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Preface

In this seventh edition, we continue on the path established in previous editions. Quoting
from the preface of the sixth edition, we “retain the same features that have made the book
popular: ease of reading so that the instructor does not have to ‘interpret the book’ for the
student, many illustrative examples that often solve the same problem with different pro-
cedures to clarify the comparison of methods, many exercises from which the instructor
may choose appropriately for the class, more challenging problems and projects that show
practical applications of the material.”

‘We have made substantial improvements on the previous edition. These include:

Theoretical matters that previously were in a separate section near the end of each chap-
ter have been merged with the description of the procedures.

Example computer programs that admittedly were not of professional quality have
been deleted, with the idea that this is not normally a programming course anyway.

Easy-to-read algorithms have been retained so that students can write programs if they
desire.

There is greater emphasis on computer algebra systems; MATLAB is the predominant
system, but this is compared with Maple and Mathematica. The use of spreadsheets to
solve problems is covered as well.

A new chapter on optimization (Chapter 7) has been added that includes multivariable
cases as well as single-variable situations. Linear programming has been included, of
course, but the treatment is intended to provide a real understanding of the simplex
method rather than to merely give a recipe for solving the problem. Nonlinear program-
ming is treated to contrast this with the simpler linear case.

Boundary value problems for ordinary diffferential equations have been separated from
those for partial differential equations and are included in the chapter on ordinary dif-
ferential equations. Partial differential equations that satisfy boundary conditions (ellip-

tic equations) are combined with the other types of partial differential equations in a
single chapter.
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Many exercises have been modified or rewritten to provide an even greater variety. New
exercises and projects have been added and some of these are more challenging than in
the previous edition.

As in previous editions, this book is unique in its inclusion of a thorough survey of
numerical methods for solving partial differential equations and an introduction to the
finite element method.

Many suggestions from reviewers have allowed us to clarify and extend the treatment of
several topics and we have made editorial changes to make the book easier to read and
understand.

We again quote from the preface to the sixth edition:

Applied Numerical Analysis is written as a text for sophomores and juniors in engi-
neering, science, mathematics, and computer science. It should be a valuable source
book for practicing engineers. Because of its coverage of many numerical methods, the
text can serve as a valuable reference.

Although we assume that the student has a good knowledge of calculus, appropriate
topics are reviewed in the context of their use. An appendix gives a summary of
the most important items that are needed to develop and analyze numerical procedures.
We purposely keep the mathematical notation simple for clarity. Furthermore, the
answers to exercises marked with a P> are found in the back of the text.

Acknowledgements
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Preliminaries

This book teaches how a computer can be used to solve problems that may not be solvable
by the techniques that are taught in most calculus courses. It also shows how those prob-
lerns that you may have solved before can be solved in a different way. Our emphasis is on
problems that exist in the real world, although these examples will be simplified. Many of
these simplified examples can be solved analytically, which allows a comparison with the
computer-derived solution.

Modern mathematics began when Isaac Newton found mathematical models that
matched the empirical laws that Johannes Kepler had reached after about 20 years of
observation of the planets. Today, most of applied mathematics is a repetition of what
Newton did: to develop mathematical relationships that can be used to simulate some real-
world situation and to predict its response to different external factors.

The beauty of mathematics is that it builds on simple cases to arrive at more complex
and useful ones. This is true for this book—we start with mathematical applications that

are easily understood but that become the basis for other, more important applications of
numerical analysis.

We begin each chapter of this book with a list of the topics that are discussed in that
chapter.

0.1. . Analysis Versus Numerical Analysis

Describes how numerical analysis differs from analytical analysis and shows
where each has special advantages. It briefly lists the topics that will be
covered in later chapters.



0.1

Chapter Zero: Preliminaries

0.2 Computers and Numerical Analysis
Explains why computers and numerical analysis are intimately related. Tt
describes several ways by which a computer can be employed in carrying out
the procedures.

0.3 An IHustrative Example
Tells how a typical problem is solved and uses a special program called a
computer algebra system to obtain the solution.

0.4 Kinds of Errors in Numerical Procedures
Examines the important topic of the accuracy of computations and the
different sources of errors. Errors that are due to the way that computers store
numbers are examined in some detail.

0.5 Interval Arithmetic
Discusses one way to determine the effect of imprecise values in the
equations that are used to model a real-world situation.

0.6 Parallel and Distributed Computing
Explains how numerical procedures can sometimes be speeded up by
employing a number of computers working together on a problem. Some
special difficulties encountered are mentioned.

0.7 Measuring the Efficiency of Numerical Procedures
Tells how one can compare the accuracy of different methods, all of which
can accomplish a given task, and how they differ in their use of computing
resources.

Analysis Versus Numerical Analysis

The word analysis in mathematics usually means to solve a problem through equations. Of
course, the equations must then be reduced to an answer through the procedures of algebra,
calculus, differential equations, partial differential equations, or the like. Numerical analy-
sis is similar in that problems are solved, but now the only procedures that are used are
arithmetic: add, subtract, multiply, divide, and compare. Since these operations are exactly
those that computers can do, numerical analysis and computers are intimately related.

An analytical answer is not always meaningful by itself. Consider this simple cubic
equation:

B—x2-3x+3=0.

Tt is not hard to find the factors that show that one of the roots is V3. That is fine, unless you
want to cut a board to that length. But rulers are not graduated in square-root values. So
what can you do? Maybe you have a calculator that lets you find the value, or you might
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use logarithms, or look it up in a table. Numerical analysis has a rich store of methods to
find the answer by purely arithmetical operations.

Here’s a challenge. You are on a desert island with nothing to work with but a sharp
stick that you can use to draw in the sand. You’ve forgotten everything about mathematics
except the four arithmetic operations and you can also compare values (much like a com-
puter). For some reason, maybe because you have nothing more interesting to do, you want
to get a good value for the cube root of 2. How would you go about this? One way would
be trial and error: You try a set of values to see which one gives a result of 2 when it is mul-
tiplied three times, something like this:

1.23=1.728  too small

143 =2744  toolarge
1.25% = 1.9531 pretty close
1.26% = 2.0004 really close!

This could go on for some time, but you begin to see that you could interpolate between the
last two trials and get an even better answer.

Now you say to yourself, “How good an answer do I really need? Maybe 1.26 is as
close as I need. After all, when multiplied, 1.26° gives a result that differs from 2.0000 by
a very small number, 0.0004.”

In this book, we will describe methods that can solve this little problem efficiently and
also methods for much more difficult ones. For example, this integral, which gives the
length of one arch of the curve y = sin(x), has no closed form solution:

Ojﬂ V1 + cos?(x) dx.

Numerical analysis can compute the length of this curve by standardized methods that
apply to essentially any integrand; there is never a need to make a special substitution or to
do integration by parts. Further, the only mathematical operations required are addition,
subtraction, multiplication, and division, plus doing comparisons.

Another difference between a numerical result and the analytical answer is that the for-
mer is always an approximation. Analytical methods usually give the result in terms of
mathematical functions that can be evaluated for a specific instance. This also has the
advantage that the behavior and properties of the function are often apparent; this is not the
case for a numerical answer. However, numerical results can be plotted to show some of
the behavior of the solution.

While the numerical result is an approximation, this can usually be as accurate as
needed. The necessary accuracy is, of course, determined by the application. The N
example suggests that the accuracy desired depends totally on the context of the problem.
(There are limitations to the achievable level of accuracy, because of the way that com-
puters do arithmetic; we will explain these limitations later.) To achieve high accuracy,
very many separate operations must be carried out, but computers do them so rapidly
without ever making mistakes that this is no significant problem. Actually, evaluating an

analytical result to get the numerical answer for a specific application is subject to the
same errors.
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The analysis of computer errors and the other sources of error in numerical methods is
a critically important part of the study of numerical analysis. This subject will occur often
throughout this book.

Here are those operations that numerical analysis can do and that are covered in this
book:

Find where fix) = O for a nonlinear equation or system of equations.

Solve systems of linear equations, even large systems.

Interpolate to find intermediate values from a table of values and fit curves to experi-
mental data.

Approximate functions with polynomials or with a ratio of polynomials.

Approximate values for the derivatives of a function, even if this is known only by a
table of function values.

Evaluate the definite integral for any integrand, even if its values are known only from
experimental observations.

Solve differential equations when initial values are given; these can be of any order and
complexity. Numerical analysis can even solve them if conditions are specified at the
boundaries of a region.

Find the minima or maxima of functions, even when subject to constraints.

Solve all types of partial differential equations by several techniques.

Computers and Numerical Analysis

Numerical methods require such tedious and repetitive arithmetic operations that only
when we have a computer to carry out these many separate operations is it practical to
solve problems in this way. A human would make so many mistakes that there would be
little confidence in the result. Besides, the manpower cost would be more than could nor-
mally be afforded. (Once upon a time, military firing tables were computed by hand using
desk calculators, but that was a special case of national emergency before computers were
available.)

Of course, a computer is essentially dumb and must be given detailed and complete
instructions for every single step it is to perform. In other words, a computer program must
be written so the computer can do numerical analysis. As you study this book, you will learn
enough about the many numerical methods available that you will be able to write programs
to implement them. The specific computer language used is not very important; programs
can be written in BASIC (many dialects), FORTRAN, Pascal, C, C++, Java, and even
assembly language. Most of the methods will be described fully through pseudocode in
such a form that translating this code into a program is relatively straightforward.

Actually, writing programs is not always necessary. Numerical analysis is so important
that extensive commercial software packages are available. The IMSL (International
Mathematical and Statistical Library) MATH/LIBRARY has hundreds of routines,
of efficient and of proven performance, written in FORTRAN and C that carry out the
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methods. Recently, LAPACK (Linear Algebra Package) has been made available at nominal
cost. This package of FORTRAN programs incorporates the subroutines that were con-
tained in the earlier packages of LINPACK and EISPACK. Appendix B of this book gives
information on these and other programs. The bimonthly newsletter of the Society for
Industrial and Applied Mathematics (SIAM News) contains discussions and advertisements
on some of the latest packages. A set of books, Numerical Recipes, lists and discusses
numerical analysis programs in a variety of languages: FORTRAN, Pascal, and C.

One important trend in computer operations is the use of several processors working in
parallel to carry out procedures with greater speed than can be obtained with a single
processor. Some numerical analysis procedures can be carried out this way. Special
programming techniques are needed to utilize these fast computer systems. A recent devel-
opment is to utilize computers that are idle, even personal computers, to carry out compu-
tations. If these idle computers are connected in a network, a control computer can send a
portion of a large computation to them. After completing its part of the task, the individual
computers transmit the results back to the control computer. Such an arrangement is
termed distributed computing. As you can imagine, coordinating and controlling this dis-
tributed system is a difficult task.

An alternative to using a program written in one of the higher-level languages is to use
a kind of software sometimes called a computer algebra system (CAS). (This name is not
very standardized and not too descriptive.*) This kind of program mimics the way humans
solve mathematical problems. Such a program is designed to recognize the type of func-
tion (polynomial, transcendental, etc.) presented and then to carry out requested mathe-
matical operations on the function or expression. It does so by looking up in tables the new
expressions that result from doing the operation or by using a set of built-in-rules. For
example, a program can use the ordinary rules for finding derivatives, employ tables of
integrals to do integrations, and factor a polynomial or expand a set of factors. These are
only a few of the capabilities. If an analytical answer cannot be given, most of these pro-
grams allow the user to get an answer by numerical methods.

In connection with numerical analysis, an important feature of many such programs is
the ability to write utility files that are essentially macros: A sequence of the built-in oper-
ations is defined to perform a desired larger task or one not inherent in the program. A suc-
cession of operations, each of which uses the results of the previous one—a procedure
called iteration—is also possible. Many numerical analysis procedures are iterative.

Many computer algebra systems are available. We will discuss only three of these:
Mathematica, MATLAB, and Maple. MATLAB will be used extensively; it will be sup-
plemented and compared to the other two. In this chapter, we will show how MATLAB can
plot a function and find where it is 2 minimum. We anticipate that you will use one of the
computer algebra systems as a tool to explore numerical procedures.

One special feature of most of these programs is their ability to carry out many opera-
tions with exact arithmetic. An interesting example is to see 7 displayed to 100 decimal
places. Ordinarily, we must be satisfied with a limited number of digits of precision when
a normal computer program is employed.

* Such programs are also called symbolic algebra systems.
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Of particular importance in using such programs is that the plotting of functions, even
functions of two independent variables (which require a three-dimensional plot), is built in.
In Mathematica this graphical capability is especially well developed.

Computer algebra systems, with their ability to perform mathematics symbolically and
to carry out numerical procedures with extreme precision, would seem to be almost a pre-
ferred tool for the numerical analyst. However, for the large “real-life” problems that a pro-
fessional analyst often deals with, they do not have the necessary speed. They are good for
“small problems” and are an excellent learning environment. However, in many “real
world” situations, such as weather prediction or the computation of space vehicle trajecto-
ries, the scientist/engineer will employ programs written in FORTRAN or C. And he or
she will almost always use the proven routines of IMSL or LAPACK.

Another alternative to writing a computer program to do numerical analysis is to
employ a spreadsheet program. Still another way to do numerical procedures is to utilize a
programmable calculator. Typcial of these advanced calculators are the TI-89 from Texas
Instruments and the HP-48G from Hewlett-Packard. These machines have much of the
power of a personal computer to do mathematics. They have limited memory, but built into
them are special facilities of interest to the numerical analyst. Programs that are coded in
their Read-Only Memory (ROM) can plot functions in two- and three-dimensions, solve
for roots of a nonlinear equation, solve systems of linear equations, manipulate matrices,
do interpolation, differentiate and integrate (both numerically and analytically), and solve
ordinary differential equations as well as perform mathematical and statistical operations.
Expressions can include terms like sine, cosine, and other mathematical functions. They
not only handle numeric expressions; symbolic manipulations are also possible. We do not
discuss programmable calculators in this edition of Applied Numerical Analysis.

An Mlustrative Example

We will introduce the subject of numerical analysis by showing a typical problem solved
numerically. If you worked for a mining company, Example 0.1 might be a problem you
would be asked to solve.

EXAMPLE 0.1

The Ladder in the Mine. Two intersecting mine shafts meet at an angle of 123°, as shown
in Figure 0.1(a). The straight shaft has a width of 7 ft, and the entrance shaft is 9 ft wide.
What is the longest ladder that can negotiate the turn at the intersection of the two shafts?
Neglect the thickness of the ladder members, and assume the ladder is not tipped as it is
maneuvered around the corner. Provide for the general case in which the angle a is a vari-
able as well as for the widths of the shafts.

|

Steps in Solving the Problem

Whenever a scientific or engineering problem is to be solved, there are four general steps
to follow:
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Figure 0.1

1. State the problem clearly, including any simplifying assumptions.

2. Develop a mathematical statement of the problem in a form that can be solved for a
numerical answer. This process may involve, as in the present case, the use of calcu-
lus. In other situations, other mathematical procedures may be employed. When this
statement is a differential equation, appropriate initial conditions and/or boundary
conditions must be specified.

3. Solve the equation(s) that result from step 2. Sometimes the method will be algebraic,
but frequently more advanced methods will be needed. This text may provide the
method that is needed. The result of this step is a numerical answer or set of answers.

4. Interpret the numerical result to arrive at a decision. This will require experience and
an understanding of the situation in which the problem is embedded. This interpreta-
tion is the hardest part of solving problems and must be learned on the job. This book
will emphasize step 3 and will deal to some extent with steps 1 and 2, but step 4 can-
not be meaningfully treated in the classroom.

The description of the problem has taken care of step 1. Now for step 2.

Here is one way to analyze our ladder problem. Visualize the ladder in successive loca-
tions as we carry it around the corner; there will be a critical position in which the two ends
of the ladder touch the walls while a point along the ladder touches the corner where the
two shafts intersect (see Fig. 0.1b). Let ¢ be the angle between the ladder and the wall
when in this critical position. It is usually preferable to solve problems in general terms, so
we work with variables a, b, ¢, w;, and w,.

Consider a series of lines drawn in this critical position—their lengths vary with the
angle ¢, and the following relations hold (angles are expressed in radian measure):

Wi Wa

= 7 L = -

! sin(b) 2 sin(c)

b=w—a—c, 0.2)
_ . Wiy Wy

L=L+L,=

- +—
sin(fm — a — ¢) sin(c)
The maximum length of ladder that can negotiate the turn is the minimum of L as a

function of the angle c. If you were to solve for the minimum of L with respect to ¢ by the
methods you learned in calculus, you would first find an expression for dL/dc and then find
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the value for c that makes this zero. We prefer to use a special function that MATLAB has
to get the answer.

MATLAB is command line driven, meaning that we type in commands that invoke
operations. It is a large and powerful “computing environment.” MathWorks, the developer
of the program, calls it “The Language of Technical Computing.” In later chapters we will
explore many of its capabilities, but for now we will only use it to (1) draw a plot of L ver-
sus ¢ (from which we can estimate the minimum point), and (2) find the minimum more
accurately with the special MATLAB function.

We start by defining the function L. We know values for w; and w, from Figure 0.1.
Angle c is given as 123° but we want the value in radians. We can ask MATLAB to do the
conversion; the value for pi is built into MATLAB, we use “pi” to get it:

EDU>>a = 123*2%*pi /360
a:
2.1468

We could get more significant figures in the result but this seems good enough. Now we
define the function for L. There are other ways to do it, but this is an easy way:

EDU>>L = inline(‘9/sin(pi-2.1468-c)+7/sin(c) )
L =

Inline function:

L(c) =9/sin(pi-2.1468-c)+7/sin(c)

We ask MATLAB to plot L versus c¢:
EDU>>fplot (L, [0.4,0.5]);grid on

and we see Figure 0.2. (The semicolon before the “grid on” command suppresses the plot
until the grid is created.)

From the graph, we can estimate that the minimum point is approximately L = 34.42,
¢ = 0.466. For this problem, this is perhaps an adequate answer. Still, MATLAB can get
the minimum more accurately. We ask for a numerical computation:

EDU>>fminbnd (L, 0.4,0.5)
ans =
0.4677
Our estimate was really pretty good. But this is the value for ¢ at the minimum — we really
want the value for L. So we do:

EDU>>L(0.4677)
ans =
33.4186

If we want to see how MATLAB found the ¢-value at the minimum point, we do:

EDU>>fminbnd (L, 0.4,0.5,0optimset (‘Digplay’, ‘iter’))
Func-count x £ (x) Procedure
1 0.438197 33.5333 initial
2 0.461803 33.4231 golden
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Angle ¢
Figure 0.2
3 0.476393 33.4284 golden
4 0.467721 33.4186 parabolic
5 0.467688 33.4186 parabolic
6 0.467654 33.4186 parabolic

Optimization terminated successfully:
the current x satisfies the termination criteria using
OPTIONS.TolX of 1.000000e-004
ans =
0.4677

The table that MATLAB displayed gives the successive steps in finding the minimum (x is
used as the name for the independent variable rather than ¢). In a later chapter, we will
explain the different “Procedures” that were used.

You should learn from this example three things about solving problems numerically:
(1) There is often more than one way to attack the problem; (2) there are prewritten pro-
grams that can help; and (3) the accuracy that is needed in the answer dictates how you
should get the solution. When a graph is sufficient, that may be the quickest and best way
and it may tell how sensitive the answer is to values of the parameters.
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Maple and Mathematica are two other computer algebra systems that can solve the ladder
problem. If these are available to you, you may want to see how they compare to MATLAB.

Kinds of Errors in Numerical Procedures

We have mentioned that it is critically important to realize that errors can occur in doing
numerical procedures. Some errors are due to the way that a computer does arithmetic but
there are other sources of error.

Error in Original Data

Real-world problems, in which an existing or proposed physical situation is modeled by a
mathematical equation, will nearly always have coefficients that are imperfectly known.
The reason is that the problems often depend on measurements of doubtful accuracy.
Further, the model itself may not reflect the behavior of the situation perfectly. We can do
nothing to overcome such errors by any choice of method, but we need to be aware of such
uncertainties; in particular, we may need to perform tests to see how sensitive the results are
to changes in the input information. Because the reason for performing the computation is
to reach some decision with validity in the real world, sensitivity analysis is of extreme
importance. As Hamming says, “the purpose of computing is insight, not numbers.”

Blunders

You will likely always use a computer or at least a programmable calculator in your pro-
fessional use of numerical analysis. You will probably also use such computing tools
extensively while learning the topics covered in this text. Such machines make mistakes
very infrequently, but because humans are involved in programming, operation, input
preparation, and output interpretation, blunders or gross errors do occur more frequently
than we like to admit. The solution here is care, coupled with a careful examination of the
results for reasonableness. Sometimes a test run with known results is worthwhile, but it is
no guarantee of freedom from foolish error. When hand computation was more common,
check sums were usually computed— they were designed to reveal the mistake and permit
its correction.

On one occasion, a space flight was lost because someone typed into the program a sin-
gle value with digits reversed, a common mistake. Human error can be costly!

Truncation Error

The term truncation error refers to those errors caused by the method itself (the term orig-
inates from the fact that numerical methods can usually be compared to a truncated Taylor
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series). For instance, we may approximate e* by the cubic

I S S
P =1+t ort a5

However, we know that to compute e* really requires an infinitely long series:

@ n

& =p(x) + 2 —.
n=4 1
We see that approximating e* with the cubic gives an inexact answer. The error is due to
truncating the series and has nothing to do with the computer or calculator. For iterative
methods, this error can usually be reduced by repeated iterations, but because life is finite
and computer time is costly, we must be satisfied with an approximation to the exact ana-
Iytical answer.

Propagated Error

Propagated error is more subtle than the other errors. By propagated error we mean an
error in the succeeding steps of a process due to an occurrence of an earlier error—such
error is in addition to the local errors. It is somewhat analogous to errors in the initial con-
ditions. Some root-finding methods find additional zeros by changing the function to
remove the first root; this technique is called reducing or deflating the equation. Here the
reduced equations reflect the errors in the previous stages. The solution, of course, is to
confirm the later results with the original equation.

In examples of numerical methods treated in later chapters, propagated error is of criti-
cal importance. If exrors are magnified continuously as the method continues, eventually
they will overshadow the true value, destroying its validity; we call such a method unsta-
ble. For a stable method—the desirable kind-—errors made at early points die out as the
method continues. This issue will be covered more thoroughly in later chapters.

Each of these types of error, while interacting to a degree, may occur even in the
absence of the other kinds. For example, round-off error can occur even if truncation
error is absent, as in an analytical method. Likewise, truncation errors can cause inaccu-
racies even if we can attain perfect precision in the calculation. The usual error analysis
of a numerical method treats the truncation error as though such perfect precision
did exist.

Even in the absence of the errors we have discussed, there are errors inherent in the
architecture of the computer. We discuss this next.

Round-Off Error

All computing devices represent numbers, except for integers and some fractions, with
some imprecision. (MATLAB and similar programs can work with integers and rational
fractions to achieve results of higher precision.) Digital computers will nearly always use
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floating-point numbers of fixed word length; the true values are usually not expressed
exactly by such representations. We call the error due to this computer imperfection the
round-off error. If numbers are rounded when stored as floating-point numbers, the round-
off error is less than if the trailing digits were simply chopped off.

Absolute Versus Relative Error, Significant Digits

The accuracy of any computation is always of great importance. There are two common
ways to express the size of the error in a computed result: absolute error and relative error.
The first is defined as

absolute error = |true value — approximate value|.

A given size of error is usually more serious when the magnitude of the true value is
small. For example, 1036.52 = 0.010 is accurate to five significant digits and may be of
adequate precision, whereas 0.005 = 0.010 is a clear disaster.

Using relative error is a way to compensate for this problem. Relative error is defined as

) absolute error
relative error = ————————
| true value |
The relative error is more independent of the scale of the value, a desirable attribute.
When the true value is zero, the relative error is undefined. It follows that the round-off
error due to a finite length of the fractional part of floating-point numbers is more nearly
constant when expressed as relative error than when expressed as absolute error. Most
people define these errors in terms of magnitudes, in which case the error is always a pos-
itive quantity.

Another term that is commonly used to express accuracy is significant digits, that is,
how many digits in the number have meaning. Extra digits that show up when numbers are
shifted to normalize them are meaningless; this is a real problem when there are trailing
zeros in a number. We may not know whether they are really zeros or just fillers.

A more formal definition of significant digits follows.

1. Let the true value have digits d;d, .. . d,d, ., - dp.
2. Let the approximate value have d; d od,e, - -€y

where d| # 0 and with the first difference in the digits occurring at the (n + 1)st digit. We
then say that (1) and (2) agree to » significant digits if |d [ 1€ +1l < 5. Otherwise, we
say they agree to n — 1 significant digits.

EXAMPLE 0.7

Let the true value = 10/3 and the approximate value = 3.333.

The absolute error is 0.000333 . .. = 1/3000.
The relative error is (1/3000)/(10/3) = 1/10000.
The number of significant digits is 4.
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Floating-Point Arithmetic

Even though a computer follows exactly the instructions that it is given, when it performs
an arithmetic operation it does not get exact answers unless only integers or exact powers
of 2 are involved.

A computer stores numbers as floating-point* quantities that resemble scientific nota-
tion. For example, 13.524 is the same as the floating-point number .13524 * 102, which is
often displayed as .13524F2. Another example: —0.0442 is the same as —.442E—1. In
both of these situations, we have normalized the floating-point representation, meaning
that we have shifted the decimal point to make the leading digit nonzero.

While not all computers store floating-point numbers in the IEEE standard that we now
describe (IBM mainframes are a notable exception), this IEEE standard is by far the most
common. A computer number has three parts:

the sign (either + or —),
the fraction part (called the mantissa),
the exponent part.

The IEEE standard specifies that the number will be stored as a binary quantity. One bit is
used for the sign.

There are three levels of precision and these are the number of bits used for mantissa
and exponent:

Number of bits in
Precision Length Sign Mantissa Exponent Range
Single 32 1 23(+1) 8 10*38
Double 64 1 52(+1) 11 10+308
Extended 80 1 64 15 10+4931

For single and double precision, a clever device is used to get one more bit in the mantissa
than the length accommodates: All numbers are normalized so the first bit of the mantissa
is always 1. This means that it does not have to be stored and that is why we show the man-
tissa length as “+1 more than the number of bits actually used.

We need very small numbers as well as large, so the [EEE standard provides for nega-
tive exponents. Rather than use one of the bits for the sign of the exponent, exponents are
“biased”; a bias value is added to the actual value of the exponent to make all exponents
range from zero to a maximum number. For single precision, the bias value is 127 (base
10), so an exponent of —127 is stored as zero; the largest exponent, 128, is stored as 253,

* Another name often used for floating-point numbers is real numbers, but we reserve the term real for the con-
tinuous (and infinite) set of numbers on the “number line.” When printed as a number with a decimal point, it is
called fixed point. The essential concept is that these are in contrast to integers.
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the largest value that 8 bits can signify. For double and extended precision, the bias values
are 1023 and 16383.

It is obvious that only a finite number of different values can be stored in a computer
that uses the IEEE standard. Since there is an infinite number of real numbers, it is clear
that there must be gaps between the stored values. This is the source of round-off error.
Numbers that cannot be stored exactly are approximated. The simplest way to do this is
just to chop off the digits beyond those that can be stored. A preferred way is to round to
the nearest storable number (with rounding to an even number if there is a tie: 0.1234
becomes 0.123 if we can have only three digits, 0.1235 becomes 0.124).

There is a largest number and smallest (in magnitude) number in the system. Quantities
that exceed the maximum cause overflow; too small numbers cause underflow. How these
cases are handled depends on the particular computer. When underflow occurs, many com-
puters replace the value with zero. If there is overflow, they replace the value with a special
bit pattern that represents infinity.

In single precision, the smallest and largest storable numbers are:

Smallest: 2.93873 E—39,
Largest:  3.40282 E+38.

The storage of zero is a special case. In the IEEE standard, zero is stored as all zeros: The
sign is zero, the mantissa is all zeros, the exponent is all zeros. Obviously, the value for
zero cannot be normalized.

Certain mathematical operations are undefined, such as 0/0, 0%*oo, V=1. When a pro-
gram tries to do any of these, the IEEE standard substitutes another special bit pattern that
is displayed as NaN (meaning Not a Number).

eps

The term eps is a shortened form of the Greek letter epsilon; it is used to represent the
smallest machine value that can be added to 1.0 that gives a result distinguishable from 1.0.
MATLAB can tell what it is for your computer. For the computer used to write this book,
here is what MATLAB told us:

EDU>> eps
ans =
2.2204e—016

The value of eps depends, however, on the precision of the computer system; MATLAB
uses 32 digits and eps is the same as for IEEE double precision; a very small number. In
IEEE single precision, eps has the value 1.192E—07 =~ 2723, It is not difficult to see that,
if & is just slightly smaller than eps, (1 + &) + e = 1but1 + (g + &) > 1.

Round-off Error Versus Truncation Error

We have seen that truncation error is caused by using a procedure that does not give precise
results even though the arithmetic is precise. Round off occurs, even when the procedure is
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exact, due to the imperfect precision of the computer. What we might call computational
error is the sum of these.

In Chapter 5, we will show how the derivative of a function can be found numerically.
Analytically, df/dx is given by

S (x) = lim &i%——f—@— as h— 0.

We can find an approximate value for f'(x) by computing this ratio with a small value for
h. If we make A still smaller, the result is closer to the true value for the derivative (the trun-
cation error is reduced) but at some point, depending on the precision of the computer,
round-off errors will dominate and the results become less exact. There is a point where the
computational error is least.

Well-Posed and Well-Conditioned Problems

The accuracy of a numerical solution depends not only on the computer’s accuracy; the
problem itself is a factor. A problem is well posed if a solution (a) exists, (b) is unique, and
(c) has a solution that varies continuously when the values of its parameters vary continu-
ously. Not all problems have this property. The remedy is to replace the problem with
another that has a solution close enough to be useful. A nonlinear problem could be
replaced by a linear one; one that extends to infinity might be changed to one that extends
to a large but finite extent; a complicated function may be simplified to one that has values
that are almost the same.

Some problems are particularly sensitive to changes in the values of the parameters; a
small change in the input causes a large change in the output. A well-conditioned problem
is not so sensitive; the change in the output is not greater than the change in the input (or it
could even be little changed). Most applied problems have parameter values that are based
on measurements, so these may be not entirely accurate. The values may be numbers
based on past experience and today’s situation may be different. Modeling and simulation
of the system are often used to explore its behavior and the model may be not a really good
one. A well-conditioned problem gives useful results in spite of small inaccuracies in the
parameters.

The procedure used (the algorithm) can sometimes amplify even small errors. In
Chapter 6, we will mention a method that seems to have particularly good accuracy but for
certain problems it exhibits instability— small initial errors are amplified. In Chapter 2, we
discuss how a system of linear equations can be solved and we show that some systems
(these are termed ill-conditioned) are so affected by round off that the answer is worthless.

Forward and Backward Error Analysis

When we compute a value of a function, y = f(x), we may not get exactly the correct value
of y due to computational error. Call this computed value y .. The forward error is
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defined as

Efwd = Yeale — Yexact

where y,,, ., is the function value we would get if computational error were absent.
There is an x-value that will give Veale when there is no computational error; call this

xcalc:
Yeale = f (xcalc)'
The backward error is
E, - X.

ackw — “calc

Here is an example:
Compute y = x? for x = 2.37 and use only two digits. We get y_,,. = 5.6 while .. =
5.6169. The forward error is

Egg =56 — 5.6169 = —0.0169,
a relative error of about 0.3%. Because V5.6 = 2.3664 . . .

E =2.3664 ... — 2.37 = —0.0036,

backw

a relative error of about 0.15%.

Exampies of Computer Numbers

Working with 32- or 64-bit number representation is awkward, so we simplify. Assume
that only six bits are available; one bit for the sign, two bits for the exponent, leaving
3(+1) for the mantissa (we normalize). The exponent is biased by one, so we have these
translations of the actual exponents:

Actual exponent Stored in binary as
-1 00
0 01
i 10
2 11

The smallest and largest positive numbers look like this:

Sign Mantissa Exponent Value

0 (1001 00 9/16 %2~ 1 = +9/32
0 (Hin 11 15/16 *22 = +15/4
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Here is how we got the fraction part of these quantities:

Smallest = 1/2 + 0/4 + 0/8 + 1/16 = 9/16,
Largest = 1/2 + 1/4 + 1/8 + 1/16 = 15/16.

Observe that the smallest cannot have a mantissa of all zeros because that bit pattern is
reserved for the number zero. The smallest and largest negative numbers have the same
magnitudes; they differ only in the sign bit. These range from —9/32 to —15/4.

Suppose we draw the number line that shows all possible nonnegative computer num-
bers in this hypothetical system:

4 ¥ 4 4
b HHH—— 1 —+ —+ -+ t + + —~+—
s 1/ z/ z/
0 = 16 8 4

With this very simple computer arithmetic system, the gaps between stored values are very
apparent. The gap between zero and the first positive number is extremely large because
we have normalized. There is a larger gap between each “decade” as well. In each
“decade” there are seven values, so there are 4 * 7 = 28 positive numbers in all. There are
28 negative numbers, so the total of numbers is 28 + 23 + 1 (for zero) = 57 altogether.

Because of the gaps in this number system, many values cannot be stored exactly. For
example, the decimal number 0.601 falls between the first and second numbers in the sec-
ond “decade.” It will be stored as if it were 0.6250 because it is closer to 10/16, an error of
about 4%. In the IEEE system, gaps are much smaller but they are still present.

There is a most important consequence to this. When you write a computer program,
never use a test such as

IfA =B, then...
Instead, you should do something like this:
If |A — B| <= TOL, then . . .

Here is how numbers appear in the IEEE standard:

_(1_2—24) * 127 —p-126 0 2-°126 (1_2—24) %2127
—+ } } } }
e
Negative Negative / \ Positive Positive
overflow numbers Negative Positive numbers overflow

underflow  underflow

Anomalies with Floating-Point Arithmetic

It may seem surprising that when a set of numbers is added, the order of adding them to the
running sum is important. Adding them in the order of smallest in magnitude to the largest
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gives a more accurate result than if they were added from largest to smallest. (However,
there are instances when the opposite is true!)
For some combinations of values, these statements are not true:
X+DD+Z2=X+T+2)
X*VN*Z=X*(Y*Z)
X*Y+2)=X*Y+X*Z)
Other peculiar things may happen with floating point. For example, adding 0.0001 one

thousand times should equal 1.0 exactly but this is not true with single precision. To see for

yourself, try this on your computer.
Here is another unexpected result. If we compute values in single precision of this

expression:

X+ YP—2XY—Y2 _

X? Z
with different values of X and Y, we get these answers:
X Y Z

0.01 1000 1.00000
0.001 1060 0.9999998
0.0001 1000 0.999213
0.00001 1000 1.000444
0.000001 1000 0.68212
0.0000001 1000 —79.58079

The expression for Z can easily be seen to reduce to X%/X?, which must equal 1.00000000
X #0).

Errors When Values Are Converted

The numbers that are input to a computer are normally base-10 numbers. These have to
be converted to the base-2 numbers that are stored in the computer. This conversion itself
can cause errors. For example, some terminating decimals are nonterminating in base 2:
(0.6),, = (0.100110011001 . . .),.

You may have learned previously how numbers are converted from one base to another,
but, to refresh your memory, here are the procedures to convert from base 10 to base 2:

For decimal integers:
Divide repeatedly by 2 and use the remainders in reverse order as the successive

base-2 values.

For decimal fractions:
Multiply repeatedly by 2 and use the integer parts as the successive base-2 values.
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Examples:

Convert (327),, to binary:

327/2 = 163, r1; 163/2 = 81, rl; 81/2 = 40, r1;

40/2 = 20, 10; 20/2 = 10,10, 10/2 = 5,10; 5/2 = 2, r1;

2/2 = 1,10; 1/2 = 0, rl. Combining remainders gives (327),, = (101 000 111),.
Convert (0.3125),, to binary:

0.3125 * 2 = 0.6250 (use 0); 0.6250 * 2 = 1.2500 (use 1);
0.2500 * 2 = 0.5000 (use 0); 0.500 * 2 = 1.000 (use 1).
Combining the integer parts gives

(0.3125),, = (0.0101),.

