error of O(h), and write the error term as 0(h3):

0.0 - 1 .OOOO 0.1000 -0.9000 0.0700 0.0850
0.1 -0.9150 0.0715 -0.8435 ,01.0444 0.0579
0.2 -0.8571 0.0457 -0.8114 0.0211 0.0334
0.3 -0.8237 0.0224 -0.8013 0'.0001 0.01 12
0.4 -0.8124 0.0012 -0.8112 -0.0189 -0.0088
0.5 -0.8212

(0.5) = -0.81959, the analytical value]

Chapter Six: Numerical Solution of Ordinary Differential Equations

This shows that the error of one step of the modified Euler method is 0(h3) . This is the
local error. There is an accumulation of errors from step to step, so that the error over the
whole range of application, the so-called global error, is 0(h2) . This seems intuitively rea-
sonable, because the number of steps into which the interval is subdivided is proportional
to llh; hence the order of error is reduced to 0(h2) on continuing the technique.

Another Way to Improve the Eder Method

The technique that we have called the modified Euler method tries to find a value for the
average slope of y between x, and x, + h by averaging the slopes at x, and at x,, l . There
are other ways to do this. The midpoint method uses the slope at the midpoint of the inter-
val as the average slope. It uses the simple Euler method to estimate y at x + h12 and eval-
uates y' at the midpoint with this. For some derivative functions this is better than modified
Euler and for others it is less accurate; for the example used to construct Tables 6.2 and 6.3,
this midpoint method gives precisely the same results.

Propagation of Errors

The errors that we have mentioned for these Euler methods are the truncation errors, those
due to truncating the Taylor series on which they are based. There are other errors; round
off in particular will enter. It is important to understand that errors made early in the
process will also affect the later computations-the early error will be propagated. The
analysis of propagated error is not easy. We do it here only for the simple Euler method-
this will indicate how such analysis can be accomplished.

We consider the first-order equation dyldx = f(x, y), y (xo) = yo. Let

Y, = calculated value at x,,

y, = true value at x,,

e,=y,-Y,=errorinY,;y,=Y,+e,.

By the Euler algorithm,

Y,+l = yn + hf(x,, Y,).

By Taylor series,

6.2: The Euler Method and Its Modifications 339

In Eq. (6.5), we have used the mean-value theorem, imposing continuity and existence
conditions on f(x, y) and fy. We suppose, in addition, that the magnitude of fy is bounded by
the positive constant Kin the region of x, y-space in which we are interested." Hence,

Here, y(xo) = yo is our initial condition, which we assume free of error. Because Yo = yo,
eo = 0:

Similarly,

Iff 5 K is positive, the truncation error at every step is propagated to every later step
Y

after being amplified by the factor (1 + hfY) each time. Note that as h --+ 0, the error at any
point is just the sum of all the previous errors. If the fy are negative and of magnitude such
that lhfyl < 2, the errors are propagated with diminishing effect.

We now show that the accumulated error after n steps is O(h); that is, the global error of
the simple Euler method is O(h). We assume, in addition, that y" is bounded, lyV(x)I < M,
M > 0. After taking absolute values, Eq. (6.6) becomes

Now we compare to the first-order difference equation:

* This is essentially the same as the Lipschits condition, which will gueirantee existence and uniqueness of a solution.

Chapter Six: Numerical Solution of Ordinary Differential Equations

Obviously the values of Zn are at least equal to the magnitudes of le,ll. The solution to
Eq. (6.7) is (check by direct substitution)

The Maclaurin expansion of ehk is

so that

It follows that the global error en is O(h). (This result can be derived without difference
equations.)

The simple Euler method comes from using just one term from the Taylor series for y(x)
expanded about x = xo. The modified Euler method can be derived from using two
terms:

If we replace the second derivative with a backward-difference approximation,

we get the formula for the modified method. What if we use more terms of the Taylor
series? Two German mathematicians, Runge and Kutta, developed algorithms from using
more than two terms of the series. We will consider only fourth- and fifth-order formulas.
The modified Euler method is a second-order Runge-Kutta method.

Second-order Runge-Kutta methods are obtained by using a weighted average of two
increments to y(xo), kl and k2. For the equation dy/dx = f(x, y):

6.3: Runge- Kutta Methods 341

We can think of the values kl and k2 as estimates of the change in y when x advances by h,
because they are the product of the change in x and a value for the slope of the curve, dy/dx.
The Runge-Kutta methods always use the simple Euler estimate as the first estimate of Ay;
the other estimate is taken with x and y stepped up by the fractions a and ,f3 of h and of the
earlier estimate of Ay, kl. Our problem is to devise a scheme of choosing the four parameters,
a, b, a , p. We do so by making Eq. (6.8) agree as well. as possible with the Taylor-series
expansion, in which the y-derivatives are written in terms off, from dy/dx = f(x, y),

An equivalent form, because df/dx = f, + f, dy/dx = f, + f, f, is

[All the derivatives in Eq. (6.9) are calculated at the point (x,, y,).] We now rewrite
Eq. (6.9) by substituting the definitions of kl and k2:

To make the last term of Eq. (6.10) comparable to Eq. (6.9), we expandjr(x, y) in a
Taylor series in terms of x,, y,, remembering that f is a function of two variables,* retain-
ing only first derivative terms:

f [x, + ah, Yn + phf(~, , Y,)] = (f f f , f f h + f,Phf 1,. (6.11)

On the right side of both Eqs. (6.9) and (6.1 1) f and its partial derivatives are all to be eval-
uated at (x,, y,).

Substituting from Eq. (6.11) into Eq. (610), we have

Y,+l = Y, + (a + Wf, + h2(abJ'x + Pbf,f),

Equation (6.12) will be identical to Eq. (6.9) if

* Appendix A will remind readers of this expansion.

Chapter Six: Numerical Solution of Ordinary Differential Equations

Note that only three equations need to be satisfied by the four unknowns. We can choose
one value arbitrarily (with minor restrictions); hence, we have a set of second-order methods.

One choice can be a = 0, b = 1; a = 112, P = 112. This gives the midpoint method.
Another choice can be a = 112, b = 112; a = 1, P = 1, which give the modified Euler.
Still another possibility is a = 113, b = 213, a = 314, P = 314; this is said to give a
minimum bound to the error. All of these are special cases of second-order Runge-Kutta
methods.

Fourth-order Runge-Kutta methods are most widely used and are derived in similar
fashion. Greater complexity results from having to compare terms through h4, and this
gives a set of 11 equations in 13 unknowns. The set of 11 equations can be solved with 2
unknowns being chosen arbitrarily. The most commonly used set of values leads to the
procedure:

Using Eqs. (6.13) to apply the Runge - Kutta fourth order to the problem, dyldx = - 2x - y,
y(0) = - 1 with h = 0.1, we obtain the results shown in Table 6.4. The results here are very
impressive compared to those given in Table 6.1, where we computed the values using
the terms of the Taylor series up to the h4 term. Table 6.4 agrees to five decimals with the
analytical result-illustrating a further gain in accuracy with less effort than with the
Taylor-series method of Section 6.1 -and it certainly is better than the Euler or modified Euler
methods.

Table 6.4

(The analytical value of y(O.6) is -0.846434.)

6.3: Runge-Kutta Methods 343

Figure 6.2 illustrates the four slope values that are combined in the four k's of the
Runge-Kutta method.

The local error term for the fourth-order Runge-Kutta method is 0(h5); the global error
would be 0(h4). It is computationally more efficient than the modified Euler method
because, although four evaluations of the function are required per step rather than two, the
steps can be manyfold larger for the same accuracy. The Runge-Kutta techniques have
been very popular, especially the fourth-order method just presented. Because going from
second to fourth order was so beneficial, we may wonder whether we should use a still
higher order of formula. Higher-order (fifth, sixth, and so on) Runge-Kutta formulas have
been developed and can be used to advantage in determining a suitable size for h, as we
will see. Still, Runge-Kutta methods of order greater than 4 have the disadvantage that the
number of function evaluations that are required is greater than the order of the method,
while Runge-Kutta methods of order-4 or less require the same number of evaluations as the
order.

One way to determine whether the Runge-Kutta values are sufficiently accurate is to
recompute the value at the end of each interval with the step size halved. If only a slight
change in the value of Y , + ~ occurs, the results are accep1:ed; if not, the step must be halved
again until the results are satisfactory. This procedure is very expensive, however. For

Chapter Six: Numerical Solution of Ordinary Differential Equations

instance, to implement Eq. (6.13) this way, we would need an additional seven function
evaluations to determine the accuracy of our Y , + ~ . The best case then would require 4 +

, 6 = 10 function evaluations to go from (x,, y,J to (x,+~, Y,+~).
A different approach uses two Runge-Kutta methods of different orders. For instance,

we could use one fourth-order and one fifth-order method to move from (x,, y,) to (x,+~,
Y,+~). We would then compare our results at Y , + ~ . The Runge-Kutta-Fehlberg method,
now one of the most popular of these methods, does just this. Only six functional evalua-
tions (versus ten) are required, and we also have an estimate of the error (the difference of
the two y's at x = x,%+~):

Given y' = f(x, y) and y (x,) = y,, to compute y (~ , + ~) = Y , + ~ where x ,+~ = x, + h,
evaluate:

, with global error 0(h4),

with global error 0(h5);

k, 128k3
Error, E = - - - -

360 4275

The basis for the Runge-Kutta-Fehlberg scheme is to compute two Runge-Kutta
estimates for the new value of Y , + ~ but of different orders of errors. Thus, instead of com-
paring estimates of Y , + ~ for h and hl2, we compare the estimates jjn+l and y,,, using
fourth- and fifth-order (global) Runge-Kutta formulas. Moreover, both equations make
use of the same k's, so only six function evaluations are needed versus the previous 11. In

6.3: Runge-Kutta Methods 345

addition, one can increase or decrease h depending on the value of the estimated error. As
our estimate for the new Y,+~, we use the fifth-order (global) estimate.

As an example, we once more solve dyldx - -2x - y, y(0) = - 1 with h = 0.1, using
the Runge-Kutta-Fehlberg method:

9 , = -0.914512212, y, = -0.914512251, Error, E = -0.000000040.

The exact value is y(0.1) = -0.9145 12254. Thus, on the first step, yl agrees with the exact
answer to eight decimal places with only two additional function evaluations. l\/loreover,
we have the value E to adjust our step size for the next iteration. Of course, we would use
the more accurate yn+l for the next step. This algorithin is well documented and imple-
mented in the FORTRAN program, RKF4.5, of Forsylhe, Malcolm, and Moler (1977).
MATLAB has two numerical procedures ode45 and ode23. Maple has r k f 45 in its
arsenal to get the numerical solution to differential equations.

A summary and comparison of the numerical methods we have studied for solving
y' = f(x, y) is presented in Table 6.5.

To see empirically that the global errors of Table 6.5 hold, again consider thl- example
dyldx = -2x - y, y(0) = - 1. Table 6.6 shows how the errors of y(0.4) decrease as h is
halved. The table shows the ratios of errors of successive calculations.

In Table 6.6, we obtain the second row in this way: For a step size of h = 0.2, we com-
pute the errors in the values for y at x = 0.4 using the three methods indicated at the top of
columns two through four. We write down the values of the differences between the com-
puted value and the analytical value. The last three colurnns represent the ratio between the
previous error (larger step size h) and the current. For instance, the 3.3 in the second row is
the ratio of 2.1 1E-0119.10E-2 for the errors from Euler's method for h = 0.4 and h = 0.2.
We do the same for the modified Euler method and the Runge- Kutta fourth-order method
in columns six and seven. We see that as h gets smaller, the last three columns approach the

Table 6.5 -

Method
Global Local E,valuations

Estimate of slope error error per step

Euler Initial value 0(h) 0(h2) 1
Modified Euler Average, initial and final 0(h2) 0(h3) 2
Midpoint Midpoint of interval 0(h2) 0(113) 2
Runge-Kutta (fourth-order) Weighted average, four values 0(h4) 0(h5) 4
Runge-Kutta-Fehlberg Weighted average, six values 0(h5) 0(h6) 6

Chapter Six: Numerical Solution of Ordinary Differential Equations

Error in value
computed at x = 0.4

Ratios of
successive errors

Modified Runge -Kutta
h Euler Euler 4th

Modified Runge- Kutta
Euler Euler 4th

ratios of 2.0, 4.0, and 16.0. This is what we expect, because these three methods are,
respectively, O(h), 0(h2) , and 0(h4) and because at each stage the step size is halved.

We end this section by showing the Runge-Kutta-Merson method, another fourth-
order method even though five different k's must be computed. It can be seen from the
formula that the order is given, not by the number of k's, but by the global error.

1
Error, E = - (2kl - 9k3 + 8k4 - k5).

30

As we have already indicated, there are methods that use Runge-Kutta formulas of orders
5,6, and higher. In fact, the IMSL routine DVERK uses formulas or orders 5 and 6 that were
developed by J. H. Verner. In this case, the method uses eight function evaluations. Maple has
an option in its procedure for solving differential equations that is called dverk7 8.

Although the Runge-Kutta method has been very popular in the past, it has its limita-
tions in solving certain types of differential equations. However, for a large class of
problems the methods presented in this section produce some very stunning results. Also

6.4: Multistep Methods 347

the technique introduced by Fehlberg in comparing two different orders rather than halving
step sizes increases the efficiency of the Runge-Kutta methods.

The methods so far discussed are called single-step methods. They use only the infor-
mation at (x,, y,) to get to (x,,,, Y,,~). In the next sections, we examine methods that uti-
lize past information from previous points to get (x ~ , ~ , Y,+~).

Here is the MATLAB solution to our sample problem through its ode4 5 command,
which uses the RKF method with the step size automatically adjusted. We first. create an
M-file that defines the derivative function:

function dydx = deql (x, y)
dydx = -2*x - y ;

Now we use the 'ode45' command to get the solution between x = 0 and x = 0.6 using the
RKF method:

and MATLAB displays a list of the x-values used in the computations followed by the
corresponding y-values. Though not apparent here, the procedure uses automatic step-size
adjustment. We show only a portion of the whole output; the default of 40 interwals is used.
We show the y-values side by side with the x-values. (The solution is much more accurate
than four digits.)

Runge-Kutta-type methods (which include Euler and inodified Euler as special cases) are
called single-step methods because they use only the information from the laslt step com-
puted. In this, they have the ability to perform the next step with a different stlep size and
are ideal for beginning the solution where only the initial conditions are available. After

Chapter Six: Numerical Solution of Ordinaly Differential Equations

the solution has begun, however, there is additional information available about the func-
tion (and its derivative) if we are wise enough to retain it in the memory of the computer. A
multistep method is one that takes advantage of this fact.

The principle behind a multistep method is to utilize the past values of y andlor y' to
construct a polynomial that approximates the derivative function, and extrapolate this into
the next interval. Most methods use equispaced past values to make the construction of the
polynomial easy. The Adams method is typical." The number of past points that are used
sets the degree of the polynomial and is therefore responsible for the truncation error. The
order of the method is equal to the power of h in the global error term of the formula,
which is also equal to one more than the degree of the polynomial.

To derive the relations for the Adams method, we write the differential equation
dyldx = f(x, y) in the form

dy = f (x, y) dx,

and we integrate between xn and x ~ + ~ :

To integrate the term on the right, we approximate f(x, y) as a polynomial in x, deriving this
by making it fit at several past points. If we use three past points, the approximating poly-
nomial will be a quadratic. If we use four points, it will be a cubic. The more points we use,
the better the accuracy (until round off interferes, of course).

You saw in Chapter 3 how interpolating polynomials can be developed. Mathernatica
can do this for us with its Interpolating Polynomial function. With this, we can
get a quadratic approximation:

Now we again use Mathernatica to integrate between the limits of x = x, and x = x,,,.
The result is a formula for the increment in y:

and we have the formula to advance y:

* This is often called the Adams-Bashford method.

6.4: Multistep Methods 349

Observe that Eq. (6.14) resembles the single-step formulas of the previous sections in that
the increment to y is a weighted sum of the derivatives times the step size, but differs in that
past values are used rather than estimates in the forward direction.

-- .- - -
SXAMPLE 6 .1 We illustrate the use of Eq. (6.14) to calculate y(0.6) for dyldx = -2x - y , y(0) = - 1. We

compute good values for y(0.2) and y(0.4) using a single-step method. In this case we
obtain these values using the Runge-Kutta-Fehlberg method with h = 0.2. Th~ese values
are given in Table 6.7.

Then, from Eq. (6.14), we have

Comparing our result with the exact solution (-0.8464:3), we find that the computed value
has an error of 0.00135. We can reduce the size of the error by doing the calcuLations with
a smaller step size of 0.1. We use the fifth-order values of the Runge-Kutta-Fehlberg
method once again to obtain the values in Table 6.8.

Using Eq. (6.14) again with the values for f(x, y) at x = 0.3, x = 0.4, x = 0.5 from
Table 6.8, we recompute y(0.6):

which has an error of 0.00007.
P =-

A d a m Fou:~h- rder Formula

Equation (6.14) is a third-order formula that uses y-values at three past points, xl1, x n ,, and
xnPz, to estimate Y , % + ~ . Using four past points is equivalent to integrating a cubic interpo-
lating polynomial through four past points. We can use the method of undetermined coef-
ficients to obtain this.

x Y y, analytical f h y)

Chapter Six: Numerical Solution of Ordinary Differential Equations

x Y y, analytical . f (x , ~)

We desire a formula of the form

With four constants, we can make the formula exact when f(x) is any polynomial of degree-3
or less. Accordingly, we replace f(x) successively by x3, x2, x, and 1 to evaluate the coefficients.

It is apparent that the formula must be independent of the actual x-values. To simplify
the equations, let us shift the origin to the point x = xn; our integral is then taken over the
interval from 0 to h, where h = x,+~ - x,:

Carrying out the computations by replacing f(x) with the particular polynomials, we have

h = co(l) + cl(l) + c2(l) + ~ ~ (1) .

The linear system we are to solve is

whose solution is

c0 = -9124, cl = 37124, c2 = -59124, c3 = 55124.

The fourth-order Adams formula is then

6.4: Multistep Methods 3 5 1

Table 6.9

Number of Estimate of Error
points used Y (0.6) (h = 0.1)

3 -0.8463626 0.000072
4 - 0.8464420 0.000007

If we repeat Example 6.1 with this fourth-order formula, taking values at x = 0.2, 0.3,0.4,
and 0.5, we compute:

+ 37(0.22245) - 9(0.45619)]

= -0.84644.

The error of this computation has been reduced to 0.00001. We summarize the results of
these two formulas in Table 6.9.

The Error Term We get the error term for the fourth-order Adams formula by integrating
the error of the cubic interpolating polynomial. This turns out to be

25 1
Error = - h5y(5)([),

720

which is 0(h5) as we have used before.

The Adaws Moulton

An improvement over the Adams method is the Adams-Moulton method. It uses the
Adams method as a predictor formula, then applies a corrector formula, based on con-
structing another cubic interpolating formula through four points -the one obtained with
the predictor formula and three previously computed points. (You may want to use unde-
termined coefficients to confirm this.)

Chapter Six: Numerical Solution of Ordinary Differential Equations

r Corrector:

We illustrate the Adams -Moulton method using our earlier example, dyldx = -2x - y,
y(0) = - 1. Using Eqs. (6.16) and (6.17) we construct Table 6.10. Here is how the entries
in the table were obtained. By the predictor formula of (6.16), we get

Then f(O.4, -0.8109687) is computed, to get 0.0109688, and we use the corrector formula
of Eq. (6.17) to get

The computations are continued in the same manner to get y(0.5). The corrected value
almost agrees to five decimals with the predicted value. Comparing error terms of
Eqs. (6.16) and (6.17) and assuming that the two fifth-derivative values are equal, we see
that the true value should lie between the predicted and corrected values, with the error in
the corrected value being about

times the difference between the predicted and corrected values. A frequently used crite-
rion for accuracy of the Adams-Moulton method with four starting values is that the
corrected value is not in error by more than 1 in the last place if the difference between

0.0 - 1 .ooooooo 1 .ooooooo
0.1 -0.9145122 0.7145123
0.2 -0.8561923 0.4561923
0.3 -0.8224547 0.2224547
0.4 (-0.8109687) predicted

(-0.8109652) corrected (-0.8109601 analytical)
0.5 (-0.8195978) predicted

(-0.8 195905) corrected (-0.8 195920 analytical)

6.4: Multistep Methods 353

predicted and corrected values is less than 14 in the last decimal place. If this degree of
accuracy is not met, we know that h is too large.

Changing the Step Size

When the predicted and corrected values agree to as many decimals as the desired accu-
racy, we can save computational effort by increasing the step size. We can conveniently
double the step size, after we have seven equispaced values, by omitting every second one.
When the difference between predicted and corrected values reaches or exceeds the accu-
racy criterion, we should decrease step size. If we interpolate two additional y-values with
a fourth-degree polynomial, where the error will be 0(ii5), consistent with the rest of our
work, we can readily halve the step size. Convenient formulas for this are

Use of these values with yn, Y , - ~ gives four values of the function at intervals of Ax = hl2.
The efficiency of Adams-Moulton is about twice that of the Runge-Kutta-Fehlberg

and Runge-Kutta methods. Only two function evaluations are needed per step for the for-
mer method, whereas six or four are required with the single-step alternatives. All have
similar error terms. Change of step size with the multistep methods is considerably more
awkward, however.

Stability Corisiderations

In getting the solution to a differential equation, one must always worry whether the
method is stable. In a stable method, early errors (due to the imprecision of the method or
to an initial value that is slightly incorrect) are damped out as the computations proceed;
they do not grow without bound. The opposite is true for an unstable method.

In the discussion of the Euler method in Section 6.2, we showed the conditions for
stability. This was not a simple task. It is easier to see if a method is stable or unstable by
testing it with certain kinds of derivative functions, yl(x) = f (x, y).

Consider this equation:

whose analytical solution is y(x) = 1 - 2 e ~ ~ ~ . The curve for y(x) is smooth, starting at
y = -1, proceeding rapidly upward with a slope of 4, crossing the x-axis at about
x = 0.35, and approaching the asymptote of y = 1 as x increases. By x = 3, the: y-value is
within 0.5% of its limiting values.

Suppose that we use a very simple multistep formula:

Chapter Six: Numerical Solution of Ordinary Differential Equations

which has a truncation error of (1/6)h3y"r(<), smaller than for the simple Euler method,
which is (1/2)h2y"(5), particularly with small values for h.

If we apply Eq. (6.18) to yr = -2y + 2, y(0) = - 1, with an h-value of 0.1 we get the
results in Table 6.1 1. (We need starting values at x = 0 and x = 0.1; these were from the
given y(0) = - 1 and the analytical value at x = 0.1.)

Table 6.11 Results from Eq. (6.18)

Analytical

-0.34064
-0.09762

0.10134
0.26424
0.39761
0.50681
0.59621
0.66940
0.72933
0.77839
0.81856
0.85145
0.87838
0.90043
0.91848
0.93325
0.94535
0.95526
0.96337
0.97001
0.97545
0.97990
0.98354
0.98652
0.98897
0.99097
0.99260
0.99394
0.99504
0.99594
0.99668
0.99728
0.99777
0.99818
0.99851
0.99878
0.99900
0.99918
0.99933

Error

0.00438
0.00183
0.00658
0.00160
0.00790
0.00005
0.00920

-0.00255
0.01 110

-0.00626
0.01420

-0.01 146
0.01918

-0.01880
0.02696

-0.02937
0.03889

-0.04478
0.05692

-0.06745
0.08398

-0.10098
0.12443

-0.15070
0.18474

-0.22457
0.27460

-0.33439
0.40837

-0.49773
0.60747

-0.74071
0.90376

-1.10221
1.34465

- 1.64006
2.00068

-2.44033
2.97682

Re1 error

6.4: Multistep Methods 355

Table 6.12 Results from Simple Euler Method -. - A"--

Analytical Error Re1 error

Observe in Table 6.1 1 that we get good results up to about x = 0.8, but from x = 2 the
computed values are increasingly poor, and as x approaches 4 they are completely useless;
they oscillate widely about the asymptotic value for y.

Compare these with the results from a simple Euler computation, also with h = 0.1, that
are given in Table 6.12. These are much less accurate at small values of x (the magnitudes

Chapter Six: Numerical Solution of Ordinaiy Differential Equations

of the errors from the simple Euler computation between x = 0.2 and x = 0.5 are on the
average nearly 20 times as large).

On the other hand, the Euler results closely resemble the analytical values at larger val-
ues for x and do not show the same oscillations.

The method of Eq. (6.18) is unstable while the Euler method is stable.
There is another unstable method but its instability is less apparent. Milne's method is a

multistep predictor-corrector that uses these equations:

Observe that the error term after correcting has a multiplier that is less than half that of
Adams-Moulton so we should expect very accurate results. However, if we solve the
same equation,

with the formulas of Eq. (6.19), we again observe oscillatory behavior as exhibited in
Table 6.13, but the oscillations are slight and do not appear until about x = 2 and even at
x = 8 they are not large but they are increasing in magnitude.

Of course, this demonstration of instability for Milne's method is not entirely satisfac-
tory. We can do this more theoretically. Consider the differential equation

dyldx = Ay,

where A is a constant. The general solution is y = ceh. Suppose now that y(xo) = yo is the
initial condition; it then follows that the value of c must be c = yoeCAXo. Hence, letting y,
be the value of the function when x = xn, the analytical solution is

y, = yo&(x"-x~).

If we solve the differential equation by the method of Milne, we have, from the correc-
tor formula,

Letting y; = Ay,, from the original differential equation, and rearranging, we get

6.4: Multistep Methods 3 57

Table 6.13 Results with Milne's method
-- ---- -----

x Y Analytical Error lRel error

This a second-order difference equation that has the solution:

yn = c,z; + c,q,
where Z1, Z2 are the roots of the quadratic

which you may check by direct substitution. We can simplify this by letting hA/3 = u; the
roots of the quadratic are then

z, =
2r + 4TFZ

1 - r

What happens if the step size h becomes small? As h -> 0, r + 0, and r2 + 0 even faster.
We then can neglect the 3r2 terms in comparison to 1 under the radical and get, after

Chapter Six: Numerical Solution of Ordinary Differential Equations

dividing the fractions,

We now compare this to the Maclaurin series for the exponential function,

ehA = 1 + hA + 0(h2),

hA
e-hA/3 = 1 - - + 0(h2).

3

We see that, for h + 0,

2, = em, 2 = -,-hA/3.
2

Hence, the Milne solution is represented by

In this, we have used xn - xo = nh. The solution consists of two parts. The first term
obviously agrees with the analytical solution. The second term, called a parasitic term,
will die out as x, increases if A is a positive constant, but if A is negative, it will grow expo-
nentially with xn. Note that we get this peculiar behavior independent of h; smaller step
size is of no benefit in eliminating the error.

The analysis of Milne's method shows that the instability comes from the corrector equa-
tion. Hamming describes a way to avoid this instability while still using the Milne predic-
tor with its simplicity. Hammings equations are

Predictor:

which is first modified as

and the modified value is used in the corrector:

6.5: Higher-Order Equations and Systems 359

The error of this method is not as small as with Milne, but it is a little better than
Adam -Moulton.

In the opening portion of this chapter, we pointed out that Newton's law of motion, f = m * a,
is a differential equation with a being the acceleration, the rate of change of velocity with
time. Velocity is itself the derivative of distance with time, dxldt. So, f = ma is really

a second-order differential equation.
We can solve this equation numerically by changing it into a pair of first-order equa-

tions. We rearrange the equation to put the derivative on the left

d2xldt2 = f lm,

and then, by letting dxldt = y, a new variable, we have

dxldt = y,

dyldt = d2xldt2 = flm.

To solve the original second-order equation for x as a function of time, we need two initial
conditions, the starting position, xo, and the starting velocity, xb. So, the equation for dxldt
begins with x = xo, and that for dyldt begins with y = yo = x;.

Here is another example, a variation on the familiar spring-mass problem. Figure 6.3
shows our system. Mass 1 is a block that rolls along a horizontal surface and whose motion
is controlled by the linear spring whose spring constant is k l . The second mass, m2, is a
wheel of radius r2 that rolls on the top of mass 1 and is attached to another spring whose
spring constant is k2. The equations of motion for this system are:

I -Mass =m2$
Radius = r2

) "

Chapter Six: Numerical Solution of Ordinary Differential Equations

These equations make up a system of two second-order equations. To solve this prob-
lem numerically, we reduce to a system of four first-order equations by substituting dyldt
for d2x11dt2 and dzldt for d2x21dt2. YOU should write out these for equations for practice.
What are the four initial conditions?

It is clear that all we need to do to solve higher-order equations, even a system of higher-
order initial-value problems, is to reduce them to a system of first-order equations. We
illustrate how a system of first-order problems can be solved with a pair of equations
whose solution at t = 0.1 is x = 0.913936, y = -0.909217.

Taylor-Senes "\i

We need the various derivatives x', x", x"', . . . , y', y", y "', . . . , all evaluated at t = 0:

x' = xy + t, x'(0) = (I) (- 1) + 0 = - 1

y' = ty + X , y'(0) = (O)(-1) + 1 = 1,

x" = xy' + x'y + 1, xl'(0) = (l) (l) + (- I) (- 1) + 1 = 3,

yl' = y + ty' + x', y"(0) = -1 + (0)(1) - 1 = -2,

xl,' = x'y' + xy" + X'y + x'y', xU'(0) = -7,

y"'= y' + y' + ty" y"'(0) = 5,

and so on; and so on;

At t = 0.1, x = 0.9139 and y = -0.9092.
Equations (6.21) are the solution to the set (6.20). Note that we need to alternate

between the functions in getting the derivatives; for example, we cannot get x"(0) until
y'(0) is known; we cannot get y"'(0) until d'(0) is known. After we have obtained the coef-
ficients of the Taylor-series expansions in Eq. (6.21), we can evaluate x and y at any value
oft, but the error will depend on how many terms we employ.

6.5: Higher-Order Equations and Systems 36 1

Euler Predictor - Corrector Method (Modifie

We apply the predictor to each equation; then the comxtor can be used. Again, note that
we work alternately with the two functions.

Take h = 0.1. Let p and c subscripts indicate predicted and correct~zd values,
respectively:

In computing xc(O.l), we used the xp and yp. In computing yc (0.1) after x,(O. 1) is known,
we have a choice between xp and xc. There is an intuitive feel that one should use x,, with the
idea that one should always use the best available values. This does not always expedite
convergence, probably due to compensating errors. Here we have used the best values to
date. If we use the corrected values to recompute the value of the derivatives at h = 0.1, we
can obtain better values. Doing so gives

but this is not as efficient as using a more powerful method. We can now advance the solu-
tion another step if desired, by using the computed values at t = 0.1 as the stanting values.
From this point, we can advance one more step, and so on for any value oft . The errors will
be the combination of local truncation error at each step plus the propagated emor resulting
from the use of inexact starting values.

Runge - Mutta - Fehlberg

Again there is an alternation between the x and y calculations. In applying this method, one
always uses the previous k-value in incrementing the f~unction values and the value of h to
increment the independent variable. As in the previous calculations, we alternate
between computations for x and for y; for example, we do kl,x, then k l , y , before doing k2,x,
and so on.

Keeping in mind that the equations are

Chapter Six: Numerical Solution of Ordinary Differential Equations

the k-values for x and y are

for x:

kl,x = hf(O, 1, - 1)

= O.l[(l)(- 1) + 01

= -0.1;

k,,, = hf(0.025, 0.975, -0.975)

= 0.1 [(0.975)(-0.975) + 0.0251

= -0.092562;

k,,, = hf(0.038,0.965, -0.964)

= 0.1[(0.965)(-0.964) + 0.0381

= -0.089226;

k4,x = hf(0.092, 0.919, -0.915)

= 0.1[(0.919)(-0.915) + 0.0921

= -0.074892;

k,,, = hf(0.1,0.913, -0.908)

= 0.1[(0.913)(-0.908) + 0.11

= -0.072904;

k,, = hf(0.05,0.954, -0.953)

= 0.1 [(0.954)(-0.953) + 0.051

= -0.085868.

Then, using the fifth-order formula, we get

for y:

kl,y = hg(0, 1, - 1)

= 0.1 [(O) (- 1) + 11
= 0.1;

k2,y = hg(0.025, 0.975, -0.975)

= 0.1[(0.025)(-0.975) + 0.9751

= 0.095062;

k,,y = hg(0.038, 0.965, -0.964)

= 0.1 [(0.038)(-0.964) + 0.9651

= 0.092845;

k,, = hg(0.092, 0.919, -0.915)

= 0.1[(0.092)(-0.915) + 0.9191

= 0.083461;

k,,y = hg(O.l,0.913, -0.908)

= 0.1 [(O. I)(-0.908) + 0.9131

= 0.082178;

k,,y = hg(0.05, 0.954, -0.953)

= 0.1 [(0.05)(-0.953) + 0.9541

= 0.090628.

Extending the Taylor-series solution even further shows that the Runge-Kutta-Fehlberg
values are correct to more than five decimals, whereas the modified Euler values are
correct to only three, so h = 0.1 may be too large for that method.

Advancing the solution by the Runge-Kutta-Fehlberg method will again involve using
the computed values of x and y as the initial values for another step. The errors here will be
much less than those for the Euler predictor-corrector method.

6.5: Higher-Order Equations and Systems 363

Table 6.1

Starting
values

Predicted
Corrected

After getting four starting values, we proceed with the algorithm of Eqs. (6.16) and (6.17),
again alternately computing x and then y (see Table 6.14.)

In the computations we first get predicted values of :c and y:

After getting x' and y' at t = 0.1, using x(0.1) and y(0. l), we then correct:

The close agreement of predicted and corrected values indicates six-decimal-place
accuracy.

In this method, as we advance the solution to larger values oft, the comparison between
predictor and corrector values tells us whether the step size needs to be changed.

Our computer algebra systems have no trouble in solving a system of first-order equations.
Here is how Maple can solve the same problem that we have used to illustrate the methods:

>deqs : = { ~ (x) (t) = x (t) * y (t) + t , D (y) (t) = t * y (t) + x (t) } :

> i n i t s : = (~ (0) = 1, y (0) = -1):
> so ln : = dsolve (degs union i n i t s , {x (t) , y (t)) , numeric,

Chapter Six: Numerical Solution of Ordinary Differential Equations

output=array([O, 0.1, 0.2, 0.3, 0.41));

Kt, x(t) y(t)l
0 1. -1.

.1 .91393569117289 -.90921691879919

soh: = .2 .85218609746503 -.83408937511807

.3 .81063353106742 -.77109331990007

. 4 .78634968913429 -.71735810231063

Here, we asked for the solution at x-values between 0 and 0.4 in steps of 0.1
are given in tabular form. MATLAB and Mathernatica can do so similarly.

and the results

Some initial value problems pose significant difficulties for their numerical solution.
Acton points out several kinds of such difficulties-one of his examples is Bessel's
equation:

y " + y 1 l x + y = 0 , y (0)=1 , y t (0)=O.

There is a singularity at the origin, but this is surmounted by the initial value for y (y = O),
so that one can replace the equation at x = 0 and get a starting value with

2y" + y = 0.

There are other difficult situations: The equation may change its form at certain critical
points, or it may have a sharp narrow peak that will be missed if too large an interval is used.

One particular difficult case is one that we now discuss-stiff difSerentia1 equations.
The word stiff comes from an analogy to a spring system where the natural frequency of
vibration is very great if the spring constant is large.

When the solution to a differential equation (say, of second order) has a general solution
that involves the sum or difference of terms of the form aeCt and bedt where both c and dare
negative but c is much smaller than d, the numerical solution can be very unstable even
with a very small step size.

An example is the following:

x' = 1195x - 1995y, x(0) = 2,

y' = 1197x - 1997y, y(0) = -2.

The analytical solution of Eq. (6.22) is

x(t) = loe-2t - ge-800t -y(t) = be-Zt - 8,-800t

Observe that the exponents are all negative and of very different magnitude, qualifying this
as a stiff equation. Suppose we solve Eq. (6.22) by the simple Euler method with h = 0.1,
applying just one step. The iterations are

= xi + hf(x, yi) = xi + 0.1(1195xi - 1995yi),

yi+ 1 = yi + hg(x,, yi) = yi + 0.1(1197~, - 1 9 9 7 ~ ~) .

6.6: Stiff Equations 3 65

This gives x(0.1) = 640, y(0.1) = 636, while the analytical values are x(O.1) = 8.1 87
and y(0.1) = 4.912. Such a result is typical (although here exaggerated) for stiff
equations.

One solution to this problem is to use an implicit method rather than an explicit one. All
the methods so far discussed have been explicit, meaning that new values, xi+l and yi+l,
are computed in terms of previous values, xi and yi. An implicit method computes the
increment only with the new (unknown) values. Suppose that

x' = f(x, y) and y' = g(x, y).

The implicit form of the Euler method is

If the derivative functions f(x, y) and g(x, y) are nonlinear, this is difficult to solve.
However, in Eq. (6.22) they are linear. Solving Eq. (6.2%) by use of Eq. (6.23) we have

The system is linear, so we can write

which has the solution x(0.1) = 8.23, y (0.1) = 4.90, reasonably close to the analytical values.
In summary, our results for the solution of Eq. (6.22) are

Analytical 8.19 4.91
Euler

Explicit 640 636
Implicit 8.23 4.90

If the step size is very small, we can get good results from the simpler Euler after the
first step. With h = 0.0001, the table of results becomes

Analytical 2.61 -1.39
Euler

Explicit 2.64 -1.36
Implicit 2.60 -1.41

but this would require 1000 steps to reach t = 0.1, and round-off errors would be large.

Chapter Six: Numerical Solution of Ordinary Differential Equations

If we anticipate some material from Section 6.8, we can give a better description of
stiffness as well as indicate the derivation of the general solution to Eq. (6.22). We rewrite
Eq. (6.22) in matrix form:

The general solution, in matrix form, is

where

vI = [:] and v2 = [:I.
You can easily verify that Avl = -2vl and Av2 = -800v2. This means that vl is an eigen-
vector of A and that -2 is the corresponding eigenvalue. Similarly, v2 is an eigenvector of
A with the corresponding eigenvalue of -800. (In Section 6.8, you will learn additional
methods to find the eigenvectors and eigenvalues of a matrix.)

A stiff equation can be defined in terms of the eigenvalues of the matrix A that repre-
sents the right-hand sides of the system of differential equations. When the eigenvalues of
A have real parts that are negative and differ widely in magnitude as in this example, the
system is stiff. In the case of a nonlinear system

one must consider the Jacobian matrix whose terms are dJ;:/dxj See Gear (1971) for more
information.

As we have seen, a second-order differential equation (or a pair of first-order problems)
must have two conditions for its numerical solution. Up until now, we have considered that
both of these conditions are given at the start-these are initial-value problems. That is not
always the case; the given conditions may be at different points, usually at the endpoints of
the region of interest. For equations of order higher than two, more than two conditions are
required and these also may be at different x-values. We consider now how such problems
can be solved.

Here is an example that describes the temperature distribution within a rod of uniform
cross section that conducts heat from one end to the other. Look at Figure 6.4. By concen-
trating our attention on an element of the rod of length dx located at a distance x from the
left end, we can derive the equation that determines the temperature, u, at any point along

6.5': Boundary-Value Problems 367

Figure 6.4

the rod. The rod is perfectly insulated around its outer circumference so that heat
flows only laterally along the rod. It is well known that heat flows at a rate (measured in
calories per second) proportional to the cross-sectional area (A), to a property of the mate-
rial [k, its thermal conductivity, measured in cal/(sec * an2 * ("Clem))], and to the temper-
ature gradient, duldx (measured in "Clem), at point x. \We use u(x) for the temperature at
point x, with x measured from the left end of the rod. Thus, the rate of flow of heat into the
element (at x = x) is

The minus sign is required because duldx expresses how rapidly temperatures increase
with x, while the heat always flows from high temperature to low.

The rate at which heat leaves the element is given by a similar equation, but now the
temperature gradient must be at the point x + dx:

in which the gradient term is the gradient at x plus the change in the gradient between x and
x + dx.

Unless heat is being added to the element (or withdrawn by some means), the rate that
heat flows from the element must equal the rate that heat enters, or else the temperature of
the element will vary with time. In this chapter, we consider only the case of steady-state
or equilibrium temperatures, so we can equate the rates of heat entering and leaving the
element:

When some common terms on each side of the equation are canceled, we get the very sim-
ple relation

where we have written the second derivative in its usual! form. For this particularly simple
example, the equation for u as a function of x is the solution to

Chapter Six: Numerical Solution of Ordinary Differential Equations

and this is obviously just

a linear relation. This means that the temperatures vary linearly from TL to TR as x goes
from 0 to L.

The rod could also lose heat from the outer surface of the element. If this is Q (call
(sec * cm2)), the rate of heat flow in must equal the rate leaving the element by conduction
along the rod plus the rate at which heat is lost from the surface. This means that:

where p is the perimeter at point x. (Q might also depend on the difference in temperature
within the element and the temperature of the surroundings, but we will ignore that for
now.)

If this equation is expanded and common terms are canceled, we get a somewhat more
complicated equation whose solution is not obvious:

In Eq. (6.24), Q can be a function of x.
The situation may not be quite as simple as this. The cross section could vary along the

rod, or k could be a function of x (some kind of composite of materials, possibly). Suppose
first that only the cross section varies with x. We will have, then, for the rate of heat leav-
ing the element

-k[A + A' dx] - + u"dx , [: I
where we have used a prime notation for derivatives with respect to x. Equating the rates in
and out as before and canceling common terms results in

Mu" dx + kAru' dx + kAfu" dx2 = Qp dx.

We can simplify this further by dropping the term with dx2 because it goes to zero faster
than the terms in dx. After also dividing out dx, this results in a second-order differential
equation similar in form to some we have discussed in Section 6.5:

kAuf' + kAru' = Qp. (6.25)

The equation can be generalized even more if k also varies along the rod. We leave to the
reader as an exercise to show that this results in

Mu" + (kAf + krA)u' = Qp.

If the rate of heat loss from the outer surface is proportional to the difference in tempera-
tures between that within the element and the surroundings (u,), (and this is a common sit-
uation), we must substitute for Q:

6.7: Boundary-Value Problems 3 69

giving

kAu" + (kA' + k'A)ur - q " pu = -q * pus. 0 2 /)

This chapter will discuss two ways to solve equations like Eqs. (6.24) to (6.27).
Heat flow has been used in this section as the physical situation that is modeled, but

equations of the same form apply to diffusion, certain types of fluid flow, torsion in objects
subject to twisting, distribution of voltage, in fact, to any problem where the potential is
proportional to the gradient.

The Shooting Method

We can rewrite Eq. (6.27) as

where the coefficients, A, B, C, and D are functions of x. (Actually, they could a190 be func-
tions of both x and u, but that makes the problem more difficult to solve. In a temperature-
distribution problem, such nonlinearity can be caused if the thermal conductivit~i k, is con-
sidered to vary with the temperature, u. That is actually true for almost all materials but, as
the variation is usually small, it is often neglected and an average value is used.)

To solve Eq. (6.28), we must know two conditions on u or its derivative. If both u and M'
are specified at some starting value for x, the problem is an initial-value prob6em. In this
section, we consider Eq. (6.28) to have two values of u to be given but these are at two dif-
ferent values for x-this makes it a boundary-value problem. In this section, we discuss
how the same procedures that apply to an initial-value problem can be adapted.

The strategy is simple: Suppose we know u at x = a (the beginning of a region of inter-
est) and u at x = b (the end of the region). We wish we knew u' at x = a; that would make
it an initial-value problem. So, why not assume a value for this? Some general Icnowledge
of the situation may indicate a reasonable guess. Or we could blindly select some value.
The test of the accuracy of the guess is to see if we get the specified u(b) by solving the
problem over the interval x = a to x = b. If the initial slope that we assumed is too large,
we will often find that the computed value for u(b) is too large. So, we try again with a
smaller initial slope. If the new value for u(b) is too small, we have bracketed the correct
initial slope. This method is called the shooting method because of its resemblance to the
problem faced by an artillery officer who is trying to hit a distant target. The right elevation
of the gun can be found if two shots are made of which one is short of the target and the
other is beyond. That means that an intermediate elevation will come closer.

--- -- ---- -

EXAMPLE 6 . 2 Solve

(This is an instance of Eq. (6.28) with A = 1, B = 0, C = -(1 - x/5), and D = x.)
Assume that u'(1) = -1.5 (which might be a reasonable guess, because u declines

Chapter Six: Numerical Solution of Ordinary Differential Equations

Assume
u'(1) = -1.5

Assume Assume
~ ' (1) = -3.0 ~ ' (1) = -3.4950

between x = 1 and x = 3; this number is the average slope over the interval). If we use a
program that implements the Runge-Kutta-Fehlberg method, we get the values shown in
the first part of Table 6.15.
--%-

Because the value for u(3) is 4.7876 rather than the desired - 1, we try again with a differ-
ent initial slope, say ul(l) = -3.0, and get the middle part of Table 6.15. The resulting
value for 4 3) is still too high: 0.4360 rather than - 1. We could guess at a third trial for
ul(l), but let us interpolate linearly between the first two trials." Doing so suggests a value
for ul(l) of -3.4950. Lo and behold, we get the correct answer for u(3)! These results are
shown in the third part of Table 6.15.

It was not just by chance that we got the correct solution by interpolating from the first
two trials. The problem is linear and for linear equations this will always be true. Except
for truncation and round-off errors, the exact solution to a linear boundary-value problem
by the shooting method is a linear combination of two trial solutions:

Suppose that xl(t) and xz(t) are two trial solutions of a boundary-value problem

x" + Fx' + Gx = H, x(tO) = A, x(tf) = B

(where F, G, and H are functions of t only) and both trial solutions begin at the correct
value of x(to).

We then state that

* If G = guess, and R = result: DR = desired result: G3 = G2 + (DR - R2)(G1 - G2)/(R1 - R2)

6.7: Boundary-Value Problems 37 1

is also a solution. We show that this is true, because, since .xl and x2 are solutions, it follows that

x; + Fx; + Gxl = H, and x$ t Fxi + Gx2 = H.

If we substitute y into the original equations, with

we get

which shows that y is also a solution that begins at the correct value for x(to). The implica-
tion of this is that, if cl and c2 are chosen so that y(tf) -= x(tf) = B, y(t) is the correct solu-
tion to the boundary-value problem.

It must also be true that yt(to) is the correct initial slope and that one can interpolate
between every pair of computed values to get correct values for y(x) at intermediate points.

This next example shows that we cannot get the correct solution so readily when the
problem is nonlinear:

EXAMPLE 6.3 Solve

This resembles Example 6.2 but observe that the coefficient of u' involves u, the dependent
variable. This problem is nonlinear and we shall see that it is not as easy to solve. If we
again use the Runge-Kutta-Fehlberg method, we get the results summarized in
Table 6.16. Here the third trial, which used the interpolated value from the first two trials,

Table 6.16

Assumed value Calculated value
for u t (l) for u(3)

': Interpolated from two previous values

Chapter Six: Numerical Solution of Ordinary Differential Equations

does not give the correct solution. A nonlinear problem requires a kind of search operation.
We could interpolate with a quadratic from the results of three trials, an adaptation of
Muller's method. Table 6.17 gives the computed values for u(x) between x = 1 and x = 3
with the final (good) estimate of the initial slope.

The shooting method is often quite laborious, especially with problems of fourth or
higher order. With these, the necessity of assuming two or more conditions at the starting
point (and matching with the same number of conditions at the end) is slow and tedious.

There are times when it is better to compute "backwards" from x = b to x = a. For exam-
ple, if u(b) and u1(a) are the known boundary values, the technique just described works best if
we compute from x = b to x = a. Another time that computing backwards would be preferred
is in a fourth-order problem where three conditions are given at x = b and only one at x = a.

Maple's dsolve command works with boundary-value problems. Here is how it can
solve Example 6.3.

> d e 2 : = d i f f (u (x) , x $ 2) - (1 - x / 5) * u (x) *diff (u (x) x) = x:

> F : = d s o l v e ({ d e 2 , u (1) = 2 , u (3) = -I}, u (x) , n u m e r i c) ;

F : = proc (bvp-x . . . e n d p r o c

> F (l) ; F (2) ; F (3) ;
x = 1. , u (X I = 2 . , a/ax u (x) = - 2 . 0 1 6 0 7 4 2 9 5 2 1 3 9 0 0 1 4

x = 2 . , u (x) = - . 4 2 7 1 7 6 1 6 3 1 7 7 4 4 9 1 0 8 , d/dx u (x) =

- 1 . 9 4 7 2 3 0 2 0 1 6 5 8 4 3 6 8 6

= 3 . , (x) = -1. o o 0 0 o o o o o o o o o o o 2 2 , a/ax U (X) =

. 7 9 0 9 1 0 2 5 4 5 3 7 5 3 0 2 7 7

> F (1 . 4) ; F (2 . 6) ;

= 1 . 4 , U (X) = 1 . 0 4 5 9 4 6 0 3 8 3 8 3 1 1 9 6 2 , a/ax U ~ X) =

- 2 . 6 4 3 7 6 8 4 7 1 3 8 3 2 4 1 0 0

x = 2 . 6 , u (x) = - 1 . 1 0 2 2 1 3 3 3 6 6 4 7 9 7 7 6 0 , d/dx u (x) =

- . 2 8 4 8 1 8 2 3 9 5 4 5 4 5 3 1 0 0

6.7: Boundary-Value Problems 373

In this, we first defined the second-order equation, then used the dsolve command to get
the solution, F, (a "procedure" that is not spelled out). When we asked for values of the
solution at x = 1, 2, 3, 1.4, and 2.6, Maple displayed ~+esults that match to Table 6.17 but
with many more digits of precision.

-
There is another way to solve boundary-value problems like Example 6.2. We have seen in
Chapter 5 that derivatives can be approximated by finite-difference quotients. If we replace
the derivatives in a differential equation by such expressions, we convert it into a difference
equation whose solution is an approximation to the solution of the differential equation. This
method is sometimes preferred over the shooting method, but it really can be used only with
linear equations. (If the differential equation is nonlinear, this technique leads to a set of non-
linear equations that are more difficult to solve. Solving such a set of nonlinear equations is
best done by iteration, starting with some initial approximation to the solution vector.)

TX A MPI,E 6.4 Solve the boundary-value problem of Example 6.2 but use a set of equations obtained by
replacing the derivative with a central difference approximation. Divide the region into
four equal subintervals and solve the equations, then divide into ten subintervals. Compare
both of these solutions to the results of Example 6.2.

When the interval from x = 1 to x = 3 is subdivided into four subintervals, there are
interior points (these are usually called nodes) at x = I .5,2.0, and 2.5. Label the nodes as
xl, x,, and x3. The endpoints are xo and x4. We write the difference equation at the three
interior nodes. The equation, LL" - (1 - x15)u = x, u(1) = 2, 4 3) = - 1, becomes

These equations are all of the form:

which can be rearranged into:

Substitute h = 0.5, substitute the x-values at the nodes, and substitute the u-values at the
endpoints and arrange in matrix form, which gives

Chapter Six: Numerical Solution of Ordinary Diffcrcntial Equations

Observe that the system is tridiagonal and that this will always be true even when there are
many more nodes, because any derivative of u involves only points to the left, to the right,
and the central point.

When this system is solved, we get

xl = 0.552, x2 = -0.424 and x3 = -0.964.

If we solve the problem again but with ten subintervals (h = 0.2), we must solve a system
of nine equations, because there are nine interior nodes where the value of u is unknown.
The answers, together with the results from the shooting method for comparison, are

Values from the Values from the
finite-difference shooting

x method method

There is quite close agreement. It is difficult to say from this which method is more accu-
rate because both are subject to error. We can compare the methods and determine how
making the number of subintervals greater increases the accuracy by examining the results
for a problem with a known analytical answer.

-- - --- - -
YXAWBPILE 6.5 Compare the accuracy of the finite-difference method with the shooting method on this

second-order boundary-value problem:

whose analytical solution is u = sinh(x).
When the problem is solved by finite-difference approximations to the derivatives, the

typical equation is

Solving with h = 1, h = 0.5, and h = 0.25, we get the values in Table 6.18. If we solve this
with the shooting method (employing Runge-Kutta-Fehlberg), we get Table 6.19.

6.5': Boundary-Value Problems 3 7 5

Solutions with the finite-difference method

u-values with
--

x 2 subintervals 4 subintervals 8 subintervals

1.25
1 S O
1.75
2.00
2.25
2.50
2.75

error at
x = 2.00

In both tables, the errors at x = 2.0 are shown. This is nearly the maximum error of any
of the results.

When the results from the two methods are compared, it is clear that (1) the shooting
method is much more accurate at the same number of subintervals, its errors being from 80
to over 500 times smaller; and (2) the errors for the finite-difference method decrease
about four times when the number of subintervals is doubled, which is as expected.

The reader should make a similar comparison for oth~er equations.

The conditions at the boundary often involve the derivative of the dependent variable in
addition to its value. A hot object loses heat to its surroundings proportional to the

Solutions with the shooting method

u-values with

x 2 subintervals 4 subintervals 8 subintervals

1.25
1.50
1.75
2.00
2.25
2.50
2.75

error at
x = 2.00

Chapter Six: Numerical Solution of Ordinary Differential Equations

Figure 6.5

difference between the temperature at the surface of the object and the temperature of the
surroundings. The proportionality constant is called the heat-transfer coeficient and is
frequently represented by the symbol h. (This can cause confusion because we use h for
the size of a subinterval. To avoid this conf~~sion, we shall use a capital letter, H, for the
heat-transfer coefficient.) The units of H are c a l / s e c l ~ m ~ / ~ ~ (of temperature difference).
In this section we consider a rod that loses heat to the surroundings from one or both ends.
Of course, heat could be gained from the surroundings if the surroundings are hotter than
the rod.

Names have been given to the various types of boundary conditions. If the value for u is
specified at a boundary, it is called a Dirichlet condition. This is the type of problem that
we have solved before. If the condition is the value of the derivative of u, it is a Neumann
condition. When a boundary condition involves both u and its derivative, it is called a
mixed condition.

We now develop the relations when heat is lost from the ends of a rod that conducts heat
along the rod but is insulated around its perimeter so that no heat is lost from its lateral sur-
face. First consider the right end of the rod and assume that heat is being lost to the sur-
roundings (implying that the surface is hotter than the surroundings). Figure 6.5 will help
to visualize this. At the right end of the rod (x = xR), the temperature is uR; the temperature
of the surroundings is uSR Heat then is being lost from the rod to the surroundings at a rate
[measured in (callsec)] of

where A is the area of the end of the rod. This heat must be supplied by heat flowing from
inside the rod to the surface, which is at the rate of

where the minus sign is required because heat flows from high to low temperature.
Equating these two rates and solving for duldx (the gradient) gives (the A's cancel):

du
- dx = - () (u R - u s) at the right end.

Now consider the left end of the rod, at x = 0, where u = uL. Assume that the temperature
of the surroundings here are at some other temperature, uSL Here, heat is flowing from
right to left, so we have

Heat leaving the rod: - HA(uL - usL).

6.7: BoundaryValue Problems 377

For the rate at which heat flows from inside the rod we still have

and, after equating and solving for the gradient:

The fact that the signs in the equations for the gradients are not the same can be a source of
confusion. Of course, if both ends lose heat to the surroundings, the equilibrium or steady-
state temperatures of the rod will just be a linear relation between the two (possibly differ-
ent) surrounding temperatures. In practical situations of heat distribution in a rod, only one
end of the rod loses (or gains) heat to (from) the surroundings, the other end being held at
some constant temperature.

A minor problem is presented in the cases under consideration. We need to give consid-
eration to how to approximate the gradient at the end of the rod. One could use a forward
difference approximation (at the right end, a backward difference at the left), but lihat seems
inappropriate when central differences are used to approximate the derivatives within the
rod. This conflict can be resolved if we imagine that the rod is fictitiously extended by
one subinterval at the end of the rod that is losing heat. Doing so permits us to approximate
the derivative with a central difference. The "temperature" at this fictitious point is elimi-
nated by using the equation for the gradient. The next example will clarify this.

EXAMPLE 6 .6 An insulated rod is 20 cm long and is of uniform cross section. It has its right end held at
100" while its left end loses heat to the surroundings, which are at 20". The rod lhas a ther-
mal conductivity, k, of 0.52 caU(sec * cm * "C), and the heat-transfer coefficient, H, is
0.073 cal/(sec/cm2/"~). Solve for the steady-state temperatures using the finite-difference
method with eight subintervals.

For this example, because the boundary condition at the left end involves both the LL-
value at the left end and the derivative there, this example has a mixed condition at the left
end, whereas it has a Dirichlet condition at the right end.

The equation that applies is Eq. (6.24) with Q = 0, because no heat is added at points
along the rod:

The typical equation is

and this applies at each node. At the left end we imagine a fictitious point at x- ,, and this
allows us to write the equation for that node. At the left endpoint, at x = xo, we write an
equation for the gradient:

Chapter Six: Numerical Solution of Ordinary Differential Equations

which we use to eliminate u p I:

We will use this last for the equation written at xO, to give, at that point:

which is the first equation of the set. Here is the augmented matrix for the problem:

for which the solution is

ui: 41.0103 48.3840 55.7577 63.1314 70.5051 77.8789 85.2526 92.6263 (100)

Observe that the gradient all along the rod is a constant (2.94948"CIcm).

Here is another example that illustrates an important point about derivative boundary
conditions.

EXAMPLE 6.7 Solve u" = u, uf(l) = 1.17520, u1(3) = 10.01787, with the finite-difference method.
This example is identical to that of Example 6.5, except that the boundary conditions

are the derivatives of u rather than the values of u. (It has Neumann conditions at both

6.7: Boundary-Value Problem:$ 379

ends.) For this problem, the known solution is u = cosh(x) + C, and the boundary values
are values of sinh(1) and sinh(3).

Because the values of u are not given at either end of the interval, we must add fictitious
points at both ends; call these uLF and uRF With four subintervals, (h = 214 = OS), we can
write five equations (at each of the three interior nodes plus the two endpoints where u is
unknown). We label the nodes from xo (at the left end) to x4 (at the right end). Each equa-
tion is of the form:

~ - ~ - 2 u ~ + u ~ + ~ = h ~ u ~ , i = 0 , 1 7 2 , 3 , 4 , h2=0.25,

where u_l and u5 are the fictitious points uLF and uRp
Doing so gives this augmented matrix:

-
-2.25 1 0 0 0 -ULI

1 -2.25 1 0 0 0

0 1 -2.25 1 0 0

0 0 1 -2.25 1 0

0 0 0 1 -2.25 -uR, -
There are two more unknowns in this than equations: the unknown fictitious points.
However, these can be eliminated by using the derivative conditions at the ends. As before,
we use central difference approximation to the derivative:

which we solve for the fictitious points in terms of nod,d points:

uLF = u1 - 1.17520, uRF = 10.01787 + u3.

Substituting these relations for the fictitious points changes the first and last. equations
to

- 2 . 2 5 ~ ~ + 2ul = 1.17520,

2u3 - 2 . 2 5 ~ ~ = - 10.01787.

When the five equations are solved, we get these answers:

x Answers cosh(x) Error

Chapter Six: Numerical Solution of Ordinary Differential Equations

We observe that the accuracy is much poorer than it was in Example 6.5. Take note of the
fact that the numerical solution is not identical to the analytical solution; the arbitrary con-
stant is missing (or, we may say, is equal to zero).