Interval Arithmetic

While there are errors from round off caused by the finite number of bits available for
floating-point numbers and errors may occur when the decimal fractions of input values
are converted to machine numbers, a major source of error is that the parameters of a math-
ematical mode] are from measured quantities that define the parameters. How can we han-
dle such uncertainties?

Interval arithmetic is a relatively new branch of mathematics that allows us to find how
parameter errors are propagated through the sequence of computer operations of a pro-
gram. We discuss here only some elementary concepts.

Interval analysis uses values that fall within a range of numbers. For example, if a mea-
sured quantity is reported as 2.4, but this is uncertain by * 0.05, we should include the

uncertainties in the equations. Instead of putting the imperfect number 2.4 into the equa-
tion, we should use

[2.35,2.45],

an interval that does include the reported 2.4 but also shows the possible range for the true
values. The two numbers in brackets show the extreme points of the quantity, the endpoints

of the interval, if you will. We always write the lesser value first. (The notation for intervals
is not yet well established.)

You can more easily understand the rules for arithmetic operations on intervals if you

think of the “worst case” eventuality. We will write interval A as [a 1> agl. To add interval
values A and B, we have:

A+ B =[a;,ag] + b, byl = la, + by, ag + byl
(The least sum is a; + b;, the greatest is a, + by.)

Example: [0.5,0.8] + [—1.2,0.1] = [—0.7,0.9]
A=03 A=13 A=16

Notice that the width of the sum is the sum of the widths of the terms being added.
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For subtraction, we have
A — B =lq;,ap] — b, bp] = la, — by, ay — b;]
Example: [0.5,0.8] —[-1.2,0.1] = [04, 2.0]
4=03 A4=13 A=16
Again, the width of the answer is the sum of the widths of the terms.
Multiplication is more complicated. The definition is easier to explain if we work with
a set of four values:
S=1(a,*b;,a; *bp,ap* b;, ap* byp)
The members of S are the four possible products of the elements of A and B. Now define
S, = min (S),
S = max (S).
The product of intervals A and B is then
A*B = (S5, S
Example: For [0.5, 0.8]*[—1.2, 0.1], we have
A=03 A=13
S = (0.6, 0.05, —0.96, 0.08),

S, = —0.96,
Sp = 0.08,
and the product is [—0.96, 0.08].

A=1.04

There is no obvious relation between the various widths.

Computing the product of two intervals through this definition may require more opera-
tions than the number actually required. Fewer multiplications and comparisons are required
if we use alternative definitions for the nine possible cases for intervals 4 and B. (We have
three possible situations for each of A and B: strictly less than zero, containing zero, and
strictly greater than zero.) We leave as an exercise the development of the nine definitions.

Division of intervals is reduced to using the rules for multiplication by using the defini-
tion of the reciprocal of an interval:

Way, apl = [1ag, Hag],
so that
A/B = A * (1/B) = [a;, agl * [1/bg, 1/b;].

It is most important to remember that if B contains zero (even as an endpoint) division is

undefined.
We will not go further into the arithmetic of intervals here, but you may wish to develop

the relations forA > B,A < B,and A = B.



0.6; Parallel and Distributed Computing 21

Software has been written that performs interval arithmetic. This provides answers in
the form of intervals that show the possible range of solutions to the equations that model
the applied problems that are solved with numerical procedures. Mathematica is one com-
puter algebra system that lets you use interval arithmetic. Here is a sample:

In[l]l: =a: = Intervall{0.5, 0.8}]

In(2]: =b: =Interval({—1.2, 0.97}]
In[3l:=a+b

Out{3] = Interval[{—-0.7, 1.7}]
In[4]l: =a—Db

out (4] = Intervall{—0.4, 2.}]
In[(5]: =a*b

Oout [5] = Interval[{—0.96, 0.72}]
In[6]l: =a/b

Out [6] = Interval [{—Infinity, —0.416667}, {0.555556, Infinity}]

Maple can do interval arithmetic too. In this, intervals are called “ranges” and are defined
asa: = INTERVAL{0.5..0.8);. To perform arithmetic, the command evalr is used.

A Visual Example

0.6

To see how the imprecision of parameters affects the result of a computation, consider the
graph of y = 2 + x/2, a straight line of slope 1/2 and y-intercept of 2 if the coefficients are
exact. Suppose, though, that the coefficients come from a set of measurement and we know
only that the slope is 2 * 0.2 and the intercept is 0.5 *: 0.1. Figure 0.3 suggests that the
plot of y versus x is a band, not a line.

Parallel and Distributed Computing

Many applications of computers involve tremendously large problems and the solution
may be needed almost instantaneously, in so-called real time. Military applications are an
example: Victory in war may depend on getting answers quickly. The speed of today’s
computer, though seemingly very great, is beginning to run into the limits to electron flow
in electronic circuits.

Most computer systems run their instructions in sequence—one after another—and
this limits their speed. Even though supercomputers are very fast, executing billions of
operations per second, in some cases this is not fast enough. The history of computers has
seen many techniques to get faster speed.

One of the first techniques to increase the operating speed of a computer was
“pipelining ” —that is, performing a second instruction within the CPU before the previous
instruction is completed. This technique takes advantage of the fact that doing a single
“instruction” actually involves several micro-coded steps and that the initial micro-steps
can be applied to an additional instruction even though the first sequence of micro-steps
has not yet finished. Pipelining permits a speedup by a factor of two or more.
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Figure 0.3

Another technique has been to build vector processing operations into the CPU.
Because the individual steps required to solve sets of equations involve many multiplica-
tions of a vector by another vector, these machines offer significant speed improvements
but only by a factor of S or 10, not by the factor of 10,000 that is really desired. Further,
this feature increases the cost of mainframes considerably. The current trend is to use par-
allel processing, that is, to put several machines to work on a single problem, dividing the
steps of the solution process into many steps that can be performed simultaneously. Not all
problems permit such parallel operations, but many important problems of applied mathe-
matics can be so structured. Obtaining many or even several supercomputers is outra-
geously costly, however. An alternative is to employ a massive number of low-cost micro-
processors, of the order of a thousand (1024 is a practical number). Although the
individual speed of a microprocessor is not equal to that of a supercomputer, the difference
in speed is made up by the larger number of machines that are combined. Intel has been
very active in the area of massively parallel computers. Their ASCI Red computer consists
of over 9000 Pentium Pros and can run at a peak speed of 1.3 teraflops. At the other
extreme in this area is the Beowulf-class of supercomputers, which are PCs joined together
to compete with the dedicated supercomputers. For a description and discussion of one of
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these, the Loki supercomputer, check the Web sites http://loki-www.lanl.gov/index.html
and http://loki-www.lanl.gov/results/. The Loki computer consists of 16 Pentium Pro com-
puters working together to create a modestly priced supercomputer. We can imagine a
future of thousands of PCs working together and accessible through the Web.

Massively parallel computers are important in many applications. For example, as
stated in the Arlantic Monthly for January 1998, “big parallel computers have proved use-
ful for both global climate warming and detailed modeling of ocean circulation” to explain
why Europe has winter temperatures about nine to eighteen degrees warmer than compa-
rable latitudes elsewhere.

Recently, much work and interest are found in disiributed computing. The basic idea
here is to connect many different computers, which can work separately on their own tasks
as well as in conjunction with each other. In the classification of parallel computers we
imptlicitly assumed a single clock with all the parallel operations in step (synchronous),
whereas with distributed computers each machine runs under its own clock; interrupts con-
stantly occur throughout the system to coordinate the actions (asynchronous operations).
Moreover, each machine has its separate memory, and the data can flow from one com-
puter to another. Although this seems to complicate the whole business of paraliel comput-
ing, there are good economic reasons for distributed computing. The hardware is not
specialized. One can make use of what is already at hand. The major effort and expense is
in software and in connecting the computers and this can be done in a variety of ways.

If many computers are networked together as is common, distributed computing can
utilize them when they are idle, such as at night. Not all problems lend themselves to such
parceling out of the computations, but one interesting application that uses distributed
computing is a program from the University of California, Berkeley, named SETI@home.
When a computer’s screen saver initiates, a signal is sent to the host computer saying that
it is available to join in the Search for Extraterrestrial Intelligence. A chunk of cosmic
radio-frequency data is then downloaded for the PC to analyze. Other applications that are

being investigated are gene sequencing, weather forecasting, and the decoding of
encrypted messages.

Special Problems in Parallel Computing

If parallel computing is to be used to solve a large problem rapidly, several new aspects
come into play. Is the data stream provided from a single shared memory, or do the sepa-
rate units have individual memories? If the memory is distributed, how is communication
between the units accomplished? What type of bus provides the data channels to the sepa-
rate units, and can separate units read and write data at the same time? What sort of inter-
communication is there between the individual processors, and can they exchange data
without going through memory?

Other questions remain. Do the units operate synchronously, with all controlled by a
single clock, or do they run asynchronously? If operation is asynchronous, how does one
unit know when to accept data from a prior operation of a different unit, or do all units
operate “chaotically”? How can the loads for the separate processors be balanced —will
some units sit idle while others are running at capacity? (It would be preferable for all units
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to run at full loading.) What about the programs for parallel processing? Does the pro-
grammer have to be concerned with synchronization and intercommunications? Is the code
portable to other machines?

The questions about programming a parallel system are not yet settled. If it were possi-
ble to have the compiler recognize parallelism within a conventional program written for
sequential operations and have it develop the changed code to be run on the parallel sys-
tem, the task of programming would be much easier. On the other hand, writing code that
specifically takes advantage of the parallel CPUs can be more efficient, but this task is
tricky and complicated. It requires a skill that few programmers currently have. This mode
would involve knowing exactly how the hardware is organized and what communications
problems are involved. Further, it is likely that the best algorithm (solution procedure) for
a parallel machine will not always be the optimal one for sequential processing.

Speedup and Efficiency

We do not intend to explain all these many aspects of parallel processing in this book. We
must be content to show where parallelism exists for the various kinds of problems that we
attack numerically. For example, here is a simple classical problem that exhibits the advan-
tage of parallel processing. Suppose we are to add together n values. We can show the suc-
cessive steps by a “directed acyclic graph” (dag), as shown in Figure 0.4. Now imagine that
we have many separate processors that can be applied to the job. Figure 0.5 shows that the
number of time steps can be decreased from seven to three. In both Figures 0.4 and 0.5 the
“directed acyclic graphs™ (dags) have steps that indicate the sequence of the operations in
time. In both cases, step i + 1 cannot take place until step i is completed. The flow of oper-
ations is from the bottom to the top and one can characterize the dag as having a height of
7 in Figure 0.4 and a height of 3 in Figure 0.5. This is consistent with the definition of a
“tree.” At each level, indicated by a step n, we have the maximum number of processors
used at the time. We see from Figure 0.5 that we only need 4 and not 8 processors to speed
up the addition of the eight numbers.

Step T

7 ®

6 /@/

5 O)

~

4 /@

3 ®

2 @7

1 ——— @/

a/ \a a a a, a ag a

Figure 0.4

Adding eight numbers sequentially
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Adding eight numbers with parallel processors

The term speedup is used to describe the increased performance of a parallel system
compared to a single processor. It is the ratio of the execution time for the original sequen-
tial process, using a single processor, to the time for the same job using parallel processors.
In the preceding simple example, the speedup is 7/3 = 2.333. In computing the speedup
for n data items, we use the time for the optimal sequential procedure (or for the best-
known procedure if the actual optimal procedure is not known), T,(n), and for the best

(known) parallel algorithm for p processors, 7| p(n). With these defined, we can now define
speedup:

S (n) = Ty ()T (n).

In our example, we have T,(8) = 7 and 7(8) = 3, where 7 and 3 are the respective heights
of the dags in Figs. 0.4 and 0.5. Another term, the efficiency, is based on how the speedup
compares to the number of processors used, where

E,(n) = T,/(pT,m) = S (nlp.

Theoretically, if we have p processors, we should be able to do the job p times as fast. In
our example, however, E,(8) = 2.333/4 = 0.583.

We have less than an efficiency of 1.00 because some of the processors are idle after the
first step. Sometimes the speedup and efficiency are reduced because the size of the prob-
lem does not fit to the number of processors. For example, if we were to add only seven
numbers in this example, we would still require four processors to get the sum in three
steps, but now the speedup would be only 6/3 = 2.000 and the efficiency would drop to
0.5. On the other hand, what if we were limited to four processors but had 15 numbers to

add? We would subdivide the problem and, although trivial in this example, it would have
a best solution that is not obvious.
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Measuring the Eificiency of Numerical Procedures

It is common that there are several different numerical methods to solve a problem. For
example, you will find in the next chapter several techniques to get the roots of f{x) = 0, its
“zeros.” In Chapter 2, we will present several ways to solve a system of linear eguations.
How can the relative efficiency of different methods be compared?

One comparison is of the number of mathematical operations that are needed to get the
answer with a given accuracy. Suppose, on analysis, a method is found to take f(n) multi-
plies and that f is related to n by

flmy=14+2+3+...+n

An equation that gets this sum is

n(n+1)__;:zz_ n

fo=—"= 2 2

As n gets large, the first term dominates and we say that f(n) is “of order n>.” The common
symbol that is used is fin) = O(n?). The net effect is with large n, the number of multipli-
cations increases four times if n is doubled. This “order of” measure of operational count
occurs often in comparing the efficiency of alternative procedures.

Even though it may seem confusing, there is a second, quite different use of the order
relation. Some numerical methods arrive at an answer by varying the size of a parameter.
In Chapter 6, we will describe methods for solving a differential equation numerically. The
equation is of the form

dyldx = f(x.y),

with a value given for y at some value for x. Many of these techniques add together a
weighted sum of estimated values for the derivative function at evenly spaced x-values,
values that differ by 4 (a commonly used variable for such spacing). For one method the
error in the answer is proportional to the third power of A:

M
Error = —H,
ITOr 6

where M depends on a value for the third derivative of the function f(x, y). Because 4 is the
only parameter of the process that can be chosen by the user, we say that “the error is of
order /2. and this is written as

Error = O(h3).
Even though there are these two uses of the order relation, the context makes the meaning
clear.

Taylor Series

The expression for the order of error just given is found by comparison of the procedure
with a Taylor series. You will find that the Taylor series is often used in determining the
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order of error for methods, and the series is itself the basis for some numerical procedures
(a particularly good example will be found in Chapter 6).

We remind you that a Taylor series is a power series that can approximate a function,
fx), for values near to x = a. Its coefficients use the derivatives of fatx = a:
f@ @ /@

(x — a) (x—a)2+——(x—a)3+.‘.

fo) =@y + =~ 2 31

In effect, the Taylor series says that if we know the values for all derivatives of f(x) at
x = a, we can approximate the function as closely as we desire. This implies that f(x) must
have derivatives of all orders and that these can be evaluated at x = a.

If a Taylor series is truncated while there are still nonzero derivatives of higher order,
the truncated power series will not be exact. The error term for a truncated Taylor series
can be written in several ways, but the most useful form when the series is truncated after
the nth term is

fn+1((g)_
(n+ )

Error of TS =

where £ is a value between x and (x + ). The value for £is ordinarily not known, so there

is some uncertainty in the exact value for the error. Still, this term can give bounds for the
erTor.

Polynomials

We observe that a truncated Taylor series is really just a polynomial in x and that the only
arithmetic operations used to compute it are precisely those that a computer can do. We
also see that if f{x) has discontinuities, the Taylor series cannot approximate it over the dis-
continuity.

Polynomials occur frequently in numerical analysis. You will encounter them in several
instances in this book: in the development of formulas for interpolation (Chapter 3), for
approximation of functions (Chapter 4), and for differentiation and integration (Chapter 5).

One reason for such prevalence is that the only mathematics needed for their evaluation
are addition and multiplication and this fits perfectly to a computer. A second reason is the
nice behavior of polynomials: They are everywhere continuous and have derivatives of any
order. A famous theorem states that any continuous function can be approximated uni-
formly over a finite interval by a polynomial!

Certain polynomials are especially useful; many of these have a property called orthog-
onality. Typical of these are the Chebyshev polynomials. Using these, we can approximate
a function better than with the standard Taylor series. Another set of polynomials that has
the orthogonality property is the set of Legendre polynomials, which are involved in a par-
ticularly good way to integrate a function numerically.

A ratio of polynomials, a so-called rational function, is also important in numerical
analysis. These also can be readily evaluated by a computer, but they may not be continu-
ous everywhere; the denominator polynomials can be zero for some x-values.
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When a polynomial is evaluated, it is inefficient to do it in the way that at first seems
obvious. Suppose that your polynomial is

P(x) =ay+ax+ a2x2 + a3x3.

If you evaluate P(x) as a; + a;x + a,x * x + ax * x * x, six multiplications and three addi-
tions are required. Putting it into “nested form”:

P(x) = ((ayx + a,)x + ax) + ag,

takes only three multiplications and three additions. Nested multiplication is not only
faster, but there is less error due to round off.

Exercises

(Answers are given for problems marked with p-.)

Sectiomn 0.2

1.

There are many programs and subroutines that have
been written to perform numerical analysis. An impor-
tant Internet resource is “Guide to Available
Mathematical Software” (GAMS). It is maintained by a
government agency. It can be accessed through the Web
address gams.nist.gov/.

Find answers to these questions from that Web site.

a. What is the name of the government agency?

b. Use the link to “Package name” to see a listing of
packages from many sources. How many different
sources are listed?

¢. How many times is Fortran identified as the com-
puter language? How many times is the langnage C
mentioned?

Repeat Exercise 1, but now look at “Problem Decision

Tree.”

a. How many subclasses in the tree?

b. Find a link to a program that gets the characteristics
of the floating-point operations of a computer.

Make a list of the books in your school’s library that

deal with parallel computing. How many journal arti-

cles can you find that cover this subject?

Repeat Exercise 3, but for the topic “Distributed

Computing.”

Section 0.3

5.

If your version of MATLAB allows for symbolic oper-
ations, find dL/Dc for the ladder problem of Section
0.3. Plot this derivative function and see where it
crosses the x-axis. Does it give the same value for ¢ at

» 6.

» 8.

the minimum point? (If MATL.AB cannot do this for
you, use Mathematica.)

Solve this variation to the ladder problem. The height
of both the inlet tunnel and the straight shaft are both
6 ft 7 in. If the ladder can be tipped as the corner is
negotiated, how much longer can the ladder be and still
be taken into the mine?

The parameters for the ladder problem must have been
determined from measurement; they can hardly be pre-
cise for an actual tunnel. Investigate how much the
length of the ladder is affected if:

a. The angle a can be in error by as much as 5 degrees.

b. The width of the inlet shaft can be in error by as
much as 4 inches.

c. The width of the straight shaft can be in error by as
much as 7 inches.

A circular well is 5.6 ft in diameter and is 14.3 ft
deep and has a flat bottom. A ladder that is 17 in. wide
(outside measurement) has side rails that are 1 in. by 3
in. What is the longest ladder that can be placed in the
well if its top is to be exactly even with the surface of
the ground? Get the answer in two different ways.

Section 8.4

9.

10.

Develop the Maclanrin series for cos(2x) up to terms in x*.

a. What is the greatest truncation error within
x=[—1,2]?

b. Plot the truncation error over this range.

Repeat Exercise 9 but expand about x = 1 (a Taylor

series). Also, find the x-values where the truncation

error is zero.



11.

12,

p13.

14.

»15.

16.

17.

Express these quantities in the form O.coxx . . . xEyy.

a. 1.234567

b. —2.00000111
c¢. 0.00001325
d. 123456789
e. 0.0000002

What is the largest interval between two IEEE numbers in

a. single precision.
b. double precision.

Can you find examples in single precision where

a X+VN+Z#X+ Y +2Z»

b. X*V*Z#X* T *Z)N
CX*Y+2D)EFX*Y)+X*Z)?

Evaluate this cubic polynomial for x = 1.32, using both
rounding and chopping to three digits at each arithmetic
operation, getting both the absolute and relative errors:

3.12x3 — 2.11x2 + 4.01x + 10.33.

a. Do it proceeding from left to right.

b. Do it from right to left. Is the answer the same?

c. Repeat part (a) but do it with “nested multiplica-
tion.” Which takes fewer operations? The nested
form is:

((3.12x — 2.11)x + 4.01)x + 10.33.

Write a computer program that does the following addi-
tions in single precision. What are the absolute and rel-
ative errors of each sum?

a. 0.001 added 1000 times
b. 0.0001 added 10,000 times
¢. 0.00001 added 100,000 times

Are there times when round-off errors tend to cancel in
adding series of values?

Write a computer program that determines the relative
speeds of the four arithmetic operations. Be sure to do
enough repetitions so that the intervals between clock
ticks do not affect the results; also account for loop
overheads.

Section 0.5

»18.

Given these interval numbers, perform the arithmetic.
How does the width of the answer compare to the
widths of the terms?

x=[2.33,254],y = [—-1.19,0.11],z = [0, 3.45].
a. Whatisx + y?
b. Whatisx —y + z?

19.

20.

21.

22.

29

Exercises

c. Whatisx*z?

d. What is y/z?

If x = 1.2345 is stored as a floating-point number, what
is the interval that includes it in IEEE single precision?

What is the smallest interval between two IEEE num-
bers?

a. In single precision.
b. In double precision.
Plot this function:
fx) = [2.9,3.1] * 511952050 + 4.1, 4.3

Add to the plot of Exercise 21 the plot of g(x) = 3x* +
4.2. At x = 3, how great is the distance between f(x)
and g(x)?

Section 0.6

23.

24.

»25,

26.

Under what conditions can parallel processing not be
used to speed up a computation?

A vector is a quantity that has several values, called its
components. An example of a four-component vector is
V =[1.22, 2.33, 3.44, 4.55]. The inner product of two
vectors is the sum of the products of the components
taken in order (the vectors must have the same number
of components-—they must be of the same “size”).

a. How can parallel processing speed the computation
of the inner product?

b. What is the speedup factor for vectors of size 57

c. What is the speedup factor for vectors of size n?

What are the conditions of problems that suggest that
distributed processing should be considered?

How does distributed computing differ from parallel
processing?

Section 0.7

27.

28.

‘When a sequence of n integers is added, the first being
1 and the last being #, the sum is

Sum = #2/2 + nf2 = On?).

For n = 100, 1000, and 10,000, how much does the
value of Sum differ from n2/2?

The numbers of Exercise 27 are called an arithmetic
progression and A, the difference between successive
terms is 1. Find the formula for the following arithmetic
progressions, and their order expressions.

a. The sum of odd integers, starting with 1?
b. The sum of even integers, starting with 2?
c. Repeat part () but for a starting value of s.
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29.

30.
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Find a formula for the sum of the squares of integers
starting with 12 and its order expression. At what num-
ber of terms is the formula and the order expression
within 1% of each other?

Repeat Exercise 29 but for the sum of cubes.

For a polynomial of degree n, show how many fewer
arithmetic operations are needed when it’s evaluated in
nested form compared to doing it term by term.

32.

»33.

Repeat Exercise 31 but for a polynomial where some
coefficients are zero, say, m zeros in a polynomial of
degree n. Are there times when evaluation in nested
form has no advantage?

A rational function is a ratio of two polynomials.
Evaluating both the numerator and denominator in
nested form should require fewer operations than doing
them term by term. How many fewer operations when
the degrees are n and d?

Applied Problems and Projects

APPI.

APP2.

APP3.

APPA4.

APPS.
APP6.

APP7.

APPS.

APPY.
APP10.

This group of problems will challenge you more than the exercises do. When you are asked to write
a computer program, the language that you use is optional.
Write a computer program that finds a minimum of f{x) that lies between x = @ and x = b. It does
this by stepping from a toward b in steps of (b — a)/10 until the values of f{x) begin to increase. It
then reverses the direction with steps one-tenth as large to isolate the minimum more accurately. This
is repeated until the minimum is located within x-values that differ by less than 1075.
How can APP1 be adapted to find a maximum value? Can the program be modified to permit the user
to do either?
a. Critique the procedure of APP1. Consider these questions and others that you think are important:
What if f(x) is discontinuous in {a, b]?
What if there are multiple minima?
What if there is no minimum point?
b. Propose a scheme that is more efficient. Define what you think should be the measure of “efficiency.”
Repeat APP1 but now to find where f(x) = 0, the point where the function crosses the x-axis.
Analyze this as in APP2, parts (a) and (b).
Do research on the Internet and make a list of at least ten references to parallel computing. Make
another list of references to distributed computing.
Use Maple and/or Mathematica to create a plot similar to Figure 0.2.
Get a formula for the number of mathematical operations needed to evaluate a polynomial of degree
n, doing it with:
a. nested multiplication.
b. in standard form.
Find the Taylor series for fix) = 1/x, expanded about the point x = 2. Write a program that displays
the computed value at x = 2.5, the absolute error, and the relative error, for:
a. A series of three terms.
b. A series of four terms.
c. A series of five terms.
d. Repeat parts (a), (b), and (c) forx = 3.
e. For what range of x-values is the infinite series convergent?
In finding the minimum of L versus ¢ in the ladder problem, MATLAB used two applications of
“golden.” This refers to the Golden Mean. What is the Golden Mean? Where does this value come from?
What other applications is there of this other than in finding a minimum? Why is it called “golden™?
Write a computer program that converts numbers to/from binary; octal; decimal; hexadecimal.
Compare the graphs of (1 — x)" forn = 2,4, 6, 8,.... You will find that, for x-values near 1, the
graphs depart less and less from the x-axis as n increases. Determine how accurate the computer must
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be to get a nonzero value at x = 0.8 as a function of n. Then, find the values of x where the departure
from zero is just greater than eps when the computation is done in single precision.

The ABC Manufacturing Company currently ships a product in a cardboard box that measures 6 X
7.5 X 2.5 in. The box is formed from a die-cut pattern using a piece of card stock that is 1/32 in.
thick, 12.5 in. wide, and 18 in. high. After the card stock is cut, the unassembled box looks like the
figure. Part T forms the top, part B is the bottom, and parts S make the sides. The solid lines represent
cuts and the dashed lines represent folds. Flaps F are folded inside the box and are glued to the side
pieces. After the box has been filled, the top is folded over and flaps G (which are 1 in. wide) are
folded and glued to the outside of the box to seal the box.

You have been asked to lay out the pattern for a new product. Following the same type of design
as in the figure, draw the pattern for die-cutting the box material. The box is to have the largest vol-
ume that can be made from card stock that measures 15 X 20 in. Flaps G are still to be 1 in. wide.

Sketch the pattern for the new box. Show how you determined the dimensions to achieve the
maximum volume for the box, proving that its volume is the maximum possible.
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An important problem in applied mathematics is to “solve f(x) = 0” where f(x) is a
function of x. The values of x that make f(x) = 0 are called the roots of the equation. They
are also called the zeros of f(x). This chapter describes some of the many methods for solv-
ing f(x) = 0 by numerical procedures. We also treat the more complicated case wherein a
set of nonlinear equations are to be solved simultaneously:

Fo,y,2) =0,
glx,y,2) =0,
h(x,y,z) = 0.

For example, an engineer might want to find the pressure needed to cause a fluid suspen-
sion of particles to flow through a pipe (perhaps in a paper mill). The pressure required
depends on the length of the pipe, its diameter, the quantity of fluid that is to flow, and a
number called the “friction factor” that has been determined from experiments. This non-
linear equation can compute the friction factor, f:

1 1 5.6
7 (k)ln(RE«/}‘) + (14 p )
where the parameter £ is known and RE, the so-called Reynold’s number, can be computed
from the pipe diameter, the velocity of flow, and the viscosity of the fluid. The equation for
fis not solvable except by the numerical procedures of this chapter.

We show a total of ten root-finding procedures in this chapter. Five of these are
described in detail, the others are only mentioned. Of these ten methods, six apply to any
type of equation, the others only to polynomials. Why so many? We do this to acquaint you
with them, to show that there are often many numerical methods for solving a problem,
and to point out why one method may be preferred over another. We even describe other
methods for solving nonlinear problems in Chapter 71



1.1

Contdnidy

1.1 Interval Halving (Bisection)
Describes a method that is very simple and foolproof but is not very efficient.
We examine how the error decreases as the method continues.

1.2 Linear Interpolation Methods

Tells how approximating the function in the vicinity of the root with a
straight line can find a root more efficiently. It has a better “rate of
convergence.”

1.3 Newton’s Method

Explains a still more efficient method that is very widely used but there are
pitfalls that you should know about. Complex roots can be found if complex
arithmetic is employed.

1.4 Muller’s Method

Approximates the function with a quadratic polynomial that fits to the
function better than a straight line. This significantly improves the rate of
convergence over linear interpolation.

1.5 Fixed-Point Iteration: x = g(x) Method
Uses a different approach: The function f(x) is rearranged to an equivalent
form, x = g(x). A starting value, x,, is substituted into g(x) to give a new
x-value, x;. This in turn is used to get another x-value. If the function g(x) is
properly chosen, the successive values converge. It has important theoretical
implications.

1.6 Other Methods
Gives a brief description of five other methods that can be used to find the
roots of polynomials. Three of these have the advantage of not requiring a
starting value to obtain a root.

1.7 Nonlinear Systems

Applies Newton’s method to systems of nonlinear equations, a much harder
problem than with a single equation.

Interval Halving (Bisection]

Interval halving (bisection), an ancient but effective method for finding a zero of f(x), is an
excellent introduction to numerical methods. It begins with two values for x that bracket a
root. It determines that they do in fact bracket a root because the function f(x) changes
signs at these two x-values and, if f(x) is continuous, there must be at least one root
between the values. A plot of f(x) is useful to know where to start.

33
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The bisection method then successively divides the initial interval in half, finds in
which half the root(s) must lie, and repeats with the endpoints of the smaller interval. The
test to see that f(x) does change sign between points a and b is to see if f(a) * f(b) < 0.

We will compare this method with the others that are described in this chapter by this
same function for each:

f(x) = 3x + sin(x) — e*.

It is a good plan to look at a plot of the function to learn where the function crosses the
x-axis. MATLAB can do it for us:

EDU>> f =inline(’3*x+ gsin(x) — exp(x)’)
f =

Inline function:

f(x) =3*x + sin(x) — exp (x)
EDU>> fplot (£, [0 2]);grid on

And we see this figure that indicates there are zeros at about x = 0.35 and 1.9.

b -~ data 1

i N
1V
/

-1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Here is an algorithm for the bisection method:

An Algorithm for Halving the Interval (Bisection)
To determine a root of f(x) = O that is accurate within a specified tolerance value,

given values x; and x, such that f(x;) * flxy) <0,

Repeat
Setxy = (x; + x)I2.
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If f(xy) * f(x,) < O Then

Set x, = X,

Else Setx; = x; End If.

Until (x; — x,|) < 2 * tolerance value).

The final value of x, approximates the root, and it is in error by not more than
ke, — x,//2.
Note: The method may produce a false root if f(x) is discontinuous on {x;, x,}.

A program that implements the method gave the results displayed in Table 1.1. To obtain
the true value for the root, which is needed to compute the actual error column, we again
used MATLAB:

EDU>> solve(’3*x + sin(x) —exp(x)’)
ang =
.36042170296032440136932951583028

which is really more accurate than we need.

MATLAB surely used a more advanced method than bisection to get the answer to the
example, but we can write a program in MATLAB that does bisection. We present this to
illustrate how you can create a MATLAB program. This is done through a so-called M-file.
Clicking on ‘File/New/M-file’ in MATLAB’s toolbar brings up a form into which we enter
the commands on the following page:

Table 1.1 The bisection method for f(x) = 3x + sin(x) — &* = 0, starting from x; = 0,
x, =1, using a tolerance value of 1E-4

Maximum Actual

Iteration X X, X; F(X,) error error
1 0.00000 1.00000 0.50000 0.33070 0.50000 0.13958
2 0.00000 0.50000 0.25000 —{(.28662 0.25000 —0.11042
3 0.25000 0.50000 0.37500 0.03628 0.12500 0.01458
4 0.25000 0.37500 0.31250 -0.12190 0.06250 —0.04792
5 0.31250 0.37500 0.34375 —0.04196 0.03125 —-0.01667
6 0.34375 0.37500 0.35938 —0.00262 0.01563 ~0.00105
7 0.35938 0.37500 0.36719 0.01689 0.00781 0.00677
8 0.35938 0.36719 0.36328 0.00715 0.00391 0.00286
9 0.35938 0.36328 0.36133 0.00227 0.00195 0.00091
10 0.35938 0.36133 0.36035 —0.00018 0.00098 —0.00007
11 0.36035 0.36133 0.36084 0.00105 0.00049 0.00042
12 0.36035 0.36084 0.36060 0.00044 0.00024 0.00017

13 0.36035 0.36060 0.36047 0.00013 0.00012 0.00005
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function rtn = bisec(fx,xa,xb,n)

%bisec does n bisections to approximate

o
©

a root of fx

X = xXa;

X = xb;

disp

if fe*fa <0
xXb = xc;

else xa = xc;

of if/elsge

Q

end %

Q

xb,

fa =eval (fx);
fb = eval (fx) ;
for 1 =1:n

xc = (xat+ xb)/2;
X=[1,

Xc,

end % of for loop

which we save with the name ‘bisec.m.” Now if we enter these commands:

EDU>> fx = ‘3*x + sin(x) — exp(x

fx =

3*x + gin(x) — exp(x)
EDU>> bisec(fx,0,1,13)

X = XC;

fc=eval (fx);

) I

we see a display similar to Table 1.1, except the iteration numbers are not integers:

w ~1 oUW N

el

10.
11.
12.
13.

.0000
.0000
.0000
.0000
.0000
.0000
L0000
.0000
.0000
0000
0000
0000
0000

O O O O O OO0 O O 0o oo O

.2500
.2500
L3125
.3438
.3594
.3594
.359%4
.3594
.3604
.3604
.3604

S O O OO O OO0 o oo O R

.0000
.5000
.5000
.3750
.3750
.3750
.3750
.3672
L3633
L3613
.3613
.3608
.3606

O O O O OO OO O O O O O

.5000
.2500
.3750
L3125
.3438
.3594
L3672
.3633
.3613
.3604
.3608
.3606
.3605

0.
—~0.

0.
—0.
—0.
—0.
.0169
.0071
.0023
.0002
.0010
.0004
.0001

3307
2866
0363
1219
0420
0026

It may be interesting for you to see if you can modify the program to produce integers in

the first column.

The main advantage of interval halving is that it is gnaranteed to work if f(x) is contin-
uous in [a, b] and if the values x = a and x = b actually bracket a root.* Another important
advantage that few other root-finding methods share is that the number of interations to
achieve a specified accuracy is known in advance. Because the interval [a, b] is halved

* This guarantee can be voided—if the function has a slope very near to zero at the root, the precision of the com-

putations may be inadequate.
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each time, the last value of Xy differs from the true root by less than % the last interval. So
we can say with surety that

I

|

! ) b—-a

| error after # iterations < —(——ZTl
4

|

|

The major objection of interval halving has been that it is slow to converge. Other methods
require fewer iterations to achieve the same accuracy (but then we do not always know a
bound on the accuracy).

Observe in Table 1.1 that the estimate of the root may be better at an earlier iteration
than at later ones. (The third iterate is closer to the true root than are the next two; we are
closer at iteration 6 than at iteration 7.) Of course, in this example we have the advantage
of knowing the answer, which is never the case. However, the values of f(x,) themselves
show that these better estimates are closer to the root. (This is not an absolute criterion—
some functions may be nearly zero at points not so near the root, but, for smooth functions,
a small value of the function is a good indicator that we are near to the root. This is espe-
cially true when we are quite close to the root.) The methods we consider in later sections
use the values of f(x) to find the root more rapidly.

With speedy computers so prevalent today the slowness of the bisection method is of
less concern. When the values of Table 1.1 were computed from a program, the results
were seen in less than a second.

When the roots of functions must be computed a great many times (this may be a
requirement of some other program that does engineering analysis), the efficiency of inter-
val halving may be inadequate. This will be particularly true if f(x) is not given explicitly
but, instead, is developed internally within the other program. In that case, finding values
of x that bracket the root may also be a problem.

In spite of arguments that other methods find roots with fewer iterations, interval halv-
ing is an important tool in the applied mathematician’s arsenal. Bisection is generally rec-
ommended for finding an approximate value for the root, and then this value is refined by
more efficient methods. The reason is that most other root-finding methods require a start-
ing value near to a root—lacking this, they may fail completely.

Do not overlook other techniques that may seem mundane for getting a first approxima-
tion to the root. Graphing the function is always helpful in showing where roots occur, and
with programs like MATLAB (or a graphing calculator) that do plots so handily, getting
the graph before beginning a root-finding routine is a good practice. Searching methods
should also be considered as a preliminary step. Stepping through the interval [—1, 1] and
testing whether f(x) changes sign will show whether there are roots in that interval. Roots
of larger magnitude can be found by stepping through that same interval with x replaced by
1/y, because the roots of this modified function are the reciprocals of the roots of the orig-
inal function. Experience with the particular types of problems that are being solved may
also suggest approximate values of roots. Even intuition can be a factor. Acton (1970)
gives an especially interesting and illuminating discussion.
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‘When there are multiple roots, interval halving may not be applicable, because the func-
tion may not change sign at points on either side of the roots. Here a graph will be most
important to reveal the situation. In this case, we may be able to find the roots by working
with f'(x), which will be zero at a multiple root.

Linear Interpolation Methods

Bisection is simple to understand but it is not the most efficient way to find where f(x) is

Zero.
Most functions can be approximated by a straight line over a small interval. The two
methods of this section are based on doing just that.

The Secant Method

The secant method begins by finding two points on the curve of f(x), hopefully near to the
root we seek. A graph or a few applications of bisection might be used to determine
the approximate location of the root. As Figure 1.1 illustrates, we draw the line through
these two points and find where it intersects the x-axis. The two points may both be on one
side of the root as seen in the figure but they could also be on opposite sides.

If f(x) were truly linear, the straight line would intersect the x-axis at the root. But f(x)
will never be exactly linear because we would never use a root-finding method on a linear
function! That means that the intersection of the line with the x-axis is not at x = r but that
it should be close to it. From the obvious similar triangles we can write

(x1 — x5) _ (xg — x1)

fo)  flxe) — flxy)

Figure 1.1
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and from this solve for x,:

(xg = xy)
flxg) — jlxy)
Because f(x) is not exactly linear, x, is not equal to r, but it should be closer than either of

the two points we began with.
If we repeat this, we have:

f(xl)

(xn l__ n)

f(xn 1) _—f(x)

Because each newly computed value should be nearer to the root, we can do this easily
after the second iterate has been computed, by always using the last two computed points.
But after the first iteration there aren’t “two last computed points.” So we make sure to start
with x; closer to the root than x, by testing f(x,) and f(x,) and swapping if the first func-
tion value is smaller.* The net effect of this rule is to set x, = x; and x; = x, after each iter-
ation. The exceptions to this rule are pathological cases, which we consider next.

The technique we have described is known as the secant method because the line

through two points on the curve is called the secant line. Here is pseudocode for the secant
method algorithm:

Xop1 =X, ~fO)

An Algorithm for the Secant Method

To determine a root of f(x) = 0, given two values, Xo and x,, that are near the root,

If | f(rg)] < | f(x})| Then
Swap x, with x;.

Repeat
_ — X
Seti =x, — ) * s
Set xy = x;.
Setx; = x.

Until | f(x,)| < tolerance value.

Note: If f(x) is not continuous, the method may fail.

An alternative stopping criterion for the secant method is when the pair of points being
used are sufficiently close together.

* | flxg)| < | Fxp)| does not always mean that x is closer to the root, but that is often the case. When it is, the

method is speeded up. In any case, the algorithm still converges to the root when f(x) is continuous and we start
near enough to the root.
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Table 1.2 Secant method on f(x) = 3x + sin(x) — &*

Iteration x, xy X, fxy)
1 1 0 0.4709896 0.2651588
2 0 0.4709896 0.3722771 2.953367E-02
3 0.4709896 0.3722771 0.3599043 —1.294787E-03
4 0.3722771 0.3599043 0.3604239 5.552969E-06
5 0.3599043 0.3604239 0.3604217 3.554221E-08

At x = 3604217, tolerance of .0000001 met!

An Example

Table 1.2 shows the results from the secant method for the same function that was used to
illustrate bisection. We know that the root is at 0.3604217. Notice that fewer iterations are
required compared to bisection. The efficiency of numerical methods is often measured by
how many times a function must be evaluated because that usually is the most time-
consuming part of the procedure.

An objection is sometimes raised about the secant method. If the function is far from
linear near the root, the successive iterates can fly off to points far from the root, as seen in
Figure 1.2.

If the method is being carried out by a program that displays the successive iterates, the
user can interrupt the program should such improvident behavior be observed. Also, if the
function was plotted before starting the method, it is unlikely that the problem will
be encountered, because a better starting value would be used. There are times when this
remedy is not possible: when the routine is being used within another program that needs
to find a root before it can proceed.

Linear Interpolation (False Position)

A way to avoid such pathology is to ensure that the root is bracketed between the two start-
ing values and remains between the succcessive pairs. When this is done, the method is

I
|
! |
| |
} 3 t
\ X0 X1 X
Root

Figure 1.2

A pathological case for the secant method
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known as linear interpolation, or, more often, as the method of false position (in Latin,
regula falsi). This technique is similar to bisection except the next iterate is taken at the
intersection of a line between the pair of x-values and the x-axis rather than at the midpoint.
Doing so gives faster convergence than does bisection, but at the expense of a more com-
plicated algorithm.

Here is the pseudocode for regula falsi (method of false position):

An Algorithm for the Method of False Position (regula falsi)

To determine a root of f(x) = 0, given two values of x, and x, that bracket a root: that
is, f(xy) and f(x,) are of opposite sign,

Repeat
Xo — Xy
flxo) = flxp)
If f(x,) is of opposite sign to f(x,) Then
Setx; = x,
Else
Set x, = x,
End If.
Until | f(x,)] < tolerance value.

Setx, = x; — f(x) *

Note: If f(x) is not continuous, the method may fail.

Table 1.3 compares the results of three methods—interval halving (bisection), linear
interpolation, and the secant method—on f(x) = 3x + sin(x) — ¢* = 0. Observe that the
speed of convergence is best for the secant method, poorest for interval halving, and

Table 1.3 Comparison of methods, f(x) = 3x + sin(x) — ¢* = 0,x, = 0,x, = 1

Interval halving False position Secant method

Iteration x Jx) x Jx) x f&x)

1 0.5 0.330704 0470990  0.265160 0.470990 0.265160

2 0.25 —0.286621 0.372277 0.029533 0.372277 0.029533

3 0.375 0.036281  0.361598  2.94%1073  0.359904  —1.29* 073

4 0.3125 —0.121899 0.360538 2.90 % 107 0.360424 555*107°

5 0.34375 —0.041956 0.360433 293 %107 0.360422 3.55*1077
Error

after 5

iterations 0.01667 —-1.17*107° <—1*1077

(Exact value of root is 0.360421703.)
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intermediate for false position. Notice that false position converges to the root from only
one side, slowing it down, especially if that end of the interval is farther from the root.
There is a way to avoid this result, called modified linear interpolation. We omit the details
of this method.

Newton’s Method

One of the most widely used methods of solving equations is Newton’s method.* Like the
previous ones, this method is also based on a linear approximation of the function, but does
so using a tangent to the curve. Figure 1.3 gives a graphical description. Starting from a
single initial estimate, x,, that is not too far from a root, we move along the tangent to its
intersection with the x-axis, and take that as the next approximation.” This is continued
until either the successive x-values are sufficiently close or the value of the function is suf-
ficiently near zero.**

The calculation scheme follows immediately from the right triangle shown in
Figure 1.3, which has the angle of inclination of the tangent line to the curve at x = x, as
one of its acute angles:

flxo) L f)

xo—xl’ ! 0 f’(xo)‘

tan 6 = f'(x,) =

J®

]

Figure 1.3

* Newton did not publish an extensive discussion of this method, but he solved a cubic polynomial in Principia
(1687). The version given here is considerably improved over his original example.

+ The algorithm for Newton’s method can be derived from a Taylor sertes. We suggest that you do it this way.
#* Which criterion should be used often depends on the particular physical problem to which the equation
applies. Customarily, agreement of successive x-values to a specified tolerance is required.
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We continue the calculation scheme by computing

=y, —~ S
2 ! f/(x1)’

or, in more general terms,

——— B

f(xﬂ)

Xy =X, n=0,1,2,....

Newton’s algorithm is widely used because, at least in the near neighborhood of a root,
it is more rapidly convergent than any of the methods discussed so far. We show in a later
section that the method is quadratically convergent, by which we mean that the error of
each step approaches a constant K times the square of the error of the previous step. The
net result of this is that the number of decimal places of accuracy nearly doubles at each
iteration. However, there is the need for two function evaluations at each step, f(x ) and
f'(x,), and we must obtain the derivative function at the start.*

When Newton’s method is applied to f(x) = 3x + sin x — ¢* = 0, we have the follow~

ing calculations:
fx) = 3x + sinx — €,
f(x) =3+ cosx — &

There is little need to use MATLAB to get this simple derivative, but, for practice, here
is how to do it:

EDU>> fx = '3*x + sin(x) —exp(x)’
fx =
3*x + sin(x) — exp (x)

EDU>> dfx =diff(fx)
dfx =
3+ cos(x) — exp(x)

If we begin with x; = 0.0, we have

Flxo) -1.0
= X, — =00 — ——— = (.33333;
Xy = Xy o) 30 0.33333;
Sxy) —0.068418
= — = (. _—— =
% =0T Gy 33333 S oaoas — 0-36017;
f(xy) —6.279 x 10°*
BTRT ) 2.50226 0-3604217

* Finding f'(x) may be difficult. Computer algebra systems can be a real help.
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After three iterations, the root is correct to seven digits; convergence is much more rapid
than any previous method. In fact, the error after an iteration is about one-third of the
square of the previous error. In comparing numerical methods, however, we usually count
the number of times functions must be evaluated. Because Newton’s method requires two
function evaluations per step, the comparison is not as one-sided in favor of Newton’s
method as at first appears; the three iterations with Newton’s method required six function
evaluations. Five iterations with the previous methods also required six evaluations. If a
difficult problem requires many iterations to converge, the number of function evaluations
with Newton’s method may be many more than with linear iteration methods because
Newton always uses two per iteration whereas the others take only one (after the first step
that takes two).

A more formal statement of the algorithm for Newton’s method, suitable for implemen-
tation in a computer program, is shown here:

Newton’s Method

To determine a root of f(x) = 0, given x, reasonably close to the root,

Compute f(x,), f* (xp)-
If ( f(xy) # 0) And (f'(x,) # 0) Then
Repeat
Setx; = x,
Set xy = x5 — O (xp)-
Until ([x; — x,| < tolerance value 1) Or
| f(xy)] < tolerance value 2).
End If.

Note: The method may converge to a root different from the expected one or diverge
if the starting value is not close enough to the root.

When Newton’s method is applied to polynomial functions, special techniques facilitate
such application. We consider these in a later section of this chapter.

In some cases Newton’s method will not converge. Figure 1.4 illustrates this situation.
Starting with x,;, one never reaches the root r because xg = x; and we are in an endless
loop. Observe also that if we should ever reach the minimum or maximum of the curve, we
will fly off to infinity. We will develop the analytical condition for this in a later section
and show that Newton’s method is quadratically convergent in most cases.

Relating Newton’s Method to Other Methods

It is of interest to notice that the previous interpolation methods are closely related to
Newton’s method. For linear interpolation, whose algorithm we can write as
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Jx)

\ Root r

Figure 1.4

[P 0 N
P fx) — f )
xn - -xn--l

we see that the denominator of the fractional term is exzctly the definition of the derivative
except not taken to the limit as the two x-values approach each other. This difference quo-
tient is an approximation to the derivative, as we will explain in detail in a later chapter.
Because the denominator of the fractional term is an approximation to the derivative of f,
we see the close resemblance to Newton’s method.

The secant method has exactly this same resemblance to Newton’s method because it is
just linear interpolation without the requirement that the two x-values bracket the root.
Because these two values usually are closer together than for linear interpolation, the
approximation to the derivative is even better.

From this we see that there is an alternative way to get the derivative for Newton's
method. If we compute f(x) at two closely spaced values for x and divide the difference in
the function values by the difference in x-values, we have the derivative (nearly) without
having to differentiate. Although this sounds like spending an extra function evaluation,

we avoid having to evaluate the derivative function and so it breaks even. (Convergence
will not usually be as fast, however.)

Complex Roots

Newton’s method works with complex roots if we give it a complex value for the starting
value. Here is an example.
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Sfx)
10+
5
} 2 } + — X
-10 -5 5 10 15
...5 -+

Figure 1.5
Plotof f(x) =x* + 2x2 —x+ 5

EXAMPLE 1.1

Use Newton’s method on f(x) = x> + 2x*> — x + 5.

Figure 1.5 shows the graph of f(x). It has a real root at about x = —3, whereas the other
two roots are complex because the x-axis is not crossed again.

If we begin Newton’s method with x; = 1 + i (we used this in the lack of knowledge
about the complex root), we get these successive iterates:

0.486238 + 1.04587i
0.448139 + 1.23665i
0.462720 + 1.22242i
0.462925 + 1.22253i
0.462925 + 1.22253;

Because the fourth and fifth iterates agree to six significant figures, we are sure that we
have an estimate good to at least that many figures. The second complex root is the conju-
gate of this: 0.462925 — 1.22253i. If we begin with x, = 1 — i, the method converges to
the conjugate.
If we begin with a real starting value—say, x, = —3-—we get convergence to the root
atx = —2.92585.
i |

NN =

Newton’s Method for Polynomials

We have already pointed out that polynomials are of great importance in numerical analy-
sis because of their “nice” behavior and because they can be evaluated using only arith-
metic operations. Descartes’s rule of signs (see Appendix A) lets us predict the number of
positive roots. Any root-finding method can get their roots but there are some special tech-
niques with Newton’s method.
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As we have said, evaluating a polynomial at some x-value is best done by nested multi-
plication. The name for this is Horner’s Method and MATLAB has a built-in function to
rearrange a polynomial into nested form:

EDU>> P =poly2sym([2 1 —3 —31)
P:

2x73 +x"2 —3*x— 3

EDU>> horner (P)

ans =

((2x+1) *x—3) *x—3

In the above, the first command created a symbolic representation of the polynomial from
the vector of coefficients and the second put this into nested form.

Evaluating a polynomial in nested form can be done in a computer program by synthetic
division. This procedure was done by hand before the advent of computers and perhaps
you have seen it before. While you may not do hand computations very often, synthetic
division is a good way to start a discussion of the computer algorithm.

Suppose we want to find the value at x = 2 of

P(x) = 223 + x* = 3x — 3.
Write the coefficients in a row and follow this pattern:

x=2 ] 2 1 -3 =3
4 10 14

2 5 1 @

Here is what was done to get the tableau: Copy the first coefficient below the line, mul-
tiply this times the x-value and add to the second coefficient, multiply that result by the
x-value and add to the third coefficient, and do the same for the last coefficient. The last
row of numbers is the coefficients of the reduced polynomial and the remainder from the
division.

The final result, 11, which has been circled, is the value of the polynomial at x = 2!
This is also the remainder from the division:

23+ x2—3x — 3 11

=22+ 5x+ 7+
PR 2x- + 5x PR

If you study the steps in synthetic division, you will see that these are exactly what is done
if the polynomial is evaluated in nested form: Horner’s method and synthetic division are
precisely the same,

The value of synthetic division in getting a root by Newton’s method is that, if the

reduced polynomial is divided by (x — 2), the remainder from this is the value of the deriv-
ative at x = 2:

x=2 | 2

n
~J

where the circled 25 is P'(2).
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With the values of P(2) and P'(2) available, we can use them in Newton’s method to
estimate a root starting with x;, = 2:

x, =2 — 11/25 = 1.56,
which is closer to a root of P(x), which MATLAB tells us is at x = 1.3782:

EDUS> p=[2 1 —3 —3]

p:

21 -3 —3
EDU>> r = roots (p)
I‘:

1.3782
—0.9391 + 0.45451
—0.9391 — 0.45451

MATLAB also told us that there are two complex-valued roots.

To divide two polynomials using MATLAB, we first define them as arrays of the coef-
ficients, then use the command ‘deconv’ (which really means to get the inverse of the con-
volution of two vectors, which is the equivalent of multiplying the polynomials). So, to
divide 2x> + x% — 3x — 3 by (x — 2), we do:

EDU>> N=1[2 1 —3 —3]; D=[1 —21;
EDU>> (g, r] =deconv (N, D)
q:

0 0 0 11

which is MATLAB’s way of telling us that N/D is (2x? + 5x + 7) plus the remainder,
11/(x — 2), exactly as the synthetic division gave us. A second division of the reduced
polynomial in the same fashion will give us P'(2).

Parallel Processing

Horner’s method for evaluating a polynomial is one of the classic examples where we can
speed up a computation by using parallel processors. The directed acyclic graphs (dags)
for the sequential and parallel algorithms are shown in Figure 1.6. Although we have more
operations (five multiplies and three adds) with the parallel scheme (compared to three
multiplies and three adds), the time required to produce the result is reduced from six steps
to four steps. The time savings comes from doing some operations in parallel rather than in
succession, of course. Observe that the most efficient method for sequential processing
(Horner’s method) is not used in parallel processing.
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4

Sequential: ’G—) 4 Parallel:
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Figure 1.6

Dags for evaluating a polynomial of degree 3

An Algorithm for Synthetic Division
and the Remainder Theorem

‘We can develop an algorithm for synthetic division and show that the remainders are the
value of the polynomial and its derivative by writing the nth-degree polynomial as

P(x)=ax"+a, e 4 ax + a,
We wish to divide this by the factor (x — x,), giving a reduced polynomial Q, _(x) of

degree n — 1, and a remainder, R, which is a constant:

P R
D g+
X X1 X Xy

Rearranging yields

P x)=x—-xPQ, () +R

Note that at x = X5

PG =OIQ, xpl + R=R
which is the remainder theorem: The remainder on division by (x — x,) is the value of the
polynomial at x = x;, P, (x,).
If we differentiate P, (x), we get
PLx) = (x —x)Q, &) + (DQ, ,(x) + 0.

Letting x = x;, we have

PLx) =0, 4.

We evaluate the Q-polynomial at x; by a second division whose remainder equals
Q,_,(x)). This verifies that the second remainder from synthetic division yields the value
for the derivative of the polynomial.
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We now develop the synthetic division algorithm, writing O, _,(x) in form similar to
P (x):
n

P, (x) =ax"+ an_lx""l +rtaxtoa
=@x—x)0, (0 +R
=@ = x)b,_ L+ b, "2+ + bix + by + R

Multiplying out and equating coefficients of like terms in x, we get

) (
'] —_
coef. of x a,=b, b, =a,

n—1. — _ _
| X a0 = bn—2 xlbn—l bn*2 =4, 4 + xlbn—l
| —2. — _ _
| X a, y=b, T xb, ) or by-3= @,y txb,_5
| : :
; : ;
x: a; =by—xb by =a; + xb;
i . = — =
| const: a; = R — x,b, ) | R =ay + xb,

The general form is b, = a;,; + x,b;,,, by which all the b’s may be calculated, provided
that we first set b, = 0. If this is compared to the preceding synthetic divisions, it is seen to
be identical, except that we now have a vertical array. The horizontal layout is easier for
hand computation. For evaluation of the derivative, a set of c-values is computed from the
b’s in the same way in which the b’s are computed from the a’s.

Muller’'s Method

Most of the root-finding methods that we have considered so far have approximated the
function in the neighborhood of the root by a straight line. Obviously, this is never true; if
the function were linear, finding the root would take practically no effort. Muller’s method
is based on approximating the function in the neighborhood of the root by a quadratic
polynomial. This gives a much closer match to the actual curve.

A second-degree polynomial is made to fit three points near a root, at x,, X, X,, with x
between x, and x,. The proper zero of this quadratic, using the quadratic formula, is used
as the improved estimate of the root. The process is then repeated using the set of three
points nearest the root being evaluated.

The procedure for Muller’s method is developed by writing a quadratic equation that
fits through three points in the vicinity of a root, in the form av? + bv + c. (See Fig. 1.7.)
The development is simplified if we transform axes to pass through the middle point, by
letting v = x — x,,

Let h; = x; — X, and h, = x5 — x,. We evaluate the coefficients by evaluating p,(v) at
the three points:

v=0: a7+ b0) +c=fy
v=h;: ah¥+bh +c=f;
v = —hy ah3 — bhy + ¢ = f,.
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f) £
oty L

=~ _Parabolaav? + by + ¢ = p,(v)
~/
X
~

N
N

Figure 1.7

From the first equation, ¢ = f. Letting h,/h, = v, we can solve the other two equations
for a and b:

, _
i

L o vh Ly h b_fl_fo_ah%
a= =t

yhi(L + y) | hy

After computing a, b, and ¢, we solve for the root of av? + bv + ¢ = 0 by the quadratic
formula, choosing the root nearest to the middle point x,,. This value is

} 2¢
i root = x, — ——————b TR 4—7;, J

with the sign in the denominator taken to give the largest absolute value of the denomina-
tor (that is, if » > 0, choose plus; if » < 0, choose minus; if » = 0, choose either). The rea-
son for using this somewhat unusual form of the quadratic formula is to make the next iter-
ate closer to the root.

We take the root of the polynomial as one of a set of three points for the next approxi-
mation, taking the three points that are most closely spaced (that is, if the root is to the right
of x,, take x,, x,, and the root; if to the left, take Xg» X and the root). We always reset the
subscripts to make x, be the middle of the three values.

An algorithm for Muller’s method is shown here:

Mueller’s Method

Given the points Xy Xgs Xy in increasing value,

Evaluate the corresponding function values: f,, i, f-
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Repeat

(Evaluate the coefficients of the parabola, ax? + bx + ¢, determined by the three

points. {(x,, f5), &g fo)» (1. ) 1)

Set h1 =X, X h2 =Xy T Xy YT hz/hl'

Setc = f;.

Sorg = YD H Sy
yhi(l + )
_ _ 2

Setp = LS Al
hy

(Next, compute the roots of the polynomial.)

2¢
e

Choose root, x,, closest to x, by making the denominator as large as possible; i.e. if
b > 0, choose plus; otherwise, choose minus.

If x> x,,
Then rearrange to: X, X, and the root
Else rearrange to: X, x,, and the root
End If.

(In either case, reset subscripts so that x, is in the middle.)

Until | f(x)| < Ftol.

Muller’s method, like Newton’s, will find a complex root if given complex starting values.
Of course, the computations must use complex arithmetic.

Muller’s method can fail under some conditions. We leave as a challenge to the student
to find when this will happen. (Hint: What will make the denominator of the equation for
the root of the quadratic zero or nearly so?)

Experience shows that Muller’s method converges at a rate that is similar to that for
Newton’s method. * It does not require the evaluation of derivatives, however, and (after we
have obtained the starting values) needs only one function evaluation per iteration. There is
an initial penalty in that one must evaluate the function three times, but this is frequently
overcome by the time the required precision is attained. (We do have to evaluate the coef-
ficients a, b, and ¢ each time, of course.)

* Atkinson (1978) shows that each error is about proportional to the previous error to the 1.85th power.
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Here is an example of the use of Muller’s method.

EXAMPLE 1.2 Find a root between 0 and 1 of the same transcendental function as before: f(x) = 3x +
sin(x) — €*. Let

x =035, flxy) =0330704 h; =05,
x =10, f(x;)=1123489 h, =05,
x=00, flx,)=-1 v = 1.0.
Then
_ (1.0)(1.123189) — 0.330704(2.0) + (—1) — _1.07644,
1.0(0.5)%(2.0)
_ - y 2
_ 1.123189 — 0.330704 — (—1.07644)(0.5) — 2.12319,
0.5
¢ = 0.330704,
and
root = 0.5 — 2(0.330704)
© ' 2.12319 + \/(2.12319)2 — 4(—1.07644)(0.330704)
= 0.354914.

For the next iteration, we have

g = 0354914,  f(xp) = —0.0138066  h, = 0.145086,

x; = 0.5, fx) = 0330704 h, = 0.354914,
x, =0, flxy) = —1 v = 2.44623.
Then
(2 44623)(0.330704) — (—0.0138066)(3.44623) + (— 1) —0.808314,
2.44623(0.145086)*(3.44623)
0.330704 — (—0.0138066) — (—0.808314)(0.145086)>
b= =2
0.1450%6 249180,
¢ = —0.0138066,

2(—0.0138066)

t = 0.354914 —
roo 249180 + V(2.49180)° — 4(—0.808314)(—0.0138066)

= 0.360465.

After a third iteration, we get 0.3604217 as the value for the root, which is identical to that
from Newton’s method after three iterations.
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Fixed-Point Iteration: x = g(x) Method

The method known as fixed-point iteration [we also call it the x = g(x) method] can be a

useful way to get a root of f(x) = 0. This method is also the basis for some important the-

ory. To use the method, we rearrange f(x) into an equivalent form x = g(x), which usually

can be done in several ways. Observe that if f(r) = 0, where r is a root of f(x), it follows

that r = g(r). Whenever we have r = g(r), r is said to be a fixed point for the function g.
Under suitable conditions that we explain later, the iterative form

Xy = 8x,) n=0,1,2,3,...,

converges to the fixed point , a root of f(x).
Here is a simple example:

f=x2—-2x—3=0.

f(x) is easy to factor to show roots at x = ~1 and x = 3. (We pretend that we don’t know

this.)
Suppose we rearrange to give this equivalent form:

x=gx) = V2x + 3.
If we start with x = 4 and iterate with the fixed-point algorithm, successive values of x are

X, =4,

x; = V11 = 3.31662,

x, = V9.63325 = 3.10375,

x; = V9.20750 = 3.03439,

x, = V9.06877 = 3.01144,

x5 = 9.02288 = 3.00381,

and it appears that the values are converging on the root at x = 3.

Other Rearrangements

Another rearrangement of f(x) is

3
=2

Let us start the iterations again with x, = 4. Successive values then are

x = gylx) =

x, =4,
x, = 1.5,
x, = —6,
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xy = —0.375,
x, = —1.263158,
x5 = —0.919355,
xg = —1.02762,
x; = —0.990876,
xg = —1.00305,
and it seems that we now converge to the other root, at x = —1. We also see that the con-

vergence is oscillatory rather than monotonic as we saw in the first case.
Consider a third rearrangement:

2 _
x = gy(x) = _(_x_2_3_)_
Starting again with x, = 4, we get
x, = 4,
x, = 6.5,
x, = 19.625,
x; = 191.070,

and the iterates are obviously diverging.

This difference in behavior of the three rearrangements is interesting and worth further
study. First, though, let us look at the graphs of the three cases. The fixed point of x = g(x)
is the intersection of the line y = x and the curve y = g(x) plotted against x. Figure 1.8
shows the three cases.

Observe that we always get the successive iterates by this construction: Start on the x-
axis at the initial x,, go vertically to the curve, then horizontally to the line y = x, then ver-
tically to the curve, and again horizontally to the line. Repeat this process until the points
on the curve converge to a fixed point or else diverge. It appears that the different behaviors
depend on whether the slope of the curve is greater, less, or of opposite sign to the slope of
the line (which equals +1).

Here is pseudocode for the fixed-point (x = g(x)) method:

Iteration Algorithm with the Form x = g(x)

To determine a root of f(x) = 0, given a value x, reasonably close to the root,
Rearrange the equation to an equivalent form x = g(x).

Repeat

Set x, = x;.

Set x; = glx))

Until [x; — x,| < tolerance value

Note: The method may converge to a root different from the expected one, or it may
diverge. Different rearrangements will converge at different rates.
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Figure 1.8

Order of Convergence

The fixed-point method converges at a linear rate; it is said to be linearly convergent,
meaning that the error at each successive iteration is a constant fraction of the previous
error. (Actually, this is true only as the errors approach zero.) If we tabulate the errors
after each step in getting the roots of the polynomial and its ratio to the previous etror,
we find:
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Ifg(x) =v2x + 3 Ifgx)=3/(x—2)
Iteration Error Ratio Error Ratio
1 0.31662 0.31662 2.50000 0.50000
2 0.10375 0.32767 —5.00000 —2.00000
3 0.03439 0.33143 0.62500 —0.12500
4 0.01144 0.33270 —0.26316 —0.42105
5 0.00381 0.33312 0.08065 —0.30645
6 —0.02762 —0.34254
7 0.00912 -0.33029
3 —0.00305 —0.33435

Notice that the magnitudes of the ratios seem to be leveling out at 0.3333. In fact, if the
iterations are continued, they become exactly one-third.

Accelerating Convergence

For any iterative process where the errors decrease proportionally, we can speed the con-
vergence by a technique known as Aitken acceleration. Based on the assumption that each
error is a constant times the previous error, we can write

) — Cnt)

2

€n+1 €y

or, because ¢, = R — x,, where R is the true value for the root,

R — Xnta . R — Xnit

R T Xn+1 R - Xy |
giving(R —x, . )) (R—x,) = (R — xn+1)2, which we can solve for R:

* — 42
R = Xn " Xpyo Xt

Xn ™ 2xn+l + Xn+2

Let us apply this to the first three computations from x = g(x), where g(x) = V2x + 3.

Substituting the values for Xg X1, and x,, we get R = 3.00744, closer to the true value
of 3.0.

There is a better way to do this extrapolation, called the A? process, that uses fewer

arithmetic operations. Define Ax, = x, . | — x, and Azxn =Ax,  — Axn, and the equation
for R can be written as

Ay
VO

Let us apply this to the first three computations from x = g(x), where g(x) = \2x + 3.

R=x
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x Ax A%
4
0.68338
3.31662 0.47051
0.21287
3.10375

Extrapolating, R = 4 — (0.68338)%/0.47051 = 4 — 0.99256 = 3.00744, which is closer to
the true value than the fifth iterate when we didn’t extrapolate. We could proceed from this
point to do two more iterations and then extrapolate again. For this simple definition of
g(x) it may not seem worth the effort; when g(x) is expensive to compute, it certainly is.

Some Theory

The above demonstrated that fixed-point iterations seem to converge linearly. We now
show when this is true. We have
Xpr1 T 8 (xn)’

and we can write this relation for the error after iteration n + 1, where R is the true value
of the root:

R—x,, ,=R—gk)=gR —gx,)
because, when x = R, R = g(R). Multiplying and dividing by (R — x,):

_ (&R — glxy)

R—xn+1 (R — x ) (R_Xn),

we can use the mean-value theorem™ [if g(x) and g'(x) are continuous] to say that
R—x,,,=8()*R—x),

where £, lies between x, and R.
Writing e, for the error of the nth iterate, we have

il = 187(E)] * e,

because ¢, the error inx, is R — x,. (We take absolute values because the successive iter-

ates may oscillate around the root.)
Now suppose that |g'(£, )| < K < 1 where K < 1 on some interval of size h around the

root R. If we begin with an x-value in this interval, fixed-point iterations will converge
because

lenl = Klen—ll = K2|6n72‘ = K3\en_3‘ — e = Knle()l'

* This theorem is covered in Appendix A.
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This proves that the fixed-point method is linearly convergent in the limit as x,
approaches R, provided that we start within the interval where | K| < 1.

Convergence of Newton’s Method

Newton’s method uses iterations that resemble fixed point:
_ o S

n+l xl’l fl (x )
n

Successive iterates will converge if |g' (x)|] < 1, and, doing the differentiation, we see that
the method converges if

X

= g(x,).

lg' (0| =

‘f(x) O a

Lf' (0P

which requires that f(x) and its derivatives exist and be continuous. Newton’s method is
shown to be quadratically convergent by the following: As before,

R=x,., = g® — glx,).

Now we expand g(x,) as a Taylor series in terms of (R — x,), with the second derivative
term as the remainder, getting

glx) = g®) + g'(R) * (R — x,) + (g"(&/2) * R — x,)?, 1.2)
where £ lies within [x,, R]. However, from Eq. (1.1),
, SR *f"(R)
R = L=l L VY
because f(R) = 0 at the root and Eq. (1.2) reduces to
glx,) = gR) + (g"(€)2) * (R — x). (1.3)

Using e, = R — x, for the error of the nth iterate, Eq. (1.3) becomes
en+1 =R - xn+1 = g(R) - g(xn) = (g"(g’-)/Z) * (en)z;

proving that Newton’s method is quadratically convergent.

Convergence of the Secant Method and False Position

Both of the secant method and false position use iterations that can be written as
P ()
t f(xn) —f(xn—~1)

which is similar to x = g(x), except that x = 8(x,, x, ). When we apply Taylor series, the
derivatives are pretty complicated; we omit the details. It turns out that the error relation is

€1 = 8L §)2% e, " e,

(xn - xn—l)’
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showing that the error is proportional to the product of the two previous errors. We can
conclude that the convergence is better than linear but poorer than quadratic.

Pizer (1975) shows that the order of convergence of the secant method is (1 + \5)/
2 =1.62.

Multiple Roots

A function can have more than one root of the same value. Look at Figure 1.9. The curve
on the left has a triple root at x = —1 [the function is (x 4+ 1)*]. The curve on the right has
a double oot at x = 2 [the function is (x — 2)2]. If there were more than two or three roots,
the plots would be similar except they would be flatter near the x-axis and rise more
steeply away from the root.

The methods we have described do not work well for multiple roots. For example,
Newton’s method is only linearly convergent at a double root. f(x) = (x — 1) (¥~ — 1)
has a double root at x = 1, as seen in Figure 1.10. Table 1.4 gives the errors of successive
iterates and the convergence is clearly linear.

When Newton’s method is applied to a triple root, convergence is still linear, as seen in
Table 1.5. With a triple root, the ratio of errors is larger, about %, compared to % for the dou-
ble root of Table 1.4.

In addition to a slow convergence, there is another disadvantage to using these methods
to find multiple roots: imprecision. Because the curve is “flat” in the neighborhood of the
root—f’(x) will always be zero at a multiple root, as is apparent from Figure 1.9—there is
a “neighborhood of uncertainty” around the root where values of f(x) are very small. Thus,
the imprecise arithmetic of almost all computational devices will find f(x) “equal” to zero
throughout this neighborhood; that is, the program cannot distinguish which x-value is
really the root. Using double precision will decrease the neighborhood of uncertainty. In

60 | T T T i

Figure 1.9

Figure 1.10
Plot of (x — 1) (¢®~D — 1)
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Table 1.4 Errors when finding a double root

Iteration Error Ratio
1 0.3679
2 0.1666 0.453
3 0.0798 0.479
4 0.0391 0.490
5 0.0193 0.494
6 0.0096 0.497
7 0.0048 0.500
8 0.0024 0.500

fact, MATLAB’s ‘vpa’ command can give as much precision as desired, even to 100 sig-
nificant figures, so this “neighborhood” can be very small.

Remedies for Multiple Roots with Newton’s Method

When f(x) has only one zero at x = R, we saw in Section 1.5 that Newton’s method is qua-

dratically convergent. We did this by examining the Taylor expansion for g(x) about
(x — R) where

f05,)
A

g(x,). (1.4)
That series was
gx,) = g®) + g’ (R * (R — x,) + (£"(6)2) * (R — x,)%, (1.5)

and we saw that g'(R) was zero.

However, if f(x) has a root of multiplicity £ at x = R, we can factor out (x — R)* from
fx) to get

f® =@ - RFOow) (1.6)

Table 1.5 Successive errors with Newton’s method,
forf)=(x+ 1 =0

Iteration Error Iteration Error
0 0.5 6 0.0439
1 0.3333 7 0.0293
2 0.2222 8 0.0195
3 0.1482 9 0.0130
4 0.0988 10 0.00867
5 0.0658
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where Q(x) has no root at x = R. That means that Q(R) is nonzero, even though f(R),
F'R),f"(R), . ..f % D (R)are all zero, as is readily found by differentiating Eq. (1.6). We
then see that the denominator and numerator in Eq. (1.4) are both zero. While this is an
indeterminant form, we cannot say that g'(R) is zero, confirming that Newton’s method
with multiple roots is only linearly convergent.