We can solve boundary-value problems where the derivative is involved at one or both end
conditions by "shooting." In fact, as this method computes both the dependent variable and
its derivative, this is quite natural. Here is how Example 6.7 can be solved by the shooting
method.

E X A M P L E 6.8 Solve u" = u, ul(l) = 1.17520, u1(3) = 10.01787 by the shooting method.
We can begin at either end, but it seems more natural to begin from x = 1. To begin the

solution, we must guess at a value for u(l)-not for the derivative as we have been doing.
From this point, we compute values for u and u' by, say, RKF. If the value of u1(3) is not
10.01787, we try again with a guess for u(1). This will probably not give the correct value
for u1(3), but, because the problem is linear, we can interpolate to find the proper value to
use for u(1). Here are the answers when four subintervals are used:

The results are surprisingly accurate even though the subdivision was coarse; the largest
error in the u(x) values is 0.0001 1 at x = 1 and the errors are less as x increases. For this
example, the shooting method is much more accurate than using finite-difference approxi-
mations to the derivative.

Here is an example that has a mixed end condition.

E X A M P L E 6.9 Solve Example 6.6 by the shooting method. We restate the problem:
An insulated rod is 20 cm long and is of uniform cross section. It has its right end held

at 100" while its left end loses heat to the surroundings, which are at 20'. The rod has a
thermal conductivity, k, of 0.52 cal/(sec * cm * "C), and the heat-transfer coefficient, H, is
0.073 cal/(sec * cm2 * "C). Use the shooting method with eight subintervals.

The procedure here is similar to that used in Example 6.8 but it is necessary to begin at
the right end and solve "backwards." (That is no problem; we just use a negative value for
Ax.) Beginning at x = 0 would be very difficult because we would have to guess at both
u(0) and ul(0).

6.8: Characteristic-Value Problems 3 8 1

Finding the correct value for u' at x = 20 is not as easy as in the previous example
because we must fit to a combination of u(0) and ~ ' (0) . Here are the results after finding
the correct value for ur(20) by a trial and error technique.

(The gradient here is 2.94975 throughout.) These value,^ match those of Example 6.6 very
closely.

--*-=

We note that Maple can solve a boundary-value problem with an end condition that
involves the derivative.

Problems in the fields of elasticity and vibration (including applications of the wave equa-
tion of modern physics) fall into a special class of boundary-value problems known as
characteristic-value problems. Some problems of statistics also fall into this class. We dis-
cuss only the most elementary forms of characteristic-value problems.

Consider the homogeneous* second-order equation with homogeneous boundary
conditions:

where k2 is a parameter. (Using k2 guarantees that the parameter is a positive number.) We
first solve this equation nonnumerically to show that lhere is a solution only for certain
particular or "characteristic" values of the parameter. These characteristic values are more
often called the eigenvalues from the German word. The general solution is

which can easily be verified by substituting into the differential equation. The solution
contains the two arbitrary constants a and b because thle equation is of second order. The
constants a and b are to be determined to make the general solution agree with the bound-
ary conditions.

At x = 0, u = 0 = a sin(0) + b cos(0) = b. Then b must be zero. At x = 11, u = 0 =

a sin(k); we may have either a = 0 or sin(k) = 0 to satisfy the end condition. However, if
a = 0, y is everywhere zero-this is called the trivial solution, and is usually of no inter-
est. To get a useful solution, we must choose sin(k) == 0, which is true only for certain
"characteristic" values:

* Homogeneous here means that all terms in the equation are functions of u or its derivatives

Chapter Six: Numerical Solution of Ordinary Differential Equations

These are the eigenvalues for the equation, and the solution to the problem is

The constant a can have any value, so these solutions are determined only to within a mul-
tiplicative constant. Figure 6.6 sketches several of the solutions to Eq. (6.30).

These eigenvalues are the most important information for a characteristic-value
problem. In a vibration problem, these give the natural frequencies of the system, which
are important because, if the system is subjected to external loads applied at or very
near to these frequencies, resonance causes an amplification of the motion and failure is
likely.

Corresponding to each eigenvalue is an eigenfunction, u(x), which determines the pos-
sible shapes of the elastic curve when the system is at equilibrium. Figure 6.6 shows such
eigenfunctions. Often the smallest eigenvalue is of particular interest; at other times, it is
the one of largest magnitude.

We can solve Eq. (6.29) numerically, and that is what we concentrate on in this section.
We will replace the derivatives in the differential equation with finite-difference approxi-
mations, so that we replace the differential equation with difference equations written at all
nodes where the value of u is unknown (which are all the nodes of a one-dimensional sys-
tem except for the endpoints).

PLE 6 - 1 0 Solve Eq. (6.29) with five subintervals. We restate the problem:

d2u
- + k2u = 0, u(0) = 0, ~ (1) = 0.
dx2

The typical equation is

(uipl - 2ui + ui+J
h2

+ k2ui = 0.

6.8: Characteristic-Value Problems 383

With five subintervals, h = 0.2, and there are four equations because there are four interior
nodes. In matrix form these are

2 - 0.04k2 - 1 0 0
-1 2 - 0.04k2 -1

0 -1 2 - 0.04k2 -1
0 0

where we have multiplied by - 1 for convenience. Observe that this can be written as the
matrix equation (A - hl)u = 0, where I is the identity matrix and the A matrix is

2 -1 0 I-; -; -;
0 - 1

and h = 0.04k2.
The approximate solution to the characteristic-value problem, Eq. (6.29) is found by

solving the system of Eq. (6.31). However, this system is an example of a homogeneous
system (the right-hand sides are all equal to zero), and it has a nontrivial solution only if
the determinant of the coefficient matrix is zero. Hence, we set

det(A - hl) = 0.

Expanding the determinant will give an eighth-degree polynomial in k. (This is ?lot the pre-
ferred way !) Doing so and getting the zeros of that polynomial gives these values for k:

k = +3.09, k = 25.88, k = 18.09, k = 29.51.

The analytical values for k are

and we see that the estimates for k are not very good and get progressively worse. We
would need a much smaller subdivision of the interval to get good values. There are other
problems with this technique: Expanding the determinant of a matrix of large size is com-
putationally expensive, and solving for the roots of a polynomial of high degree is subject
to large round-off errors. The system is very ill-conditioned."

We r~ormally find the eigenvalues for a characteristic-value problem from (A -- hl)u = 0
in other ways that are not subject to the same difficulties. We describe these now. For clarity
we use small matrices.

--r-#m-m-- -

The power method is an iterative technique. The basis for this is presented below. We illus-
trate the method through an example.

* One authority says never to use the characteristic polynomial for a matrix larger than 5 X 5.

384 Chapter Six: Numerical Solution of Ordinary Differential Equations

EX AMPLE 6 . 1 1 Find the eigenvalues (and the eigenvectors) of matrix A:

(The eigenvalues of A are 5.47735, 2.44807, and 0.074577, which are found, perhaps, by
expanding the determinant of A - AZ. The eigenvectors are found by solving the equations
Au = Au for each value of A. After normalizing, these vectors are

where the normalization has been to set the largest component equal to unity.)"
We will find that both the eigenvalues and the eigenvectors are produced by the power

method. We begin this by choosing a three-component vector more or less arbitrarily.
(There are some choices that don't work but usually the column vector u = [I, 1, 11 is a
good starting vector.) We always use a vector with as many components as rows or
columns of A.

We repeat these steps:

1. Multiply A * u.
2. Normalize the resulting vector by dividing each component by the largest in magni-

tude.
3. Repeat steps 1 and 2 until the change in the normalizing factor is negligible. At that

time, the normalization factor is an eigenvalue and the final vector is an eigenvector.

Step 1, withu = [I, 1, 11:

A * u gives [2, -1, 01.

Step 2:

Normalizing gives 2 * [I, - .5,0], and u now is [I, - .5,0].

Repeating, we get

A * u = [3.5, -4, S],

normalized: -4 * [- 375, 1, -. 1251;

A * u = [-3.625, 6.125, -1.1251,

normalized: 6.125 * [-S918, 1, -.1837];

A * u = [-2.7755, 5.7347, - 1.18371,

normalized: 5.7347 * [-.4840, 1, -.2064];

After 14 iterations, we get

* It is more common to set some norm equal to 1.

6.8: Characteristic-Value Problems 385

A * u = [-2.21113, 5.47743, - 1.2213331,

normalized: 5.47743 * [- .4O368, 1, - .22334].

The fourteenth iteration shows a negligible change in the normalizing factor: We have
approximated the largest eigenvalue and the corresponding eigenvector. (Twenty iterations
will give even better values.) Although not very rapid, the method is extremely :simple and
easy to program. Any of the computer algebra systems can do this for us.

The Inverse Power

The previous example showed how the power method gets the eigenvalue of largest mag-
nitude. What if we want the one of smallest magnitude'? All we need to do to get this is to
work with the inverse of A. For the matrix A of Example 6.11, its inverse is

Applying the power method to this matrix gives a value for the normalizing factor of
13.4090 and a vector of [.3163, ,9254, 11. For the original matrix A, the eigenvalue is the
reciprocal, 0.07457. The eigenvector that corresponds is the same; no change is needed.

Shifting with the

As we have seen, the power method may not converge very fast. We can accelerate the con-
vergence as well as get eigenvalues of magnitude intermediate between the largest and
smallest by shifting. Suppose we wish to determine the eigenvalue that is nearly equal to
some number s. If s is subtracted from each of the diagonal elements of A, the resulting
matrix has eigenvalues the same as for A but with s subtracted from them. This means that
there is an eigenvalue for the shifted matrix that is nearly zero. We now use the inverse
power method on this shifted matrix, and the reciprocal of this very small eigenvalue is
usually very much larger in magnitude than any other. As shown below, this causes the
convergence to be rapid. Observe that if we have some knowledge of what the eigenvalues
of A are, we can use this shifted power method to get the value of any of them.

How can we estimate the eigenvalues of a matrix'? Gerschgorin's theorem can help
here. This theorem is especially useful if the matrix has strong diagonal dominance. The
first of Gerschgorin's theorems says that the eigenvalues lie in circles whose centers are at
all with a radius equal to the sum of the magnitudes of the other elements in row i .
(Eigenvalues can have complex values, so the circles are in the complex plane.)

Gerschgorin's Theorem We will not give a proof of this theorem,'" but only show that it
applies in several examples.

* Proofs can be found in Ralston (1965) and in Burdern and Faires (:!001)

Chapter Six: Numerical Solution of Ordinary Differential Equations

If matrix A is diagonal, its eigenvalues are the diagonal elements:

10 0 0

0 7 0 -+ 4, 7, 10, which are in

0 0 4 4 + 0, 7 + 0, 10 '1.0.

If matrix A has small off-diagonal elements:

10 0.1 0.1

0.1 7 0.1 + 3.9951, 6.9998, 10.0051, in

0.1 0.1 4 4 + 0.2, 7 2 0.2, 10 + 0.2,

and there is a small change.
When the off-diagonals are larger:

10 1 1

1 7 1 -+ 3.6224, 6.8329, 10.5446, in

1 1 4 4 t 2, 7 + 2, 10 + 2,

there is a greater change.
If they are still larger:

10 2 2

2 7 2 + 2.8606, 6.2151, 11.9243, in

2 2 4 4 + 4, 7 + 4, 10 + 4,

there is a still greater change, but the theorem holds.
Even in this case, the theorem holds:

10 4 4

4 7 4 -+ 1.0398, 4.4704, 15.4898, in

4 4 4 4 + 8, 7 + 8, 10 + 8.

Whenever the matrix is diagonally dominant or nearly so, shifting by the value of a diago-
nal element will speed up convergence in the power method.

-- -- -

EXAMPLE 6.12 Given matrix A:

find all of its eigenvalues using the shifted power method.
Gerschgorin's theorem says that there are eigenvalues within -6 2 2, 1 t 2, and 4 2

2. We shift first by -6 and get an eigenvalue equal to -5.7685 1 (vector = [-. 11574,
- ,13065, 11) using the inverse power method in four iterations; the tolerance on change in
the normalization factor was 0.0001. (Getting this largest-magnitude eigenvalue through

6.8: Characteristic-Value Problems 3 8 7

the regular power method required 23 iterations.) If we repeat but shift by one, the inverse
power method gives 1.29915 as an eigenvalue (vector = f.41207, 1, - .11291]) in six iter-
ations. (Using just the inverse power method to get this smallest of the eigenvalues
required eight iterations.)

For this 3 X 3 matrix, we do not have to get the other eigenvalue; the sum of the eigen-
values equals the trace of the matrix. So, if we subtrac~~ (-5.7685 1 + 1.29915') from - 1
(the trace) we get the third eigenvalue, 3.46936. (It is always true that the sum of the eigen-
values equals the trace.) The eigenvalues satisfy Gerschgorin's theorem: -5.76851 is in
-6 -t 2, 1.29915 is in 1 2 2, 3.46936 is in 4 t 2.

Getting the third eigenvalue from the trace does not give us its eigenvector; we can use
the shifted inverse power method on the original matrix to find it.

Shifting by 4 in this example runs into a problem; a division by zero is attempted. We
overcome this problem by distorting the shift amount slightly. Shifting by 3.9 and employ-
ing the inverse power method gives the eigenvalue: 3.46936, and the vector [I, .31936,
-.21121] in six iterations. (If a division by zero occurs, it is advisable to distort the shift
amount slightly.)

---- -
The utility of the power method is that it finds the eigenvalue of largest magnitude and its
corresponding eigenvector in a simple and straightfonward manner. It has the disadvan-
tage that convergence is slow if there is a second eigenvalue of nearly the same magni-
tude. The following discussion proves this and also shows why some starting vectors are
unsuitable.

The method works because the eigenvectors are a set of basis vectors. A set of basis
vectors is said to span the space, meaning that any n-component vector can be written as a
unique linear combination of them. Let do) be any vector and xl, x2, . . . , x,, be eigenvec-
tors. Then, for a starting vector, do),

If we multiply do) by matrix A, because the xi are eigenvectors with corresponding eigen-
values hi and remembering that Axi = A$, we have,

Upon repeated multiplication by A, after rn such multiplies, we get,

Now, if one of the eigenvalues, call it hl, is larger than all the rest, it follows that all the
coefficients in the last equation become negligibly small in comparison to A;" as m gets
large, so

Chapter Six: Numerical Sohltion of Ordinary Differential Equations

which is some multiple of eigenvector xl with the normalization factor A,, provided only
that cl f 0. This is the principle behind the power method. Observe that if another of the
eigenvalues is exactly of the same magnitude as Al, there never will be convergence to a
single value. Actually, in this case, the normalization values alternate between two num-
bers and the eigenvalues are the square root of the product of these values. If another eigen-
value is not equal to Al, but is near to it, convergence will be slow. Also, if the starting
vector, do), is such that the coefficient c , in Eq. (6.32) equals zero, the method will not
work. (This last will be true if the starting vector is "perpendicular" to the eigenvector that
corresponds to hl-that is, the dot-product equals zero.) On the other hand, if the starting
vector is almost "parallel" to the eigenvector of Al, all the other coefficients in Eq. (6.32)
will be very small in comparison to cl and convergence will be very rapid.

The preceding discussion also shows why shifting and then using the inverse power
method can often speed up convergence to the eigenvalue that is near the shift quantity. Here
we create, in the shifted matrix, an eigenvalue that is nearly zero, so that using the inverse
method makes the reciprocal of this small number much larger than any other eigenvalue.

The power method with its variations is fine for small matrices. However, if a matrix
has two eigenvalues of equal magnitude, the method fails in that the successive normaliza-
tion factors alternate between two numbers. The duplicated eigenvalue in this case is the
square root of the product of the alternating normalization factors. If we want all the eigen-
values for a larger matrix, there is a better way.

art I -Similarity Transformations

If matrix A is diagonal or upper- or lower-triangular, its eigenvalues are just the elements
on the diagonal. This can be proved by expanding the determinant of (A - hl). This sug-
gests that, if we can transform A to upper-triangular, we have its eigenvalues! We have
done such a transformation before: The Gaussian elimination method does it.
Unfortunately, this transformation changes the eigenvalues! !

There are other transformations that do not change the eigenvalues. These are called
similarity tvansformations. For any nonsingular matrix, M, the product M * A * M-I = B,
transforms A into B, and B has the same eigenvalues as A. The trick is to find matrix M
such that A is transformed into a similar upper-triangular matrix from which we can read
off the eigenvalues of A from the diagonal of B. The QR technique does this. We first
change one of the subdiagonal elements of A to zero; we then continue to do this for all the
elements below the diagonal until A has become upper-triangular. The process is slow;
many iterations are required, but the procedure does work.

Suppose that A is 4 X 4. Here is a matrix, Q, also 4 X 4, that will create a zero in posi-
tion a42:

Q =

6.8: Characteristic-Value Problems 389

where

PLE 6. B 3 Given this matrix A, create a zero in position (4,2) by multiplying by the proper Q matrix.

We compute:

The Q matrix is

When we multiply Q by A, we get for Q * A:

where the element in position (4,2) is zero, as we wanted. However, we do not yet have
a similarity transformation. (The trace has been changed, meaning that the eigenvalues
are not the same as those of A,) To get the similarity transformation that is n'eeded, we
must now postmultiply by the inverse of Q. Getting the inverse (which is Q - I) is easy
in this case because for any Q as defined here, its imierse is just its transpose! (When
this is true for a matrix, it is called a rotation matrix.) If we now multiply Q *: A * Q-l,

we get

Chapter Six: Numerical Solution of Ordinary Differential Fquationq

for which the trace is the same as that of the original A and whose eigenvalues are the
same. However, it seems that we have not really done what we desired; the element in posi-
tion (4,2) is zero no longer! There has been some improvement, though. Observe that the
sum of the magnitudes of the off-diagonal elements in row 4 is smaller than in matrix A.
This means that 3.69231 is closer to one of the eigenvalues (which will turn out to be 1)
than the original value, 4. Also, the element in position (2, 2) (6.30769) is closer to another
eigenvalue (which is equal to 7) than the original number, 6.

This suggests that we should continue doing such similarity transformations to reduce
all below-diagonal elements to zero. It takes many iterations, but, after doing 11 1 of these,
we get

where the numbers have been rounded to four decimals. (All the below-diagonal elements
have a value of 0.00001 or less.) We have found the eigenvalues of A; these are 10,7,4, and 1.
L

The trouble with doing such similarity transformations repeatedly is poor efficiency. We
can improve the method by first doing a Householder transformation, which is a similarity
transformation that creates zeros in matrix A for all elements below the "subdiagonal."
(This means all elements below the diagonal except for those immediately below the diag-
onal. We might call such a matrix "almost triangular.") The name for such a matrix is
upper Hessenberg. The Householder transformation changes matrix A into upper
Hessenberg. Once an n X n matrix has been converted to upper Hessenberg, there are only
n - 1 elements to reduce, compared to (n)(n - 1)/2.

There is another technique that further speeds up the reduction of matrix A to upper-
triangular. We can employ shifting (similar to that done in the power method). The easiest
way to shift is to do it with the element in the last row and last column.

Here are the steps that we will use:

1. Convert to upper Hessenberg.
2. Shift by a,,, then do similarity transformations for all columns from 1 to n - 1.
3. Repeat step 2 until all elements to the left of a,, are essentially zero. An eigenvalue

then appears in position a,,.

6.8: Characteristic-Value Problems 39 1

4. Ignore the last row and column, and repeat steps 2 and 3 until all elements below the
diagonal of the original matrix are essentially zero. The eigenvalues then appear on
the diagonal.

How do we convert matrix A to upper Hessenberg without changing the eigenvalues?
This is best explained through an example.

-% "---- --.------- "- "

E X A M P L E 6, B 4 Convert the same matrix A (as in Example 6.13) to upper Hessenberg.
We recall that A is

We can create zeros in the f ~ s t column and rows 3 and 4 by B *A * B-', where.

Observe that the B matrix is the identity matrix with the two zeros below the diagonal in
column 2 replaced with -b3 and -b4, where these values are the elements of ciolumn 1 of
matrix A that are to be made zero divided by the subciiagonal element in column 1. The
inverse of this B matrix is B with the signs changed for the new elements in its csolumn 2.

If we now perform the multiplications B1 * A * B;'., we get

I
7 32 6 811

I

1 -1 -1 -2

0 - 2 6 0 '
0 22 6 10-

which has zeros below the subdiagonal of column 1 and the same eigenvalues as the origi-
nal matrix A.

We continue this in column 2, where now

Here, B;' is the same as B2 except that the sign of b4 is changed. Now premultiplying the
last matrix by B2 and postmultiplying by Bz1 gives the lower Hessenberg matrix:

Chapter Six: Numerical Solution of Ordinary Differential Equations

which is what was desired.

There is a potential problem with this reduction to the Hessenberg matrix. If the divisor
used to create the B matrices is zero or very small, either a division by zero occurs or the
round-off error is great. We can avoid these problems by interchanging both rows and
columns to put the element of largest magnitude in the subdiagonal position. It is essential
to do the interchanges for both rows and columns so that the diagonal elements remain the
same.

X Method, lazpi: 2 -The Sce

If we (I) convert matrix A to upper Hessenberg, and, (2) perform QR operations on this,
the final matrix that results is

in which the same eigenvalues appear on the diagonal as when QR operations were
done on the original A matrix. However, only seven QR iterations were required
after reduction to Hessenberg, compared to 11 1 if that step is omitted. The other ele-
ments are different because row and column interchanges were done in creating the last
result.

MATLAB can find the eigenvalues and eigenvectors of a square matrix. Here is an
example:

Find the eigenvalues of

Solution:
We define A in MATLAB :

6.8: Characteristic-Value Problems 393

and then do

e = e ig (A)

e =

4

- 1

10

If we want both the eigenvalues and eigenvectors:

[V, Dl = eig (A)

v =

0 0 0.9977

-0.7071 0.9615 0.0605

0.7071 -0.2747 0.0302

D =

4 0 0

0 -1 0

0 0 10

where the eigenvectors appear as the columns of V (th~ey are scaled so each has a norm of
one) and the eigenvalues are on the diagonal of matrix D. Observe that MATLAB gets all
the eigenvectors at once.

Suppose we want to get the eigenvalues of A after its element in row 1 , column 2 is
changed to one. If that is what we want, we just enter:

A (1 , 2) = 1;

e ig (A)

ans =

10.0606

-1.1250

4.0644

MATLAB uses a QR algorithm to get the eigenvalues after converting to Hessenberg
form as described. We can also use the characteristic polynomial:

After defining the original matrix (A) in MATLAB, we do

which are the coefficients of the cubic

Chapter Six: Numerical Solution of Ordinary Differential Equations

We get the roots by

ans =

1 0 . 0 6 0 6

4 . 0 6 4 4

-1.1250

which is the same as before, as expected.

Section 6.1

1. Use the Taylor series method to get solutions to

dyldx = x + y - xy, y(0) = 1

at x = 0.1 and x = 0.5. Use terms through x5.

) 2. The solution to Exercise 1 at x = 0.5 is 1.59420. How
many terms of a Taylor series must be used to match this?

3. Repeat Exercises 1 and 2 but for

yU(x) = xly, y (0) = 1 , y' (0) = 1.

The correct value for y(0.5) is 1.51676.

4. A spring system has resistance to motion proportional to
the square of the velocity, and its motion is described by

If the spring is released from a point that is a unit dis-
tance above its equilibrium point, x(0) = 1, x f (0) = 0,
use the Taylor-series method to write a series expres-
sion for the displacement as a function of time, includ-
ing terms up to t6.

Section 6.2

Repeat Exercise 1, but use the simple Euler method. How
small must h be to match to the values of Exercise l ?

Repeat Exercise 2, but use the simple Euler method.
How small must h be?

Repeat Exercise 5, but now with the modified Euler
method. Comparing to Exercise 5, how much less
effort is required?

Find the solution to

- dy - - y 2 + t2, y(1) = o , a t t = 2,
dt

by the modified Euler method, using h = 0.1. Repeat
with h = 0.05. From the two results, estimate the accu-
racy of the second computation.

9. Solve y' = sin(x) + y, y(0) = 2 by the modified
Euler method to get y(0.1) and y(0.5). Use a value of
h small enough to be sure that you have five digits
correct.

) 10. A sky diver jumps from a plane, and during the time
before the parachute opens, the air resistance is propor-
tional to the power of the diver's velocity. If it is
known that the maximum rate of fall under these condi-
tions is 80 mph, determine the diver's velocity during
the first 2 sec of fall using the modified Euler method
with At = 0.2. Neglect horizontal drift and assume an
initial velocity of zero.

11. Repeat Exercise 8 but use the midpoint method. Are
the results the same? If not, which is more accurate?

2. The midpoint method gives results identical to modi-
fied Euler for dyldx = -2x - xy, y(0) = - 1. But for
some definitions of dyldx, it is better; for other defini-
tions, it is worse. What are the conditions on the deriv-
ative function that cause

a. The midpoint method to be better?
b. The midpoint method to be poorer?
c. The two methods to give identical results?
d. Give specific examples for parts (a) and @).

b13. For some derivative functions, the simple Euler method
will have errors that are always positive but for others,
the errors will always be negative.

a. What property of the function will determine which
kind of error will be experienced?

b. Provide examples for both types of derivative function.

Exercises 3 9 5

c. When will the errors be positive at first, but then
become negative? Give an example where the errors
oscillate between positive and negative as the x-values
increase.

14. Is the phenomenon of Exercise 13 true for the modified
Euler method? If it is, repeat Exercise 13 for this method.

Section 6.3

15. What are the equations that will be used for a second-
order Runge-Kutta method if a = 113, b = 213, a =

314 and /3 = 314. The statement is made that "this is
said to give a minimum bound to the error." Test the
truth of this statement by comparing this method with
modified Euler on the equations of Exercises 1 and 8.
Also compare to the midpoint method.

16. What is the equivalent of Eq. (6.10) for a third-order
RK method? What then is the equivalent of Eq. (6.12)?
Give three different combinations of parameter values
that can be employed.

17. Use one set of the parameter values you found in
Exercise 16 to solve Exercise 9.

a. How much larger can h be than the value found in
Exercise 9?

b. Repeat with the other sets of parameters. Which set
is preferred?

18. Solve Exercise 1 with fourth-order Runge-Kutta
method. How large can h be to get the correct value at
x = 1.0, which is 2.19496?

19. Determine y at x = 1 for the following equation, using
fourth-order Runge-Kutta method with h = 0.2. How
accurate are the results?

dyldx = Il(x + y), y (0) = 2.

)20. Using the conditions of Exercise 10, determine how long
it takes for the jumper to reach 90% of his or her maxi-
mum velocity, by integrating the equation using the
Runge-Kutta technique with At = 0.5 until the ve1ocit.y
exceeds this value, and then interpolating. Then use
numerical integration on the velocity values to determine
the distance the diver falls in attaining 0.911,~.

21. It is not easy to know the accuracy with which the func-
tion has been determined by either the Euler methods
or the Runge-Kutta method. A possible way to mea-
sure accuracy is to repeat the problem with a smaller
step size, and compare results. If the two computations
agree to n decimal places, one then assumes the values

are correct to that many places. Repeat Exercise 20
with At = 0.3, which should give a global error about
one-eighth as large, and by comparing results, deter-
mine the accuracy in Exercise 20. (Why do we expect
to reduce the err~or eightfold by this change in At?)

22. Solve Exercises 1, 9, and 10 by the Runge-Kutta-
Fehlberg methocl.

23. Using Runge-Kutta-Fehlberg, compare your results
to that from fourth-order Runge-Kutta method in
Exercise 18.

)24. Solve y' = 2x2 -- y, y(0) = - 1 by the Runge-Kutta-
Fehlberg method to x = 2.0. How large can h be and
still get the solution accurate to 6 significant digits?

25. Add the results from the Runge-Kutta-Fehlberg
method to Table 6.6.

26. In the algorithm for the Runge-Kutta-Fehlberg method,
an expression for the error is given. Repeat Exercise 19
with the Runge--Kutta-Fehlberg method and compare
the actual error to the value from the expression.

Section 6.4

)27. Derive the formula for the second-order Adams
method. Use the method of undetermined coefficients.

28. Use the formula of Exercise 27 to get values as in
Example 6.1.

29. For the differential equation

starting values are known:

y(0.2) = 1.2186, y(0.4) = 1,4682,

y(0.6) = 1.7379.

Use the Adams method, fitting cubics with the last four
(y, t) values aind advance the solution to t = 1.2.
Compare to the analytical solution.

)30. For the equation

the analytical solution is easy to find:

If we use three points in the Adarns method, what error
would we expect in the numerical solutio~n? Confirm
your expectation by performing the computations.

396 Chapter Six: Numerical Solution of Ordinary Differential Equations

31. Repeat Exercise 30, but use four points.

32. Solve Exercise 29 with Adams-Moulton fourth order
method.

33. For the equation y' = y * sin (m), y(0) = 1, get start-
ing values by RKF for x = 0.2, 0.4, and 0.6 and then
advance the solution to x = 1.4 by Adams-Moulton
fourth order method.

34. Get the equivalent of Eqs. (6.16) and (6.17) for a third-
order Adams-Moulton method.

35. Derive the interpolation formulas given in Section 6.4
that permit getting additional values to reduce the step
size.

)36. Use Eq. (6.18) on this problem

dyldx = 2x + 2, y(1) = 3.

a. Is instability indicated?
b. Compare the results with this method to those from

the simple Euler method as in Tables 6.11 and 6.12.

37. Use Milne's method on the equation in Exercise in 36.
Is there any indication of instability?

38. Parallel the theoretical demonstration of instability
with Milne's method with the equation dyldx = Axn,
where A and n are constants. What do you conclude?

39. What is the error term for Hamming's method? Show
that it is a stable method.

Section 6.5

40. The mathematical model of an electrical circuit is given
by the equation

d2Q dQ
0.5 ,- + 6 - + 50Q = 24 sin lot ,

dt dt

with Q = 0 and i = dQldt = 0 at t = 0. Express as a
pair of first-order equations.

)41. In the theory of beams, it is shown that the radius of cur-
vature at any point is proportional to the bending moment:

where y is the deflection of the neutral axis. In the usual
approach, (Y ')~ is neglected in comparison to unity, but
if the beam has appreciable curvature, this is invalid.
For the cantilever beam for which y(0) = y'(0) = 0,
express the equation as a pair of simultaneous first-
order equations.

42. A cantilever beam is 12 ft long and bears a uniform
load of W Iblin. so that M(x) = W * x2/2. Exercise 41

suggests that a simplified version of the differential
equation can be used if the curvature of the beam is
small. For what value of W, the value of the uniform
load, does the simplified equation give a value for the
deflection at the end of the beam that is in error by
5%?

)43. Solve the pair of simultaneous equations

d x l d t = x y - t , x (O) = l ,

dyldt = x + t , y(0) = 0 ,

by the modified Euler method from t = 0 to t = 1.0 in
steps of 0.2.

44. Repeat Exercise 43, but with the Runge-Kutta-
Fehlberg method. How accurate are these results? How
much are the errors less than those of Exercise 43?

45. Use the first results of Exercise 44 to begin the
Adams-Moulton method and then advance the solu-
tion to x = 1.0. Are the results as accurate as with the
Runge-Kutta-Fehlberg method?

)46. The motion of the compound spring system as sketched
in Figure 6.7 is given by the solution of the pair of
simultaneous equations

where y , and y2 are the displacements of the two
masses from their equilibrium positions. The initial
conditions are

Express as a set of first-order equations.

Figure 6.7

Exercises 3 97

47. For the third-order equation

y"' + ty' - 2y = t , y(0) = y"(0) = 0 , y'(0) = 1 ,

a. Solve for y (0.2), y(0.4), y (0.6) by RKF.
b. Advance the solution to t = 1.0 with the

Adams -Moulton method.
c. Estimate the accuracy of y(1.0) in part (b).

48. Solve the equation in Exercise 47 by the Taylor-series
method. How many terms are needed to be sure that
y(1.0) is correct to four significant digits?

49. If some simplifying assumptions are made, the equa-
tions of motion of a satellite around a central body
are

where

r-=1/--;, x(0)=0.4,

y(O)=x'(O)=O, y f (0) = 2 .

a. Evaluate x(t) and y(t) from t = 0 to t = 10 in steps
of 0.2. Use any of the single-step methods to do this.

b. Plot the curve for this range of t-values.
c. Estimate the period of the orbit.

Section 6.6

50. Equation 6.22 is for a stiff equation. If the coefficients
of the equation for x' are changed, for what values is
the system no longer stiff?

51. A pair of differential equations has the solution
X(t) = e-22r - e-t

y(t) = e-22r + e-!
with initial conditions of x(0) = 0, y(0) = 2.

a. What are the differential equations?
b. Is that system "stiff "?
c. What are the computed values for x(0.2) and y(0.2)

if the equations of part (a) are solved with the simple
Euler method, with h = 0.1?

d. Repeat part (c), but employing the method of Eq.
(6.23). Is this answer closer to the correct value?

e. How small must h be to get the solutions at t = 0.2
accurate to four significant digits when using the
simple Euler method?

f. Repeat part (e), but now for the method of Eq. (6.23).

)52. When testing a linear system to see if it is "stiff" it is
convenient to write it as

where the elements of matrix A are the multipliers of x
and y in the equations. If the eigenvalues of A are all
real and negative and differ widely in magnitude, the
system is stiff. ((One can get the eigenvalues from the
characteristic polynomial as explained in Chapter 2 or
with a computer algebra system.)

Suppose that A has these elements:

a. What are the eigenvalues of A? Would you call the
system stiff?

b. Change the elements of A so that all are positive.
What are the eigenvalues of A after tlhis change?
Does this make the system "nonstiff"?

53. The definition ctf a stiff equation as one nhose coeffi-
cient matrix has negative eigenvalues that "differ
widely in magnitude" is rather subjective. Propose an
alternate defini~lon of stiffness that is more specific.

Section 6 2

54. Suppose that a rod of length L is made from two dis-
similar materials welded together end-to-end. From
x = 0 to x = X, the thermal conductivity is k , ; from
x = X to x = L, it is k2. How will the temperatures vary
along the rod if u = 0" at x = 0 and u = 100" at x = L?
Assume that Eq, (6.24) applies with Q = 0 and that the
cross-section is constant.

55. What if k varier; with temperature: k = a -t bu + cu2?
What is the equation that must be solved 1.0 determine
the temperature distribution along a rod of constant
cross section?

56. Solve the boundary value problem

d2xldt2 + t (dxldt) - 3x = 3t, x(0) = 1 , s(2) = 5

by "shooting." ('The initial slope is near - 1.5.) Use h =
0.25 and compare the results from the Ru~nge-Kutta-
Fehlberg method and modified Euler methods. Why
are the results different? Is it possible to match the
Runge-Kutta-Fehlberg method results when the
modified Euler method is used? If so, show how this
can be accomplished.

57. Repeat Exercise 56, but with smaller values for h. At
what h-values with the Runge-Kutta-Fehlberg
method are successive computations the same?

58. The boundary-value problem of Exercise 56 is linear.
That means thal: the correct initial slope can be found

398 Chapter Six: Numerical Solution of Ordinary Differential Equations

by interpolating from two trial values. Show that inter-
mediate values from the computations obtained with
these two trial values can themselves be interpolated to
get correct intermediate values for x(t).

59. If the equation of Exercise 56 is changed only slightly to

d2xldt2 + x (dxldt) - 3x = 3t, x(0) = 1, x(2) = 5,

it is no longer linear. Solve it by the shooting method
using RKE Do you find that more than two trials are
needed to get the solution? What is the correct value for
the initial slope? Use a value of h small enough to be
sure that the results are correct to five significant digits.

60. Given this boundary-value problem:

which has the solution y = 2 sin(0/2),

a. Solve, using finite difference approximations to the
derivative with h = d4 and tabulate the errors.

b. Solve again by finite differences but with a value of h
small enough to reduce the maximum error to 0.5%.
Can you predict from part (a) how small h should be?

c. Solve again by the shooting method. Find how large
h can be to have maximum error of 0.5%.

61. Solve Exercise 56 though a set of equations where the
derivatives are replaced by difference quotients. How
small must 12 be to essentially match to the results of
Exercise 56 when RKF was used?

62. Use finite difference approximations to the derivatives
to solve Exercise 59. The equations will be nonlinear
so they are not as easily solved. One way to approach
the solution is to linearize the equations by replacing x
in the second term with an approximate value, then
using the results to refine this approximation succes-
sively. Solve it this way.

63. Solve this boundary-value problem by finite differ-
ences, first using h = 0.2, then with h = 0.1:

y" + xy' - xZy = 2x3, y(0) = 1, y(l) = - I .

Assuming that errors are proportional to h2, extrapolate
to get an improved answer. Then, using a very small h-
value in the shooting method, see if this agrees with
your improved answer.

64. Repeat Exercise 60, except with these derivative
boundary conditions:

y'(0) = 0, y1(7r) = 1.

In part (a), compare to y = -2 cos(012).

65. Solve through finite differences with four subintervals:

66. The most general form of boundary condition normally
encountered in second-order boundary-value problems
is a linear combination of the function and its deriva-
tives at both ends of the region. Solve through finite
difference approximations with four subintervals:

x" - tx' + t2x = t3,

x(0) + x'(0) - x(1) t x'(1) = 3,

x(0) - ~ ' (0) + x (1) - x'(1) = 2.

67. Repeat Exercise 63, but use the Runge-Kutta-
Fehlberg method. The errors will not be proportional to
h2

68. Repeat Exercise 66, but use the modified Euler method.

69. Can a boundary-value problem be solved with a Taylor-
series expansion of the function? If it can, use the
Taylor-series technique for several of the above prob-
lems. If it cannot be used, provide an argument in sup-
port of this.

)70. In solving a boundary-value problem with finite differ-
ence quotients, using smaller values for h improves the
accuracy. Can one make h too small?

71. Compare the number of numerical operations used in
Example 6.5 to get Tables 6.18 and 6.19.

sectios 5.3

72. Consider the characteristic-value problem with k
restricted to real values:

y"-kzY=O, y(O)=O, y(l)=O.

a. Show analytically that there is no solution except
the trivial solution y = 0.

b. Show, by setting up a set of difference equations
corresponding to the differential equation with h =
0.2, that there are no real values for k for which a
solution to the set exists.

c. Show, using the shooting method, that it is impossi-
ble to match y(1) = 0 for any real value of k [except
if y '(0) = 0, which gives the trivial solution].

b73. For the equation

Applied Problems and Projects

find the principal eigenvalue and compare to Ikl = 78. Use the power method or its variations to find all of the
2.46166, eigenvalues and eigenvectors for the matrices of

a. using h = t.
b. using h = i.
c. using h = $.
d. Assuming errors are proportional to h2, extrapolate

from parts (a) and (c) to get an improved estimate.

74. Using the principal eigenvalue, k = 2.46166, in
Exercise 73, find y as a function of x over [0, 11. This is
the corresponding eigenfunction.

75. Parallel the computations of Exercise 73 to estimate the
second eigenvalue. Compare to the analytical value of
4.56773.

76. Find the dominant eigenvalue and the corresponding
eigenvector by the power method:

[In part (c), the two eigenvalues are equal but of oppo-
site sign.]

77. For the two matrices

-

Exercise 77. For matrix B, do you need to use complex
arithmetic?

b79. Get the eigenval~ies for matrix A in Exercise 77 from its
characteristic polynomial. Then invert the matrix and
show that the eigenvalues are reciprocals but the eigen-
vectors are the same. How do the two characteristic poly-
nomials differ? Can you get the second polynomial
directly from the first? Can you do all of this for matrix B?

80. Repeat Exercise 79, but use the power method to get the
dominant eigenvalue. Then shift by that amount and get
the next one. Finally, get the third from the trace of A.

81. Find three matrices that convert one of the lbelow diag-
onal elements to zero for matrix A of Exercise 77.

82. Use the matrices of Exercise 81 successively to make
one element below the diagonal of A equal to zero, then
multiply that product and the inverse of the rotation
matrix (which is easy to find because it is just its trans-
pose). We keep the eigenvalues the same lbecause the
two multiplications are a similarity transformation.

Repeat this process until all elements below the diago-
nal are less than 1.OE-4. When this is done, compare the
elements now on the diagonal to the eigenvalues of A
obtained by iteration. (This will take many steps. You will
want to write a short computer program to carry it out.)

b83. Use similarity transformations to reduce the matrix to
upper Hessenberg. (Do no column or row interchanges.)

r 3 -1 2 71

a, put bounds on eigenvalues using ~ ~ ~ ~ ~ h ~ ~ ~ i ~ ' ~ 84. Repeat Exercise 83 but with row/column interchanges

theorem. that maximize the magnitude of the divisors.

b. Can you tell from part (a) whether either of the 85. Repeat Exercise 82 after first converting to upper
matrices is singular? Hessenberg. How many fewer iterations are needed?

APP1. The mass in Figure 6.8 moves horizontally on the frictionless bar. It is connected by a spring to a sup-
port located centrally below the bar. The unstretched length of the spring is L = a = 3.1623 m
(meters); the spring constant is k = 100 Nlm (newtons per meter); the mass of the block is 3 kg. Let
x(t) be the distance from the center of the bar to the location of the block at time t. Clearly the equi-
librium position of the block is at x = 1.0 m (or x = - 1.0 m). Let yo = fi m (the unstrel ched length
of the spring). This second-order differential equation describes the motion:

Chapter Six: Numerical Solution of Ordina~y Differential Equations

Figure 6.8

a. Using both single-step and multistep methods, find the position of the block between t = 0 and
t = 10 sec if xo = 1.4 and the initial velocity is zero.

b. Repeat part (a), but now with the spring stretched more at the start, xo = 2.5.
c. Use Maple and/or MATLAB to graph the motion for both parts (a) and (b). Compare your graphs

to Figure 6.9.

APP2. The equation y' = 1 + y2, y(0) = 0 has the solution y = tan(x). Use modified Euler method to com-
pute values for x = 0 to x = 1.6 with a value for h small enough to obtain values that differ from the
analytical by no more than -C0.0005. What is the largest h-value to do this? y (x) becomes infinite at
x = d 2 . What happens if you try to integrate y' beyond this point? Is there some way you can solve . -

the equation numerically from x = 0 to x = 2?

Applied Problems and Projects 40 1

Figure 6.10

A nonlinear boundary-value problem is more difficult than a linear problem because many trials may
be needed to get a good value for the initial slope. From three initial trials it should be possible to use
a Muller's-type interpolation. Outline the steps of a program that will do this.

In an electrical circuit (Figure 6.10) that contains resistance, inductance, and capacitance (and every
circuit does), the voltage drop across the resistance is iR (i is current in amperes, R is resistance in
ohms), across the inductance it is L, (dildt) (L is inductance in henries), and across the capacitance it
is qlC (q is charge in the capacitor in coulombs, Cis capacitance in farads). We then can write, for the
voltage, difference between points A and B,

Differentiating with respect to t and remembering that dqldt =. i, we have a second-order differential
equation;

If the voltage VAB (which has previously been 0 V) is suddenly brought to 15 V (let us say, by con-
necting a battery across the terminals) and maintained steadily at 15 V (so dVldt = 0), current will
flow through the circuit. Use an appropriate numerical method to determine how the current varies
with time between 0 and 0.1 sec if C = 1000 pf, L = 50 mH, ;and R = 4.7 ohms; use At of 0.002 sec.
Also determine how the voltage builds up across the capacitor during this time. You niay want to
compare the computations with the analytical solution.

APP5. Repeat App 4, but let the voltage source be a 60-Hz sinusoidal input:

How closely does the voltage across the capacitor resemble a sine wave during the last ihll cycle of
voltage variation?

APP6. After the voltages have stabilized in APP4 (15 V across the capacitor), the battery is shorted so that
the capacitor discharges through the resistance and inductor Follow the current and the capacitor
voltages for 0.1 sec, again with At = 0.002 sec. The oscillations of decreasing amplitude are called
damped oscillations. If the calculations are repeated but with the resistance value increased, the
oscillations will be damped out more quickly; at R = 14.14 ohms the oscillations should disappear;
this is called critical damping. Perform numerical computations with values of R increasing from 4.7
to 22 ohms to confirm that critical damping occurs at 14.14 ohms.

APW. Cooling fins are often welded to objects in which heat is generated to conduct the heat away. thus
controlling the temperature. If the fin loses heat by radiation to the surroundings the rate of heat loss
from the fin is proportional to the difference in fourth powers of the fin temperature a~nd the sur-
roundings, both measured in absolute degrees. The equation reduces to

d2uldx2 = k(u4 - T?)

Chapter Six: Numerical Solution of Ordinary Differential Equations

where u is the fin temperature, T is the surroundings temperature, and x is the distance along the fin.
k is a constant. For a fin of given length L, this is not difficult to solve numerically if u(0) and u(L) are
known. Solve for u(x), the distribution of temperature along the fin, if T = 300, u(0) = 450, 420) =

350, k = 0.23, utilizing any of the methods for a boundary-value problem. Use a value for h small
enough to get temperatures accurate to 0.1 degree.

APPS. In APP7, suppose the fin is of infinite length and we can assume that lim (u(x)) = 0 as x + m. Can
this problem be solved numerically? If so, get the solution for u(x) between x = 0 and x = 20.

APP9. A Foucault pendulum is one free to swing in both the x- and y-directions. It is frequently displayed in
science museums to exhibit the rotation of the earth, which causes the pendulum to swing in direc-
tions that continuously vary. The equations of motion are

i - 2w sin $ji + k2x = 0,

y + 2w sin $.i + kZy = 0,

when damping is absent (or compensated for). In these equations, the dots over the variable represent
differentiation with respect to time. Here w is the angular velocity of the earth's rotation (7.29 X

secpl), IJ is the latitude, k2 = g1.f where 4! is the length of the pendulum. How long will it take
a 10-m-long pendulum to rotate its plane of swing by 45" at the latitude where you live? How long if
located in Quebec, Canada?

APP10. Condon and Odishaw (1967) discuss Dufing's equation for the flux 4 in a transformer. This nonlin-
ear differential equation is

w 4 + 4 4 + b43 = E cos wt.

In this equation, E sin wt is the sinusoidal source voltage and N is the number of turns in the primary
winding, while wo and b are parameters of the transformer design. Make a plot of 4 versus t (and
compare to the source voltage) if E = 165, w = 1 2 0 ~ , N = 600, w t = 83, and b = 0.14. For
approximate calculations, the nonlinear term b43 is sometimes neglected. Evaluate your results to
determine whether this makes a significant error in the results.

APP11. Ethylene oxide is an important raw material for the manufacture of organic chemicals. It is produced
by reacting ethylene and oxygen together over a silver catalyst. Laboratory studies gave the equation
shown.

It is planned to use this process commercially by passing the gaseous mixture through tubes filled
with catalyst. The reaction rate varies with pressure, temperature, and concentrations of ethylene and
oxygen, according to this equation:

where
v = reaction rate (units of ethylene oxide formed per lb of catalyst per hr);
T = temperature, OK ("C + 273),
P = absolute pressure (lblin.'),

CE = concentration of ethylene,
C, = concentration of oxygen.

Under the planned conditions, the reaction will occur, as the gas flows through the tube, according to
the equation

where
x = fraction of ethylene converted to ethylene oxide,
L = length of reactor tube (ft).

fipplied Problems and Projects 403

The reaction is strongly exothermic, so that it is necessary to cool the tubular reactor to prevent over-
heating. (Excessively high temperatures produce undesirable side reactions.) The rea.ctor will be
cooled by surrounding the catalyst tubes with boiling coolartt under pressure so that the tube walls
are kept at 225OC. This will remove heat proportional to the temperature difference between the gas
and the boiling water. Of course, heat is generated by the reaction. The net effect can be expressed by
this equation for the temperature change per foot of tube, where B is a design parameter:

For preliminary computations, it has been agreed that we can neglect the change in pressure as the
gases flow through the tubes; we will use the average pressure of P = 22 lb/in.2 absolute. We will
also neglect the difference between the catalyst temperature (which should be used to find the reac-
tion rate) and the gas temperature. You are to compute the length of tubes required for 65% conver-
sion of ethylene if the inlet temperature is 250°C. Oxygen is consumed in proportion to the ethylene
converted; material balances show that the concentrations oil ethylene and oxygen vary with x, the
fraction of ethylene converted, as follows:

The design parameter B will be determined by the diameter of tubes that contain the catalyst. (The num-
ber of tubes in parallel will be chosen to accommodate the quantities of materials flowing through the
reactor.) The tube size will be chosen to control the maximum Lemperature of the reaction, as set by the
minimum allowable value of B. If the tubes are too large in diameter (for which the value of B is small),
the temperatures will run wild. If the tubes are too small (giving a large value to B), so much heat is lost
that the reaction tends to be quenched. In your studies, vary B to find the least value that will keep the
maximum temperature below 300°C. Permissible values for the parameter B are from 1.0 to 10.0.

In addition to finding how long the tubes must be, we need to know how the temperature varies
with x and with the distance along the tubes. To have some indication of the controllability of the
process, you are also asked to determine how much the oudet temperature will change for a 1°C
change in the inlet temperature, using the value of B already determined.

APP12. An ecologist has been studying the effects of the environment on the population of field mice. Her
research shows that the number of mice born each month is proportional to the number of females in
the group and that the fraction of females is normally constant in any group. This implies that the
number of births per month is proportional to the total population.

She has located a test plot for further research, which is a restricted area of semiarid 1,and. She has
constructed baniers around the plot so mice cannot enter or leave. Under the conditions of the exper-
iment, the food supply is limited, and it is found that the dea1.h rate is affected as a result, with mice
dying of starvation at a rate proportional to some power of the population. (She also hypothesizes
that when the mother is undernourished, the babies have less chance for survival and t.hat starving
males tend to attack one another, but these factors are only speculation.)

The net result of this scientific analysis is the following equation, with N being the number of
mice at time t (with t expressed in months). The ecologkt has come to you for help in solving the
equation; her calculus doesn't seem to apply.

dN -- - aN - EN' ', with B given by Table 6.20
dt

Chapter Six: Numerical Solution of Ordinary Differential Equations

As the season progresses, the amount of vegetation varies. The ecologist accounts for this change in
the food supply by using a "constant" B that varies with the season.

If 100 mice were initially released into the test plot and if a = 0.9, estimate the number of mice
as a function oft, for t = 0 to t = 8.

APP13. A certain chemical company produces a product that is a mixture of two ingredients, A and B. In
order to ensure that the product is homogeneous, A and B are fed into a well-mixed tank that holds
100 gal. The desired product must contain two parts of A to one part of B within certain specifica-
tions. The normal flows of A and B into the tank are 4 and 2 gallmin. There is no volume change
when these are mixed, so the outflow is 6 gallmin and the holding time in the tank is 10016 = 16.66
min. Due to an unfortunate accident, the flow of ingredient B is cut off and before this is noticed and
corrected, the ratio of A to B in the tank has increased to 10 parts of A to 1 part of B. (There are still
100 gal in the tank.) Set up equations that give the ratio of A to B in the tank as a function of time
after the flow of B has been restored to its normal value of 2 gallmin. How long will it take until the
output from the tank reaches 2 parts A to 0.99 parts B? How much product is produced (and dis-
carded because it is not up to specification) during this time? How would you suggest that this time
to reach specification be reduced?

The dictionary defines optimum as "the best or most favorable degree, quantity, number,
etc." In mathematics, we optimize by finding the maximum or minimum of a function.
Applications in business are to minimize costs or to maximize profits. In this chapter, we
describe methods that usually find the point(s) where a function, f(x, y, z, . . .), has a min-
imum value. We find maxima by locating the points where the negative of the function is a
minimum.

A function can have several minima and maxima when the range is unrestricted. The
smallest of the minima is the global minimum; others are called local minima. The global
maximum is the largest of the maxima; others are local maxima. We will often restrict the
range and then the maxima/minima can occur at an endpoint of the range or within the
range. A function is called unimodal when there is exactly one minimum (or maximum)
within the range or at an endpoint. Our examples are unimodal.

The chapter begins with a problem that is familiar to students-find the x-value that makes
y = f (x) a minimum, the one-dimensional case. We will compare classical analytical methods
with purely numerical ones. We then proceed to functions of more than one variable.

7.1 Finding the Minimum of y = f (x)
Begins by pointing out when getting the minimum from f'(x) == 0 has
problems. A simple search method can be used, but this is less efficient than
methods that narrow the interval that encloses the minimum. Once several
values for y at some x-values have been computed, interpolation can locate
the minimum with less computational cost. Computer algebra systems and
spreadsheets can automate the solution.

Minimizing a Function of Several Variables
Compares the analytical method of setting partial derivatives to zero and
solving the resulting system with numerical procedures. These include
graphical techniques and searching procedures. A method called steepest
descent does the searching along lines on which the function decreases most
rapidly, but, for some problems, this is less efficient than another searching
procedure called conjugate gradient. Newton's method can be adapted to
locating a minimum.

Linear Programming
Describes a widely used technique in business applications. This applies
when the minimum of a linear function is constrained to lie on the boundaries
of a region defined by linear relations. The simplex method is most often used
to solve these problems, and this can determine the effects of changes in the
parameters. Again, computer algebra systems and spreadsheets have
facilities for doing this.

Nonlinear Programming
Is a more difficult problem than one with a linear function subject to linear
constraints. A number of ways to solve such problems are discussed.

Other Optimizations
Briefly describes another problem of importance to the managers of a
business who desire to minimize the costs of transporting goods, as well as
problems where the values of the independent variables are restricted to
integer values or where the values are not known with certainty but only
within a range.

We begin our treatment of optimization by examining ways that we can find a minimum
point on the curve of y = f(x), the one-dimensional case. As always in applied mathematics,
we wish to solve a problem with the least effort. (So this is itself a minimization problem!)

The problem is not as simple as it might at first seem. A function may not have a minimum
point at all, at least not in the normal sense; the function y = x can hardly be said to have a
minimum point unless we want to think of y -+ -a as x -+ -a to be a minimum. Another
example of a function without a minimum is y = 2/(x3 - 1) (look at its graph to see this).

The function may have several minimum points; we usually want to find the global
minimum, the least of all the minima, and that task is often not easy. We might have to
locate every one of the many minima and then select the proper one. Consider the graph of
y = 2x - cos(2x) as seen in Figure 7.1. However, this task is simpler if we only desire the
global minimum within a restricted range of x-values; the problem is constrained in that x
must lie in interval [a, b].

7.1: Finding the Minimum of y = f (x) 407

Figure 7.1

The Classical Method. -.lf'(x) = O

It is likely that you first think of locating the minimum point on y = f(x) as a root-finding
problem. You say, "Just differentiate to get f'(x) and then locate its zeros." All of us have
done this in our calculus course many times. We do have to differentiate betwelen maxima
and minima but, of course, examining the value off "(x) will distinguish between them.
This will even tell us if the point is a horizontal inflection. After eliminating all the max-
ima and horizontal inflections, we arrive at the candidates for the global minimum and we
select the right one from the f(x) values at these points.

Actually, we are going to simplify the problem of minimization in 1-D by working with
functions that are unimodal. This term means that therte is exactly one minimum point on
[a, b]. We will further assume that the function decreases as we move from a toward b and
also decreases as we move from b toward a, which eliminates functions whose minimum is
at an end point.

Even with these restrictions, there are cases where the analytical method won't work.
Figure 7.2 shows two of these.

In Figure 7.2a, the derivative is discontinuous at the minimum point. In Figure 7.2b,
there is a discontinuity inf(x) at the minimum point. (Interestingly, if the lines in Figure
7.2a have slopes of -1 and 1, the numerical estimate of the slope at the minimum point
from a central difference is zero.)

It is often the case in real-world applications that the equation for f(x) is not known - we
can only find a value for the function from an experiment. While we can approximate the func-
tion by fitting an equation (probably a polynomial) to data, from several experiments, using the

Chapter Seven: Optimization

Figure 7.2

classical analytical method to find the minimum point would be terribly expensive. Further, as
we saw in an earlier chapter, values for the derivative from such data are apt to be inaccurate.

We argue from this that there is real merit to discovering numerical methods.

Searching for the

There are several ways that we can use searching methods. If the function is known, we
can use a spreadsheet program to list function values at a sequence of x-values. Most
spreadsheet programs have a built-in function that will pinpoint the minimum of the list of
values. This technique is handy but not very efficient.

A somewhat more efficient search method is what we call the back-and-forth technique.
In this, one begins at one end of the interval [a, b] and moves toward the other end.
Example 7.1 is an illustration.

- --

EXAMPLE 7.1 Find the minimum on [- 3, 11 of f(x) = I? + 2 - cos(x). Use the back-and-forth method.
Begin from x = -3 and move toward b (b = 1) with Ax = (b - a)/4 = 1. When the next
function value increases, reverse the direction with Ax equal to 114 of the previous. Repeat
this until Ax < 0.001.

The successive values are:
At x = a = -3, f(x) is 3.039780, we now begin the search.

With h = 1,

x = -2, f(x) = 2.551482

x = -1, f (x) = 1.827577

X = 0, f(x) = 2

We reverse now, h = -0.25,

7.1: Finding the Minimum of y = f (x) 409

We reverse now, h = 0.0625,

x = -0.6875, f(x) = 1.729997

x = -0.625, f(x) = 1.724298

x = -0.5625, f(x) = 1.723858

x = -0.5, f(x) = 1.728948

We reverse now, h = -0.015625,

x = -0.515625, f(x) = 1.727143

x = -0.53125, f(x) = 1.725695

x = -0.546875, f(x) = 1.724602

x = -0.5625, f(x) = 1.723858

x = -0.578125, f(x) = 1.723460

x = -0.59375, f(x) = 1.723404

x = -0.609375, f(x) = 1.723685

We reverse now, h = 0.00390625,

x = -0.6054688, f(x) = 1.723583

x = -0.6015625, f(x) = 1.723502

x = -0.5976563, f(x) = 1.723443

x = -0.59375, f(x) = 1.723404

x = -0.5898438, f(x) = 1.723386

x = -0.5859375, f(x) = 1.723390

We reverse now, h = -0.0009765625,

x = -0.5869141, f(x) = 1.723387

x = -0.5864258, f(x) = 1.7233882

Tolerance of 0.001 is met.

We can see several objections to this crude method. We have to compute an extra func-
tion value before we know that the direction is to be reversed. Further, some x.-values are
duplicated after a reversal but we still recompute f(x). (Keeping track of the function value
would be very complicated.) We seek an improvement.

One way to improve the efficiency of this crude method is to use three values that
bracket the minimum (at x = -2, - 1,0, the first three values in Example 7.1) and fit a qua-
dratic polynomial to them, then find the minimum of that. [When f (x) = ax2 + bx + c,
f '(x) is 2ax + b, and this will be zero at x = -b/2a.] Th.e easy way to do this is t:o form the
quadratic polynomial from a difference table and find its minimum point. From these three
x, f(x) values, we get an estimate of xmi, = -0.6923658 and no additional function evalua-
tions are required.

Chapter Seven: Optimization

We can continue from here by successively forming quadratics from three points nearest
the minimum. We must compute the function value at the new point. Here is the fist set:

From these points, we find the interpolating quadratic and get its minimum point:
x = -0.6224442. If we continue, we find the next two estimates of the x-value at the min-
imum to be

-0.5975463 and -0.5878655,

which is within 0.0007 of the true x ~ , of -0.588532744. We have achieved this with only
six evaluations of the function rather than the 23 used in the above simple search.

Narrowing the Hntewal

When we are given a function that has a single minimum point within the interval [a, b], we
can say that points a and b bracket or enclose the minimum point. There are ways to narrow
that interval and the method known as the golden section search is one of the most popular.