Look now at a different formulation of Newton’s method:

&) _
J )
As before, at f(R) = 0, g,(R) = R. Using the reformulation of f(x) as given by Eq. (1.6),
and differentiate, we get

_ R = 0{k(r = )QQ" + O'[2kQ — (k — DR — x)Q']}
[(R — 00" + kQP

and we see that g’'(R) = 0. From the preceding argument, then, the modified Newton’s
method now converges quadratically at a multiple root. (It also does so at a simple root
with k = 1, of course.) Using this method to get the root of f(x) = (x — 1) * (¥~ D — 1),
we find that the third iterate is x = 1.00088 with f(x) = 0.00000. We also find that e, , =
024 * e 3, confirming quadratic convergence.

This algorithm would seem to solve the problem of multiple roots using Newton’s
method, but we don’t know the multiplicity of the root in advance! (This objection is a lit-
tle academic as the following argument shows.)

We might guess at the value for k and see whether we get quadratic convergence, or we
could try several values and see what happens. Better yet, we could compare a graph of
f(x) with the plots of (x — R), using an approximate value for R and various values for .
The “flatness” of the curves will be the same for f(x) and the plot of equivalent multiplic-
ity. We wonder, though, whether all such effort is justified — why not just live with the lin-
ear convergence? We will find the root with sufficient accuracy from that operation long
before we complete the alternative explorations.

Another solution to multiple roots is tempting to consider. We can divide f(x) by
(x — R) and deflate the function, reducing the multiplicity by one. The problem here is that
we don’t know R. However, dividing by (x — s), where s is an approximation of R does
almost the same thing. We suggest that you might want to explore this idea. Be warned that
the division creates an indeterminate form at x = R and a strong discontinuity at x = s.

Acton (1970) gives another technique by which we may obtain a multiple root with
quadratic convergence. If f(x) has a root of multiplicity k£ at x = R, we have f(x) =
(R — x)* * O(x). Let S(x) be f(x)/f'(x), so that

& — RO _ (x — R)OX)
kx = RY'00) + (x = RFQ'(x)  kQW) + (x — Q')

which has a simple root at x = R. When S(x) is used in the Newton formula, we get

Sk )
n+1 i S’(xn) 7 [f’(xn)]z —f(xn) *f”(xn)

Kyp =X, —k* gx,). (1.7)

El

g'(x)

Sx) =
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and we see that we need to evaluate three functions at each iteration: f(x,), f'(x,), and
f"(x,). Acton also points out that there are nearly equal quantities being subtracted in the
denominator, a source of arithmetic error.

Nearly Multiple Roots

1.7.

A problem related to multiple roots is a function that has two or more roots very close
together. If these roots are all within the region of uncertainty (which is a function of the
arithmetic precision we are using), they are effectively mulitiple roots, because for all of
them f(x) is computationally equal to zero.

Newton’s method is again essentially linearly convergent when we have nearly equal
roots, provided that we start outside the interval that holds the roots. Unfortunately, modi-
fying the method by considering them to be multiple roots doesn’t work; often an infinite
loop occurs. If we are so unlucky as to start between two almost equal roots, Newton’s
method can fly off to “outer space,” as we previously observed.

Whenever we want to find roots that are near f'(x) = 0, we are in trouble. We strongly
recommend that you graph the function, before jumping into a root-finding routine, to see
in advance whether such problems will arise.

Nonlinear Systems

When we have a system of simultaneous nonlinear equations, the situation is more diffi-
cult. In fact, some sets have no real solutions. Consider this example of a pair of equations:

x2+y2=4,
ef+y=1.

Graphically, the solution to this system is represented by the intersections of the circle

x* + y2 = 4 with the curve y = 1 — &%, Figure 1.11 shows that these are near (—1.8, 0.8)
and (1, —1.7).

Newton’s method can be applied to systems as well as to a single nonlinear equation.
We begin with the forms

S,y =0,
glx,y) = 0.

Letx = r, y = s be a root, and expand both functions as a Taylor series about the point
(x;, yp) in terms of (r — x,), (s — ¥,), where (x;, ;) is a point near the root:

S, 8) =0 =[x, y) + [0, )0 = x) + [0, y)s = y) + -+ -,
gr, ) =0= g(x,» y,-) + gx(x," ¥ — x) + gy(xl-, Y —y) +
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(-1.8,0.8)

...
w

\(1,—1.7)

Figure 1.11

Truncating both series gives
0=FC,y) + 1 GHy) (r—x) + £, 5) 5 — ¥,
0=g@,y)+8 0,y (r—x)+ g, y) (s~ ),

which we can rewrite as

fo G y) Ax; + f, (x5 y)Ay; = —f (%, 9),

8, Oy ¥) Ax; + g, (%, y)Ay; = —g (x;, ), (1.8)

where Ay, and Ay, are used as increments to x; and y;, so that x;, = x; + Ax;and y,,, =
y; + Ay; are improved estimates of the (x, y) values. We repeat this until both f(x, y) and
g(x, y) are close to zero.

The extension to more than two simultaneous equations is straightforward, but solving
larger sets of equations requires information from the next chapter.

We illustrate by solving the example at the beginning of this section:

foy)=4-x*—y =0,
g,y =1—-€—y=0.
The partial derivatives are

fo=-22  f,=-2,
g, = —¢, 8, = -1.

Beginning with x, = 1, y, = —1.7, where
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fo=-2, f,=34,
g, = —2.7183, g,= —10,
£(1, —1.7) = 0.1100, g(1, —1.7) = —0.0183,

we solve
-2 Axo + 3.4Ay0 = —0.1100,
—2.7183 Axo — 1.0 Ayo = 0.0183.

This gives Ax, = 0.0043, Ay, = —0.0298, from which x; = 1.0043,y, = —1.7298. These
agree with the true value within 2 in the fourth decimal place. Repeating the process once
more produces x, = 1.004169, y, = —1.729637. The function values at this second itera-
tion are approximately —0.0000001 and —0.00000001.

Newton’s method, as you would expect, converges quadratically when we are near the
solution but notice that it is rather expensive. For even this 2 X 2 system there are six func-
tion evaluations at each step. For a 3 X 3 system, there are twelve. For a n X n system, the
number is n? + 7.

For larger systems, the number of function evaluations can be reduced by not recom-
puting the partials at every step but only after » steps, reusing the same values » times (n
being the number of equations). We then only need to evaluate the n function values until
we again update the partials. We do sacrifice quadratic convergence thereby but it is usu-
ally better than linear. Unfortunately, this modification of Newton’s method for a system
can diverge unless we are close to the roots.

With MATLAB, getting the solution to a system is =asy:

EDU>> [x, y] =solve {'x"2 +y"2=4", 'exp(x)+vy=1")
< =

—1.8162640688251505742443123715859
y =

1 —exp(—1.8162640688251505742443123715859)

but this is the leftmost intersection! We can get the one near (1, —1.7) with

EDU>> [x, y] =solve('abs (x"2)+y"2 =4, 'exp(x)+y=1")
w =
1.0041687384746591657874315472901
v =
—1.7296372870258699313633129362508

which reproduces the result from Newton’s method with many more digits.

Solving a System by Iteration

There is another way to attack a system of nonlinear equations. Consider this pair of equations:
& —y=0,
xy —e*=0.
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We know how to solve a single nonlinear equation by fixed-point iterations-—we rearrange
it to solve for the variable in a way that successive computations may reach a solution.
Sometimes we can do the same for a system. Let us solve the first of the pair for x and the
second for y:

x=In(),
y = éelx
To start, we guess at a value for y, say, y = 2. We enter this into the first rearranged equa-

tion and get an x-value that we use in the second. This gives a new value for y from which
we get a new value for x, and repeat. Here is what we get:

y-value x-value
2 0.69315
2.88539 1.05966
2.72294 1.00171
2.71829 1.00000
2.71828 1.00000

which are precisely the correct resullts.
Here is another example for the pair of equations whose plot is Figure 1.11:

X+ y2 =4,
g+y=1.
If we will try this rearrangement:
x=1In( —y),
and begin with x = 1.0, the successive values for y and x are:
x = 1.0051, y= —1.7291,
x = 1.00398, y = —1.72975,
x = 1.00421, y = —1.72961,
x = 1.00416, y = —1.72964,
x = 1.00417, y = —1.72963,

and we are converging to the solution in an oscillatory manner.
Other rearrangements are possible. You may wish to see that this one diverges from the

starting point (1, —1.7):
y=@-—x2y, x=kh{-y).

You may also want to see that both rearrangements diverge when used to find the intersec-
tion in the fourth quadrant, and to discover rearrangements that will converge to this point.



Exercises

Section 1.1

1.

»3.

»7.

The function f(x) = 2 * sin(x) — /4 — 1 is zero for
two values near x = —35. Use bisection to find both,
starting with [—7, —5] and [—5, —3]. How many itera-
tions are needed to get results that agree to five signifi-
cant figures?

The quadratic (x — 0.3) * (x — 0.5) obviously has
zeros at 0.3 and 0.5.

a. Why is the interval [0.1, 0.6] not a satisfactory start-
ing interval for bisection?

b. What are good starting intervals for each root?

¢. If you start with [0, 0.49] which root is reached with
bisection?

Which root from [0.31, 1.0]?

Where do the curves of y = cos(x) and y = x> — 1
intersect? Use bisection.

The function f(x) = x * sin({x — 2)/(x — 1)) has many
zeros, especially near x = 1 where the function is dis-
continuous. Find the four zeros nearest to x = 0.95 by
bisection, correct to five significant figures. How can
you find good starting intervals?

Suppose that your computing device has only 3 bits
(plus one hidden bit) for the fraction part. There are
large gaps between the numbers that can be stored, as
indicated by a sketch in Section 0.4. The relation
3 *sin(x) = x> — 2 is true at a point very near to
x = 2.13. If you begin bisection with a starting interval
of [1, 3], what will be the successive x-values that are
used in finding the solution?

Exercise 5 is an extreme example that shows that every
computer that uses a finite number of bits to represent
the fraction part has gaps between the machine num-
bers. This limits the accuracy when finding where f(x)
is zero. What is the limit to the accuracy of getting a
zero by bisection if the number of fraction bits (includ-
ing the hidden bit) is m?

How many iterations of bisection will be required to

attain an accuracy of 10~ if the starting interval is
la, b]?

Section 1.2

8.

Repeat Exercise 1 but use the secant method. How
many fewer iterations are required?

»9.

10.

11.
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Repeat Exercise 1 but now use regula falsi. Compare
the number of iterations with Exercises 1 and 8.

Explain why the secant method usually converges to
reach a given stopping tolerance faster than either
bisection or linear interpolation.

In bisection and the method of false position, one tests
to see that a function changes sign between x = g and
x = b. If this is done by seeing if f(a) * f(b) <O,
underflow may occur. Is there an alternative way to
make the test that avoids this problem?

Section 1.3

12. Solve Exercise 3 with Newton’s method.

13.

»>14.

15.

16.

17.

18.

The function f(x) = 4x> — | — exp (x2/2) has values of

zeronear x = 1.0 and x = 3.0.

a. What is the derivative of f7

b. If you begin Newton’s method at x = 2, which root
is reached? How many iterations to achieve an error
less than 10737

c. Begin Newton’s method at another starting point to
get the other zero.

d. For both parts (b) and (c), tabulate the number of
correct digits at each iteration.

Apply Newton’s method to the equation x> = N to

derive this algorithm for getting the square root of N:

] _1 N
an—? xn-{‘“x——.

Find algorithms for getting the third and fourth roots of
N that are similar to that in Exercise 14 for the square
root. Can this be generalized for the nth root?

If the algorithm of Exercise 14 is applied twice, show that
A+ B + A*B
4 A+ B’

(A * )3)1/2 ~—

Show that the error of the approximation in Exercise 14
is nearly equal to

(A- By
16 (4 + B~
f(x) = (x — 1) (x + 1) obviously has roots at +1 and

— 1. Using starting values that differ from the roots by
0.2, compare the number of repetition of Newton’s
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19.

»20.

21.

22.

23.
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method required to reach the roots within 0.0001.
Explain the difference.

Newton’s method will find complex roots. Find the
roots of these relations including the complex ones:

a x¥+2=0

b. 2x3 —3x% = 1.

c. x2=(e % — 2.

The sum of two numbers is 20, the square root of their
product is 9. What are the numbers?

A fourth-degree polynomial, £, (x), is
Pyx) = 1.1x* + 4.6x° + 6.6x2 — 12x — 16.

a. Use synthetic division (by hand) to get P (—1) and
P'(—1).

b. One of the real roots of P(x) is near to x = —1. Use
the results of part (a) to get a first estimate of the root.
Then continue until you have the root to within 0.001.
How does each error compare to the previous error?

c. A second real root of P(x) is near 1.5. Perform
Newton’s method with synthetic division on P (x) to
get this second root. Again compare the successive
erTors.

d. Use the result of part (b) to deflate P(x) to obtain a
cubic polynomial. Then repeat part (b) on this cubic.
Do you get the same answer as you did in part (c)?

e. What are the last two roots?

P,x)=(x—11) (x = 2.2) (x —3.3) (x — 4.4) has
four positive roots, of course. Expanded, P (x) is

¥ — 11023 + 42.35x% — 66.55x + 35.1384.

a. Use Newton’s method to get the roots, each correct to
only three significant digits. Do this by deflating the
polynomial after getting a root and then getting the
next from the deflated polynomial. Start each compu-
tation with an x-value 10% greater than the actual root.

b. Which gives more accuracy on the successive roots?
(1) Begin with the largest root and work down to the
smallest, or (2) work up from the smallest root.

Inaccuracies in the coefficients of a polynomial can
sometimes have a very great influence on the values of
the roots.

a. How do the roots of Exercise 22 change if the coeffi-
cient of x> were —11.11 (a 1% change)? Are any of
the roots relatively unaffected?

b. Investigate the effect of a 1% change in the other
coefficients. In which of the coefficients does a

»24.

25.

26.

217.

p28.

29.

»30.

change by this amount cause the greatest change in the

computed roots?

c. What if all the coefficients are increased by 1%7?
Does this cause an even greater change in the roots?

Synthetic division finds P{a) by dividing P (x) by (x —

a), then gets P’ (a) by synthetic division of the reduced

polynomial. Does this mean that we can evaluate

P"(a), P"(a), . . . by repeated divisions?

This polynomial obviously has roots at x = 2 and at

x = 4; one is a double root, the other a triple root:

P)=( =203 (x— 42
= x5 — 14x* + 76x3 — 20057 + 256x — 128.

a. Which root can you get with bisection? Which root
can’t you get?

b. Repeat part (a) with the secant method.

¢. If you begin with the interval [1, 5], which root will
you get with (1) bisection, (2) the secant method, (3)
false position?

Use Newton’s method on the polynomial of Exercise

25 with x, = 3. Does it converge? To which root? Is

convergence quadratic?

An equation in Section 1.6 shows how to restore qua-
dratic convergence when Newton’s method is used for
multiple roots. Use this device to restore quadratic con-
vergence in getting both roots of the polynomial in
Exercise 235.

Apply Newton’s method to the derivative of the poly-
nomial of Exercise 25 to get the double root. Show that
the convergence is now quadratic. How can this tech-
nique be applied to get the triple roots with quadratic
convergence?

If P(x) is divided by P'(x), the resulting polynomial is
effectively deflated and the multiplicity of roots is
reduced.

a. Plot the P(x) of Exercise 25.

b. Plot P(x)/P'(x). What is the muitiplicity of the dou-
ble root of P(x)?

c. What is the multiplicity of the triple root?

d. If P(x) is divided by P’(x) and this quotient is
divided by P"(x), what is the result?

This quadratic has two nearly equal roots:
Py(x) = x2 — 4x -+ 3.9999.

a. Which root do you get with Newton’s method start-
ing at x = 2.1? Is convergence quadratic?



b. Repeat part (a) but starting with x = 1.9.

¢. What happens with Newton’s method starting from
x=2.0?

d. Repeat part (c) but change P(x) so it has roots at
2.01 and 2.03. If you start with x, = 2.02, are the
results similar to those of part (¢)? If not, explain.

Section 1.4

31.

»32.

33.

3.

3s.

Use Muller’s method to find roots of these equations.

a. 4x3 — 3x% + 2x — 1 = 0, root near x = 0.6.

b. x2 + ¢ =5, roots nearx = 1, x = —2.

¢. sin (x) = x2, root near 0.9. What are other roots?

d. tan (x) + 3x% — 1, root near 0.8 and three others
near x = 0.

Muller’s method can be started in a “self-starting” way.
One automatically begins with [—0.5, 0, 0.5] rather
than with x-values near the root. Use this technique on
a function with three roots near to zero. It has been said
that the root nearest x = 0 will be found. Is this true?

After one root of f(x) is found, another root can be
found from the deflated function. To deflate a function,
we form g(x) = f(x)/(x — r), where r is the first root;
g(x) has all the roots of f(x) except r. To see that this is
true, compare the graphs of

) =x@2x—2)(3x - 3),

g =(2x—2)(3x = 3),

hix) = x (2x — 2),

k() =x(3x —3).
When will Muller’s method fail? Are there times when

the quadratic that is formed does not have a real solution?
If this occurs, what can you do to remedy the situation?

Muller’s method can find complex roots if complex
arithmetic is used. Do this to find the complex roots of

fy=xr—x-2

Section 1.5

36.

Most functions can be rearranged in several ways to
give x = g(x) with which to begin the fixed-point
method. For f(x) = ¢* — 2x2, one g(x) is

x = *~(e¥2).

a. Show that this converges to the root near 1.5 if the
positive value is used and to the root near —0.5 if the
negative is used.

»37.

38.

39.

»40.

41.
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b. There is a third root near 2.6. Show that we do not
converge to this root even though values near to the
root are used to begin the iterations. Where does it
converge if x, = 2.57 If x;, = 2.77

c. Find another rearrangement that does converge cor-
rectly to the third root.

Here are three different g(x) functions. All are

rearrangements of the same f(x). What is f(x)?

a. (4 + 23)/(x%) ~ 2x.

b. V(4/x).

c. (16 + 3)/(5x2).

d. Which of these converge? What x-value is obtained?
Are there starting values for which one or more
diverge? Which diverge?

Iff(x) = x2 + 2x — 1 = 0, one form of g(x) is 1/(x + 2).

a. How many iterations are needed to attain a tolerance
value of 1. 0E-5, starting with x, = 1.07

b. If Aitken acceleration is used, is this speeded up?

c. The function has a second root. Will this g(x) con-
verge to it? If not, find another rearrangement that
does. See if Aitken acceleration will speed conver-
gence.

In Exercise 38, for what ranges of starting values does
the g(x) function converge? [If a division by zero
occurs, as it does with the first g(x) when x = =2, do
not stop but continue with the next iterate equal to zero.]

The cubic x> — 2x% — x + 1 has three real roots; one is
negative.

a. Find a rearrangement that converges to the negative
root. Will this converge to either of the positive roots?

b. Find a rearrangement that will converge to the larger
positive root. Will this same rearrangement con-
verge to the other roots?

c. Find a different rearrangement that converges to the
smaller positive root. Does it work for the other
roots?

Can V5 be approximated through fixed-point iteration?
Define a f(x) and a g(x) to do this if it can. Can you
find several forms of g(x)?

Section 1.6

»42. When a polynomial, P(x), has coefficients that are all

real numbers and a root that is complex, this root
comes with a companion, its complex conjugate. The
product of these two roots is a quadratic with real coef-
ficients. Bairstow’s method is a technique that uses
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synthetic division of P(x) by a trial quadratic, and from
the remainder of this division, a monomial, gets values
that are used in a two-dimensional Newton’s method to
close in on the correct quadratic factor. The algorithm
for this synthetic division is somewhat complicated
(previous editions of this book give the details).
However, MATLAB makes it easy to divide P(x) by the
trial quadratic. The command ‘[p, ] = deconv (P, Q)
divides polynomial P by quadratic Q to give the
reduced polynomial p and the remainder monomial 7.

a. Use MATLAB to divide P by Q to get p(x) and r(x)
where

P =x+x+x-3, Q@=x>+x+1

b. Part (a) gives a remainder that has nonzero coeffi-
cients, so you know that Q(x) is not a factor. Repeat
part (a), but now use Q(x) = 22 + 2x + 3. Do you
get a remainder? A zero remainder means that the
trial quadratic is an exact factor. The coefficients of
q are those of the other factor (a monomial, in this
instance).

Graeffe’s root-squaring method has the advantage that
no initial estimate for the roots is necessary. It is based
on the fact that when P(x) is multiplied by P(—x), the
result has roots that are the squares of the roots of P (x)
and these are spread farther apart than those of the orig-
inal polynomial. (Of course, the signs of the roots are
lost in the process.) If this is repeated n times, the mag-
nitudes of the roots of P (x) are given by

](aj/aj+1)| forj=0...(n-1).

a. MATLAB’s command ‘conv (4, B) gets the product
of polynomials A and B so this can be used to do the
multiplying. The trick is to get P(—x) easily. Use
Graeffe’s method to show that the roots of this poly-
nomial are 1, —2, and 4:

P(x) = x> — 3x> —6x + 8.

b. What will the method do if there are complex roots?
c. Will the method work if some of the coefficients are
themselves complex numbers?

Laquerre’s method starts with an estimate of a root of
P(x), say, x = a, which we hope is near to the desired
root of P(x). (One authority calls this a “sure-fire
method.” It does make a pretty rash assumption about
all other roots than the one we seek, but the assumption
is valid.) To use the method, two quantities are first
computed:

45.

A = P'(@/Pa), B=A%~- P"(a)/P(a).

From these two quantities, we compute another quan-
tity, d, by

n
S AxAN@n - )@B - AY°

d

where the positive sign is used if A is positive and the

minus sign if it is negative. If this value, d, is subtracted

from the original estimate, a, a — d is an improved esti-
mate. The procedure is continued until the adjustment,

d, is negligible.

a. For P(x) = x3 — 8.6x% + 22.41x — 16.236, use
Laguerre’s method, starting with ¢ = 1.0, to find a
root at x = 1.2.

b. Repeat part (a), but start with a = 5.0 to find a sec-
ond root.

c. From the results of parts (a) and (b), get the third
root without doing further approximations.

Do some research of the literature to find out about the
following methods. Neither of them require an initial
approximation.

a. Lehmer’s method.

b. The QD algorithm.

¢. Use one of the methods on a polynomial of degree 4.

d. Compare the efficiency of these methods to
Newton’s method. How do they work for complex
roots?

Section 1.7
46.

For this system of two equations

y=cosz(x),
2+yr—x=2,

a. Plot the two equations and observe two intersections
that occur near x = 2 and x = —1.

b. Substitute y from the first equation into the second,
getting an equation in only x. Solve this equation for
the x-value(s) by any of the methods in this chapter
to find where the function is zero, then substitute
this x-value in either of the original equations to get
y-values.

c. Repeat part (b) but now solve for x from one equa-
tion and use it to eliminate x from the other. You
should get the same solutions, of course, but which
is easier to use?



47.

d. Compute the partial derivatives of the equations and
use them to find the solutions by Newton’s method
for a system, starting with the points [2, 0.2] and
[—1,0.3].

e. When is the technique of part (b) not a good option
compared to using Newton’s method?

MATLAB finds six solutions to this system and two are

complex valued. Two of the real solutions are near
(1,1, 1yand (1.3,09, —1.2).

x—3y—72= -3,
23 +y - 522 = =2,
4 +y+z="T.
a. What are the partial derivatives that would be used
in Newton’s method?
b. The matrix of partial derivatives is called the

Jacobian matrix. For the starting vector [1, 1, 1],
what are its elements?

48.

49,

»50.

51.

52.
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¢. Complete getting the two solutions with Newton’s
method. Find starting values that converge. Is con-
vergence quadratic?

Repeat Exercise 47, part (c), but now only recompute
the elements of the Jacobian after every third iteration
rather than each time. How does the rate of conver-
gence compare o that of Exercise 477

Compare the number of function evaluations with those
needed in both Exercises 47 and 48 to perform five iter-
ations.

Can the system of Exercise 46 be solved by iteration?
Do this if you think it is possible, or explain why it can-
not be done this way.

Repeat Exercise 50, but for the equations in Exercise
47,

Use MATLAB to get the solutions referred to in
Exercise 47.

Applied Problems and Projects

APP1.

If an initial amount of money is invested and earns interest compounded annually at the rate of i %,

the “Rule of 72” says that the money will double in about 72/i years. This is only approximately true,

the exact final amount is given by

S =P(1 +i/100y,

where S is the final amount, P is the initial amount, and 7 is the number of years. Make a table com-
paring the exact values for the number of years for P to double with that from the rule. Do for i from

2% 10 12%.

a. At what interest rate is the Rule of 72 exact?

b. Interest is often added to the account more frequently than annually. This makes the growth faster.
What would be a good “Rule” value if interest is compounded:

quarterly?
monthly?
daily?
continuousty?

APP2. Given are

X +x+2y +y=f0,

X' —x+y=g(,

x(0) = x'(0) = y(0) = 0.

In solving this pair of simultaneous second-order differential equations by the Laplace transform
method, it becomes necessary to factor the expression.

E+DEO - @S+ ISP - 1) =—-$ -2 +35+1,

so that partial fractions can be used in getting the inverse transform. What are the factors?
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DeSantis (1976) has derived a relationship for the compressibility factor of real gases of the form
1ty +yr—y
(1 -yy

where y = b/(4v), b being the van der Waals correction and v the molar volume. If z = 0.892, what is
the value of y?

2

»

In studies of solar-energy collection by focusing a field of plane mirrors on a central collector, one
researcher obtained this equation for the geometrical concentration factor C:
c- m(hicos APF
0.57D*1 + sinA — 0.5 cos A)

where A is the rim angle of the field, F is the fractional coverage of the field with mirrors, D is the
diameter of the collector, and % is the height of the collector. Find A if # = 300, C = 1200, F = 0.8,
and D = 14,

Lee and Duffy (1976) relate the friction factor for flow of a suspension of fibrous particles to the
Reynolds number by this empirical equation:

1 1 5.6
— = [ In (RENf +(14———>.
(oo -
In their relation, £ is the friction factor, RE is the Reynolds number, and & is a constant determined by
the concentration of the suspension. For a suspension with 0.08% concentration, k = 0.28. What is
the value of fif RE = 3750?

Based on the work of Frank - Kamenetski in 1955, temperatures in the interior of a material with
embedded heat sources can be determined if we solve this equation:

e—(]/Z)t cosh™1 (e(I/Z)I) — %Lcr'

Given that L, = 0.088, find 7.
Suppose we have the 555 Timer Circuit

Ve
R 4 8
A
6 %————O Output
2 555
Rp 5
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whose output waveform is

T1 »«—T2—>

where
T+ T, =~
1 2 f
f = frequency
Duty cycl L 100a
cycle = ———— .
ey 7, + T, °
It can be shown that
7, =R,Cln(2)
7= RuRsC m( Ry — 2Ry )
R, + R, 2R, — Ry

Given that R, = 8670, C = 0.01 X 1076, T, = 1.4 X 1074,

a. Find T, f, and the duty cycle.
b. Find R using any program you have written.
c. Select an fand duty cycle, then find 7| and T,.

In solving this boundary-value problem by the Fourier series method,

y'tAay=0, y0)=0, y@ =y,
we must find the values of z where tan (z) = z. Find three positive solutions where the equation is sat-
isfied. Make a graph fo get approximate values. Compare several methods to see which is faster.

In Chapter 5, a particularly efficient method for numerical integration of a function, called Gaussian
quadrature, is discussed. In the development of formulas for this method, it is necessary to evaluate
the zeros of Legendre polynomials. Find the zeros of the Legendre polynomial of sixth order:

1
Pyx) = 21(693x° — 045x* + 3152 — 15).
(Note: All the zeros of the Legendre polynomials are less than one in magnitude and, for polynomi-
als of even order, are symmetrical about the origin.)

The Legendre polynomials of APP9 are one set of a class of polynomials known as orthogonal poly-
nomials. Another set are the Laguerre polynomials. Find the zeros of the following:

a.Lx)=x"—92+18x—6
b. L,(x) = x* — 16x3 4+ 72x% — 96x + 24

Still another set of orthogonal polynomials are the Chebyshev polynomials. (We will use these in
Chapter 4.) Find the roots of

Ty(x) =32x° = 48x* + 18x2 — 1 = 0.

(Note the symmetry of this function. All the roots of Chebyshev polynomials are also less than one
in magnitude.)

A sphere of density d and radius r weighs %‘77 73d. The volume of a spherical segment is % w(3rh? — B3).
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APP13.

APP14.

APP15.

APP16.

APP17.

APP18.

APP19.

APP20.
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Find the depth to which a sphere of density 0.6 sinks in water as a fraction of its radius. (See the accom-
panying figure.)

LAAAA A TR T AAALAALAY
h
v

For several functions that have multiple roots; investigate whether Aitken acceleration improves the
rate of convergence. Do this for several methods.

Make experimental comparisons of the rates of conversion for Newton’s method, for Newton’s
method with the derivative estimated numerically, and for the secant method. Make a table that
shows how the errors decrease for each method, then make a log plot of the errors.

When two alternative machines, A and B, are considered for purchase, the choice is often based on
what is termed the “‘break-even time.” If the machine will be used for less than this time, machine A
is purchased, if greater, it is B. Suppose these costs and benefits apply:

Machine A Machine B

Initial cost $3250 $5680
Annual expenses 510 830
Annual return 860 1070

In finding the answers, you should reduce all costs to their “present worth.”

a. What is the break-even time?
b. Find the values of costis/benefits for several years before and after the break-even time.
¢. Which is preferred if the machine will be used for only four years?

Muller’s method is said to converge with an order of convergence equal to 1.85. Verify this experi-
mentally. Is it true if there is a multiple root?

Spreadsheet programs can perform iterated computations. Devise and test a spreadsheet program that
implements fixed-point iterations.

Repeat APP17, but for the

a. Bisection method,

b. Newton’s method.

Fixed-point iterations sometimes converge (a) by “walking up a staircase” (Fig. 1.8a) or (b) “spi-

rally” (Fig. 1.8b), or they may diverge (Fig. 1.8c). The conditions for these cases are discussed in

Section 1.5, and we have shown that convergence is of order 1. This means that Aitken acceleration

applies. Jones (1982) discusses other ways to accelerate the convergence; so does Acton (1970).
Consider this problem: Where do the curves for ¢” + 1 = ¢* and x*> + y? = 1 cross? One inter-

section is near (0.9, 0.4). Find rearrangements of the form x = g(x) that converge to this intersection

and compare how fast they converge. Apply several acceleration techniques to this.

a. The rate of flow of water through a stream is often measured by installing a weir. This amounts to
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building a dam across the stream with a vee-shaped notch near the center (the point of the notch is
down). If the upstream velocity is neglected, the flow Q (ft3/sec) is related to distance A (ft) from the

surface of the upstream water to the point of the vee and to the angle 8 (degrees) between the sides of
the notch by this formula:

8 0\, =
0 =059* (—15—> * tan (7) *(2g) * h?3,

where g is the gravitational constant, 32.2 ft/secZ. If Q = 200, make a table that shows how 4 is
related to 6 for values of 8 between 20 and 130 degrees. Can this be done without using one of the
methods of this chapter?

b. More often, weirs have a rectangular notch. Look up formulas for this case, but now the formula
should allow for the effects of the velocity of the incoming water, v. Make a table that shows how
h varies with v for several values of the width of the notch. Can you do this without using a
method of this chapter? (You might want to repeat this for other notch configurations.)

It once was thought that the planets revolved around the sun in circular orbits. Johannes, Kepler
(1571-1630), using the observations of Tycho Brahe, found that the orbits are really ellipses. He fur-
ther found that their speed was not constant; they move faster when nearer the sun than when farther

away. Kepler’s equation relates time, #, and the central angle, A, measured from the sun (which is at
one of the foci of the ellipse):

2t = P(A — e*sin(A)).

where P is the period of revolution (the planet’s “year,”) and € is the eccentricity of the ellipse.
You will remember that the equation of an ellipse with the center as the origin is

a® + yHp? = 1,

where a and b are one-half the major and minor diameters. The eccentricity, & is ¢/a, where ¢ is the
distance from the origin to the foci.

The earth’s orbit is almost circular, ¢ = 0.02, while the planet Mercury’s is much flatter,
e = 0.21. (The orbit of Halley’s comet has an eccentricity of 0.97!) Mercury has a year of 88 earth
days and is 29 million miles from the sun at its closest point, the perigee.

Plot the ellipse for Mercury. Then solve Kepler’s equation for angle A to superimpose the posi-
tions of Mercury at ten equispaced intervals during its year. Be sure to remember that Kepler’s equa-

tions has the sun at the focal point nearest the perigee. (You can save some computations by noticing
that the orbit is symmetrical.)
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Solving sets of linear equations is the most frequently used numerical procedure when
real-world situations are modeled. Linear equations are the basis for mathematical models
of economics, weather prediction, heat and mass transfer, statistical analysis, and a myriad
of other applications. The methods for solving ordinary and partial-differential equations
depend on them. In this book, almost every chapter uses the algorithms that we discuss
here.

It is almost impossible to discuss systems of more than two or three equations without
using matrices and vectors, so we cover some of the concepts of these at the start. Other
aspects of the characteristics of a matrix are described in later chapters.

2.1 Matrices and Vectors
Reviews concepts of matrices and vectors in preparation for their use in this
chapter.

2.2 Elimination Methods
Describes two classical methods that change a system of equations to forms
that allow geiting the solution by back-substitution and shows how the errors
of the solution can be minimized. These techniques are also the best way to
find the determinant of a matrix and they arrive at forms that permit the
efficient solution if the right-hand side is changed. Relations for the number
of arithmetic operations for each of the methods are developed.

2.3 The Inverse of a Matrix and Matrix Pathology
Shows how an impottant derivative of a matrix, its inverse, can be computed.
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It shows when a matrix cannot be inverted and tells of situations where no
unique solution exists to a system of equations.

2.4 T-Conditioned Systems
Explores systems for which getting the solution with accuracy is very
difficult. A number, the condition number, is a measure of such difficulty; a
property of a matrix, called its norm, is used to compute its condition
number. A way to improve an inaccurate solution is described.

2.5 TIterative Methods
This section describes how a linear system can be solved in an entirely
different way, by beginning with an initial estimate of the solution and
performing computations that eventually arrive at the correct solution. It tells

how the convergence can be accelerated. An iterative method is particularly
important in solving systems that have few nonzero coefficients.

2.6 Parallel Processing

Tells how parallel computing can be applied to the solution of linear systems.
An algorithm is developed that allows a significant reduction in processing
time.

Matrices and Vectors

When a system of equations has more than two or three equations, it is difficult to discuss
them without using matrices and vectors. While you may already know something about
them, it is important that we review this topic in some detail.

A matrix is a rectangular array of numbers in which not only the value of the number is
important but also its position in the array. The size of the matrix is described by the num-
ber of its rows and columns. A matrix of # rows and m columns is said to be # X m. The
elements of the matrix are generally enclosed in brackets, and double-subscripting is
the common way of indexing the elements. The first subscript also denotes the row, and the

second denotes the column in which the element occurs. Capital letters are used to refer to
matrices. For example,

1 Ay ap...0yy !

[ Ay Aoy ... Aoy
j A= ‘2\ 2 2 =la, i=12...,n, j=12,....,m

Qp1 Gpp - - Qpy

77
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Enclosing the general element a,; in brackets is another way of representing matrix 4, as
just shown. Sometimes we will enclose the name of the matrix in brackets, [A], to empha-

size that A is a matrix.
Two matrices of the same size may be added or subtracted. The sum of

A=la) and B=I[b]

is the matrix whose elements are the sum of the corresponding elements of A and B:

L C=A+B=la;+bj=lc J

Similarly, we get the difference of two equal-sized matrices by subtracting corresponding
elements. If two matrices are not equal in size, they cannot be added or subtracted. Two
matrices are equal if and only if each element of one is the same as the corresponding ele-
ment of the other. Obviously, equal matrices must be of the same size. Some examples will
help make this clear.

If
A_[47 —5] q B_[l 54]
T4 2 2] ™ 2 —6 3]
we say that A is 2 X 3 because it has two rows and three columns. B is also 2 X 3. Their
sum C'is also 2 X 3:
5 12 —1i|

=A+ B =
CAB{—2—4 15

The difference D of A and B is

p=a-g=| > 2 7’
B -6 8 9

Multiplication of two matrices is defined as follows, when Aisn X mand Bis m X r:

lagl * b1 = [¢;
(apby +apby + - Fayby) ... (apby, + o0 F @D prr)
(@uby + anby + - F Gopbay) ... (ayby, + o0+ axby)

>

(anlbll + an2b21 + o+ amnbml) . (anlblr + o+ anmbmr)

m
CU:Eaikbkj’ i=12,...,n, J=1L2,...,r
£=1

It is simplest to select the proper elements if we count across the rows of A with the left
hand while counting down the columns of B with the right. Unless the number of columns
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of A equals the number of rows of B (so the counting comes out even), the matrices cannot
be multiplied. Hence, if A is n X m, B must have m rows or else they are said to be “non-
conformable for multiplication” and their product is undefined. In general AB # BA, so the
order of factors must be preserved in matrix multiplication.

If a matrix is multiplied by a scalar (a pure number), the product is a matrix, each ele-
ment of which is the scalar times the original element. We can write

IfkA = C, ;= kaij.

A matrix with only one column, » X 1 in size, is termed a column vector, and one of
only one row, 1 X m in size, is called a row vector. When the unqualified term vector is
used, it nearly always means a column vector. Frequently the elements of vectors are only
singly subscripted.

Some examples of matrix multiplication follow.

- -3
37 i > 2 7
Suppose A = 5 1 -l B=([0 3| x=| 1}, y={nl|
1 -1 4 V3
19 33 11
axp=| O ¥ gl 3 —of
-13 10y ’
5 6 4

A*x=[ i], A*y=|: 3y; t 7y, + )73].

-J =2y, + y,— 3y

Because Ais 2 X 3 and Bis 3 X 2, they are conformable for muitiplication and their product
is 2 X 2. When we form the product of B * A, it is 3 X 3. Observe that not only is
AB # BA; AB and BA are not even the same size. The product of A and the vector x (a3 X 1
matrix) is another vector, one with two components. Similarly, Ay has two components. We

cannot multiply B times x or B times y; they are nonconformable.
The product of the scalar number 2 and A is

ao| 61 2]
~4 2 -6

Because a vector is just a special case of a matrix, a column vector can be multiplied by
a matrix, as long as they are conformable in that the number of columns of the matrix
equals the number of elements (rows) in the vector. The product in this case will be another
column vector. The size of a product of two matrices, the first m X n and the second n X r,
ism X r. Anm X nmatrix times an n X 1 vector gives an m X 1 product.

The general relation for Ax = b is

No. of cols.

b= X Ay i=1,2,...,No. of rows.

k=1




80

Chapter Two: Solving Sets of Equations

This definition of matrix multiplication permits us to write the set of linear equations

apx tagpx, +o +apx, = by,

AyXy Fagxy o Fayx, = b,,
1 anlxl + an2x2 +oeee F annxn = bn’
(
much more simply in matrix notation, as where
ay; Gp...04q, X by
a a .a X b
J A=|% 9n 2n, .= 2’ b=
{ ay Ap. Ay Xp bn
For example,
3 2 4 14
1 =2 0(*x=1~7
-1 3 2 2

is the same as the set of equations
3x; + 2x, + dxy = 14,
X — 2x, = -7,
—x; + 3x, + 2x3 = 2,
Two vectors, each with the same number of components, may be added or subtracted.

Two vectors are equal if each component of one equals the corresponding component of

the other.
A very important special case is the multiplication of two vectors. The first must be a

row vector if the second is a column vector, and each must have the same number of com-
ponents. For example,
4
1 3 =21*|—-1|=[-5]
3
gives a “matrix” of one row and one column. The result is a pure number, a scalar. This

product is called the scalar product of the vectors, also called the inner product.
If we reverse the order of multiplication of these two vectors, we obtain

4 4 12 -8
-1}*[1 3 =2j=|—-1 -3 2.
3 3 9 -6
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This product is called the outer product. Although not as well known as the inner product,
the outer product is very important in nonlinear optimization problems.*

A vector whose length is one is called a unit vector.” A vector that has all of its elements
equal to zero is the zero vector. If all elements are zero except one, it is a unit basis vector.
There are three distinct unit basis vectors of order-3:

1 0 0
0], 11, and 0.
0 0 1

Some Special Matrices and Their Properties

Square matrices are particularly important when a system of equations is to be solved.
Square matrices have some special properties.

The elements on the main diagonal are those from the upper-left corner to the lower-
right corner. These are commonly referred to just as the diagonal elements; most often,
just the word diagonal is used. If all elements except those on the diagonal are zero, the
matrix is called a diagonal matrix.

If the nonzero elements of a diagonal matrix all are equal to one, the mairix is called the
identity matrix of order n where n equals the number of row and columns. The usual sym-
bol for this identity matrix is I, and it has properties similar to unity. For example, the
order-4 identity matrix is

OO

0
1
0

- o O
- O O

0 00

The subscript is omitted when the order is clear from the context.

An important property of an identity matrix, /, is that for any n X »n matrix, A, it is
always true that

[*A=A*]=A.

If two rows of an identity matrix are interchanged, it is called a transposition matrix. (We also
get a transposition matrix by interchanging two columns.) The name is appropriate because, if
transposition matrix P, is multiplied with a square matrix of the same size, A, the product
P * A will be the A matrix but with the same two rows interchanged. Here is an example:

100 0 9 6 2 13 9 6 2 13
000 1 4 2 8 11 326 8
P, = ’A: ’D*A: .
"“loo 1 0 071 9o 071 9
010 0 326 8 4 2 8 11

*Another important product of three-component vectors is the vector product, also known as the cross product.

T The length of a vector is the square root of the sum of the squares of its components, an extension of the idea of
the length of a two-component vector drawn from the origin.
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However, if the two matrices are multiplied in reverse order, A * P,, the result will be
matrix A but with the columns of A interchanged. You should check this for yourself with
the example matrices.

A permutation mairix is obtained by multiplying several transposition matrices.

A square matrix is called a symmetric matrix when the pairs of elements in similar posi-
tions across the diagonal are equal. Here is an example:

(ON NE

1 x
x 2
y z
The transpose of a matrix is the matrix obtained by writing the rows as columns or by writ-

ing the columns as rows. (A matrix does not have to be square to have a transpose.) The
symbol for the transpose of matrix A is A7. Example 2.1 illustrates.

EXAMPLE 2.1

3 -1 4 3 0 1
A={0 2 3|, AT=|-1 2 14
1 1 2 4 -3 2

It should be clear that A = AT if A is symmetric, and that for any matrix, the transpose of
the transpose, (A7), is just A itself. It is also true, though not so obvious, that

(A*B)T =BT *A.

When a matrix is square, a quantity called its zrace is defined. The trace of a square
matrix is the sum of the elements on its main diagonal. For example, the traces of the pre-
vious matrices are

tr(4) = r(A7) =3+2+2=17.

It should be obvious that the trace remains the same if a square matrix is transposed.

If all the elements above the diagonal are zero, a matrix is called lower-triangular; it is
called upper-triangular when all the elements below the diagonal are zero. For example,
these order-3 matrices are lower- and upper-triangular:

1 0 0 1 -3 3
L=| 4 6 0, uU=1{0 -1 0}
-2 1 —4 0 01

Triangular matrices are of special importance, as will become apparent later in this chapter
and in several other chapters.

Tridiagonal matrices are those that have nonzero elements only on the diagonal and in
the positions adjacent to the diagonal; they will be of special importance in certain
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partial-differential equations. An example of a tridiagonal matrix is
-4 2 0 o o]
1 —4 1 0 0
0 1 —4 L 0f
0o 0 1 -4 1
L O 0 0 2 —4]

For a tridiagonal matrix, only the nonzero values need to be recorded, and that means that
the n X n matrix can be compressed into a matrix of 3 columns and n rows. For this exam-
ple, we can write the matrix as

x —4 2]
1 -4 1
1 —4 11
1 -4 1
12 -4 x]

(The x entries are not normally used; they might be entered as zeros.)
In some important applied problems, only a few of the elements are nonzero. Such a

matrix is termed a sparse matrix and procedures that take advantage of this sparseness are
of value.

Examples of Operations with Matrices

Here are some examples of matrix operations:
3% 1 2 _13 ¢ .
3 4 9 12
I 3 2 4 -1 0 2 |0 3 4
-1 0 4 41 =3 [3 1 1

2 1 3 -2 -1 3

0 —4|—ta 1|l=|-4 -5

7 2 0 -2 7 4

_1 —
20—1*2——3bt6_1*;'dfd
3 2 6 1 7,u 3 _2 315\.“1 ermed.

38 - g 2L 0

Division of matrices is not defined, but we will discuss the inverse of a matrix later in
this chapter.
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The determinant of a square matrix is a number. For a 2 X 2 matrix, the determinant is
computed by subtracting the product of the elements on the minor diagonal (from upper
right to lower left) from the product of terms on the major diagonal. For example,

A =|: 3 Z] det(A) = (—5)(2) — (MH(3) = —31,
det(A) is the usual notation for the determinant of A. Sometimes the determinant is sym-
bolized by writing the elemeunts of the matrix between vertical lines (similar to represent-
ing the absolute value of a number).

For a 3 X 3 matrix, you may have learned a crisscross way of forming products of terms
(we call it the “spaghetti rule”) that probably should be forgotten, for it applies only to the
special case of a 3 X 3 matrix; it won’t work for larger systems. The general rule that
applies in all cases is to expand in terms of the minors of some row or column. The minor
of any term is the matrix of lower order formed by striking out the row and column in
which the term is found. The determinant is found by adding the product of each term in
any row or column by the determinant of its minor, with signs alternating + and —. We
expand each of the determinants of the minor until we reach 2 X 2 maitrices. For example,

30 —1 2
. 141 3 -2
Given A = 0 2 -1 3l
1 0 i 4
1 3 -2 4 3 =2
det(A) =32 -1 31—-0]0 -1 3
0 1 4 1 1 4
4 1 =2 4 1 3
+(—D{0 2 3/—-20 2 -1
1 0 4 1 0 1

ool 2-of; el 7]

2 3 0 3 0 2
_OH'D{(‘L).o 4(_(1)‘1 4‘“”2)'1 OH

2 -1 0 -1 0 2
—2{(4)‘0 1‘*(1)l1 1| +(3)'1 0”
=3{(D(=7) = B)®) + (=2)2)} = 0 + (=D{H®) — ()(—3) + (=2)(-2)}
—2{(H2) — D) + B3)(—D)}
=3(=7-24-4) -0+ (-DB2+3+4)—-28—-1-6)
= 3(~35) — 0 + (—1)(39) — 2(1) = —146.

In computing the determinant, the expansion can be about the elements of any row or
column. To get the signs, give the first term a plus sign if the sum of its column number and
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row number is even; give it a minus if the sum is odd, with alternating signs thereafter. (For
example, in expanding about the elements of the third row we begin with a plus; the first
element a;; has 3 + 1 = 4, an even number.) Judicious selection of rows and columns with
many zeros can hasten the process, but this method of calculating determinants is a lot of
work if the matrix is of large size. Methods that triangularize a matrix, as described in
Section 2.2, are much better ways to get the determinant.

If a matrix, B, is triangular (either upper or lower), its determinant is just the product of

the diagonal elements: det(B) = I1B; »1=1,..., n Itis easy to show this if the determi-
nant of the triangular matrix is expanded by minors. The following example illustrates this:
4 00
-2 0
det{6 —2 0)j=4%*det +0+0
-3 5
1 -3 5

=4%(=2)*|5| =4 % (—2)*5 = —40.

Determinants can be used to obtain the characteristic polynomial and the eigenvalues of
a matrix, which are the roots of that polynomial. In Chapter 6, you will see that these are
important in solving certain differential equations. The Greek symbol A is commonly used

to represent an eigenvalue. (Eigenvalue is a German word, the corresponding English term
is characteristic value, but it is less frequently used.)

The two terms, eigenvalue and characteristic polynomial are interrelated: For matrix A,
P,(A) = det(A — Al).
13
A=
i

For example, if
s _ 1-nN 3
PyA) = |A /\I] det[ 4 - A)]

=1-NGC-1)-12
= A2 —6)X—T.

then

(The characteristic polynomial is always of degree n if 4 is n X n.) If we set the character-
istic polynomial to zero and solve for the roots, we get the eigenvalues of A. For this exam-
ple, these are A; = 7, A, = —1, or, in more symbolic mathematical notation,

AW =1{7, -1}

We also mention the notion of an eigenvector corresponding to an eigenvalue. The
eigenvector is a nonzero vector w such that

Aw = Aw, that is, (A— ADhw = 0. 2.1)

In the current example, the eigenvectors are
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We leave it as an exercise to show that these eigenvectors satisfy Eq. (2.1).

Observe that the trace of A is equal to the sum of the eigenvalues: trf(4) =1 + 5= A, +
A, =7 + (—1) = 6. This is true for any matrix: The sum of its eigenvalues equals its trace.

For now, we limit the finding of eigenvalues and eigenvectors to small matrices because
getting these through the characteristic polynomial is not recommended for matrices larger
than 4 X 4. In Chapter 6 we examine other, more efficient ways to get these important
quantities.

If a matrix is triangular, its eigenvalues are equal to the diagonal elements. This follows
from the fact that its determinant is just the product of the diagonal elements and its char-
acteristic polynomial is the product of the terms (a,; — A) with i going from 1 to n, the
number of rows of the matrix. This simple example illustrates for a 3 X 3 matrix, A:

3 d—-x 2 3
5], det(A — Al) = det 0 4—-A) 5
6 0 0 G-N

1 2
A=|(0 4
0 0
=({1-2A

X4 =16 - N,

whose roots are clearly 1, 4, and 6. It does not matter if the matrix is upper- or lower-
triangular.

Using Computer Algebra Systems

MATLAB can do matrix operations. We first define two matrices and a vector, A, B, and v:

EDU>> A=1([4 1 —2; 51 3; 40 —1]j

A=

4 1 —2

5 1 3

4 0 =1
EDU>> B=[3 3 1; —2 1 5; 2 2 0]
B =

3 3 1

—2 1 5

2 2 0
EDU>> v=[—2 3 1]
v =

—2 3 1

Now we so some operations:

EDU>> 3*%A

ans =
12 3 -6
15 3 9

12 0 =3



B

EDU>> A+ B
ans =

7 4
3 2
6 2

EDU>> B — A
ans =

=1 2
-7 0
=2 2
EDU>> A*B
ans =
6 9
19 22
10 10
EDU>> B*v

??? Error using=> *
Inner matrix dimensions must agree.

-1

8

-1

[\S]

10
4
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We can’t multiply by the row vector, but we could with a column vector —so we transpose

the vector:

EDU>> vt = v/

vt =
-2
3
1
EDU>> B*Vt
ans =
4
12
2

and now it works. Here are some other operations:

EDU>> det (A)

ans =

21
EDU>> v*vt
ans =

14
EDU>> vt*v
ans =

4 —6
—6
—2 3
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EDU>> trace(A)
ans =
4

We can get the characteristic polynomial:

EDU>> poly (A)
ans =
1.0000 ~4.0000 2.0000 —21.0000

where the coefficients are given. This represents

X — 43 + 2x — 21,

Using Maple

2.2

Maple and MATLAB are interrelated and MATLAB commands can be invoked in Maple and
vice versa, but Maple can do matrix manipulations on its own. Here are a few —Maple’s
commands are somewhat different. Most need to be preceded by with(linalg).

matadd (A, B) does A+ B
multiply (A, B) does A*B
(but evalm (.. .) is more versatile, does all arithmetic
operations with matrices, vectors, and scalars.)
trace (A4) gets the trace
transpose (A) transposes
det (A) gets the determinant

Elimination Methods

We now discuss numerical methods that are used to solve a set of linear equations. The
term linear equation means an equation in several variables where all of the variables
occur to the first power and there are no terms involving transcendental functions such as
sine and cosine.

It used to be that students were taught to use Cramer’s rule, in which a system can be
solved through the use of determinants. However, Cramer’s rule is inefficient and is almost
impossible to use if there are more than two or three equations. As we have said, most
applied problems are modeled with large systems and we present methods that work well
with them. Even so, we use small systems as illustrations.

Suppose we have a system of equations that is of a special form, an upper-triangular
system, such as

S5x; + 3%, — 2x3 = =3,
bxy + x; = —1,
2x, = 10.



2.2: Elimination Methods 89

‘Whenever a system has this special form, its solution is very easy to obtain. From the third
equation we see that x, = 5. Substituting this value into the second equation quickly gives
x, = —1. Then substituting both values into the first equation reveals that x; = 2; now we
have the solution: x; = 2,x, = —1,x; = 5.%

The first objective of the elimination method is to change the matrix of coefficients so
that it is upper triangular. Consider this example of three equations:

dx; — 2x, + x5 =15,
=3x; — x, tdxy= 8§, 2.2)
X, — Xy +3x3=13.
Multiplying the first equation by 3 and the second by 4 and adding these will eliminate
x, from the second equation. Similarly, multiplying the first by —1 and the third by 4 and
adding eliminates x; from the third equation. (We prefer to multiply by the negatives and
add, to avoid making mistakes when subtracting quantities of unlike sign.) The result is
dx; — 2%, + x5 =15,
—10x, + 19x, = 77,
—2x, + 11x, = 37.

We now eliminate x, from the third equation by multiplying the second by 2 and the
third by —10 and adding to get

Ao — 2%+ x5 = 15,
—10x, + 19x; = 77,
—T2xy = —216.

Now we have a triangular system and the solution is readily obtained; obviously x; = 3 from
the third equation, and back-substitution into the second equation gives x, = —2. We continue
with back-substitution by substituting both x, and x; into the first equation to get x, = 2.

The essence of any elimination method is to reduce the coefficient matrix to a triangu-
lar matrix and then use back-substitution to get the solution.

We now present the same problem, solved in exactly the same way, in matrix. notation:

4 -2 1[x 15
-3 =1 4||x|=]| 8]
1 —1 3]|x 13

The arithmetic operations that we have performed affect only the coefficients and the
right-hand-side terms, so we work with the matrix of coefficients augmented with the

* A system that is lower-triangular is equally easy to solve. We then do forward-substitution rather than back-
substitution.
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right-hand-side vector:

4 =21 | 15
Alb=[-3 -1 4 | 8
1 -1 3 i 13

(The dashed line is usually omitted.)
We perform elementary row transformations* to convert A to upper-triangular form:

4 -2 1 15 4 -2 1 15
-3 -1 4 8| 3R, +4R,— 10 —10 19 77|,
1 -1 3 13 (~DR, + 4R, — |0 -2 11 37
4 -2 1 15
0 —-10 19 77 (@23

2R, — 10R; — |0 0 -72 216

The steps here are to add 3 times the first row to 4 times the second row and to add —1
times the first row to 4 times the third row. The next and final phase (in order to get a tri-
angular system) is to add 2 times the second row to — 10 times the third row.

The array in Eq. (2.3) represents the equations

) — 2%, + x5 = 15,
~10x, + 19x, = 77, (2.4)
—T72xy = —216.

The back-substitution step can be performed quite mechanically by solving the equa-
tions of Eq. (2.4) in reverse order. That is,

x, = —216/(~72) = 3,
x, = (77 = 3(19(— 10) = —2,
x = (15— 13) — (=2)(=2))/4 = 2.

Thinking of the procedure in terms of matrix operations, we transform the augmented
coefficient matrix by elementary row operations until a triangular matrix is created on the
left. After back-substitution, the x-vector stands as the rightmost column.

These operations, which do not change the relationships represented by a set of
equations, can be applied to an augmented matrix, because this is only a different notation
for the equations. (We need to add one proviso: Because round-off error is related to
the magnitude of the values when we express them in fixed-word-length computer

* Elementary row operations are arithmetic operations that obviously are valid rearrangements of a set of equa-
tions: (1) Any equation can be multiplied by a constant; (2) the order of the equations can be changed; (3) any
equation can be replaced by its sum with another of the equations.

+ Making the matrix triangular by row operations is not a way to get its eigenvalues; the row operations change
them.
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representations, some of our operations may have an effect on the accuracy of the com-
puted solution.)

An alternative to converting the system to upper-triangular is to make it lower-triangu-
lar. For example, if we have this set of equations (or an augmented matrix):

6x, =18 6 0 0}ix 18
—2x; + 5x, = 2 or -2 5 0llx|=] 2]
3x; —4xy +3x; =11 3 —4 3]|x 11

Here, we would solve for the variables in this order: x,, then x,, and finally x,, with the
same number of computations as in the case of a lower-triangular system. Both the lower-
and upper-triangular systems play an important part in the development of algorithms in
the following sections, because these systems require fewer multiplications/divisions than
the general system. We shall also show that we can often write a general matrix A as the
product LU, a lower-triangular matrix times an upper-triangular matrix.

Note that there exists the possibility that the set of equations has no solution, or that the
prior procedure will fail to find it. During the triangularization step, if a zero is encoun-
tered on the diagonal, we cannot use that row to eliminate coefficients below that zero ele-
ment. However, in that case, we can continue by interchanging rows and eventually
achieve an upper-triangular matrix of coefficients. The real stumbling block is finding a
zero on the diagonal after we have triangularized. If that occurs, the back-substitution fails,
for we cannot divide by zero. It also means that the determinant is zero: There is no
solution.

It is worthwhile to explain in more detail what we mean by the elementary row opera-

tions that we have used here, and to see why they can be used in solving a linear system.
There are three of these operations:

1. We may multiply any row of the augmented coefficient matrix by a constant.
2.  We can add a multiple of one row to a multiple of any other row.

3. We can interchange the order of any two rows (this was not used earlier).

The validity of these row operations 1s intuitively obvious if we think of them applied to
a set of linear equations. Certainly, multiplying one equation through by a constant does
not change the truth of the equality. Adding equal quantities to both sides of an equality
results in an equality, and this is the equivalent of the second transformation. Obviously,
the order of the set is arbitrary, so rule 3 is valid.

Gaussian Elimination

The procedure just described has a major problem. While it may be satisfactory for hand
computations with small systems, it is inadequate for a large system. Observe that the
transformed coefficients can become very large as we convert to a triangular system. The
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method that is called Gaussian elimination avoids this by subtracting a,,/a, ; times the first
equation from the ith equation to make the transformed numbers in the first column equal
to zero. We do similarly for the rest of the columns.

We must always guard against dividing by zero. Observe that zeros may be created in
the diagonal positions even if they are not present in the original matrix of coefficients. A
useful strategy to avoid (if possible) such zero divisors is to rearrange the equations so as
to put the coefficient of largest magnitude on the diagonal at each step. This is called
pivoting. Complete pivoting may require both row and column interchanges. This is not
frequently done. Partial pivoting, which places a coefficient of larger magnitude on the
diagonal by row interchanges only, will guarantee a nonzero divisor if there is a solution to
the set of equations, and will have the added advantage of giving improved arithmetic pre-
cision. The diagonal elements that result are called pivor elements. (When there are large
differences in magnitude of coefficients in one equation compared to the other equations,
we may need to scale the values; we consider this later.)

We repeat the example of the previous section, incorporating these ideas and carrying
four significant digits in our work. We begin with the augmented matrix.

4 -2 1 i 15
-3 -1 4 8
1 -1 3 | 13
4 —2 1 15 ]
R, — (=3)R,— |0 —25 475 19.25
R, — (Y)R,— |0 =05 275 9.25 |
(4 —2 1 15 ]
0 —25 475 19.25
Ry, — (—0.5/-2.5)R,— [0 00 1.80 5.40 |

[The notation used here means to subtract (—3/4) times row 1 from row 2 and to subtract
(1/4) times row 1 from row 3 in reducing in the first column; to subtract (—0.5/—2.5) times
row 2 from row 3 in the third column.]

The method we have just illustrated is called Gaussian elimination. (In this example, no
pivoting was required to make the largest coefficients be on the diagonal.) Back-substitu-
tion, as presented with Eq. (2.4), gives us, as before, x, = 3, x, = =2, x;, = 2. We have
come up with the exact answer to this problem. Often it will turn out that we shall obtain
answers that are just close approximations to the exact answer because of round-off error.
When there are many equations, the effects of round-off (the term is applied to the error
due to chopping as well as when rounding is used) may cause large effects. In certain
cases, the coefficients are such that the results are particularly sensitive to round off; such
systems are called ill-conditioned.

In the example just presented, the zeros below the main diagonal show that we have
reduced the problem [Eq. (2.3)] to solving an upper-triangular system of equations as in
Egs. (2.4). However, at each stage, if we had stored the ratio of coefficients in place of zero
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(we show these in parentheses), our final form would have been

4 -2 1 15
(-0.75) —2.5 475 | 1925|.
025) (020) 180 | 54
Then, in addition to solving the problem as we have done, we find that the original matrix
4 -2 1
A=|-3 -1 4
1 -1 3
can be written as the product:
1 0 0 4 -2 1
075 1 01«10 =25 4.75] 2.5)
025 020 1 0 0 180
L U
This procedure is called a LU decomposition of A. In this case,
A=L*U,

where L is lower-triangular and U is upper-triangular. As we shall see in the next exam-
ple, usually L * U = A’, where A’ is just a permutation of the rows of A due to row inter-
change from pivoting.

Finally, because the determinant of two mairices, B * C, is the product of each of the
determinants, for this example we have

det(L * U) = det(L) * det(U) = det(U),

because L is triangular and has only ones on its diagonal so that det(Z) = 1. Thus, for the
example given in Eq. (2.5), we have

det(A) = det(U) = (4) * (—2.5) * (1.8) = —18,

because U is upper-triangular and its determinant is just the product of the diagonal elements.
From this example, we see that Gaussian elimination does the following:

1. It solves the system of equations.
2. It computes the determinant of a matrix very efficiently.
3. It can provide us with the LU decomposition of the matrix of coefficients, in the

sense that the product of the two matrices, L * U, may give us a permutation of the
rows of the original matrix.

With regard to item 2, when there are row interchanges,

det(A) = (—1)m*uy * -~ *u

w
where the exponent m represents the number of row interchanges.

We summarize the operations of Gaussian elimination in a form that will facilitate the
writing of a computer program. Note that in the actual implementation of the algorithm,
the L and U matrices are actually stored in the space of the original matrix A.
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Gaussian Elimination

To solve a system of » linear equations: Ax = b.
Forj=1To(n— 1)
pvt = |al j, /]|
pivot[j] =
ipvt_temp = j

Fori=j+ 1Ton (Find pivot row)
IF |a [i, j]| > pvt Then

pvt = |ali, jl
ipvt_temp = i
End IF
End For i

(Switch rows if necessary)
IF pivot [j]1 < > ipvt_temp
[switch_rows(rows j and ipvt_temp)]

Fori=j+ 1ton (Store multipliers)
ali, jl = ali, jVal}, j1
End For i

(Create zeros below the main diagonal)
Fori=j+ 1Ton
Fork=j+ 1Ton
ali, k] = ali, k) — ali, j1* alj, k]

End For £
b [i] = bli] — ali, j] * blj]
End For i
End For j;
(Back Substitution Part)

x[n] = bnl/aln, n]
Forj=n—1DownTol
x[j1 = bLj)
Fork=nDownToj+ 1
x[j] = x[j1 — x[kl * alj, k]
End For k&
x[j1 = xljVal j, /1

End For j.
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Interchanging rows in a large matrix can be expensive; there is a better way. We keep
track of the order of the rows in an order vector and, when a row interchange is indicated,
we only interchange the corresponding elements in the order vector. This vector then tells
which rows are to be worked on. Using an order vector saves computer time because only
two numbers of this vector are interchanged; we do not have to switch all the elements of
the two rows. However, we do not do this here in order to keep our explanations simple.
You will later see an example that uses an order vector.

The algorithm for Gaussian elimination will be clarified by an additional numerical
example. Solve the following system of equations using Gaussian elimination. In addition,
compute the determinant of the coefficient matrix and the LU decomposition of this matrix.

Given the system of equations, solve

2x, + x,= 0,
2x; + 2xy + 3xy + 2xy = <2, (2.6)
4)c1 - 3x2 + x, = =7,
bx, + x, —6xy—5x,= 6.
The augmented coefficient matrix is
0 2 0 1 0
2 2 3 2 -2
2.7

4 -3 0 1 -7
6 1 -6 -5 6
We cannot permit a zero in the a,, position because that element is the pivot in reducing

the first column. We could interchange the first row with any of the other rows to avoid a
zero divisor, but interchanging the first and fourth rows is our best choice. This gives

6 1 -6 -5 6
2 2 3 -2 -2
4 -3 0 1 -7(
0O 2 0 1 0

(2.8)

We make all the elements in the first column zero by subtracting the appropriate multiple
of row one:

6 1 -6 -5 6
0 1.6667 5 3.6667 —4
0 -3.6667 4 43333 —11|
0 2 0 1 0

(2.9)

We again interchange before reducing the second column, not because we have a zero divi-
sor, but because we want to preserve accuracy.* Interchanging the second and third rows

* A numerical example that demonstrates the improved accuracy when partial pivoting is used will be found in
Section 2.4,
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puts the element of largest magnitude on the diagonal. (We could also interchange the
fourth column with the second, giving an even larger diagonal element, but we do not do
this.) After the interchange, we have

6 1 -6 —5 6
0 -3.6667 4 43333 -1l .10
0 1.6667 5 36667 —41 10)
0 2 0 1 0
Now we reduce in the second column
(6 1 -6 -5 6 |
0 —3.6667 4 4.3333 —11
0 0 6.8182  5.6364 —9.0001 |
10 0 2.1818  3.3636  —5.9999
No interchange is indicated in the third column. Reducing, we get
6 1 -6 -5 6 ]
0 —-3.6667 4 43333 -11
. 2.11)
0 0 6.8182  5.6364 —9.0001
|0 0 0 15600 —3.1199]
Back-substitution gives
-3.1199
== ]
4T 15600 9999,
—9.0001 — 5.6364(—1.9999)
= = (.33325,
3 6.3182 333
—11 — 4.3333(—1.9999) — 4(0.33325)
= = 1.000:
2 ~3.6667 0
6 — (—5)—1. — (—6)(0.33325) — 1.00:
X = (—5)(—1.9999) — ( 6)(03 5) — (1)(1.0000) _ —0.50000.

The correct answers are —2, %, 1, and —% for x,, x4, x,, and x,. In this calculation we

have carried five significant figures and rounded each calculation. Even so, we do not
have five-digit accuracy in the answers. The discrepancy is due to round off. The
guestion of the accuracy of the computed solution to a set of equations is a most impor-
tant one, and at several points in the following discussion we will discuss how to
minimize the effects of round off and avoid conditions that can cause round-off errors to
be magnified.
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In this example, if we had replaced the zeros below the main diagonal with the ratio of
coefficients at each step, the resulting augmented matrix would be

6 1 —6 -5 6
(0.66667) —3.6667 4 43333 -11 e |
(0.33333) (—0.45454) 68182  5.6364 —9.0001
0.0) (—0.54545)  (0.32) 1.5600 —3.1199
I
This gives a LU decomposition as
1 0 0 0 6 1 -6 -5
0.66667 1 0 0 « 0 —3.6667 4 4.3333 )
0.33333 —0.45454 1 0 0 0 6.8182  5.6364
0.0 —0.54545 032 1 0 0 0 1.5600

It should be noted that the product of the matrices in Eq. (2.13) produces a permutation
of the original matrix, call it A’, where

6 1 —6 —5
4 -3 0 1

A= ,
2 2 3 2
0 2 0 1

because rows 1 and 4 were interchanged in Eq. (2.8) and rows 2 and 3 in Eq. (2.10). The
determinant of the original matrix of coefficients —the first four columns of Eq. (2.7)—
can be easily computed from Eq. (2.11) or Eq. (2.12) according to the formula

det(A) = (—1)? * (6) * (—3.6667) * (6.8182) * (1.5600) = —234.0028,

which is close to the exact solution: —234.* The exponent 2 is required, because there
were two row interchanges in solving this system. To summarize, you should note that the
Gaussian elimination method applied to Eq. (2.6) produces the following:

1. The solution to the four equations.
2. The determinant of the coefficient matrix

0 20 1
2 2 3 2
4 -3 0 1l

6 1 -6 -5

* The difference is because the computed values have been rounded to four decimal places.
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3. A LU decomposition of the matrix, A’, which is just the original matrix, A, after we
have interchanged its rows in the process.

MATLAB can get the matrices of Eq. (2.13) with its Tu command:

EDU>>A=[02010; 2232 —-2; 4 -301-7;,61—-6 —546]
A=

0 2 0 1 0
2 2 3 2 -2
4 -3 0 1 —7
6 1 ~6 -5 6
EDU>>[L,U,P] = 1u(A)
L:
1.0000 0 0 0
0.6667 1.0000 0 0
0.3333 —0.4545 1.0000 0
0 —0.5455 0.3200 1.0000
U:
6.0000 1.0000 —6.0000 —5.0000 6.0000
0 ~3.6667 4.0000 4.3333 —11.0000
0 0 6.8182 5.6364 —-9.0000
0 0 0 1.5600 —3.1200
P =
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

In this, matrix P is the permutation matrix that was used to put the largest magnitude coef-
ficient in the pivot position. Observe that MATLAB got a more accurate solution.

We really desire the solution to Ax = b. MATLAB gets this with a simple command.
We define A and b (trailing semicolons suppress the outputs); the apostrophe on b gets the
transpose:

EDU>>> A=[02 0 1; 2 23 2; 4 -301; 61 —6 —=5];
EDU>> b=[0 2 —7 6]"';
EDU>> A\b
ans =
—0.5000
1.0000
0.3333
—2.0000

Again, we obtained a more accurate solution.
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Operational Count

The efficiency of a numerical procedure is ordinarily measured by counting the number of
arithmetic operations that are required. In the past, only multiplications and divisions were
counted because they used to take much longer to perform than additions and subtractions.
In today’s computers using math coprocessors, all four of these take about the same time,
so we should count them all.

In a system of n equations with just one right-hand side, we compute the number of
operations as follows. The augmented matrix is n X n + 1 in size.

To reduce the elements below the diagonal in column 1, we first compute (n — 1) mul-
tiplying factors [takes (n — 1) divides]. We multiply each of these by all the elements in
row 1 except the first element [takes () multiplies)] and subtract these products from the n
elements in each of the n — 1 rows below row 1, ignoring the first elements because these
are known to become zero [takes n * (n — 1) multiplies and the same number of subfracts].
In summary:

Divides = (n — 1),
Multiplies = n * (n — 1),
Subtracts = n * (n — 1).
In the other columns, we do similarly except each succeeding column has one fewer ele-
ment. So, we have for column i:
Divides: (n — i),
Multiplies: (n — i + 1) * (n — i),
Subtracts: (n — i + 1) (n — ).

We add these quantities together for the reduction in columns 1 through n — 1 to get:

n—1 n—1
Divides = 3, (n — i) = > i = n¥2 — n/2,
i=1 i=1

n—1 n—1

Multiplies = > (t — i+ D)(n— i) = 3 i(i + 1) = n33 — n/3.

i=1 i=1
Subtracts are the same as multiplies = n3/3 — n/3. If we add these together, we get, for
the triangularization part, 2n3/3 + n%/2 — 7n/6 total operations. In terms of the order rela-

tion discussed in Chapter 0, this is O(1/3). We still need to do the back-substitutions, A lit-
tle reflection shows that this requires

n—1
Multiplies = D, i = n¥2 — n/2,
i=1
Subtracts = same as number of multiplies,
Divides = n,
so the back substitution requires a total of n% operations.
If we add the operations needed for the entire solution of a system of n equations,
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we get:

21313 + 3n2/2 — Tn/6.