The term golden section is a number that is said to be the basis for the beautiful architec-
ture of Greek temples. The ratio of the height to the width of the Parthenon is equal to this,
a number equal to 0.618034. . . . It is the positive root of the quadratic r2 + r - 1 = 0.
Notice that 9 = 1 - r = 0.381966, another number that will be important to us. We will
use the symbol s for it.

The bisection method for finding a zero of f(x) can be considered to be a bracketing
technique. You recall that we narrow an initial interval that encloses a root [we know that
the root is in [a, b] because the sign of f(a) is opposite to that of f(b)], by dividing the
interval in half successively. Only one intermediate point is enough to narrow the interval.

We now ask, how do we know that a minimum point is somewhere within a given inter-
val? We know at the start that [a, b] is such an interval from our assumptions on f(x). If we
know f(x) at one intermediate point, say, xL, can we say that we know a smaller enclosing
interval? No; if f(xL) is smaller than either f(a) or f(b), it merely confirms our original
assumption that f (x) is unimodal. We only can say that the minimum may be between a and
xL, but it could also be between xL and b.

It takes two intermediate points to narrow the interval that encloses the minimum. Look
at Figure 7.3.

In Figure 7.3a, we see that f(xL) is the least and the minimum is to the left of the two
intermediate points. In Figure 7.3b, the two points are the same but the minimum lies
between them. With this arrangement of intermediate points, either situation may occur, so
we can only conclude that the minimum is bracketed by [a, xR].

Figure 7.4 shows the opposite-f(xR) is less than f(xL). In Figure 7.4a, the minimum is
between the points; in Figure 7.4b, it is between xR and b. Either case is possible, so we can
only say that enclosing interval is [x,, b].

7.1: Finding the Minimum of y = f (XI 41 1

Figure 7.3

Whair Are the Best Locations
for the Intermediate Points?

It is possible to locate the intermediate points anywhere within [a, b], but intuitively one
would think they should be placed symmetrically about the midpoint of the interval.
Why? The midpoint is the best approximation for the minimum point because the error
is not more than (b - a)/2, which we know without having to evaluate the function.
Putting them at the 113 and 213 points seems like a good idea. However, this is not such
a good choice because it is not clear how one proceeds from them to further narrow the
interval.

One often-used choice is based on using the golden ratio. As you will see in the follow-
ing, it provides a clear and excellent way to proceed. Actually, this number is the positive
root of the quadratic equation 9 + r - 1 = 0, which is (3 - 1)/2. Recall that ? = 1 - r.
It is also related to the numbers in the Fibonacci sequence. This sequence is defined by this
recursion formula:

and the first few members are 1, 1, 2, 3, 5 , 8, 13, 21, As n becomes large, the ratio
FIJFn+l approaches r. (You may want to test this to see how quickly the ratios con-
verge.)

Chapter Seven: Optimization

(These Fibonacci numbers are also involved in another search method, the Fibonacci
search. Applied Project 8 asks you to compare that method to the golden search that we
now describe.)

olden Mean to ind a Minimum

Another name for the golden section is the golden mean. We begin the search by comput-
ing the x-values for the two intermediate points:

(We could have written xL = a + ? * (b - a): 9 = 1 - r.) These points are symmetric
about the midpoint of [a, b], (b - a)/2. One is 0.381966 times (b - a) from a; the other is
0.618034 times (b - a) from a. Next, we compute the function values at these intermedi-
ate points, FL = f(xL) and FR = f(xR).

We compare the two function values and find a new smaller interval in which the mini-
mum lies:

If FL < FR, then the interval is [a, xR] else it is [xL, b].

We use this to reset the interval. In either case, the new interval is smaller; it is 0.618034
times as large. We redefine point a or b accordingly, redefine either xL or xR, and compute
a new intermediate point symmetric about the new midpoint. All of this may be clearer
from the following box:

Given f(x) that is unimodal with a minimum in [a, b]:

Start:
Compute xL = a + (1 - r) (b - a), xR = a + r(b - a),

Continuation:
If FR > FL, then

b = x,
-

x~ - x~
FR = FL
xL = a + (I - r) (b - a)
FL = f (xL)

Else
a = XL

XL = XR

FL = FR
xR = a + r(b - a)
FR = f GR)

and repeat until xR - xL < tolerance value.

7.1 : Finding the Minimum of y = f (4 41 3

Notice, because the interval is reduced to 0.618034 times the previous interval, the final
interval after n repetitions is

Original (b - a) * 0.618034n.

Here is an example.

- --

EXAIVIPLE 7.2. Repeat Example 7.1, but now use the golden section search. The function is f (x) = eX i- 2
- cos(x) and the minimum is within [-3, 11. Continue the search until the intermediate
points are within 0.001 of each other. (The correct answer to nine digits is at x =
-0.588532744.)

The results from a program are

Starting values

Interval Width

This tabulation rounds the values to four digits, even though they were computed with
about seven digits of precision. The first lines show the start of the computations; two func-
tion evaluations were used there. After the blank line, the continuations are shown; only
one function evaluation was needed for each step. So, the total number of function evalua-
tions was 18.

The minimum is fairly flat-the computed values for f(x) are the same within seven
digits for both x-values in the last line: x = -0.5888563 and -0.5881641.

Example 7.2 required 18 evaluations off (x), while 23 were needed in Example 7.1. This
is a significant savings, but we wonder if there can be further improvement.

414 Chapter Seven: Optimization

Parabolic Extrapolations

An improvement will come if we use the first three golden section points to create an
interpolating quadratic polynomial and then find where that polynomial has its minimum.
Let us do this (as we did with the simple search procedure).

The first three intermediate points computed in Example 7.2 are

from which we can compute the divided-difference table:

Using the procedure from Chapter 3, we find that the quadratic through these points (writ-
ten in the usual quadratic form) is:

whose derivative is zero at

We don't really have to get the quadratic in normal form. Recall that the interpolating poly-
nomial obtained from the divided differences is

from which the derivative is

Setting this to zero and solving for x (the minimum point of the parabola) gives

Of course, we can get al and a2 directly from the x and f(x) values without computing the
difference table. So, obtaining the estimate of the minimum of our function requires only
several arithmetic operations.

This first extrapolation is still quite far from the true x-value at the minimum but it is
much closer than the midpoint of the ranges given from the first several steps in the golden
section search.

We can continue to construct another quadratic polynomial and repeat this. However,
there are now more than three points that may be used to construct a polynomial. Which
should we use? We could use four points to construct a cubic interpolating polynomial and
find the minimum of the cubic. Our choice is to fit another quadratic to the three points

7.1 : Finding the Minimum of y = f ($1 4 1 5

whose function values are least. If this is done successively, we get these x- and f-values for
the minimum of the function:

X f (x)

-0.6721 1.72812

-0.5907 1.72339

-0.5892 1.72339

-0.5885 1.72339

-0.5885 1.72339

The repetition of x- and f-values of the last two lines suggests that we have found the min-
imum point to a precision of four digits. Each of the lines here required exactlly one new
function evaluation (and some simple arithmetic computations too) but cornparled to using
the golden section, we see a great economy.

There is subtle flaw in the procedure we have descriibed. It can happen that the succes-
sive values oscillate. Brent's method overcomes this b y resorting to a golden mean compu-
tation that ends the oscillations. We do not describe this; Numerical Recipes [W. H. Press
et al., (1992)l is a good reference.

Using MATLAB

MATLAB can readily find the minimum point off (x) within a given range of x-values. We
saw in Chapter 0 how that can be done. Let us repeat Example 7.2. First, though, it is a
good idea to plot the function (see Fig. 7.5):

EDU>> f = inline ('exp (x) + 2 - cos (x) ')
EDU>> fplot(f, [-3, 11); grid on

Figure 7.5

Chapter Seven: Optimization

Now we ask for the minimum within [-3, 11:

Procedure
initial
golden
golden
parabolic
parabolic
parabolic
parabolic
parabolic
parabolic

Optimization terminated successfully:
the current x satisfies the termination criteria using 0PTIONS.TolX
of 1 . 0 0 0 0 0 0 e - 0 0 4
ans =

-0.5885

We see from this that MATLAB does exactly as we described; three intermediate points
are first obtained with the golden mean technique and then it continues with parabolic
extrapolations. When the computations stop, the x-value is within 0.00005 of the analyti-
cal value.

Using a Spreadsheet Program

We said earlier that one could use a spreadsheet program to set up a sequence of x-values
and then use these to get the corresponding f(x)-values with the command that locates the
minimum of the f(x). That is an inefficient way.

The popular program EXCEL provides a better way. The Solver command is an add-in
to the standard program. This can be downloaded from the Web site www.solver.com.

To use Excel to find the minimum of the same function as in the examples, we do
this:

Choose cell A1 to hold the x-values and enter 0 as a starting value for the minimization.

In cell A3, enter the function: exp(A1) + 2 - cos(A1).

Click on ~ o o l s and chose Solver.

In the dialog box that appears, enter into Set Target Cell : the absolute cell ref-
erence $AS3 , into By changing Cell s the absolute cell reference $AS1 , into
Subject to the Constraints : the limits to the range, Al<= 1 and
A I> = - 3. Now click on Solve then on OK.

Doing this produces a value of 0.588491 in cell A1 and 1.72339 in cell A3. These
are the x- and f(x) values at the minimum. The values essentially match to those from
MATLAB.

7.2: Minimizing a Function of Several Variables 4 17

Quattro Pro has the same capability. In this the program is called Optimizer. 'These oper-
ations will find the minimum for the same example function: eX + 2 - cos (x):

Choose cell A1 to hold the x-values and enter 0 as a starting value for the minimization.

Choose cell A3 to hold the function to be minimized, and enter the function

@exp (Al) + 2 - @cos (A l) .

We see a 2 in cell A3; this is the value of the function at x = 0. We are now ready to
"optimize."

Click on Tools/Numeric ~ools/Optimize:r.

the dialog box that appears,

Enter into Set Solution Cell the cell reference $AS3 ;
Set to Min ;
Enter into Variable Cell(s) the cell reference $AS1 ;
Click on Add Constraint ;
Enter into Cell the cell reference $AS1 ;
Select > = ;

Enter into Constant the value -3;
Then click on Add Another Constraint ;
Enter into Cell the cell reference $AS1 ;
Select < = (the default);
Enter into Constant the value 1;
And click OK.

This brings us back to the dialog box where we can verify our entries.

We can follow the progress of the minimization by clicking on Opt ions. This brings
up another dialog box. In this we select Show Iteration Results. The defaults
in this are what we want: Target, Forward, Newton.

Clicking OK returns us to the first dialog box. We again click on OK.

We are now back to the original spreadsheet. We click again on Tools/Numeric
Tools/Optimizer.

If we click on Solve, we see in cells A1 and A.3 the values 1E-06 and 2.000001.
Clicking on Continue Solving gives us -0.519446 and 1.72349 as the x- and f(x)-
values. Repeating Continue Solving, we see -0.58853 and 1.72349 and these
values do not change on further repetition.

The final values match to the analytical. It appears that Quattro Pro is really using the
derivative of f(x) for finding the minimum but with the derivative computed numerically.
(Can you verify this supposition?)

inimizing a Function of Several Varia

When a function depends on the values of more than one independent variable, finding its
minimum values, even when constrained to lie within a region, is not easy. While there
could be more than three independent variables, many applied problems have at most

Chapter Seven: Optimization

three, corresponding to our 3-D world. (More than three will be more common in the prob-
lems we treat in the next section.) We will restrict our example to functions of the form

so that the visualization of the function is easier.
The analytical solution to z = f(x, y) is found be solving the pair of equations:

and we can tell if the point(s) correspond to a maximum or a minimum or a saddle point by
computing the value of this determinant:

where the subscripts indicate the partial derivatives. Iff, < 0 and d(x, y) > 0 at the point,
there is a maximum (but this may be only local, not global). Iff, > 0 and d(x, y) > 0, the
point is a minimum. If d(x, y) < 0, it is a saddle point, if d(x, y) = 0, the test is inconclusive.

We will illustrate the several ways to minimize z = f(x, y) with this function:

We can find where there is a minimum by computing f, and fy and setting to zero:

If we solve4 = 0 for y, we get y = x(2x + 1)/5; and substituting this into the equation for
f, = 0 and simplifying gives

(4x3 - 12x2 + 8x + 5)/5 = 0,

which has only one real root at x = -0.380409. From the equation for y in terms of x, we
get y = -0.0181973. This is the point of minimum. At this point, f = 4.78358, a global
minimum.

Finding the Minimum Numerically

If z = f(x, y) has a minimum within a region in the x - y plane, one could locate the mini-
mum by computing f(x, y) at many points within the region and seeing where the value of
the function is least. Even when constrained to a small region, this is tedious and not very
economical. Still, it may provide a starting point for searching for the minimum and can be
used when there are more than two variables.

A somewhat better technique would be to convert this to a sequence of 1-D problems
by setting y, say, to a sequence of values and then using the methods of the previous
section. This too is not a very good approach and not well adapted to more than two
variables.

A variant on this is to solve the equation after setting z equal to a sequence of values. If
these new functions of x and y are plotted, we will have a set of contours. Any of the

7.2: Minimizing a Function of Several Variables 419

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 7.6

computer algebra systems can do this for us. Here are the commands for MATLAB when the
function is constrained to lie in the square region whose corners are at (-2, -2) and (2,2):

EDU>> x = - 2: . 1 : 2 ;

EDU>> y = - 2 : . 1 : 2 ;

EDU>> [X , Y] = meshgrid (x, y) ;
EDU>> Z = (~ . " 2 - 2 * Y) . * 2 + (X P Y) . " 2 + X + 5 ;

EDU>> contour (x, y, Z) ; grid on

The contour plot looks like Figure 7.6.
We have added the point where f (x , y) is a minimum to the plot. Figure 7.6 is not very

helpful because the innermost contour is for f = 10, quite far from the minimum of
4.78358. The other contours are at f = 20,30,

If we plot contours for values off near to the minimum, we get Figure 7.7. Observe that
the function is quite flat near the minimum point: Even the innermost contour for f = 5.0
is not close to the minimum. The other contours are for f = 5.1,5.2,5.5, and 6.0.

A Simple Search Method

When we have a region in which our function has a minimum point, we can locate it by
searching from some starting point within the region. An obvious way to do this is to move
from that starting point in the x-direction in small steps until the function stops decreasing.

Chapter Seven: Optimization

Figure 7.7
Contours for i = (x" 2j)' + (x - 4')% + + 5.
Minimum at (-0.380. . . , -0.0182. . .), f = 4.78358.

This will happen after we cross a contour and as we approach the other side of it. (It may
be that the function does not decrease; if so, we move in the opposite direction. Of course,
we could begin in the y-direction.)

This method has been called a univariant search. When the function no longer
decreases, we begin from the last point and start again, but in the y-direction. After the
y-traverse, we do another x-traverse with a smaller step size, going to another y-traverse at
the end of this x-traverse. (When the next point at the end of a traverse has the same
f-value, it may be that we should use the average of the last two x-values.)

The table shows the results if we do this with the function f(x, y) = (x2 - 2 ~) ~ +
(x - y)2 + x + 5, starting from (- 1, - 1) with a step size of Ax = 0.1. For this problem,
we know the answer, f = 4.78358 atx = -0.380409, y = -0.0181973. The table does not
complete the tabulation; you may wish to do so. On the second x-traverse, the step size
should be reduced, perhaps to 0.05. The process will never be completely finished. When
four points are found near the minimum, these can be interpolated.

Observe in the table that the amount of change inf-values at the end of a traverse is only
a fraction of that at the start. This itself gives an indication that we are closing in on the
minimum point.

There is a problem with such a search method. When the contours are long and narrow
and inclined to the axes, it may take many steps to get near the minimum. There are many
changes of direction to the search and the approach to the minimum is reached more and
more slowly. The difficulty is that we are searching in directions not adapted to the prob-
lem. We need a better way.

7.2: Minimizing a Function of Several Variables 42 1

13.0
12.006
11.210
10.590
10.130
9.812
9.626
9.558
9.602 (increase, begin y-traverse)

8.632
7.806
7.080
6.454
5.928
5.502
5.176
4.950
4.824
4.798
4.872 (increase, begin x-traverse)

Finding a Better Search Direction

As we have said, searching in directions parallel to the: axes is not usually best. We really
want to move in the direction in which the function is decreasing most rapidly. That direc-
tion is given by the gradient, a vector that points in the direction of most rapid increase in
the function values. The gradient of f(x, y, z) is computed by

grad(f) = V f = fxi+ f y j + fik.

In this, the subscripts indicate the three partial derivatives at the point (x, y, z) and i , j, and
k are unit vectors parallel to the axes. Because the gradient vector really points in the direc-
tion of most rapid increase inJ we want -Vf when we minimize. In the 2-D problem that
we are using for examples, we will have

-Vf = - (f xi + f y j) .

The gradient at any point is perpendicular to the contour curve through that point. (What we call
a contour is more commonly called a level cuwe because function has the same vdue on it.)

What is -Vf for the previous example at the point (- 1, - I)? The function is z = (x2 -
2y)2 + (x - y)2 + x + 5. From the previous computations, we know that f(- 1, - 1) is 13;
there is a level curve through this point. We compute the gradient:

fx= [4X3 - 8xy+ 2x- 2y + 1](-1 = (-4. - 8 - 2 + 2 f 1) = -11,

f = [- 4x2 - 2x + 10y](-l, 1) = (-4 + 2 -- 10) = -12,
Y

Chapter Seven: Optimization

so -Vf is l l i + 12j, which points upward from (-1, -1) at an angle of about 47" from
the positive x-axis. Let us move along this negative gradient until the function stops
decreasing. If we take steps with x-values that differ by 0.2, the y-values will change by
fJf, * Ax = 12/11 * 0.2 = 12/55 = 0.21818. This tabulation shows the results:

On the fifth move, we have overshot the minimum along this gradient line. The function
value at the fourth step is close to the correct value off&, = 4.78353.

If we search on the negative gradient from this fourth point, we find a minimum at
(-0.16365, -0.08762), where f is 4.88294. We then compute the gradient at that point to
determine a new search direction. Doing this finds a negative gradient vector that is per-
pendicular to the former one. This should not be a surprise because we end the gradient
search on a contour line and at that point the search vector is tangent to it. The gradient
there is perpendicular to the contour and hence to the tangent vector. Eventually we will
close in on the true minimum.

A good way to locate the minimum point along a traverse is to determine the linear rela-
tion y = g(x) on this vector, substitute this into f(x, y) to reduce it to a function of x only,
and then use a method from the previous section. This can be used when there are more
than two independent variables.

Figure 7.8 plots the above results superimposed on some of the level curves. Observe
that the next gradient vector does not point directly to the minimum point. The major
problem with a gradient search is that successive movements are along vectors that

Figure 7.8

7.2: Minimizing a]'unction of Several Variables 423

are orthogonal, the same as with the univariant search. When the region near the minimum
is a long, narrow valley, many right-angled vectors are traversed and these converge on the
minimum point only very slowly. The new points that are generated oscillate; they never
exactly reach the minimum, but they will come to it within some tolerance value.

Following the negative gradient is called the method of steepest descent. The name is
appropriate because, at any starting point, we move "downward in the direction of maxi-
mum slope.

escent the Fastest Way?

The name steepest descent might indicate that this is the quickest way to the bottom of a
hill. That is not true, as this analogy will show.

Imagine that you are hiking and have followed a path near to the top of a steep hill. As
you stop to rest, you notice a small stream nearby that is flowing to the valley below. You
realize that the steam is following the negative gradient (the steepest slope) at each point in
its journey and that it often winds and curves. The path you traveled does not exactly fol-
low the stream; it takes "short cuts." It is faster to take your path than to meander as the
stream does. The reason that the stream has a longer course is because the negative gradi-
ent is a local phenomenon.

Sometimes steepest descent is the shortest way. Imagine that you are sitting on the rim of
a large circular bowl and look to the bottom. If you slide to the bottom, you will move along
the negative gradient and it is the shortest way. Mathematical demonstrations of steepest
descent frequently use functions like the bowl; they are spheres, ellipsoids, even paraboloids.

The real world is not so nicely formed. Our hiking analogy resembles it more closely.
Still, the method of steepest descent has one advantage: It is sure to find the minimum.

When can we not use this method? If the function is such that the partial derivatives are
discontinuous, the gradient will also be discontinuous. If the function is not P ~nown as a
mathematical relation, such as when function values can only be determined experimen-
tally or through a simulation, we cannot differentiate. Still, by performing more experi-
ments in the neighborhood of the starting point, we can get a numerical estimate. When
this is done, the surrounding points are often at the comers of a square region that is cen-
tered about the starting point; sometimes points at the midpoints of the edges of the square
are included. If these additional function values are expensive to obtain, this may not be a
practical way to go.

The Conjugate Gradient Method

For certain objective functions, there is a very rapid way to locate the minimum. It is called
the conjugate gradient method. When the objective is quadvatic function, it will find a
minimum point in exactly two steps if the function has just two variables, and in exactly
three steps if there are three. Each step requires the computation of a number of vectors.

The conjugate gradient method is better than steepest descent in most cases because it takes
into account the curvature of the function. This method is important to know: Quadratic

Chapter Seven: Optimization

functions are not uncommon, and we can approximate other functions as a quadratic function
in the neighborhood of a point that we hope is near the minimum.

In this development, we will use many vectors. All vectors will be row vectors and the
vector name will be in boldface; if vector w has components u and v, we write w = [u, v].
wT is its transpose, a column vector.

What is a "quadratic function"? If a 2-D function contains only terms in x2, y2, x * y, x,
y, and a constant, it is a quadratic function. A similar definition applies in three dimen-
sions. Any quadratic function can be expressed in a nice way; for f(x, y), this is

(112) [x, y] * H * [x, y]T + b * [x, ylT + c,

where matrix His the Hessian matrix* of the function, [x, y] is a row vector, and the com-
ponents of row vector b are the coefficients of the x- and y-terms; c is the constant term in
the equation.

We will use as an example f(x, y) = x2 + 2y2 + xy + 3x; we can write this as

We will illustrate the conjugate gradient method with this function, starting at (0, 0).
(It is not difficult to find that fmin = - 1817 at (- 1217, 317) from fx = 2x + y + 3 = 0,
f, = 4y + x = 0.)

We begin the conjugate+ gradient method by computing vector xO = Vf(0, 0) = [3, 01,
the gradient at the starting point. We compute three other vectors from xO: qO, vO, xl:

Step 1.

a. Compute vector qOT = H * xOT + bT:

b. Set vector vO = -qO = [-9, -31.

c. Compute multiplier a0 = vO * vOTl(vO * H * vOT):

d. Compute vector xl = xO + a0 * vO:

* The Hessian matrix is formed from the second ~ar t ia l derivatives:

H = fa fn (butfq =I, for a quadratic). L &I
t Two vectors, a and b, are conjugate with respect to matrix M if a * M * b = 0. (If M is the identity matrix, they
are orthogonal.)

7.2: Minimizing a Function of Several Variables 425

Step 2.

We compute two other vectors from x l : q l , vl:

a. Compute vector q lT = H * x l T + bT:

b. Compute multiplier /30 = q l * H * vOTl(vO 'k If * vOT):

c. Compute vector v l = -ql + PO * vO =

d.. Compute multiplier a1 = -ql * vlTl(vl * H :"IT):

The minimum point is now obtained:

At this point fmi, = - 1817, the correct answer.

Vectors vO and v l are conjugates with respect to matrix H:

This clever way to solve for a minimum applies only to quadratic functions, but we can
adapt the conjugate gradient method to functions that are not quadratic by approximating
the function with a quadratic. We would fit the quadratic polynomial to the function at the
start point and at six adjacent points. This will not exactly get the minimum of the function
in two steps so it will require iterations with new quadratic approximations as the mini-
mum is approached.

It is of interest to compare this to the solution by steepest descent. Starting at (0, 0)
where the negative gradient is [-3, 01, we move left on the x-axis and find the minimum
there at (-312, O), f = -914. At that point, the negative gradient is [O, 3/21, so we move
upward on the line x = -312 to find the minimum along this vector to be - 8 1/32 at (-312,
318). We again compute the negative gradient and find it to be [-318, 01. We rnove left to
the minimum on the vector; it is at (-27116,318), where f = -6571256. This is close to the
minimum for the function, but it still differs by 0.2%.

Chapter Seven: Optimization

If we continue in this manner, we will find that the moves are along vectors that are par-
allel to the two axes in turn and we never get exactly to the minimum. Observe that, in this
instance, steepest descent is the same as a univariant search.

Newton's Method

We found in Chapter 1 that Newton's method converges quadratically to a zero of a
continuous function, y = f (x). This method can be used to find a minimum (or maximum)
by finding a zero of the derivative. If the function is quadratic, the solution is found imme-
diately, as this simple example shows:

Given y = 2x2 - x + 4, what is its minimum value?
We will do this by finding the zero of dyldx. The derivative of y is 4x - 1. (By set-
ting this to zero, we anticipate the answer: x = 114.) What does Newton's method
give, starting from xo = l ? The iterations are

X n + l = XfZ -f;)lf;;.

Atx, = l , f i = 4(1) - 1 = 3 , f i = 4,so

xl = 1 - 314 = 114, precisely correct.

It is easy to show that we get the correct answer immediately for any value for xo. If
y = f(x) is not a quadratic, we will have to iterate, but convergence will be quadratic.

How can Newton's method be applied to finding the minimum of a function of more than
one variable? We need the equivalents off ' and f ". For f', we use the negative gradient
at (xo, yo) and for f ", we use the Hessian matrix of partial derivatives computed at the
same point. We cannot divide by a matrix, of course, so we will multiply by the inverse of
H, H-l:

If = f(x, y) is a quadratic function, we can expect to get to the minimum immediately.
Let's see if this is true using the same quadratic function that we used previously:

(The value we anticipate is f = - 1817 at (- 1217, 317).
We previously computed the Hessian matrix:

We need its inverse, which we find to be

7.2: Minimizing a Function of Several Variables 427

If we start from (0, 0), we compute

(x, Y) ~ = (x, YI0 - H- l * [-VfOIT

= [- 1217, 3/71T, precisely correct!

When f(x, y) is not a quadratic, we can approximate it with a second-degree polynomial
that fits near the starting point and proceed in the same way, except this approxiinate solu-
tion will be inexact. Even so, we will have reached a point nearer to the minimum. We then
get another approximation and repeat; this approaches the true minimum as c10;jely as we
desire.

Searching Without Using Derivative Values

We really can use only gradient-based searches as described above when the gradient can
be obtained as an analytical function. When that is not the case, we can use finite-differ-
ence approximations to the derivatives. There are also other approaches.

The univariant search that we have called a "simple search" is a way to minimize with-
out using derivatives, but we really want to move in (almost) the correct direction. There
are ways to move more nearly in the right direction, one of which is the simplex method.
This method begins not from a single point in the region of interest, but from a group of
three points. Often, these are chosen to form an isosceles triangle, called a simplex.
(However, this should not be construed as equivalent to the simplex method for linear pro-
gramming, discussed in the next section.)

One of the points of the simplex will normally have tihe largest function value, and obvi-
ously we want to move away from that. Call this point pl. We then locate a new point that
is a reflection of pointpl across the opposite side of the triangle. Dropping p l from the set,
we have a new triangle that includes the reflected point. We use this triangle to find which
point in the current set should be reflected.

Once this process finds that the function value does not decrease at the reflected point,
an inward reflection is made, creating the new point within the simplex triangle:. The sim-
plex method will eventually close in on the minimum.

Spreadsheets Can Minimize f (x, y, z, . . .) with Constraints

Both Excel and Quattro Pro can find the minimum or maximum of a function of several
variables within a region. The procedure is similar to that described in Section 7.1 for a
function of one variable: We choose cells for each of the variables and enter values
in them to define a starting point. In another cell, we enter the function to be minimized
(or maximized).

The region of interest does not have to be rectangular or polyhedral; we can define
its boundaries in terms of the variables by entering the proper relations in other cells. If

Chapter Seven: Optimization

the region is defined solely by limiting values for the variables themselves, this is not
necessary.

In Excel, we invoke Tools/Solver; in Quattro Pro, we use Tools/Numeric
Tools/Optimizer . In dialog boxes, we enter the cell numbers for variables and the
function, together with constraints that define the region. Clicking on Solve produces the
solution and we can get the successive iterations if we want to see them. Options that are
available include Gradient, Conjugate, and Newton.

A widely used technique for maximizing the profits or minimizing the costs is linear
programming. It is often used in business to determine those decisions that will increase
profitability. It has other business applications, such as finding the optimal schedule for an
outside salesman to visit his customers.

The word programming here does not mean a computer program in the ordinary sense
(although computers are nearly always used to solve the problems). It refers instead to a
systematic procedure, one that is based on solving set linear equations. Linear program-
ming is linear in that the function whose optimum is sought is a linear combination of two
or more (often many) independent variables. The solution is subject to a number of con-
straints, and these are themselves always a linear combination of the variables. A con-
straint, for example, might be how a limited resource will be utilized by several competing
potential applications.

A Simple Problem

We begin with a simple problem with just two variables, but this will illustrate the method
and introduce some of the many special terms of linear programming. The problem is to
maximize f(xl, x2) = 5x1 + 8x2,

subject to:

Think of a company that is to manufacture two products. The amount of each is measured
by xl and x2. f(xl, x2) is the objective function. This function, f(xl, xz), determines the
manufacturing profit. The larger the values for xl and x2, the greater the profit. The coeffi-
cients are the profit per unit of product.

However, it is not possible to manufacture any desired quantity of these products, for
there is a limited amount of two necessary resources. (These might be available employ-
ees, critically important parts, machine availability, or the like.) The constraint relations
show how each of the resources is used up in the manufacturing process. The coefficients

7.3: Linear Programming 429

Figure 7.9
The feasible region

Figure 7.10
Objective function ~ralues are superimposed on th~e feasible
region

in the constraint relations represent the required amount of the resource used per unit
amount of the product.

Notice that each of the constraints is linear and that the objective function is also a lin-
ear combination. The last inequality is a special one; while not a constraint in the same
sense as the others, it forces the solution to have only nonnegative values for the variables.
This is common because it is impossible to make a neqative quantity of product.

We will first solve this graphically; this will introduce the topic and help to define a
number of special terms. A plot of the constraints in Figure 7.9 shows the feasible region,
the possible production quantities of product 1 and product 2. (We have scaled the numbers
to make them small. The actual quantities might be 100 or 1000 times as great.) The region
is bordered by the heavy lines.

Observe that the feasible region is bounded by the xl, x2 axes (from the nonnegativity
condition) and by two intersecting lines. There are four vertices to the polygonal region,
including one at the origin and two on the axes.

In Figure 7.10, we redraw the feasible region and superimpose on it a numb~er of lines
defined by setting the objection relation equal to several values.

Because the objective function is linear, the lines forjr(xl, x2) are parallel. The larger the
value assigned to the function, the farther from the origin the line lies. Some of the lines do
not fall within the feasible region-we cannot achieve that much profit. Some lie within
the region but represent choices that give less profit thian the maximum. Points on such
lines within the region are feasible solutions. There is one line (not drawn) that would
show the maximum; it would just touch the feasible region. In this example, it will touch at

Chapter Seven: Oplimi~alion

the point (3, 3). A different objective function whose slope is different might touch the
region at a different vertex. The important conclusion from this is that the optimal solution
will always fall at one of the vertices of the region.

The four vertices of the region in Figure 7.10 (we include the origin) are called basic
feasible solutions. It is then clear that one way to solve this linear programming problem is
to find values for xl and x2 at the vertices and from these compute the values for the objec-
tive function at each vertex of the region (more commonly called corner points), and then
select the point where it is a maximum. For our example, these values are

This confirms the fact that the optimal value for the two products is three units and three
units, respectively.

Examining Figure 7.10 suggests several other possibilities:

1. If the objective function had different coefficients, the objective function lines might
be parallel to one of the constraints and one of these lines will coincide with an edge
of the region. In that case, there are multiple optimal solutions. Any combination of
choices for xl and x2 that lie on that edge give the same profit.

2. There could be a third constraint and this can have different possible effects:
a. It could lie totally outside the feasible region and thus not limit the amounts to be

produced. We would call this a redundant constraint.
b. It could coincide with one of the previous constraints. This too is redundant; the

region is not affected.
c. It could lie partially within the region. This would decrease the area of the feasi-

ble polygon and might create additional comer points.
3. The graphical method for solving a linear programming problem is fine if there

are only two variables. It could be applied (with difficulty) to three variables, but
more than three is virtually impossible. We need to find a different way to solve
linear programming problems because some applications have hundreds of
variables.

The Simplex Method

Even though we have already solved our example, we will use it to introduce the simplex
method, which is most frequently used for linear programming. We repeat the problem:
Maximize

7.3: Linear Programming 43 1

subject to

Xl + 3x2 5 12,

3x1 + 2x2 5 15,

x,, X2 2 0.

The simplex method solves the problem through solving a set of equations that represent
the constraints. "But our constraints aren't equations, they are inequalities," you say. That
is a good observation. We need to change inequalities to equalities. This can be done by a
simple device: We add another variable to the constraint, a quantity called a slack variable.
This measures the amount of the resource not utilized:, it takes up the "slack." Call the
slack variable for the first constraint x3, and that for tlhe second, x4. Our problem then
becomes to maximize

subject to

x1 + 3x2 + X3 = 12,

3x1 + 2x2 + x4 = 15,

XI, x2, X3' xq 2 0.

We have expanded the objective function to include the slack variables. They contribute
nothing to profits, of course.

In matrix form, the constraint equations are

This system is underdetermined; there are only two equations but four variables. Still, we
can solve this if we first assign values to two of the variables and move these teirms to the
right-hand side. Observe that adding the slacks to the system expanded the matrix of con-
straint coefficients to include an identity matrix.

Let us assign zero to both xl and x2. The system is reduced to

where the solution is obvious: x3 = 12, x4 = 15. "Of course," you say, "if neither product
is made, the entire amount of both of the resources is unused. The slacks measure that."
The important result is that we have values for xl and x?, at a corner point, a basic feasible
solution to the problem, though surely not the optimum.

In the terminology of linear programming, what we bave just done is to cause: two vari-
ables to leave the system and two to enter. The ones that leave are xl and x2; the ones that
enter are xg and x4.

Chapter Seven: Optimization

Suppose we allow a new variable to enter the system, replacing one that is already there.
So, one of x3 or x4 must leave. In effect, we are exchanging a current variable for one not
yet in the system.

Which of xl or x2 should we select to enter? Looking at the objective function, we
see that the profit from one unit of x2 is 8, while one unit of xl returns only 5; x2 is
the better choice. (You may want to see whether the other choice ends up at the same
final answer.) So, x2 is to enter the system. Now we must decide which of x3 and x4
should leave. We answer the question by trying both possibilities:

If x3 leaves, the variables in the equations are x2 and x4, and the system becomes [: 3 [::I = [::I, solution: x, = 4,
Xq = 7.

If x4 leaves instead, we have

[: 3 [::I = [::I, solution: x, = 6,
x3 = -6.

Only the first is acceptable; the second violates the nonnegativity condition. The variables
now present are x2 and x4. Remembering that xl is still zero but now x2 is 4; we have moved
from our initial basic feasible solution, (0, 0) to another basic feasible solution, (0, 4). At
this point, the value of the objective function is 32.

We proceed in similar fashion to allow xl to enter. x4 will have to leave. The variables
present are the non-slacks, xl and x2. We need to solve: [: ;] [;:I = [::I, solution: x, = 3,

x, = 3.

We have moved to another basic feasible solution (3, 3), where the value of the objective
function is 39. In this problem, we know that this must be the optimum point because
removing either xl or x2 can only reduce the profit.

(What we have done is to solve for the intersection of the two constraints, a corner point.)

Variations of the Problem

Even this simple example can illustrate how some variants to the problem affect it.

1. What if the lower limit of one of the variables is something other than zero? This
would have to be a positive quantity. It also would have to be small enough to lie
within the feasible region, or else we would say the problem is infeasible: No solu-
tion is possible. This is also true if both variables have lower limits other than zero.
Having lower limits other than zero will reduce the area of the feasible region. The
initial basic feasible solution would still be at one of the lower-limit points. If the
nonegativity constraint were replaced by

7.3: Linear Programming 433

this would chop off a triangle from the lower-left part of the feasible region. We
would have to include this inequality in the matrix of constraints. With a greater
than or equal relation, the slack variable is subtracted to give the constraint
equation.

2. What if additional greater than or equal constraints are included? We just include
these with a subtracted slack variable. It is then possible to have a diamond-shaped
feasible region.

3. What if the lines for the objective function are paraJle1 to one of the constraints? One
of these lines would then coincide with an edge of the region, and any point on this
edge is optimal; there is then an infinity of optimal points, all with the same: value for
the objective function.

4. What if the objective function has a positive slope? (This would mean that lone of the
products incurs a loss rather than a profit but that, while unlikely, could happen.) The
objective function lines would then intersect the constraints. For a region like that of
Figure 7.10, the optimum would still occur at a corner point. The simplex method
will still find it.

5. What if we want to minimize an objective function? (The coefficients th~en would
represent unit costs rather than unit profits.) The simplex procedure works exactly
the same-we just maximize the negative of the objective function.

6. Can we use the simplex method to solve a problem where either the objective
function or a constraint is discontinuous? No, the requirement of linearity is
absolute.

Another Example

We now present a slightly more complex problem that will show how the simplex method
works when there are more than two constraints. It often occurs that there are more con-
straints than variables. The example still has only two variables, so it could be solved
graphically or by computing a list of function values are the corners. Here is our example:

Maximize

constraints:

We add slacks x3, x4, x5 to the three constraints. In matrix form we have:

f = 8x, + 9x2 + Ox, + Ox4 + Ox5,

Chapter Seven: Optimization

We begin as is customary with a basic feasible solution at the origin, (0, 0), where f = 0.
We improve the solution, by bringing in a new variable to replace one of x3, x4, or x,. Our
best choice of the variable to bring into the solution is x2. We need to see which of the cur-
rent variables is to leave, so we try each in turn.

If x3 leaves and x2 enters, the variables in the solution are x2, x4, and x,. We solve:

4 0 0 32 x2 = 8
4 1 0 x = 36 whose solution is x, = 4,

4 0 l j [6 j ' [x5 = 28

which we can accept; the nonnegativity condition holds.
Let us see if any of the other choices is acceptable. If x4 leaves instead of x,, the vari-

ables in the solution will be x2, x3, and x,. We solve:

4 1 0 32 x2 = 9
4 0 0 x = 36 whose solution is x, = -4.

4 0 1 1 6 1 [x 5 = 2 4

This is not acceptable. What if we let x5 leave instead of x3? The variables will be x2, x,,
and x4. We solve:

15 j = [j, whose solution is (: 1 -28,
x, = -24

which is also not acceptable. With variables x2, x4, and X, in the system, the value for x2 is
8, xl is zero. At (0, 8), f is 72.

We hope to improve the solution by replacing x3 or x4. We don't want to put x, back in,
so we let xl replace either x3 or x4. If we replace x3, we will have xl, x2, and x4. We solve:

which we must reject. We try the other choice, giving the variables as xl, x2, andx3. We solve:

2 4 1 32 x, = 8

[: : :] = [is], whose solution is [; I :.

7.3: Linear Programming 43 5

We can accept this. So, we have moved from (0 , 8) to (8, 3), where the value ofjris 91.
Can we improve further? The only possibility is to]put x5 back in, replacing x3. With

variables x,, x2, and x5, we solve:

At (4 ,6) , f = 86, and we do not increase the value off. It seems that the optimum is at (8 ,3) ,
wheref = 91.

There is one more corner point that we could test; it is at (10, O) , where f = 80, less than
that at other corners.

Are There More Efficient Ways?

We have used a procedure that would most clearly show the basic principle behind the sim-
plex method. This is perhaps not the most efficient. We solved the examples in this way to
emphasize that we move from one basic feasible solution to another where the. objective
function is improved. We did this by replacing one current variable with another Selecting
the variable to enter was easy: We chose the one that would contribute most to the objec-
tive function, the one with the larger unit profit. We selected which variable would leave by
examining whether the nonnegativity constraints were violated. This examination was
done by computing the amounts of the present variables that would remain in the solution
when the new variable entered; if any of these were negative, we rejected it.

An alternative procedure sets up a simplex tableau. In using this tableau, all of candi-
dates for leaving the basis are tested simultaneously, rather than individually as we have
done. The tableau is modified at each iteration by doing the equivalent of a Gauss-Jordan
reduction. This may require fewer arithmetic operations but what is happening to the vari-
ables is not seen as clearly.

Every linear programming problem has another problem called its dual and the solution
to the dual problem is the same as for the primal problem. The dual may require less effort
to solve than the primal, and solving it will be more efficient. We discuss the dual to a pri-
mal problem later in this section.

A problem with many variables and many constraints can be solved in the same way as
we have described but doing it would be painfully slow. The use of a computer program is
essential and there are many available. We can even use the Excel or Quattro P'ro spread-
sheet programs. Here is how Quattro Pro solves a linear programming problem. 'We use the
last example as an illustration.

Using Quattro Pro

We restate the problem:

Maximize f(x,, x2) = 8x1 -t 9x2,

Chapter Seven: Optimization

Constraints:

CI: 2x, + 4xz a 32,

C2: 3x1 + 4x2 5 36,

C3: 6x1 + 4x2 5 60,

xl, xz 2 0.

After activating Quattro Pro, we decide to use these cells:

Cell Al : holds xl, set to zero.

Cell A2: holds xz, set to zero.

Cell A3: holds object function, set to 8*Al + 9*A2.

Cell A4: holds left-hand side of first constraint, set to 2*A1 + 4*A2.

Cell A5: holds left-hand side of second constraint, set to 3*A1 + 4*A2.

Cell A6: hold left-hand side of third constraint, set to 6*A1 + 4*A2.

The right-hand sides will be entered when constraints are defined. The nonnegativity rela-
tions will be set as separate constraints.

We have defined all the necessary parameters. We click on Tools/Numeric
Tools /Optimizer and see the Optimizer input screen. In this we enter:

Solution Cell: A3

Set to Maximize (the default)

Variable Cell(s): A1 . . A2

Click on Add Constraint, in Variable Cell: enter A4, choose 5 , enter 32 in Constant.

Click on Add Another, in Variable Cell: enter A5, choose 5 , enter 36 in Constant.

Click on Add Another, in Variable Cell: enter A6, choose 5 , enter 60 in Constant.

Click on Add Another, in Variable Cell: enter Al, choose 2 , enter 0 in Constant.

Click on Add Another, in Variable Cell: enter A2, choose 2 , enter 0 in Constant.

Click OK, which brings us back to the Optimizer input screen. We review our settings
and change them if necessary. We click OK and get back to the spreadsheet.

Everything is now in order to get the solution. We again click Tools/Numeric
Tools/Optimizer and see again the Optimizer input screen. We want to see the
successive iterations, so we click Opt ions and on that screen select Show Iteration
Results. We click OK and are brought back to the Optimizer input screen. When we
click on Solve we see the initial basic feasible solution. By clicking repeatedly on
Continue Solving, we see this succession of results on the spreadsheet.

The first set of values appears to be the initial basic feasible solution at the origin.
(There is some differences from zeros due to the computer's finite precision.) The second
set is for a point on one of the edges of the feasible region, but this is not a corner point.
The third is near the optimal point and the fourth and subsequent are at (8,3) where f = 91,
the optimum.

7.3: Linear Programming 437

Starting
Cell Values

A1 0
A2 1E-06
A3 9E-06
A4 4E-06
A5 4E-06
A6 4E-06

Next
Values

Third
Values

Fourth
Values

Fifth
Values

Using Maple

Maple can solve linear programming problems by the simplex method. Here are the results
for the same example:

>with (simplex) ;
Warning, the protected names maximize and minimize have been

redefined and unprotected
>obj : = 8*x + 9*y;

(the function is echoed)
>constr : = {2*x + 4*y <= 32, 3*x* + 4*y <:= 36, 6*x + 4*y <= 6 0) ;

(the constraints are echoed)
>maximize (ob j , constr, NONNEGATIVE) ;

x = 8 , y = 3

We see the correct value for the coordinates of the optimal point. MATLAB can do simi-
larly but this requires its Optimization Toolbox, which is not a part of the student edition.

The Dual Problem

Every linear programming problem has a counterpart, called its dual problem. It is some-
what like a mirror image. One 1s called the primal, the other the dual. The optimal values
for the objective functions are identical, so solving one cs like solving the other.

The coefficients in the objective function of the primlal are used as the right-hand sides
of the dual constraints; the right-hand sides of the constraints of the primal are used as the
coefficients in the objective function of the dual. Rows of the matrix of constraints of the
primal become columns in the dual. Maximizing in the primal is equivalent to minimizing
in the d ~ ~ a l . In the primal, constraints are less than or equal, in the dual they are gireater than
or equal. This example will make this clearer; it has just two variables and two constraints
so that we can graph the solutions:

438 Chapter Seven: Optimization

EXAMPLE 7.3 The primaI: The dual:

Max f = 5x1 + 8x2 Ming = 12y1 + 10y2

3x1 + 4x2 5 12, 3?, + 2?, 2 5,

2x1 + 5x2 5 10, 4y1 + 5?, 2 8,
XI, x2 2 0. ?I? ?z 2 0.

Figures 7.1 1 and 7.12 show the graphs. The solutions to each of these were not hard to
find: For the primal, f = 14817 at (xl, x2) = (2017, 617). For the dual, g = 14817 at (yI, y2)
= (917,417).

It is instructive to put the problems in matrix form:

The primal: The dual:

Man 112 10, [;;I
XI, x2 2 0. Y1, Y2 2 0.

In more general terms that apply to problems of any size, let row vector c hold the coef-
ficients of the primal objective with column vector x being the variables; let matrix A
hold the coefficients of the constraints with column vector b holding the right-hand
sides.

Figure 3.12 .,
The prima1 problem The dual problem

7.3: Linear Programming 439

For the dual, vector bT holds the coefficients of the objective that multiplies the vari-
ables in column vector y; for the constraints of the dual, AT is the multiplier of vector y
with vector cT holding the right-hands sides. So we write

The primal: The dual:

Max c x Min bTy

s t . Ax 5 b s t . ATy r cT

x r 0 y r 0

This shows clearly how the pnmal and dual are related.
If the primal has an equality constraint such as 7x1 - 2x2 = 11, we replace it with two

constraints: 7x1 - 2x2 2 11 and 7x1 - 2x2 5 11, but the second is not grea~ter than or
equal to, so we change it to -'7x1 + 2x2 2 11.

Why do we need to consider the dual to our problem? It is often more effici~ent to solve
the dual, because a primal with three variables and seven constraints becomes a problem
with seven variables but only three constraints. If there are seven constraints, we must
reduce in seven rows; if there are three, we reduce in only three rows. Fewer rows mean
fewer arithmetic operations. Many real-world problems have many more constraints than
variables, so working with the dual is greatly preferred.

An example will make this clearer. To make it simple, we will find the dual to the sec-
ond example of this section. That problem is to maximize

constraints:

In the dual, the equivalent problem is to minimize

constraints:

To prepare the problem for the simplex method we add slacks; the matrix form of the pri-
mal is

Chapter Seven: Optimization

The matrix form of the dual is

g = 32y, + 36y, + 60y, - Oy, - Oy,,

(Surplus variables are subtracted because the constraints are greater than or equal.)

Often, the parameters of a linear programming problem are not known precisely. There
could be uncertainty in the coefficients of the objective function, in the right-hand side val-
ues for the constraints, or sometimes in the coefficients of the constraints. After all, these
numbers are usually obtained from past experience which may now be obsolete.

The selling price of the products may change; this would change the coefficients in the objec-
tive function. The amount of available resources may be uncertain (particularly the productivity
of workers-for example, a lead employee may become sick); the supplier of a critical compo-
nent may not be able to complete an order (or possibly he can supply more of a certain product
than we at first thought). A machine can break down; other changes are possible.

Changes in selling prices will change the coefficients of the objective function. Changes
in the amount of available resources will change the right-hand sides of the constraints.
The manager of a business that uses the linear programming (LP) model in making deci-
sions must be concerned about the effect of such changes. (Even the coefficients in one of
the constraints can change if a more efficient way to use that resource is found, but that
changes the feasible region. This is a less common situation.)

Examining the effect of such variations in the parameters is called sensitivity analysis
and is an important part of the process. Determining the effect of such uncertainties in the
parameters cannot be done in advance; only after the problem has been set up and a solu-
tion found can this be done.

One inefficient way to find how a change in a given parameter changes the solution is to
solve the problem again with the changed value. That is not practical because a change in

7.3: Linear Programming 44 1

some parameters may have little or no effect (that parameter is then an insensitive factor)
and we would waste time and effort to find this out. We need a way to know which para-
meters are most important, and how great a change in their values can be allowed without
a significant change in the optimum.

The tableau method for solving an LP problem can be adapted to tell much how much a
unit change in any of the factors changes the solution. We have not discussed this method.

The dual problem gives much information about the primal, including how a change in
the coefficients of the objective function changes the value at the optimum. We use the
problems of Example 7.3 for Example 7.4:

-
EXAMPLE 7.4 The primal: The dual:

Max f = 5x1 + 8x2 Min g = 12yl + 10y2

3x, + 4x2 5 12, 3Y 1 + 2y2 2 5,

2x1 + 5x2 5 10, 4y1 + 5y2 2 8,

Xl, x2 2 0. Y1, Y2 2 0.

We restate this as matrices and vectors:

The primal: The dual:

Min [12 LO]

We already know the solutions: For the primal f = 148,/7 at (2017, 617); for the dual, g =

14817 at (917,417), so we can write

Maxf = [5 81 [::I = 14817, Min g = [12 101 [::I = 14817.

What if the objective of the primal were changed from f = 5x1 + 8x2 to f = 6x1 + 8x2, a
unit change in the first coefficient, cl? We see from the equation for Max f that the value at
the optimal point would increase by 2017 -from 14817 to 16817. We can say that aflac, is
equal to the value of xl at the optimum. Similarly, dfldc2 is equal to the value of x2 at the
optimum.

What if the right-hand side of the first constraint in the primal were changed, from 12 to
13, again a unit change? Look at the equation for Min g in the dual. We see that this will
change the solution from 14817 to 14817 + 917 = 15717, which is exactly what will be the
correspondingly changed solution of the primal! We then see (from the dual) that $flabl is
equal to the value of yl at the optimum. The dual shows immediately how the solution to
the primal changes if a right-hand side of a constraint is increased.

442 Chapter Seven: Optimization

When a problem has nonlinearities, either in the objective function or in the constraints or
both, normal linear programming cannot find the answer. In this section, we describe how
one can find the optimal values for the variables and the corresponding value of the objec-
tive function. We will not give full details of the algorithms but only present examples that
illustrate the difficulties and how they are overcome. You will almost always use a prewrit-
ten computer program to enter the parameters and find the solution. We will do it with a
spreadsheet program.

We describe three situations:

1. The objective function is nonlinear but the constraints are linear.
2. The objective function is linear but some of the constraints are nonlinear.
3. Both the objective function and some of the constraints are nonlinear.

To make the explanation very clear, we will use problems with only two variables. The
number of constraints will also be small even though in practice there are often many con-
straints and many more than two variables. With only two variables, we can show the prob-
lem and its solution graphically.

The problem is to maximize

subject to:

XI, X2 2 0.

Figure 7.13 shows the feasible region and several curves when the objective function is set
equal to certain values.

It is critically important to observe in Figure 7.13 that the optimum is not at a corner
point but is on the line representing the single constraint (other than the nonnegativity
condition). If the objective function were linear, we would find the optimum at a corner
point or everywhere along a constraint line. [If there were a different set of constraints
that happened to have a corner point at (112, I), the optimum for f = xy would occur at
that corner point. That would be a coincidence; we cannot always assume a corner-point
solution.]

A second most important observation is that the curve for the optimal value of the
objective function is tangent to the constraint line at the optimal point. This means that
they have exactly the same slopes at that point. If there were many variables in the prob-
lem, the equivalent observation would be that the gradient of the objective function is a
negative multiple of the gradient of the constraint relation that is controlling. (The two gra-
dients will point in opposite directions and may have different magnitudes.)

7.4: Nonlinear Programming 443

Figure 7.13

If you compute the slope off at (112, 1) you will find that it equals -2 as the graph
suggests.

Linear Objective; Nonlinear Constraints --
For this example, we will solve graphically: maximize

f (x l , 3) = X I + X2'

subject to:

The feasible region is that portion of an ellipse to the right of x l = 1. Figure 7.14 shows the
feasible region and several curves for the objective function.

We see in Figure 7.14 that the optimal value for f is between 4 and 5. We can find the
exact value by determining where the ellipse has a slope of - 1 in the first quadrant. This
turns out to be at xl = lj12.8 = 3.5777, x2 = (&)/2 I= 0.8944. At that point,jc= 4.4721.

Suppose that we repeat this problem, but minimize instead of maximize. Figure 7.15
shows that this is about - 1 at the lower-left corner, (1, - 1/0) = (1, - 1.936).
Substituting the coordinates of the lower-left corner, we compute fe = -0.936.

Chapter Seven: Optimization

Figure 7.14

0th Objective and Constraints Are Nonlinear

Our next example combines the nonlinear function f = xl * x2 with the nonlinear con-
straints of the last example. Here is our problem: Maximize

f (XI, x2) = x1 * x2,

Figure 7.15

7.4: Nonlinear Programming 445

Figure '7. A6

subject to:

We will use the graphical method again. Figure 7.16 shows the familiar feasible region and
some of the objective function curves.

The maximum value f occurs at (2 4, fi) = (2.828, 1.4140) where f = 4.
There is no point in trying to find the minimum. Because the objective is symmetrical about
the xl-axis, we know that it occurs at (2*, -3) = (2.828, - 1.4140) where f = -4.

Even though our examples are limited to ones that we can visualize with graphs;, there are
important conclusions:

1. Finding the optimum for a nonlinear problem is more difficult than when both the
objective function and the constraints are linear. Linear programming does not apply.

2. We have confirmed that, if the objective function is nonlinear, it is almost adways tan-
gent to one of the constraints at the optimum. This implies that the gradient of the objec-
tive function is a negative multiple of the gradient of the constraint(s) that are binding.

3. While this did not occur in our examples, it is possible that the feasible region is con-
cave, not convex as must always be true when all of the constraints are linear
(why?). One can imagine situations where the optimum is at a corner point when

Chapter Seven: Optimization

both objective and constraints are nonlinear and the gradient condition 2 does not
hold; the objective function is not tangent to the region. This would be when the
comer point is a cusp.

4. When there are multiple constraints, not all of them may be binding at the optimum.
5. It is not obvious which of the multiple constraints is binding.
6. If there is some knowledge of where the optimum lies, it can speed finding the

optimum in that we may know which constraint(s) is binding. (Such knowledge
might be from past experience or from the results of the same problem with slightly
different constraints.)

In view of conclusion 4, a search for the optimum by searching along the border of the fea-
sible region seems impractical; one would need to search along every one of the edges in a
2-D case, along every one of the boundary surfaces in 3-D, along every one of the "hyper-
surfaces" when there are more than three variables. Except when there are only two vari-
ables, the multivariable methods of Section 7.2 will be involved.

At the outset of the section, we mentioned that, for a real-world problem, one will surely
use one of the available optimization programs. There are a number of procedures that this
software is based on. We now briefly describe some of them.

1. This is a special case that occurs so infrequently as to be not very useful. If the objec-
tive is nonlinear in n variables and we have (n - 1) constraints and all of these are
equalities, we can solve the equalities for each variable in terms of just one of them. If
these substitutions are used in the objective, we now have a single-variable problem
that can be solved analytically or by any numerical method of Section 7.1. If there are
more than (n - 1) equality constraints, we solve them in combinations of (n - 1) of
them; this requires solving with the substitution obtained from each combination.

2. When the problem has n variables, and (n - 1) inequality constraints, the method of
Lagrange multipliers can be used. This is covered in most calculus books. The
objective function is modified by adding a multiple of the constraint set equal to zero
and solving through setting the system of partial derivative equal to zero.

3. Quadratic programming is a technique that has a quadratic objective (for two vari-
ables, it contains only terms in xI2, xZ2, xIx2, xl, x2, and a constant term). Constraints
can be linear inequalities or equalities. Again, Lagrange multipliers are employed
and an equation derived from the gradient is solved.

4. The use of penaltyfinctions can convert a constrained problem to an unconstrained
function. The objective is expanded to include equality constraints multiplied by a
penalty parameter. If this is minimized for increasing values of the parameter, the
solution converges to the desired result. However, the equations are badly ill-condi-
tioned. A variant of this is the barrier method, where the objective is modified to
include a multiple of the natural logarithm of the constraint.

5. Successive linea~programming converts the problem to a linear programming prob-
lem by approximating the objective function at a point near to the optimum by a
linear combination of the variables and doing the same for the constraint that is

7.4: Nonlinear Programming 447

binding. This requires some knowledge of the optimal point. Once that problem has
been solved, one iterates from that point to impr~ove the accuracy of the solution.
Successive quadratic programming is similar, except the objective is approximated
by a quadratic function.

6. Descent methods move from an initial point toward the optimum by moving in the
direction of the gradient at that point (for maxiinizing) until function values no
longer increase, then the gradient is recomputed (perhaps numerically) and move-
ment in a new direction is begun. Eventually, the optimal point is attained. This is
somewhat analogous to the univariant search of Section 7.2.

We conclude from this rather superficial review of methods that finding the optimum for a
nonlinear objective subject to nonlinear constraints is not easy. It is fortunate thalt software
is available to do the job.

Both Quattro Pro and Excel can solve for the optimum when either or both of the objective
and constraints are nonlinear. Here is how Quattro Pro solves the examples of this section.

Example 1 had a nonliner objective and linear constraints: Maximize

subject to:

We choose cell A1 for xl, cell A2 for x2, cell A3 for the objective function (A1 * A2), and
cell A4 for the left-hand side of the first constraint. We initialize the variables at (1, 1)
because, while f(x, y) = x * y = 0 at (0, 0), a plot of the function is not a pair of curves but
the x and y axes.

We invoke Tool s/Numeric Tools, Optimizer and enter the parameters:
Solution cell = A3, select Max, set Variable cell (s) = Al..A2, and
enter the constraints. To see the successive computations that Quattro Pro uses, we click
Opt ions and mark Show Iteration Results. We return to the optimizer screen
and click OK; the problem has now been set up.

We again invoke ~ools/~umeric ~ools/Optimizer and click on Solve,
which begins the optimization process. Clicking on Continue Solving repeatedly
shows the iterations as new values in the spreadsheet cells. The approach to the optimum is
gradual; here are the values that we see

Chapter Seven: Optimization

You will find it interesting to plot the successive values along with the constraint line and
the objective function for f = 0.5. If you do, you will find that the initial movement from
the starting point, (1, I), is perpendicular to the constraint line, then along the constraint
line until the optimum is found; it takes only a single step to do this.

The second example that we used has a linear objective but a nonlinear constraint:
Maximize

f (xl, x2) = XI + 5
subject to:

We set up the problem on the spreadsheet almost exactly the same as with the previous
example using the new parameters and we invoke the solution and display the successive
iterates in the same way. Here is what is seen if we begin at (1, 0):

and we have reached the correct optimum at point (a, a) where f equals the sum of
the two coordinate values.

If you plot the successive iterates along with the constraint and the optimum objective
curves (here, the objective is just a straight line), you will find that the first significant
move is from (1, 0) to (1.8, 0.8), which is within the feasible region. Two additional steps
are taken along a line whose slope is 1 (which is perpendicular to the objective) until the
constraint curve is reached. From there, additional steps are taken along the border of the
feasible region until the optimum is reached. The length of the steps gradually decreases.