Multiple Right-Hand Sides

Gaussian elimination can readily work with more than one right-hand-side vector. We just
append the additional column vectors within the augmented matrix and apply the reduction
steps to these new columns exactly as we do to the first column. If row interchanges are
made, the entire augmented matrix is included.

The Gauss - Jordan Method

There are many variants to the Gaussian elimination scheme. The back-substitution step
can be performed by eliminating the elements above the diagonal after the triangulariza-
tion has been finished, using elementary row operations and proceeding upward from the
last row. This technique is equivalent to the procedures described in the following
example. The diagonal elements may all be made ones as a first step before creating
zeros in their column; this performs the divisions of the back-substitution phase at an
earlier time.

One variant that is sometimes used is the Gauss—Jordan scheme. In it, the elements
above the diagonal are made zero at the same time that zeros are created below the diago-
nal. Usually, the diagonal elements are made ones at the same time that the reduction is
performed; this transforms the coefficient matrix into the identity matrix. When this has
been accomplished, the column of right-hand sides has been transformed into the solution
vector. Pivoting is normally employed to preserve arithmetic accuracy.

The previous example, solved by the Gauss—Jordan method, gives this succession of
calculations. The original augmented matrix is

0O 2 0 1 0
2 2 3 2 -2
4 -3 0 1 —7[
6 1 -6 -5 6

Interchanging rows 1 and 4, dividing the new first row by 6, and reducing the first column
gives

1 0.1667 -1 —0.8333 1
0 1.6667 5 33667 —4
0 —3.6667 4 43334 11
0 2 0 1 0

Interchanging rows 2 and 3, dividing the new second row by —3.6667, and reducing the
second column (operating above the diagonal as well as below) gives
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1 0 —08182 -0.6364 05
0 1 —-10909 -11818 3
0 0 68182 56364 —9
0 0 21818 33636 -6

No interchanges now are required. We divide the third row by 6.8182 and zero the other
elements in the third column:

1 0 0 004 —0.58
0 1 0 -0.280 1.56
0 01 0 -1.32(
6 00 1.5599 -3.12

We complete by dividing the fourth row by 1.5599 and create zeros above:

1 0 06 0 —-05
01 00 1.0001
0 01 0 03333
0001 -2

The fourth column is now the solution. It differs slightly from that obtained with Gaussian
elimination; round-off errors have been entered in a different way.

While the Gauss—Jordan method might seem to require the same effort as Gaussian
elimination, it really requires almost 50% more operations. As an exercise, you should
show that it takes (n?> — n)/2 divides, (n> — n)/2 multiplies, and (n> — n)/2 subtracts for a
total of n® + n% — 2n altogether. It is O(n3), compared to O(24%/3).

Scaled Partial Pivoting*®

There are times when the partial pivoting procedure is inadequate. When some rows have
coefficients that are very large in comparison to those in other rows, partial pivoting may
not give a correct solution. The answer to this problem is scaling, which means that we
adjust the coefficients to make the largest in each row of the same magnitude.

Coefficients may differ in magnitude for several reasons. It might be caused by relations
where the quantities are in widely different units: microvolts versus kilovolts, seconds ver-
sus years, for example. It could be due to inherently large numbers in just one equation.
Here is a simple example to show how partial pivoting may not be enough:

3 2 100 105
Given: A= —1 3 100|, »=]102].
1 2 -1 2

whose correct answer obviously is x = [1.00, 1.00, 1.00]7.

* Sometimes this is called virtual scaling.
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If we solve this using partial pivoting but with only three digits of precision to empha-
size round-off error, we get this augmented matrix after triangularization:

3 2 100 105
0 367 133 135 |,
00 —824 —826

from which the solution vector is readily found to be the erroneous value of [0.939, 1.09,
1.0017.

The trouble here is that, while no pivoting appears to be needed during the solution, the
coefficients in the third equation are much smaller than those in the other two. We can do
scaled partial pivoting by first dividing each equation by its coefficient of largest magni-
tude. Doing so with the original equations gives (still using just three digits):

0.0300 0.01 1.00 105
—0.0100 0.03 1.00  1.02].
0.500 1.00 —-0.500 1.00

We now see that we should interchange row 1 with row 3 before we begin the reduction.

We could now solve this scaled set of equations but there is a better way that uses the
original equations, eliminating the rounding off that may occur in obtaining the scaled equa-
tions. This method begins by computing a scaling vector whose elements are the elements
in each row of largest magnitude. Calling the scaling vector S, we have for this example:

S = [100, 100, 2].

Before reducing the first column, we divide each element by the corresponding element of
S to get R = [0.0300, —0.0300, 0.500] in which the largest element is the third. This shows
that the third equation should be the pivot and that the third equation should be interchanged
with the first. (As you will see below, we do not have to actually interchange equations.) In
preparation for further reduction steps, we do interchange the elements of S to get:

S'= {2, 100, 100].

The reduced matrix after reducing in the first column (still using only three digits of preci-

sion) is
1 2 -1 2

0 5 99 104|.
0 —4 103 99

We now are ready to reduce in column 2. We divide the elements of this column by the ele-
ments of S to get R = [1, 0.0500, —0.0400]. We ignore the first element of R, and see that
no interchange is needed. Doing the reduction we get this final matrix:

1 2 -1 2
05 99 104),
0 0 182 182

and back substitution gives the correct answer: x = {1.00, 1.00, 1.00].
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Using an Order Vector

We now give an example of using an order vector to avoid the actual interchange of rows.
Our system in augmented matrix form is
4 -3 0
2 2 3

Initially, we set the order vector to {1, 2, 3]. Looking at column 1, we see that A(3, 1)
should be the pivot; we exchange elements in the order vector to get [3, 2, 1]. In the reduc-
tion of column 1, we use row 3 as the pivot row to get

(0.6667) —3.667 4 —11
(0.3333) 1.667 5 -4
6 1 -6 6
From here, we ignore row 3. We see that A(1, 2) should be the next pivot. We exchange ele-

ments in the order vector to get [3, 1, 2} so as to use row 1 as the next pivot row. Reducing
column 2, we then get

(0.6667) —3.667 4 —11
(0.3333) (—0.4545) 6.8182 —9],
6 1 -6 6

and “back-substituting” from the final set of equations in the order given by the final order
vector: first 2, then 1, then 3, gives the solution: x, = 1.5600, x, = —0.5800, x; = —1.3200.

Using the LU Matrix for Multiple Right-Hand Sides

Many physical situations are modeled with a large set of linear equations: an example is
determining the internal temperatures in a nuclear reactor, and knowing the maximum tem-
perature is critical. The equations will depend on the geometry and certain external factors
that will determine the right-hand sides. If we want the solution for many different values
of these right-hand sides, it is inefficient to solve the system from the start with each one of
the right-hand-side values—using the LU equivalent of the coefficient matrix is preferred.

Of course, getting the solutions for a problem with several right-hand sides can be done
in ordinary Gaussian elimination by appending the several right-hand vectors to the coeffi-
cient matrix. However, when these vectors are not known in advance, we might think we
would have to start from the beginning.

We can use the LU equivalent of the coefficient matrix to avoid this if we solve the sys-
tem in two steps. Suppose we have solved the system Ax = b by Gaussian elimination—
we now know the LU equivalent of A: A = L * U. Consider now that we want to solve
Ax = b with some new b-vector. We can write

Ax=b=L*¥U*x=b.
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The product of U and x is a vector, call it y. Now, we can solve for y from Ly = b and this
is readily done because L is lower-triangular and we get y by “forward-substitution.” Call
the solution y = b’

Going back to the original LUx = b, we see that, from Ux = y = b} we can get x from
Ux = b’, which is again readily done by back-substitution (U is upper-triangular). The
operational count for either forward- or back-substitution is exactly »2 operations, so solv-
ing Ax = b will take only 2n? operations if the LU equivalent of A is already known, which
is significantly less than the 2n3/3 + 31n%/2 — 7n/6 operations required to solve Ax = b
directly.

What if we had reordered the rows of matrix A by pivoting? This is no problem if we
save the order vector that tells the final order of the rows of the matrix. We then use this to
rearrange the elements of the b-vector, or perhaps use it to select the proper elements dur-
ing the forward- and back-substitutions.

AN EXAMPLE

Solve Ax = b, where we already have its L and U matrices:

1.0000 0 0 0
[ _ | 06667  1.0000 0 0
03333 —04545 10000 0 |
0 —0.5455 03200 1.0000
6.0000  1.0000 —6.0000 —5.0000
yo|0 ~3.6667  4.0000 43333
0 0 6.8182  5.6364 [
0 0 0 15600

.

Suppose that the b-vector is [6, —7, —2, 0]7. We first get y = Ux from Ly = b by forward-
substitution:

y = [6, =11, =9, =3.12]%,
and use it to compute x from Ux = y:
x=[-05,1,0.3333, -2]~.

[This is the same system as Eq. (2.6) but with the equations reordered so pivoting is not

needed.]
Now, if we want the solution with a different b-vector:

bb=[1 4 =3 177,
we just do Ly = bb to get
y = [1,3.3333, —1.8182, 3.4]7,

and then use this y in Ux = y to find the new x:
x = [0.0128, —0.5897, —2.0684, 2.179517.
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Tridiagonal Systems

There are some applied problems where the coefficient matrix is of a special form. Most of
the coefficients are zero; only those on the diagonal and adjacent to the diagonal are non-
zero. Such a matrix is called tridiagonal. Here is an example from Chapter 6:

[ 270192 2 0 0 0 O 0 O _14.0385]
1 2 1 0 0 0 0 0 0
0 1 =2 1 0 0 0 0 0
0 o 1 -2 1 0 0 0 0
0 O 0o 1 -2 1 0 0 0
0 ©o 0 0 1 -2 1 0 0
0 O 0 0 0 1 -2 1 0
L0 O 0 0 0 0 1 -2 -1000

When this system is solved by Gaussian elimination, the zeros do not enter into the solu-
tion; only the non-zero coefficients are used. That means that there is no need to store the
zeros; we can compress the coefficients into an array of three columns and put the right-
hand-side terms into a fourth column. The number of arithmetic operations is reduced sig-
nificantly.

Here is an algorithm that carries out the solution of the problem:

Gaussian Elimination for a Tridiagonal System

Given the n X 4 matrix that has the right-hand side as its fourth column,
(LU decomposition phase)

Fori=2Ton
Ali, 11 = Ali, 1AL — 1, 2]
Al 21 = A[L, 2] — AL, 11 * Al — 1, 3]
Ali, 4] = A[i, 4] — A[, 11 * Ali — 1, 4]

End For i
(Back-substitution)

Aln, 4] = Aln, 41/A[n, 2]
Fori= (n — 1)DownTo 1

Ali, 4] = (Ali, 4] — A[L, 3] * Ali + 1, 4])/A[, 2)p
End For i
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The Inverse of a Matrix and Matrix Pathology

Division by a matrix is not defined but the equivalent is obtained from the inverse of the
matrix. If the product of two square matrices, A * B, equals the identity matrix, /, B is said
to be the inverse of A (and A is the inverse of B). The usual notation for the inverse of
matrix A is A~!. We have said that matrices do not commute on multiplication but inverses
are an exception: A * A"l = A1 ¥ A

One way to find the inverse of matrix A is to employ the minors of its determinant but
this is not efficient. The better way is to use an elimination method. We augment the A
matrix with the identity matrix of the same size and solve. The solution is AL, This is
equivalent to solving the system with n right-hand sides, each column being one of the n
unit basis vectors in turn. Here is an example:

EXAMPLE 2.2

Given matrix A, find its inverse. First use the Gauss—Jordan method with exact arithmetic.

1 -1 2
A=13 0 1}
1 0 2

Augment A with the identity matrix and then reduce:

1 -1 2100 1 -1 2 100
3 0101 0[f—=(0 3 -5 =310
1 02001 0 1 0 -101
1 -1 2 10 0 1 -1 0 1 %} ¢
Bfo 1 0 -10 1]/%o 10 -1 0 1
0 0 -5 01 -3 0 01 0 - 3%

100 0 2 —§

-0 1 0 -1 0 1}

oo0o1 o -1 ¢

We confirm the fact that we have found the inverse by multiplication:

1 -1 2|[ 0o % - 1 00
0 1{|-1 o 1|=|0 1 o}
1 o0 2L o -+ 2 0 0 1

It is more efficient to use Gaussian elimination. We show only the final triangular
matrix; we used pivoting:

(M) Interchange the third and second rows before eliminating from the third row.
@ Divide the third row by —5 before eliminating from the first row.
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1 -1 2100 3 01 0 1 0
3 01 01 0[—[(333) -1 1667 1 -0333 0]
1 0 2 001 0333) (O 1667 0 —0333 1

After doing the back-substitutions, we get

3 01 0 04 -02
0.333) -1 1.667 -1 0 1
0.333) (0) 1.667 0 —02 06

If we have the inverse of a matrix, we can use it to solve a set of equations, Ax = b,
because multiplying by A~ gives the answer:

A7 'Ax = A7),
x=A"1b.

This would seem like a good way to solve equations, and there are many references 1o it.
But this is not the best way to solve a system-—getting the LU equivalent of A first and
then using the L and U to solve Ax = b requires only two back-substitutions and that
requires exactly the same work as multiplying the vector & by a matrix. Finding A~ ! means
solving a system with three right-hand sides.

The real importance of the inverse is to develop theory and is essential to understanding
many things in applied mathematics. For example, does every square matrix have an
inverse? The answer is no, and we look now at when this is true.

Pathological Systems

When a real physical situation is modeled by a set of linear equations, we can anticipate
that the set of equations will have a solution that matches the values of the quantities in the
physical problem, at least as far as the equations truly do represent it.* Because of round-
off errors, the solution vector that is calculated may imperfectly predict the physical quan-
tity, but there is assurance that a solution exists, at least in principle. Consequently, it must
always be theoretically possible to avoid divisions by zero when the set of equations has a
solution.

An arbitrary set of equations may not have such a guaranteed solution, however. There
are several such possible situations, which we term “pathological.” In each case, there is no
unique solution to the set of equations.

* There are certain problems for which values of interest are determined from a set of equations that do not have
a unique solution; these are called eigenvalue problems and are discussed in Chapter 6.
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First, here is an example of a matrix that has no inverse: What is the LU equivalent of

1 -2 3
A=| 2 4 -1
-1 14 11

MATLAB can find this:

EDU>> A= [1 -2 3; 2 4 —1;—1 —14 11]
A=
1 =2 3
2 4 =1
-1 —14 11
EDU>> 1u(A)

ans =
2.0000 4.0000 —1.0000
—0.5000 —12.0000 10.5000
0.5000 0.3333 0

It is obvious that we cannot ordinarily solve a system Ax = b that has this A matrix, for the
zero in element A(3, 3) cannot be used as a divisor in the back-substitution. That means
that we cannot solve a system with the identity matrix as the right-hand sides. And that
would have to be done to find A~!. What does MATLAB say if we ask it to find the
inverse?

EDU>> inv (A)
Warning: Matrix is singular to working precision.

ans =
Inf Inf Inf
Inf Inf nf
Inf Inf Inf

and we ask ourselves what the term singular means. Actually, the definition of a singular
matrix is a matrix that does not have an inverse!

Are there other ways to see if a matrix is singular without trying to triangularize it? Yes,
here are five other tests.

1. A singular matrix has a determinant of zero. This follows directly from the above
result, where we saw that element A(3, 3) was zero, and det (4) = (2) (—12) (0) = 0.

2. The rank of the matrix is less than n, the number of rows. The rank is not as easy to
find, but MATLAB can find it:

EDU>> rank (A)
ans =
2
The rank of a matrix is really determined by the next two properties of a singular
matrix.
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3. A singular matrix has rows that are linearly dependent vectors. A set of vectors is
said to be linearly dependent if a weighted sum equals zero without using all weight-
ing factors equal to zero. For matrix A above,

=3[1,-2,3] + 2[2,4, —1] + 1[-1, —14,11] = [0, 0, O].
4. A singular matrix has columns that are linearly dependent vectors. For matrix A,
—10[1, 2, —1]7 + 7[-2, 4, —14]T + 8[3, —1, 11}7 = [0, 0, 0]""

5. A set of equations with this coefficient matrix has no unique solution.

Redundant and Inconsistent Systems

Even though a matrix is singular, it may still have a solution. Consider again the same sin-
gular matrix:

1 -2 3
A=]| 2 4 -1
-1 -14 11

Suppose we solve the system Ax = b where the right-hand side is b = [5,7, 1]7. MATLAB
then gives

EDU>> Ab=([1 -2 3 5; 24 -1 7; -1 —14 11 1]

Ab =
1 —2 3 5
2 4 -1 7
-1 —14 11
EDU>> 1lu(Ab)
ans =
2.0000 4.0000 —1.0000 7.0000
—0.5000 —12.0000 10.5000 4.5000
0.5000 0.3333 0 0

and the back-substitution cannot be done. The display suggests that x; can have any value.
Suppose we set it equal to 0. We can solve the first two equations with that substitution;
that gives [17/4, ~3/8, 0]7. We get the same result from solving any other combination of
two equations.

Suppose we set x5 to 1 and repeat. This gives [3, 1/2, 1]7, and this is another solution. In
fact, any linear combination of these two is a solution! While that may not be a satisfactory
answer, we must agree that we have found a solution, actually, an infinity of them. The rea-

son for this is that the system is redundant: The third equation, given by the third row, is
just a linear combination of the first two:

=3[1, -2,3,5]1 + 2(2,4, -1,7] = —1[—1, —14, 11, 1].

Of course, this means that any one equation is a linear combination of the other two. What

we have here is not truly three linear equations but only two independent ones. The system
is called redundant.
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What if the right-hand vector is different, say, [5, 7, 2]7? Solving with this vector, we
find this final array:

2.0000 4.0000 —1.0000 7.0000
(—0.5000) —12.0000 10.5000 5.5000
(0.5000) (0.3333) 0 —0.3333

We now say, for this system, that it is inconsistent, there is no solution that satisfies the equa-
tions. In either case, there is no unique solution to a system with a singular coefficient matrix.
Here is a comparison of singular and nonsingular matrices:

For Singular Matrix A: For Nonsingunlar Matrix A:
It has no inverse, A~} It has an inverse, A~} exists
Its determinant is zero The determinant is nonzero
There is no unique solution There is a unique solution
to the system Ax = b to the system Ax = b
Gaussian elimination cannot avoid Gaussian elimination does not
a zero on the diagonal encounter a zero on the diagonal
The rank is less than n The rank equals n
Rows are linearly dependent Rows are linearly independent
Columns are linearly dependent Columns are linearly independent

[1I-Conditioned Systems

We have seen that a system whose coefficient matrix is singular has no unique solution.
What if the matrix is “almost singular”? Here is an example:
302 —105 253
A=1| 433 056 —1.78]|.
—0.83 —0.54 1.47

The LU equivalent has a very small element in position (3, 3):

4.33 0.56 —1.78
LU= 06975 —1.4406 37715 |.
—-0.1917  0.3003 —0.0039

Let’s look at the inverse:

5.6611 —7.2732 —18.5503
inv(A) = | 200.5046 —268.2570 —669.9143 |,
76.8511 —102.6500 —255.8846

and we see that this has elernents very large in comparison to A.
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Both of these results suggest that matrix A is nonsingular but is “almost singular.”
Suppose we solve the system Ax = b, with b equal to [—1.61,7.23, —3.38]7. It is clear, if
you do the math, that the solution is x = 1.0000, 2.0000, —1.0000.

Now suppose that we make a small change in just the first element of the b-vector: b =
[—1.60, 7.23, —3.38]. Now solve again; we get x = [1.0566, 4.0051, —0.2315]. What a
difference! Let us try another small change in the b-vector: b = [—1.61, 7.22, —3.38]".
The solution now is x = [1.07271, 4.6826, 0.0265] which also differs much from our first
answer.

A system whose coefficient matrix is nearly singular is called ill-conditioned. When a
system is ill-conditioned, the solution is very sensitive to changes in the right-hand vector.
It is also sensitive to small changes in the coefficients. If A(1, 1) is changed from 3.02 to
3.00 and we solve the system again with the original b-vector, we now find a large change
in the solution: x = [1.1277, 6.5221, 0.7333}7. This means that it is also very sensitive to
round-off error.

This phenomenon shows up even more pointedly in large systems. But even this system
of only two equations shows the effect of near singularity:

[1.01 0.99} H B [2.00]
099 1.01]|y 2.00 |
The solution is clearly seen to be x = 1.00, y = 1.00.

However, if we make a small change to the b-vector, to [2.02, 1.98]%, the solution now
is x = 2,y = 0. If we had another slightly different b-vector: [1.98, 2.02]7, we would have
x=0,y=2!

It is helpful to think of the system, Ax = b, as a linear system solver machine. In this

view, we have inputs to the machine, the b-vector, and outputs, the x-values. For an ill-
conditioned system, small changes in the input make large changes in the output.

Even though the three inputs are “close together”—b, = (2, 2)7, b, = (2.02, 1.98)7, and
by = (1.98, 2.02)T—we get very “distant” outputs—x, = (1, )7, x, = (2, 0), x, = (0,
2)T. This modest example shows the basic idea of an ill-conditioned system: For small
changes in the input, we get large changes in the output.

In some situations, one can combat ill-conditioning by transforming the problem into an
equivalent set of equations that are not ill-conditioned. The efficiency of this scheme is
related to the relative amount of computation required for the transformation, compared to
the cost of doing the calculations in higher precision.

An interesting phenomenon of an ill-conditioned system is that we cannot test for the
accuracy of the computed solution merely by substituting it into the equations to see
whether the right-hand sides are reproduced. Consider again the ill-conditioned example
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we have previously examined:

302 —-105 253 —1.61

A=} 433 056 -1.78]|, b= 1723|
-0.83 —0.54 1.47 —3.38
T

If we compute the vector Ax, using the exact solution x = (1, 2, —1)7, we of course get
Ax = (—1.61,7.23, —3.38)T = b.
However, if we substitute a clearly erroneous vector
X = (0.880, —2.34, —2.66)’,

we get A% (—1.6152, 7.2348, —3.3770)7, which is very close to b.

Effect of Precision

We have mentioned that it is difficult to get an accurate solution when a system is ill-
conditioned and have demonstrated that small changes in either the coefficients or the
right-hand side make large changes in the solution. The solution is also dependent on the
accuracy of the arithmetic computations. We use here the computer algebra system, Maple,
to show this. We begin by invoking the linalg “package” that enables many operations:

with (linalg)
Now we define the matrix:

>A: =matrix (3,4,[3.02,—1.05,2.53,—1.61,4.33,0.56,—1.78,7.23,
—0.83,—-0.54,1.47,—3.38]);

3.02 —-1.05 253 -1.61
A= 433 56 178  7.23 .
—-83 —54 147 —3.38

We already have seen that this system is ill-conditioned. What does Maple say the solution
is?
>rref (A);

1 00 1.000000037
0 1 0 2000001339 |,
0 0 1 -—.9999994882
which is pretty close to the exact solution, x = [1, 2, —1]. Maple used its default precision

of ten digits in getting this answer. If we change the precision to 20, we get a more accu-
rate solution but it is still not exact. What if we change it to only three digits?

Digits: = 3; rref(A);
Digits: =3
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10 —-073 0
0 1 —-2.62 0
00 O 1

and Maple tells us that the coefficient matrix is singular at that precision. If we change to
four digits:
Digits: = 4; rref(a);
Digits: =4

1 0 0 9824
0 1 0 1.346
0 0 1 —-1.250
we get a poor approximation to x = [1, 2, —1], the exact solution.

The ‘rref’ command can be used in MATLAB also. It rather obviously uses the
Gauss—Jordan method.

Condition Numbers and Norms

The degree of ill-conditioning of a matrix is measured by its condition number. This is
defined in terms of its norms, a measure of the magnitude of the matrix. We discuss norms
before discussing condition numbers.

The magnitude of a single number is just its distance from zero: |—4.2| = 4.2. But a
matrix i8 not a single number; its norm is different. For any norm, these properties are
essential:

1. The norm must always have a value greater than or equal to zero, and must be zero
only when the matrix is the zero matrix (one with all elements equal to zero).

2. The norm must be multiplied by & if the matrix is multiplied by the scalar k.

3. The norm of the sum of two matrices must not exceed the sum of the norms.

4. The norm of the product of two matrices must not exceed the product of the norms.

More formally, we can state these conditions, using || A|| to represent the norm of matrix A:

1. |A| = 0and||A| = 0if and only if A = 0.

2. KAl = kAl |
214) |

3. A+ Bll=[A]+ B

4. [[AB|=[All[B].

The third relationship is called the triangle inequality. The fourth is important when we
deal with the product of matrices.
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For the special kind of matrices that we call vectors, our past experience can help us.
For vectors in two- or three-space, the length satisfies all four requirements and is a good
value to use for the norm of a vector. This norm is called the Euclidean norm, and is com-
puted by Vx? + x2 + xi.

We compute the Euclidean norm of vectors with more than three components by
generalizing:

12

I3
Il = i+ = (3 )
i=1

This is not the only way to compute a vector norm, however. The sum of the absolute
values of the x; can be used as a norm; the maximum value of the magnitudes of the x, will
also serve. These three norms can be interrelated by defining the p-norm as.

1y

b, =S¢

From this its is readily seen that

lx|l; = 2|x;| = sum of magnitudes;

i=1

n 172
|, = (2 x,—2> = Euclidean norm;

i=l

lx] = max |x;| = maximum-magnitude norm.
={=n

Which of these vector norms is best to use may depend on the problem. In most cases,
satisfatory results are obtained with any of these measures of the “size” of a vector.

EXAMPLE 2.3

Compute the 1-, 2-, and c-norms of the vector x, if x = (1.25, 0.02, —5.15, 0).
x|, = 1.25) + [0.02| + |—5.15] + |0] = 6.42.

Ix]l, = [(1.257 + (0.022 + (=5.15)% + (04 = 5.2996.
Ixll, = |-5.15] = 5.15.

Matrix Norms

The norms of a matrix are similar to the norms of a vector. Two norms that are closely
related are
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n
[All; = max X|a;| = maximum column sum; _]
1=j=n =

n
Al = [nax >la;| = maximum row sum.
j<n =1

The matrix norm ||A[}, that corresponds to the 2-norm of a vector is not readily com-
puted. It is defined in terms of the eigenvalues of the matrix A7 * A. Suppose r is the largest
eigenvalue of AT * A. Then [[Al], = "2, the square root of r. This is called the spectral
norm of A, and || A|, is always less than (or equal to) A}, and [|A]],..

For an m X n matrix, the Frobenius norm is defined as

bty - (£ 3)"

EXAMPLE 2.4

Compute the Frobenius norms of A, B, and C, and the c-norms, given that

Aol 59L gofer o] o_[o2 o
-2 1) “lo2 o1 01 0 |

|All; =25 + 81 + 4 + 1 = V111 = 10.54; lAll. = 140,
I1B]|; = V0.0 + 0 + 0.04 + 0.01 = V0.06 = 02449;  ||B]. = 0.3;
], = V0.04 + 0.01 + 0.01 + 0 = V0.06 = 0.2449;  |C|l. = 0.3.

The results of our examples look guite reasonable; certainly A is “larger” than B or C.
Although B # C, both are equally “small.” The Frobenius norm is a good measure of the
magnitude of a matrix.

2

We see then that there are a number of ways that the norm of a matrix can be expressed.
Which way is preferred? There are certainly differences in their cost; for example, some
will require more extensive arithmetic than others. The spectral norm is usually the most
“expensive.” Which norm is best? The answer to this question depends in part on the use
for the norm. In most instances, we want the norm that puts the smallest upper bound on
the magnitude of the matrix. In this sense, the spectral norm is usually the “best.”” We
observe, in the next example, that not all the norms give the same value for the magnitude
of a matrix.

MATLAB can compute all of the norms of a matrix:

A:
5 =5 =7
-4 2 -4
-7 —4 5
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EDU>> norm{A, ' fro’)
ans =

15
EDU>> norm(A, inf)
ans =

17
EDU>> norm(A, 1)
ans =

16
EDU>> norm(A)
ans =

12.0301
EDU>> norm (A, 2)
ans =

12.0301

We observe that the 2-norm, the spectral norm, is the norm we get if we just ask for the
“norm.” The smallest norm of the matrix is the spectral norm, it is the “tightest” measure.

Errors in the Solution and Norms

When we solve a system of equations, we hope that the result has little error but, as we
have seen, that is not always true. If the coefficient matrix is ill-conditioned, we cannot
check the accuracy by just substituting our answer into the equations, but we can use

norms to see how great the error is.

Let x be the computed solution, an approximation to the true solution. Define the resid-
ual, r, as r = b — Ax, the difference between the b-vector and what we get when the
approximate X is substituted into the equations. Let e be the error in X and x be the true
solution to the system (which we don’t know), e = x — X. Because Ax = b, we have

r=b—AX = Ax — AX = A(x — X) = Ae.
Hence,
e=A"lr.

Taking norms and recalling Eq. (2.14), line 4, for a product, we write
lell = lla="[ll7[ 2.15)

From r = Ae, we also have ||| = ||A]||le[, which combines with Eq. (2.15) to give

J.r_||_< ell = -l v
g = lell = 14~ i) 2.16)

Applying the same reasoning to Ax = b and x = A~ b, we get

g = bl = 1A e, @.17)
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Taking Egs. (2.16) and (2.17) together, we reach a most important relationship:

Al uAlu%.

Ll el
TATIAT ol = el =

L

Condition Number of a Matrix

The product of the norm of A and the norm of its inverse is called the condition number of
matrix A and is the best measure of ill-conditioning. A small number means good-condi-
tioning, a large one means ill-conditioning. So, we usually write the previous equation as

|
1 el _ el
(Conditionno.) |[b]} — x|

I
15l

= (Condition no.) {2.18)

Equation (2.18) shows that the relative error in the computed solution vector X can be as
great as the relative residual multiplied by the condition number. Of course it can also be as
small as the relative residual divided by the condition number. Therefore, when the condi-
tion number is large, the residual gives little information about the accuracy of X.
Conversely, when the condition number is near unity, the relative residual is a good mea-
sure of the relative error of x.

When we solve a linear system, we are normally doing so to determine values for a
physical system for which the set of equations is a model. We use the measured values of
the parameters of the physical system to evaluate the coefficients of the equations, so we
expect these coefficients to be known only as precisely as the measurements. When these
are in error, the solution of the equations will reflect these errors. We have already seen
that an ill-conditioned system is extremely sensitive to small changes in the coefficients.
The condition number lets us relate the change in the solution vector to such errors in the
coefficients of the set of equations Ax = b.

Assume that the errors in measuring the parameters cause errors in the coefficients of A
so that the actual set of equations being solved is (A + E)x = b, where X represents the
solution of the perturbed system and A represents the true (but unknown) coefficients. We
let A = A + E represent the perturbed coefficient matrix. We desire to know how large
X — XIs.

Using Ax = b and AX = b, we can write

x=A"b=A"1AD) = AT A + A — AX
=[I+A YA~ A)lx
=X +AI(A- Ax.
Because A — A = E, we have

x—X=A"'Ex.
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Taking norms, we get

|
| U I
L = = a1l = 1A Al

so that

= (Condition no.) —”AEH—

llx — ]
1

This says that the error of the solution relative to the norm of the computed solution
can be as large as the relative error in the coefficients of A multiplied by the condition
number. The net effect is that, if the coefficients of A are known to only four-digit preci-
sion and the condition number is 1000, the computed vector x may have only one digit of
accuracy.

Iterative Improvement

When the solution to the system Ax = b has been computed, and, because of round-off
error, we obtain the approximate solution vector ¥, it is possible to apply iterative improve-
ment to correct X so that it more closely agrees with x. Define e = x — X. Define
r=>b—Ax.

Ae=r. 2.19)

If we could solve this equation for e, we could apply this as a correction to X. Furthermore,

if |{e|/]| || is small, it means that x should be close to x. In fact, if the value of || ¢ ||/[| x| is
1072, we know that X is probably correct to p digits.

The process of iterative improvement is based on solving Eq. (2.19). Of course this is
also subject to the same round-off error as the original solution of the system for x, so we
actually get &, an approximation to the true error vector. Even so, unless the system is so
ill-conditioned that € is not a reasonable approximation to e, we will get an improved esti-
mate of x from X + €. One special caution is important to observe: The computation of the
residual vector r must be as precise as possible. One always uses double-precision arith-
metic; otherwise, iterative improvement will not be successful. An example will make this
clear.

We are given

423 —1.06 2.11 5.28
A=|—-253 6.77 0.98 1, b= 522],
1.85 —2.11 —-2.32 —-2.58
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whose true solution is

1.000
x=71000|.
1.000
If inadequate precision is used, we might get this approximate solution vector: x = (0.991,

0.997, 1.000). Using double precision, we compute AX, storing this product in a register
that holds six digits, then we get the residual.

5.24511 0.0349
Ax = | 522246, r=1—0.00246 |.
—2.59032 0.0103
We now solve Ae = r, again using three-digit precision, and get
0.00822
e=| 0.00300
—0.00000757

Finally, cotrecting X with X + e gives almost exactly the correct solution:
0.999
x+e=11.000]|.
1.000
In the general case, the iterations are repeated until the corrections are negligible.

Because we want to make the solution of Eq. (2.19) as economical as possible, we should
use an LU method to solve the original system and apply the LU to Eq. (2.19).

Pivoting and Precision

We have previously said that pivoting reduces the errors due to round off. We examine this
further with a small system, one with only two equations:

ex+ By = C,
Dx + Ey =F,

with & a very small number. If this is solved without pivoting and the first column is
reduced (—D/e is the multiplier), we get

ex+By=C_,
(E — DBle)y = F — CD\e.
and, solving for y, we see that

_F-=CDls _ CD
E-DBls DB

C
y = E_ if £1s very small.
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Substituting this for y in the first equation, we find

C~BCB) _C-C _
& e B

0!

showing that x =~ ( for any values of C and F if ¢ is small enough. Now, suppose that
F =D+ Eand C = ¢ + B and we do pivot by interchanging the equations:

Dx+ Ey=F=D+E,

ex+By=C=¢+B.

(Obviously, the correct solution must be x = 1, y = 1.) Now, reducing the first column
(—e&/D is the multiplier) we have:

Dx+Ey=D+E
eD+ BD —eD—eE  BD — ek
D D

(B— (e/D)E)y =&+ B — (¢/D)(D + E) =

El

so that
_ (BD - eE)D _
Y= BD - sE)D

We get x by substituting y = 1 into the first equation, so that

D+ E — E(1)
X=——=

L
D

which demonstrates how pivoting may be very necessary.
Here is a numerical example of the same thing. The augmented matrix is

0.02 10 10.02
10 10 20 [

which must yield x = 1, y = 1. If precision is infinite, pivoting is not required. Let’s
reduce in the first column without pivoting (—10/0.02 = —500 is the multiplier):

0.02 10 10.02
0 —4990 —4490 ’

which gives y = (—4990)/(—4990) = 1.
Now, substituting y = 1 into the first equation,

~10.02 — 10
002

The result for x is 1 if the numerator equals 0.02. But suppose we have only three digits of
precision—that means the numerator does not equal 0.02 but is 0.00 and x is zero!
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Iterative Methods

Gaussian elimination and its variants are called direct methods. An entirely different way
to solve many systems is through ireration. In this, we start with an initial estimate of the
solution vector and proceed to refine this estimate. There are times when this is preferred
over a direct method. This is especially true when the coefficient matrix is sparse.

The two methods for solving Ax = b that we shall discuss in this section are the Jacobi
method and the Gauss—Seidel method. These methods not only can solve a system of
equations but they are also the basis for other accelerated methods that we shall introduce
in later chapters of this book. When the system of equations can be ordered so that each
diagonal entry of the coefficient matrix is larger in magnitude than the sum of the magni-
tudes of the other coefficients in that row —such a system is called diagonally dominant —
the iteration will converge for any starting values. Formally, we say that an n X n matrix A

is diagonally dominant if and only if for eachi = 1,2, ..., n,
laiil>2lai,js i=1,2,...,n
j=1

e
Although this may seem like a very restrictive condition, it turns out that there are very

many applied problems that have this property (steady-state and transient heat transfer are
two). Our approach is illustrated with the following simple example of a system.

bx; — 2x, + x3= 11,
x; + 2x, = 5xy = —1,
—2x; + Tx, + 2x, = 5.
The solution is x; = 2, x, = 1, x, = 1. However, before we begin our iterative scheme we
must first reorder the equations so that the coefficient matrix is diagonally dominant.
6x; — 2x, + x5 = 11,
—2)c1 +Txy + 2xy = 5, 2.20)
x; + 2%, = 5x5 = —1.

The iterative methods depend on the rearrangement of the equations in this manner:

b. L7
Y% ij P
X; = > X, i=1,2,...,n
a;; =14y
i

Each equation is now solved for the variables in succession:
x; = 1.8333 + 0.3333x, — 0.1667x;,,

x, = 0.7143 + 0.2857x, — 0.2857x,,
%, = 0.2000 + 0.2000x, + 0.4000x,.

We begin with some initial approximation to the value of the variables. (Each compo-
nent might be taken equal to zero if no better initial estimates are at hand.) Substituting
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these approximations into the right-hand sides of the set of equations generates new
approximations that, we hope, are closer to the true value. The new values are substituted
in the right-hand sides to generate a second approximation, and the process is repeated
until successive values of each of the variables are sufficiently alike. We indicate the itera-
tive process on Eq. (2.20), as follows, by putting superscripts on variables to indicate suc-
cessive iterates. Thus our set of equations becomes

x{("TD = 1.8333 + 0.3333x{" — 0.1667x{",
XD = 07143 + 0.2857x(" — 0.2857x{?, 2.21)
XD = 0.2000 + 0.2000x{” + 0.4000x5".

Starting with an initial vector of X = (0, 0, 0), we get

Successive estimates of solution (Jacobi method)

First Second Third Fourth Fifth Sixth Ce e Ninth
X 0 1.833 2.038 2.085 2.004 1.994 e 2.000
X, 0 0.714 1.181 1.053 1.001 0.990 v 1.000
Xg 0 0.200 0.852 1.080 1.038 1.001 v 1.000

Note that this method is exactly the same as the method of fixed-point iteration for a single
equation that was discussed in Chapter 1, but it is now applied to a set of equations; we see
this if we write Eq. (2.21) in the form of

1) = G(x(”)) =p — Bx(”),

which is identical to x,, ; = g(x,) as used in Chapter 1.

In the present context, of course, x and x**+ refer to the nth and (n + 1)st iterates of
a vector rather than a simple variable, and g is a linear transformation rather than a nonlin-
ear function. For the preceding example, we restate Eq. (2.20) in matrix form:

6 —2 1| x; 11
Ax=b, |2 7 21 x,1 = 51 (2.22)
1 2 —5{{xs ~1
Now, letA = L + D + U, where
0 0 0O 6 0 0 0o —2 1
L=|-2 0 0|, D=|0 7 0, U=]0 0 2
1 20 0 0 -5 0 0 0

Then Eq. (2.22) can be rewritten as
Ax=(L+D-+Ux=b, or
Dx = —(L + Uyx + b, which gives
x=-D YL+ Ux+ Db
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From this we have, identifying x on the left as the new iterate,

At = —p~YL + U)x™ + D7 1p. (2.23)
In Egs. (2.21) we see that
1.8333
b =D71p=10.7143 |,
0.2000
0 —0.3333  0.1667
B=DNL+ U)=|-0.2857 0 0.2857 |.

—0.2000 —0.4000 O

The procedure we have just described is known as the Jacobi method, also called “the
method of simultaneous displacements” because each of the equations is simultaneously
changed by using the most recent set of x-values.

We can write the algorithm for the Jacobi iterative method as follows:

Algorithm for Jacobi Iteration

We assume that the system Ax = b has been rearranged so that the matrix A is diag-
onally dominant. That is, for each row of A:

n
|a,-,i|>2|al-,j[, i=12,...,n
j=i
i
This is a sufficient condition for convergence both for this method and for the one

that we discuss next. We begin with an initial approximation to the solution vector,
which we store in the vector: old_x.

Fori=1Ton

bli] = b[il/ali, il

new_x[il = old_x[i]

ali,jl = ali, jVali,i}; j=1...nandi <>}
End For i

Repeat

Fori=1Ton
old_x[il = new_x[i]
new_x[i] = bli]

End For i

Fori=1Ton
Forj=1Ton
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If (j <> i) Then
new_x[i] = new_x[i] — ali, j] * old_x[ ]
End For j
End For i
Until new_x and old_x converge to each other.

Gauss - Seide] Iteration

Observe that we never use the values new-x in the algorithm for Jacobi iteration until we
have found all of its components. Even though we have new_x [1] available, we do not use
it to compute new_x [2] even though in nearly all cases the new values are better than the
old and ought to be used instead. When this is done, the procedure known as Gauss—Seidel
iteration results.

We begin exactly as with the Jacobi method by rearranging the equations, solving each
equation for the variable whose coefficient is dominant in terms of the others. We proceed
to improve each x-value in turn, using always the most recent approximations of the other
variables. The rate of convergence is more rapid than for the Jacobi method, as shown by
reworking the previous example [Eq. (2.20)].

Successive estimates of solution (Gauss— Seidel method)

First Second Third Fourth Fifth Sixth

X, 0 1.833 2.069 1.998 1.999 2.000
Xy 0 1.238 1.002 0.995 1.000 1.000
Xy 0 1.062 1.015 0.998 1.000 1.000

These values were computed by using this iterative scheme:
xl(”ﬂ) = 1.8333 + 0.3333x2(") - 0.1667x§”),
xD =0.7143 + O.2857x1(”+1) — 0.2857x{",
x{1D = 0.2000 + O.ZOOOxI(”“) + 0.4000x{"* D,

beginning with x(1) = (0, 0, 0)7.
The algorithm for the Gauss—Seidel iteration is as follows:

Algorithm for Gauss—Seidel Iteration

We assume as we did in the previous algorithm that the system Ax = b has been
rearranged so that the coefficient matrix, A, is diagonally dominant. As before, we begin
with an initial approximation to the solution vector, which we store in the vector: x.
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Fori=1Ton

bli] = blil/ali, i}

ali,1 =ali,jVali,il;j=1...nand i <>j
End for i;

While Not (yet convergent) Do
Fori=1Ton
x{i] = bli};
Forj=1Ton
If (j <> i) Then
x[il = xl[i] — ali, j1 * x[j]
End For j
End For {
End While

The matrix formulation for the Gauss—~Seidel method is almost the same as the one
given in Eq. (2.23). For Gauss—Seidel, Ax = b can be rewritten as

(L+Dyx=-Ux+b, (2.24)
and from this we get
xHD) = —( + D) Ux™ + (L + D)~ . (2.25)

The usefulness of this matrix notation will become apparent in Chapter 6 where the eigen-
values of matrices D™ YL + U) of Eq. (2.23) and (L + D)~ ! U of Eq. (2.25) will be stud-
ied. The eigenvalues of the two matrices indicate how fast the iterations will converge. We
emphasize, however, that without diagonal dominance, neither Jacobi nor Gauss—Seidel is
sure to converge. (Some authors use the term row diagonal dominance for our term diago-
nal dominance. Their term is perhaps more accurate.)

There are some instances of the system Ax = b where the coefficient matrix does not
have (row) diagonal dominance but still both Jacobi and Gauss—Seidel methods do
converge. It can be shown that, if the coefficient matrix, A, is symmetric and positive
definite,* the Gauss-—Seidel method will converge from any starting vector. In another
class of problems, where matrix A has diagonal elements that are all positive and off-
diagonal elements that are all negative, both Jacobi and Gauss—Seidel methods will either
converge or diverge. When both methods converge, the Gauss—Seidel method converges
faster. Datta (1995) discusses this and gives examples.

For a general coefficient matrix, there is little that can be said. In fact, there are exam-
ples where Jacobi converges and Gauss—Seidel diverges from the same starting vector!
Still, returning to the focus of this section, we can say that, given row diagonal dominance
in the coefficient matrix, the Gauss—Seidel method is often the better choice. Having said

* Matrix A is positive definite if x * Ax > 0 for all nonzero vectors x.
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that, we may still prefer the Jacobi method if we are running the program on parallel
processors because all n equations can be solved simulaneously at each iteration.

Accelerating Convergence

Convergence in the Gauss—Seidel method can be speeded if we do what is called overrelax-
ing. The term comes from an old hand method where a set of “residuals” (the right-hand-side
values for a rearrangement of the equations when the unknowns were given certain values)
were “relaxed” to zero. Overelaxation will be encountered again in Chapter 8, where we
solve partial-differential equations.

The standard relationship for Gauss—Seidel iteration for the set of equations Ax = b,
for variable x;, can be written

1 i—1 n
xfD = -—(b,- - Y agxfh— ¥ aijx](k)>, (2.26)

4y j=1 j=it1

where the superscript (k + 1) indicates that this is the (kK + 1)st iterate. On the right side
we use the most recent estimates of the x,, which will be either xj(") or xj(k“).
An algebraically equivalent form for Eq. (2.26) is

1 i—1 n
x§k+1) = xgk) + —\b - E aijxj(k+1) - E aijx](k) ,
i j=1 j=i

because xi(k) is both added to and subtracted from the right side. Overrelaxation can be
applied to Gauss—Seidel if we will add to xi(k) some multiple of the second term. It can be
shown that this multiple should never be more than 2 in magnitude (to avoid divergence),
and the optimal overrelaxation factor lies between 1.0 and 2.0. Our iteration equations take
this form, where w is the overrelaxation factor:

w i—1 n
— k
xfHD = x + 7(17,- — 2 gl = X ap! )>-

i j=1 j=1

Table 2.1 shows how the convergence rate is influenced by the value of w for the system

4 1 1 1 1
4 1 1 1

1 -4 Tl

1
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Table 2.1  Acceleration of convergence of
Gauss —Seidel iteration

w, the overrelaxation Number of iterations to
factor reach error <1 X 1075
1.0 24
1.1 18
1.2 13
1.3 11 «Minimum
1.4 14 of iterations
1.5 18
1.6 24
1.7 35
1.8 55
1.9 100+

starting with an initial estimate of x = 0. The exact solution is

x =1, x, = —1, X =1, x, = —1

Sparse Matrices and Banded Matrices

It has already been said that many applied problems are solved with systems whose coeffi-
cient matrix is sparse—only a fraction of the elements are nonzero. In Chapters 6 and 8
you will see several instances. The tridiagonal system of Section 2.2 is the prime example.
In other applications the coefficient matrix may be sparse and have elements situated in
selected positions. A banded matrix is one where the nonzero elements lie on diagonals
parallel to the main diagonal. A tridiagonal matrix is obviously banded.

Some sparse matrices are not as compact as a tridiagonal one. It often happens that the
nonzero coefficients lie on diagonals but some or all of these bands are not adjacent to the
main diagonal. Algorithms similar to the one for a tridiagonal matrix can be developed.
However, one usually finds that the nonzero elements between the bands and the main
diagonal do not stay zero and more arithmetic operations are needed to get a solution or to
find an LU equivalent to the coefficient matrix.

Fortunately, most sparse systems have a main diagonal that is dominant so it is easy to
set up the rearranged equations that can be solved quickly by iteration. And these iterations
can be speeded up by overrelaxation. Here is an example of a small system:

31 0 -1 00 205]
14 2 0 20 333
02 4 1 03 -621
20 -1 3 30 525
03 0 1 52 89
00 1 0 -1 2 1087]
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whose solution is
x = [—1.7040, 17.9737, —19.1286, 10.8118, —14.3019, 7.8483]".

which we found by Gaussian elimination. It would be good practice to get this solution by
an iterative method.

Iteration Is Minimizing

Getting successive improvements to an initial x-vector, x,, that converge to the solution to the

system Ax = b can be considered to be minimizing the errors in the x-vectors, the residuals:
.= b —Ax,.

For a special class of problems, those whose coefficient matrix is symmetric and positive

definite, there is a method that is extremely rapidly convergent, the conjugate gradient

method. In Chapter 7 we discuss this method of finding the minimum of a function of sev-

eral variables.

When matrix A is multiplied with vector x, a new transformed vector results. Because
the product of matrix A with vector x depends on x, we can say that the product is a func-
tion of x because it changes when x is varied—Ax is then a “function of x.” Our statement
that iteration is minimizing makes sense.

We will not give a full explanation of the conjugate gradient method at this point, only
give one example where it works and another where it doesn’t.

Consider this small system whose coefficient matrix is symmetric and positive
definite:*

4 -3 -1 7
A=(—-3 5 2, b={ 2|
-1 2 3 -3

whose solution is x = [3.9167, 3.5833, —2.0833]7. If we start with x, = [0, 0, 017,
Gauss —Seidel iterations converge in 20 iterations. With the Jacobi method, there is no con-
vergence; the successive x-vectors after 34 iterations oscillate about the true answer:

Tteration 34: x = [3.5833, 3.9166, —1.750017,
Tteration 35: x = [4.2500, 3.2500, —2.4166]7,

whose averages are exactly the solution.
If the conjugate gradient method is applied, again with x, = [0, O, 0}, we get these results:

x, = [2.4520, 0.7006, —1.0508]7,
x, = [4.0670, 3.4771, —1.619717,
x, = [3.9167, 3.5833, —2.0833]",

and we obtain the exact solution in three tries!
* A matrix is positive definite if and only if the determinants of all its Jeading minors are positive. The leading

minors are the submatrices whose upper-left elements are the diagonal elements of the matrix. This matrix is
clearly symmetric. It is positive definite because the determinants of it leading minors are 24, 11, and 3.
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The conjugate gradient method will always converge in » tries with a system of
n-equations; it is the preferred iterative method for systems that have the necessary condi-
tions. Still, each iteration of the conjugate gradient method is more expensive than Jacobi
or Gauss—Seidel.

If we attempt to use the method when the coefficient matrix is not symmetric, it fails.
With this set of two equations:

[ 201 3]
-1 3 2

which obviously is solved with x = [1, 117, the conjugate gradient method actually
diverges from x; = [0, 017, while Gauss—Seidel converges in 7 iterations and Jacobi in 12.

Parallel Processing

We have mentioned that the operation of many numerical methods can be speeded up by
the proper use of parallel processing or distributed systems. In this section, we describe
how vector/matrix operations, Gaussian elimination, and Jacobi iteration can be efficiently
performed in a parallel or distributed processing environment. We shall show how much
the performance can be improved depending on the topology of the network in each case
and pay special attention to the implementation of Gaussian elimination.

Vector/Matrix Operations

For inner products, a very elementary case, we assume we have two vectors, v, u, of length
n, and an equal number of parallel processors, proc(i),i = 1. .. n, where each proc(i) con-
tains the components, v, #,. Then the multiplication of all the v, * u; can be done in paral-
lel in one time unit. In Section 0.6, we found that if the processors are connected suitably
we can actually do the addition part in log(n) time units. Thus, we can estimate the time for
an inner product as 1 + log(n) = O(log(n)).

This assumes a high degree of connectivity between the processors. There has been
much study of such connectivity. These different designs are referred to as the topologies
of the systems. In our present example, we assume the topology of a hypercube. However,
before we describe that design, we shall introduce the simpler topology of the linear array.
Suppose our processors were only connected as a linear array in which the communication
send/freceive is just between two adjacent processors:

Pl Pye>--r P <P

Then our addition of the n elements would be n/2 time steps, because we could do an addi-
tion at each end in parallel and proceed to the middle.

The n-dimensional hypercube is a graph with 2" vertices in which each vertex has n
edges (is connected to n other vertices). This graph can be easily defined recursively

because there is an easy algorithm to determine the order in which the vertices are
connected.
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O-dimensional hypercube: 1-dimensional hypercube:
®p —————— @
Py Py
2-dimensional hypercube: 3-dimensional hypercube:
P Py ‘P 110 Py
J Poi
Poyo
Piog Priop
Pooo Poo;
Py Py

Two vertices are adjacent if and only if the indices differ in exactly one bit. We can get to
the (n + 1)-dimensional hypercube by making two copies of the n-dimensional hypercube
and then adding a zero to the leftmost bit of the first n-dimensional cube and then doing the
same with a 1 to the second cube. It was this kind of connectivity that allowed us to make
the addition of n numbers in log(r) time steps in Section 0.6. There are many other designs
for connecting the processors. Such designs include names like star, ring, torus, mesh, and
others. However, for the rest of this section, we shall assume that we have the processors
optimally connected.

For the matrix/vector product, Ax, we assume that processor proc(i) contains the ith row
of A as well as the vector, x. Because one processor is performing this dot product of row i
of A and of vector x, this could be done in 2#x units of time. However, because the other
processors are proceeding in parallel, the whole operation will only take O(n) units of
time. We would have had a less efficient algorithm had we made use of the inner product
algorithm above on the individual rows of A and the vector x.

For a linear array of processors, Berisekas and Tsitsiklis give the following time for our
more simplified case. The time is

an + (n = 1B+ ),

where « is the time for an addition or multiplication, f is the time for a transmission of the
product along the link, and vy is a positive constant.

For the matrix/matrix product, AB, for two n X n matrices, we suppose that we have
n? processors. Before we start our computations, each processor, Pi, 7 will have received
the values for row i of A and column j of B. Based on our previous discussion, we can
expect the time to be O(n). For n? processors, this can be reduced to just O(log(n)) time.
Here cach processor, proc(i.k,j), would store the elements, A, ,, By .. i Then all the
multiplications can be done in parallel, and the additional (log(n)) time units are for
the additions.
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(Gaussian Elimination

Recall how we achieve a solution to a system of linear equations through Gaussian elimi-
nation. We first perform a sequence of row reductions on the augmented matrix (A : b)
until the coefficient matrix A is in upper-triangular form. Then we employ back-substitu-
tion to find the solution.

To see how this can be done in a parallel-processing environment, we must examine the
row-reduction phase and the back-substitution phase in some detail.

We begin with the row-reduction phase: Consider the following example of the first
stage of row reduction of a 4 X 4 system with one right-hand side:

1 21 3 4 1 21 3 4
25 4 3 4|R,—@M*R, |0 1 2 -3 —4
1 4 2 3 3|R,~WD*R—|0 21 0 —1f
3241 8/R,—G/M*R, |0 -4 1 -8 —4

Although each of these row reductions depends on the elements of row 1, they are com-
pletely independent of one another. For example, the elements of rows 2 and 4 play no part
in the row operations performed on row 3. Thus, the row reductions on rows 2, 3, and 4 can
be computed simultaneously.

If we are computing in a parallel processing environment, we can take advantage of this
independence by assigning each row-reduction task to a different processor:

1 2 1 3 4

2 5 4 3 4] — Processor 1: R, — (2/1) * R,

1 4 2 3 3| —Processor2: Ry — (/1) *R, — - - - -
3 2 4 1 8] —Processor3: R, — (3/1) * R,

Suppose each row assignment statement requires 4 time units, one for each element in a
row. Then the sequential algorithm performs this stage of the row reduction in 12 time
units, whereas we need only 4 time units for the parallel algorithm. This example of paral-
lel processing on the first stage of row reduction of a 4 X 4 system matrix generalizes to
any row reduction in stage j of an n X n system matrix.

Recall that there are n — 1 row-reduction stages in Gaussian elimination, one for each
of the n columns of the coefficient matrix except for the last column. This suggests that we
need n — 1 processors to do the reduction in parallel.* Also recall that each row-reduction
stage j creates zeros in every cell below the diagonal in the jth column. The following two
pseudocodes compare the use of a single processor with the use of n processors to perform
the entire row-reduction phase of Gaussian elimination.

* Bven so, we will need n processors in the final algorithm, as will be seen.
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Algorithms for Row Reduction in Gaussian Elimination

Sequential Processing (without pivoting)

Forj=1To(n — 1)
Fori=(j+ 1)Ton
Fork=jTo(m + 1)
ali, k] = ali, k} — ali, jl/al j, j1 * al j, k]
End For k
End For i
End For j

Parallel Processing

Fori=1To(n — 1) (Counts stages = columns)
Fork=iTo(n + 1) (On Processor j = (i + 1) To n)
ali, k] = ali, k] — ali, jl/alj, j1 * alj. k]
End For &
End For i

If we total the arithmetic operations to carry out the reduction of an n X n coefficient
matrix to upper-triangular form, we find that the sequential algorithm requires O(n%) suc-
cessive operations and that the parallel algorithm with n processors accomplishes the same
task in O(n?) successive operations.

What happens if we have more than n processors? As indicated in our earlier discussion,
we can speed up the reduction process even more. Suppose we increase the number of
processors from n to, say, n> + n. We can effectively use this extra power for Gaussian elim-
ination just as we did for the matrix/vector operations earlier. The complete algorithm for
the row-reduction phase of Gaussian elimination on these processors runs only O(n) suc-
cessive steps, and each step requires just three time steps for one subtraction, one division,
and one multiplication. If, as before, we label each processor as proc(i,j), i =1,..., n,
j=1,..., n+ 1, proc(i,j) is responsible for each element a; of the matrix [A: b]. We can
now rewrite the algorithm for parallel processing to reflect this improvement:

Fori=2Ton

{On Processor (f, )}

alj. k] = alj, k] — alj, ilali, i} * al j, k]
End For i

The row-reduction phase of Gaussian elimination leaves us with an upper-triangular
coefficient matrix and an appropriately adjusted right-hand side. In the sequential algo-
rithm we now find a solution using back-substitution. Before we consider parallelization of
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back-substitution, let us examine the activity of the processors during row reduction in
greater detail.

As we have observed, the processors responsible for computations on the elements of
row 1 sit idle during row reduction, because those elements of the matrix never change. In
addition, after the first row-reduction stage in which zeros are placed in the first column,
the processors for row 2 also sit idle. In fact, each stage of row reduction frees n + 1
processors.

It is natural to wonder if these idle processors could be employed in our algorithm.
Indeed, they can. We use them to perform row reductions above the diagonal at the same
time that corresponding row reductions occur below the diagonal. Thus at each stage j of
the reduction, zeros appear in all but the diagonal element of the jth column.

This diagram illustrates our improved procedure, continuing the simple 4 X 4 example
examined before and doing stages 3 and 4:

1 0 -3 9 12] R, - (3R)*R, 10 0 35
o1 2 -3 -4 Ry~ (—23)*R, —> |0 1 0 2
0 0 -3 6 7 00 -3 6 7
0 0 9 —20 —-20| R,—(9/—3)*R, 00 0 -2 1
R—@G/-2*R, {1 0 0 0o % B
R,—(1/~2)*R, |0 1 0 0 g_)x: z
Ry, — (6/—2)*R, 10 0 -3 0 10 -
00 0 -2 1 -1

The result of » such reductions—one for each column of the coefficient matrix A—is
[D: b'], where D is a diagonal matrix and &’ is an appropriately adjusted right-hand-side
vector.

Specifically, the solution x for Dx = b’ also satisfies Ax = b. This solution is the vector
x whose elements are X, = bi’/dﬁ fori=1,..., n. We can use n processors to perform
these n divisions simultaneously. Notice that the back-substitution phase of Gaussian elim-
ination is no longer necessary! We find that the Gauss —Jordan procedure is preferred when
doing parallel processing!

The parallel algorithm for n? processors required # time units for row reduction, and
one additional time unit for division. Recall that the sequential algorithm required O(#%)
time units. To understand the magnitude of the improvement in running time, consider that
a solution achieved in 10 seconds via the parallel algorithm would require around 15 min-
utes via the sequential algorithm.*

Our final parallel algorithm for solving a system of linear equations more closely
resembles the Gauss—Jacobi solution technique than it does Gaussian elimination. This is

not surprising. It is not uncommon for good parallel algorithms to differ dramatically from
their speediest sequential counterparts.

* This neglects the overhead of interprocessor communications.
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Problems in Using Parallel Processors

It is essential to mention some important concerns that have been neglected in the preced-
ing discussion. When we actually implement this parallel algorithm, we must worry about
four issues.

1. The algorithm described here does not pivot. Thus, our solution may not be as
numerically stable as one obtained via a sequential algorithm with partial pivoting.
In fact, if a zero appears on the diagonal at any stage of the reduction, we are in big
trouble. Bertsekas and Tsitsiklis observe that Gaussian elimination with pivoting can
have an upper bound of O(n log(n)) time when n? + n processors are used, and still
O(n?) time in the case of n processors.

2. The coefficient matrix A is assumed to be nonsingular. It is easy to check for singu-
larity at each stage of the row reduction, but such error-handling will more than dou-
ble the running time of the algorithm.

3. We have ignored the communication and overhead time costs that are involved in
parallelization. Because of these costs, it is probably more efficient to solve small
systems of equations using a sequential algorithm.

4. Other, perhaps faster, parallel algorithms exist for solving systems of linear equa-
tions. One technique, which is easily derived from ours, involves computing A~! via
row operations and simply multiplying the right-hand side to get the solution
x = A™1b. Another technique requires computing the coefficients of the characteris-
tic polynomial and then applying these coefficients in building A~! from powers of
A. This method finds a solution in only [2 log, n + O(log n)] time units, but it
requires n*/2 processors to do so. In addition, it often leads to numeric instability.*

Despite these concerns, our algorithm is an effective approach to solving systems of linear
equations in a parallel environment

Iterative Solutions —The Jacobi Method

The method of simultaneous displacements (the Jacobi method) that was discussed in
Section 2.5 is adapted very simply to a parallel environment. Recall that at each iteration of
the algorithm a new solution vector x™*1) is computed using only the elements of the solu-
tion vector from the previous iteration, X" In fact, the elements of the vector x™ can be
considered fixed with respect to the iteration (n + 1). Thus, though each element x"*1) in
the vector x"* 1) depends on the elements in x, these x**1 are independent of one
another and can be computed simultaneously.

Suppose the solution vector x has m elements. Then each iteration of the Jacobi algo-
rithm in a sequential environment requires m assignment statements. If we have m proces-
sors in parallel, these m assignment statements can be performed simultaneously, thereby
reducing the running time of the algorithm by a factor of m.

* JaJa (1992) describes these alternative algorithms in some detail.
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Notice also that each assignment statement is a summation over approximately m terms.
As demonstrated in Section 0.6, this summation can be performed in log, m time units with
m parallel processors, compared to m time units for sequential addition. If m? processors
are available, we can employ both of these parallelizations and reduce the time for each
iteration of the Jacobi algorithm to log, m time units. This is a significant speedup over the
sequential algorithm, which requires m? time units per iteration.

As seen in Section 2.5, the actual running time of the algorithm (the number of itera-
tions) depends on the degree of diagonal dominance of the coefficient matrix.
Parallelization decreases only the time required for each iteration.

Because Gauss—Seidel iteration requires that the new iterates for each variable be used
after they have been obtained, this method cannot be speeded up by parallel processing.
Again, the preferred algorithm for sequential processing is not the best for parallel

processing.
Exercises
Section 2.1
1. For these four matrices:

» 3.

3 2 -1 2 4
A=) 2 1 31, B=[-1 =2},
-3 -2 1 3 0
3 -1 3 0 -2 3
CcC=|1 1 -2y D={-1 5 04,
4 -2 0 -2 -1 6

a. Which pairs can be added? Find the sums.

b. Which pairs can be subtracted? Get their differ-
ences, then repeat in opposite order.

c¢. Which pairs can be multiplied? Find the products.

d. Which of these has a trace? Compute the traces.

Get the transpose for each matrix in Exercise 1. Then
repeat each part of Exercise 1 with the transposes.

For these vectors:

-2 4
vl = 310, v2=1(3 4 -1}, V3 = 21,
4 -3

a. Which pairs can be multiplied? Find the products.

b. Using the matrices in Exercise 1, which matrices
can multiply these vectors? Compute the products.

¢. Can any of these vectors multiply with one of the
matrices of Exercise 1 in the order v * M? Get the
products for those that do.

d. Find the product of each vector times its transpose.
Repeat with the transpose as the first factor.

Given the matrices:

-2 1 2 -2 3 5
A=| 2 3 -2 B=|( 2 1 -4},
1 -2 -3 4 -1 6

a. Find BA, B3, AAT.

b. Get det (A) and det (B).

¢. A square matrix can always be expressed as the sum
of a lower-triangular matrix L and an upper-triangu-
lar matrix U. Find two different combinations of
L and U for both A and B.

. Let

, 1 6 2
A=[3 9], B=|4 -1 3|
-10 1 -3 -

a. Find the characteristic polynomials of both A and B.
b. Find the eigenvalues of both A and B.
c. Is [0.2104, 0.8401] an eigenvector of A?

Write this as a set of equations:

4 2 -2 —1]]x, 7
0 4 1 2||xnl {10
3 -2 1 2f|x| |2
2 0 3 —5]|x, 3

Write these equations in matrix form:
6x — 2y + 3z = 12,
x+ y—4dz= 8§,
—2x — 3y = 12.
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8. Itis true that (A * B)T = BT * AT,

a. Test this statement with two 3 X 3 matrices of your
choice.

b. Isthistrueif Ais 3 X 2 and Bis 2 X 3.

c. Prove the statement.

9. For matrix A, write the transposition matrices that per-
form the interchanges.

3 5 -2 -1 0

a. Row 3 with row 5.
b. Column 2 with column 1.
p c. Both row 3 with row 5 and column 4 with column 2.
d. Multiply A with each of your matrices in parts (a), (b),
and (c) to confirm that the correct interchanges occur.
e. What happens if the transposition matrix of part (a) is
used to postmultiply with A rather than to premultiply?

10. Confirm that PT* P = I and that PT = P for each
transposition matrix of Exercise 9.

Section 2.2
11. a. Solve by back-substitution:
3%, + 3%+ x3= 12,
—4x, — 3x; = —10,

2= 4
b. Solve by forward-substitution:
3x; =15,
2x; ~ X, =10,

Sx; tx, = 203 = 5.
12. The first procedure described in Section 2.2 is some-

times called “Naive Gaussian Elimination.” Use it to
solve Exercises 13 and 14.

13. Solve the following (given as the augmented matrix):

31 -4 | 1
-2 3 1| =5}
20 5| 10

14, Here is a system of equations that is called “ill-
conditioned,” meaning that the solution is not easy to
get accurately. Section 2.4 discusses this; here, we give
a “taste” of the problem. This is the system as an aug-

mented matrix:

Chapter Two: Solving Sets of Equations

»15.

16.

17.

18.

3 2 4 9
8 -6 -8 —6|
-1 2 3 4

You can see that x = 1, 1, 1]7 is the solution.

a. Confirm the solution by doing naive Gaussian elim-
ination using exact arithmetic (use fractions
throughout).

b. Now get the solution using only three significant
figures in your computations. Observe that the solu-
tion is different.

c. Compute the solution when the system is changed
only slightly: Change the coefficient in the first col-
umn of the first row to 3.1. Use more precise compu-
tations, perhaps single or even double precision.
Observe that this makes a large change in the solution.

Use Gaussian elimination with partial pivoting to solve
the equations of Exercise 13. Are any row interchanges
needed?

In which column(s) are row interchanges needed to
solve the equations in Exercise 6 by Gaussian elimina-
tion with partial pivoting?

Solve this system by Gaussian elimination with partial
pivoting:

1 -2 4 6
8 -3 2 2|
-1 10 2 4

a. How many row interchanges are needed?

b. Solve again but use only three significant digits of
precision.

c. Repeat part (b) without any row interchanges. Do
you get the same results?

Solve the system
251x+ 1.48y + 4.53z = 0.05,
1.48x + 093y — 1.30z = 1.03,
2.68x + 3.04y — 1.487 = —0.53.

a. Use Gaussian elimination, but use only three signifi-
cant digits and do no interchanges. Observe the small
divisor in reducing the third column. The correct solu-
tionisx = 1.45310,y = —1.58919, z = —0.27489.

b. Repeat part (a) but now do partial pivoting.

¢. Repeat part (b) but now chop the numbers rather
than rounding.

d. Substitute the solutions found in (a), (b), and (c) into
the equations. How well do these match the original
right-hand sides?



19.

20.

»21.

22.

23.

24.

25.

26.

27.

»28.

29.

Use the Gauss—Jordan method to solve the equations
of Exercise 17.

Use the Gauss—Jordan method to solve the equations
of Exercise 18.

Confirm that the Gauss—Jordan method requires O(n?)
total arithmetic operations.

What if we solve a system with m right-hand sides
rather than just one? How many total operations are
then required for both Gaussian elimination and the
Gauss—Jordan method?

Suppose that multiplication takes twice as long to do as
an addition/subtraction and that division takes three
times as long (which used to be true). For a system of
ten equations, how much longer does it take to get a
solution compared to when each operation takes the
same amount of time? Do this for both Gaussian elimi-
nation and for Gauss—Jordan.

Write an algorithm for the Gauss—Jordan method.
Provide for partial pivoting.

a. When there is only one right-hand side.
b. When there are m right-hand sides.

Modify the algorithm for Gaussian elimination to
incorporate scaled partial pivoting.

Repeat Exercise 25 but now employ an order vector to
avoid actually interchanging the rows.

Use scaled partial pivoting to solve:

413 -220 095 3.02
6.14 445 -—-145 —4.02].
1.03 1.36 0.44 522

a. Employ six significant digits.
b. Repeat with only three significant digits. Is the solu-
tion much different?

If a comparison takes one-half as long as an
addition/subtraction and to interchange two numbers
takes twice times as long, how much time is saved by
using an order vector rather than doing the actual row
interchanges? Express the answer in terms of addition
times for a system of n equations.

A system of two equations can be solved by graphing
the two lines and finding where they intersect.
(Graphing three equations could be done, but locating
the intersection of the three planes is difficult.) Graph
this system; you should find the intersection at (6, 2).
0.1x + 51.7y = 104,
5.1x— 7.3y = 16.

30.

»31.

32.
33.
»34.

35.
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a. Now, solve using three significant digits of precision
and no row interchanges. Compare the answer to the
correct value.

b. Repeat part (a) but do partial pivoting.

c. Repeat part (a) but use scaled partial pivoting.
Which of part (a) or (b) does this match, if any?

d. Complete pivoting chooses the largest of all of the
coefficients at the current stage as the pivot element.
Repeat part (a) with complete pivoting. How does
this answer compare to those of parts (a), (b), and (c)?

The determinant of a matrix can be found by expanding
in terms of its minors. Compare the number of arith-
metic operations when done this way with the number
if the matrix is reduced to a triangular one by Gaussian
elimination. Do this for a 4 X 4 matrix. Then find a
relation for an n X n matrix.

When you solved Exercise 17, you could have saved
the row multipliers and obtained a LU equivalent of the
coefficient matrix. Use this LU to solve Exercise 17 but
with right-hand sides of:

a. [1,-3,51%.

b. [-3,7, 2]~

Repeat Exercise 17, but now use the LU.
Repeat Exercise 27, but now use the LU.

Given this tridiagonal system:

4 -1 0 0 0 0 100
-1 4 -1 0 0 0 200
0 -1 4 -1 0 0 200
g 0 -1 4 -1 0 200)
0o 0 0 -1 4 —1 200
60 0 0 0 —1 4 100

a. Solve the system using the algorithm for a com-
pacted system matrix that has n rows but only four
columns.

b. How many arithmetic operations are needed to solve
a tridiagonal system of n equations in this com-
pacted arrangement? How does this compare to
solving such a system with Gaussian elimination
without compacting?

The system of Exercise 34 is an example of a symmet-
ric matrix. Because the elements at opposite positions
across the diagonal are exactly the same, it can be
stored as a matrix with n rows but only three columns.

a. Write an algorithm for solving a symmetric tridiago-
nal system that takes advantage of such compacting.
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»36.

37.

38.

39.

40.

Chapter Two: Solving Sets of Equations

b. Use the algorithm from part (a) to solve the system
in Exercise 34.

¢. How many arithmetic operations are needed with
this algorithm for a system of n equations?