Once the constraint curve has been reached, the continuing steps are along the objective
curve until the optimum point is found.

7.5: Other Optimizations 449

If you solve the third example problem with Quattro Pro, starting at (0, O), you will find
similar results, except that after the first step to the constraint x = 1, y = 0 (a feasible solu-
tion), the second step is taken along this edge of the feasible region. The third step is along
a line of slope about 0.628 (angle about 32") to reach the elliptical constraint. Once there,
successive steps are taken on the ellipse toward the optimal point. You may want to see
how the successive steps are taken from different starting points.

The Excel spreadsheet program can do what we have described for Quattro 130, except
that (0, 0) as a starting point does not work; (1, 1) is satisfactory. Entering constraints is
somewhat simpler with this program.

MATLAB has a toolbox, the Optimization Toolbox, that can solve nonlinear program-
ming problems but this is not a part of the student edition. Maple can solve the problem
too. Spreadsheet programs are more accessible.

ther Optimizations

There are many other situations where an optimal result is required. We describe several of
these in this section.

The Transportation Problem

The ABC Manufacturing Company has a decision to make. They currently have one man-
ufacturing facility in Mississippi that makes a profitable product. Finished goods are
shipped to three distribution warehouses, located in Atlantic City, Chicaglo, and Los
Angeles. Demand has been heavy and is increasing. The managers anticipate that the
capacity of the Mississippi plant must be increased if they are to meet the demand over the
next four years.

One of their vice presidents, John Adams, points out that the majority of the increase in
demand will occur in the western part of the United States, which is supplied by the Los
Angeles distribution center. He proposes that they should consider an alternative plan:
build a new plant in Mexico to meet the increase in demand, which would save on shipping
costs to Los Angeles. Labor costs there will be less, although he admits there will be some
concern about product quality.

A major factor as to which alternative should be chosen is the cost of shipping. This is
extremely high for the product.

This is a typical transportation problem: how the shipping of products from m sources
to n distribution points should be allocated to meet the demands at the distribution points
with least cost for transporting the goods. One set of constraints is the total amount that is
available for shipping from each of the m sources; another set of constraints is the demands
at each of the n distribution points. The objective function is to minimize the total of the
shipping costs, and this cost depends on which source ships to which locatio~n. We must
consider each of the possibilities: plants A, B, C, . . . will ship to locations x, y, z , . . . and
any plant can ship to any destination.

Chapter Seven: Optimization

Adams has determined that the costs of shipping from two manufacturing facilities to
the three distribution locations are, in dollars per unit shipped:

To Atlantic
City To Chicago To Los Angeles

From Mississippi $ 25 $ 45
From Mexico 105 100

Units required
At Atlantic City: $ 3 0
At Chicago: 400
At Los Angeles: 600

Units available
From Mississippi: $ 500
From Mexico: 1000

For this simple problem, the solution is quite obvious: Ship 300 units from Mississippi to
Atlantic City and the remainder (200) to Chicago. Ship from Mexico enough to fill the rest
of the demand at Chicago (200) and the entire demand at Los Angeles (600).

Usually the solution is not so obvious. We can formulate this as a linear programming
problem in this way. Think of the table of costs from two sources to three destinations as a
2 X 3 matrix with the entries as cbj , i = 1 . . . 2, j = 1 . . . 3. Let xi:j be the amounts
shipped from source i to destination j, another 2 X 3 matrix. Let Rj, J = 1 . . . 3 be the
requirements at the destinations and Ai, i = 1 . . . 2 be the amounts available at the sources.
The problem then can be to minimize

subject to:

The objective is just the sum of the dot products of costs times amounts shipped taken by
rows and summed by columns. The first constraint is to satisfy the demands, the last is not
to ship more than available.

You can easily generalize this to rn sources and n destinations. The sums are readily
obtained in a spreadsheet.

Such problems are often solved to answer "What If" questions. Mr. Adams might want
to consider another possibility: What is the effect if a fourth warehouse were located in
Denver?

7.5: Other Optimizations 45 1

Some problems allow only integer values to be valid. This would be the case if we are
assigning employees to jobs or selecting from a number of decisions those to implement.

A typical example is the traveling salesman problem. He is to start from his home office,
visit each of several cities only once, and then return home. He wants to minimize the total
distance traveled. One way to find his best route is to visualize two n X n square arrays,
where n is the number of cities to visit (including home) The elements of the first array are
the distances between each of the cities taken in pairs. If you construct such an array, you
will find it to be symmetric with zeros on the diagonal. The second array will contain the
solution. When the optimal route is determined, it will hold ones in locations thalt represent
travel from one city to the next.

One could solve this by finding the total distance for every possible route. If there are
many cities, this is expensive; although a program that loops through every possible com-
bination will find the answer. Linear programming can clo it, but the real difficulty is defin-
ing constraints to assure that only zeros or ones are possible.

The same difficulty appears whenever the solution must have only integer values. One
proposed technique is to solve the problem without requiring integers; the integer solution
is approximated by rounding the answer. Often this is close enough to the true optimum to
be acceptable. This will be the case when the optimum 1s "flat." If a more accurate answer
is needed, the solution when the integer restrictions are ignored can be refined by testing
the solutions when each variable in turn is perturbed by one or two.

Stochastic Problems

The word stochastic derives from the Greek word meaning "to guess." We guess at a value
when the true number is uncertain because it depends on chance: Whether a batter will hit
this time up is uncertain, but we can anticipate his success based on past experience, his
batting average. It is the same with the parameters in some models of the real world. We
may not know the exact value of a parameter, but we do know from past experience a range
in which the values will lie and perhaps the frequency of occurrences of values within this
range. When this is the case, we are in the field of statistics.

An often mentioned example is the birthday problem. In a room of many people, what
is the probability that two persons have the same birthday? You may not h~ave heard
before that if there are 23 in the room, the chances are that this will occur more than 50%
of the time. (We find this by seeing that after one person tells her birthday, the chance
that the next will not be born on the same day is 3641365, the chance that the third per-
son will not match the first two is 3631365, and so on. The product of 23 such terms is
0.493 and the probability that at least two were born on the same day is 1 -- 0.493 =

0.507.)
Can we do linear or nonlinear programming when, say, a constraint involves such an

uncertain value? One method could be to solve with several values taken within the known
range and from these results ascertain the range of results and the frequency of their

Chapter Seven: Optirni~aiiori

occurrence within that range. Of course, if the solution is quite insensitive to the value of
that uncertain parameter, there will be little effect of the variation and we will probably
ignore it.

A technique that is often used in stochastic situations is simulation, a topic that we
discuss next.

Simulation

The idea of simulation for a stochastic problem is to use random numbers to get a value for a
parameter whose value is uncertain. There are several ways that a table of random numbers
can be constructed; we do not go into this. Most computer languages have a command that
produces random numbers, as do spreadsheet programs and some programmable calculators.

We can simulate the birthday problem for a room with n persons by randomly selecting
a set of n integers from the set of successive integers from 1 to 365 and seeing if two num-
bers are the same. By repeating this many times with a different table of random numbers,
we estimate the probability that two of the n persons will have the same birthday. Doing
this with different values of n will produce a table of values for the probabilities that will
compare well to the theoretical.

Obviously, if the stochastic problem can be solved by applying the rules of statistics, we
will not do simulation. When the theory does not apply, simulation is an answer.

An Example,

An example that is often used to illustrate the concept is a queuing problem, where cus-
tomers come at randomly spaced intervals, get served at a single counter for a time that
is random in length, and leave. While they are being served, another customer may
arrive and have to wait until the first customer leaves, or possibly no new customer
arrives. You can imagine that if there is a sudden rush of new customers, a queue of
waiting customers will form. How can one find whether a single serving counter is
enough to prevent potential customers from not entering the establishment? In other
words, if the queue length is often greater than, say, 4, it will be worthwhile to add
another serving counter.

If a table is created that indicates at periodic intervals whether a customer enters, how
many intervals it takes to serve him, and whether a new customer enters during the next
interval, we can find from this the length of the queue of waiting customers. The flip of a
coin can decide whether a customer enters during the current period and the length of time
for serving a customer can be obtained from a set of random numbers with a distribution
based on past experience.

After a sufficient number of periods, one will know the maximum queue length for that
simulation operation. Repeating the simulation several times will give a good idea of how
often the queue length exceeds four, or some other number.

Exercises 453

The need to do simulations is important enough that special simulation languages have been
developed. This avoids having to do it by hand, as suggested in the previous example. There
are many such languages, for example, GPSS, SIMSCRIPT, SPICE, QSIM. Solme of these
have graphical interfaces that facilitate setting up a model of the process being simulated.

MATLAB has SIMULINK, an extension for doing modeling and simulation of linear
and nonlinear systems. It has a graphical interface to facilitate setting up the simulation
model and for observing the results. This is a part of the student edition of MATLAB and
we describe a little of it now.

Simulink is activated by typing the word at the command prompt. A graphical repre-
sentation of various blocks that represent mathematical operations can be connected. Most
blocks take an input value and transform it to an output value. A succession of blocks can
perform a sequence of mathematical operations, and feedback of values is possible. Many
of the operations are numerical integrations of differential equations.

The user manual describes a very simple application: A sine-wave generator sends its
output to an integration block as well as to a "Mux" block that combines two inputs. The
second input is the output from the integrater. The output of the Mux block goes to a
"Scope" block that displays its inputs as a graph. When the model is run, the screen shows
the plot of both a sine wave and its integral over a period of time that can be specified by
the user.

A more complicated application is also described fully in a demonstration named
"thermo"; it is the operation of a thermostat that tries to keep the temperature of a house
constant against varying outdoor temperatures. Feedback is involved here. An interesting
part is that the cost of heating the house is also computed and displayed.

Section /.:I

1. f(x) = 2x2 - eXl2 has a minimum between x = 0 and
x = 1. Use a spreadsheet to create a list of function val-
ues between 0 and 1 with x-values spaced by 0.05.
Then use the proper spreadsheet function to find the
minimum of the values.

2. After you have completed Exercise 1, create a new list
of function values for the function between the three x-
values nearest the minimum with Ax = 0.005 and
determine a new value for the minimum.

3. Use the three x-values nearest the minimum of the list
in Exercise 2 to construct a quadratic interpolating
polynomial and find where that polynomial has a mini-
mum. Compare the value with the minimum value of
f(x) obtained from f '(x) = 0.

b 4. Show that the x-value at the minimum or maximum of
any second degree polynomial can be obtained without
the need to find a root. If the polynomial is ax2 + bx + c,
what relation between the coefticients produces a mini-
mum; what relation produces a maximum?

5. Are there other functions for which a similar result to
that of Exercise 4 are obtained? List as many different
functions as you can. Is there some general rule?

6. Repeat Exercises 1, 2, and 3, but for f (x) = x3 - 4x.
Graph this function and observe that it ha:; a maximum
as well as a minimum. How are the x-values for the
maximum and the minimum related? Could you tell
that this relationship holds without looking at the
graph?

454 Chapter Seven: Optimization

7. Propose two numerical methods that can find the mini-
mum for functions with graphs similar to Figure 7.2a
and b.

) 8. Use the back- and-forth method to find the minimum of
the function of Exercise 1 accurate to i 0.001.

9. Repeat Exercise 8, but for the function of Exercise 6.

10. Is the back- and-forth method a candidate for Exercise
7? Is it a candidate for both cases of Figure 7.2?

)11. The initial pair of x-value in the golden search proce-
dure narrows the interval that encloses the minimum
point to about 61% of the original interval. What pair
of x-values will narrow the interval the most? What
restrictions should be placed on them? What pair of
x-values will narrow the interval the least? What
restrictions should be placed on them?

12. Use the golden search procedure to find the minimum
of the function in Exercise 1 accurate to L 0.001. How
many iterations are required? Can you know this in
advance? How many function evaluations are required?

13. Repeat Exercise 12, but for the function of Exercise 6.

14. Repeat Exercise 12, but for this function:

within the interval [-2,2].

)15. Find the minimum of Exercise 14 analytically.

16. Repeat Exercises 12, 13, and 14, but get the minimum
from a quadratic interpolation polynomial that fits to the
first three intermediate points. Refine the answers by
employing a new interpolating polynomial that fits to
three points closest to the minimum. Repeat with new
polynomials until there is no improvement in the answer.

17. Repeat Exercise 16, but with cubics through four points.
Compare the efficiency with that of Exercise 16.

18. It is proposed that we extend the idea behind Exercise
16 and 17 as outlined in the steps below. Critique the
proposal.

a. Get three intermediate points within the initial inter-
val by Golden Section, fit a quadratic to these and
get the x-value at its minimum.

b. Use the four points that are the result of step a to
construct an interpolating cubic, and use its mini-
mum x-value to get a fifth point.

c. From these, construct a fourth-degree interpolating
polynomial; minimize to get a sixth point.

d. Continue in this fashion until the minimum x-values
converge.

19. Use MATLAB (or another computer algebra system) to
minimize the functions in Exercises 1,6, and 14.

20. Repeat Exercise 19, but use Excel or Quattro Pro.

21. The Fibonacci sequence begins with F1 = 1, F2 = 1,
and continues with Fn = Fn-2 + Fn_l. As n gets large,
the ratio of approaches the golden mean.

) a. How close is the ratio to the golden mean for
n = 20?

) b. How large must n be to approach to within 0.0001?
c. Prove that the limit of FnIFn+I = golden mean as

n + W.

Section 7.2

)22. The function f(x, y) = x2 + 3y2 - xy + 3x + 2 has a
minimum within the square whose corners are (-2,
-2) and (0,O). Make a table offvalues evenly spaced
within the square spaced apart by 0.2 and find where
the smallest value appears. What is the value? How
many function evaluations were made?

23. Interpolate from the value found in Exercise 22
together with those at the four neighbors closest to it to
get an improved value for the minimum value.

24. Solve for the minimum point in Exercise 22 analyti-
cally. What is thefvalue? How much do the answers in
Exercises 22 and 23 differ from this true minimum?

25. Get contour curves for the function in Exercise 22 for
f = .2,0, -.2, -.3, -.4, and -.45. Would you say that
the minimum is "flat"?

26. Beginning at (0, 0), use a univariant search to find the
minimum of Exercise 22. For the initial traverse, use
Ax = -0.1, then use Ay = -0.02. For each subse-
quent traverses, decrease the step size five-fold. How
many function evaluations are made when the mini-
mum is located to a precision of 0.001? How close is
the fvalue at that point to the analytical f-value that
you obtained in Exercise 24?

)27. Find the minimum point of the function of Exercise 22
by steepest descent starting from (0, 0). Terminate the
search when the (x, y) values are within (0.001, 0.001)
of the true minimum.

28. Construct a graph similar to Figure 7.8 for the path
taken in Exercise 27.

29. We want to solve the problem in Exercise 22 by steep-
est descent starting from the point on the enclosing
square where the gradient has the largest value. Where
is that point?

Exercises 45 5

The function of Exercise 22 is a quadratic function.
That means that the minimum point can be found
in two tries with the conjugate gradient method.
Confirm that this is true when the starting point is
(0, 0). Then repeat this for starting points at the other
corners of the square.

The function of Exercise 22 is a quadratic function.
That means that the minimum point can be found imrne-
diately with Newton's method. Confirm this for starting
points from each corner of the enclosing square. What is
the Hessian matrix at each of these starting points?
What are the inverses of these matrices?

If we did not know the function of Exercise 22 explic-
itly, we could not compute the Hessian matrix equa-
tions for the partial derivatives, but we could do so
from finite difference approximations. Find approxi-
mate values for the derivatives at each corner of the
enclosing square from such finite differences, with LLX
and Ay = 0.02. How does the Hessian matrix so deter-
mined differ from the true value you found in Exercise
3 I? Would the approximate values be more accurate if
the surrounding points were on lines that are not paral-
lel to the axes?

A function that is frequently used to illustrate searching
methods for a minimum is Rosenbrock's function:

)37. Apply Newton's :method to find the minimum for the
function in Exercise 33 starting from (0,O).

38. Use a spreadsheet to solve for the minimum of
Exercise 22.

39. Use a spreadsheet to solve for the minimum of
Exercise 33.

40. A starting simplex for solving for the minimum of the
function of Exercise 22 is a triangle with vertices at (0,
O), (0, -.2) and (-.2, 10). What is the f-value at each
vertex? If the point where f is greatest is reflected, what
new point is chosen for a second simplex? 'You do not
have to exactly reflect, the new point can be anywhere
along the line of reflection. How far should {he "reflec-
tion" go to most greatly reduce thefvalue? 'What is the
f-value at that point?

41. Repeat Exercise 30 but with starting simplexes at each
corner of the square whose vertices are at (0,O) and (2,
2). Each of these simplexes has sides parallel to the
axes that are 0.2 long. Which starting simplex brings
you closest to the optimum point?

Section 7.3

)42. Solve this linear programming problem graphically:

Maximize

7x1 + 3x2
Because both terms are never negative, it is clear by
inspection that the minimum is zero and occurs at subject to
(1, 1). Graph level curves for f = 1,2,5, 15, and 25 and x, + x, 5 10,
observe that the "valley" is narrow and curved. 2x, + x, 5 12,

)34. Confirm that the minimum of the function in Exercise
33 is at (1, 1) by constructing a table of function values
within the square whose comers are at (0,O) and (2,2)
with points spaced apart by 0.2. Does round off cause a
slight difference in the value off at (1, I)? At other
points?

35. Some books illustrate searching methods for
Rosenbrock's function (see Exercise 33) starting from
(- 1.2, 1). If steepest descent is used from this starting
point, in what direction does one move and to what
point before changing direction? What is the direction
of the second movement? Superimpose these two
movements on the graph of level curves that you made
in Exercise 33.

36. Repeat Exercise 35 but use the conjugate gradient
method.

. -
X I , Xz ' 0.

43. Repeat Exercise 42 but for these different objective
functions. For each, what is the value of the function
and at what point does it occur?

a. Max 2x1 + 3x2.
b. Max 1 lxl + ' 7 ~ ~ .
c. Max 6x1 + 3x2.
d. Minxl + x2.
e. Min xl - x2.

44. If the constraint!; of Exercise 42 where changed as fol-
lows, how does the solution to Exercise 42 change?

a. First constraint: xl + x2 5 15.
b. Second constraint: 2x1 + x2 5 10.
c. The nonnegativity constraints:

456 Chapter Seven: Optimization

)45. If one of these constraints were added to Exercise 42,
how would the solution change?

a. 4x, - 3x2 5 26.
b. 4x1 - 3x2 5 18.
c. x, + 3x2 2 9.

46. A region is said to be convex if the line connecting any
two points within the region falls entirely within or on the
surface of the region. It is said to be concave if some lines
cross over a border of the region. Can the feasible region
of a linear programming problem ever be concave?
Explain why this cannot be or show a case where it is.

47. Write a set of constraints for a linear programming
problem with just two variables for which there are no
feasible points on either the x- or y-axes.

48. Repeat Exercise 47 for a problem with three variables;
there are no feasible points on any of the axes.

49. Can this problem be solved graphically? If you think it
can, explain how you would do it. Then get the solution
using your plan.

Maximize

XI + 2w, + 3x3.

Subject to:

xl + 2x25 15,

3x1 + 4x3 5 21,

x, + x, + x3 5 10,

XI, x2, X3 2 0.

)SO. Write a set of constraints that has no points on either
the x-axis or the y-axis; draw the region for the case of
two variables. Then write a set of constraints that pro-
duces no feasible region and draw these for the case of
two variables. Will any combination of both sets of
constraints ever result in a feasible region?

51. Under what condition(s) will the optimal point for a
problem with just two variables always lie on the x-
axis? Under what condition(s) will it always lie on the
y-axis? For the case of three variables, what conditions
cause the optimum to lie on any one of the three axes?

52. Is it ever possible that the feasible region is composed
of two separate regions? If it can, write the constraints
for the case of two variables. If it cannot, outline the
argument that proves this.

53. Add slack variables to the problem in Exercise 49 to
convert the constraints (other than the nonnegativity
constraints) to equalities. Then write in matrix form.
Finally, use the simplex method to solve.

54. Use either Excel or Quattro Pro to solve the problem in
Exercise 49. Do the iterates follow the same path as
used in Exercise 53?

55. Use Maple to solve the problem in Exercise 49.

56. Before we can use the simplex method, we must start
with a basic feasible solution. In the case of the usual
nonnegativity constraints, the origin is such a starting
point and it is customary to begin there. If the origin is
not a part of the feasible region, how can you find a
starting point? Compose a set of constraints that
defines such a feasible region and demonstrate that
your idea works. Do this for two problems: one with
just two variables, and another with four variables.

b57. Formulate this linear programming problem both as the
primal and the dual. Solve both problems by the sim-
plex method. (The negative coefficient for x4 in the
objective means that we incur a loss when that is pro-
duced, but the second constraint means that we
must make 35 units because of certain contractual
obligations.

Maximize

f = 2x1 + 3x2 + x3 - x4.

Subject to:
x1 + 2x2 t 3x3 5 120,

x = 35,

XI , xz> X3' x4 2 0.

58. If the coefficient of x2 in the objective function in
Exercise 57 were changed to 5, how much would the
maximum off change?

59. If the right-hand side of the first constraint in Exercise
57 were changed to 100, how much would the maxi-
mum off change?

)60. Finding the magnitude of changes to the solution of a
linear programming problem as done in Exercises 58
and 59 implicitly assumes that the point where the
maximum occurs does not change to another feasible
solution point. Under what conditions will this assump-
tion not be true? Your explanation should be for both a
two-variable problem and for one with more than two
variables.

Section 7.4

61. Unlike a linear programming problem, when the pro-
gram is nonlinear, the feasible region can be concave.
Write set of constraints for a two-variable problem that
produces a concave feasible region. Plot the region.

Exercises 457

62. For the concave region of Exercise 61, find an objective
function that is a maximum where it touches the region
within the concave portion and not at a corner point.
Solve for the optimal point and the maximum function
value at that point.

63. Repeat Exercises 61 and 62, but for minimization.

)64. Solve this problem:
Maximize

f(x, y) = x2 + 2y.

Subject to:
x 2 1,

y 2 x - - 3,

x 5 4,

y 5 5 - x .

x , y > o

65. The region of Exercise 64 has four corner points. Find
nonlinear objective functions that are a maximum at
each of these corner points.

66. Draw the feasible region that is defined by these con-
straints:

y 5 2x - x2,

y 2 x - 4 .

67. For f(x, y) = 2x + y, find

a. Its maximum on the region of Exercise 66.
b. Its minimum on the region of Exercise 66.

68. Repeat Exercise 67, but for f (x, y) = 2x2 - y.

69. Devise a plan whereby a nonlinear problem can be
solved graphically when there are three variables. Then
pose three problems and sollve them by your technique:

a. With a linear objective, nonlinear constraints.
b. With nonlinear objective, linear constraints.
c. With both objective and constraints being nonlinear.

)70. Solve Exercise 64 by approximating the objective with
a straight line near the maximum point and use linear
progr.amming. Iterate with new approximations to
reach the true minimum value off within 0.002. Do this
three times, starting at three different points in the
neighborhood of the true minimum.

)71. Solve this problem:
Maximize

f (x , y, Z) = x2 + xy + Y 2 - 25.

Subject to:

Do this with a spreadsheet. Begin at different starting
points. Are there starting points that are invalid?

72. Solve Exercise 64 by drawing contour lines for
the objective function, finding one that solves the
problem.

73. Use either Quattro Pro or Excel to find the maximum of
the third example of Section 7.4:
Maximize

f(x,, x2) = XI * X2.

Subject to:

xI2 + 4xZ2 5 16,

xi 2 1.

x* 2 -2.

You will find that the maximum value f occurs at (2&,
1/Z) = (2.828, 1.4140), where f = 4. Plot the region and
the contour for f = 4 and see that it is tangent to the
region at the optimal point.

74. If you solve Exercise 73 when asking to see the inter-
mediate steps, you will find that the third step is taken
at an angle of about 32". Why is this so?

Section 7.5

)75. Section 7.5 begins by describing a transportation
problem whose solution is obvious. Mr. Adams wants
to know if his second alternative, to build a fourth
distribution point in Denver, will result in less total
shipping cost. If this were done, the shipping costs
would be

From Mexico to Denver: $55
From Mississippi to Denver: $70
Required amount at Denver: $200
New required amount at Los Angeles: $400

What should the decision be? What other factors
besides shipping costs should be considered?

76. Formulate the original shipping cost problem of
Section 7.5 as a linear programming problem and solve
it. Does the solution result in integer quantities? If not,
does rounding the results give the same answer as was
obtained by inspection?

77. Repeat Exercise 75, but for the alternative of Exercise
76.

)78. A linear programming problem is

Maximize

x + 2y,

Chapter Seven: Optimization 45 8

Subject to:

. ,

a. Solve the problem. What are the coordinates of the
optimal point and the f-value there? Now, at integer
values for x and y nearest to this point, computef.
Does this match to the rounded value off? If there is
discrepancy, is it serious? What if the right-hand
sides of the constraints were 100 times as great?

b. Suppose that the x-values are limited to only integer
values, but the y-values are not. Can the problem be
solved? If it can, how closely does the feasible value
in part (a) match to the feasible value in part (b)?

79. Do several trials of simulations of the birthday problem
on page 451 by selecting n random integers from the
set [I , 2, 3, . . . ,3651 for n equal to 23. Be sure that the
set of random integers is different for each trial. From
the results of the trials, average the number of times
that two numbers match. How do the simulation results
compare to the theoretical value of 0.507? If the num-
ber of trials is increased, is there a better match?

b80. A barber shop has only one chair. The shop is open from
nine in the morning until five in the afternoon, and this
period is divided into 15-minute intervals. If the proba-
bility that one customer will enter the shop during one

time interval is and the probability that two will enter
is i, and it takes 15 minutes to cut a customer's hair,
what is the maximum number of customers who must
wait? How much time is the barber idle?

Solve this problem by performing trials. You can
simulate the arrival of customers by rolling one die; if it
comes up a 1 or 2, one customer enters; if it comes up a
3, two customers enter; if it comes up a 4, 5, or 6, no
customers enter.

The chore of doing simulations by hand can be
made easier if several people work together and their
results are pooled.

81. As a variation on Exercise 80, during the noon hour
(from 12 to I), and after 4 P.M. (from 4 to 5), the proba-
bility of customers coming into the barber shop is
greater: that one will enter, 3 that two will enter. What
is now the maximum number who must wait for their
haircut? How often is the barber idle during the rush
hours?

82. If you have access to one of the specialized simulation
languages, use it to answer the questions in Exercise 80
and 81.

83. Use Simulink, a part of the MATLAB student program,
to solve several ordinary differential equation problems
taken from Chapter 6, including at least one boundary-
value problem.

lems and Projects

APPI. A sales person is headquartered in Kansas City, Kansas, and must visit customers in eight cities:
Chicago, Minneapolis, St. Louis, Denver, Omaha, Des Moines, St. Louis, and Oklahoma City.

Look up the distances between all of the cities taken in pairs in a road atlas to construct the dis-
tance matrix. Then solve her transportation problem by hand or by writing a computer program that
tries each possible way to visit each city exactly once and then return to home with the least distance
traveled.

As a variation on this, the salesperson wants to make the trip while traveling only on interstate
highways. Does this preclude some potential trips between cities? How can the distance matrix be
modified to exclude trips between certain cities? Is the trip longer with this requirement?

As a second variation, some critical requirements require that she visit Chicago before she visits
either Omaha or Des Moines, and must visit St. Louis before visiting Oklahoma City. Is there a way
to revise the distance matrix to guarantee these exclusions? Is the solution affected by these require-
ments?

APP2. (Note: This is best done as a class project.)
The class divides into five teams. Each team is assigned one of these industries:

a. Petroleum refining
b. Large-scale agriculture

Applied Problems and Projects

c. Furniture manufacture
d. Freight haulage
e. Confectionary production

Each member of the team is to contact someone in the industry that has been assigned and get
answers to these questions:

a. Is linear programming used?
b. If so, 'how frequently? Are parameters based on experience?
c. If not, how are production quantities decided upon?
d. How are workers assigned jobs?
e. Come up with other questions that the team thinks are pertinent.

APP3. When dice are thrown, it is assumed that they are "fair," meaning that the chance of any of the possi-
ble numbers coming up is the same. If this is not true, the dice are said to be "loaded," meaning that
some numbers come up more frequently than others. What is the frequency distribution of the total
that comes up if two dice are thrown but for one of them, getting a four has a probability of 115 rather
than 116, the other numbers on that die having equal frequencies.

Solve: this by simulations, repeating enough times to get a good answer. If you have enough
knowledge of statistics, what is the theoretical frequency distribution?

APP4. George Danzig coined the term "linear programming" in 1947. He is given credit for developing the
simplex method. Find the answers to the following questions:

a. In what field of science was Danzig an expert?
b. What is the publication where he originally explained the simplex method?
c. Is the explanation he gives in this easy to understand?
d. What references to other related work does he list?

Actually, Danzig is not the earliest to develop the simplex method. Some ten or more years earlier,
some Russians introduced the ideas, but this was not well known outside of Russia in 1947. Who are
these Russians?

APP5. There arc several variations on the simplex method of linear programming. In Section 7.3, a reference
is made to the tableau method. Find out what this is and use it to solve the examples of Section 7.3.

APP6. You are to find the minimum of f(x, y, z) within a region that is a cube. If you start at some point on
the surface of the cube, you can move closer to the minimum point by going down the gradient until
the function value increases.

What point on the surface is the best starting point? Is it where the gradient is greatest? How can
you find where this point is located?

Is it preferred to go down the gradient in small steps until the function value increases, or to go
down in two larger steps and use three function values (one being at the starting point) to create a
quadratic interpolating polynomial to estimate the point where the function is least? (After this, you
could use four points to create a cubic polynomial.) Try these schemes on some function whose min-
imum is within a unit cube centered at the origin.

APW. If y = f(x) = ax2 + bx + c, a quadratic, and we know that there is a minimum in [xl, x2] the mini-
mum can be obtained immediately from a relation involving the coefficients a and b. (What is that
relation?) If y = f(x) is not a quadratic but we know that it has a minimum in [xl, x2], we have sev-
eral options:

a. Approximate f(x) with a quadratic from three points in [xl, x2] and use the above relation. What
are the best choices for these three points?

b. Approximatef(x) with a cubic from four points in [xl, x2] and find its minimum. (How would you
do this?) Where should the four points be chosen?

Chapter Seven: Optimization

c. First approximate f (x) with a quadratic, then use the minimum of that quadratic with the three ini-
tial points to construct a cubic and find its minimum.

d. First approximate with a quadratic, get its minimum point, then use this with two of the previous
points to construct a second quadratic, and iterate.

Which option is best from the standpoint of least number of arithmetic operations? Test your choice
with this function:

The function has a second minimum in [0.7, 1.51.

APPS. We have described the golden section search. A Fibonacci search is another way to find the minimum
of y = f (x) within x = [a, b]. It has the advantage that one knows in advance how many iterations are
required to achieve a desired accuracy and hence how many function evaluations are needed. Find
information on this method. Is it more economical in using computing power than the golden section
search?

APP9. A start-up company, Best Electronics, wants to enter the laptop computer business. They have
designs for three models: model A, model B, and model C. To set up the production facility for any
model will cost $20,000. The parts for model A will cost $126, for model B, $157, and for model C,
$203.

It is anticipated that sales of model A will be at most 25,000 per year, of model B, 15,000 per
year, and of model C, 8,000 per year. The profits from them will be $65 per unit of model A, $88 per
unit for model B, and $125 per unit for model C.

Best Electronics will utilize an existing shipping facility that can pack and ship at most 40,000
boxes per year. One box can hold two units of model A but only one unit of model B or C.

Formulate this as a linear programming model and solve for the best production schedule.
Observe that the total costs are the sum of the fixed and variable costs.

The subject of Chapter 6 was ordinary differential equations (ODES), so called because
they involved ordinary derivatives. Some these equations were boundary-value problems
where conditions on the problem were specified at the boundaries of some region.

If the region is on a plane or in three-dimensional space, a point in the region has
coordinates (x, y) or (x, y, z) and the variation of the dependent function u = f(x, y, z)
will be in terms of the space derivatives, duldx, aulay, and duldz and/or the correspond-
ing second order derivatives. When a boundary-value problem is defined in terms of
these partial derivatives, it is a partial-differential equation (PDE). We study PDEs in
this chapter.

Partial-differential equations (PDEs) are classified as one of three types, with terminology
borrowed from the conic sections.

For the second-degree polynomial in x and y,

 AX^ + Bxy + cy2 + F = 0,

the graph is a quadratic curve, and when

B2 - 4AC < 0, the curve is an ellipse,

B2 - 4AC = 0, the curve is a parabola,

B2 - 4AC > 0, the curve is a hyperbola.

For the general partial-differential equation,

~ d ~ u 1 d . x ~ + Bd2u/dxdy + cd2u/dy2 + f(x, y, u) = 0,

Chapter Eight: Partial-Differential Equations

the same terminology is used. If

B2 - 4AC < 0, the equation is elliptic,

B2 - 4AC = 0, the equation is parabolic,

B2 - 4AC > 0, the equation is hyperbolic.

As with the 1-D problems of Chapter 6, the partial-differential equation may have different
types of boundary conditions. If the value for u is fixed on some parts of the boundary, it
has a Dirichlet condition there. If the derivative of u, the gradient, is known, it is a
Neumann condition. (The gradient is always measured along the outward normal.) The
condition may be mixed, a condition where both the value for u and the gradient is
involved. A mixed condition results when heat is lost by conduction or convection to the
surroundings.

Elliptic equations describe how a quantity called the potential varies within a region.
The potential measures the intensity of some quantity (temperature and concentration are
"potentials"). The dependent variable, u, that measures the potential at points in the region
takes on its equilibrium or steady-state value due to values of the potential on the edges or
surface of the region. So, elliptic equations are also called potential equations. The general
form of an elliptic equation in 2-D is

and we see in comparing with the equations for conic sections that A = 1, B = 0, and
C = 1, the values for an ellipse.

How the steady state of the potential is attained from some different starting state is
described by a parabolic equation. So, these equations involve time, t , as one of its vari-
ables. In effect, we march from the initial state toward the final equilibrium state as time
progresses. An important parabolic equation is

which tells how temperatures vary with time along a rod subject to certain conditions at its
ends. The quantities in cplk are parameters (k = thermal conductivity, p = density, c = heat
capacity).

Observe that, for this example, A = 1, B = 0, and C = 0, so that B2 - 4AC = 0, the
same as for a parabola. This equation and the corresponding ones for 2-D and 3-D regions
is then called the heat equation. Exactly the same equation but with cplk replaced by 1/D
describes the molecular diffusion of matter (D is the diffusion coeficient), so the equation
in this form is called the difusion equation. The ratio (klcp) is sometimes called the ther-
mal difusivity.

The third type of partial-differential equation, hyperbolic equations, is also time-
dependent. It tells how waves are propagated; thus it is called the wave equation. In 1-D, it
shows how a string vibrates. The partial-differential equation for a vibrating string is

d2uldx2 - (Tglw) d2uldt2 = 0,

in which T is the tension in the string, g is acceleration of gravity, and w is the weight per
unit length. All of these parameters are positive quantities, so we see that, in comparison to

8.1: Elliptic Equations 463

the conic-section equation, A = 1, B = 0, and C is a negative quantity. Therefore,
B~ - 4AC > 0, the requirement for a hyperbola. In 2-D, the wave equation describes the
propagation of waves.

In this chapter, we discuss the usual techniques for solving partial-differential equations
numerically. These methods replace the derivatives with finite-difference quotients. You
will see that there are limitations to solving these equations in this way because some
regions over which we want to solve the problem do not lend themselves to placing the
nodes uniformly. There are ways to overcome this but they are awkward and it is not easy
to achieve good accuracy in the solution. To some extent, this chapter is preparation for the
next where you will find a more recent way to solve PDEs.

Elliptic Equations
Extends the derivation of the equation for heat flow in 1-D, along a rod, that
was done in Chapter 6 to 2-D (a slab of uniform thickness) and to 3-D
objects. Finite-difference quotients are used to approximate the derivatives,
allowing one to set up a system of equations whose solution is the steady-
state temperatures within the object. Ways to solve the equations more
economically are described.

Another form of elliptic equation, called Poisson's equation, is employed
to find a quantity related to the torsion within a rod when subjected to a
twisting force.

Parabolic Equations
Discusses how temperatures vary with time when heat flows along a rod
(I-D) or within a slab (2-D) after deriving the equations for these cases.
Beginning with a method that is not very accurate, it progresses to a better
technique and then generalizes the procedure to show how these are related.

Hyperbolic Equations
Begins with the derivation of the equation for determining the lateral
displacements of a vibrating string. The equation is solved through finite-
difference approximations for the derivatives. Remarkably, the solution is
found to match exactly to the analytical solution. Unfortunately, this is found
to be not true for a vibrating drum head.

In Chapter 6, we described how a boundary problem for an ordinary-differentia1 equation
could be solved. We now discuss boundary-value problems where the region of interest is
two- or three-dimensional. This makes it a partial-differential equation.

Chapter Eight: Partial-Differential Equations

There are two standard forms of elliptic partial-differential equations when the object is
two-dimensional:

Laplace's equation: -dldx (c,auldx + cyduld y) + au = 0.

Poisson's equation: -dldx (c,duldx + cyduldy) + au = f(x, y),

where c,, cy, and a are parameters of the system that may depend on u and on the values
of x and y. u is the variable whose values within the region we desire, the potential,
at points (x, y) within the 2-D region. Laplace's equation is often called the potential
equation.

We will deal with a simplified version where a = 0. If c, = cy = c, a constant, the equa-
tions can be rewritten as

c(d2uldx2 + d2u/dy2) = 0, or c(d2u/dx2 + d2u/dy2) = f(x, y).

There is a special symbol that is often used to represent the sum of the second-order partial
derivatives:

and the operator V2 is called the Laplacian.
Laplace's equation has many applications besides the steady-state distribution of tem-

perature within an object that we use as our model. We chose this because that situation is
easier for most people to visualize.

We derived the equation for temperature distribution within a rod, a one dimensional
problem, in Chapter 6. We do this now for a two-dimensional region, a flat plate. Figure 8.1
shows a rectangular slab of uniform thickness r with an element of size dx X dy. u, the
dependent variable, is the temperature within the element. We measure to the location of
the element from the lower-left corner of the slab. We consider heat to flow through the
element in the direction of positive x and positive y.

The rate at which heat flows into the element in the x-direction is

-(conductivity) (area) (temperature gradient) = -kA duldx,

= -k(~dy) w a x ,

where the derivative is a partial derivative because there are two space dimensions.
Similarly, the rate of heat flow into the element in the y-direction is

We equate the rate of heat flow into the element to that leaving plus the rate of flow out of
the element from the surface of the slab, Q cal/crn2 (the system is at steady state). For the
rate of heat leaving, we must use the gradients at x + dx and y + dy:

rate of flow out in x-direction = - k(rdy)

au a2u
rate of flow out in y-direction = -k(rdx) [- + - dy],

dy ay2

8.1 : Elliptic Equations 465

Figure 8.1

so the total flow of heat from the element is

au a2u [* + *dX] - k(7dx) [- + - dy] + Q(dx dy), -k(rdy) ax ax2
ay ay2

The sum of the flows into the element must equal the rate at which heat flows from the
element plus the heat loss from the surface of the element if the temperature of the element
is to remain constant (and we are here considering only the steady-state), so that we have,
after sorne rearrangement:

If the object under consideration is three-dimensional, a similar development leads to

where nlow Q is the rate of heat loss per unit volume.
(The loss of heat in the three-dimensional case would have to be through an imbedded

"heat-sink," perhaps a cooling coil. It is easier to visualize heat generation within the
object, perhaps because there is an electrical current passing through it.)

As we have said, the Laplacian, the sum of the second partial derivatives, is often repre-
sented by V2u, SO Eq. (8.1) is frequently seen as

If the thickness of the plate varies with x and y, a development that parallels that of
Section 6.7 gives

Chapter Eight: Partial-Differential Equations

If both the thickness and the thermal conductivity are variable:

Solving for the Temperature Within the Slab

The standard way to obtain a solution to Eqs. @.I), (8.2), and (8.3) is to approximate the
derivatives with finite differences. We will use central differences and assume that the ele-
ments are all square and of equal size so that nodes are placed uniformly within the slab.
This is relatively easy to do if the slab is rectangular and the height and width are in an
appropriate ratio. (If this is not true, another technique, the finite element method, which
we describe in the next chapter, is most often used.) When the nodes are uniformly spaced
so that Ax = Ay, we will use the symbol h for that spacing.

A convenient way to write the central difference approximations to the second partial
with respect to x is

where uL and uR are temperatures at nodes to the left and to the right, respectively, of a
central node whose temperature is uO. The nodes are Ax apart. A similar formula approx-
imates d2uld y2:

in which uA and uB are at nodes above and below the central node. It is customary to make
Ax = Ay = h. So, if we combine these, we get

Here is an example.

EXAMPLE 8.1 Solve for the steady-state temperatures in a rectangular slab that is 20 cm wide and 10 cm
high. All edges are kept at 0' except the right edge, which is at 100°. There is no heat
gained or lost from the surface of the slab. Place nodes in the interior spaced 2.5 cm apart
(giving an array of nodes in three rows and seven columns) so that there are a total of 21
internal nodes.

Figure 8.2 is a sketch of the slab with the nodes numbered in succession by rows. We
could also number them according to their row and column, with node (1, 1) at the upper
left and node (3, 7) at the lower right. However, it is better to number them with a single
subscript by rows when we are setting up the equations, as we have done in the figure. (In
a second example, the alternative numbering system will be preferred.) Let ui be the tem-
perature at node (i).

8.1: Elliptic Equations 467

Figure 8.2

The (equation that governs this situation is Eq. (8.1) with Q = 0:

We use these approximations for the second-order derivatives at a central node, where the
temperature is uO:

where uL and uR are nodes to the left and right of the central node. Similarly, nodes uA
and uB are nodes above and below the central node. Substituting these into Eq. (8.4)
gives

There is a simple device we can use to remember this approximation to the Laplacian.
We call it a "pictorial operator":

This pictorial operator says: Add the temperatures at the four neighbors to uO, subtract
4 times uO, then divide by h2, and you have an approximation to the Laplacian.

Chaptrr Fight: Partial-Differential Equations

We can now write the 21 equations for the problem. Because in this example we set the
Laplacian for every node equal to zero, we can drop the h2 term. A node that is adjacent to
a boundary will have the boundary value(s) in its equation; this will be subtracted from the
right-hand side of that equation before we solve the system. Rather than write out all the
equations, we will only show a few of them:

For node 1: 0 + u2 + 0 + ug - 4ul = 0, which, when the nodes are put in order,
becomes:

For node 9: u2 + ug - 4ug + u10 + uI6 = 0.

Fornode 14: u7 + u13 - 4uI4 + u,, = -100.

For node 18: u l l + uI7 - 4uI8 f ulg = 0.

If we write out all 21 equations in matrix form, we get

and we see that the coefficient matrix is symmetric and banded with a band width of 15.
There are modifications of Gaussian elimination that can take advantage of the symmetry
and bandedness, and we can use less memory to store the coefficients. You will find that
numbering the nodes in a different order can reduce the band width to seven. (An exercise
at the end of the chapter asks you to find this preferred ordering.)

8.1: Elliptic Equations 469

When the system of equations is solved by Gaussian elmination, we get these results:

Column Row 1 Row 2 Row 3

Rows 1 and 3 are the same; this is to be expected from the symmetry of boundary con-
ditions at the top and bottom of the region. Nodes near the hot edge are warmer than those
farther away.

The accuracy of the solution would be improved if the nodes are closer together; the
errors decrease about proportional to h2, which we anticipate because the central differ-
ence approximation to the derivative is of 0(h2). Another way to improve the accuracy is
to use a nine-point approximation to the Laplacian. This uses the eight nodes that are adja-
cent to the central node and has an error of 0(h6). A pictorial operator for this is

If Example 8.1 is solved using this nine-point formula and with h = 2.5 cm, the
answers will be within -+0.0032 of the "analytical" solution (from a series solution given
by classical methods for partial differential equations).

The difficulty with getting the solution to a problem in the way that was done in the last
example is that a very large matrix is needed when the nodal spacing is close. In that exam-
ple, if h = 1.25, the number of equations increases from 21 to 105; if h were 0.625, there
would be 465 equations. The coefficient matrix for 465 equations has 4652 = 216,225 ele-
ments! Not only is this an extravagant use of computer memory to store the values but also
the solution time may be excessive. However, the matrix is sparse, meaning that most of
the elements are zero. (Only about 1% of the elements in the last case are nonzero.)

Iterative methods that were discussed in Chapter 2 are an ideal technique for solving a
sparse matrix. We do need to arrange the equations so that there is diagonal dominance
(and this is readily possible for the problems of this section). We can write the equations in
a form useful for iteration from this pictorial operator:

Chapter Eight: Partial-Differential Equations

which is, when nodes are specified using row and column subscripts:

We can enter the Dirichlet boundary conditions into the equations by substituting these
specified values for the boundary nodes that are adjacent to interior nodes.

The name given to this method of solving boundary-value problems is Liebmann's
method. We illustrate with the same example problem as Example 8.1.

EXAMPLE 8.2 Solve Example 8.1, but now use Liebrnann's method. Use h = 2.5 cm.
We will designate the temperatures at the nodes by ui,? where i and j are the row and

column for the node. Row 1 is at the top; column 1 is at the left and there are three rows
and seven columns for interior nodes. The boundary conditions will be stored in row 0 and
row 4, and in column 0 and column 8.

Figure 8.3 shows how nodes are numbered for this problem-we use double subscripts
to indicate the row and column.

Here is the typical equation for node (i, j) :

(~ ~ , ~ - l + u ; , j + l + ui-l,j + ~ i + l , , j)
U . . = , withi= l . . .

L J 4

It is best to begin the iterations with approximate values for the uy, but beginning with all
values set to zero will also work. Another way to begin the iterations is with all interior node
values set to the average of the boundary values. If this is done, 26 iterations give answers
that change by less than 0.0001 and that essentially duplicate those of Example 8.1. (If the

Columns

Figure 8.3

8.1: Elliptic Equations 4 7 1

Accelerating Convergence in kieb

In Chapter 2, it was observed that solving a linear system by iteration can be speeded by
applying an overrelaxation factor to the process. In the present context, this is called suc-
cessive overrelaxation, abbreviated S.O.R.

To use the S.O.R. techniques, the calculations are made with this formula:

where the ui, terms on the right are the current values of that variable and the one on the
left becomes the new value. The o-term is called the overrelaxation factor:

Solving Example 8.2 with various values for the overrelaxation factor gives these results:

Overrelaxation Number of
factor iterations

From this we see that overrelaxation can decrease the number of iterations required by
almost me-half.

The optimal value to use for o, the overrelaxation factor, is not always predictable.
There are methods that use the results of the first few iterations to find a good value. For a
rectangular region with Dirichlet boundary conditions, there is a formula:

Optimal w = smaller root of this quadratic equation = 0:

[cos (:) + cos (f)p3 - 160 + 16,

where p and q are the number of subdivisions of each of the sides. This formula suggests
using w = 1.267 for the previous example. This is about the same as the value oOp, = 1.3
that was found by trial and error.

hy 'Does SO. . Accelerate Cowergesrmce?

We can find the basis for S.O.R. by examining the rate of convergence of iterative meth-
ods, both Gauss-Seidel, which we have used on Example 8.2, and the Jacobi method.
Both of these techniques can be expressed in the form

.(n+l) = Gx(n) = -Bx(n) + b r . (8.9)

Chapter Eight: Partial-Differential Equations

(Of course, both methods require that matrix A be diagonally dominant, or nearly so.) The
two methods differ, and the difference can be expressed through these matrix equations.
where A is written as L t D + U:

Jacobi: x(n+l) = -D-1 (L + u) x (~) + ~ - l b ,

Gauss -Seidel: x(n+l) = -(L + D) - ~ U X (~) + (L + D)-lb.

As Eq. (8.9) makes clear, the rate of convergence depends on how matrix B affects the
iterations.

We now discuss how matrix B operates in these two methods. If an iterative method
converges, ~ (~ ' l) will converge to x, where this last is the solution vector. Because it is the
solution, it follows that Ax = b. Equation (8.9) becomes, for xn'l = xn = X ,

Let e(") be the error in the nth iteration

When there is convergence, e(?') -+ 0, the zero vector, as n gets large. Using Eq. (8.9) it
follows that

Now, if Bn -+ 0, the zero matrix, it is clear that e(n) + 0. To show when this occurs, we
need a principle from linear algebra:

Any square matrix B can be written as U D U - I . If the eigenvalues of B are
distinct, then D is a diagonal matrix with the eigenvalues of B on its diagonal.
(If some of the eigenvalues of B are repeated, then D may be triangular, but the
argument holds in either case.)

From this we write

Now, if all the eigenvalues of B (these are on the diagonal of D) have magnitudes less than
one, it is clear that Dn will approach the zero matrix and that means that Bn will also. We
then see that iterations converge depending on the eigenvalues of matrix B: They must all
be less than one in magnitude. Further, the rate of convergence is more rapid if the largest
eigenvalue is small. We also see that even if matrix A is not diagonally dominant, there
may still be convergence if the eigenvalues of B are less than unity.

This example will clarify the argument.

- ---" ------- - - - - .-

.3 Compare the rates of convergence for the Jacobi and Gauss-Seidel methods for Ax = b,
where

8.1: Elliptic Equations 473

For this example, we have

and

For the Jacobi method, we need to compute the eigenvalues of this B matrix:

-113 116

B = D-'(L + U) =

0 115 2 0 - 115 -215 0

The eigenvalues are -0.1425 + 0.3366i, -0.1425 - 0.3366i, and 0.2851. The largest
in magnitude is 0.3655.

For the Gauss-Seidel method, we need the eigenvalues of this B matrix:

B = (L + D)-'U =

111210 2/35 -115

which has these eigenvalues: 0 , 0.0357 + 0.1333i, and 0.0357 - 0.1333i. The largest in
magnitu~de for the Gauss-Seidel method is 0.1380. We then see that (as expected) the
Gauss-Seidel method will converge faster. If we solve this example problem with both
methods, starting with [0 0 01 and ending the iterations when the largest change in any
element of the solution is less than 0.00001, we find that Gauss-Seidel takes only seven
iterations, whereas the Jacobi method takes 12.

We have used overrelaxation (the S.O.R. method) to speed the convergence of the itera-
tions in solving a set of equations by the Gauss-Seidel technique. In view of the last
discussion, this must be to reduce the eigenvalue of largest magnitude in the iteration equa-
tion. We have used S.O.R. in the following form:

with the first summation fromj = 1 to j = i - 1 and the second from j = i to j = N. As
shown before, the standard Gauss-Seidel iteration can be expressed in matrix form:

which is more convenient for the present purpose. We want the overrelaxation equation to
be in a similar form. From A = L + D + U, we can write

Chapter Eight: Partial-Differential Equations

Now, if we add Dx to both sides of this, we get

Dx - wLx - wDx - wUx + wb = Dx,

which can be rearranged into

x(~+ ') = (D + wL)-'[(l - w)D - w ~ 1 . d ~) + w(D + wL)-lb,

and this is the S.O.R. form with w equal to the overrelaxation factor. It is not easy to show
in the general case that the eigenvalue of largest magnitude in Eq. (8.13) is smaller than
that in Eq. (8.12), but we can do it for a simple example.

LE 8 . 4 Show that overrelaxation will speed the convergence of iterations in solving

For this, the Gauss-Seidel iteration matrix is

whose eigenvalues are 0 and 116.
For the overrelaxation equation, the iteration matrix is

We want the eigenvalues of this, which are, of course, functions of w. We know that, for
any matrix, the product of its eigenvalues equals its determinant (why?), so we set

hl * h2 = det(iteration matrix) = (w - I) ~ .

To get the smallest possible value for hl and h2, we set them equal, so hl = h2 = (w - 1).
We also know that, for any matrix, the sum of its eigenvalues equals its trace, so

which has a solution w = 1.045549. Substituting this value of w into Eq. (8.14) gives

-0.0455 -0.5228
0.0159 0.1366 1 '

whose eigenvalues are 0.0456 + 0.0047i, whose magnitudes are smaller than the largest
for the Gauss-Seidel matrix, which is 116 = 0.16667.

The previous examples were for an equation known as Laplace's equation:

v2u = 0.

8.1: Elliptic Equations 475

If the right-hand side is nonzero, we have Poisson's equation:

V2u = R,

where R can be a function of position in the region (x, y). To solve a Poisson equation, we
need to make only a minor modification to the methods described for Laplace's equation.

-

IEXAMPL E $. 5 Solve for the torsionfinction, 4, in a bar of rectangular cross section, whose dimensions
are 6 in. X 8 in. (The tangential stresses are proportional to the partial derivatives of the
torsion Function when the bar is twisted.) The equation for 4 is

V2+ = -2, with 4 = 0 on the outer boundary of the bar's cross section.

If we subdivide the cross section of the bar into 1-in. squares, there will be 35 interior nodes
at the corners of these squares (h = 1). If we use the iterative technique, the equation for 4 is

Convergence will be hastened if we employ overrelaxation. Equation (8.8) predicts mop, to
be 1.383. Using overrelaxation with this value for w converges in 13 iterations to the val-
ues in Table 8.1.

If overrelaxation is not employed, it takes 25 iterations to get the values of Table 8.1.
Again, overrelaxation cuts the number of iterations about in half.

Just as we saw in Section 6.7 for a one-dimensional problem, two-dimensional problems
may have derivative boundary conditions. These may be of either Neumann or mixed type.
We can define a more universal type of boundary conditions by the relation:

Au + B = Cu', where A, B, and C are constants.

If C = 0, we have a Dirichlet condition: u = -BIA. If A = 0, the condition is Neumann:
u' = BIC. If none of the constants is zero, it is mixed condition. This relation can match a
boundary condition for heat loss from the surface:

-kul = H(u - u,)

'Fable 8.1 Torsion function at interior nodes for Example 8.5

Chapter Eight: Partial-Differential Equations

by taking A = H, B = -H * us, C = -k.
Here is an example that shows how this universal type of boundary conditions can be

handled.

is 5 cm X 9 cm and is 0.5 cm thick.
Everywhere within the slab, heat is being generated at the rate of 0.6 cal/sec/cm3. The two
5-cm edges are held at 20' while heat is lost from the bottom 9-cm edge at a rate such that
du ldy = 15. The top edge exchanges heat with the surroundings according to -k du ldy =

H * (uO - us), where k, the thermal conductivity, is 0.16; H, the heat transfer coefficient,
is 0.073; and us, the temperature of the surroundings, is 25". (uO in this case is the temper-
ature of a node on the top edge.) No heat is gained or lost from the surfaces of the slab.
Place nodes within the slab (and on the edges) at a distance 1 cm apart so that there are a
total of 60 nodes.

Figure 8.4 illustrates the problem. In Figure 8.4, rows of fictitious nodes are shown
above and below the top and bottom nodes in the slab. These are needed because there are
derivative boundary conditions on the top and bottom edges.

The Dirichlet conditions on the left and the right will be handled by initializing the
entire array of nodal temperatures to 20°, and omitting these left- and right-edge nodes
from the iterations that find new values for the nodal temperatures.

8.1: Elliptic Equations 477

(These edge nodes are the uL or uR in the formula:

For computations along the bottom edge (row 6) , where duldy = 15, the gradient,
dul a y, will be computed by

where uA is at a node in the fifth row and uF is a fictitious node. (Take note of the fact that,
if the gradient here is positive, heat flows in the negative y-direction, so heat is being lost
as specified.) The equation for computing temperatures along the bottom edge is then

(uL + uR + uA + uB) Q * h2
u o = -- with uB = uF.

4 kt '

For computations along the top edge where the relation is

temperatures will be computed using a fictitious node above uO, uF, from

where uA = uF, and, because

where uB is a node in the second row, we have

which gives

When these replacements are included in a program and overrelaxation is employed
(w = 1.57), the results after 28 iterations are as shown in Table 8.2.

Table 8.2 Temperatures after 28 iterations for Example 8.6
- * -- - --- -

478 Chapter Eight: Partial-Differential Equations

When the partial-differential equations of this chapter are solved (using the finite-
difference method), the resulting coefficient matrix is sparse. The sparseness increases as
the number of nodes increases: If there are 21 nodes, 8 1% of the values are zeros; if there
are 105 nodes, 96% are zeros; for a 30 X 30 X 30 three-dimensional system, only 0.012%
of the 729 * lo6 values are nonzero!

The coefficient matrices are not only sparse in two- and three-dimensional problems. They
are also banded, meaning that the nonzero values fall along diagonal bands within the matrix.
There are solution methods that take advantage of this banding, but, because the location of
the bands depends strongly on the number of nodes in rows and columns, it is not simple to
accomplish. Only for a tridiagonal coefficient matrix is getting the solution straightforward.

One way around the difficulty, as we have shown, is iteration. This is an effective way
to decrease the amount of memory needed to store the nonzero coefficients and to (usually)
speed up the solution process. However, as we saw in Section 6.7, the system of equations
for the one-dimensional case always has a tridiagonal coefficient matrix, and, for this, nei-
ther the computational time nor the storage requirements is excessive. We ask "Is there a
way to get a tridiagonal coefficient matrix when the region has two or three dimensions?"
The answer to this question is yes, and the technique to achieve this is called the alteunat-
ing direction implicit method, usually abbreviated to the A.D.I. method.

The trick to get a tridiagonal coefficient matrix for computing the temperatures in a slab
is this: First make a traverse of the nodes across the rows and consider the values above and
below each node to be constants. These "constants" go on the right-hand sides of the equa-
tions, of course. (We know that these "constant" values really do vary, but we will handle
that variation in the next step.) After all the nodes have been given new values with the hor-
izontal traverse, we now make a traverse of the nodes by columns, assuming for this step
that the values at nodes to the right and left are constants. There is an obvious bias in these
computations, but the bias in the horizontal traverse is balanced by the opposing bias of the
second step. If the object is three-dimensional, three passes are used: first in the x-direc-
tion, then in the y-direction, and finally in the z-direction.

A.D.I. is particularly useful in three-dimensional problems but it is easier to explain
with a two-dimensional example. When we attack Laplace's equation in two dimensions,
we write the equations as

where, as before, uL, uR, uA, and uB stand for temperatures at the left, right, above, and
below the central node, respectively, where it is uO. When, as is customary, hx = Ay, the
denominators can be canceled. The row-wise equations for the (k + 1) iteration are

(uL - 2u0 + UR)(~+') = -(uA - 2u0 + UB)(~), (8.15)

where the right-hand nodal values are the constants for the equations. When we work col-
umn-wise, the equations are for the (k + 2) iteration

(uA - 2u0 $. uB)(~'~) = -(uL - 22.40 + UR)(~"), (8.16)

where, again, the right-hand nodal values are the constants.

8.1: Elliptic Equations 479

We can speed up the convergence of the iterations by introducing an acceleration factor,
p, to malke Eq. (8.15) become

U O (~ + ') = U O (~) + p(uL - 2u0 + UR)(~+ I) + p(uA - 2240 + UB)(~),

and Eq. (8.16) becomes

U O (~ + ~) = U O (~ + ') + p(uA - 2u0 + UB)(~+') + p(uL - 2u0 + UR)(~+ '1,

where the last terms in both use the values from the previous traverse.
Rearranging further, we get the tridiagonal systems

and

for the horizontal and vertical traverses, respectively.
In writing a program for the A.D.I. method, we must take note of the fact that the coef-

ficient matrices for the two traverses are not identical because the boundary values enter
differently. Here is a deliberately simple example that illustrates the procedure.

-- ------ p- - -- -- -
EXALMPLE 8.7 A rectangular plate is 6 in. X 8 in. The top edge (an 8-in. edge) is held at 100°, the right

edge at 50°, and the other two edges at 0'. Use the A.D.I. method to find the steady-state
temperatures at nodes spaced 1 in. apart within the plate.

There are 5 * 7 = 35 interior nodes, so there are 35 equations in each set (the horizon-
tal and vertical traverses). With p = 0.9, and starting with all interior values set to 0°, the
values of Table 8.3 result after 28 iterations, which is when the maximum change in any of
the values is less than 0.001. (If we begin with the interior nodes set to the average of the
boundary values, these values are reached in 24 iterations with p = 1.1 .)

For this particular example, the number of nodes is small enough that Liebmann's
method with overrelaxation could be used. That method is somewhat more efficient
because it requires only 15 iterations to attain the same accuracy.

3 Temperatures at interior nodes for Example 8.7

Chapter Eight: Partial-Differential Equations

Figure 8.5

All of the examples that we have used so far have had regions where the nodes can be
spaced uniformly. That is not always the case. There are three reasons why we may need a
nonuniform spacing:

1. A rectangular region may have width and length incompatible with a uniform spacing.
2. The region may be nonrectangular.
3. We may want nodes closer together in some areas to improve the accuracy where the

dependent variable is changing rapidly.
(If the region is three-dimensional, analogous cases apply.)

For case 2, we may be able to change the coordinate system and use an appropriate redefi-
nition of the Laplacian. In any case, we can approximate it for a set of nodes not uniformly
spaced. Consider Figure 8.5.

Figure 8.5 illustrates a situation where the four nodes around the central node have differ-
ent spacing. As shown in the figure, the distances to points L, R, A, and B from point 0 , the
central node, are hL, hR, hA, and hB. These points are nodes to the left, right, above, and
below the central node, respectively. The u-values at these points are uL, uR, uA, and uB.
Approximate the first derivatives between points L and 0 and between points 0 and R with:

These can be interpreted as central difference approximations at points halfway
between points L and 0 and halfway between 0 and R. We then approximate the second
derivative with:

but this is not a central difference approximation at exactly point 0 . We can use it to
approximate the second derivative there but doing so incurs an error of O(h). We can do the
same to approximate a2uldy2 by using the points in a vertical line.

8.2: Parabolic Equations 48 1

Using Eq. (8.19) is not the best way to handle the problem, however. Thejinite-element
method (FEM)" is much to be preferred and we describe this in the next chapter. In FEM,
the region is divided into subregions and these can be other than squares, usually triangles
in 2-D. The subregions, which have common vertices, can be of varying sizes. A boundary
that is not straight is approximated by a sequence of straight lines that can be very short
where the boundary is sharply curved.

The second class of partial-differential equations is usually called the diffusion equation or
the heat equation because the typical examples are the molecular diffusion of matter and
the flow of heat within regions. We will use heat flow as our example, similarly to
Section 8.1. In contrast to that for an elliptic PDE, the situation is not the steady state but is
time dependent; temperatures vary with time.

We begin with the 1-D case, but we will extend the treatment to 2-D and 3-D. For 1-D,
we think of heat flowing along a rod. (If the temperatures do reach a steady state, these will
be the same as those found by the method of Section 8.1 .)

Figure 8.6 shows a rod of length L with an element of length dx in the interior. No heat
leaves or enters the rod through its circumference (it may be insulated) but flows only
along the rod. As described in Chapter 6, heat flows into the element from the left at a rate,
measured in callsec, of

The minus sign is required because duldx expresses how rapidly temperatures increase
with x, whereas the heat always flows from high temperature to low.

The rate at which heat leaves the element is given by a similar equation, but now the
temperature gradient must be at the point x + dx:

in which the gradient term is the gradient at x plus the change in the gradient between x and
x + dx.

These two relations are precisely those of Section 6.7. Now, however, we do not assume
that these two rates are equal, but that their difference is the rate at which heat is stored

Figure 8.6

* The abbmreviation FEA is sometimes used, frompnite-element analysis.

Chapter Eight: Partial-Differential Equations

within the element. This heat that is stored within the element raises its temperature. The
rate of increase in the amount of heat that is stored is related to the rate of change in tem-
perature of the element by an equation that involves the volume of the element (A * dx,
measured in cm3), the density of the material (p , measured in callgm), and a property of the
material called the heat capacity, [c, measured in cal/(gm * "C)]:

du
rate of increase of heat stored = cp(A dx) -.

dt

We equate this increase in the rate of heat storage to the difference between the rates at
which heat enters and leaves:

where the derivatives are now partial derivatives because there are two independent
variables, x and t. We can simplify Eq. (8.20) to

If the region is a slab or a three-dimensional object, we have the analogous equation

in which the Laplacian appears.
It may be that the material is not homogeneous and its thermal properties may vary

with position. Also, there could be heat generation within the element equal to Q call
(sec * cm3). In this more general case we have, in three dimensions,

Our illustrations will stay with the simpler cases represented by Eqs. (8.21) and (8.22).
In order to solve these equations for unsteady-state heat flow (and they apply as well to

diffusion or to any problem where the potential is proportional to the gradient), we need to
make the solution agree with specified conditions along the boundary of the region of
interest. In addition, because the problems are time dependent, we must begin with speci-
fied initial conditions (at t = 0) at all points within the region. We might think of these
problems as both boundary-value problems with respect to the space variables and as ini-
tial-value problems with respect to time.

olving the Heat Equation

We describe three different ways to solve for temperatures as they vary with time along a
rod, the one-dimensional case. All three techniques are similar in that they replace the

8.2: Parabolic Equations 483

space derivative with a central difference. They differ in that different finite-difference
quotients are used for the time derivative. We begin with what is called the explicit method.
We use this forward approximation for the time derivative:

au u i + j - u j -- - (at point xi and time tj),
at a t

where we use subscripts to indicate the location and superscripts to indicate the time.* For
the derivative with respect to x, we use (at point xi and time tj):

Observe that we are using a forward difference in Eq. (8.23) but a central difference in
Eq. (8.24). From the discussion in Chapter 3, we know that the first has an error of order
O(At), whereas the second has an error of order ~ (h) ~ . This difference in orders has an
important consequence, as will be seen.

Substituting these approximations into Eq. (8.21) and solving for u{+l, we get

where

Equation (8.25) is a way that we can march through time one At at a time. For t = tl, we
have the u's at to from the initial conditions. At each subsequent time interval, we have the
values for the previous time from the last computations. We apply the equation at each
point alo'ng the rod where the temperature is unknown. (If an end condition involves a tem-
perature gradient, that endpoint is included.)

The use of Eq. (8.25) to compute temperatures as a function of position and time is
called the explicit method because each subsequent computation is explicitly given from
the previous u-values.

An example will clarify the procedure.

----------- ----- -- -- -
1, F 8.8 Solve for the temperatures as a function of time within a large steel plate that is 2 cm thick.

For steel, k = 0.13 cal/(sec * cm * "C), c = 0.11 cal/(g " "C), and p = 7.8 g/cm3. Because
the plate is large, neglect lateral flow of heat and consider only the flow perpendicular to
the faces of the plate.

Initially, the temperatures within the plate, measured from the top face (where x = 0) to
the bottom (where x = 2) are given by this relation:

* The xi are locations of evenly spaced nodes. The 9 are times spaced apart by At.

Chapter Eight: Partial-Differential Equations

The boundary conditions, both at x = 0 and at x = 2, are u = 0". Use Ax = 0.25 so there
are eight subdivisions. Number the interior nodes from 1 to 7 so that node 0 is on the top
face and node 8 is at the bottom.

The value that we use for At depends on the value that we choose for r, the ratio
(kA t) l [cp (A~)~] . Let us use r = 0.5 for a first trial. Doing so greatly simplifies Eq. (8.25). It
becomes

(We shall compare the results of this first trial to other trials with different values for r.)
With r = 0.5, the value of At is r~p (AX)~ / k = 0.5(0.11)(7.8)(0.25)~/0.13 = 0.206 sec.

We use Eq. (8.26) to compute temperatures at each node for several time steps. When
this is done, the results shown in Table 8.4 are obtained. Because the values are symmetri-
cal about the center of the rod, only those for the top half are tabulated, and the values for
x = 0, which are all u = 0, are omitted. Table 8.4 also shows values from the "analytical"
solution at x = 0.5 and at x = 1 from the series solution given by a classical method for
solving the problem.

It is apparent from the conditions for this example that the temperatures will eventu-
ally reach the steady-state temperatures; at t = m, u will be 0" everywhere. The values in
Table 8.4 are certainly approaching this equilibrium temperature. (All temperatures are
within 0.1 of 0.0 after 85 time steps.)

.4 Computed and analytical temperatures for Example 8.8

x value

0.25 0.50 0.75 1.00
Time
steps t (computed) (comp) (anal) (computed) (comp) (anal)

0 0 25.00 50.00 50.00 75.00 100.00 100.00
1 0.206 25.00 50.00 49.58 75.00 75.00 80.06
2 0.413 25.00 50.00 47.49 62.50 75.00 71.80
3 0.619 25.00 43.75 44.68 62.50 62.50 65.46
4 0.825 21.88 43.75 41.71 53.13 62.50 60.1 1
5 1.031 21.88 37.50 38.79 53.13 53.13 55.42
6 1.237 18.75 37.50 35.99 45.31 53.13 51.18
7 1.444 18.75 32.03 33.37 45.31 45.31 47.33
8 1.650 16.02 32.03 30.91 38.67 45.31 43.79
9 1.856 16.02 27.34 28.63 38.67 38.67 40.52

10 2.062 13.67 27.34 26.51 33.01 38.67 37.51
11 2.269 13.67 23.34 24.55 33.01 33.01 34.72
12 2.475 1 1.67 23.34 22.73 28.17 33.01 32.15
13 2.681 11.67 19.92 21.04 28.17 28.17 29.76
14 2.887 9.96 19.92 19.48 24.05 28.17 27.55

8.2: Parabolic Equations 485

Figure 3.7

The computed values generally follow the analytical but oscillate above and below succes-
sive values. This is shown more clearly in Figure 8.7, where the computed temperatures at the
center node and at x = 0.5 cm are plotted. The curves represent the analytical solution. If the
computa.tions are repeated but with two other values of r (r = 0.4 and r = 0.6), we find an
interesting phenomenon. Of course, the values of At will change as well. With the smaller
value for r, 0.4, the computed results are much more accurate, and the differences from the
analytical values are about half as great during the early time steps and become only one-tenth
as great after ten time steps. We would expect somewhat better agreement because the time
steps are: smaller, but the improvement is much greater than this change would cause.

On the other hand, using a value of 0.6 for r results in extremely large errors. In fact, after
only eight time steps, some of the calculated values for u are negative, a patently impossible
result. Figure 8.8 illustrates this quite vividly. The open circles in the figure are results with
r = 0.6; the solid points are for r = 0.4. The explanation for this behavior is instability. The
maximum value for r to avoid instability (which is particularly evident for r = 0.6) is
r = 0.5. The oscillation of points about the analytical curve in Figure 8.7 shows incipient
instability. Even this value for r is too large if the boundary conditions involve a gradient.

The reason why there as instability when r is greater than 0.5 in the explicit method is the
difference in orders of the finite-difference approximations for the spatial derivative and

Chapter Eight: Partial-Differential Equations

Figure 8.8

the time derivative. The Crank-Nicolson method is a technique that makes these finite-
difference approximations of the same order.

The difference quotient for the time derivative, (uj" - uj)lAt, can be considered a
central-difference approximation at the midpoint of the time step. If we do take this as a
central-difference approximation, we will need to equate it to a central-difference approx-
imation of the spatial derivative at the same halfway point in the time step, and this we can
hope to obtain by averaging two approximations for d2uldx2, one computed at the start and
the other at the end of the time step. So, we write, for

this approximation:

which we solve for the u-values at the end of the time step to give

Equation (8.27) is the Crank-Nicolson formula, and using it involves solving a set
of simultaneous equations, because the equation for u{+' includes two adjacent u-values at
t = tJ+l. Hence, this is an implicit method. Fortunately, the coefficient matrix is tridiago-
nal. A most important advantage of the method is that it is stable for any value for r,
although smaller values usually give better accuracy. This next example illustrates the
method.

8.2: Parabolic Equations 487

-
E X A M P L E 8.9 Solve Example 8.8, but now use the Crank-Nicolson method. Compare the results with

r = 0.5 and with r = 1.0 to the analytical values.
Employing Eq. (8.27) gives the results shown in Table 8.5 for the centerline tempera-

tures with r = 0.5 and in Table 8.6 for the centerline temperatures with r = 1 .O. The error
columns are the differences between the computed temperatures and those from the series
solution. In Table 8.5, these range from 2.0% to 2.7% of the analytical values, whereas in
Table 8.6, they range from 1.0% to 2.5%. One would expect the errors with r = 0.5 to be
smaller, but this is not the case. Both sets of computations are more accurate than those in
Table 8.4, where the explicit method was used with r = 0.5. -- -2

The Theta Method -A Generalization

In the Crank-Nicolson method, we interpret the finite-difference approximation to the
time derivative as a central difference at the midpoint of the time interval. In the theta
method, we make a more general statement by interpreting this approximation to apply at
some other point within the time interval. If we interpret it to apply at a fraction 0 of At, we
then equate the time-derivative approximation to a weighted average of the spatial deriva-
tives at the beginning and end of the time interval, giving this relation:

Observe that using 0 = 0.5 gives the Crank-Nicolson method, whereas using H = 0 gives
the expllicit method. If we use 0 = 1, the theta method is often called the implicit method.
For 0 = 1, the analog of Eq. (8.27) is

.5 Centerline temperatures with
Crank-Nicolson Method, r = 0.5

Time steps t u-values Error

Table 8.6 Centerline temperatures with
Crank-Nicolson Method, r = 1.0

Time steps

0
1
2
3
4
5
6
7
8

u-values

100.00
71.13
61.53
51.97
44.67
38.29
32.88
28.23
24.23

Error

Chapter Eight: Partial-Differential Equations

For any value of 6, the typical equation is

What value is best for O? Burnett (1987) suggests that 6 = 5 is nearly optimal, but he points
out that a case can be made for using 6 = 0.878. This next example compares the use of
these two values.

---- . P -- A --- A=-------- --- -
LE 8.10 Solve Example 8.8 by the theta method with 0 = 5, 0.878, and 1.0. Compare these to

results from the Crank-Nicolson and explicit methods.
Using Eq. (8.28), computations were made for ten time steps. Table 8.7 shows how the

values at the centerline, x = 1.0 differ from the analytical values. It is interesting to
observe that, for this problem, the Crank-Nicolson results (6 = 0.5) have smaller errors
than those with larger values for 6. Even the results from the explicit method (6 = 0) are
better than those with 6 = 1.0 (although the explicit values oscillate around the analytical).
This suggests that there is an optimal value for 6 less than 5 and greater than zero. We leave
this determination as an exercise, as well as the comparison at other values for x. We also
leave as an exercise to find if there is an optimal value in other problems.

Stability Cons%

We have seen in our examples that when the ratio k A t ~ c ~ (A x) ~ is greater than 0.5, the
explicit method is unstable. Crank-Nicolson and the implicit methods do not have such a
limitation. We now look at this more analytically. We also discuss the convergence of the
methods.

'Fabie 8.7 Comparisons of results from the theta method, r = 0.5

Errors in computed centerline temperatures
Bvalue

Time . --

steps 213 0.878 1.0 0.5 0.0

8.2: Parabolic Equations 489

By convergence, we mean that the results of the method approach the analytical values
as At and Ax both approach zero. By stability, we mean that errors made at one stage of the
calculations do not cause increasingly large errors as the computations are continued, but
rather will eventually damp out.

We will first discuss convergence, limiting ourselves to the simple case of the unsteady-
state heat-flow equation in one dimension:*

We will use the symbol U to represent the exact solution to Eq. (8.29), and u to represent
the numerical solution. At the moment, we assume that u is free of round-off errors, so the
only difference between U and u is the error made by replacing Eq. (8.29) by the difference
equation. Let ei = U: - u i , at the point x = xi, t = tj. By the explicit method, Eq. (8.29)
becomes

u{+l = r (~ { + ~ + u.jPl) + (1 - 2r)ui, (8.30)

where r = k A t ~ c ~ (A x) ~ . Substituting u = U - e into Eq. (8.30), we get

e i f l = ~ (e { + ~ + ei-J + (1 - 2r)e: - r(U{+, + U{_,) - (1 - 2 r) ~ i + u { + ~ . (8.31)

By using Taylor-series expansions, we have

Substitluting these into Eq. (8.31) and simplifying, remembering that AX)^ = k Atlcp,
we get

* We could have treated the simpler equation dUIdT = d 2 ~ / d x 2 without loss of generality, because with the
change of variables-X = 6 x, T = kt-the two equations are seen to be identical.

Chapter Eight: Partial-Differential Equations

Let EJ be the magnitude of the maximum error in the row of calculations for t = 5, and
let M > 0 be an upper bound for the magnitude of the expression in brackets in Eq. (8.32).
If r 5 i, all the coefficients in Eq. (8.32) are positive (or zero) and we may write the
inequality

This is true for all the eJ+l at t = so

EJ+l 5 EJ + M At.

This is true at each time step,

because l?, the errors at t = 0, is zero, as U is given by the initial conditions.
Now, as Ax -+ 0, At + 0 if k A t l ~ ~ (A x) ~ 5 :, and M -+ 0, because, as both Ax and At

get smaller,

This last is by virtue of Eq. (8.29), of course. Consequently, we have shown that the
explicit method is convergent for r 5 :, because the errors approach zero as At and Ax are
made smaller.

For the solution to the heat-flow equation by the Crank-Nicolson method, the analysis
of convergence may be made by similar methods. The treatment is more complicated, but
it can be shown that each Ejfl is no greater than a finite multiple of Ej plus a term that van-
ishes as both Ax and At become small, and this is independent of r. Hence, because the
initial errors are zero, the finite-difference solution approaches the analytical solution as
At -+ 0 and Ax -+ 0, requiring only that r stay finite. This is also true for the 8 method
whenever 0.5 5 8 5 1.

We begin our discussion of stability with a numerical example. Because the heat-flow
equation is linear, if two solutions are known, their sum is also a solution. We are interested
in what happens to errors made in one line of the computations as the calculations are con-
tinued, and because of the additivity feature, the effect of a succession of errors is just the
sum of the effects of the individual errors. We follow, then, a single error,* which most
likely occurred due to round off. If this single error does not grow in magnitude, we will call
the method stable, because then the cumulative effect of all errors affects the later calcula-
tions no more than a linear combination of the previous errors would. (Because round-off
errors are both positive and negative, we can expect some cancellation.)

Table 8.8 illustrates the principle. We have calculated for the simple case where the bound-
ary conditions are fixed, so that the errors at the endpoints are zero. We assume that a single

* A computation made assuming that each of the interior points has an error equal to e at t = t , demonstrates the
effect more rapidly.

8.2: Parabolic Equations 49 1

Table 8.,8 Propagation of errors - explicit method -----
Endpoint Endpoint

t
-- X2 X3 X4 X5

error of size e occurs at t = tl and x = x2. The explicit method, k A t l ~ ~ (h x) ~ = i, was used.
The original error quite obviously dies out. As an exercise, it is left to the student to show that
with r > 0.5, errors have an increasingly large effect on later computations. Table 8.9 shows
that errors damp out for the Crank-Nicolson method with r = 1 even more rapidly than in the
explicit !method with r = 0.5. The errors with the implicit method also die out with r = 1,
more rapidly than with the explicit method but less rapidly than with Crank-Nicolson.

ore Analytical Argument

To discuss stability in a more analytical sense, we need some material from linear algebra.
In Chapter 6, we discussed eigenvalues and eigenvectors of a matrix. We recall that for the
matrix AL and vector x, if

Ax = Ax,

then the scalar h is an eigenvalue of A and x is the corresponding eigenvector. If the N
eigenvalues of the N X N matrix A are all different, then the corresponding N eigenvectors

..!I Propagation of errors-Crank-Nicolson method

Chapter Eight: Partial-Differential Equations

are linearly independent, and any N-component vector can be written uniquely in terms of
them.

Consider the unsteady-state heat-flow problem with fixed boundary conditions.
Suppose we subdivide into N + 1 subintervals so there are N unknown values of the tem-
perature being calculated at each time step. Think of these N values as the components of
a vector. Our algorithm for the explicit method (Eq. 8.25) can be written as the matrix
equation*

where A represents the coefficient matrix and uj and uj'l are the vectors whose N compo-
nents are the successive calculated values of temperature. The components of u0 are the ini-
tial values from which we begin our solution. The successive rows of our calculations are

u1 = AuO,
~2 = Aul = ~ 2 ~ 0 ,

(Here the superscripts on the A's are exponents; on the vectors they indicate time.)
Suppose that errors are introduced into uO, so that it becomes ii0. We will follow the

effects of this error through the calculations. The successive lines of calculation are now

Let us define the vector ej as u j - id so that ej represents the errors in uj caused by the
errors in GO. We have

,j = u j - ,j = Aj,O - = Aje0.

This shows that errors are propagated by using the same algorithm as that by which the
temperatures are calculated, as was implicitly assumed earlier in this section.

* A change of variable is required to give boundary conditions of u = 0 at each end. This can always be done for
fixed end conditions.

8.2: Parabolic Equations 493

Now the N eigenvalues of A are distinct (see below) so that its N eigenvectors x l ,
x2, . . . , xN are independent, and

We now write the error vector e0 as a linear combination of the xi:

e0 = c lx l + c2x2 + . . - + C N X ~ ,

where the c's are constants. Then el is, in terms of the xi,

and for e2,

(Again, the superscripts on vectors indicate time; on h they are exponents.) After j steps,
Eq. (8.34) can be written

N

ej = 2 cih{xi.
i = 1

If the magnitudes of all of the eigenvalues are less than or equal to unity, errors will not
grow as the computations proceed; that is, the computational scheme is stable. This then is
the analytical condition for stability: that the largest eigenvalue of the coefficient matrix
for the algorithm be one or less in magnitude.

The eigenvalues of matrix A (Eq. 8.33) can be shown to be

(note that they are all distinct). We will have stability for the explicit scheme if

The limiting value of r is given by

Hence, id r 5 i, the explicit scheme is stable.

Chapter Eight: Partial-Differential Equations

The Crank-Nicolson scheme, in matrix form, is

We can write

so that stability is given by the magnitudes of the eigenvalues of A - ~ B . These are

Clearly, all the eigenvalues are no greater than one in magnitude for any positive value of
r. A similar argument shows that the implicit method is also unconditionally stable.

eat Equaaioan in Two or Three

In dimensions greater than one, the equation that we are to solve is

We will apply finite-difference approximations to the derivatives as we did in 1-D. We
show how a typical example is solved.

Suppose we have a rectangular region whose edges fit to evenly spaced nodes. If we
replace the right-hand side of Eq. (8.35) with central-difference approximations, where
Ax = Ay = h, and r = k Atl(cph2), the explicit scheme becomes

u t f l - u t j = Y (U ; + ~ , ~ - 2utj + u;- , .~ + u ; ~ + ~ - 2Ufj + u : ~ - J

or

8.2: Parabolic Equations 495

In this scheme, stability requires that the value of u be or less in the simple case of
Dirichlet boundary conditions. (Note that this corresponds again to the numerical value that
gives a particularly simple formula.) In the more general case with Ax # Ay, the criterion is

The analogous equation in three dimensions, with equal grid spacing each way, has the
coefficient (1 - 6r), and r 5 is required for convergence and stability.

The difficulty with the use of the explicit scheme is that the restrictions on At require
inordinately many rows of calculations. One then looks for a method in which At can be
made larger without loss of stability. In one dimension, the Crank-Nicolson method was
such a method. In the 2-D case, using averages of central-difference approximations to
give d2uldx2 and d2uldy2 at the midvalue of time, we get

The problem now is that a set of (M) (N) simultaneous equations must be solved at
each time step, where M is the number of unknown values in the x-direction and N in the
y-direction. Furthermore, the coefficient matrix is no longer tridiagonal, so the solution to
each set of equations is slower and memory space to store the elements of the matrix may
be exorbitant.

The advantage of a tridiagonal matrix is retained in the alternating direction implicit
scheme (A.D.I.) proposed by Peaceman and Rachford (1955). It is widely used in modern
computer programs for the solution of parabolic partial-differential equations. We dis-
cussed the A.D.I. method in Section 8.1 applied to elliptic equations. For parabolic equa-
tions, we approximate V2u by adding a central-difference approximation to d2uldx2 written
at the beginning of the time interval to a similar expression for d2u/dy2 written at the end of
the time interval. We will use subscripts L, R, A, and B to indicate nodes to the left, right,
above, and below the central node, respectively, where u = uo. We then have

where r = k AtlcpA2 and A = Ax = Ay. The obvious bias in this formula is balanced by
reversing the order of the second derivative approximations in the next time span:

Observe that in using Eq. (8.36), we make a vertical traverse through the nodes, comput-
ing new values for each column of nodes. Similarly, in using Eq. (8.37) we make a horizon-
tal traverse, computing new values row by row. In effect, we consider uL and uR as fixed
when we do a vertical traverse; we consider uA and uB as fixed for horizontal traverses.

- -. --
PLE 8.1 P A square plate of steel is 8 in. wide and 6 in. high. Initialty, all points on the plate are at

50". The edges are suddenly brought to the temperatures shown in Figure 8.9 and held at

Chapter Bight: Partial-Differential Equations

Figure 8.9 Figure 8.1 0

these temperatures. Trace the history of temperatures at nodes spaced 2 in. apart using the
A.D.I. method, assuming that heat flows only in the x- and y-directions.

Figure 8.9 shows a numbering system for the internal nodes, all of which start at 50°, as
well as the temperatures at boundary nodes.

Using Eq. (8.36), the typical equation for a vertical traverse is

If we use this equation and the numbering system of Figure 8.9 to set up the equations for
a vertical traverse, we do not get the tridiagonal system that we desire, but we do if the
nodes are renumbered as shown in Figure 8.10. To keep track of the different numbering
systems, we will use v for temperatures when a vertical traverse is made (numbered as in
Fig. 8.10) and u when a horizontal traverse is made (numbered as in Fig 8.9).

This is the set of equations for a vertical traverse:

When we apply Eq. (8.36) to get a set of equations for a horizontal traverse, we get (the
dashed lines show they break into subsets)

-
(1 + 2r) -r

-r (1 + 2 r)

(1 + 2r) -r
-r (1 + 2r) .

(1 + 2r) -r

-r (1 + 2 ~) ~ \ ~ ~ ,

-
(1 + 2 r) - r

- 1
u,' '~(10) + (1 - 2r)vl + w2 + r(25)'

-r (1 + 2r) -r u, r(20) + (1 - 2r)v3 + w4
-r (1 + 2r)

-
r(30) + (1 - 2r)v, + w, + r(50) .. 3 , - -- ----------- ----- ------- -----------------------------------,

(1 + 2 r) -r u4 w, + (1 - 2r)v2 + r(100) + ~(65) '
-r (1 + 2 r) - r u, w, + (1 - 2r)v4 + r(90)

-r (1 + 2r) u,, (w, + (1 - 2r)v6 + r(80) + r(60))

A value must be specified for r. Small r's give better accuracy but smaller At's, so more
time steps are required to compute the history. If we take r = 1, At is 26.4 sec.

v

,ru, + (1 - 2r)u6 + ~(60) + r(80) ,

'r(25) + (1 - 2r)u, + ru, + r(10)
r(65) + (1 - 2r)u4 + ru5 + r(100)
ru, + (1 - 2r)u2 + ru3 + r(20)

ru, + (1 - 2r)u5 + TUG + r(90)

ru, + (1 - 2r)u3 + r(50) + r(30)

v,

(V 3 ,

v4

v5

' - , -

8.2: Parabolic Equations 497

The first vertical traverse gives results for t = 26.4 sec. We get the first set of v's from

-
3 -1

-1 3
3 -1

-1 3
3 -1

-1 3 -
Solving, we get these values:

{33.75 66.25

These values are used to build the right-hand sides for the next computations, a hori-
zontal traverse, getting these equations for t = 52.8 sec:

which have the solution (a set of u's)

We continue by alternating between vertical and horizontal traverses to get the results
shown in Table 8.10. This also shows the steady-state temperatures that are reached after a
long time. The steady-state temperatures could have been computed by the methods of
Section 8.1. We observe that the A.D.I. algorithm for steady-state temperatures is essen-
tially identical to what we have seen here.

The compensation of errors produced by this alternation of direction gives a scheme
that is convergent and stable for all values of r, although accuracy requires that r not be too
large. The 3-D analog alternates three ways, returning to each of the three formulas after
every third step. [Unfortunately, the 3-D case is not stable for all fixed values of r > 0. A
variant due to Douglas (1962) is unconditionally stable, however.] When the nodes are
renumbered, in each case tridiagonal coefficient matrices result.

Note that the equations can be broken up into two independent subsets, corresponding to
the nodes in each column or row. (See the first set of equations of Example 8.1 1.) This is
always true in the A.D.I. method; each row gives a set independent of the equations from the
other rows. For columns, the same thing occurs. For very large problems, this is important,

Chapter Eight: Partial-Differential Equations

Results for Example 8.11 using the A.D.I. method

AT START, TEMPS ARE

0 . 0 0 0 0 1 0 . 0 0 0 0 2 0 . 0 0 0 0

2 5 . 0 0 0 0 5 0 . 0 0 0 0 5 0 . 0 0 0 0

6 5 . 0 0 0 0 5 0 . 0 0 0 0 5 0 . 0 0 0 0
1 1 0 . 0 0 0 0 1 0 0 . 0 0 0 0 9 0 . 0 0 0 0

AFTER ITERATION 1 TIME=26.4 -VALUES ARE

0 . 0 0 0 0 1 0 . 0 0 0 0 2 0 . 0 0 0 0

2 5 . 0 0 0 0 3 3 . 7 5 0 0 4 3 . 7 5 0 0

6 5 . 0 0 0 0 6 6 . 2 5 0 0 6 1 . 2 5 0 0
1 1 0 . 0 0 0 0 1 0 0 . 0 0 0 0 9 0 . 0 0 0 0

AFTER ITERATION 2 TIME= 5 2 . 8 -VALUES ARE

0 . 0 0 0 0 1 0 . 0 0 0 0 2 0 . 0 0 0 0

2 5 . 0 0 0 0 3 5 . 5 9 5 2 6 9 . 2 8 5 7

6 5 . 0 0 0 0 6 6 . 7 8 5 7 6 7 . 8 5 7 1

1 1 0 . 0 0 0 0 1 0 0 . 0 0 0 0 9 0 . 0 0 0 0

AFTER ITERATION 3 TIME= 7 9 . 2 -VALUES ARE

0 . 0 0 0 0 1 0 . 0 0 0 0 2 0 . 0 0 0 0

2 5 . 0 0 0 0 3 5 . 2 6 7 9 4 2 . 0 5 3 6

6 5 . 0 0 0 0 6 7 . 1 1 3 1 6 5 . 0 8 9 3

1 1 0 . 0 0 0 0 1 0 0 . 0 0 0 0 9 0 . 0 0 0 0

AFTER ITERATION 4 TIME= 1 0 5 . 6 -VALUES ARE

0 . 0 0 0 0 1 0 . 0 0 0 0 2 0 . 0 0 0 0

2 5 . 0 0 0 0 3 6 . 2 4 4 3 4 1 . 8 8 7 8

6 5 . 0 0 0 0 6 6 . 1 3 6 6 6 5 . 2 5 5 1

1 1 0 . 0 0 0 0 1 0 0 . 0 0 0 0 9 0 . 0 0 0 0

STEADY-STATE TEMPERATURES:

0 . 0 0 0 0 1 0 . 0 0 0 0 2 0 . 0 0 0 0

2 5 . 0 0 0 0 3 5 . 8 4 2 7 4 1 . 8 3 2 3

6 5 . 0 0 0 0 6 6 . 5 3 8 3 6 5 . 3 1 0 6

1 1 0 . 0 0 0 0 1 0 0 . 0 0 0 0 9 0 . 0 0 0 0

because it permits the ready overlay of main memory in solving the independent sets.
Observe also that each subset can be solved at the same time by parallel processors.

As discussed in Section 8.1, it is possible to place nodes unevenly and approximate the
space derivatives differently, as in Eq. (8.19). Or we might use a different coordinate
system (polar or spherical coordinates, for example). However, the most frequently used
procedure in such a case is the finite-element method of Chapter 9.

8.3: Hyperbolic Equations 499

The third class of partial-differential equations, the hyperbolic, is time dependent. They
describe vibrations within objects and especially how waves are propagated. Because of
this, they are called wave equations.

The simplest of the wave equations is that for a vibrating string, the 1-D situation. Another
example: is that of waves traveling along the length of a long, narrow trough. In 2-D, you might
imagine a drum head that is set to vibrating by the musician. The 3-D case is harder to visual-
ize; one could think of a cherry suspended within a bowl of transparent gelatin that moves
when the container is tapped with a spoon. In all cases, we want to model the motion and, in
the real world, that motion decreases with time due to frictional forces that oppose the motion.

The Iribrating String

We can develop the 1-D wave equation, an example of hyperbolic partial-differential equa-
tions, by considering the oscillations of a taut string stretched between two fixed endpoints.
Figure 8.11 shows the string with displacements from the straight line between the endpoints
greatly exaggerated. The figure shows an element of the string of length dx between points A
and B. 'We use u for the displacements, measured perpendicularly from the straight line
between the ends of the string. We focus our attention on the element of the string in
Figure 8.11. It is shown enlarged in Figure 8.12, which also shows the angles, aA and 018,
between the ends of element and the horizontal. (The bending of the element between points
A and B is exaggerated as are the displacements.) The figure also indicates that the tension in
the stretched string is a force, T. Taking the upward direction as positive, we can write, for the
upward forces at each end of the element (these are the vertical components of the tensions).

Upward force at point A = -T sin(%),

Upward force at point B = T sin(aB).

Rememibering that Figure 8.12 has displacements and angles greatly exaggerated, the
tangents of these angles are essentially equal to the sines. We then can write

Upward force at point A = - T tan(aA) = - T

Upward force at point B = T tan(aB) =

Figure 8.12

Chapter Eight: Partial-Differential Equations

The net force acting on the element then is

T ($) dx.

Now, using Newton's law, we equate the force to mass X acceleration (in the vertical
direction). Our simplifying assumptions permit us to use w dx as the weight (w is the
weight per unit length), so

As pointed out in Section 8.1. when Eq. (8.38) is compared to the general form of second-
order partial-differential equations, we see that A = 1, B = 0, and C = -Tg/w, and so this
falls in the class of hyperbolic equations.

If we have a stretched membrane (like a drum head) instead of a string, the governing
equation is

The solution to Eq. (8.38) or Eq. (8.39) must satisfy given boundary conditions along the
boundary of the region of interest as well as given initial conditions at t = 0. Because
the problem is of second order with respect to t, these initial conditions must include both
the initial velocity and the initial displacements at all points within the region.

Solving the Vibrating String

We can solve Eq. (8.38) numerically by replacing the derivatives with finite-difference
approximations, preferring to use central differences in both cases. If we do this, we get

where the subscripts indicate x-values and the superscripts indicate t-values." (If the
boundary conditions involve derivatives, we will approximate them with central differ-
ences in the way that we are accustomed.) If we solve for the displacement at the end of the
current time step, u;+l, we get

If we make ~ ~ (A t) ~ / w (A x) ~ equal to 1, the maximum value that avoids instability, there is
considerable simplification:

* We again assume evenly spaced nodes and evenly spaced time intervals.

8.3: Hyperbolic Equations 50 1

Equation (8.40) shows how one can march through time: To get the new value for u at node
i, we add the two u-values last computed at nodes to the right and left and subtract
the valule at node i at the time step before that. That is fine for the second time step; we
have the initial u-values (at t = 0) and those for step 1 (at t = At). We also have the neces-
sary information for all subsequent computations. But how do we get the value for the first
time step? We seem to need the values of u one time step before the start!

That really is no problem if we recognize that the oscillation of the vibrating string is a
periodic function and that the "starting point7' is just an arbitrary instant of time at which
we happen to know the displacement and the velocity. That suggests that we can get the
u-values at t = -At from the specified initial velocities. If we use a central-difference
approximation:

duldt at t = 0 is known; it is one of the initial conditions, call it g(x). So we can write

uiV1 = u,! - 2g(x) At. ,a.iki:

If we sulbstitute Eq. (8.41) into Eq. (8.40), we have (but for t = 0 only),

1
Uf = -

2
(u:+, + Z4Y-J + g(x) At.

Our procedure then is to use Eq. (8.42) for the first time step, then use Eq. (8.40) to march
on through time after that first step." As we will see, Eq. (8.40) is not only stable but also
can give exact answers. It is interesting that using a value for ~ ~ (A t) ~ / w (A x) ~ less than 1,
while stable, gives results that are less accurate.

An example will illustrate the technique.

' ~ X A MPI, E 8.12 A banjo string is 80 cm long and weighs 1.0 gm. It is stretched with a tension of 40,000 g. At
a point 20 cm from one end it is pulled 0.6 cm from the equilibrium position and then released.
Find the displacements along the string as a function of time. Use Ax = 10 cm. How long does
it take to complete one cycle of motion? From this, compute the frequency of the vibrations.

If Eq. (8.42) is used to begin the calculations and Eq. (8.40) thereafter, the results are as
shown in Table 8.11. The initial velocities are zero because the string is just released after
being displaced. Observe that the displacements are reproduced every 16 time steps.

Figure 8.13 illustrates how the displacements change with time; it also shows that, after
16 At's, the original u-values are reproduced, which will be true for every 16 time steps.
Because the original displacements are reproduced every 16 time steps, we can compute
the frequency of the vibrations. Each time step is

* There is a more accurate way to start the computations that we discuss a little later.

Chapter Eight: Partial-Differential Equations

Figure 8.1 3

and the frequency is

1

= 16 * 0.000179
= 350 hertz.

The standard formula from physics is -
40000 * 980

= 350 hertz,

precisely the same!
It seems remarkable that we get exactly the correct frequency, but what about the accuracy

of the displacements? We will find that these too are precisely correct, as the next discussion
shows. It is also apparent that the computations are stable when Tg(At)2/~(Ax)2 equals 1.

The D'Alembert Solution

The simple vibrating string problem is one where the analytical solution is readily
obtained. This analytical solution is called the D'Alembert solution. Consider this expres-
sion for u(x, t):

I& t) = F(x + ct) + G(x - ct), (8.43)

where F and G are arbitrary functions.

8.3: Hyperbolic Equations 503

Table 8..11 Results for vibrating string example ,' --- -,

u-values at x =
-

Time
steps 0 10

0 0.00 0.30
1 0.00 0.30
2 0.00 0.10
3 0.00 -0.10
4 0.00 -0.10
5 0.00 -0.10
6 0.00 -0.10
7 0.00 -0.10
8 0.00 -0.10
9 0.00 -0.10

10 0.00 -0.10
11 0.00 -0.10
12 0.00 -0.10
13 0.00 -0.10
14 0.00 0.10
15 0.00 0.30
16 0.00 0.30
17 0.00 0.30
18 0.00 0.10
19 0.00 -0.10
20 0.00 -0.10

If we substitute this into the vibrating string equation, which we repeat,

we find that the partial-differential equation is satisfied, because

In Eqs. (8.45) and (8.46), the primes indicate derivatives of the arbitrary functions. Now,
substituting these expressions for the second partials into Eq. (8.44), we see that the equa-
tion for the vibrating string is satisfied when c2 = (Tglw). This means that we can get the
solution to Eq. (8.44) if we can find functions F and G that satisfy the initial conditions

Chapter Eight: Partial-Differential Equations

and the boundary conditions. That too is not difficult. Suppose we are given the initial
conditions

The combination

U (X , t) = (+) [f (X + ct) + f(x - ct)] + (8.47)

is of the same form as Eq. (8.43). It certainly fulfills the boundary conditions, for
substituting t = 0 in Eq. (8.47) gives u(x, 0) = f (x) and differentiating with respect to t
gives

for the first term of Eq. (8.47), and

(when t = 0) for the second term.
We have thus shown that the solution to the vibrating string problem is exactly that

given by Eq. (8.47). Now we ask "Does the simple algorithm of Eq. (8.40) match
Eq. (8.47) for the example problem?'We can show that the answer to the question is yes in
the following way.

First, for ~ ~ (A t) ~ / w (A x) ~ equal to 1, Ax = cat. Recalling that u{ represents the U-value
at x = xi = iAx and at t = t . = jAt, we see that c5 = cjAt = jAx. If we write u(xi, tj) using

J
our subscript/superscript notation, it becomes

ui = F(xi + ctj) + G(xi - c5) = F(iAx + jAx) + G(iAx - jAx) (8.48)

= F[(i + j) Ax] + G[(i - j) Ax].

Now let us use Eq. (8.48) to write each term on the right-hand side of Eq. (8.40), the algo-
rithm that we used in the example.

u:+~ = F[(i + 1 + j) Ax] + G[(i + 1 - j) Ax],

u{-~ = F[(i - 1 + j) Ax] + G[(i - 1 - j) Ax],

ui-' = F[(i + j - 1) Ax] + G[(i - j + 1) Ax].

In the example, both F and G are linear functions of x, so that F(a) + F(b) = F(a + b),
and the same is true for G. If we combine these terms in Eq. (8.40),

u:+~ + ui-l - ui-l = F[(i + 1 + j)] Ax + (i - 1 + j) h - (i + j - l) A x]

+ G[(i+ 1 - j) A x + (i - 1 - j) A x - (i - j + l) A x]

= F{[i + (j + I)] Ax} + G{[i - (j + I)] Ax}
= .{+',

8.3: Hyperbolic Equations 505

and the validity of Eq. (8.40) is proved. The important implication from this is that, if we
have correct values for the u's at two successive time steps, all subsequent computed
values will be correct.

When the Initial Velocity Is Not Zero

Example 8.12 had the string starting with zero velocity. What if the initial velocity is not
zero? Equation (8.42) was a very simple way to begin the computations, but it gave correct
results only because g(x) was zero in Eq. (8.47). This next example shows that Eq. (8.42)
is inadequate when g(x) # 0 and that there is a better way to begin.

IEXAMPL,E 8.13 A string is 9 units long. Initially, it is in its equilibrium position (just a straight line between
the supports). It is set into motion by striking it so that it has an initial velocity given by
duldt = 3 sin(m1L). Take Ax = 1 unit and let c2 = Tglw = 4. When the ratio c ~ (A ~) ~ /
(Ax)2 = 1, the value of At is 0.5 time units. Find the displacements at the end of one At.

Becanse Ax = 1 and the length is 9, the string is divided into nine intervals; there are
eight interior nodes. We are to compute the u-values at t = At = 0.5.

As we have seen, Eq. (8.42) is one way to get these starting values. However, looking at
Eq. (8.47), we see that there is an alternative technique. If we substitute t = At in that
equation and remember that cAt = Ax, we get for u(xi, At)

1
u(xi, At) = - [f (ii + Ax) + f(xi - Ax)] +

2
(8.49)

1
= - [u?+, + up-,] +

2

Equation (8.49) differs from Eq. (8.42) only in the last term. If g(x) = a constant, the last
terms are equal, but if g(x) is not constant, we should do the integration in Eq. (8.49).
Table 8.12 compares the results of both techniques and also gives the answers from the
analytical solution. Only values for x between 1 and 4 are given as the displacements for
the right half of the string are the same as for the left half. Simpson's rule was used to do

Table 8.12 Comparison of ways to begin the wave
equation at t = At with Ax = 1

u = values from

x Eq. (8.42) Eq. (8.49) Analytical

Chapter Eight: Partial-Differential Equations

the integrations. We see from the tabulated results that the values using Eq. (8.49) are
almost exactly the same as the analytical values (they are the same within one in the fourth
decimal place) but that the results from Eq. (8.42) are less accurate (they each differ by
2.0% from the analytical). We could improve the accuracy with Eq. (8.42) by decreasing
the size of Ax (and reducing At correspondingly). By making Ax = 0.5, the errors are
reduced fourfold as expected.

ility of the Solution

We have said that the numerical solution of the vibrating string problem is stable if this
ratio is not greater than 1:

Because we ordinarily set that ratio equal to 1, it is sufficient to demonstrate stability for
that scheme.

For this demonstration, assume that all computations are correct up to a certain point
in time, but then an error of size 1 occurs. If the method is stable, that error will not
increase. Table 8.13 traces how this single error is propagated. It is allowable to think
only of the effect of this single error because for a linear problem that this is, the puin-
cipal of superposition says that we can add together the effects of each of the errors.
Equation (8.40) was used and the ends of the string are specified so they are free of
error.

.I3 Propagation of single error in numerical solution to wave equation

Initially error-free values 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0
Error made here > 0.0 0.0 0.0 0.0 0.0 0.0

0.0 1 .o LO1 0.0 0.0 0.0
0.0 0.0 l 1 . 0 \ 0.0 l.ol 0.0 0.0
0.0 0.0 0.0 1.0 \ 0.0 l . q 0.0
0.0 0.0 0.0 0.0 1.0\ o.o/ 0.0
0.0 0.0 0.0 0.0 0.0 0.- 0.0
0.0 0.0 0.0 0.0 -1.0 " 0.0 0.0
0.0 0.0 0.0 -1.0" 0.0 -1.0" 0.0
0.0 " 0.0 -LO/ 0.0 0.0

O.O 4:: -1.0" 0.0 0.0 0.0
0.0 " 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 "0.0 l 1 . 0 \ 0.0 0.0 0.0 0.0
0.0 1 1 . 0 0.0 l.Ol 0.0 0.0 0.0
0.0 0.0 1.0 0.0 1 .o 0.0 0.0

8.3: Hyperbolic Equations 507

The Wave Equation in Two Dimensions

The finite-difference method can be applied to hyperbolic partial-differential equations in
two or more space dimensions. A typical problem is the vibrating membrane. Consider a
thin, flexible membrane stretched over a rectangular frame and set to vibrating. As we have
seen, the equation is

in which u is the displacement, t is the time, x and y are the space coordinates, T is the uni-
form tenision per unit length, g is the acceleration of gravity, and w is the weight per unit
area. For simplification, let Tglw = c2. Replacing each derivative by its central-difference
approximation, and using h = Ax = Ay, gives (we recognize the Laplacian on the right-
hand side)

Solving for the displacement at time t k+ l , we obtain

In Eqs. (8.50) and (8.51), we use superscripts to denote the time. If we let ~ ~ (A t) ~ / h ~ =

i, the last term vanishes and we get

For the first time step, we get displacements from Eq. (8.53), which is obtained by
approximating dulat at t = 0 by a central-difference approximation involving u: and u$

In Eq. (8.53), g(x, y) is the initial velocity.
It should not surprise us to learn that this ratio ~ ~ (A t) ~ / h ~ = i is the maximum value for

stability, in view of our previous experience with explicit methods. However, in contrast

Chapter Eight: Partial-Differential Equations

with the wave equation in one space dimension, we do not get exact answers from
the numerical procedure of Eq. (8.52), and we further observe that we must use smaller
time steps in relation to the size of the space interval. Therefore, we advance in time more
slowly. However, the numerical method is straightforward, as the following example will
show.

EXAMPLE 8.14 A membrane for which c2 = Tglw = 3 is streched over a square frame that occupies the
region 0 5 x 5 2, 0 5 y 5 2, in the xy-plane. It is given an initial displacement described

by

u = x(2 - x)y(2 - y),

and has an initial velocity of zero. Find how the displacement varies with time.
We divide the region with h = Ax = Ay = :, obtaining nine interior nodes. Initial dis-

placements are calculated from the initial conditions: uO(x, y) = x(2 - x)y(2 - y); At is
taken at its maximum value for stability, hl(.\h c) = 0.2041. The values at the end of one
time step are given by

Table $.I4 Displacements of a vibrating membrane-finite-difference method: At = h l (f i c)

Grid location

Note: Analytical values are in parentheses.

Exercises 509

because g(x, y) in Eq. (8.53) is everywhere zero. For succeeding time steps, Eq. (8.52) is
used. Table 8.14 gives the results of our calculations. Also shown in Table 8.14 (in paren-
theses) are analytical values, computed from the double infinite series:

1 6a2b2A
B , , = , , , (1 - cos mz-)(I - cos nn-),

rr m n

which gives the displacement of a membrane fastened to a rectangular framework, 0 5 x
5 a, 0 5 y 5 b, with initial displacements of Ax(a - x)y(b - y).

We observe that the finite-difference results do not agree exactly with the analytical cal-
culations. The finite-difference values are symmetrical with respect to position and repeat
themselves with a regular frequency. The very regularity of the values itself indicates that
the finite-difference computations are in error, because they predict that the membrane
could emit a musical note. We know from experience that a drum does not give a musical
tone when struck; therefore, the vibrations do not have a cyclic pattern of constant fre-
quency, as exhibited by our numerical results.

Decreasing the ratio of ~ ~ (A t) ~ / h ~ and using Eq. (8.5 1) gives little or no improvement in
the average accuracy; to approach closely to the analytical results, h = Ax = Ay must be
made smaller. When this is done, At will need to decrease in proportion, requiring many
time steps and leading to many repetitions of the algorithm and extravagant use of com-
puter time. One remedy is the use of implicit methods, which allow the use of larger ratios
of ~ ~ (A t) ~ / h ~ . However, with many nodes, this requires large, sparse matrices similar to the
Crank-Nicolson method for parabolic equations in two space dimensions. A.D.I. methods
have been used for hyperbolic equations-tridiagonal systems result. We do not discuss
these methods.

As with other types of partial-differential equations, if the region is not rectangular or if
we desire nodes closer together in some parts of the region, it is much preferred to employ
the finite-element method, discussed in the next chapter.

Exercises

Section 8.11

1. Show that Eq. (8.2) results if the thickness of the slab
varies with position (x, y).

2. Show that Eq. (8.3) applies if both thickness and ther-
mal conductivity vary with position in a slab.

b 3. The mixed second derivative d2ul(dx ay) can be consid-
ered as

If the nodes are spaced apart a distance h in both the x-
and y-directions, show that this derivative can be repre-
sented by the pictorial operator

4. What ordering of nodes in Example 8.1 will reduce the
band width of the coefficient matrix to seven? Can this
be done in more than one way? Can it be reduced to
less than seven?

510 Chapter Eight: Partial-Differential Equations

) 5. If d2uldx2 is represented as this fourth-order central-
difference formula

d2u - -ui+, + 16ui+, - 30ui + 1 6 ~ , - ~ - u ~ + ~ - -
dW2 12h2

find the fourth-order operator for the Laplacian. (This
requires the function to have a continuous sixth
derivative.)

6. Derive the nine-point approximation for the Laplacian
of Eq. (8.6).

7. Solve Example 8.1 using the nine-point approximation
to the Laplacian. What is the band width of the coeffi-
cient matrix if numbered as in Figure 8.2? What order-
ing of nodes will give the minimum band width? Is this
the same as the preferred ordering of Exercise 4?

The coefficient matrix of Example 8.1 is bonded and
symmetric. If it is solved taking advantage of this struc-
ture rather than as it is shown, how many fewer arith-
metic operations will be needed to get the solution?

A rectangular plate of constant thickness has heat flow
only in the x- and y-directions (k is constant). If the top
and bottom edges are perfectly insulated and the left
edge is at 100' and the right edge at 200°, it is obvious
that there is no heat flow except in the x-direction and
that temperatures vary linearly with x and are constant
along vertical lines.

a. Show that such a temperature distribution satisfies
both Eqs. (8.5) and (8.6).

b. Show that the temperatures also satisfy the relation
derived in Exercise 5. How should nodes adjacent to
the edges be handled?

What is the operator equivalent to Eq. (8.7) for the
nine-point formula?

Solve for the steady-state temperatures in the plate of the
figure when the edge temperatures are as shown. The
plate is 10 cm X 8 cm, and the nodal spacing is 2 cm.

12. Repeat Exercise 11, but with the nine-point formula.
Get the solution both by Gaussian elimination and by
iteration. How many iterations does it take to reach the
solution with a maximum error of 0.001 at any node?

13. The region on which we solve Laplace's equation does
not have to be rectangular. We can apply the methods
of Section 8.1 to any region where the nodes fall on the
boundary. Solve for the steady-state temperatures at the
eight interior points of this figure.

)14. Solve Exercise 11 by Liebmann's method with all ele-
ments of the initial u-vector equal to zero. Then repeat
with all elements equal to 300°, the upper bound to the
steady-state temperatures. Repeat again with the initial
values all equal to the arithmetic average of the boundary
temperatures. Compare the number of iterations needed
to reach a given tolerance for convergence in each case.
What is the effect of the tolerance value that is used?

15. Repeat Exercise 14, but now use overrelaxation with
the factor given in Eq. (8.8).

16. Find the torsion function 4 for a 2 in. X 2 in. square bar.

a. Subdivide the region into nine equal squares, so that
there are four interior nodes. Because of symmetry,
all of the nodes will have equal +values.

b. Repeat, but subdivide into 36 equal squares with 25
interior nodes. Use the results of part (a) to get start-
ing values for iteration.

17. Solve

V2u = 2 + x2 +
over a hollow square bar, 5 in. in outside dimension and
with walls 2 in. thick (so that the inner square hole is
1 in. on a side). The origin for x and y is the center of
the object. On the inner and outer surfaces, u = 0.

18. Solve

V2u = 2 + x2 + y2
over a hollow square bar whose outside width is 5 in.
There is an inner concentric square hole of width 2 in.

Exercises 51 1

(so that the thickness of the wall is 1.5 in.). The origin
for x and y is the center of the object. On the outer and
inner surfaces, u = 0. Space nodes 0.5 in. apart.

19. Can Exercise 18 be solved by iterations as well as by
elimination? Repeat it using a method other than the
one you used in solving Exercise 18. Which method
would be preferred if nodes are spaced very closely
together, say, at 0.01 in.?

20. Repeat Exercise 17 but use overrelaxation. Find the
optimal overrelaxation factor experimentally. Does this
match to that from Eq. (8.8):)

b21. Solve for the steady-state temperatures in the region of
Exercise 13, except now the plate is insulated along the
edge where the temperatures were zero. All tempera-
tures on the other edges are as shown in the figure.

22. Solve a modification of Example 8.1, where along
every edge there is an outward gradient of - 15"CIcm.
Is it possible to get a unique solution?

23. Solve Exercise 11 by the A.D.I. method using p = 1.0.
Begin with the initial values equal to the arithmetic
average of the boundary temperatures. Compare the
number of iterations needed to those required with
Liebrnann's method (Exercise 14) and with those
using S.O.R. with the optimal overrelaxation factor
(Exercise 15).

24. Repeat Exercise 16 but now use the A.D.I. method.
Vary the value of p to find the optimal value experi-
mentally.

b25. A cube is 7 cm along each edge. Two opposite faces are
held at. 100°, the other four faces are held at 0'. Find the
interior temperatures at the nodes of a 1 cm network.
Use the A.D.I. method

26. Repeat Exercise 25, but now the two opposite edges
have a mixed condition: The outward normal gradient
equals 0.25(u - 18), where u is the surface temperature.

Sections 8.2

b27. Suppose that the rod sketchled in Figure 8.6 is tapered,
with the diameter varying linearly from 2 in. at the
left end to 1.25 in. at the right end; the rod is 14 in.
long and is made of steel. If 200 BTUIhr of heat flows
from left to right (the flow is the same at each x-value
along the rod-steady state), what are the values of
the gradient at

a. The left end?
b. The right end?
c. x = 3 in.?

28. Solve for the temperatures at t = 2.06 sec in the 2-cm
thick steel slab of Example 8.8 if the initial tempera-
tures are given by

Use the explicit method with Ax = 0.25 cm. Compare
to the analytical solution: 100e-0.3738* s i n (d 2) .

29. Repeat Exercise 28, but now with Crank-Nicolson.

30. Repeat Exercise 28, but now with the theta method:

a. 0 = 213.
b. 6 = 0.878.
c. 0 = 1.0.

b31. Solve for the temperatures in a cylindrical copper rod
that is 8 in. long and whose curved outer surface is
insulated so that heat flows only in one direction. The
initial temperature is linear from 0°C at one end to
100°C at the other, when suddenly the hot end is
brought to O°C and the cold end is brought to 100°C.
Use Ax = 1 in. and an appropriate value of At so that
k Atlcp(Ax)2 = i. Look up values for k, c, and p in a
handbook. Carry out the solution for 10 time steps.

32. Repeat Exercise 31, but with Ax = 0.5 in., and com-
pare the temperature at points 1 in., 3 in., and 6 in. from
the cold end with those of the previous exercise. You
will need to compute more time steps to match the 10
steps done previously.

You will find it instructive to graph the temperatures
for both sets of computations.

33. Repeat Exercise 31 but with Ax = 1.0 and At such that
the ratio kAtlcp(Ax2) = 114. Compare the results with
both Exercises 31 and 32.

b34. A rectangular plate 3 in. X 4 in. is initially at 50'. At
t = 0, one 3-in. edge is suddenly raised to 100°, and
one 4-in. edge is suddenly cooled to 0'. The tempera-
ture on these two edges is held constant at these tem-
peratures. The other two edges are perfectly insulated.
Use a 1 in. grid to subdivide the plate and write the
A.D.I. equations for each of the six nodes where
unknown temperatures are involved. Use r = 2, and
solve the equations for four time steps.

35. A cube of aluminum is 4 in. on each side. Heat flows in
all three directions. Three adjacent faces lose heat by
conduction to a flowing fluid; the other faces are held
at a constant temperature different from that of the
fluid. Set up the equations that can be solved for the
temperature at nodes using the explicit method with a
1-in. spacing between all nodes. How many time steps

512 Chaplet Eighl: Partial-Differential Equations

are needed to reach 15.12 sec using the maximum
r-value for stability? (Look up the properties of alu-
minum in a handbook). How many equations must be
solved at each time step?

Repeat Exercise 35 for Crank-Nicolson with r = 1.

Repeat Exercise 35 for the implicit method with r = 1.

Repeat Exercise 35 for the A.D.I. method with r = 1.

Demonstrate that the explicit method is unstable with r =

0.6 by performing computation similar to that of Table 8.8

Demonstrate that the explicit method is stable if
r = 0.25 by performing computations similar to that of
Table 8.8. Do the errors damp out as rapidly?

Suppose that the end conditions are not u = a constant as
in Table 8.8 but rather ux = 0. Demonstrate by perform-
ing calculations similar to those in Table 8.8 that the
explicit method is still stable for r = 0.5 but that the errors
damp out much more slowly. Observe that the errors at a
later stage become a linear combination of earlier errors.

Demonstrate by performing calculations similar to
those in Table 8.8 that the Crank-Nicolson method is
stable even if r = 10. You will need to solve a system
of equations in this exercise.

Compute the largest eigenvalue of the coefficient
matrix in Eq. (8.33) for r = 0.5, then for r = 0.6. Do
you find that the statements in the text relative to eigen-
values are confirmed?

Starting with the matrix form of the implicit method.
show that for A-'B none of the eigenvalues exceed 1 in
magnitude.

Section 8.3

45. Classify the following as elliptic, parabolic, or hyper-
bolic.

a. (Tw,), = p * g.

c. kU,, + mux, - (au,), + bU = f(x, t).

d. (TW,), - k2wt = 0, W(0) = 0, W(L) = 0.

b46. For what values of x and y is this equation elliptic, par-
abolic, hyperbolic?

47. Divide the (x, y)-plane into regions where this equation
is elliptic, parabolic, hyperbolic:

X ~ U , - ~ X ~ ~ U , , + xu,,,, = x2 - ux + u,,.

48. What would be the equivalent of Eq. (8.38) if the
weight per unit length of the string is not constant but
varies, w = W(x)?

49. If the banjo string of Example 8.12 is tightened or
shortened (as by holding it down on a fret with a fin-
ger), the pitch of the sound is higher. What would be
the frequency of the sound if the tension is made
42,500 gm and the effective length is 65 cm?
Compare your answer to the analytical value that is
given by

f = (112L) m.
50. A vibrating string has Tg/w = 4 cm2/sec2 and is 48 cm

long. Divide the length into subintervals so that Ax =

L/8. Find the displacement for t = 0 to t = L if both
ends are fixed and the initial conditions are

b a. y = x(x - L)/L~, y, = 0. Cy, is the velocity.)
b. the string is displaced +2 units at L/4 and - 1 unit

at 5LI8, y, = 0.
) c. y = 0, y, = x(L - x)/L~. (Use Eq. (8.42).)
) d. the string is displaced 1 unit at L/2, y, = -y.

e. Compare part (a) to the analytical solution,

51. The function u satisfies the equation

Uxx = utt,

with boundary conditions of u = 0 at x = 0 and u = 0
at x = 1, and with initial conditions

u = sin(m), u, = 0, for 0 5 x 5 1

Solve by the finite-difference method and show that the
results are the same as the analytical solution,

52. The ends of the vibrating string do not have to be fixed.
Solve the equation u, = u,, with y(x, 0) = 0, y,(x, 0) =

0 for 0 5 x 5 1, and end conditions of

53. If the initial velocity of a vibrating string is not zero,
Eq. (8.42) is an inaccurate way to start the solution, so
parts (c) and (d) of Exercise 50 are not exact. Repeat
these computations, but use Eq. (8.49) employing
Simpson's rule. How much difference does this make
in the answers?

54. Repeat Exercise 53, but now use more points around xi.
Does this change the answers to Exercise 53?

Applied Problems and Projects 5 1 3

b55. A string that weighs w lblft is tightly stretched between
x = 0 and x = L and is initially at rest. Each point is
given an initial velocity of

The analytical solution is

y (x , t) =

where a = .\lTglw, with T the tension and g the acceler-
ation due to gravity. When L = 3 ft, w = 0.02 lblft, and
T = 5 lb, with vo = 1 ftlsec, the analytical formula pre-
dicts y = 0.081 in. at the midpoint when t = 0.01 sec.
Solve the problem numerically to confirm this. Does
your solution agree with the analytical solution at other
values of x and t?

56. Solve the vibrating membrane problem of Example
8.14 with different initial conditions:

U(A, y) = 0, u,(x, y) = x2(2 - x)~2(2 - y).

57. Repeat Exercise 56 with the initial conditions reversed:

U(X, y) = x2(2 - x) y2(2 - y), U,(X y) = 0.

b58. A membrane is stretched over a frame that occupies the
region in the xy-plane bounded by

x = 0 , x = 3 , y = 0 , y = 2 .

At t = 0, the point on the membrane at (1, 1) is lifted
1 unit above the xy-plane and then released. If T =

6 lblin. and w = 0.55 1blh2, find the displacement of
the point (2, 1) as a function of time.

59. How do the vibrations of Exercise 58 change if w =

0.055 with other parameters remaining the same?

60. The frame holding the membrane of Exercise 58 is dis-
torted by lifting the corner at (3,2) 1 unit above the xy-
plane. (The members of the frame elongate so that the
corner moves vertically.) The membrane is set to
vibrating in the same way as in Exercise 58. Follow the
vibrations through time. [Assume that the rest positions
of points on the membrane lie on the two planes
defined by the adjacent edges that meet at (0,0) and at
(3321.1

plied Problems and ProQects

APP1. A classic problem in elliptic partial-differential equations is to solve V2u = 0 on a region defined by
0 5 x 5 T, 0 5 y 5 w, with boundary condition of u = 0 at x = 0, at x = T, and at y = a. The
boundary at y = 0 is held at u = F(x) . This can be quite readily solved by the method of separation
of variables, to give the series solution

m

u = B,e-" sin nx,
n = l

with

Solve this equation numerically for various definitions of F(x) . (You will need to redefine the region
so that 0 5 y 5 M, where M is large enough that changes in u with y at y = M are negligible.)
Compare your results to the series solution. You might try

APP2. The equation

is an elliptic equation. Solve it on the unit square, subject to u = 0 on the boundaries. Approximate
the first derivative by a central-difference approximation. Investigate the effect of size of Ax on the
results, to determine at what size reducing it does not have further effect.

APP3. If you write out the equations for Example 8.1, you will find that the coefficient matrix is symmetric
and bandled. How can you take advantage of this in solving the equations by Gaussian elimination?
Would Gauss-Jordan be preferred? Is the matrix still symmetric and banded if the nodes are num-
bered by columns?

Chapter Eight: Partial-Differential Equations

APP4. A symmetric banded coefficient matrix of width b can be stored in an n X (b + 1)/2 array. Develop
an algorithm for reducing the coefficient matrix by Gaussian elimination. Test it with program using
a system of width 5. How many fewer operations are needed compared to elimination when the
matrix is not compressed (n X 5 versus n X 3)?

APPS. If we want to improve the accuracy of the solution to Example 8.6, there are several alternative
strategies, including

a. Recompute with nodes more closely spaced but still in a uniform grid.
b. Use a higher-order approximation, such as Eq. (8.6).
c. Add additional nodes only near the right and left sides because the gradient is large there (see

Table 8.2) and errors will be greater.

Discuss the pros and cons of each of these choices. Be sure to consider how boundary conditions will
be handled. In part (c), how should equations be written where the nodal spacing changes?

APP6. Solve Example 8.1 by S.O.R. with different values for o. What value is optimal? How do the starting
values that are used affect this?

APP7. A vibrating string, with a damping force-opposing its motion that is proportional to the velocity, fol-
lows the equation

where B is the magnitude of the damping force. Solve the problem if the length of the string is 5 ft
with T = 24 lb, w = 0.1 lb/ft, and B = 2.0. Initial conditions are

Compute a few points of the solution by difference equations.

APPS.

APP9.

When steel is forged, billets are heated in a furnace until the metal is of the proper temperature, between
2000°F and 2300°F. It can then be formed by the forging press into rough shapes that are later given
their final finishing operations. To produce a certain machine part, a billet of size 4 in. X 4 in. X 20 in.
is heated in a furnace whose temperature is maintained at 2350°F. You have been requested to estimate
how long it will take all parts of the billet to reach a temperature above 2000°F. Heat transfers to the sur-
face of the billet at a very high rate, principally through radiation. It has been suggested that you can
solve the problem by assuming that the surface temperature becomes 2250°F instantaneously and
remains at that temperature. Using this assumption, find the required heating time.

Because the steel piece is relatively long compared to its width and thickness, it may not intro-
duce significant error to calculate as if it were infinitely long. This will simplify the problem, per-
mitting a two-dimensional treatment rather than a three-dimensional one. Such a calculation should
also give a more conservative estimate of heating time. Compare the estimates from two- and three-
dimensional approaches.

After you have calculated the answers to APP8, your results have been challenged on the basis of
assuming constant surface temperature of the steel. Radiation of heat flows according to the
equation

where E = emissivity (use 0.80), c i s the Stefan-Boltzmann constant (0.171 X Btu/(hr * ft2 *
" R ~) , uF and us are the furnace and surface absolute temperatures, respectively ("F + 460").

Applied Problems and Projects 5 15

The h~eat radiating to the surface must also flow into the interior of the billet by conduction, so

where k is the thermal conductivity of steel (use 26.2 Btu/(hr * ft3 * ("Flft)) and (duldx) is the tem-
perature gradient at the surface in a direction normal to the surface. Solve the problem with this
boundary condition, and compare your solution to that of APP8. (Observe that this is now a nonlin-
ear probllem. Think carefully how your solution can cope with it.)

APP10. A horizontal elastic rod is initially undeformed and is at rest. One end, at x = 0, is fixed, and the
other end, at x = L (when t = O), is pulled with a steady force of F lb/ft2. It can be shown that the dis-
placements y(x, t) of points originally at the point x are given by

where a2 = Eglp; E = Young's modulus (lb/ft2); g = acceleration of gravity; p = density (lb/ft3).
Find y versus t for the midpoint of a 2-ft-long piece of rubber for which E = 1.8 X lo6 and p = 70 if
F/E = 0.7.

APP11. A circular membrane, when set to vibrating, obeys the equation (in polar coordinates)

A 3-ft-diameter kettledrum is started to vibrating by depressing the center in. If w = 0.072 lb/ ft2
and T = 80 lblft, find how the displacements at 6 in. and 12 in. from the center vary with time. The
problem can be solved in polar coordinates, or it can be solved in rectangular coordinates using the
method of Eq. (8.19) to approximate V2u near the boundaries.

APP12. A flexible chain hangs freely, as shown in Figure 8.14. For small disturbances from its equilibrium
position (hanging vertically), the equation of motion is

In this equation, x is the distance from the end of the chain, y is the displacement from the equilib-
rium position, t is the time, and g is the acceleration of gravity. A 10-ft-long chain is originally hang-
ing freely. It is set into motion by striking it sharply at its midpoint, imparting a velocity there of
1 fthec. Find how the chain moves as a result of the blow. If you find you need additional informa-
tion at t = 0, make reasonable assumptions.

APP13. Shipment of liquefied natural gas by refrigerated tankers to industrial nations may become an impor-
tant means of supplying the world's energy needs. It must be stored at the receiving port, however.

Figure 8.14

Chapter Eight: Partial-Differential Equations

[A. R. Duffy and his coworkers (1967) discuss the storage of liquefied natural gas in underground
tanks.] A commercial design, based on experimental verification of its feasibility, contemplated a
prestressed concrete tank 270 ft in diameter and 61 ft deep, holding some 600,000 bbl of liquefied
gas at -258OF. Convection currents in the liquid were shown to keep the temperature uniform at this
value, the boiling point of the liquid.

Important considerations of the design are the rate of heat gained from the surroundings (causing
evaporation of the liquid gas) and variation of temperatures in the earth below the tank (relating to
the safety of the tank, which could be affected by possible settling or frost-heaving.)

The tank itself is to be made of concrete 6 in. thick, covered with 8 in. of insulation (on the liquid
side). (A sealing barrier keeps the insulation free of liquid, otherwise, its insulating capacity would
be impaired.) The experimental tests showed that there is a very small temperature drop through the
concrete: 12°F. This observed 12°F temperature difference seems reasonable in light of the relatively
high thermal conductivity of concrete. We expect then that most of the temperature drop occurs in
the insulation or in the earth below the tank.

Because the commercial-design tank is very large, if we are interested in ground temperatures near
the center of the tank (where penetration of cold will be a maximum), it should be satisfactoly to con-
sider heat flowing in only one dimension, in a direction directly downward from the base of the tank.
Making this simplifying assumption, compute how long it will take for the temperature to decrease to
32°F (freezing point of water) at a point 8 ft away from the tank wall. The necessary thermal data are

Insulation Concrete Earth

Thermal conductivity (Btu/(hr 'k ft + OF)) 0.013 0.90 2.6
Density (lb/ft3) 2.0 150 132
Specific heat (Btu/(lb * OF)) 0.195 0.200 0.200

Assume the following initial conditions: temperature of liquid, -258°F; temperature of insulation,
-258°F to 72OF (inner surface to outer); temperature of concrete, 72°F to 60°F; temperature of
earth, 60°F.

APP14. XYZ Metallurgical has a problem. A slab of steel, 6 ft long, 12 in. wide, and 3 in. thick, must be heat
treated and it is a rush job. Unfortunately, their large furnace is down for repairs and the only furnace
that can be used will hold just three feet of the slab. It has been proposed that it would be possible to
use this furnace if the three feet of the slab that protrude from the furnace are well insulated. (See the
figure.) The heat treating requires that all of the slab be held between 950°F and 900°F for at least an
hour. The portion that is outside the furnace is covered with a 1 in. thickness of insulation whose
thermal conductivity, k, is 0.027 Btu/(hr * ft * O F) . Even though you are a new employee, the man-
ager has asked you to determine three things:

(1) Is one inch of this insulation sufficient for all of the slab to reach 900°F with the furnace at 950°F?
(2) If it is, how long will it take for the end of the slab to reach that temperature?
(3) If one inch is insufficient, how much of this same insulation should be used?

, Portion of slab inside furnace

, around the metal slab, / 1 in. thick

This ch~apter remedies the major problem when a partial-differential equation is solved
through replacing the derivatives with finite-difference quotients. In that technique,
nodes rnust be in rectangular arrays. In finite-element analysis (often abbreviated FEA),
the top:ic of this chapter, nodes can be spaced in any desired orientation so that a region
of any shape can be accommodated. The method is also called the finite-element
methodl (FEM).

In particular, curved boundaries can be approximated by closely spaced nodes. It is not
difficult to place modes closer together in subregions where the function is changing
rapidly., thus improving the accuracy. A program to carry out FEA is not as simple as for
the finite-difference method but software is available to define the region, set up the equa-
tions for all types of boundary conditions, and then get the solution. We will describe one
of these programs, that from MATLAB in its PDE Toolbox." This program is most user-
friendh-a graphical user interface even lets the user draw a 2-D region on the computer
screen.

The basis of FEA is to break up the region of interest into small subregions, the ele-
ments. With a 2-D region, elements can be triangles (the most common) or rectangles,
even "triangles" or "rectangles" with curved sides. In 3-D, they may be pyramids or bricks.
Once the region and its elements are defined, the equations for the system are set up and
solved. The equation must, of course, incorporate the boundary conditions, which can be
of any type.

The problems that can be solved with FEA include all three types of partial-differential
equatians, and other problems such as eigenvalue problems, which we do not discuss.

In this chapter, we develop the background for finite elements from a branch of mathe-
matics called the calculus of variations, which offers three solution methods that do not
use finite elements.

* This toolbox is not a part of the student edition.

C o n t e n t s o f T h i s C h a p t e r

Mathematical Background
Gives a description of three methods: the Rayleigh-Ritz method, the
collocation method, and the Galerkin method. The first of these optimizes a
so-called functional to get the solution to a boundary-value problem. The
other two methods also solve such problems and are more directly used in
establishing the equations for the finite-element method in later sections

Finite Elements for Ordinary-Differentia1 Equations (ODE)
Applies the Galerkin method to the elements of the region to arrive at a
system of linear equations whose solution is an approximation to the solution
of an ordinary-differentia1 equation. Several steps are used in the
development. Any type of boundary values can be accommodated.

Finite Elements for Partial-Differential Equations
Uses a different approach to setting up the system of equations for the finite
element solution. The development is made for all three type of PDEs:
elliptic, parabolic, and hyperbolic. Simple regions are used to illustrate the
method. Examples with a more complex region are solved with MATLAB7s
Toolbox.

Finite-element analysis is based on some elegant mathematics. We begin the discussion
with the Rayleigh-Ritz method for solving boundary-value problems. The method comes
from that part of mathematics called the calculus of variations.

In the Rayleigh-Ritz method, we solve a boundary-value problem by approximating
the solution with a finite linear combination of basis functions. (We define basis functions
and the requirements that are placed on them a little later.) In the calculus of variations, we
seek to minimize a special class of functions calledfunctionals. The usual form for a func-
tional in problems with one independent variable is

Observe that ILy] is not a function of x because x disappears when the definite integral is
evaluated. The argument y of ILy] is not a simple variable but a function, y = y(x). The
square brackets in ILy] emphasize this fact. A functional can be thought of as a "function of
functions." The value of the right-hand side of Eq. (9.1) will change as the function y(x) is
varied, but when y(x) is fixed, it evaluates to a scalar quantity (a constant). We seek the y(x)
that minimizes m].

9.1 : Mathematical Background 5 19

Figure 9.1

Let us illustrate this concept by a very simple example where the solution is obvious in
advance-find the function y(x) that minimizes the distance between two points. Although
we know what y(x) must be, let's pretend we don't. Figure 9.1 suggests that we are to
choose from among the set of curves y,(x) of which yl(x), y2(x), and y3(x) are representative.
In this simple case, the functional is the integral of the distance along any of these curves:

To minimize I[y], just as in calculus, we set its derivative to zero. There are certain restric-
tions on all the curves y,(x). Obviously, each must pass through the points (xl, yl) and (x2,
y2) In addition, for the optimal trajectory, the Euler-Lagrange equation must be satisfied:

Applying this to the functional for shortest distance, we have

dF 1
- = - (1 + (y')2)-"2(2y'),
dy' 2

[The last comes from Eq. (9.2).]
From this, it follows that

Chapter Nine: Finite-Element Analysis

Solving for y' gives

y' = = a constant = b,

and, on integrating,

As stated, y(x) must pass through PI and P2; this condition is used to evaluate the con-
stants a and b.

Let us advance to a less trivial case. Consider this second-order linear boundary-value
problem over [a, b] : *

(An equation that has y = constant at the endpoints is said to be subject to Dirichlet condi-
tions.) It turns out that the functional that corresponds to Eq. (9.3) is

(If the boundary equations involve a derivative of y, the functional must be modified.)
We can transform Eq. (9.4) to Eq. (9.3) through the Euler-Lagrange conditions, so opti-

mizing Eq. (9.4) gives the solution to Eq. (9.3). Observe carefully the benefit of operating with
the functional rather than the original equation: We now have only first-order instead of sec-
ond-order derivatives. This not only simplifies the mathematics but also permits us to find solu-
tions even when there are discontinuities that cause y not to have sufficiently high derivatives.

If we know the solution to our differential equation, substituting it for u in Eq. (9.4) will
make Z[u] a minimum. If the solution isn't known, perhaps we can approximate it by some
(almost) arbitrary function and see whether we can minimize the functional by a suitable
choice of the parameters of the approximation. The Rayleigh-Ritz method is based on this
idea. We let u(x), which is the approximation to y(x) (the exact solution), be a sum:

There are two conditions on the v's in Eq. (9.5): They must be chosen such that u(x)
meets the boundary conditions, and the individual v's must be linearly independent (mean-
ing that no one v can be obtained by a linear combination of the others). We call the v's
trialfunctions; the c's and v's are to be chosen to make u(x) a good approximation to the
true solution to Eq. (9.3).

If we have some prior knowledge of the true function, y(x), we may be able to choose
the v's to closely resemble y(x). Most often we lack such knowledge, and the usual choice
then is to use polynomials. We must find a way of getting values for the c's to force u(x) to
be close to y(x). We will use the functional of Eq. (9.4) to do this.

* This equation is a prototype of many equations in applied mathematics. Equations for heat conduction,
elasticity, electrostatics, and so on in a one-dimensional situation are of this form.

9.1: Mathematical Background 52 1

If we substitute u(x) as defined by Eq. (9.5) into the functional, Eq. (9.4), we get
2

I(co. CI , . . . , c,) = 1 [($ Z C,v,) - Q(P c,vJ2 + 2FZ c,v, dx. I c9.6)

We observe that I is an ordinary function of the unknown c's after this substitution, as
reflected in our notation. To minimize I, we take its partial derivatives with respect to each
unknown c and set to zero, resulting in a set of equations in the c's that we can solve. This
will define u(x) in Eq. (9.5).

We now substitute the u(x) of Eq. (9.5) into the functional. If we partially differentiate
with respect to, say, ci where this is one of the unknown c's, we will get

= [2 (2) % (2) dx - 1 2Qu (g) dx + 2F (E) dx, (9.7) dc,

where we have broken the integral into three parts.
An example will clarify the procedure.

EXAMPLE 9.1 Solve the equation y" +- y = 3x2, with boundary points (0,0) and (2, 3.5). (Here Q = 1 and
F = 3x2..) Use polynomial trial functions up to degree 3. If we define u(x) as

we have linearly independent v's. The boundary conditions are met by the first term, and
because the other terms are zero at the boundaries, u(x) also meets the boundary condi-
tions. [It is customary to match the boundary conditions with the initial term(s) of u(x) and
then make the succeeding terms equal zero at the boundaries, as we have done here.]

Examination of Eq. (9.7) shows that we need these quantities:

We now substitute from Eq. (9.9) into Eq. (9.7). Note that we have two equations, one for
the partial with respect to c, and the other from the partial with respect to c3. The results -
from this step are:

Chapter Nine: Finite-Element Analysis

Figure 9.2

We now carry out the integrations. Although there are quite a few of them, all are quite
simple in our example. With a more complicated Q(x) and F(x), this might require numer-
ical integrations. The result of this step is the pair of equations

which we solve to get the coefficients in our u(x). On expanding, we find that

Figure 9.2 shows that our u(x) agrees well with the exact solution, which is 6 cos(x) +
3(x2 - 2), over the interval [0, 21. Table 9.1 compares computed values and the error of

The Coilocation Method

There are other ways to approximate y(x) in Example 9.1. The collocation method is what
is called a "residual method." We begin by defining the residual, R(x), as equal to the left-
hand side of Eq. (9.3) minus the right-hand side:

R(x) = y" + Qy - F. (9.14)

9.1: Mathematical Background 523

Table 9.J

Error x Y (4 44
-

Error

We approximate y(x) again with u(x) equal to a sum of trial functions, usually chosen as
linearly independent polynomials, just as for the Rayleigh-Ritz method. We substitute
u(x) into R(x) and attempt to make R(x) = 0 by a suitable choice of the coefficients in
u(x). Of course, normally we cannot do this everywhere in the interval [a, b], so we
select several points at which we make R(x) = 0. [The number of points where we do
this must equal the number of unknown coefficients in u(x).] An example will clarify the
procedure.

EXAMPLE 9.2 Solve the same equation as in Example 9.1, but this time use collocation.
The equation we are to solve is

y'l + y = 3x2, y(0) = 0, y (2) = 3.5. <9.15)

We take u(x) as before to satisfy the boundary conditions:

The residual is, after substituting u(x) for y(x).

R(x) = u" + u - 3x2,

which becomes, when we differentiate u twice to get u",

Because there are two unknown constants, we can force R(x) to be zero at two points in
[O, 21. 'We do not know which two points will be the best choices, so we arbitrarily take
them as x = 0.7 and x = 1.3. (These points are more or less equally spaced in the interval.)

Chapter Nine: Finite-Element Analysis

Setting R(x) = 0 for these choices gives a pair of equations in the c's:

From x = 0.7:

1090c2 + 2 6 1 7 ~ ~ - 2795
Fromx = 1.3:

1000
= 0.

When these are solved for the c's, we get, for u(x),

in which the coefficients are quite different than in Eq. (9.13). Figure 9.3 shows that this
approximation is not as good as that obtained by the Rayleigh-Ritz technique. (But the
amount of arithmetic is certainly less! We could improve the approximation by using more
terms in u(x).) Table 9.2 compares the approximation with the exact solution.

Table 9.2

Error x Error

9.1: Mathematical Background 525

The Galerkin Method

The Galerkin method is widely used, especially in the very popular technique that we
will describe in Section 9.2. It is important to know the Galerkin method because of its
widespread application.

Like collocation, Galerkin is a "residual method" that uses the R(x) of Eq. (9.14), except
that now we multiply R(x) by weighting functions, Wi(x). The Wi(x) can be chosen in many
ways, but Galerkin showed that using the individual trial functions, vi, of Eq. (9.5) is an
especial1,y good choice.

Once we have selected the v's for Eq. (9.5), we compute the unknown coefficients by
setting the integral over [a, b] of the weighted residual to zero:

f b

where Wi(x) = vi. (Observe that using Dirac delta functions for the Wi(x) gives the colloca-
tion method.)

Let us use the Galerkin method on the same example as before.

EXAMPLE 9.3 Solve

y"+y=3x2 , y(O)=O, y(2)=3.5

by the Gralerkin method. Use the same u(x) as before:

SO that v2 = x(x - 2) and v3 = x2(x - 2).
The residual is

R(x) = y" + y - 3x2,

which blecomes, after substituting u" and u for y" and y, respectively,

We now carry out two integrations (because there are two unknown c's):

Using v2 as a Wi: [[x(x - 2)] * R(x) dx = 0,

Using v3 as a Wi: [[*(x - 211 * R(x) dx = 0,

which gives two equations in the c's:

Chapter Nine: Finite-Element Analysis

Solving Eqs. (9.23) for c2 and c3 gives

Although Eq. (9.24) looks different from Eq. (9.13), between x = 0 and x = 2 it gives values
for u(x) that have errors about twice those from the Rayleigh-Ritz technique. Equation
(9.24) differs from the analytical solution by little more than does the Rayleigh-Ritz
equation. [The maximum error of Eq. (9.24) is 0.058; for Eq. (9.13), it is 0.034.1

Although the Rayleigh-Ritz method is slightly more accurate in this example, the
Galerkin method is much easier and we never have to find the variational form.

The disadvantages of the methods of the previous section are twofold: Finding good trial
functions [the v's in Eq. (9.31 is not easy, and polynomials [the usual choice when we have
no prior knowledge of the behavior of y(x)] may interpolate poorly. [We can think of u(x)
as an interpolation function between the boundary conditions that also obeys the differen-
tial equation.] This is especially true when the interval [a, b] is large.

The remedy to this problem is based on the observation in Chapters 3 and 5 that a
function can be approximated by even low-degree polynomials if the polynomial fits the
function at values that are closely spaced. We then hope that we can get the solution to a
boundary-value problem by applying the Galerkin method to subintervals of [a, b], the
boundaries of the equation. It turns out that our hope is fulfilled.

The method that we now describe is calledfinite-element analysis (FEA), also called the
finite-element method (FEM). The strategy is as follows:

1. Subdivide [a, b] into n subintervals, called elements, that join at xl, x2, . . . , x,-~.
Add to this array xo = a and x, = b. We call the xi the nodes of the interval. Number
the elements from 1 to n where element (i) runs from xipl to xi. The xi need not be
evenly spaced.

2. Apply the Galerkin method to each element separately to interpolate (subject to the
differential equation) between the end nodal values, u(xiWl) and u(xi), where these
u's are approximations to the y(xi)'s that are the true solution to the differential equa-
tion. [These nodal values are actually the c's in our adaptation of Eq. (9.5), the equa-
tion for u(x).]

3. Use a low-degree polynomial for u(x). Our development will use a first-degree poly-
nomial, although quadratics or cubics are often used. (The development for these
higher-degree polynomials parallels what we will do but is more complicated.)

4. The result of applying Galerkin to element (i) is a pair of equations in which the
unknowns are the nodal values at the ends of element (i), the c's. When we have done
this for each element, we have equations that involve all the nodal values, which we

9.2: Finite Elements for Ordinary-Differentia1 Equations 527

combine to give a set of equations that we can solve for the unknown nodal values.
(The process of combining the separate element equations is called assembling the
system.)

5. These equations are adjusted for the boundary conditions and solved to get
approximations to y(x) at the nodes; we get intermediate values for y(x) by linear
intlerpolation.

We now begin the development. Although it involves several steps, each step is straight-
forward. The differential equation that we will solve is

yl' t Q(x)y = F(x) subject to boundary conditions at x = a and x = b. a ?3

(We will specify the boundary conditions later.)

Step I Subdivide [a, b] into n elements, as discussed. Focus attention on element (i) that
suns between xi-, and xi. To simplify the notation, call the left node L and the right node R.

Step 2 Write u(x) for element (i):

Recognize that the N's in Eq. (9.26) are really first-degree Lagrangian polynomials.
When we use such linear interpolation, the shape functions are often called hatfunctions.
(Chapeau functions, from the French, is another name.) The reason for this name will
become apparent.

Figure 9.4 sketches NL and NR within element (i). Because the values of the N's vary
(from unity to zero) as x goes from xL to xR, they are functions of .x. Note also that the c's
in Eq. (9.26) are independent of x.

The reason that our N's are called "hat functions" is clear when we look at a sketch of
the N's for several adjacent elements in Figure 9.5. Observe that we combine the NR(x) and
NL(x) of Figure 9.4 that join at xi into a quantity that we call Ni.

Step 3 Apply the Galerlun method to element (i). The residual is

Figure 9.4
1/L and N,? within element (i)

Chapter Nine: Finite-Element Analysis

where we have substituted u(x) for y(x). The Galerkin method sets the integral of R
weighted with each of the N's (over the length of the element) to zero:

NLR(x) dx = 0,

CR (9.28)

Now expand Eq. (9.28):

Step 4 Transform Eqs. (9.29) and (9.30) by applying integration by parts* to the first
integral. In the second integral, we will take Q out from the integrand as Q,, an average
value within the element. We also take F outside the third integral. When this is done,
Eq. (9.29) becomes

In the last two terms of Eq. (9.31), NL = 1 at L and is zero at R, so the equation can be
simplified:

Doing similarly with Eq. (9.30) gives

* From d(UV) = U dV + V d U , we have

9.2: Finite Elements for OrdinaryDifferential Equations 529

Step 5 Change signs in Eqs. (9.32) and (9.33); substitute from Eq. (9.26) for u, duldx,
dNLldx, ,and dN,ldx; and carry out the integrations. We show this separately for each term
in Eq. (9.32):

Doing the same with Eq. (9.33) gives

Step 6 Substitute the result of step 5 [Eqs. (9.34) and (9.35) into Eqs. (9.32) and (9.33),
and rearrange to give two linear equations in the unknown cL and cR:

Qav h, -Fa$, du
6 2 (9.36)

We call the pair of equations in (9.36) the element equations. We can do the same for each
element to get n such pairs.

Step 7 Combine (assemble) all the element equations together to form a system of linear
equations for the problem. We now recognize that point R in element (i) is precisely the
same as point L in element (i + 1). Renumber the c's as co, c,, . . . , c,. Also notice that the

Chapter Nine: Finite-Element Analysis

gradient (duldx) must be the same on either side of the join of the elements-that is,
(d ~ l d x) ~ , ~ in element (i) equals (d~ldx),=~ in element (i + 1). This means that these terms
cancel when we do the assembling except in the first and last equations. (On rare occasions
this is not true, but in that case the difference in the two gradients is a known value.)

The result of this step is this set of n + 1 equations (numbered from 0 to n),

[KlIc) = {bJ, (9.37)

where the diagonal elements of [m are

1 h (- Qav. I * y) in row 0,
h 1

1 1 hi+l (% - Qav, ; * %) + (G - Qav,i+ I * in rows 1 ton - I,
3

and elements above and to the left of the diagonal in rows 1 to n are

The elements of {c} are c , i = 0 to n.
The elements of {b) are

In the preceding equations, Qav,i and are values of Q and F at the midpoints of
element (i).

Step 8 Adjust the set of equations from step 6 for the boundary conditions. We will
handle two cases: Case (I), a Dirichlet condition is specified-y(a) = constant [andlor
y(b) = constant]. Case (2), a Neumann condition is specified-dyldx = constant at x = a
andlor x = b. (If Q = 0, we cannot have a Neumann condition at both ends, because the
solution would be known only to within an additive constant.) [We leave case (3), mixed
conditions, as an exercise; it is a modification of case (2) .]

Case (1): Dirichlet condition. In this case, c is known at the end node. Suppose this
is y(a) = A. Then the equation in row 0 is redundant, and so we remove it from the set of
equations of step 6. In the next row, we move klo * A to the right-hand side (subtracting this
from the element computed in step 6). If the condition is y(b) = B, we do the same but with
the last and next to last equations.

Case (2): Neumann condition. In this case, c is not known at the end node. Suppose
the condition is dyldx = A at x = a. We retain the equation in row 0 and substitute the

9.2: Finite Elements for Ordinary-Differentia1 Equations 53 1

given value of dyldx into the right-hand side. If the condition is dyldx = B at x = b, we do
the same with the last equation.

Step 9 Solve the set of equations for the unknown c's after adjusting, in step 8, for the
boundary conditions. The c's are approximations to y(x) at the nodes. If intermediate val-
ues of y are needed between the nodes, we obtain them by linear interpolation.

Examples will clarify the procedure.
- -
EXAMPLE 9.4 Solve y" $. y = 3x2, y(0) = 0, y(2) = 3.5. (We solved this same equation in Section 9.1 .)

Subdivide into seven elements that join at x = 0.4, 0.7,0.9, 1.1, 1.3, and 1.6.
Table 9.3 shows the values we need to build the system of equations.
The augmented matrix of the set of equations from step 6 is

2.367 -2.567 0.000 0.000 0.000 0.000 0.000 0.000 j -0.024

-2.567 5.600 --3.383 0.000 0.000 0.000 0.000 0.000 j -0.160

0.000 -3.383 8.167 -5.033 0.000 0.000 0.000 0.000 i -0.328

0.000 0.000 -5.033 9.867 -5.033 0.000 0.000 0.000 \ -0.492

0.000 0.000 0.000 -5.033 9.867 -5.033 0.000 0.000 -0.732

0.000 0.000 0.000 0.000 -5.033 8.167 -3.383 0.000 j -1.378

0.000 0.000 0.000 0.000 0.000 -3.383 5.600 -2.567 i -2.890

'Table 9.3

1 0.000 0.000 0.000 0.000 0.000 0.000 -2.567 2.367 ! -1.944

-8.9845 from the right-hand side of the bottom row to get

To adjust for the boundary conditions, we eliminate the first and last equations and subtract
(0)(-2.567) = 0 from the right-hand side of the top row and subtract (3.50)(-2.567) =

Element L

' 5.600 -3.383 0.000 0.000 0.000 0.000 -0.160
-

-3.383 8.167 -5.033 0.000 0.000 0.000 -0.328
0.000 -5.033 9.867 -5.033 0.000 0.000 -0.492
0.000 0.000 -5.033 9.867 -5.033 0.000 -0.732
0.000 0.000 0.000 -5.033 8.167 -3.383 -1.378
0.000 0.000 0.000 0.000 -3.383 5.600 6.094 - -

Midpoint

. (9.39)

We have shown Eqs. (9.38) and (9.39) in their full form but observe that the system is tridi-
agonal (and symmetric, too). It would have been better to store these as 8 X 4 arrays, so

Chapter Nine: Finite-Element Analysis

Table 9.4

x U (X) Anal. Error

that Eq. (9.39) would be

When the system of Eq. (9.39) is solved, we get the solution as shown in Table 9.4. The
table also shows the analytical solution and the errors of our computation. The table indi-
cates that closer spacing of nodes near x = 1 would give better answers.

This next example solves a boundary-value problem, which has Neumann conditions at
the ends of the region.

EXAMPLE 9.5 Solve y" - (x + l) y = e-X(x2 - x + 2) subject to Neumann conditions of

y ' (2) = 0 , yr(4)=-0.036631.

Use four elements of equal lengths. Compare to the analytical solution

y(x) = eFX(x - 1).

Table 9.5 gives values that we need to set up the equations.

Element L R Midpoint hi Qw Fa"

1 2 2.5 2.25 0.5 -3.25 -0.5072
2 2.5 3.0 2.75 0.5 -3.75 -0.4355
3 3 .O 3.5 3.25 0.5 -4.25 -0.3611
4 3.5 4.0 3.75 0.5 -4.75 -0.2896

9.2: Finite Elements for Ordinary-Differential Equations 533

The initial matrix of equations is

After adjusting for boundary conditions, we get

x u(x) Anal. Error

I
-

2.542 - 1.729 0.000 0.000 0.000 i 0.127
- 1.729 5.167 -1.688 0.000 0.000 i 0.236

0.000 -1.688 5.333 -1.646 0.000 j 0.199
0.000 0.000 - 1.646 5.500 -1.604 i 0.163
0.000 0.000 0.000 -1.604 2.792 i 0.036 -

We again observe that the system is tridiagonal and symmetric. Will this be true for mixed-
boundaq conditions?

,

ther Kinds of Elements

and the solution is

We have used the "hat7' functions because they are the simplest kind of element for a 1-D
problem. This may not always be adequate. This sketch shows why.

Chapter Nine: Finite-Element Analysis

The dots in the figure represent the computed u-values at the nodes and the straight lines
that connect the dots are the supposed intermediate values (because the value of u is
assumed to vary linearly within the elements). This certainly does not correctly describe
the function u(x)! (Of course, if the elements are much smaller, the broken line would be a
better approximation.) How can we remedy this defect in the procedure?

The obvious way is to use a shape function that better approximates the true function. A
quadratic shape function would involve three nodes: two at the ends and an intermediate
one. This will force the solution to behave like a parabola that passes through the three
nodes. A cubic shape function might be used; it would involve four nodes. Using such
higher-order shape functions adds some modest complications to the development of the
procedure, but the general approach is identical to what we have shown. When such
higher-order shape functions are used, the integration of the analogs of Eqs. (9.3 1) or (9.5)
is usually done by numerical methods. The resulting system of equations is no longer tridi-
agonal, but the nonzero elements of the coefficient matrix are still clustered about the main
diagonal.

There is still a flaw with such higher-order elements in the I-D problem-the curve for
u is not continuous in slope at the juncture of the elements. This flaw could be eliminated
if the shape function were splines, but this is not often done because that complicates the
procedure significantly.

Sometimes the user of finite-element analysis wants to know the flux in addition to the
u-values. In one dimension, the flux is kaldx. (In the sketch, this is proportional to the
slopes.) With the linear hat function, the flux values are discontinuous and have larger
errors than u(x). Higher-order shape functions help to overcome this.

Convergence Rates

A numerical analyst is always greatly concerned about the accuracy of the numerical
solutions. For finite-element-method procedures, the question is "How do the errors
decrease when we put nodes closer together?" It can be shown that, with linear ele-
ments, errors are of order 0(h2), where h is a measure of the nodal spacing. Quadratic
elements give an 0(h3) accuracy; higher orders than two give even better accuracy as
the mesh is refined. As we have said, the rate of decrease is a limit value that is
achieved only as the h-value gets very small. (The rate of decrease in the errors with
quadratic or higher-order shape functions also depends on the integration method used
in formulating the system of equations.) Also, a very interesting phenomenon has been
observed in studies of the effect of smaller h-values on accuracy-errors may not
always decrease uniformly as the spacing is made closer. As a mesh is gradually
refined, anomalous behavior can occur.

It is frequently the case that nodes are not uniformly spaced-in fact, this is one of
the major advantages of the finite-element method; we can put nodes closer together
where the solution u(x) varies most rapidly to get better accuracy in that subregion. This
imposes a problem about how best to define "h" in the order of convergence. We shall
not pursue this but only remark that if a mesh is refined to improve the accuracy of the

9.3: Finite Elements for Partial-Differential Equations 53 5

numerical solution, we must refine it everywhere, not just in selected parts of the
region.

The errors in the flux do not decrease as rapidly with smaller spacing of the nodes. For
a linear shape function, errors decrease as O(h).

Burn~ett (1987) is an excellent reference.

9.3 Finite Elements for
Partial-Differential Equations

When an elliptic partial-differential equation is solved by replacing derivatives with finite-
difference approximations, there are serious difficulties if the region is irregular. Analytical
methods are also very awkward to apply in such cases.

The finite-element method has no such problems. As we saw in Section 9.2 for one-
dimensnonal boundary-value problems, nodes can be placed wherever the problem solver
desires with the finite-element method. This is also true for two- and three-dimensional
regions. They can be placed along any boundary so as to approximate it closely. It is the
method of choice for solving elliptic partial-differential equations on regions of arbitrary
shape.

Although setting up the equations that solve partial-differential equations is no easy
task, computer programs are available that do so. It is important to understand how this
method works, although this text cannot give everything that today's scientists and engi-
neers might want to know. Our treatment will give a basic knowledge.

The introduction to finite elements in Sections 9.1 and 9.2 is important background for
what we shall do here. Recall that two ways of applying variational methods to subdivi-
sions of the region of interest were presented: Rayleigh-Ritz and Galerkin. The first of
these ainimized the functional for the problem by setting partial derivatives to zero; the
second by setting integrals of a weighted residual to zero. The two methods are equivalent
for most problems, and both can be used for elliptic equations. We choose the former, in
part to provide variety from the presentation in Section 9.2.

The elliptic equation that we will solve in this section is

on region R that is bounded by curve L, with boundary conditions

where dulan is the outward normal gradient.
Observe that we have Dirichlet conditions on some parts of the boundary and mixed

boundary conditions on other parts. For our notation, we will use u(x, y) as the exact solu-
tion to Eq. (9.40) and v(x, y) as our approximation to u(x, y). Although the finite-element
method is most often used when the region is three dimensional, we will simplify the
development by doing it in only two dimensions.

Chapter Nine: Finite-Element Analysis

Here is our plan of attack:

Step 1. Find the functional that corresponds to the partial-differential equation.
This is well known for a large class of problems.

Step 2. Subdivide the region into subregions (elements). Although many kinds of
elements can be used, our treatment will consider only triangular elements. The ele-
ments must span the entire region and approximate the boundary relatively closely.
Every node (the vertices of our triangular elements) and every side of the triangles
must be common with adjacent elements except for sides on the boundaries.

Step 3. Write an interpolating relation that gives values for the dependent variable
within an element based on the values at the nodes (the vertices of the triangles). We
will use linear interpolation from the three nodal values for the element. We will write
the interpolation function as the sum of three terms; each term involves a quantity ci,
the value of v(x, y) at a node.

Step 4. Substitute the interpolating relation into the functional, and set the partial
derivatives of the functional with respect to each c to zero. This gives three equa-
tions, with the c's as unknowns for each element.

Step 5. Combine together (assemble) the element equations of step 4 to get a set
of system equations. Adjust these for the boundary conditions of the problem, then
solve. This will give the values for the unknown nodal values, the c's, that are
approximations to u(x, y) at the nodes. We can get approximations to u(x, y) at inter-
mediate points in the region by using the interpolating relations.

We will discuss each of these five steps in turn. We will provide simple examples to
illustrate some of them.

Step 1. Find the Functional

For Eq. (9.40) the functional is well known:

I[u] = J][(%r + (zy - Qu2 + 2Fu [uu2 + 2puldL. (9.41)
Region

It is possible to develop Eq. (9.41) using the Galerkin technique, Workers in the field
of structural analysis usually derive it from the principle of virtual work. We will take it as
a given.

Step 2. Subdivide the Region

As stipulated, we will use triangular elements, which will be defined by our choice of
nodes. The placement of nodes is, in part, an art. In general, we place nodes close together
in subregions where the solution is expected to vary rapidly. It is advantageous to make the

9.3: Finite Elements for Partial-Differential Equations 537

sides run in the direction of the largest gradient. Along the curved parts of the boundary,
nodes should be placed so that a side of the triangle closely approximates the boundary.

Some of these recommendations depend on knowing the nature of the solution in
advance. Often, however, a better placement for the nodes can be accomplished after some
preliminary computations or after preliminary trials using the finite-element method with
nodes placed arbitrarily.

The chore of defining the nodes' coordinates is facilitated by computer programs that
allow the user to place nodes with a pointing device on a graphical display of the region.
These programs even permit rotating 3-D regions or looking at cross sections. Once the
nodes halve been located, the program connects them to create the elements.

Computer routings are available that can divide any given planar region into triangles
automatically, but they usually do not have the expertise of an experienced engineer.

Step 3. Write the Interpolating Relations

This part of the development is longer than the previous one. As stated, we will use a linear
relation. Figure 9.6a is a sketch of typical element (i) whose nodes are numbered r, s, and
t in counterclockwise direction. The nodal values are c,, cs, and c, as indicated in
Figure 9.6b. The shaded triangle shows how v(x, y) varies within the element.

Within typical element (i), we write

where th,e N's (called shape&nctions) will be defined so that v(x, y) at an interior point is a
linear interpolation from the nodal values, the c's. We have shown in Eq. (9.42) that v(x, y)
can be expressed as the product of vectors (N) and {c) . (We use parentheses to enclose a
row vector and curly brackets to enclose a column vector in this section.) Vector and
matrix notation will be useful. We will indicate matrix M by [w.

Chapter Nine: Finite-Element Analysis

Figure 9.7

Figure 9.6b suggests that v(x, y) lies on the plane above the element that passes through
the nodal values. Equation (9.42) does not define v(x, y) outside of element (i) ; there will
be similar expressions for the other elements, but their N's and c's will differ.

A sketch of the entire region would not show v(x, y) as a plane. Instead, it would be a
surface composed of planar facets, each in a plane above an element. v(x, y) for the entire
region is continuous, but vr(x, y) is not. (This is one of the flaws in our choice of element.
Some other element definitions do not have this flaw.)

Another name for the N's of Eq. (9.42) is pyramid function. The reason for this name is
illustrated in Figure 9.7, where N, of Figure 9.6 is drawn. Its height at node s is unity and
zero at the other nodes. It looks like an unsymmetrical pyramid whose base is the element
with its apex directly above node s. The other two N's are similar. It is obvious that the N's
are functions of x and y and that the c's are independent of x and y. We now develop expres-
sions for the N's.

Because v(x, y) varies linearly with position within the element, an alternative way to
write the linear relation is

which must agree with the nodal values when (x, y) = (xj, yj), j = r, S, t. Hence

v at r: c, = a l + a,xr + a3yr,

v at s: c, = al + a2xs + a3y,,

v at t: c, = a l + a2xt + a,y,

This is a system of equations

[MI {a) = {c) (curly brackets show a column vector),

where

Solving for {a):

{u) = [M-l]{c).

9.3: Finite Elements for Partial-Differential Equations 539

The inverse of M is not difficult to find

with 2(.Area) = det(A4). The value of the determinant is the sum of the elements in row 1 of
Eq. (9.45) within the brackets. Area is the area of the triangular element.* You should ver-
ify that [M-'][MI = [I] to ensure that Eq. (9.45) truly gives the inverse matrix.

To alpply the interpolating function to the minimization of the quadratic functional,
Eq. (9.41), we prefer to write v(x, y) in terms of the shape functions of Eq. (9.42). This task
is easy. We have, from Eqs. (9.42) and (9.43),

Howev~er, in terms of N (from Eq. 9.42),

Comparing the two expressions, we have

where A C 1 is given by Eq. (9.45). Observe carefully that Eq. (9.47) says that each N is a
linear function of x and y of the form

and that the coefficients are in column j of [M-'1.
We have found the expressions for the N's. Before we go on, we digress to show an

example that will clarify this step.

EXAMPLE 9.6 For the triangular element shown in Figure 9.8 with nodes r, s, and t in counterclockwise
order, find { a } , {N}, and v(0.8,0.4).

Node x Y c

Before we do any computations, we can find v(0.8, 0.4) by inspection. (See Fig. 9.8.)
Point 1 is at (0, 0.4), so v there is 180 by linear interpolation between nodes r and t.
Similarly, v at point (2) is 240. The point (0.8,0.4) is 5 of the distance from points 1 and 2,

* That Area = det (M) is shown in most books on vectors where the cross product is explained

Chapter Nine: Finite-Element Analysis

Figure 9.8

so v(0.8, 0.4) = 180 + i(240 - 180) = 220. We get the same result by interpolating
between points 3 and 4, and between node r and (5).

To get { a } we first compute [M-l]:

Then we compute

{ a } = [M-']{c) =

giving v(x, y) = 100 + 50x + 200y. (You should confirm that this gives the correct
values at each of the nodes.) If we substitute x = 0.8, y = 0.4, we get v = 220, as we
should.

From Eq. (9.47),

(N) = (1 x y)[M-'] = (1 - OSx - y, 0.5x, y).

In other words, we have

(You should confirm that these also have the proper values at each of the nodes.) It is
important to notice that the coefficients of the N's [the Ai, Bi, and Ci of Eq. (9.48)] can be
read directly from the columns of [M-'1.

In what follows we will need the partial derivatives of the N's with respect to x and to y.
From Nj = Aj + Bjx + Cjy, we see that these are constants that can be read from rows
2 and 3 of [M-l] in column j.

At this point we know how to write v(x, y) within the single triangular element (i) as
v(x, y) = (N(i)){~(i)}. (The superscripts (i) tell which element is being considered whenever

9.3: Finite Elements for Partial-Differential Equations 541

this is necessary.) We now stipulate that (fl)) = (0) everywhere outside of element (i).
Therefore we can write

v(x, y) = (N(j)) {c(~)}
i = all elements

This is a mathematical statement of the previous observation that v(x, y) is a surface com-
posed of joined planar facets.

We are now ready for step 4 of our plan. This too is lengthy but each portion is easy.

Step 4. Substitute v(x, y) into the
Functional and Minimize

We continue to work with typical element (i) whose nodes are r, s, and t. Repeating
Eq. (9.46), our v(x, y) is

V(X, Y) = (N){c} = Nrcr + Nscs + Ntct,

where the Ws are given by Eqs. (9.47) and (9.45). Recall that each N is Aj + Bjx + C'y
with the coefficients given by the elements in column j of [M-'1.

Our objective is to develop a set of three equations for element (i), which is, in matrix form,

[KlIcJ = IbJ,

and which is a prototype of similar equations for all other elements.
Whe:n we substitute v(x, y) for element (i) into the functional of Eq. (9.41), we get

-$ [m2 + 2/32, dL.

[I is now an ordinary function of the c's. The integral is only over the area of element (i)
because: the Ws that define v(x, y) in element (i) are zero outside of (i). The last term appears
only if element (i) has a side on the boundary. Actually, we will postpone handling this last
term for now and handle it as an adjustment to the equations after they have been developed.]

We minimize I by setting the three partials (with respect to each of the three c's) to zero.
We now develop expressions for these partials. First consider aIlacr.

For the first term in the integrand:

However,

= BrcT + BScS + Btct,

by virtue of Eq. (9.48). (The B's come from row 2 of [M-'1.)

Chapter Nine: Finite-Element Analysis

Also, aldcr(dvlax) = Br because c, and c, are independent of c,.. Hence

The result for the second term is similar:

where the C's come from row 3 of [M-'1.
We next consider the Q term. Q is independent of c , so

Finally we work with the F term. F is independent of c,, so

Putting all this together, we have

- 2Q[N:cr + NrNsc, + NrN,d dxdy

(0

Equation (9.50) really is a formulation with the c's unknown:

Krrcr + Krscs + Krtct = by,

where

K, = 2B: dx dy + (I 2C: dx dy - 2QN: dx dy,

(0 (0 (9

b,. = -I/ 2FNr dx dy.

9.3: Finite Elements for Partial-Differential Equations 543

[Remember, we postpone handling the last part of Eq. (9.49).]
Now we recognize that the B's and C's of Eq. (9.51) are constants, so we can bring them

out from under the integral sign. If we use average values for Q and F within the element,
we can also bring these out as their average values. (The best average value to use is the
value of' Q and F at the centroid of the triangular element.)

This means that we have to evaluate these five integrals:

The first of these is easy: Il = Area of the element, which we already know from having
cornputled [M- l] . The other integrals are laborious to compute directly, but there is a use-
ful formula for the integral of the product of powers of linear functions over a triangle:

II 24!m!n!
N ~ N T N : dx dy = (Area).

(4 + m + n + 2)!
(triangle)

Using this with the proper values for the exponents, 4, m, and n, gives

(Area)
I2 = -

6 '

(Area)
Z4 = -

12 '

(Area)
Z5 = -.

3
The tenms in Eq. (9.5 1) are then

Y r ' r + Krscs + K r F , +

where

Chapter Nine: Finite-Element Analysis

If we do the same with dIlac, and Wac,, we get two more equations in the c's for element
(i). All together we have three equations, which we call the element equations. We simplify
these equations somewhat by omitting the common factor of 2 for each of them to get

where

(diagonals) j = I-, s, t;

Observe that [K] is symmetrical: Kv = Kji.
Here is an example to clarify the formation of the element equations.

EX AMPLE 9.7 Find the element equations for the element of Example 9.6 if Q(x, y) = (xy)/2 and F(x, y) =
x + y.

The nodes are (x, y) = (0, O), (2, O), and (0, 1). We had, for [M-'1,

Area = 1. Centroidis atx = (0 + 2 + 0)/3 = ?, y = (0 + 0 + l)/3 = 4. Q, = ($)(f)12 = b.
F = l + l =

a" 3 3 1.
Using Eq. (9.52), we find that the element equations are

1.2315 -0.2592 - 1.0092

-0.2592 0.2315 -0.0093
-1.0092 -0.0093 0.9815

We are now ready for step 5 of the plan.

Step 5. Assemble the Equations,
Adjust for Boundary Conditions, Solve

There are three separate operations in step 5: (i) assemble the equations, (ii) adjust for
boundary conditions, and (iii) solve the equations.

9.3: Finite Elements for Partial-Differential Equations 545

(i) Do the Assembly As we have seen, there are three equations for every element.
However, some or all nodes of element (i) are shared with other elements; the c-value for a
shared node then appears in the equations of all elements that share the node. Combining
all of the element equations will create a global system coefficient matrix with as many
rows and columns as there are nodes in the system. We combine (assemble) the system
matrix in the following way.

Suppose there are n nodes in the system. Number the nodes in order, from 1 to n.
Associate the number of each node with the row and column of every element matrix
where the c for that node appears on the diagonal. Also associate the node numbers with
the rows and columns of the system matrix in the same way.

We get the entry in row (i) and column (j) of the system matrix by adding the values
from row (i) of every element matrix that has row (i), then adding these in the columns
where the column-node numbers match. We also add the hi's from these rows to get the bi
of the system matrix. An example will clarify this operation.

EXAMPILE 9.8 Suppose there are five nodes that define three elements, as shown in Figure 9.9 with the
element matrices of Eq. (9.53a, b, c) below. Construct the system matrix without adjusting
for boundary conditions.

(1) +

Element [I] (2) -+

(4) -+

Element [2] (3) +

t t t
(2) (3) (4)

Figure 9.9

Chapter Nine: Finite-Element Analysis

[The rows and columns of Eqs. (9.53) could have been in a different order, although we
always go counterclockwise around the element in selecting the nodes.]

We construct the system matrix as follows, where the superscripts indicate the element
number that provides the value:

For row 1 For row 2

col 1: Kfil + K g c01 1: K ~ { I

C O ~ 2: K!;] ~ 0 1 2 : K&] + ~[1211

col3: 0 ~ 0 1 3 : K!?)

co1 4: ~ [1 ~ ~ l + K&32 co14: K&] + ~ 1 2 3 1

~015 : ~;32] ~015 : 0

b: bill + bi3] b: by1 + bi21
and so forth.

[A zero appears in column 3 of row 1 because node (3) is not in any element that includes
node (1). A zero appears in column 5 of row 2 because node (5) is not in any element that
includes node (2).1

Once the system matrix has been assembled, we make the adjustments for boundary
conditions.

(ii) Adjzmt for Boundary Conditions There are two types of boundary conditions: non-
Dirichlet conditions on some parts of the boundary (L2) and Dirichlet conditions on other
parts (L1). We will always select nodes such that only one of the two types of conditions
pertains to any side of the element. Hence there will always be a node at the point where
the two types join. These two types of boundary conditions require two separate adjust-
ments. We prefer to apply the adjustment for a boundary condition that involves the out-
ward normal derivative to the system equations first and then do the adjustment for
Dirichlet conditions.

Adjrcsting for Nun-Dirichlet Conditions Non-Dirichlet conditions (those that involve
the outward normal derivative) are associated, not with the nodes, but with sides of the tri-
angular elements, sides that correspond to part of L, of Eq. (9.41). Consider an element
that has a non-Dirichlet condition on one side that lies between nodes r and s. The effect of
the boundary condition on the equations comes from differentiating the last term of
Eq. (9.49) with respect to the c's. However, if we take a and /3 out from the integrand as
average values, we see from Eq. (9.49) that they are of the same form as the Q and F terms
except they are line integrals rather than area integrals. That similarity lets us immediately
write the result of the differentiation with respect to c, as

9.3: Finite Elements for Partial-Differential Equations 547

where the line integrals are along the side between nodes r and s. It is important to note
that we have not included c, because node t is not on the side we are considering. (The
average values of a and p should be taken at the midpoint of the side.) When
we integrate, we have

(It is easy to evaluate the integrals when we remember that the N's are linear from 1 to 0
between the two nodes.)

Precisely the same relations result when we differentiate with respect to node c,, except
the roles of r and s are interchanged in Eqs. (9.54) and (9.55). The net result would be to
add 2pL/2 to the right-hand sides of the rows for c, and c,. We also would subtract the mul-
tipliers of c, and c, in Eq. (9.55) from the coefficients for c, and c, in row r. The similar
equations from the partials with respect to c, provide subtractions from the coefficients
in row s.

Recall, however, that we canceled a 2 factor when we constructed the element equations
and so we must do so here. We make this adjustment to the element equations for every
element that has a derivative condition on a side.

Adjusting for Dirichlet Conditions For every node that appears on the boundary where
there is a Dirichlet condition, the U-value is specified. We insert this known value in place
of the c of that node in every equation where it appears and transpose to the right-hand
side. (Actually, if the node number is m, all entries in column m of the matrix are multi-
plied by the value and subtracted from the right-hand side of the corresponding row.) We
also remove the row corresponding to the number of the known node from the set of equa-
tions. (The column for this node has already been "removed" by being transferred to the
right-hand side.)

Removing the rows for those nodes with a Dirichlet condition is simplified in a com-
puter program if these rows are at the top or the bottom of the matrix. There are other ways
to handle Dirichlet conditions that avoid having to remove the rows.

This completes our construction of the system equations.

(iii) Getting the Solution We solve the system in the usual way, perhaps preferring an
iterative procedure if the system is large.

An example, intentionally simple, follows.

EXAMPLE 9.9 The region shown in Figure 9.10 has four nodes. It is divided into just two elements. The
values for u are specified at nodes (3) and (4), and the outward normal gradient is specified
on three sides as indicated. The equation we are to solve is

Chapter Nine: Finite-Element Analysis

Figure 9.1 0

Find the solution by the finite-element method. The element-matrix inverses are:

M inverse for element 1 M inverse for element 2
area is 11.5 area is 6

From these we get these element equations:

Element equations for element I

Element equations for element 2

These equations assemble to give this unadjusted system matrix:

9.3: Finite Elements for Partial-Differential Equations 549

We need the lengths of sides 4- 1, 1-2, and 2-3. They are

Side 4-1: 6.083, Side 1-2: 4.123, Side 2-3: 4.

We now adjust for the derivative conditions to get the modified system:

The second adjustment is for the known values at nodes (3) and (41, giving

which we solve to get these estimates of ul and u i

Solving an Elliptic Problem with MATLAB

MATLAB's professional version has a toolbox, the Partial Differential Equation Toolbox
(not included in the student version that we use) that can solve all three types of partial-
differential equations. We describe here how it solves an elliptic problem.

This illustrative example solves Laplace's equation to get the temperature distribution
on a region that is a rectangle whose width is twice its height and that has a quarter circle
removed from its upper-right corner:

Chapter Nine: Finite-Element Analysis

Along the base of the figure, the temperature is 100"; on the arc it is 0" (Dirichlet condi-
tions). All other edges are insulated (Neumann condition, duldn = 0). We desire the
steady-state temperature distribution.

We will obtain the solution through six steps:

1. Draw the region.
2. Save the region as an M-file.
3. Set boundary conditions.
4. Create a mesh of triangular elements.
5. Define the type of equation to be solved.
6. Solve the problem.

I . Draw the Region The Toolbox provides two different ways to do this: with a
Graphical User Interface (GUI), or through commands typed into the command screen.

We will use the second way. Our region will be composed of two parts: the rectangle
and a circle that is subtracted from it. We begin with the rectangle. We use the command:

>> pderect ([-1 1 -. 5 .51)

where the parameter is a vector of the x-coordinates followed by the y-coordinates
of two opposite corners. [The corners are at (-1, -0.5) and (1, OS).] After the
command is entered, we see the rectangle in a separate window that we will call the
"figure window."

This window has a menu bar as well as another bar that has icons; these icons are quick
ways to call for many menu commands.

We now create the circle. We go back to the command window and enter

This superimposes a circle on the rectangle with center at x = 1, y = 0.5, and radus of 0.5,
which we can view in the figure window. The figure window has a box labeled "Set formula"
that reads R1 + el, which we change to R1 - C1 by clicking the box and using the key-
board to make the change. The figure window does not yet reflect the change but it is in effect.

From now on, each step is done in the figure window.

2. Save the Region It is always good to save the description of the region. This permits
one to retrieve it at a later time. Saving is done by invoking F i l e / Save A s in the figure
window. We give it a name, say, FIGA, and it is added to the list of M-files.

3. Set Boundary Conditions We invoke Boundary / Boundary Mode and see the
region displayed (the distorted rectangle is now seen). Its outline is red with arrows indi-
cating a counterclockwise ordering. We establish the boundary conditions by double-click-
ing on a boundary and then entering parameters into a dialog box.

We begin with the base of the figure. After double-clicking on the base, we see the dia-
log box. Select Dirichlet (actually, this is the default), and make the value o f t = 100.
Click OK and we are returned to the figure window. We double-click on the arc and select
Dirichlet , and make t = 0 (both are default values).

9.3: Finite Elements for Partial-Differential Equations 55 1

We need to establish a Neumann condition on each of the other sides of the rectangle. This
is easy tso do: double-click on the side, select Neumann, set g = 0, q = 0 (default values),
click OK.

The boundary conditions are now established.

4. Create a Mesh of Triangular Elements Clicking on Mesh / I n i t i a 1 i z e Mesh in
the menlu bar creates a coarse mesh of triangular elements:

We can refine this mesh with Mesh/Re f ine Mesh but we stay with the current mesh
for now.

5. Define the Type of Equation to Be Solved We do this by clicking on PDE/PDE
Specification in the menu bar. In the dialog box that appears, we select Elliptic
(the default) and set c = 1, a = 0, f = 0. We then click OK to finish this step. (These para-
meters axe for our equation, V2u = 0.)

6. Solve the Problem Clicking Solve/Solve PDE in the menu bar gets the solution.
The software in the toolbox sets up the equations, assembles these, adjusts for boundary
conditions, and solves the system of equations.

We see a display of the region with colors indicating the temperature in each element.
On the right of this is a vertical bar that shows how colors and temperatures are related.
Our figure here is not in color but the output actually indicates the temperatures within
each element by colors that vary from bright red (100") to bright blue (0"). Because we use
a coarse mesh, it is easy to see the temperature of each individual element by its color. This
would be difficult with a fine mesh.

Chapter Nine: Finite-Element Analysis

Color: u

I I I I I

Another way to see the solution is to get the isotherms. Selecting only Contour in the
Plot Parameters dialog box gives a plot of isotherms within the region, with
Au = 5". This is shown in the next figure. On the computer screen, these isotherms are
colored to indicate the temperatures.

Contour: u
1

0.8

0.6

9.3: Finite Elements for Partial-Differential Equations 553

The Heat Emquation

As we have just seen, the finite-element method is often preferred for solving boundary-
value problems. It is also the preferred method for solving the heat equation when the
region of interest is not regular. You should know something about this application of finite
elements, but we do not give a full treatment.

Consider the heat-flow equation in two dimensions with heat generation given by F(x, y):

which is subject to initial conditions at t = 0 and boundary conditions that may be
Dirichlet or may involve the outward normal gradient. Although this is really a three-
variabl~e problem (in x, y, and t), it is customary to approximate the time derivative with
a finite difference and apply finite elements only to the spatial region. Doing so, we can
rewrite Eq. (9.56) as

where we have used a forward difference as in the explicit method. (We might prefer
Crank--Nicolson or the implicit method, but we will keep things simple.)

To alpply finite elements to the region, we do exactly as described previously-cover
the region with joined elements, write element equations for the right-hand side of
Eq. (9.56), assemble these, adjust for boundary conditions. and solve. However, we must
also consider the time variable. We do so by considering Eq. (9.57) to apply at a fixed point
in time, t,. Because we know the values of u everywhere within the region at t = to,
we surely know the initial nodal values. We then can solve Eq. (9.57) for the u-values at
t = to + At, where the size of At is chosen small enough to ensure stability.

We will use the Galerkin procedure to derive the element equations to provide some
variety from the above. In this procedure you will remember that we integrate the residual
weighted with each of the shape functions and set them to zero. (The integrations are done
over the element area.) If we stay with linear triangular elements, there are three shape
functions, N,, N,, and N,, where the subscripts denote the three vertices (nodes) of the ele-
ment taken in counterclockwise order.

The residual for Eq. (9.56) is

Residual = u, - a(uU + uyy) - F, (9.58)

where we have used the subscript notation for derivatives and have abbreviated klcp with a .
As stated, we will use linear triangular elements; within each element we approximate

u with

U(X, y) = v(x, y) = N,c, + N,cx + N,c,. (9.59)

This means that Galerkin integrals are

Chapter Nine: Finite-Element Analysis

If we apply integration by parts (as we did in Section 9.2) to the second derivatives of
Eq. (9.60), we can reduce the order of these derivatives. Doing so and replacing v from
Eq. (9.59) gives a set of three equations for each element, which we write in matrix form:

The components of {c} are the nodal temperatures of the element, of course; those of
{dcldt) are the time derivatives. The components of the matrices of Eq. (9.61) are

In Eq. (9.62), the line integral in the b's is present only along a side of an element on the
boundary of the region where the outward normal gradient uN is specified in a boundary
condition.

From the development of Eq. (9.52), we know how to evaluate all of the integrals of
Eq. (9.62) when the elements are triangles. [See, for example, Burnett (1987) for the eval-
uations for other types of elements.]

As stated, we will use a finite-difference approximation for dcldt. If this is a forward
difference as suggested, we get the explicit formula

1 1
- [C]{cm+') = - [C]{cm) - [Kl{cm) + {b}, (9.63)
At At

where all the c's on the right are nodal temperatures at t = tm and the nodal temperatures
on the left in {cm+l] are at t = tm+l

We can put Eq. (9.63) into a more familiar iterating form by multiplying through by
At[C]-l:

(cmil) = {cm) - At[C] - l [~]{~m} + A~[c]-'{b). (9.64)

[We can make Eq. (9.64) more compact by combining the multipliers of {cm) .]
In principle, we have solved the heat-flow problem by finite elements. We construct the

equations for every element from Eq. (9.64) and assemble them to get the global matrix,
then adjust for boundary conditions just as before. This gives a set of equations in the
unknown nodal values that we use to step forward in time from the initial point. With the
explicit method illustrated here, each time step is just a matrix multiplication of the current
nodal temperatures (and a vector addition) to get the next set of values. If we had used an
implicit method such as Crank-Nicolson, we would have had to solve a set of equations at
each step, but, unfortunately, they are not tridiagonal. We might hope for some equivalent to
the A.D.I. method, but A.D.I. requires that the nodes be uniformly spaced. The conclusion
is that the finite-element method in two or three dimensions is a problem that is expensive to
solve. In one dimension, however, the system is tridiagonal, so that situation is not bad.

9.3: Finite Elements for Partial-Differential Equations 555

Sdvirig a Parabolic Problem with MATLAB

The Partial Differential Equation Toolbox can solve all types of partial-differential equa-
tions. We show here how it can solve the heat equation. In the previous description of
solving an elliptic problem with the toolbox, the solution is the steady-state distribution of
temperatures. This is not reached instantaneously; the progress of the solution from an ini-
tial state to the steady state can be found by solving the heat equation:

MATLAB's generic form of a parabolic equation is

where we have used boldface to pinpoint the parameters. For our equation, we want d = 1,
c = k/cp (the thermal diffusivity), a = 0, and f = 0.

Let u,s see how the steady state is approached as time advances for the same region and
boundary conditions as before. We will take the initial temperatures within the region as 0".

The procedure is almost exactly the same as before, only step 5 is different:

1. Define the region.
2. Define the boundary conditions.
3. Enter the values for the parameters of the equation.
4. Establish a mesh of triangular elements.
5. Enter values for the initial values for u and a list of times for which the solution is

ca'mputed.
6. Solve the problem and display the results

I . Defin'e the Region We saved the region with the file name FIGA so all we have to do
is enter this file name as a command.

2. Define Boundary Conditions We could have saved the previous set of conditions as
an M-file, but we neglected to do that so we do it again. Because several of the boundaries
have the same Neumann condition, it is advantageous to do Edit /Select A1 I, set the
conditioins to Neumann with aulan = 0, and reset the two with Dirichlet conditions after-
ward. If we save this with the filename 'FIG-BC,' we can do steps 1 and 2 from that file.

3. Enter Values of Equation Parameters From PDE/ PDE Specifications, we
select Parabolic , and make d = 1, c = 1, a = 0, and f = 0 to match our equation.

4. Initialize the Mesh The easiest way to do this is with the triangular-shaped icon in the
toolbar. 'We see the same mesh as before.

5. Enter Initial Temperature and List of Times This is done through the Solve/
Parameters / Solve Parameters combination. We enter uO = 0 (the default), and
enter into the time field 0:O.l:O.l to obtain the solution after one-tenth of a second. (We
will revise this after seeing this solution to find the temperatures within the object after 0.2,
0.4,O.g and 10.0 seconds.)

Chapter Nine: Finite-Element Analysis

6. Solve the Equation We have many options here. Clicking on the = icon gives a color
image similar to that from our elliptical example, except the temperatures are lower.
Getting the isotherms is a better way to see the temperature distribution. This is accomp-
ished by P l o t / Paramet ers and then choosing only Contour.

We repeated step 6 with different ending times to see how the isotherms change over
time. At t = 10.0, the temperatures are essentially at steady state. (Smaller values for c in
the equation delay the time to reach equilibrium.)

The figures show the isotherms for the sequence of ending times. By counting the num-
ber of isotherms, we estimate the temperature at the origin (0, 0) to be

t: 0.1 0.2 0.4 0.8 10.0
temp: 28" 43" 57" 66" 68.6"

Time = 0.1 Contour: u
1 I I I I I 1

Time = 0.2 Contour: u
1

0.8

0.6

I I I I I
- -

- -

9.3: Finite Elements for Partial-Differential Equations 557

Time = 0.4 Contour: u
1

0.8

0.6

Time = 0.8 Contour: u

lr I I I I I

Chapter Nine: Finite-Element Analysis

Time = 10 Contour: u
1 I I I I I

The Wave Equation

We will only outline how finite elements are applied to the wave equation, because this
topic is too complex for full coverage here. Just as for the heat equation, finite elements are
used for the space region and finite differences for time derivatives. We will develop only
the vibrating string case (one dimension); two or three space dimensions are handled anal-
ogously but are harder to follow.

The equation that is usually solved is a more general case of the simple wave equation
we have been discussing. In engineering applications, damping forces that serve to
decrease the amplitude of the vibrations are important, and external forces that excite the
system are usually involved. We therefore use, for a 1-D case, this equation for the
displacement of points on the vibrating string, y(x, t):

Here T represents the tension, which is allowed to vary with x; h represents a damping
coefficient that opposes motion in proportion to the velocity; F is the external force; and
w/g is the mass density. There are boundary conditions (at x = a and x = 6) as well as ini-
tial conditions that specify initial displacements and velocities.

The approach is essentially identical to that used for unsteady-state heat flow: Apply
finite elements to x and finite differences to the time derivatives. We will use linear
one-dimensional elements, so we subdivide [a, b] into portions (elements) that join at
points that we call nodes. Within each element, we approximate y(x, t) with v(x, t),

9.3: Finite Elements for Partial-Differential Equations 559

where cL and cR are the approximations to the displacements at the nodes at the left and
right ends of a typical linear element. The N's are shape functions (in this 1-D case, we
have called them "hat functions").

By using the Galerkin procedure, we can get this integral equation, which we will even-
tually transform into the element equations:

In Eq. (9.67) we have used subscript notation for the partial derivatives of y with respect to
t and x and primes to represent the derivatives of the N's with respect to x (because the N's
are functions of x only).

We now use Eq. (9.66) to find substitutions for y and its derivatives:

Here we employ the dot notation for time derivatives. (The c's vary with time, of course,
but the IV's do not.)

We now substitute from Eqs. (9.68) into Eq. (9.67) to get a pair of equations for each
element (we write them in matrix form):

Chapter Nine: Finite-Element Analysis

We will replace the time derivatives with finite differences, selecting central differences
because they worked so well in the finite-difference solution to the simple wave equation.
Thus we get

Now we solve Eq. (9.70) for {cmf l 1:

1 1 1
[MI + - 2At IC1) {c"'~} = (& [MI - [K]) { cm} - (- WI - nt LC]) {ern-'} + {bm}.

(LO2

Notice that we need two previous sets of displacements to advance to the new time, tm+l.
We faced this identical problem when we solved the simple wave equation with finite
differences, and we solve it in the same way. We use the initial velocities (given as one of
initial conditions) to get {c-l}to start the solution:

where {g(x)} is the vector of initial velocities. [In view of our earlier work, we expect
improved results if we use a weighted average of the g-values if the g(x)'s are not
constants.]

We have not specifically developed the formulas for the components of the matrices and
vector of Eqs. (9.69), but they are identical to those we derived when we applied finite ele-
ments to boundary-value problems in Section 9.2 because we will take out w, h, T, and F
as average values within the elements. So we just copy from Section 9.2:

A
MI' = M,, = (F) - 6 '

In this set, A represents the length of the element.
We now have everything we need to construct the element equations. Except for the

end elements (and then only if the boundary conditions involve the gradient), the gradi-
ent terms in Eqs. (9.73) cancel between adjacent elements. Assembly in this case is
very simple because there are always two elements that share each node (except at
the ends).

9.3: Finite Elements for Partial-Differential Equations 561

What advantage is there to finite elements over finite differences? The major one
is that we can use nodes that are unevenly spaced without having to modify the procedure.
The advantage becomes really significant in two- and three-dimensional situations, but the
other side of the coin is that solving the equations for each time step is not easy.

olving the Wave Equation with M T L

---.

The wave equation is a hyperbolic partial-differential equation. Lets see how MATLAB's
PDE Toolbox handles an example. We will solve Example 8.14 by FEM. (The vibrating
string problem can be solved with pdep , available in the student edition.)

The steps in the procedure are identical to those for a parabolic equation except for step
five:

1. Define the region.
2. Define the boundary conditions.
3. Enter the values for the parameters of the equation.
4. Establish a mesh of triangular elements.
5. Enter the initial values for u, duldt, and a list of times for which the solution is

computed.
6. Solve the problem and display the results.

Example 8.14 finds the displacements of a square flexible membrane that has an initial dis-
placement but zero initial velocity. We will put the center of the square at the origin rather
than a colrner. This changes the initial displacement function to (1 - x2)(1 - y2).

1. We draw the square with pderect ([- 1 1 - 1 1 I) and we see the square in
the figure window. It is labeled SQ1.

2. All boundaries are at u = 0. Doing Boundary /Boundary Mode shows the
region in red. This means that the Dirichlet conditions with u = 0 are automatically
supplied. (We can verify this by double-clicking on a side.)

3. Wedo PDE/PDE Speci f ica t ionandf i l l in thedia logboxtohavec = l,a =

O , f = 0 ,andd = 1.
4. Clicking on the triangular icon creates a coarse mesh of triangles. We will stay with

this coarse mesh to make it easier to see how the individual elements change with
time. A finer mesh would give a more accurate solution.

5. We do S o l v e / Parameters and fill in the dialog box with Time = 0 : 0 . 2 : 1
a n d u (t 0) = (1 - x."2) . * (I - y . " 2) .

6. We are now ready for the solution. For this problem, seeing the results as
a "movie" is best. So we do Plot / Parameters and select only Heiqht (3 -
D Plot) and Anima t i o n in the dialog box. When we click on Plot , we see
the membrane go from its initial bubblelike position to its mirror image on the
othier side of the (x, y) plane and back again repeatedly. The animation repeats
itself several times. This figure shows the final position that is reached after one
second.

Chapter Nine: Finite-Element Analysis

Time = 1 Height: u

xercises

Section 9.1

1. Show that the integrand of Eq. (9.4) is equivalent to
Eq. (9.3) if the Euler-Lagrange condition is
used. This means that Eq. (9.4) is the functional for
any second-order boundary-value problem of the
form

Y" + Q(x)y = F(x),

subject to Dirichlet boundary conditions

where A and B are constants.

b 2. Use the Rayleigh-Ritz method to approximate the
solution of

y U = 3 x + 1 , y (O) = O , y (l) = O ,

using a quadratic in x as the approximating function.
Compare to the analytical solution by graphing the
approximation and the analytical solution.

3. Repeat Exercise 2, but this time, for the approximating
function, use

ax(x - I) + bx2(x - 1).

Show that this reproduces the analytical solution.

4. Another approximating function that meets the bound-
ary condition of Exercise 3 is

Use this to solve by the Rayleigh-Ritz technique.

5. Suppose that the boundary conditions in Exercise 3 are
y(0) = 1, y(l) = 3. Modify the procedure of Exercise 3
to get a solution.

6. Solve Exercise 2 by collocation, setting the residual to
zero at x = and x = $. Compare this solution to that
from Exercise 2.

7. Repeat Exercise 6, except now use different points
within [0, 11 for setting the residual to zero. Are some
pairs of points better than others?

Exercises 563

Repeat Exercise 3, but now use collocation. Does it 19. Confirm that the sum of the entries in the first row of
matter where within [0, 11 you set the residual to zero? M-' is equal to twice the area for each of the elements

Use Galerkin's technique to solve Exercise 2. Is the in Exercise 18.

same solution obtained? b20. Find the element equations for the elemei~t in part (c)

Repeat Exercise 3, but now use Galerkin. of Exercise 18 if Q = xZy and F = -xly (these refer to
Eq. 9.40). There are no derivative conditions on any of

Section 9.2 the element boundaries.

11. suppose that, in E ~ , (9,251, Q (~) = sin(x) and ~ (~ 1 =
21- Solve Example 8.1 (Chapter 8) by finite elements.

x2 + 2. For an element that occupies [0.33,0.45], Place nodes at each corner and at the midpoints of the
top and bottom edges, also at points 9, 12, and 14.

F a . Find N, and NR of Eq. (9 26). Draw triangular elements whose vertices are at these
b. Wr~te out the integrals of Eq. (9.28). nodes. Compare the answers at each node to those
c. Wrlte out the element equations (9.36). obtained with finite-difference approximations to the

b d . Coinpute the correct average values for Q and F. derivatives.
Repeat Exercise 11 for two adjacent elements. These
occupy [0.21,0.33) and [0.45,0.71].

Assemble the three pairs of element equations of
Exercises 11 and 12 to form a set of four equations with
the nodal values at x = 0.21, x = 0.33, x = 0.45, and
x = 0.71 as unknowns.

Solve by the finite-element method:

4
)' + xy = ,$ - - (1 = 1 y(2) = 3.

x3 '

Put nodes at x = 1.2, 1.5, and 1.75 well as at the ends
of [I, 21. Compare your solution to the analytical solu-
tion, which is y = x2 - 21x.

Repeal: Exercise 14, except $or the end condition at x =

1 of y'(1) = 4.

Repeat Exercise 14, but with more nodes. Place added
nodes at x = 1.1, 1.3, 1.4, 1.65, and 1.9. Compare the
errors with those of Exercise 14.

Section 9.3

17. Confirm that Eq. (9.45) is in fact the inverse of matrix
M in Eq. (9.44).

18. Find Mpl , a, N, and u(x, y) for these triangular ele-
ments:

a. Nocles: (1.2, 3.1), (-0.2, 4), (-2, -3); u-values at
these nodes: 5, 20, 7; point where u is to be deter-
mined: (- 1,O)

b. Nocles: (20, 40), (50, lo), (5, 10); u-values at these
nodes: 12.5, 6.2, 10.1; point where u is to be deter-
mined: (20,20)

c. Nocles: (12.1, 1 P.3), (8.6, 9.3), (13.2, 9.3); u-values
at these nodes: 121, 215, 67; point where u is to be
determined: (10.6,9.6)

22. In Exercise 21, the temperatures in the top half of the
slab are the same as those in the bottom half because of
symmetry in the boundary conditions. Solve the prob-
lem for the top half only of the slab with the same
nodes as in Exercise 21. (Along the horizontal midline,
the gradient will be zero).

b23. For a triangular element that has nodes at points (1.2,
3.2), (4.3, 2.7), and (2.4, 4. l), find the components of
each matrix in the element equations [Eqs. (9.61) and
(9.62)] if the material is aluminum.

24. For heat flow in one dimension, the governing equation is

Repeat the development of the analog of Eq. (9.62) for
this case.

25. Use the equations that you derived in Exercise 24 to
solve Exercise 3 1 of Chapter 8. Place the nodes exactly
as those used in the finite-difference solution. Are the
resulting equations the same?

26. Use finite elements to solve Exercise 34 of Chapter 8.
Place interior nodes at three arbitrarily selected points
(but do not make these symmetrical). Create triangular
elements with these nodes and the four corner points.
Set up the element equations, assemble, and solve for
four time steps. Use the resulting nodal temperatures to
estimate the same set of temperatures that were com-
puted by finite differences. Compare the two methods
of solving the problem.

27. Solve Example 8.6 (Chapter 8) by finite elements. Place
nodes strategically along the edges and within the slab
so there are a total of 14 or 15 nodes. Use triangular ele-
ments. Compare the solution to that obtained with
finite-difference approximations. (You may want to take

564 Chapier Nine: Finite-Element Analysis

advantage of symmetry in the boundary conditions to
solve the problem with fewer elements.)

b28. Rederive Eq. (9.64), but now for the Crank-Nicolson
method.

29. Repeat Exercise 28, but now for the theta method.

30. Set up the finite-element equations for advancing the
solution to part (a) of Exercise 50 of Chapter 8.

b31. Set up the finite-element equations for starting the
solution to part (a) of Exercise 50 of Chapter 8. Do this
first for the analog of Eq. (8.42) and then for the analog
of Eq. (8.49).

b32. If we were to solve part (c) of Exercise 50 of Chapter 8,
would there be an advantage to using shorter elements
near the middle of the string where the displacements
depart more from linearity?

33. Solve, using finite elements, Example 8.14, except with
initial conditions of

u(x, y) = 0, uJx, y) = x2(2 - x)y2(2 - y).

34. Repeat Exercise 33, but with these initial conditions:

~ (x . y) = x2(2 - x)y2(2 - y), ur(x, Y) = 0.

35. Solve Exercise 58 of Chapter 8 using finite elements.
Where do you think interior nodes should be placed if
there are

a. 6 of them?
b. 12 of them?

Compare the solutions from these two cases to that
from the finite-difference method.

36. Solve Exercise 60 of Chapter 8 by finite elements, plac-
ing five interior nodes at points that you think are best.
Justify your choice of nodal positions.

b37. Using the isotherm plots from the MATLAB solution
to a parabolic equation, count the isotherms (there are
20 curves) to see how the temperature at the upper-left
corner varies with time. Plot these. Can you find an
equation that fits?

Applied Problems and Projects

APP1. Use the Internet to find software that solves both ordinary- and partial-differential equations. Can
you find any that use the finite-element method? (Hint: Try http://gams.nist.gov/ and search the
topic: partial differential equations.)

APP2. Write a computer program that uses finite elements to solve the vibrating string problem. Test it by
solving Example 8.13.

APP3. Repeat APP2, but now for the heat equation, Eq. (9.56). Test it by solving Exercises 26 and 27.

APP4. Write a computer program (using your favorite language) to solve a two-dimensional elliptic partial-
differential equation. Allow for both Dirichlet and non-Dirichlet boundary conditions. Have the
program read in the required data from a file. Provide function procedures to compute the values for
f(x, y) and q(x, y). Here is a suggested data structure:

NN = the total number of nodes

NK = the number of boundary nodes with Dirichlet conditions. (NN - NK = number of nodes
whose values are not specified, that is, the interior nodes and those boundary nodes whose values
are not specified.)

VX (NN) = an array to hold the x-values for all nodes in the order that nodes are numbered.
There is an advantage if the nodes whose u-values are specified are numbered so as to follow
those nodes where the u-values must be computed.

VY (NN) = an array to hold the corresponding y-values for all nodes

M (NE, 4, 3) = an array to hold the element matrices. The first subscript indicates the element
number. The second and third subscripts indicate the row and column of the matrix. The fourth
row holds the node numbers for nodes in this element in counterclockwise order. There is an
advantage if the unspecified nodes come before the nodes whose u-values are known.

Applied Problems and Projects

UU (I'JN) = an array to hold unknown and known u-values at nodes in order of the node number.
Zeros may be used as fillers for unknown u-values.

AE (NE) = an array to hold areas of the elements

F(NE) = an array to hold averagefvalues for each element

Q(NE) = an array to hold average q-values for each element

A(NN, NN i- 1) = the system matrix

Here is what your logic might look like:

1. Read in NN, NE, NU.
2. Read in (x, y) values for the nodes, storing in VX and VY.
3. Read in node numbers for each element in turn (nodes should be in counterclockwise order),

storing in the fourth row of the element matrices.
4. Read in the unknown and known u-values for each node.
5. Compute average values for f and q in each element. (You may prefer to evaluate these at the

centroid of the element.) Store in F and Q.
6. Read in the known u-values, storing in UK.
7. Compute the area for each element and its inverse [Eq. (9.49), the area from the first row elements].
8. Find the element equations and add the appropriate values to the system matrix.
9. Adjust the system matrix for non-Dirichlet boundary conditions. (You may want to have the user

input the a and b values for these and the node numbers at the ends of the element boundary
where this applies. Alternatively, these could have been read in with the other parts of the data.)

10. Adjust the system matrix for Dirichlet conditions using values from the UU array.
11. Solve the system.
12. Display the u-values for each node.

APPS. Write and test a program that solves the vibrating membrane problem using the finite-element method.

APP6. In developing the element equations, a number of integrals must be evaluated [see Eq. (9.51)]. For
triangular elements, these are very easy to get: Each is just the area divided by a number. These sim-
ple triangular elements that we have discussed are called Co-linear elements.

Other types of elements besides these simple triangles are sometimes useful. For example, con-
necting the nodes with lines that form quadrilateral elements can cut the number of elements almost
in half. For these, the integrals are not so readily evaluated.

Even if we stay with triangular elements, the accuracy of the solution is improved if we add one
node within each of the three sides. Such additional nodes can even permit the "triangle" to have
curved sides. Such a more elaborate triangular element is called a cO-quadratic element. This idea
can be extended to add more than three nodes to the triangle, and additional nodes are sometimes
added to quadrilateral elements.

For all of these more elaborate elements, the shape functions no longer have a "flat top" like that
sketched in Figure 9.7. The normal procedure for these is to employ Gaussian quadrature in which
a weighted sum of the integrand at certain points, called Gauss-points, approximates the integral
quite well.

For a square region with opposite corners at (- 1, - 1) and (1, I), these Gauss-points are at
x = 5 h 3 , y = t 6 1 3 , as given in Table 5.13. For a region that is a triangle with vertices at (0, O),

(1,0), (0, I), there are three Gauss-points at (i, i), ($, i), and (i, :), each weighted with i. For ele-
ments that do not conform to these basic cases, they must be mapped to coincide with them. Where
are the Gauss-points for
a. A triangle whose vertices are (- l ,3) , (7, I), and (2,7)?
b. A quaclrilateral whose vertices are (1,2), (5 , - l), (6, 3), (3, 5)?

Chapter Nine: Finitc-Element Analysis

APP7. Use MATLAB's PDE Toolbox to solve several of the examples of Chapters 8 and 9. Define the
regions both with the mouse on the graphical user interface and also by using commands.

APPS. There are other software packages that let you solve engineering and scientific problems with FEA.
Two of these are ALGOR and MSCNastran. Find information on these and compare their capabili-
ties with that of MATLAB's PDE Toolbox. The Internet is a good place to get some information.
Your library may have books on them, too.

APP9. Search for information on finite elements with a Web browser. Write a report on what you find.

Some Basic Information
from Calcu

Became a number of results and theorems from the calculus are frequently used in the text,
we collect here a number of these items for ready reference, and to refresh the student's
memory.

Open and Closed Intervals

For the open interval a < x < b, we use the notation (a, b), and for the closed interval
a 5 x 2 5 b, we use the notation [a, b].

U
L

n
I

Continuous Functions

If a real-valued function is defined on the interval (a, b), it is said to be continuous at a
point xl0 in that interval if for every E > 0 there exists a positive nonzero number 6 such
that I f(x) - f(xo)l < E whenever lx - x0I < 6 and a < x < b. In simple terms, we can
meet any criterion of matching the value of f(xo) (the criterion is the quantity E) by
choosing x near enough to xo, without having to make x equal to xo, when the function is
continuous.

If a function is continuous for all x-values in an interval, it is said to be continuous on
the interval. A function that is continuous on a closed interval [a, b] will assume a
maximum value and a minimum value at points in the interval (perhaps the endpoints). It
will also assume any value between the maximum and the minimum at some point in the
interval.

Simiilar statements can be made about a function of two or more variables. We then
refer to a domain in the space of the several variables instead of to an interval.

568 Appendix A: Some Basic Information from Calculus

Sums of Values of Continuous Functions

When x is in [a, b], the value of a continuous function f(x) must be no greater than the
maximum and no less than the minimum value of f(x) on [a, b]. The sum of n such values
must be bounded by (n)(m) and (n) (M), where m and M are the minimum and maximum
values. Consequently, the sum is n times some intermediate value of the function. Hence,

Similarly, it is obvious that

cl f(S1) + c2f(&) = (cl + c21f(#, t 1 , t2, t i n [a, bl,

for the continuous function f when cl and c2 are both equal to or greater than one. If the
coefficients are positive fractions, dividing by the smaller gives

so the rule holds for fractions as well. If c, and c2 are of unlike sign, this rule does not hold
unless the values off (el) and f (5,) are narrowly restricted.

Mean-Value Theorem for Derivatives

When f(x) is continuous on the closed interval [a, b], then at some point t i n the interior of
the interval

provided, of course, that f '(x) exists at all interior points. Geometrically, this means that
the curve has at one or more interior points a tangent parallel to the secant line connecting
the ends of the curve (Fig. A. 1).

Figure A. I

Appendix A: Some Basic Information from Calculus 569

Mean-Value Theorems for Integrals

Iff (x) is continuous and integrable on [a, b], then

This says, in effect, that the value of the integral is an average value of the function times
the length of the interval. Because the average value lies between the maximum and mini-
mum values, there is some point (at whichfix) assumes this average value.

If f(x) and g(x) are continuous and integrable on [a, b], and if g(x) does not change sign
on [a, b] , then

&f(x)g(x) dx = f(5) d x) dx, a < 5 < b.

Note that the previous statement is a special case [g(x) = 11 of this last theorem, which is
called the second theorem of the mean for integrals.

Taylor Series

If a function f(x) can be represented by a power series on the interval (-a, a), then the
function has derivatives of all orders on that interval and the power series is

The preceding power-series expansion of f(x) about the origin is called a Maclaurin series.
Note that if the series exists, it is unique and any method of developing the coefficients
gives this same series.

If the expansion is about the point x = a, we have the Taylor series

We frequently represent a function by a polynomial approximation, which we can
regard ,as a truncated Taylor series. Usually, we cannot represent a function exactly by this
means, so we are interested in the error. Taylor's formula with a remainder gives us the
error term. The remainder term is usually derived in elementary calculus texts in the form
of an integral:

f (n)(a) (x - ay + + ---
n!

,f '""'(t) dt.

Because (x - t) does not change sign as t varies from a to x, the second theorem of the
mean allows us to write the remainder term as

Appendix A: Some Basic Information from Calculus

(x - a)ni'
Remainder of Taylor series = f (ni-l)(& [in [a, x].

(n + I)!

The derivative form is the more useful for our purposes. It is occasionally useful to express
a Taylor series in a notation that shows how the function behaves at a distance h from a
fixed point a. If we call x = a + h in the preceding series, so that x - a = h, we get

Taylor Series for Functions of Two Variables

For a function of two variables, f(x, y), the rate of change of the function can be due to
changes in either x or y. The derivatives off can be expressed in terms of the partial deriv-
atives. For the expansion in the neighborhood of the point (a, b),

f(x, Y) =f(a, 6) + f,(a, b)(x - a) + f , h b>(y - b)

Descartes' Rule of Signs

Let p(x) be a polynomial with real coefficients and consider the equation p(x) = 0.
Descartes' rule of signs is a simple method for giving us an estimate of the number of real
roots of this equation on both sides of x = 0. The rule states that

1. The number of positive real roots is equal to the number of variations in the signs of
the coefficients of p(x) or is less than that number by an even integer.

2. The number of negative real roots is determined the same way, but for p(-x). Here
also the number of negative roots is equal to the number of variations in the signs of
the coefficients of p(-x) or is less than that number by an even integer.

For example, the polynomial equation p(x) = x6 - 3x5 + 2x4 - 6x3 - x2 + 4x - 1 = 0
will have 5, 3, or 1 positive and 1 negative real root. We can assume then that the number
of real roots are at least 2 but can be as many as 6! (There are actually 3 positive, 1 nega-
tive, and 2 complex roots.)

oftware sources

Many T N ~ O use this book will want to write programs to carry out the algorithms, but there
are many excellent software packages available that professionals prefer to use. The
advantage is that the software packages are both reliable and robust. Here is a partial list of
software sources and computer algebra systems, organized alphabetically. There is a
wealth of information about these and other products on the Internet. Just typing the name
of the product or resource into a Web search engine will provide a list of up-to-date sites
(plus other sites that use the same words in their name).

DERIVE is a computer algebra system (CAS) that first appeared in 1988, about the same
time as Mathematica. DERIVE has the advantage of being menu-driven rather than com-
mand-driven. The earlier versions of DERIVE were developed by Soft Warehouse, but in
1999 Texas Instruments took over the product and continues its support. The most recent
version is DERIVE 5; it provides both symbolic and numeric operations and can display
2-D graphs and 3-D surfaces. Source: www.education.ti.corn/derive

CAMS (Guide to Available Mathematical Software) contains over 9000 software modules
from over 90 packages, such as IMSL, NAG, BLAS, and EISPACK. Some of these are
proprietary. CAMS is a software repository that includes abstracts, documentation, as well
source code. CAMS is a project of the National Institute of Standards and Technology
(NIST) that "studies techniques to provide scientists and engineers with improved access
to reusable software components." Source: www.gams.nist.gov/

IBM's IESSL (Engineering and Scientific Subroutine Library) consists of routines that are
designed for parallel processors. These are callable from several programming languages.
The packages include routines for numerical quadrature, interpolation, random number
generation, FFT, linear systems, and eigenvalue problems. The focus of ESSL has been on
vector mainframes and RSl6000 processors. Source: www.rs6000.ibm.com/software/
apps/essl.html

Appendix B: Software Resources

IMSL (International Mathematical and Statistical Library) is a library of hundreds of sub-
routines available to writers of programs in C, C+ +, Fortran, or Java, on UNIX, Windows,
or Linux. IMSL is owned by Visual Numerics. Source: www.vni.com/products/imsV

LAPACK is a library of Fortran 77 subroutines for solving systems of linear equations,
least-squares solutions to linear systems, eigenvalue problems, and singular value decom-
positions. Its original goal was to make EISPACK and LINPACK run more efficiently on
vector and parallel processors. LAPACK makes use of the package Basic Linear Algebra
Subprograms (BLAS). Source: www.netlib.org/lapack/

Maple is a powerful CAS that performs both symbolic and numerical computations. In
addition, it provides excellent and easy-to-use two-dimensional and three-dimensional
color graphics. The software runs on PCs, Macs, workstations, and mainframes. It has an
impressive collection of tools for solving differential equations, including the traditional
Euler and RK4 procedures. There is a student version of the package as well. Its Web site
can offer examples of a variety of applications. Its most current version is Version 8.
Source: www.mapleapps.com/

Mathcad is a CAS that is different from other computer algebra systems in that one can use
standard mathematics notation (such as an integral sign) to formulate the problem. It can
solve problems both numerically and symbolically. It has graphics capabilities and excel-
lent tutorial support. The current version is Mathcad 2001i. Soui-ce:www.mathsoft.com/

Mathernatica continues to be one of the best-known software packages for doing a wide
variety of mathematical problems. It has excellent 2-D and 3-D graphing capabilities; it
provides both symbolic and numeric computations. There are excellent Mathernatica tuto-
rials that can be downloaded from the Web as well as other product supports. (See:
http://library.wolfram.com/tutorials/) Stephen Wolfram is associated with Mathernatica
and he has written extensively for it. Source: www.wolfram.com/

MATLAB is a very popular and powerful CAS, which has specialized toolboxes for appli-
cations such as simulations, optimization, and partial-differential equations. Its newsletter
contains articles about new applications of MATLAB. (We have used version 6, release 13
extensively in this book.) Cleve Moler, who has done much in numerical computing, is
associated with this product; he is the author of articles in the MATLAB newsletter.
Source: www.mathworks.com/

NAG (Numerical Algorithms Group) is a not-for-profit company that first started provid-
ing mathematical software in the early 1970s. Although it first began with Fortran, it now
provides support for users of C, C+ +, Fortran 90, Java, and other compilers. Source:
www.nag.com/

Netlib is a collection of mathematical software, papers, and databases. It has been a popu-
lar site on the Internet, with 182 million hits by the end of October 2002. Their Web site
has a list of topics to choose from. Source: www.netlib.org/

Numerical Recipes, a book from Cambridge University Press, is a collection of over 300
numerical routines. There are versions for C, C S +, Fortran 77/90, Basic, and Pascal. In
addition, the source code is available on tape, diskette, and CD. The book discusses the

Appendix B: Software Resources 573

algorithm as well as gives the code. Source: www.cup.org/ (then search on Numerical
Recipes).

Solver is a software product from Frontline systems. It is an optimizer for Microsoft Excel
using linear, quadratic, and mixed-integer programming, nonlinear optimization, and
global optimization. Solver is also incorporated in other spreadsheets such as Lotus and
Quattro Pro. The Web site also offers a short but useful tutorial on how to use the product.
Many analysts use spreadsheets in solving numerical problems or computer algebra sys-
tems instead of other software. Some of the CAS products allow for importing data from
Excel. Source: www.solver.com/

Answers to Selected

C h a p t e ;r 0 6. You could write an expression that gives L as a function of angle c, but there is a better alternative.
Think of the projection of the ladder onto ground level. This is identical to Figure O.lb, so we know
that the critical angle is the same, c = 0.4677 radians. We compute the length of the tipped ladder
as the hypotenuse of a right triangle with sides equal to 33.42 ft and 6 ft 7 in.: 34.06 ft, about 7.7 in.
longer.

8. One way would be to do it graphically. The ladder cuts off a circular segment when the bottom is
placed against the circumference of the well; it cuts another circular segment that is exactly the same
at the top. A rectangular well whose width equals the distance between the bases of the two segments
is an equivalent problem. Draw this rectangular well. Cut out a ladder of the correct width and place
it on the drawing. Cut off the end so the top of the ladder is exactly even with the ground and mea-
sure it.

A mo're analytical way would be to consider it to be a trigonometry problem. Let H = depth
of the well, D = its diameter, W = width of the ladder, V = width of its rails, L = its length, and
A = angle of inclination from the vertical. Using these variables, we can write

2d(~12) ' - (WI2)' - V * cos(A)
tan (A) =

H - V * sin(A)

and

H - V * sin(A)
L =

cos (A)

Substitute in the given values for H, D, W, and V. Then, MATLAB solves the first equation for A =

0.34965 radians. From the second equation, L = 181.558 in.

13. There are: no values that you can enter from the keyboard that correspond to the inequalities. However,
if E is a value slightly less than eps, and if X = Y = 1 + E and Z is exactly 1, all inequalities hold.

15. a. 0.9999907

b. 1.000054

c. 1.00099

Answers to Selected Exercises

18. x + y = [1.14,2.65]. Width is sum of widths.

x - y + z = [2.22,7.18]. Width is sum.

x * z = [0, 8.7631. Width not obviously related.

ylz = [-m, a] . Zero is within both y and z
25. Parallel processing applies when step n + 1 does not depend on the completion of step n. The differ-

ent processing units that work in parallel could be a group of different single-processor computers
connected in a distributed network.

Distributed computing applies when the same problem must be solved with different parameters.
Of course, the individual steps in the solutions might benefit from parallel processing.

31. When computed term by term, a polynomial of degree n requires (n2 + n)/2 multiplies and n adds.
(1 + 2 + 3 + 4 + . . . = (n2 + n)/2). The total is (n2 + 3n)/2.

If computed with nested multiplication, the nth-degree polynomial requires n multiplies and n
adds, a total of 271.

The ratio of numbers of operations is (n + 3)/4. As n gets large, this approaches n/4.

33. If the numerator is of degree n and the denominator is of degree d, (n2 + 3n)/2 + (d2 + 3412 multi-
plies and adds are required if evaluated term by term (see answer to Exercise 31) plus one divide, a
total of n2/2 + d2/2 + 3n/2 + 3d/2 + 1. If n = d, this total is n2 + 3n + 1.

For a function of degree n in the numerator and degree d i n the denominator, the number of mul-
tiplies and adds is 2n + 2d plus one more for the division. If both numerator and denominator are of
degree n, the total is 4n + 1. As n gets large, the ratio of operations with term-by-term evaluations to
the operations when nested approaches n/4.

C h a p t e r 1 3. From the graphs, there is an intersection at about (1.125, 0.425). Using f(x) = x3 - 1 - cos(x) and
the starting interval [0, 21, bisection finds the solution, x = 1.12657, in 17 iterations when tolerance
on change in x-value is IE-5.

7. We solve (b - a)/2" = for n. This is

9. The two solutions are x = -5.7591 andx = -3.6689. The tolerance was set at 1E-5:

Regula falsi gets the first root starting from [-6, -41 in 13 iterations; it gets the second from
[-4, -21 in 23 iterations.

Bisection gets the first root starting from [-6, -41 in 17 iterations; it gets the second from
[-4, -21 in 17 iterations.

The secant method gets the first root starting from [-6, -41 in 4 iterations; it gets the second
from [-4, -21 in 3 iterations.

14. Let f (x) = x2 - N = 0, so f '(x) = 2x. Then,

20. Two equations result from the conditions:

Answers to Selected Exercises 577

Solve eitlher for y, substitute in the other, get

Use the quadratic formula to get x = 14.358899 and 5.6411011. Corresponding to these,
y = 5.6411011, 14.358899.

24. Continutled synthetic division by (x - a) does not get P (~) (a) but the remainder is P(n)(a)/n!, which
is true as well for n = 0 and 1.

28. The convergence is quadratic. Starting from xo = 5, we get

xn 5 4.55 4.25 4.0792 4.01 13 4.00028 4.00000
Correct digits 0 1 1 1 2 4 8?
Ratio of errors 0.55 0.454 0.317 0.143 0.025 ?

Applying Newton's method to P1(x) to find the triple root results in only linear convergence.
Quadrati~c convergence will be obtained if we apply it to Pr'(x).

30. a. Starting fromxo = 2.1, convergence is to x = 2.01 quadratically.

b. Starting from xo = 1.9, convergence is to x = 1.99 quadratically.

c. Starting from xo = 2.0 fails, f'(2.0) = zero.

d. Starting from xo = 2.02 flies of off to large values, f '(2.02) is really zero but round off causes this
to be missed.

32. Muller's method in self-starting mode does get the root nearest zero. However, if there are two dis-
tinct roots equally distant from zero, it tends to favor the negative one. If these two roots of equal
magnitude have a third one that is close to one of these, it favors the root with a neighbor.

37. The relations of (a), (b), and (c) all can be derived from x3 = 4. Only the relation in (b) converges to
x = 1.5874 starting from x,, = 1; the others diverge.

40. a. (x - K)1(x2 - 2x) converges slowly to x = -0.80193 from xo = - 1. Does not converge to the
other roots.

b. + x + 1)lx) converges to x = 2.24697 from xo = 1. Does not converge to the other roots.

c. F- x + 1)/2) converges to x = 0.554969 from xo = 0. Does not converge to the other roots.

42. a. The division gives a nonzero remainder, -3, so x2 + x + 1 is not a factor.

b. Division by x2 + 2x + 3 gives a zero remainder; it is a factor.

50. Rearranging the second equation to x = 6 2 - y2 + x and using the first as it stands does converge
from (1, 1) to give the solution, x = 1.990759, y = 0.1662412, in 12 iterations.

Answer9 to Selected Exercises

5. a. ForA:x2+8x-47.
For B: x3 + x2 - 18x - 30.

b. For A: [- 11.9373, 3.93731.
For B: [4.4927, -3.6765, - 1.81631.

c. A * v = [7.9817, -7.7698IT is not a multiple of v, so v is not an eigenvector.

The result is A with the requested interchanges

15. Solution is x, = 3.2099, x2 = -0.23457, x3 = 0.71605. No interchanges were required.

21. For a system of n equations, one right-hand side:

In column 1, n divides to put a 1 on the diagonal, n multiplies for each of (n - 1) rows and the same
number of subtracts to reduce in that column. (The 1 on the diagonal does not have to be computed
nor the zeros below the diagonal.)

In column 2, (n - 1) divides to put a I on the diagonal, (n - 1) multiplies for each of (n - 1) rows
and the same number of subtracts to reduce in that column.

In column 3, (n - 2) divides to put a 1 on the diagonal, (n - 2) multiplies for each of (n - 1) rows
and the same number of subtracts to reduce in that column.

Answers to Selected Exercises 579

So, in column i, (n - i) divides to put a 1 on the diagonal, (n - i) multiplies for each of (n - 1) rows
and the s,ame number of subtracts to reduce in that column.

No operations are needed to do back-substitution.

Total operations:

Ci + (n - 1) Hi + 2(n - 1) Hi for i from 1 to n,

= n (n + 1112 + 2(n - 1)(n)(n + 1)12

= n2/2 + nl2 + n3 + n2 - n2 - n

= n3 + n2/2 - nl2 = 0(n3).

28. The number of comparisons to find the pivot row is the same in both cases. If no interchanges are
required, using an order vector is actually slower due to the overhead of setting up the vector. In
the worst case, interchanges will occur in (n - 1) columns. For this situation, using the
vector requires only (n - 1) numbers to be interchanged; not using it requires (n + 1) in column 1,
(n) in columns 2, (n - 1) in column 3, . . . or (n + 1) + (n) + (n - 1) + . . . + 3. This computes to
2(n - 1) + (n2 - n)/2. The difference in these totals is n2/2 + n/2 + 1 and twice this is the number
of add/subtract times saved by using the order vector.

31. The LU equivalent of the coefficient matrix is

where the U matrix has ones on its diagonal. Rows were interchanged. Using this to solve with the
given right-hand sides gives

a. [-0.3711, 0.3585, 0.52201T.

b. [1.163'5, 0.1132, -0.98431T.

34. a. The solution is
[46.3415, 85.3859, 95.1220, 95.1220, 85.3659, 46.34151.

b. Reduction: for each of (n - 1) rows, two multiplies, two subtracts;

Back-substitution: in row n, one divide, in rows (n - 1) to 1, one multiply, one subtract, one divide.

Total: 4 (n - 1) -t 1 + 3(n - 1) = 7n - 6, much less than Gaussian elimination when not
compacted.

36. For column one of L: lil = ail

For row one of U: ulj = aUlall

Alternate now between columns of L and rows of U:

F o r c o l u m n i o f L (2 s i s n , i s j s n) :
1 . . 1 J =aji - xljk* uki, k = 1 . . (j - 1).

For row i of U (2 5 i 5 (n - I), i + 1 5 j 5 n):
ulj. = (aij - Clik * ukj)/lii, k = 1 . . (i - 1).

41. a. det (A) = - 142, not singular.

b. det (B) = 0, singular, also lu(B) has zero B4,4.

c. det (C") = - 108, not singular.

Answers to Selected Exercises

a. det (H4) = 1.65E-7. (A zero determinant means singular.)

b. [1.11,0.228, 1.95,0.797].

c. [0.988, 1.42, -0.428, 2.101.

Answers are poor because round-off effect is great when the matrix is nearly singular.

The determinant is 35. When A3,3 is changed, it is -5. The changed matrix is more nearly singular.
In fact, if A3,3 = -3.75, it is singular.

Both Gaussian elimination and Gauss-Jordan get the same result:

Gaussian: 25 multiplies/divides, 11 addslsubtracts; total = 36.
Gauss-Jordan: 29 multipliesJdivides, 15 addslsubtracts; total = 44.

a. 1-norm = 17.74; 2-norm = 9.9776, m-norm = 8.12.

b. 1-norm = 17; 2-norm = 9.3274, w-norm = 7.

a. 1-norm = 21,2-norm = 14.4721, w-norm = 20.

b. 1-norm = 18,2-norm = 14.7774, w-norm = 21.1.

Even though the norms are nearly the same, the determinants are very different: - 170 versus 515.133.

Norms of H4:

1-norm = 2.0833.

2-norm = 1.5002.

w-norm = 2.0833.

fro-norm = 1.5097.

Condition numbers:

For matrix of Exercise 67: 30,697

For matrix of with A3,2 changed: 9.8201

The determinants are very different:

-0.0305 and -90.8807

Any multiple of the identity matrix, a * I, has a condition number of 1 because its eigenvalues are all
equal to a and for its inverse, they are all equal to lla. So, the product of the largest of these is unity.

Changing any element of a * I increases the condition number because at least one of the eigen-
values of the matrix and its inverse are greater than one.

The zero matrix has a condition number of infinity.

We switch rows 2 and 3 to make diagonally dominant. Then Jacobi takes 34 iterations to get the solu-
tion from [O,0,0]:

[-0.14332, - 1.37459, 0.719871.

The same answer as in Exercise 79 is obtained in 13 iterations.

When doing row i, all elements to the left of the diagonal will become zero; we do not have to specif-
ically calculate them. So, we reassign one of the processors from this set, say, PROCESSOR (i, i - 1)

Answers to Selected Exercises 58 1

Chapten- 3 3.

6.

10.

to replace PROCESSOR (i, n + 1). The n2 processors are adequate to perform the back-substitution
phase.

Equation for Exercise 1: - 1.7833x2 + 20.9067~ - 48.4395.

Equation for Exercise 2: - 1 .7667x2 + 20.7533~ -48.1910.

Interpolating polynomial is 1 .4762x2 + 0.2429~ + 1. At x = 1.3, this gives 3.8095; true value is
3.6693. The error is 0.1402; bounds to error are 0.0595,0.4396.

For n points, there are n terms; each term requires 2n - 2 subtractions, 2n - 3 multiplies, and 1
divide. We then use n adds to get the interpolate. The total number of operations is then n(2n - 2 +
212 -3 + 1) + n = 4n2 - 3n.

If we have n processors working in parallel, each processor can compute each term at the same
time; (2n - 2 + 272 - 3 + 1) operations are required. We then add these terms. The (n - 1) adds to
do this re~quire fi addition-times where N = fi rounded up.

With 2n processors, all the numerators and denominators can be computed in parallel; each term
then requires only half as many subtract and multiply times.

All the second-order differences are the same-they equal 1. That means that f(x) is a quadratic
polynomial. P2(x) = x2 - 4x + 3.

a. The third differences are nearly zero; they are all less than 0.0005, meaning that a third-degree
polyncmial will fit to the desired precision.

b. A second-degree polynomial will fit quite well; the second differences are all less than 0.0016.

c. Fitting a quadratic to three points near the center of the range estimates f (1.2) as 0.183 1 (compare
to 0.1823), f (1.5) = 0.4054 (compare to 0.4055), and f (1.25) = 0.2234 (compare to 0.223 1).

d. Divided differences of order n are the ordinary differences of order n divided by n!hn.

The best choice of points should be x = 1.25, 1.3, and 1.35. A quadratic from these gives estimates
for f(1.2) = 0.1822 (compare to 0.1823), f(l.4) = 0.3362 (compare to O.3365), f(l.45) = 0.3707
(compare to 0.3716), and f(l.5) = 0.4063 (compare to 0.4055). However, choosing x = 1.35, 1.40,
and 1.45 gives estimates that match equally well.

a. For divided differences, each entry in a column takes one subtract and one divide. There are six
first differences, five second differences, and four third differences: (2) (6 $. 5 + 4) = 30.

b. For ordinary differences, there are the same number of subtracts but no divides: (1) (6 + 5 + 4) = 15.

b. This should be a better choice because 0.54 is better centered, but the same value for y (0.54) is
obtained.

c. A fourth-degree polynomial through the central five points.

a. Equation (3.9) together with Eq. (3.10) show this directly; the ai, bi, ci, and d, have the same val-
ues throughout the region of fit.

b. It is obvious that, if the coefficients are not all zero, So = 0 is not equal to pl'(xn), and S, = 0 is not
equal to pt'(x,).

582 Answers to Selected Exercises

44. A spline curve using end condition 1 deviates most from the function in the first segment, at x =
0.155; the deviation is 0.858. The equation for x in [-I, 11 is

The expression for dyldu is similar, so

dyldx = (yi+l - Y ~ - ~) I (X ~ + ~ - which is the slope
between points adjacent to pi.

55. For both Bezier and B-spline curves, changing a single point changes the curve only within the inter-
vals where that point enters the equations. Its influence is localized, in contrast to a cubic spline,
where changing any one point affects the entire curve.

59. The same value is obtained: f(I.6,0.33) = 1.841.

62. Because z is linear in x, it is preferred to fit only to y-values. Choose points where y is in [0.2, 0.71
and for x = 2.5 and x = 3.1. The interpolate from this is z = 4.5163. Adding a ninth point Cy = 0.9)
does not change the result.

67. The second normal equations of Eq. (3.25) is

If this is divided by N, we get

which proves the assertion.

70. Making y(4) = 5 changes the equation the most [part (a)]. The changes in part (b), y(4) = 0, and in
part (c); y(4) = 4, cause the same lesser changes because these added points are the same distance
from the line. The equations are

a. 9 - 1 . 5 ~ .

b. 7.333 - 1 . 5 ~ .

c. 8.667 - 1 . 5 ~ .

The original equation is 8 - 1 . 5 ~ .

75. ln(F) = 3.4083 + 0.49101 * ln(P), or F = 30.214 P ~ . ~ ~ ~ ~ ' .

Answers to Selected Exercises 583

77. Fitting polynomials of degrees 3,4,5,6, and 7 gives

Degree: 3 4 5 6 7
o2 21.14 25.95 2.080 2.674 1.484

The optimal degree is 5.

C h a p t e r 4 5. Write cos(6x) as

cos (3x + 3x) = cos (3x) * cos (3x) - sin (3x) * sin (3x)

= 2 c0s2 (3x) - 1

= 2 [4 C O S ~ (x) - 3 cos (x)12 - 1

= 32 c0s6(x) - 48 c0s4 (x) + 18 cos2(x) - 1.

6. The zeros of T4(x)/8 = x4 - x2 + 118 are at 50.923870, t0.382683. The maximum magnitude on
[- 1, I] is 114, reached three times, once within the interval and twice at the endpoints.

Comparing the graph of T4 (x)/8 to that for P4 (x) , that has zeros at 20.2 and 20.6 (equally
spaced within [- 1, I]) , we see that the maximum magnitudes are less within the interval but at the
endpoints the magnitude is much greater: 0.6144 compared to 0.125.

11. xlo = (11.512) (126T,, + 210T2 + 120T4 + 45T6 + 10T,+ T,,).

x" = (111024) (462T, + 330T3 + 165T5 + 55T7 + l lT9 + TI1).

14. The Chebyshev series of degree-:! is

0.99748T0 (x) + 0.10038T1 (x) - 0.002532T2 (x)

= 1.000001 + 0.10038~ - 0.005064x2.

Maximum errors: For the Chebyshev series, -0.000130 at x = - 1, for the truncated Maclaurin
series =: -0.000573 at x = - 1. The Chebyshev series has a smaller error by a factor of 4.4.

18. Chebyshev polynomials have all their maximdminima equal to 1 in magnitude in 1-1, 11. All
Legendre polynomials have maximdminima equal to 1 at x = - 1 or x = + 1 but, their intermediate
maxima/minima are less than 1 in magnitude.

22. For cos2(x): Maclaurin is 1 - x2 + x4/3 - $1120 - 2x6/45, Pad6 is (1 - 2x2/3)/(1 + x2/3).

At [-I, 11, Maclaurin errors are [0.003038, 0.0030381, Pad6 errors are [0.04193, 0.041931, much
larger. The series fits well throughout [- 1 , I] ; the Pad6 only through [-0.5,0.5].

For sin (x4 - x): Maclaurin is -x + 216 + x4 - $1120 - x6/2,

Pad& is

(-x + 0.047382 - 0.16769)/(1 - 0.04738~ + 0.3343x2 + 0.9921x3).

Both are poor approximations; the series fits well only within [-0.6, 0.61; Pad6 fits well only
within [-0.4, 0.41.

At [-- 1, 11, Maclaurin errors are [-0.4324, 0.34171 Pad6 errors are [-2.2098, 0.491541, much
larger.

In contrast to these, the Pad6 approximation for xeX is a better approximation. The series is

x + x2 + x3/2 + x4/6 + $124 + x6/120.

Answers to Selected Exercises

Both fit well throughout [- 1, 11; errors for series are

[-0.00121,0.00162], for Pade [O.OOO45 1, -0.0004681.

27. The expression is not minimax. If it were, the error curve would have nine equal maxima/minima on
10, 11.

30. a. Periodic, period = 271:

b. Not periodic.

c. Periodic, period = 271:

d. Periodic, period = T.

34. The expressions for the A's and B's are complicated. The first few coefficients are

A, = 512

A, = -2.02270 B, = -0.40528

A, = 0.9281 1 B, = 0.93071

A, = 0.15198 B3 = -0.90655

A, = -0.64531 B, = 0.27386

37. No, it is true only for f (x) or g(x) equal to a constant.

44. The match to f (0) = 0 within 0.00001 requires 31,347 terms (single precision). Some other results:

Terms 100 1000 10,000 20,000 30,000
Error 3.183E-3 3.184E-4 3.190E-5 1.599E-5 1.068E-5

The match to f (T) = T gives similar results until the number of terms exceeds about 1600 with sin-
gle precision, but from then on, the error does not decrease. With double precision, the match to
within 0.00001 occurs at 31,831 terms. The conclusion seems to be that the same error is obtained at
bothx=Oandx= T.

45. The Fourier matches the function at zero and at 0.68969, +-1.3773, -12.0584, 22.7150.

C h a p t e r 5 1. Round off does not show until Ax = 0.0512~~.

7. The divided-difference table is

- -

The true value of f'(2.0) is 4.7471.

a. Forward difference gives 7.3039.

b. Backward difference gives 3.0688.

Answers to Selected Exercises 585

c. The central difference requires evenly spaced points, but doing (f , - f-)l(x+ - x-) gives
5.7638; the average of parts (a) and (b) is 5.1864.

11. The best points to use are at x = 0.23,0.27, and 0.32. The quadratic through these points is

13. The recomputed table is

f'(0.242) = 1.9750 - 3.8750 (0.032 + 0.012) = 1.8045. The error is -0.0099. Truncation causes a
greater error than does rounding.

22. For f ' (x): Multiplier is Ilh,
coefficients are [1/12, -213, 0, Y 3 , - 1/12].

For f"(x): Multiplier is llh2,
coefficients are [- 1112,413, -512,413, - 1/12].

For f"(x): Multiplier is llh3,
coefficients are [- 112, 1,0, - 1, 1/21.

For f (4)(x): Multiplier is llh4,
coefficients are [I , -4, 6, -4, I] .

27. Using double precision, the Richardson table is

Exact value = 0.157283; the estimate agrees to six places.

31. a. Analytical value = 0.015225, trapezoidal rule gives
0.01995, error is -0.004725, 5 = 0.35.

b. Analytical value = 0.3 16565, trapezoidal rule gives
0.318936, error is -0.002371, [= 0.0524.

c. Analytical value = 0.078939, trapezoidal rule gives
0.077884, error is 0.001055, [= 0.1992.

For each part, the value of 5 is near the midpoint.

Answers to Selected Exercises

35. a. 1.7684.

b. 1.7728.

c. 1.7904.

38. With 1431 intervals (h = 0.00112), value is 23.914454, error = -2.5 E-6.

41. h = 0.1: 1.76693.
h = 0.2: 1.76693.
h = 0.4: 1.76720.

46. For n, an even integer, let Th, TZh, be trapezoidal rule integrals with step sizes h and 2h. It is easy to
show that

Th - T2,, = (h /2) (- fo + 2f1 - 2f2 + . . . - f,),fromwhich

T h + (1 / 3) (T h - T 2 h) = (h / 3) (f 0 - t 4 f 1 + 2 f 3 + 4 f 3 + . . . ff,),

which is Simpson's I13 rule.

50. c0 = -9hl24, cl = 37hl24, c2 = -59hl24, c3 = 55hl24.

52. With 12 intervals, integral = 0.946083, error = - 1.0E-7.

55. (a)

Anal. Trap. Anal. Trap.

Anal. Trap. Anal. Trap.

Anal. Trap. Anal. Trap.

Answers to Selected Exercises 587

59. Multiply the matrices, add exponents of (Wi) (Wj), write W O = I, write W n as W n mod 4, then
unscramble the rows.

68. For any value of TOL 0.002, the same result is obtained after five iterations, 0.6773188, which has
an error of 7E-6. The analytical answer is 0.677312.

70. Break the interval into subintervals: [0, I], 11, 71/21.

74. Correct value is -0.700943. Even five terms in the Gaussian formula is not enough. Simpson's 113
rule attains five digits of accuracy with 400 intervals. The result from an extrapolated Simpson's rule
gets this in seven levels, using 128 intervals.

76. The values are readily confirmed.

d. for a: Any number in the y-direction, even number in the x-direction.

forb: Even number in both directions.

for c: Divisible by 3 in both directions.

86. Analytical value = 213.

Ax AY Integral Error Error/h2

"Using the average of the squares of the h-values.

Answers to Selected Exercises

90. End Condition
Exact Central diff.

x 1 3 4 value , (h = 10.1)
-

94. Value = 1.29919; Sinlpson's mle: 1.30160; exact: 1.30176.

C h a p t e r 6 2. The correct answer is 1.59420. Eight terms of the Taylor series gives this result, seven terms gives
1.58421, six terms gives 1.59418.

6. With h = 112'5, single precision gives 1.59419; double precision (rounded) gives 1.59420.

10. Equation is dvldt = 32.2 - cv3I2, v(0) = 0. At 80 milhr (117.333 ftlsec) dvldt = 0, giving c =

0.025335.

13. a. The concavity of y(x); if concave upward, the simple Euler method will have positive errors; the
computed values lag behind the true values. If concave downward, the errors will be negative.

b. Example 1: dyldx = ex always has positive errors,

Example 2: dyldx = -ex always has negative errors.

c. When concavity changes from upward to downward and repeats. Example: y = exp(x4) - exp(x2).

20. Interpolating linearly between v(6.0) and v(6.5), v = 105.60 ftlsec at t = 6.36 sec. Distance traveled
is about 435 ft.

24. If the answer is rounded, Iz = 0.25 gives 3.32332; all digits are correct.

27. The equations, in matrix form, are

which has the solution co = 23hl12, cl = - 16hl12, c2 = 5hl12.

Answers to Selected Exercises 589

Computed values are the same as the analytical; y is a cubic polynomial.

Eq. (6.18) gets exactly the analytical values for y(10), (which is 120), with h = 0.2 or even h = 1.0.
This is because the derivative function is linear. The modified Euler method also gets the analytical
result with h = 0.2 and with h = 1. The Euler method with h = 0.2 gives y(10) = 118.2.

Let y' = z so that y" = z'. Then we have

y' = z , y(O) = 0;

EIZ' = ~ (1 + z ~) ~ ~ ~ , Z(O) = 0.

At t = 1.0, x = 1.25689, y = 1.56012. If the solution is extended beyond t = 2, the x-values increase
rapidly and cause overflow near t = 2.35.

Let y; =: u, yi = v, then

y,' = u, v,(0) = A,
mlu' = -klyl - k&yl - ~ 2) . 4 0) = B,

yzl = v, ~ ~ (0) = C,
m2v1 = k&yl - y2), ~ (0) = D.

The eigenvalues are - 1 and 39; they differ in magnitude but are not both negative. When all the ele-
ments of the matrix are positive, the eigenvalues are exactly the same. In contrast, the eigenvalues for
the matrix of Eq. (6.22) are -2 and -800, showing that it is very stiff.

0 Y % error

b. With ,h = 7115, largest error is 0.404%.

c. Shooting has a maximum error < 0.5%, with h = d 2 .

If h is tolo small, round-off errors can distort the solution. It can also increase the size of the system
of equations beyond the capacity of the computer to solve them.

The exact answer is 2.46166.

a. (h = 112): k = 2.0000,

b. (h = 113): k = 2.25895,

c. (h = 1114): k = 2.34774,

d. Extrapolated: k = 2.46366.

Answers to Selected Exercises

C h a p t e r 7 4.

8.

Characteristic polynomial is x3 + 7x2 - 58x - 319; roots are 7.2024, -9.5783, -4.6241. The
eigenvalues of A-l are the reciprocals: 0.1308, -0.1044, -0.2163. They have the same eigenvec-
tors; the vector corresponding to the first of the eigenvalues is [-0.0723,0.0570, -0.99581.

For A-l, the polynomial is 1/319(319x3 + 58x2 - 7x - 1). The coefficients are the negatives of
that for A, in reverse order, and scaled by lldet(A) = 113 19.

The upper Hessenberg matrix:

If f(x) = ax2 + bx + C, fx = 2 m + b = 0 gives xmi, = -b/2a and fmi, = c - b21(4a). The maxi-
mum, if there is one, is at the same x-value.

With f(x) = 2x2 - eXl2, and starting from x = 0 with Ax = 0.1, f-values increase at x = 0.2.
Reversing with Ax = -0.01, they decrease but increase at x = 0.12. Reversing again with Ax =
0.001, they decrease but stop decreasing at x = 0.134. The f-value at x = 0.133 is the same,
-1.03338. Interpolating, we arrive at x = 0.1335, f = -1.03338. This compares well to the exact
answer, f = -1.03338 atx = 0.133637.

The most narrowing occurs when the two x-values are at the midpoint 2 E , where E is the smallest
value not zero. The least narrowing occurs when each x-value is within E of the endpoints.

For f(x) = (x2 - x) ~ + x - 5, f, = 2(x2 - X) (2x - 1) + 1. Settingf, = 0 and solving, we get
-0.260689 where f is -5.15268.

a. With n = 20, the ratio is 0.618034, correct to six digits.

b. We get 0.6181818 with n = 9, in error by only 0.000148.

The leastfvalue is -0.44 at (- 1.6, -0.2). The analytical value is -0.454545 at (- 1.6363, -0.2727).
The table required 441 computations of the function.

Steepest descent from (0, 0) turns out to be a univariant search. We begin along the negative x-axis
(the negative gradient) and stop at (-312,O). The negative gradient there points downward; we move
to (-312, - 114). The next movement is parallel to the x-axis, to (- 1318, - 114). Eventually, we will
arrive at (-1.63636, -0.272727), where f = -0.454545.

The analytical answer is f = -511 1 at (- 1811 1, -311 1). Starting from (0,O):

xmi, = 10, OIT - H-I * Vf = 1/11 * [-18, -31T.

Starting from (-2,0): Hand H-I are the same.

Of = [- 1, 2IT, xmi, = [-2, OIT - H-I * Vf = 111 1 * [-18, -3IT.

Starting from (-2, -2): H and H-I are the same.

Vf = [I, -lOIT, x,, = [-2, -21T - H-' * Vf 1/11 * [-18, -31T.

Starting from (0, -2): Hand H-I are the same.

Vf= [5, -12IT,x,,= [0, -2]T-~ -1*Vf=1 /11*[-18 , -3IT.

We arrive at the exact answer from each corner of the square.

Answers to Selected Exercises 59 1

34. At the minimum point, (1, I), the exact value for the minimum, f = 0, is obtained. There is no round-
off error here because all quantities in the computation off are integers. At all other points in the
table, single precision gives exact values because no term has more than 5 significant digits.

37. We need these quantities:

fx = 400x3 + 2x (1 - 200y) - 2, fy = 200y - 200x2,

f, = 1200x2 - 2(200y - I), fyy = 200, fq = fyx = -4OOx.

From these,

At (O,O),

This gives

At (LO),

x, = [O, OIT - [-1, OIT = [I, OIT.

Vf = [400, - 2001T and H-' = /:::: 6 0 ~ ~ ~ ~ 0 0]

giving

X, = [-1, OIT - H-' " Vf = [I, OIT - [O, -1]T= [I, 1]T;

so we get exactly the correct answer in two steps.

42. There are four coiner points at which f(x, y) is

(x, y) = (0,O) (0, 10) (6,O) (2, 8)
f k y) = 0 30 42 38 max is 42 at (6,O).

45. a. This constraint does not intersect the feasible region, so it is redundant; no effect.

b. This constraint cuts the feasible region and produces two new corners, at (912, 0) and (2715, 615).
At these points, the function has values 3 1.5 and 41.4. The optimum is reduced to 41.4.

c. This constraint also cuts the original feasible region. There are four corner points:

(x, Y) = (0,3) @,lo) (2,8> (2715,615)
f(x,y)= 9 30 38 41.4 maxis 41.4 at (2715, 615).

50. There are many possible combinations of constraints.

No comer on axes: x + y 5 10, x, y 2 2.

No feasilble region: x + y 5 4, x + y 2 8.

No combination gives a feasible region.

Answers to Selected Exercises

57. The primal has the solution:

To construct the dual, all constraints must be 5 so we rewrite the equality as two constraints,
x4 5 35, -x, 5 -35.

The dual then is

which has the solution yl = 2, y = 0, y = 1, g = 205. 2 3

60. For two variables: (1) If the magnitude of the slope of the objective function becomes greater than or
less than the slopes of the constraints that define the optimal point, (2) if the magnitude of the slopes
of the constraints that define the optimal become greater than or less than the slope of the objective
function.

For three variables: similar except we are dealing with planes.

64. The objective function defines a parabola; the constraints define a fesible region with four vertices, at
(1, 0), (1, 41, (4, 1), and (3, 0). The solution is f = 18 at (4, I), the corner point where the parabola
touches the feasible region.

70. The optimum of Exercise 64 is at (4, 1). A straight line that has the same values as the objective func-
tion at x = 3 and at x = 4 is y = 15 - 7x12. This linear objective touches the feasible region at (4,l)
where f = 18 (the same as for the nonlinear objective). Fitting to other straight lines near x = 4 will
have the same result.

71. Starting from (0, 0, 0) we find the solution is at (6$ 6$ -3:) where f = 140. The same result is
obtained with other starting values unless these are all negative or are all greater than 16; where a
different solution is found.

75. The solution is again obvious. Ship these amounts:

FromtTo Atlantic City Chicago Los Angeles Denver

Mississippi 300 200
Mexico 0 200 400 200
Cost to ship $7,500 $29,000 $13,200 $11,000

where the total shipping cost is $60,700, which exceeds the costs of the original configuration by
$4,400. This scheme is only better if the costs to supply customers from Denver and to establish that
facility are reduced by more than $4,400.

78. a. The solution is f (x, y) = 9619 = 10.667 at (5619 = 6.222,20/9 = 2.222). The nearest point with inte-
ger coordinates is (6,2) where f is 10. The rounded value for the solution to the original problem is 11.

b. If x can only have integer values, the feasible region is defined by a sequence of points at these
x-values. The objective function with x restricted to integers will match to the feasible region at

Answers to Selected Exercises 593

(6, 1717 = 2.29) where the objective has a value of 7417 = 10.5714, not much different from the
value with x unrestricted.

80. The shop is open for 32 15-minute periods. To simplify, assume that customers enter only at the start
of a period. The problem can be solved by setting up these variables:

B shows if the barber is busy of not, a Boolean variable.

A, th~e number of customers who enter together.

Q, the length of the queue, the number who must wait.

t: the period, which varies from 1 to 32.

Use a random number function to generate random integers from 1 to 6, of which two are selected to
represent one customer entering, one to represent two entering, and three to represent none. Begin with
B = 0 (not busy), Q = 0 (no customers waiting). Then, for each period in turn, get the value for A:

If B = 0, and

A = 0 and Q = 0, go to next period.

A = 1 and Q = 0 set B = 1, go to next.

A = 1 and Q Z 0 set B = 1, go to next.

A = 2 s e t B = l , Q = Q + l , g o t o n e x t .

If B = 1, and

A = 0 and Q = 0 set B = 0, go to next.

A = 1 and Q = 0, go to next.

A = 1 and Q # 0, go to next.

A = 2 a n d Q # O , s e t Q = Q + 1,gotonext.

The results will ordinarily be different for each trial when the random numbers are different. For one
trial, we found that one customer arrived in 13 periods (expected value is 10 $, two arrived in 6 peri-
ods (expected value is 5 4, so this was a good day. The barber was idle for 7 periods and the maxi-
mum length of the queue (number waiting) was 2. He served 25 customers. The maximum number
he could serve in a day is 32 and he would never be idle.

C h a p t e r 8 3.

which is the same as the given operator.

Answers to Selected Exercises

11. Interior temperatures:

14. Interior temperatures, with a tolerance of 0.00001:

With initial values all equal to zero, 31 iterations were needed. With initial values all equal to 300,32
iterations were needed. With initial values all equal to 93.89 (the average of the boundary tempera-
tures), 27 iterations were needed. The final values are not exactly the same for these three cases.

21. Values at interior points, laid out as in the figure:

25. There are six "layers" of nodes; each layer has 6 * 6 = 36 nodes; the total number of nodes is 6 *
36 = 216, so there are 216 equations. There are three sets of these, one for each direction (x, y, z).
Even though each system is tridiagonal, getting a convergent solution is not done quickly.

27. Using k = 2.156 Btu/(hr * in2 * ("Flin))

a. -29.53 "Flin

b. -75.59 "Win

c. -34.91 "Flin

31. With units of Btu, lb, in., sec, O F : k = 0.00517, c = 0.0919, p = 0.322. With Ax = 1 in., At = 2.862 sec.

Using r = 0.5, at t = 28.62:

Answers to Selected Exercises 595

These values are within 3.5" of the steady-state values.

39. After 22 time steps, a single error grows to become larger than the original error and then continues
to grow by a factor of 1.0485 at each succeeding time step.

41. After seven time steps, the maximum error has decreased to 0.219 times the original error. As time
increases, the maximum error decreases by a factor of 0.875 for two time steps and this factor gets
smaller as time progresses.

44. N: 3 3 3 3
u: 0.5 1 .0 2.0 3.0

Eigenvalue: 0.7735 0.6306 0.4605 0.3627

N: 4 4 4 4
r: 0.5 1 .0 2.0 3.0

Eigenvalue: 0.8396 0.7236 0.5669 0.4660

46. The discriminant is 4(1 - x) ~ + 4(1 + y)(l - y). When set to zero, this describes a hyperbola whose
center is at (1,O) and whose vertices are at (1, 1) and (1, - 1). The equation is parabolic at points on
this curve. Above the upper branch and below the lower branch, it is elliptic. Between the two
branches, it is hyperbolic.

50. a. At = 3 sec. Displacements versus time:

Answers to Selected Exercises

d. At = 3 sec.

55. With Ax = 0.3, At = 0.003344 sec. After three time steps (t = 0.01003), y(1.5) = 0.0067334 ft =

0.0808 in. (same as analytical). Other values agree with the series solution.

58. Assuming that the initial displacements form a pyramid with flat faces whose peak is at (1, I). Using
Ax = Ay = 0.5, At is 0.00544 sec. There appears to be no repetitive pattern. The initial displace-
ments are

Some values for the node at (2, 1):

Steps: 0 1 2 4 6 8 10 14
u(2, 1): 0.500 0.500 0.250 -0.234 -0.625 0.313 0.897 -0.932

C h a p t e r 9 2. Let u(x) = c(x)(x - 1). The Rayleigh-Ritz integral gives 2cl3 + 0 = 2(5/12), so c = 514. Some val-
ues:

x: 0 0.2 0.4 0.6 0.8 1.0
u: 0 -0.200 -0.300 -0.300 -0.200 0

Analytical: 0 -0.176 -0.288 -0.312 -0.224 0

6. R(x) = y" - 3x - 1. If u = cx(x - I) , u" = 2c. Since there is only one constant, set R = 0 at x =

112. We then have 2c - 3(1/2) - 1 = 0, giving c = 514. This is identical to the answer of Exercise 2.

11. a. NL=(x-0.45)/(-0.12),NR=(x-0.33)10.12.

d. The best averages when the functions are nonlinear are the integrals over the element boundaries
divided by the width of the interval. This gives F,, = 2.153 and Qav = 0.3800. However, these
differ little from the values at the midpoint of the interval: 2.1521 and 0.3802.

Answers to Selected Exercises 597

14. x: 1.0 1.2 1.5 1.75 2
u(x): -1 -0.2307 0.9174 1.9197 3

Analytical: - 1 -0.2267 0.9167 1.9196 3

20. The augmented matrix is

23. The element equations are formed from

c i j = 0.2825 if i = j , 0.1412 if i f j,

0.489 0.089 -0.573
[1(1 = - 0.089 0.196 -0.285

-0.573 -0.285 0.857

b, = 0.565 Fa,.

28. (2 + r) { c m f l] = (2 - r)(cm) + 2r[K- ']{b].

31. The element equations for t = tl are

32. Yes, closer nodes are helpful when the function is nonlinear.

37. The temperature difference between successive contour lines is 100121 = 4.76'. The initial tempera-
ture at the comer is 100". Interpolating between contours:

Time 0 0.1 0.2 0.4 0.8 10.0
Contour 19.17 16.05 10.10 5.38 3.64
Temperature 100.0 91.3 76.4 48.1 25.6 17.3

The plot shows an S-shaped curve. Fitting to least-squares polynomials of degrees 3 and 4 gets
matches to the points within 3.7" and 1.0". A better fit will result from the use of an equation of the
form lly = a + be-x or the so-called Gompertz relation: y = a * bcX.

References

Acton, F. S. (1970). Numerical Methods That Work. New York: Harper and Row.
Aki, S. G. (1989). The Design and Analysis of Parallel Algorithms. Englewood Cliffs, NJ: Prentice-Hall.
Allaire, P. W. (1985). Basics of the Finite Element Method. Dubuque, IA: Brown.
Allen, D. N. (1954). Relation Methods. New York: McGraw-Hill.
Anderson, E., Z. Gai, C. Bishof, J. Demmel, and J. Dongarra et al. (1996). LAPACK Users' Guide.

2nd ed. Philadelphia: SIAM.
Andrews, G., and R. Olsson (1993). The SR Programming Language. Redwood City, CA: Benjamin

Cummings.
Andrews, Larry C. (1985). Elementary Partial Differential Equations with Boundary Value

Problems. Philadelphia: Saunders College Publishing.
Arney, David C. (1987). The Student Edition of DERIVE, Manual. Reading, MA: Addison-

Wesley -Benjamin Curnmings.
Atkinson, Kendall E. (1989). An Introduction to Numerical Analysis. 2nd ed. New York: Wiley.
Bartels, FLichard, J. Beatty, and B. Barsky (1987). An Introduction to Splines for Use in Computer

Graphics and Geometric Modeling. Los Altos, CA: Morgan Kaufmann.
Bertsekaa, Dimitri, and John Tsitsiklis (1989): Parallel and Distributed Computation: Numerical

Methods. Englewood Cliffs, NJ: Prentice-Hall.
Birkhoff, Garrett, Richard Varga, and David Young (1962). Alternating direction implicit methods.

Advances in Computers 3: 187 -273.
Boisvert, R. (1994) NIST's GAMS: A "card catalog" for the computer user. SIAM NEWS 27.
Borse, G. J. (1997). Numerical Methods with MATLAB. Boston: ITP.
Bracewell, Ronald N. (1986). The Hartley Transform. New York: Oxford University Press.
Brigham, E. Oron (1974). The Fast Fourier Transform. Englewood Cliffs, NJ: Prentice-Hall.
Burden, Richard L., and J. Douglas Faires (2001). Numerical Analysis. 7th ed. Pacific Grove, CA:

BrooksICole.
Bumett, David S. (1987). Finite Element Analysis: From Concepts to Applications. Reading, MA:

Addison-Wesley.
Campbell, Leon, and Laizi Jacchia (1941). The Story of Variable Stars. Philadelphia: Blakiston.
Carnahan, Brice (1964). Radiation Induced Cracking of Pentanes and Dirnethylbutanes. Ph.D. dis-

sertation, University of Michigan.

References

Carnahan, Brice, et al. (1969). Applied Numerical Methods. New York: Wiley.
Carslaw, H. S., and J. C. Jaeger (1959). Conduction of Heat in Solids. 2nd ed. London: Oxford

University Press.
Chandy, K. M., and S. Taylor (1992). An Introduction to Parallel Programming. Boston: Jones and

Bartlett.
Chapman, Stephen J. (2000). MATLAB Programming for Engineers. Pacific Grove, CA:

BrooksICole.
Chapra, Stephen C., and Raymond P. Canale (2002). Numerical Methods for Engineers. 4th ed. New

York: McGraw-Hill.
Char, B., K. Geddes, G. Gonnet, B. Leong, M. Monagan, and S. Watt (1992). First Leaves: A

Tutorial Introduction to Maple V New York: Springer-Verlag.
Cheney, Ward, and David Kincaid (1999). Numerical Mathematics and Computing. 4th ed. Pacific

Grove, CA: BrooksICole.
Condon, Edward, and Hugh Odishaw, eds. (1967). Handbook of Physics. New York: McGraw-Hill.
Conte, S. D., and C. de Boor (1980). Elementary Numerical Analysis. 3rd ed. New York: McGraw-Hill.
Cooley, J. W., and J. W. Tukey (1965). An algorithm for the machine calculations of complex Fourier

series. Mathematics of computation 19:297 - 301.
Corliss, G., and Y. F. Chang (1982). Solving ordinary differential equations using Taylor series. ACM

Transactions on Mathematical Software 8: 1 14- 144.
Corliss, Robert M. (2002). Essential Maple 7. 2nd ed. New York: Springer-Verlag.
Crow, Frank (1987). Origins of a teapot. IEEE Computer Graphics and Applications 7(1):8- 19.
Datta, B. N. (1995). Numerical Linear Algebra and Applications. Pacific Grove, CA: BrooksICole.
Davis, Alan J. (1980). The Finite Element Method. Oxford: Clarendon Press.
Davis, Phillip J., and Phillip Rabinowitz (1967). Numerical Integration. Waltham, MA: Blaisdell.
de Boor, C. (1978). A Practical Guide to Splines. New York: Springer-Verlag.
De Santis, R., F. Gironi, and L. Marelli (1976). Vector-liquid equilibrium from a hard-sphere equa-

tion of state. Industrial and Engineering Chemistry Fundamentals 15(3): 183- 189.
Dongarra, J., I. Duff, D. Sorensen, and H. van der Vorst (1991). Solving Linear Systems on Vector

and Shared Memory Computers. Philadelphia: SIAM.
Dongarra, J. J., J. R. Bunch, C. B. Moler, and G. W Stewart. (1979). LINPACK User's Guide.

Philadelphia: SIAM.
Douglas, J. (1962). Alternating direction methods for three space variables. Numerical Mathematics

4:41-63.
Duffy, A. R., J. E. Sorenson, and R. E. Mesloh (1967). Heat transfer characteristics of belowground

LNG storage. Chemical Engineering Progress 63(6):55 - 6 1.
Edgar, Thomas F., David M. Hirnmelblau, and Leon S. Lasdon (2001). Optimization of Chemical

Processes. 2nd ed. New York: McGraw-Hill.
Etter, D. M. (1993). Quattro Pro-A Software Tool for Engineers and Scientists. Redwood City, CA:

Benjamin/Cummings.
Fausett, Laurene (2002). Numerical Methods Using MathCad. Englewood Cliffs, NJ: Prentice-Hall.
Fike, C. T. (1968). Computer Evaluation of Mathematical Functions. Englewood Cliffs, NJ:

Prentice-Hall.
Fletcher, R. (1987). Practical Methods of Optimization. 2nd ed. New York: Wiley.
Forsythe, G. E., M. A. Malcolm, and C. B. Moler (1977). Computer Methods for Mathematical

Computation. Englewood Cliffs, NJ: Prentice-Hall.
Forsythe, G. E., and C. B. Moler (1967). Computer Solution of Linear Algebraic Systems.

Englewood Cliffs, NJ: Prentice-Hall.
Fox, L. (1965). An Introduction to Numerical Linear Analysis. New York: Oxford University Press.
Gear, C. W. (1967). The numerical integration of ordinary differential equations. Mathematics of

Computation 21: 146- 156.

References 60 1

Gear, C. W. (1971). Numerical Initial Value Problems in Ordinary Differential Equations.
Englewood Cliffs, NJ: Prentice-Hall.

Gockenbach, Mark S. (2002). Partial Differential Equations: Analytical and Numerical Methods.
Philadelphia: SIAM.

Hageman, L. A,, and D. M. Young (1981). Applied Iterative Methods. New York: Academic Press.
Hamming, R. W. (1971). Introduction to Applied Numerical Analysis. New York: McGraw-Hill.
Hamming, R. W. (1973). Numerical Methods for Scientists and Engineers. 2nd ed. New York:

McGraw-Hill.
Harrington, Steven (1987). Computer Graphics: A Programming Approach. New York: McGraw-

Hill.
Heath, Michael T, (2002). Scienti$c Computing, An Introductory Survey. 2nd ed. New York:

NlcGraw-Hill.
Henrici. Peter H. (1964). Elements of Numerical Analysis. New York: Wiley.
Higham, Desmond J., and Nicholas J. Higham (2000). MATLAB Guide. Philadelphia: SIAM.
Hillier, Frederick S., and Gerald J. Liebermann (1974). Operations Research. 2nd ed. San Francisco:

Holden-Day.
Housholder, Alston S. (1970). The Numerical Treatment of a Single Nonlinear Equation. New York:

McGraw-Hill.
IEEE Standard for Binary Floating-point Arithmetic (1985). Institute of Electrical and Electronics

Engineers, Inc., New York.
Jda , J. (1992). An Introduction to Parallel Algorithms. Reading, MA: Addison-Wesley.
Jones, B. (1982). A note on the T transformation. Nonlinear Analysis, Theory, Methods and

A,uplications 6:303 - 305.
Kahaner, D., C. Moler, and S. Nash (1989). Numerical Methods and Software. Englewood Cliffs, NJ:

Prentice-Hall.
Kaplan, Wilfrid (1999). Maxima and Minima with Applications: Practical Optimization and Duality.

New York: Wiley.
Lee, Peter. and Geoffrey Duffy (1976). Relationships between velocity profiles and drag reduction in

turbulent fiber suspension flow. Journal of the American Institute of Chemical Engineering
2%(4): 750-753.

Love, Carl H. (1966). Abscissas and Weights for Gaussian Quadrature. National Bureau of
Standards, Monograph 98.

Luenber,ger, David G. (1973). Introduction to Linear and Nonlinear Programming. Reading, MA:
Addison-Wesley.

Maron, lLlelvin J., and Robert J. Lopez (1991). Numerical Analysis: A Practical Approach. 3rd ed.
Belmont, CA: Wadsworth.

Moskowitz, Herbert, and Gordon P. Wright (1979). Operations Research Techniques for
Management. Englewood Cliffs. NJ: Prentice-Hall.

Muller, 1D.E. (1956). A method of solving algebraic equations using an automatic computer. Math
Tables and Other Aids to Computation 10:208-215.

Nash, Stephen G., and Ariela Sofer (1996). Linear and Nonlinear Programming. New York:
McGraw-HilI.

O'Neill, Mark A. (1988). Faster than fast Fourier. BYTE 13(4):293-300.
Orvis, William J. (1987). 1-2-3 for Scientists and Engineers. San Francisco: Sybex.
Peaceman, D. W., and H. H. Rachford (1955). The numerical solution of parabolic and elliptic dif-

ferential equations. Journal of the SocieQ for Industrial and Applied Mathematics 3:2841.
Penrod, E. B., and K. V. Prasanna (1962). Design of a flat-plate collector for a solar earth heat pump.

Solar Energy 6(1):9-22.
Pinsky, Mark A. (1991). Partial Differential Equations and Boundary Value Problems with

Applications. 2nd ed. New York: McGraw-Hill.

References

Pizer, Stephen J. (1975). Numerical Computing and Mathematical Analysis. Chicago: Science
Research Associates.

Pokorny, C., and C. Gerald (1989). Computer Graphics: The Principles Behind the Art and Science.
Irvine, CA: Franklin, Beedle, and Associates.

Polak, Elijah (1997). Opimization, Algorithms and Consistent Approximations. New York: Springer-
Verlag .

Pratap, Rudra (2002). Getting Started with MATLAB: A Quick Introduction for Scientists and
Engineers. New York: Oxford University Press.

Prenter, P. M. (1975). Splines and Variational Methods. New York: Wiley.
Press, W., B. Flannery, S. Teudolsky, and W. Vetterling (1992). Numerical Recipes in C: The Art of

Scientzjic Computing. 2nd ed. New York: Cambridge University Press.
Press, W., B. Flannery, S. Teudolsky, and W. Vetterling (1992). Numerical Recipes in FORTRAN:

The Art of Scientific Computing. 2nd ed. New York: Cambridge University Press.
Press, W.. B. Flannery, S. Teudolsky, and W. Vetterling (1996). Numerical Recipes in FORTRAN 90:

The Art of Parallel Scientzjk Computing. 2nd ed. New York: Cambridge University Press.
Rall, L. B. (1981). Automatic Differentiation: Techniques and Applications. Springer-Verlag.
Ralston, Anthony (1965). A First Course in Numerical Analysis. New York: McGraw-Hill.
Ramirez, Robert W. (1985). The FF7; Fundamentals and Concepts. Englewood Cliffs, NJ: Prentice-

Hall.
Rao, Sigiresu S. (2002). Applied Numerical Methods for Engineers and Scientists. Englewood Cliffs,

NJ: Prentice-Hall.
Rice, John R. (1983). Numerical Methods, Software, and Analysis. New York: McGraw-Hill.
Richtmyer, R. D. (1957). Difference Methods for Initial Value Problems. New York: Wiley

Interscience.
Sabot, G. W., ed (1995). High Pe$ormance Computing: Reading, MA: Addison-Wesley.
Sedgwick, R. (1992). Algorithms in C + +. Reading, MA: Addison-Wesley. [Other versions avail-

able: in C, in Pascal.]
Shampine, L., and R. Allen (1973). Numerical Computing. Philadelphia: Saunders.
Smith, G. D. (1978). Numerical Solution of Partial Differential Equations. 2nd ed. London: Oxford

University Press.
Stallings, William (1990). Computer Organization and Architecture. New York: Macmillan.
Stewart, G. W. (1973). Introduction to Matrix Computations. New York: Academic Press.
Stoer, J., and R. Burlirsch (1993). Introduction to Numerical Analysis. 2nd ed. New York: Springer-

Verlag.
Traub, J. F. (1964). Iterative Methods for the Solution of Equations. Englewood Cliffs, NJ: Prentice-

Hall.
Van Loan, C. F. (1997). Introduction to Scientific Computing: A Matrix-Vector Approach Using

MATLAB. Englewood Cliffs, NJ: Prentice-Hall.
Varga, Richard (1959). p-Cyclic matrices: A generalization of the Young-Frankel successive over

relaxation scheme. Pacific Journal of Mathematics 9:617-628.
Vichnevetsky, R. (1981). Computer Methods for Partial Differential Equations. Vol. 1 , Elliptic

Equations and the Finite Element Method. Englewood Cliffs, NJ: Prentice-Hall.
Walker, D. W., and J. J. Dongarra. (1996). MPI: A Standard Message-Passing Interface. SIAMNEWS

29(1).
Waser, S., and M. J. Flynn (1982). Introduction to Arithmetic for Digital Systems Designers. New

York: Holt, Rinehart and Winston.
Wilkinson, J. H. (1963). Rounding Errors in Algebraic Processes. Englewood Cliffs, NJ: Prentice-Hall.
Wilkinson, J. H. (1965). The Algebraic Eigenvalz~e Problem. London: Oxford University Press.
Wolfram, Stephen (1999). The Mathematics Book: 4th ed. Wolfram MedialCambridge University

Press.

A
Absolute error versus local, 12
Accelerating convergence, 57-59,

126-127
Liebmann's method, 471
successive overrelaxation, 471 -4'74

Adam's methods, 348-349
Adams fourth-order formula, 349-351
Adams-Moulton method, 351 -353,

363-364
Adaptive integration

adaptive scheme, 298 - 300
algorithm for, 301
bookkeeping and avoiding repeating

function evaluations,
300-301

overview, 297 -298
AD1 (alternating direction implicit)

method 478-483,497-498
Aitken acceleration, 57
Algorithm

for parallel processing of linear
equations, 132

Algorithms
adaptive integration, 301
computing a Richardson table for

derivatives, 270
derivatives from divided-difference

tables, 263 -264
drawing a B-spine curve, 188
false-posiLion method, 41 -42
fast Fourier transform (FIT),

294 -- 295
fixed-point iteration, 55-56
for generating powers in FFT, 293
for Richardson extrapolation, 270
Gauss-Seidel iteration, 124- 126
Gaussian elimination, 94-98, 105

Gaussian elimination and tridiagonal
systems, 105

generating powers in fast Fourier
transform (FFT), 293-294

golden section search, 412-413
halving the interval, 34-38
integration by the composite trape-

zoidal rule, 276
interpolation from a Lagrange polyno-

mial, 153- 154
interpolation from divided-difference

table, 160- 161
iteration, 55 -56
Jacobi iteration, 123- 124
Muller's method, 51 -53
Newton's method, 44-48
Romberg integration, 279-280
Runge-Kutta method, 344
Runge-Kutta-Fehlberg method,

344-347
secant method, 39-40
synthetic division and the remainder

theorem, 49 - 50
Alternate use of order relation, 26
Alternating direction implicit (ADI)

method, 478-481,497 -498
Analysis, 2
Antiderivative, 272
Approximation of functions. See

Functions, approximations
Approximations. See also types, i.e.,

minimax.
backward-difference, 259
central-difference, 260
forward-difference, 258

Arithmetic
floating point, 13- 14, 17-18
interval. 19-21

Augmented matrix, 89
Automatic differentiation: 334

B
B-spline curves, 179- 198

algorithm for, 188
conditions for, 186
end points, 187
equations for, 185
matrix form, 187

B-spline surface, 194, 196- 198
Backward error, 15- 16
Backward-difference approximations,

259
Banded matrices, 127
Basis function, 518
Beowulf-class supercomputers, 22-23
Bernstein polynomial, 181
Berstein polynomials, 18 1
Bezier curves, 179- 198

Bernstein polynomials, 181
conditions, 180
control points, 180
cubic, 180
equations for, 18 1
parameters for, 180
properties, 183
using Mathematica, 183

Bezier points, 180
Bezier surface, 194- 196
Bisection, 33-38
Boundary-value problems, 366-381.

518-526
comparison of methods, 374
derivative boundary conditions, 375
solving with a set of equations, 373
temperature distribution in a rod, 366

Brent's method, 415

604 Index

C
Calculators, programmable, 6
Calculus of variations, 5 18
Central difference approximation

error of, 26 1
Central-difference approximation, 260
Cepheid variable, 176
Chapeau function, 527
Characteristic polynomial, 85
Characteristic value, 85
Characteristic value problems

solved with a set of equations, 382
Characteristic values. See Eigenvalues
Characteristic-value problems, 381 -394
Chebyshev polynomials

computer algebra systems, 224-225,
227-228

economizing a power series, 225 -227
error bounds, 223
overview, 221 -223

Chebyshev series, 221,228-232
Closed intervals, 567
Collocation method, 522-524
Complex roots

Newton's method, 45-46
Composite trapezoidal rule, 274-276
Computational error, 15
Computer

errors in solutions, 10- 16
massively parallel, 22
numerical analysis, 4-6

Computer algebra systems (CAS), 5,
86-88

Chebyshev polynomials, 224-225,
227-228

Computer languages, 4
Computer numbers

examples, 16- 17
Computing

distributed, 5,21-25
parallel, 21 -25

Condition number, 112- 114, 117- 118
Conjugate gradient method, optimization,

128,423-426
Constraint relations, 428-229
Continued fractions, 236-237
Continuous functions, 567-568
Convergence

accelerating, 57-59, 126- 127,
471-474

false-position method, 59-60
Newton's method, 59
order of, 56-57
rates, 534-535
secant method, 59-60
secant method and false position,

58-60
Convex hull, 182
Convex set, 183
Crank-Nicolson method, 485-498

Cubic polynomials, 154
Cubic splines, 194- 196

applications, 317-321
equation, 170- 177

Curve fitting and interpolation. See
Interpolation and curve fitting

D
D'Alembert solution, 502-505
Deflating an equation, 11
Derivative boundary conditions, 375-380,

475-477
Derivatives

backward difference approximation,
260

central difference approximation, 260
error, 258,260-261,265
evenly spaced data, 264
extrapolation techniques, 268,270
formulas for, 271
forward difference approximation, 258
from cubic splines, 260
higher order, 266-268
next-term rule, 262
Richardson extrapolation, 269
using MATLAB, 259,267

Descartes' nlle of signs, 570
Design matrix, 204
Determinants, 84
Diagonal dominance, 121
Diagonal matrix, 8 1
Differential equations, ordinary. See

Ordinary differential equations
Differential equations, partial. See Partial-

differential equations
Differentiation and integration

adaptive integration, 297-301
computer differentiation, 258-272
cubic splines, 317-321
Fourier series and Fourier transforms,

285 -297
Gaussian quadrature, 301 -307
multiple integrals, 307-3 16
overview, 256-258
Simpson's rules, 280-285
trapezoidal rule, 272-280

Diffusion equation, 462, 481. See also
Parabolic equations

Direct methods, 121
Dirichlet conditions, 462
Distributed computing, 5, 21 -25
Divided differences, 157 - 168
Divided-difference

derivatives, 261 -264
Dual problem, 437-440

E
Efficiency of numerical procedures,

26-28
Eigenfunction, 382

Eigenvalues, 85, 381-394
from a difference equation, 382
MATLAB, 392
power method, 382,385

Eigenvector, 85
EISPACK, 5
Elementary row operations, 90
Elimination methods

Gauss-Jordan, 100- 101
Gaussian. 90-98
LU matrix, 103- 105
multiple right-hand sides, 100
order vector, 103
overview, 88 - 105
scaled partial pivoting, 101 - 102

Elliptic equations
accelerating convergence, 471
alternating direction implicit method,

478-479
derivative boundary conditions,

475-477
iterative methods, 469-474
Liebmann's method, 471
MATLAB, 549-552
nodes spaced nonuniformIy, 480-481
overview, 463 -469
Poisson's equation, 464,474-475
rate of convergence, 471 -474

Eps (epsilon), 14
Equation sets

elimination methods. See Elimination
methods

ill-conditioned systems. See Ill-condi-
tioned systems

iterative methods, 121 - 129
matrices and vectors. See Matrices and

vectors
operational count, 99- 100
overview, 76-77
parallel processing. See Parallel pro-

cessing
tridiagonal, 105

Error
interpolation, 152- 154, 162- 164
solutions, 10- 16, 117

Error analysis
forward and backward, 15- 16

Error function, 28 1
Euclidean norm, 1 14
Euler methods, 335-340

global error, 335,339
implicit form, 365
local error, 335
midpoint method, 338
modified Euler method, 336
predictor-corrector, 361
propagated error, 338

Euler's identity, 289
Excel, 426-427
Exponent, 13

Index 605

Extrapolation techniques
overview, 268 -269
parabolic, 414-417
Richardson, 269-270
tabulated values, 270-272

F
False-position method, 38 -42

convergence, 59 - 60
Fast Fourier transform (m), 288-297
Feasible region, 429
Finite elements for ordinary differential

equations, 526-535
convergence, 534
Dirichlet condition, 530
Neumann condition, 530

Finite elements for partial-differential
equations, 535-562

for elliptic equations, 535-552
for heat equation, 553-558
for wave equation, 558-562
with MATLAB, 549,555,561

Finite-element analysis, 481
collocation method, 522-524
Galerlun method, 525--527, 559
mathematical background, 5 18 -526
ordinary differential equations,

526-535
overview, 517-518
partial-differential equations, 535-562
Rayleigh-Ritz method, 518-522,535

Fixed-point :iteration
accelerating convergence, 57-59
algorithm, 55-56
convergence of Newton's method, 59
order of convergence, 56-57
overview, 54-55
secant method and false position,

59--60
Floating-point arithmetic, 13 - 14

anomalies, 17- 18
Formulas

Adams fourth order, 349-351
computing derivatives, 271 -272
Fourier coefficients, 251 -252
integration, uniformed spacing, 282
Newton- Cotes, 283
Simpson's rules, 283

Forward and backward error analysis,
15-16

Forward difference approximation
error of, 258,260
using MATLAB, 259

Forward error, 15- 16
Forward-difference approximation, 258
Fourier analysis, 286
Fourier series, 220,240-252,285-288
Fourier series and Fourier transforms

discrete series, 286-288
fast transform, 288-296

overview, 285 -286
sampling theorem, 296-297

Fourier, Jean Baptiste Joseph, 220
Fractions, continued, 236-237
Friction factor, 30
Frobenius norm, 115
Functional, 518,536
Functions

several variables, 417-428
unimodal, 405-417

Functions, approximations
Chebyshev polynomials and

Chehyshev series, 221 -232
Fourier series, 240-252
overview, 220- 22 1
rational function approximations,

232 - 240

G
Galerkin method, 525 -526
Gamma function, 28 1
Gauss-Jordan method, 100- 10 1

operational count, 101
tridiagonal system, 105

Gauss-Seidel method, 124- 126
algorithm for, 124

Gaussian elimination, 91 -98
algorithms for, 94, 105
determinant, 93
LU decomposition, 93
matrix inverse, 106
multiple right-hand sides, 100, 103
operational count, 99
order vector, 85, 103
parallel processing, 13 1
pivoting, 92
scaled partial pivoting, 101
tridiagonal system, 105
using MATLAB, 98

Gaussian quadrature, 301 -307
formulas for, 305
getting parameters, 302
improper integrals, 307
Lengendre polynomials, 304
multiple integration, 3 15

Gerschgorin's theorem, 385
Gibbs phenomenon. 246,252
Golden

mean, 412
ratio, 411-412
section search method, 410-413

Gradient, 421

H
Half-range expansions, 247 -251
Hamming's method, 358-359
Harmonic analysis, 286
Hat functions, 527,533
Heat equation, 462,481

in two or three dimensions, 494

Hessenberg matrix, 390
Higher-order derivatives, 266-268
Higher-order ordinary differential equa-

tions, 359-364
Hilbert matrix, 138
Homer's method, 47 -50
Homer's method, parallel processing,

48 - 50
Householder transformation, 390
Hyperbolic equations, 462, 499-509

vibrating string, 499
Hypercube, 129

I
Identical polynomials, 162
Identity matrix, 81
IEEE standards

floating-point numbers, 13 - 14
111-conditioned systems, 110- 120

"almost singular" matrix. 11
condition number of a matrix,

117-118
condition numbers and norms,

113-114
effect of precision, 112- 113
errors in the solution and norms,

116-117
iterative improvement, 11 8- 119
matrix norms, 114-116
overview, 110- 112
pivoting and precision, 119- 121
sensitivity, 11 1
using Maple, 112

Implicit method, 365
Imprecision of parameters, 21
Improper integrals, 307
IMSL (International Mathematical and

Statistical Library), 4-5
Infeasible region, 432-433
Information theorem-sampling theorem,

296-297
Integer programming, 45 1
Integrals

improper, 307
multiple, 307-3 16

Integration, 272-321
adaptive integration, 297
algorithm for the composite trape-

zoidal rule. 276
composite trapezoidal rule, 274
discontinuous functions, 283
errors, 274, 275, 277
for discrete Fourier transform, 287
for fast Fourier transform (FFT), 288
for terms of a Fourier series, 285
formulas for, 282-283
Gaussian quadrature, 30 1,3 1 1
improper integrals, 283,307
multiple integrals, 307
Newton-Cotes formulas, 283

606 Index

Romberg integration, 276,278
Simpson's 113 rule, 280
Simpson's 318 rule, 281
trapezoidal rule, 273
unevenly spaced data, 278
using cubic splines, 3 17
using Maple, 272
using MATLAB, 281

Integration, adaptive
adaptive scheme, 298 -300
avoiding repeating function evalua-

tions, 300-301
overview, 297-298

Interpolation
surfaces, 188, 190- 193

Interpolation and curve fitting
Bezier curves and B-spline curves,

179-198
least-squares approximations,

199-209
overview, 147 - 148
polynomials, 149- 157
spline curves, 168- 179

Interpolation from divided differences,
157-168

algorithm, 160
error, 162
identical polynomials, 162
interpolation near the end of a table,

1 64
next-term rule, 164

Interpolation with evenly spaced data,
165-167

compared to divided differences,
167

Newton - Gregory polynomials,
165

tables of ordinary differences, 165
using MATLAB, 166

Interval
halving, 33 -38
open and closed, 567

Interval arithmetic, 19-21
Iteration and iterative methods, 5

elliptic equations, 469-475
fixed point, 54-60
Gauss-Seidel, 124- 126,471 -474
improvement, 1 18- 1 19
Jacobi, 123 - 124,471 -474
methods, 121 - 129
minimizing residuals, 128 - 129
power method, 383-388
solutions, 134- 135

Iterative improvement, 118, 121 - 126
Iterative methods, 118- 129

accelerating convergence, 126
algorithms for, 123- 124
convergence and divergence, 125
for sparse systems, 127

Iterative solutions, 134

J
Jacobi method

algorithm for, 123- 124, 134- 135

K
Kepler, Johannes, 1

Lagrange multipliers, 446
Lagrangian polynomials, 150- 154

algorithm, 153
error, 152
parallel processing, 157
using MATLAB, 151, 154

LAPACK, 5
Laplace's equation, 464-474
Least-squares

approximations, 199-209
polynomial, 201,203 -206

Least-squares method, 199-201
design matrix, 204
maximum likelihood principle, 200
normal equations, 201
normal matrix, 204
optimal degree of polynomial, 207
polynomials, 203
positive definite matrix, 205
singular-value decomposition, 205
using MATLAB, 201

Legendre polynomials, 304-306
Level curve, 421
Liebmann's method, 470-471
Linear equations, 88

augmented matrix, 89
back-substitution, 88
elementary row operations, 90
lower-triangular system, 88
upper-triangular systems, 88

Linear interpolation, 38-42
Linear programming

constraints, 428 -430
dual problem, 437-440
graphical solution, 428 -430
overview, 428
primal problem, 437-440
sensitivity analysis, 440-441
simplex method, 430-435
spreadsheet solution, 435-437
using a spreadsheet, 435-437
using Maple, 437

LINPACK, 5
Lipschitz condition, 330
Lower-triangular matrix, 82

M
Mathernatica, 5

for Adam's method, 348
for Bezier curves, 180

Macros, 5
Mantissa, 13

Maple, 5
for boundary-value problems, 372
for ill-conditioned systems, 112
for ordinary differential equations,

333,345,363
linear programming, 437
matrix operations, 88
using for integration, 272

Massively parallel computers, 22
MATHLIBRARY, 4
MATLAB, 5

characteristic polynomial, 393
eigenvalues and eigenvectors, 392
eigenvalues and eigenvectors of a

square matrix, 392-394
elliptic equations, 549-552
eps values, 14
for Gaussian elimination, 98
for interpolation, 166
for Lagrangian polynomials, 15 1
for matrix norms, 115
getting derivatives, 43-44, 259,267
halving the interval method, 34-38
higher derivatives, 267-268
hyperbolic equations, 561 -562
least-squares polynomial, 201
matrix operations, 86-88,98, 108
minimizing, 415-416
optimization, 415-416
ordinary differential equations, 333,

335
parabolic equations, 555-558
polynomial interpolation, 151 - 152
polynomials, 47-48
problem-solving example, 8 - 10
programming in, 35-37
Runge-Kutta-Fehlberg method, 347
solving partial-differential equations,

549,555,561
spline curves, 175- 176
surface interpolation, 194- 196
using for integration, 281

Matrices and vectors. See also Vectors
addition, 78
and linear equations, 84
characteristic polynomial, 5
computer algebra systems, 86-88
condition number, 117- 1 18
defined, 77
determinant, 84
diagonal, 81
eigenvalue, 85
eigenvector, 85
identity, 8 1
inverse, 106-110
lower triangular, 82
multiplication, 78
norms, 114- 117
operations examples, 83-86
overview, 77 -8 1

Index 607

parallel processing, 129- 130
pathology, 106- 110
permutation, 82
properties of special matrices, 81 -83
sparse, 83
sparse and banded matrices, 127.- 128
symmetric, 82
transposition, 8 1
triangular, 82
tridiagorial, 82
upper triangular, 82, 88
using Maple, 88
using MATLAB, 86, 108

Matrix inverse, 106
by elimination methods, 106
through determinants, 106

Matrix norms, 113- 116
and error in the solution, 116
types of norms, 11 5
using MATLAB, 1 15

Maximize. See Minimize
Maximum likelihood principle, 200
Mean-value :heorem

derivatives, 260, 568
integrals, 569

Milnes' method, 356
Minimax

approximations, 240
criterion, 200

Minimize
analytical method, 407-408
conjugate gradient method, 423 -426
constrained, 406
contour lines, 418-419
functions of several variables,

417-421
golden ratio, 411 -413
golden section search, 410
gradient search, 421 -423
Newton's method, 426-426
parabolic extrapolations, 414-415
searching for minimum, 408 -410
simplex method, 419-421
steepest descent, 423
univarianl search, 419-421
using a spreadsheet, 416-417
using MATLAB, 415-416

Minimum
global, 405-406
local, 405-406

Mixed conditi~on, 462
Muller's method, 50-54
Multistep methods for ordinary differen-

tial equations, 347-359
Multiple integration, 307- 3 I6

error, 3 15
using Gaussian quadrature, 31 1
using Simpson's rule, 308
using the trapezoidal rule, 308
with variable limits, 312

Multiple right-hand sides, 100
Multiple roots, 60-63
Multistep methods

Adam's method, 348-349
Adams-Moulton method, 351, 363
changing the step size, 353
Hamming's method, 358
Milne's method, 356
stability, 353

N
Natural cubic spline, 170
Neumann condition, 462
Neville's method, 155- 157
Newton's method, 42-50

complex roots, 45-46
convergence, 59
multiple roots remedies, 61 -63
optimization, 426-427

Newton, Issac, 1
Newton-Cotes formulas, 283
Newton- Gregory polynomial, 166- 167
Next-term rule, 164,262
Nonlinear equations

fixed-point iteration, 54-60
interval halving, 33-38
linear interpolation methods, 38 -42
Muller's method, 50-54
multiple roots, 60-63
Newton's method, 42-50
overview, 32-33
systems of nonlinear systems, 63-66

Nonlinear programming
graphical solution, 442-446
Lagrange multipliers, 446
nonlinear constraints, 443 -444
nonlinear objective, 442-443
overview, 442
penalty parameter, 446
spreadsheet solutions, 447 -449

Nonperiodic functions, 247-25 1
Normal equations, 201
Normalized numbers, 13
Norms, 112-114, 117-118
Numerical analysis

computers, 4-6
example, 6- 10
versus analysis, 2-4

Numerical differentiation and integration.
See Differentiation and integration

Nyquist critical frequency, 296

0
Objective function, 428
Open intervals, 567
Operational counts, 99, 101, 104
Optimization

linear programming, 428-442
minimizing a function of several vari-

ables, 417-428

nonlinear programming, 442-449
other optimizations, 449-453
overview, 405 -406
unimodal functions, 406-417

Optimizing. See Minimize
Order of convergence, 56-57
Order relations, 26
Order vector, 95, 103
Ordinary differential equations

boundary-value problems, 366 - 381
characteristic-value problems,

381-394
comparison of methods, 345
Euler method and its modifications,

335-340,361
finite-element method, 526-535
higher-order equations and systems,

359-364
multi-step methods, 347-359
overview, 329-331
Runge-Kutta methods, 340-347
stiff equations, 364-366
Taylor-series method, 332-335

Ordinary-difference table, 165
Orthogonal polynomials, 206-207
Orthogonality, 27,242
Overflow, 14
Overrelaxation, 126

P
Pade approximations, 232-236
Parabolic equations, 462,481 -498,

553-562
convergence, 489
Crank-Nicolson method, 485
explicit method, 483
extrapolation techniques, 414-417
implicit method, 486
stability, 489, 491
theta method, 487

Parallel processing
algorithm for, 132
Gaussian elimination. 131 - 133
Horner's method, 48-50
Jacobi method, 134- 135
Lagrange polynomials, 157
overview, 5,21-23
problems, 23 -24
problems in using, 134
speedup and efficiency, 24-25
vectorfmatrix operations, 129 - 130

Partial-differential equations
elliptic equations, 463 -48 1
finite-element, 535-562
hyperbolic equation, 499-509
parabolic equations, 481 -498
types, 461 -463

Pathological systems, 107-109
linear dependency, 109
rank of a matrix, 108

608 Index

redundant systems, 109
singular matrices, 108

Penalty parameter, 446
Permutation matrix, 82
Pictorial operator, 467
Pipelining, 21
Pivoting and precision, 119- 120
Poisson's equation, 464, 474-475
Polynomials, 27-28

Bernstein, 181
Chebyshev, 221 -228
cubic, 154
identical, 162
interpolating, 149- 157
Lagrangian, 150- 154
least squares, 201,203-206
nested form, 28
Newton's method, 46-48
Newton-Gregory, 166- 167
orthogonal, 206-207

Positive definite matrix, 128
Power method

basis, 387-388
inverse power method, 385
overview, 383 -385
shifting in, 385-387

Power spectrum, 290
Precision

effect of, 112-1 13
pivoting and, 119- 120

Primal problem, 437-440
Principle of superposition, 506
Problem-solving steps, 6-7,9
Programmable calculators, 6
Programming, integer, 451
Programming, linear. See Linear program-

ming
Programming, nonlinear. See Nonlinear

programming
Propagated error, 1 1,338-340
Pyramid function, 538

Q
QR method, 388-394

Hessenberg matrix, 390
Householder transformation, 390
similarity transformations, 388

Quadratic programming, 446
Quattro Pro, 417,427-428,435-437
Queuing, 452

R
Raleigh-Ritz method, 5 18-522

for partial-differential equations, 535
Rational function approximations,

238-239
continued fractions, 236-237
minimax, 240
overview, 232
Pade approximations, 232-236

Rayleigh-Ritz method, 5 18 -522
Redundant systems, 109- 1 10
Relative error, 12
Remainder theorem, 49-50
Residual, 116, 128
Reynolds number, 30
Richardson extrapolation, 269-270

algorithm for, 270
Romberg integration, 276-280

algorithm for, 279
error, 277
for double integration, 316

Roots, 30, 32
Rotation matrix, 389
Round-off error, 1 1 - 12, 14- 15
Row-diagonal-dominance, 125
Runge-Ketta-Fehlberg method, 361 -362
Runge-Kutta methods, 340-347

algorithm for, 344
development of, 340
equations for, 342,344
local and global error, 343

Runge-Kutta-Fehlberg method
algorithm for, 344

Runge-Kutta-Merson method, 346
solving with Maple, 333,345
solving with MATLAB, 333,345
stiff equations, 364
systems of first-order equations, 360
Taylor series method, 332-335,345

S
Sampling rate, 296
Sampling theorem, 296-297
Scalar product, 80
Scaled partial pivoting, 101 - 102

order vector, 101
scaling vector, 102
virtual scaling, 101

Secant method, 38-40
convergence, 59-60

Sensitivity analysis, 440-441
Sets of equations. See Equation sets
Shape function, 537
Shooting method, 369-373,380-381
Similarity transformations, 388-390

rotation matrix, 389
Simplex method, 430-435

dual problem, 437 -440
primal problems, 437-440
slack variable, 43 1

Simplex method, optimization, 427,
430-440

Simpson's rules, 280-285
for double integration, 308
Simpson's 113 rule, 280
Simpson's 318 rule, 181

Simulation, 452-453
Singular value decomposition, 205
Slack variable, 43 1

Society for Industrial and Applied
Mathematics (SIAM), 5

Software resources, 571 -573
Solution errors, 10-16, 117
Sparse matrices, 127
Speedup, 25
Spline curves, 154, 168- 179. See also

B-spline; Cubic splines
conditions, 173
cubic, 170
fitting to a hump, 177
free, clamped, 212
linear, 169
natural, 172
using MATLAB, 175

Stability of methods, 353
Steady state, 367,465

torsion function, 475
Steepest descent, 423
Stiff equations, 364-366
Stochastic problems, 451 -452
Sums of the values, 568
Superposition principle, 506
Symmetric matrix, 82
Synthetic division, 49-50
Systems of ordinary differential equations,

360-364
Adams-Moulton method, 363
Euler method, 361
Runge-Kutta-Fehlberg method,

361
Taylor-series method, 360
using Maple, 363

T
Tabulated value extrapolation,

270-272
Taylor series, 26-27

functions of two variables, 570
method for ordinary differential

equations, 332-335,360
overview, 569 -570

Taylor series method for ordinary dif-
ferential equations using Maple,
333

Torsion function, 475
Transportation problem, 449 -450
Trapezoidal rule

composite, 274-276
derivation, 274
error of, 274
for double integrals, 308
Romberg integration, 276-280
unevenly spaced data, 276,278

Trial function, 529
Triangle inequality, 113
Tridiagonal

matrix, 82-83
systems, 105

Truncation error, 10- 11, 14- 15

Index 609

U
Underflow, I4
Undetermined coefficients method,

266-267
Unimodal, 405,407
Unimodal functions, 405 -41 7
Univariant search, 420
Upper-triangular matrix, 82

Value conversion error, 18- 19
Vector norms, 1 14- 1 16

conditions, 11 1
types of norms, 114

Vector processor, 22
Vectors, 79-88

inner product, 80
outer product, 8 1
scalar product, 80
unit basis vector, 8 1
unit vector, 81

Vibrating string
D' Alembert solution, 502

Wave equation, 462
in two dimensions, 507

Well-conditioned problems, 15
Well-posed problems, 15

z
Zero of a function, 30

1 ISBN 0-321-13304-6 I