Write the algorithm for LU reduction that puts ones on
the diagonal of U.

When are row interchanges absolutely required in
forming the LU equivalent of matrix A7

Given system A:

2 -1 3 2
2 2

A= 0 4 .
1 1 -2 2
1 3 4 -1

Find the LU equivalent of matrix A that has 2’s in each
diagonal position of L rather than 1’s.

Repeat Exercise 38, but now make the diagonal ele-
ments of L equal to [1, 2, 3, 4].

If you were asked to create a LU reduction of matrix A
that has at least one zero on a diagonal,

a. When can you do this, putting the zero(s) on the
diagonal of L?

b. When can you do this, putting the zero(s) on the
diagonal of U?

c. Give examples where A is 3 X 3.

Section 2.3

p4l.

42,

Which of these matrices are singular?

-2 1 -1
a. -3 4 -6/
2 7 15
2 3 1 1]
1 3 41
. 7 0 —4 2f
14 -6 -9 0]
o 3 1 1]
1 3 41
© 7 0 —4 2f
4 -6 9 0]
For this matrix:
35 1
A=l-1 3 2|
a b —1

4.

p45.

46.

a. Find values for a and b that make A singular.
b. Find values for a and b that make A nonsingular.

. The matrix in Exercise 41, part (b), is singular.

a. That means its rows form vectors that are linearly
dependent. Find the weighting factors for the rows
that makes their sum zero.

b. Repeat part (a), but with the columns.

Do these equations have a solution? Find the solution if

it exists. Explain why when it doesn’t.

a. —2x+3y+z= 2,

=3x+ y+z= 5,
x+ y—z=-5

3y+z= 0.
0 1 1 1]
110 -2
b.
101 0
11 1 & 4]
2 -1 6 1]
C 1 0 2 0}
13 220J

The Hilbert matrix is a classic case of the pathological
situation called “ill-conditioning.” The 4 X 4 Hilbert
matrix is

=
Bl W R
Wl fal— W= b=
L T N L
= Al— Gl e

For the system Hx = bT with bT = [25/12, 77/60,

57/60, 319/420], the exact solution is x” = [1, 1, 1, 1].

a. Show that the matrix is ill-conditioned by showing
that it is nearly singular.

b. Using only three significant digits (chopped) in your
arithmetic, find the solution to AHx = b. Explain why
the answers are SO POO.

c. Using only three significant digits, but rounding,
again find the solution and compare it to that obtained
in part (b).

For this system of equations

ax + 4y +
2ax — y+27=23,
x+3y+az=35,

z=6,

a. What value of a gives a unique solution to the system?
b. What value of ¢ makes the sysiem have no
solution?



47.

48.

49,

»50.

51.

52.

53.

»54.

¢. What value of a makes the system have an infinity
of solutions?
Solve this pair of equations by Gaussian elimination:

0.2205x + 0.1254y = 0.6606,
0.4457x + 0.2506y = 0.8897.

a. Use only four significant digits in the solution.

b. Compare the solution using seven significant digits
with that of part (a). Explain why the solutions are
different.

Use the Gaussian elimination method to triangularize
this matrix and from that get its determinant:

3 -1 2
A= 1 13
-3 05

Repeat Exercise 48 but convert matrix A to a LU that
has ones on the diagonal of U rather than on L.

Change the element in row 3, column 3 of Exercise 48
from +5 to —5 and repeat Exercise 48. Explain why
this causes the determinant to become smaller.

For this matrix:

4 -2 3 =5
3 3 5 -8
-6 —1 4 37

—4 2 -3 5

a. Show that the matrix is singular.

b. Change the element in row 4 column 4 from 5.0 to
5.1 and get its determinant. Even though this matrix
1s larger than the matrix in Exercise 48 and most of
its elements are greater, why is the determinant a
smaller number than for Exercise 48?7

First show that det (A * B) = det(4) * det(B) for two
4 X 4 matrices that you compose, then prove that this
will always be true for any two square matrices of the
same size.

If some of the elements of a matrix are very small in
magnitude and others are very large, will the value of its
determinant be large or small? What if only one element
is very large and the rest very small? What if only one is
very small and the rest very large? Are there situations
where the magnitudes of the elements are not important?

Get the inverse of the matrix in Exercise 48.

a. Do it through Gaussian elimination.
b. Repeat, but with the Gauss—Jordan method.
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c. How many arithmetic operations are used in parts
(a) and (b)?

55. Find the inverse of the matrix in part (b) of Exercise 51.

a. Do this using only three significant digits of preci-
sion.

b. Repeat part(a), but now use seven digits. Why are
the results different?

56. Repeat Exercise 55, but for the matrix in Exercise 48.
Why are the results with three digits the same as those
with seven when rounded?

57. Find the determinant of matrix A and the determinant
of its inverse.

-2 3 2 3
1 3 -2 6
A=l s 1 3 of
2 3 8 -1

Section 2.4

»58. Evaluate the 1-, 2- and c-norms of these vectors:
a. [3.06, —2.11, 8.12, —4.45].
b. [-5,-3,2,7].
59. Verify the relations of Eq. (2.14) for each of the defini-
tions of a vector norm.

60. Which vector norm usually gives the smallest value? Is
there an instance when all vector norms have the same
value?

p61. Evaluate the 1-, 2-, and -norms of these matrices:

5 -9 6
-7 4],
1 58

10.2
—-23
=55

2.4
7.7
—3.2

4.5
11.14.
0.9

B =

62. Is the spectral norm of a matrix always the smallest
norm? Is there a case where all matrix norms have the
same value?

63. For the matrices of Exercise 61, compare these norms:
a. norm (A + B) with norm (4) + norm(B).
b. norm (A * B) with norm (A) * norm(B).
c. norm (A2%) with norm (4) * norm(A).
d. What conclusion do you draw from these results?
» 64.

65. If a matrix is nearly singular, how does its norm com-
pare to the norm of its inverse?

Find the oo-norm of the Hilbert matrix of Exercise 45.
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66. Given this system of equations:

67.

68.

69.

»70.

71.

72.

73.

74.

»75.

76.

6.03 1.99 3.01 1
416 —-123 127 1|,
—4.81 934 0987 1

a. Solve with a precision of ten significant digits.

b. Solve again with a precision of four significant digits.

c. What happens if you solve with a precision of only
three significant digits?

d. Let x be the solution from part (a) and let & be the
solution from part (b). Let e = x — & What are the
norms of e?

e. Is the system ill-conditioned? What is the condition
number of the coefficient matrix? Compute this for
each definition of condition number.

Repeat Exercise 66 after changing element a,, to

—9.34. Why are the results so different?

What if we discover that one of the coefficients in

Exercise 66 is slightly in error due to measuring errors?

Specifically, suppose that a5 should be 3.02 rather

than 3.01. How does this affect the answers to parts (a)

and (b) of Exercise 667

What are the residuals for the imperfect solutions of

Exercises 66, 67, and 68?

What is the condition number for the coefficient matrix

of Exercise 67. Why is it so different from that for

Exercise 66?7

Verify Eq. (2.16) with the residuals from Exercises 66

and 67.

Verify Eq. (2.18) with the residuals from Exercises 66

and 67.

Apply iterative improvement to the solution from

Exercise 66, part (b).

Compare the condition numbers for the Hilbert matrix

of order-4:

a. Using exact numbers (use fractional numbers
throughout).

b. Using floating-point values with only three signifi-
cant digits.

Prove that cond (A) = 1 for any square matrix. Are

there any exceptions to this?

For what values of a does this matrix have a condition

number greater than 1007

a 2 2
2 2 2
2 2 a

77.

Find a2 X 2 matrix whose condition number is exactly
289 using infinity norms.

Section 2.5

»78.

»79.

80.

81.

82.

83.

Solve this system with the Jacobi method. First
rearrange to make it diagonally dominant if possible.
Use [0, 0, O] as the starting vector. How many iterations
to get the solution accurate to five significant digits?

7 -3 4 6
-3 6 2|
2 53 -5

Repeat Exercise 78 with the Gauss—Seidel method.
Are fewer iterations required?

Is convergence faster in Exercises 78 and 79 if the start-
ing vector is [~0.26602, —0.26602, —0.26602] which is
the average value of the elements of the solution vector?

Solve this system of equations, starting with the initial
vector of [0, 0, 0]:
4.63x, — 1.21x, + 3.22x, = 222,
—3.07x, + 5.48x, + 2.11x, = —3.17,
1.26x, + 3.11x, + 4570, = 5.11.

a. Solve using the Jacobi method.
b. Solve using the Gauss—Seidel method.

The coefficient matrix of Exercise 81 is diagonally
dominant. If the value of the element in position (2, 2)
is smaller in magnitude than 5.48, it is no longer diago-
nally dominant. How small can it be and still converge
to a solution by iterating with

a. The Jacobi method?
b. The Gauss—Seidel method?

This 2 X 2 matrix is obviously singular and is almost
diagonally dominant. If the right-hand-side vector is [0,
0], the equations are satisfied by any pair where x = y.

2 —2}
[—2 2|

a. What happens if you use the Jacobi method with
these starting vectors: [1, 1], [1, —1],[—1, 11, [2, 5],
[5,2]?

b. What happens if the Gauss—Seidel method is used
with the same starting vectors as in part (a)?

c. If the elements whose values are —2 in the matrix
are changed slightly, to —1.99, the matrix is no
longer singular but is almost singular. Repeat parts
(a) and (b) with these new matrix.



84.

85.

For the system of equations in Exercise 78, find the
matrices that correspond to Eqgs. (2.23) and (2.25). For
which method is the norm of the multiplier of x™ a
smaller number?

What is the optimal values of the overrelaxation factors
that speed the solutions of Exercise 81?7

Section 2.6

86. Section 2.6 says that the time to compute the inner

product of two n-component vectors is proportional to
1 + log(n), when n processors are available and each
processor holds just one component of each vector.

»87.

88.

89.
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However, we can multiply an n X n matrix times a vec-
tor in 2x units of time if each processor holds one entire
row of the matrix as well as the vector. Make a table
that compares the times for these alternative methods
for values of n = 10 * efore = 1to 5.

Develop an algorithm for inverting an n X n matrix by
parallel processing with approximately n? processors.

The final algorithm developed in Section 2.6 used #? + n
processors. Show that this can be further improved so that
only (n + 1) (n — 1) = n2 — 1 processors are required.

Develop an algorithm for doing Jacobi iterations to
solve a system of n linear equations using n2 processors.

Applied Problems and Projects

APPlL.

In considering the movement of space vehicles, it is frequently necessary to transform coordinate

systems. The standard inertial coordinate system has the N-axis pointed north, the E-axis pointed
east, and the D-axis pointed toward the center of the earth. A second system is the vehicle’s local
coordinate system (with the i-axis straight ahead of the vehicle, the j-axis to the right, and the k-axis
downward). We can transform the vector whose local coordinates are (i, j, k) to the inertial system by
multiplying by transformation matrices:

n cosa —sinag 0
e|=|sina cosa 0
d 0 0 1

cosb 0 sinb||1 0 0 i
0 1 0 0 cosc —sincl|j|.
~sinb 0 cosh||0 sinc cosc| |k

Transform the vector [2.06, —2.44, —0.47]7 to the inertial system if a = 27°, b = 5°, ¢ = 72°.

APP2.
formally as:

Exercise 45 showed the pattern for a Hilbert matrix. The n X r Hilbert matrix can be defined more

H=G+j+1D).ij=01,...,n~1

a. Use this in a program that displays the Hilbert matrix of order-5.

b. What is the condition number of the 9 X 9 Hilbert matrix, Hy?

c. Solve Hyx =[1,1,1,1,1,1, 1, 1, 117, Then change the first component of the right-hand side to
1.01 and solve again. Which component of x is most changed?

APP3.
network. Here is a typical problem.

Electrical engineers often must find the currents flowing and voltages existing in a complex resistor

Seven resistors are connected as shown, and voltage is applied to the circuit at points 1 and 6 (see
Fig. 2.1) You may recognize the network as a variation on a Wheatstone bridge.

Although we are especially interested in finding the current that flows through the ammeter, the
computational method can give the voltages at each numbered point (these are called nodes) and the
current through each of the branches of the circuit. Two laws are involved:

Kirchhoff’s law: The sum of all currents flowing into a node is zero.

Ohm’s law: The current through a resistor equals the voltage across it divided by its resistance.
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@ R =14 @)

Figure 2.1

We can set up 11 equations using these laws and from these solve for 11 unknown quantities (the
four voltages and seven currents). If V, = 5 volts and Vi = 0 volts, set up the 11 equations and solve
to find the voltage at each other node and the currents flowing in each branch of the circuit.

A square matrix can be partitioned into submatrices. We write
A B
M= ,
C D
where A and D are square. Suppose that

E F
o
wi=|Z )
Ralston shows that we can get M~} in the following way:

Invert A to get A7\,

Compute D — C*A~1 * B.

Invert D — C * A~! * B, which gives H.
Compute —A ™! * B * H, which gives F.
Compute —H * C * A1, which gives G.

6. ComputeA'1 — A7 * B * (G, which gives E.

A e

We then get the inverse of M by inverting two smaller matrices and doing some arithmetic operations
on matrices that are smaller than M. In this, matrices A and D must not be singular.
Choose some 4 X 4 matrix. Call it M. Then,
a. Partition M into submatrices. This can be done in three different ways.
b. Get the inverse of M with Ralston’s technique. Do all partitionings give the same result?
c. Is Ralston’s technique more or less efficient than inverting M directly? Does the difference in
operational count depend on the size of M? Does it depend on the way that M is partitioned?

Mass spectrometry analysis gives a series of peak height readings for various ion masses. For each
peak, the height #; is contributed to by the various constituents. These make different contributions c;;
per unit concentration p; so that the relation

n

h; = 2 CyPi

i=1
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Table 2.2
Component
Peak

number CH, CH, C,H, C;H, C,H,
1 0.165 0.202 0.317 0.234 0.182
2 27.7 0.862 0.062 0.073 0.131
3 2235 13.05 4.420 6.001
4 11.28 0 1.110
5 9.8350 1.634
6 15.94

holds, with » being the number of components present. Carnahan (1964) gives the values shown in
Table 2.2 for o

If a sample had measured peak heights of o) = 5.20, h, = 61.7, hy = 149.2, h, = 79.4, hs = 89.3,
and he = 69.3, calculate the values of p; for each component. The total of all the p; values was 21.53.

APP6. Figure 2.2 shows a structure that might support a bridge (a “truss”). The support at point a is con-
strained so that it cannot move; the one at point f can move horizontally. There are two external loads,
at joints b and d.

In analyzing a truss, the members are assumed not to bend, so the forces within them act only in
the direction of the member; these are considered to act from the joint toward the center.

This truss has nine members, so there are nine member forces, F,i=1,...,9.1f we set the sum
of all forces acting either vertically or horizontally within each member, nine equations can be writ-
ten. Solving these equations gives the values for the nine forces, the F,.

a. Set up the equations and solve.
b. The matrix is sparse. Is it banded?
¢. Can the band width be reduced by reordering the equations?

APP7. The truss in APP6, Figure 2.2, is called statically determinant, because nine linearly independent
equations can be set up to solve for the nine forces. If a tenth member is added to give better stability
to the structure, as shown in Figure 2.3, there are ten member forces to be determined but only nine
force equations can be written. This truss is called statically indeterminant.

1000#
F
b \ 4 —> 5004
30°
450 S NPT

Force = F; F, Fs F; Fo

/ 0
a¥ —&— -8 f
paN F, c Fo Ky ¢ Fy Jrad

Figure 2.2
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Figure 2.3

A solution can be found if the stretching or compression of the members is considered. We need
to solve a set of equations that gives the displacement of each joint; these are of the form ASA”x = P.
We get the tensions in the members, f, by the matrix multiplication SATx = f

The required matrices and vectors are

( 07071 0 0 -1 -0860 0 0 0 O 0
07071 0 1 0 05 0 0 0 0 0p
0 1 0 o0 0 -1 0 0 0 —0.8660
0 0 -1 0 0 o 0 0 0 0.5

A=]| 0 6 0 0 0 0 1 0 07071 05

0 6 0 1 0 0 0 0 -07071  0.8660
0 0 0 0 086 1 0 -1 O 0
0 0 0 0 -05 6 -1 0 © 0

L o 0 0 0 0 o o 1 o771 0

S is a diagonal matrix with values (from upper left to lower right) of

4255, 6000, 6000, 3670, 3000,
3670, 6000, 6000, 4255, 3000.

(These quantities are the values of aFE/L, where a is the cross-sectional area of a member, E is the

Young’s modulus for the materjal, and L is the length.)
Solve the system of equations to determine the values of f for each of three loading vectors:

P, = [0, —1000, 0, 0, 500, 0, 0, —500, 017,
P, = [1000, 0, 0, =500, 0, 1000, 0, —500, 01,
P, = [0,0,0, —500, 0,0, 0, =500, 07"

APPS8. For turbulent flow of fluids in an interconnected network (see Fig. 2.4) the flow rate V from one node
to another is about proportional to the square root of the difference in pressures at the nodes. (Thus,
fluid flow differs from flow of electrical current in a network in that nonlinear equations result.) For
the conduits in Figure 2.4, find the pressure at each node. The values of b represent conductance fac-
tors in the relation v; = b;(p; — pj)‘/z.
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Figure 2.4

These equations can be set up for the pressures at each node:
Atnode 1: 0.3v500 — p, = 0.2¥p, — p, + 0.1¥p, — ps;
node 2: 0.2Np; — p, = 0.1Np, = ps + 0.2p, = p3;
node 3: 0.1Np, — ps + 0.24p, — ps = 0.1Np; — p;
node 4: 0.1Np, — p, + 0.1Np; — p, = 0.23p, — 0.

a. The elements in the matrix equation Ax = B may be complex valued. Write a program to do
Gaussian elimination in some computer language that permits complex values and solve a few
examples. How will you determine the proper pivot rows in this program? Does the coefficient
matrix have an inverse? If so, multiply this inverse by the original coefficient matrix but, before
doing this, try to predict the result.

b. It is not necessary to use complex arithmetic to solve a system that has complex-valued elements.

How can this be done? Solve the examples that you used in part (2) in this way. You should get the
same solutions; do you?

Electrical circuits always have some capacitance and inductance in addition to resistance. Suppose
that a 500 uF capacitor is added to the network of APP3 between nodes 1 and 2 and a 4 mH induc-
tance is added between nodes 5 and 6. Of course, if the voltage source E is a direct current source, no
current will flow after the capacitance becomes saturated, but if £ is an alternating voltage source,
there will be continuous (though fluctuating) current in the network. Set up the equations that can be
solved for the voltages at the nodes and the currents in each branch of the network. You may need to
consult a reference to handle this mixture of resistors, capacitors, and inductance.

‘We have shown how a tridiagonal system is especially advantageous in that it can be solved with
fewer arithmetic operations than a full » X 7 system. A banded matrix is similarly advantageous, and
this is particularly true if the coefficient matrix is symmetric. What are the number of multiplies and
divides for a symmetrical system of n equations that has m elements to the right and to the left of the
diagonal? Your answer should be expressed in terms of n and m.

It has been claimed that the National Weather Service uses extremely large sets of equations to fore-
cast the weather. Do research to see if this is true and if these equations are linear or nonlinear. There
are several models in use. Five of these are



146

APP13.

Chapter Two: Solving Sets of Equations

NGM (Nested Grid Model—also called RAFS or Regional Analysis Forecast System).
ETA —forecast out to 48 hours.

MESO-ETA —forecast to 33 hours.

AVN-aviation model to 72 hours.

MRF —medium range forecast.

A e

You may find the answer to this question from NWS/CIO (the Office of the Chief Information
Officer); the Internet may provide a link to this office. If this is a group project, one member might
send an inquiry to:

National Weather Service, NOAA
1325 West-West Highway
Silver Spring, MD 20910

MATLAB has commands that give you quantitative information on sparse matrices. A tridiagonal
matrix is sparse if there are many equations. Generate a large tridiagonal matrix in MATLAB, name
it A, and then use these commands to investigate it. What is the information given by each command?

nnz (A)

nonzeros (A)

nzmax (A)

spy (A)

(i, j, s) =1Ifind (A);
[m, n) =size (A);

B = gparse (i, j, s, m, n)

APP14. Can Gaussian elimination be used to solve a system where there are inequalities in addition to equal-

ities? Try to do it with this small system. (4, 0) is a solution; what other points are a solution?
(Chapter 7 discusses this type of problem in detail.) A graphical solution is easy.

Sx; = 3x, 212
2x) +dx, =15
X+ 3x,= 4



It once was the case that students found values for sines, logarithms, and other non-
algebraic functions from tables rather than getting the values using a computer or calcula-
tor, as one commonly does today. Those earlier tables had values of the function at
uniformly spaced values of the argument. One most often interpolated linearly: The value
for x = 0.125 was computed as at the half-way point between x = 0.12 and x = 0.13. If the
function does not vary too rapidly and the tabulated points are close enough together, this
linearly estimated value would be accurate enough.

If you don’t have to use tables and interpolate from them, why do we devote a lengthy
chapter to a topic that may seem obsolete? There are four reasons: (1) Interpolation meth-
ods are the basis for many other procedures that you will study in this course, such as
numerical integration and differentiation; (2) they are behind the ways that we use to solve
ordinary and partial-differential equations; (3) they demonstrate important theory about
polynomials and the accuracy of numerical methods; and (4) they are one of the more
important ways that curves are drawn on your computer screen. In addition, history itself
may hold a special fascination for some.

There is a rich history bebind interpolation. It really began with the early studies of
astronomy when the motion of heavenly bodies was determined from periodic observa-
tions. The names of many famous mathematicians are associated with interpolation:
Gauss, Newton, Bessel, Stirling.

An application of interpolation that you see every day is in weather forecasting. When
you watch the weather forecasts on television, you may wonder where these (usually) cor-
rect projections come from. The weather service people collect information on tempera-
ture, wind speed and direction, humidity, and barometric pressure from hundreds of
weather stations around the United States. Added to these are cloud data from satellites
that are in elevated orbits above the earth. All of these data items are entered into a mas-

sive computer program that models the weather. Up to a million pieces of data are
involved.

147



148

Chapter Three: Interpolation and Curve Fitting

There is a problem, however. The locations where the data is collected are not uni-
formly distributed. These places are at various towns and cities and some remote locations
where the data are obtained and transmitted automatically. It is a complex problem, one of
several dimensions because the various weather stations are also at different elevations.
The problem is that the computer models are massive, partial-differential equations that

require the data to be at points on a uniform grid.

In this chapter, you will learn how such scattered data can be interpolated to estimate
values at uniformly positioned grid points. This chapter will also compare several ways
that one can do interpolation and contrast these with other techniques for fitting functions

to imprecise data and for drawing smooth curves.

Contenis ofThis Uhapier
3.1 Interpolating Polynomials

3.2

3.3

34

3.5

3.6

Describes a straightforward but computationally awkward way to fit a
polynomial to a set of data points so that an interpolated value can be
computed. The cost of getting the interpolant with a desired accuracy is
facilitated by a variant, Neville’s method.

Divided Differences

These provide a more efficient way to construct an interpolating polynomial —
one that allows one to readily change the degree of the polynomial. If the data
are at evenly spaced x-values, there is some simplification.

Spline Curves

Using special polynomials, splines, one can fit polynomials to data more
accurately than with an interpolating polynomial. At the expense of added
computational effort, some important problems that one has with interpolating
polynomials is overcome.

Bezier Curves and B-Splines

Are modern techniques for constructing smooth curves. They are used widely
in computer graphics. They are not interpolating polynomials but are closely
related.

Interpolating on a Surface

When the function has two independent variables, the points lie on a surface.
Interpolating at points on the surface between the given points is more difficult
but the previous techniques can be applied.

Least-Squares Approximations

Are methods by which polynomials and other functions can be fitted to data
that are subject to errors likely in experiments. These approximations are
widely used to analyze experimental observations.
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Interpolating Polynomials

It has been mentioned that weather prediction requires that scattered data must be interpo-
lated to estimate values at uniformly positioned grid points. That is a multidimensional
problem— we start with simpler problems that have only one dimension, where y is a
function of x.

In this simpler problem, for example, we have a table of x and y-values. Two entries in this
table might be y = 2.36 at x = 0.41 and y = 3.11 at x = 0.52. If we desire an estimate for y
at x = 0.43, we would use the two table values for that estimate. The quickest and easiest
way to get this estimate would be to use the value at the point closest to x = 0.43, which
would be y = 2.36. You are thinking, “Yes, that is quick and easy but surely not the best esti-
mate. Why not interpolate as if y(x) was linear between the two x-values?” That is a good
suggestion. We will explore this and other even better ways to interpolate in this chapter.

We will be most interested in techniques adapted to situations where the data are far
from linear. The basic principle is to fit a polynomial curve to the data. The reason for
using polynomials has already been stated —they are “nice” functions and their evaluation
requires only those arithmetic operations that computers can do.

In this section through Section 3.5, we assume that the tabulated data are exact. In
Section 3.6, we consider the case where the data may have errors of measurement, which
is true for most experimental results.

Fitting a Polynomial to Data

Suppose that we have the following data pairs—ax-values and f (x)-values— where f(x) is
some unknown function:

x S
32 22.0
2.7 17.8
1.0 142
4.8 38.3
5.6 517

First, we need to select the points that determine our polynomial. (The maximum degree of
the polynomial is always one less than the number of points.) Suppose we choose the first
four points. If the cubic is ax® + bx? + cx + d, we can write four equations involving the
unknown coefficients a, b, ¢, and d:

when x = 3.2: a(3.2)3 + b(3.2)? + ¢(3.2) + d = 22.0,
ifx=27:aQ2.7) + bQ.7Y + c(27) + d = 17.8,
if x = 1.0: a(1.0)* + b(1.0)2 + c(1.0) + d = 14.2,
if x = 4.8: a(4.8)% + b(4.8)2 + ¢(4.8) + d = 38.3.
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Solving these equations by the methods of the previous chapter gives us the polynomial.
We can then estimate the values of the function at some value of x—say, x = 3.0 —by
substituting 3.0 for x in the polynomial.

For this example, the set of equations gives

a = —0.5275,
b= 64952,
¢ = —]16.1177,
d= 243499,

and our polynomial is
~0.5275x> + 6.4952x% — 16.1177x + 24.3499.

At x = 3.0, the estimated value is 20.212.

We seek a better and simpler way of finding such interpolating polynomials. This
procedure is awkward, especially if we want a new polynomial that is also made to fit at
the point (5.6, 51.7), or if we want to see what difference it would make to use a qua-
dratic instead of a cubic. Furthermore, this technique leads to an ill-conditioned system
of equations.*

Lagrangian Polynomials

We will first look at one very straightforward approach— the Lagrangian polynomial. The
Lagrangian polynomial is perhaps the simplest way to exhibit the existence of a polyno-
mial for interpolation with unevenly spaced data. Data where the x-values are not equi-
spaced often occur as the result of experimental observations or when historical data are
examined.

Suppose we have a table of data with four pairs of x- and f(x)-values, with x; indexed by
variable i: '

i x fex)
0 X, o
1 x A
2 X, f2
3 X3 5

Here we do not assume uniform spacing between the x-values, nor do we need the
x-values arranged in a particular order. The x-values must all be distinct, however. Through
these four data pairs we can pass a cubic. The Lagrangian form for this is

* For this example, the condition number is about 2700. If a quartic were fitted to all five points, it would be about
62,000!
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(x — xDx — x)(x — x3) (x — xp)x — )x — x3)
P _ 3.1
00) (xg — x) — )Xy — X3) Jot (0 — xp)(x; — )00 — X3) f @D
T (x — xp)x — xDx — x3) (x = x)lx = xx — x3)

(xy — xp(x, — x(x; — x3) 2 (x5 = xo)(x3 — x)x3 — x2) 5

Note that this equation is made up of four terms, each of which is a cubic in x; hence the
sum is a cubic. The pattern of each term is to form the numerator as a product of linear fac-
tors of the form (x — x;), omitting one x; in each term, the omitted value being used to form
the denominator by replacing x in each of the numerator factors. In each term, we multiply
by the f; corresponding to the x; omitted in the numerator factors. The Lagrangian polyno-
mial for other degrees of interpolating polynomials employs this same pattern of forming a
sum of polynomials all of the desired degree; it will have n + 1 terms when the degree is n.

It is easy to see that the Lagrangian polynomial does in fact pass through each of the
points used in its construction. For example, in the preceding equation for P4(x), let x = x,.
All terms but the third vanish because of a zero numerator, while the third term becomes
just (1) * f;. Hence, P5(x,) = f,. Similarly, P,(x,) = f;fori =0, 1, 3.

EXAMPLE 3.1

Fit a cubic through the first four points of the preceding table and use it to find the interpo-
lated value for x = 3.0.

(3.0 — 2.7)(3.0 — 1.0)(3.0 — 4.8)
(32 -27(32 - 1.0)3.2 — 4.8)

(3.0 —3.2)(3.0 — 1.0)3.0 — 4.8)

P,(3.0) =

(22.0)

(2.7 = 3.2)(2.7 — 1.0)2.7 — 4.8) (178)
(3.0 - 3.2)(3.0 — 2.7)(3.0 — 4.8)

(1.0 = 3.2)(1.0 — 2.7X(1.0 — 4.8) (14:2)
(3.0 - 3230 - 2730 — 1.0) (38.3).

(48 — 32)(4.8 — 2.7)(4.8 — 1.0)

Carrying out the arithmetic, P;(3.0) = 20.21.
|

Observe that we get the same result as before. The arithmetic in this method is tedious,
although hand calculators are convenient for this type of computation. Writing a computer
program that implements the method is not hard to do. Both MATLAB and Mathematica
can get interpolating polynomials of any degree (but high degrees are usually undesirable).

Using MATLAB

MATILAB gets interpolating polynomials readily. The cubic fitted to the first four points,
in Example 3.1 is done by:
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EDU>> x= [3.2 2.7 1.0 4.8]; y=1{22.0 17.8 14.2 38.31;
EDU>> p =polyfit (x, vy, 3)
P=

—0.5275 6.4952 —16.1177 24.3499

which are the coefficients of the same cubic as before:
—0.5275x3 + 6.4952x2 — 16.1177x + 24.3499.
If we want the value of the polynomial at x = 3.0:

EDU>> xval = polyval(p, 3.0)
xval =
20.2120

exactly what we got in Example 3.1.

Error of Interpolation

When we fit a polynomial P,(x) to some data points, it will pass exactly through those
points, but between those points P (x) will not be precisely the same as the function f(x)
that generated the points (unless the function is that polynomial). How much is P (x) dif-
ferent from f(x)? How large is the error of P, (x)?

We begin the development of an expression for the error of P,(x), an nth-degree inter-
polating polynomial, by writing the error function in a form that has the known property
that it is zero at the n + 1 points, from x, through x,, where P, (x) and f(x) are the same. We
call this function E(x):

E@x) =f) — P,0) = (x = X)x — xp) - (x — X,)g(x).

The n + 1 linear factors give E(x) the zeros we know it must have, and g(x) accounts for
its behavior at values other than at xy, x;, . . . , X,,. Obviously, f(x) — P,(x) — E(x) = 0, so

F) — P(x) — (x — xp)lx — xp) =+ (x — x,)glx) = 0. 3.2

To determine g(x), we now use the interesting mathematical device of constructing an
auxiliary function (the reason for its special form becomes apparent as the development
proceeds). We call this auxiliary function W(?), and define it as

W) = (1) — P,() — (t = x)(t — x3) -+ (£ — x,)g(x).

Note in particular that x has not been replaced by ¢ in the g(x) portion. (W is really a func-
tion of both ¢ and x, but we are only interested in variations of 7.) We now examine the
zeros of W(r).

Certainly at 7 = xg, Xp, . . - , Xy, the W function is zero (n + 1 times), but it is also zero if
t = x by virtue of Eq. (3.2). There are then a total of n + 2 values of ¢ that make W(z) = 0.
We now impose the necessary requirements on W(z) for the law of mean value to hold. W(z)
must be continuous and differentiable. If this is so, there is a zero to its derivative W’(1)
between each of the n + 2 zeros of W(¢), a total of n + 1 zeros. If W”(¢) exists, and we sup-
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pose it does, there will be n zeros of W'(¢), and likewise n — 1 zeros of W”(z), and so on,
until we reach W@+ D(r), which must have at least one zero in the interval that has Xgs X, OF
x as endpoints. Call this value of r = & We then have

n+1

i

Wethg) = 0 gt O = Polt) = (= xg) -+ (£ = X80 (3.3)

= FUE ~ 0~ (0 + i)

The right-hand side of Eq. (3.3) occurs because of the following arguments. The
(n + 1)st derivative f(£), evaluated at t = £, is obvious. The (n + 1)st derivative of P () is
zero because every time any polynomial is differentiated its degree is reduced by one, so
that the nth derivative is of degree zero (a constant) and its (n + 1)st derivative is zero. We
apply the same argument to the (n + 1)st-degree polynomial in ¢ that occurs in the last
term—its (n + 1)st derivative is a constant that results from the t**! term and is (n + 1)!.
Of course, g(x) is independent of ¢ and goes through the differentiations unchanged. The
form of g(x) is now apparent:

n+1)
glx) = %ﬁf—’) ,  Ebetween (xg, xp, X).
The conditions on W(¢) that are required for this development (continuous and differen-
tiable n + 1 times) will be met if f(x) has these same properties, because P (x) is continu-
ous and differentiable. We now have our error term:

\ _ f(n+ 1)(5)
| B = (6 = ae =) -+ (6= %) s (3.4)
with £ on the smallest interval that contains {x, X, X, . . ., x, }.

The expression for error given in Eq. (3.4) is interesting but is not always extremely
useful. This is because the actual function that generates the x;, f; values is often unknown;
we obviously then do not know its (n + 1)st derivative. We can conclude, however, that if
the function is “smooth,” a low-degree polynomial should work satisfactorily. (The smaller
the higher derivatives of a function, the smoother it is. For example, for a straight line, all
derivatives above the first are zero.) On the other hand, a “rough” function can be expected
to have larger errors when interpolated. We can also conclude that extrapolation (applying
the interpolating polynomial outside the range of x-values employed to construct it) will
have larger errors than for interpolation. It also follows that the error is smaller if x is cen-
tered within the x;, because this makes the product of the (x — x,) terms smaller.

Here is an algorithm for interpolation with a Lagrangian polynomial of degree N.

An Algorithm for Interpolation from a Lagrange Polynomial

Given asetof n + 1 points [(x,fD,i=10,...,n]and a value for x at which the poly-
nomial is to be evaluated:
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Set Sum = 0.
Fori=0TonStep 1 Do
SetP = 1.

Forj = 0tonstep 1 Do
If (j % i) Then
SetP=P*(x— xj)/(xl. - xj)
End If.
End Doj.
Set Sum = Sum + P * f,
End Do i.

Sum is the interpolated value at x.

A Word of Caution

It is most important that you never fit a polynomial of a degree higher than 4 or 5 to a set
of points. If you need to fit to a set of more than six points, be sure to break up the set into
subsets and fit separate polynomials to these. Figure 3.18, a part of Applied Problem 11,
illustrates why this is so necessary. A still better way to fit a large number of data points is
to use spline curves, as described in Section 3.3.

Recognize also that you cannot fit a function that is discontinuous or one whose deriva-
tive is discontinuous with a polynomial. This is because every polynomial is everywhere
continuous and has continuous derivatives. A Fourier series that we discuss in Chapter 4
can approximate such functions.

Is Our Function a Cubic Polynomial?

In Example 3.1, we have fitted a cubic polynomial that matches the table exactly at four
points. Is £ (x), a function whose form is not given, really a polynomial of degree-37 If it is,
the error of the Lagrangian polynomial would be zero because the fourth derivative term in
Eq. (3.4) would be zero. How can we tell? One way is to see if the fifth point (5.6, 51.7) is
on the cubic. MATLAB says it is not:

EDU>> x2 =polyval (£, 5.6)
X2 =
45,1473

and we see that P;(5.6) is not equal to f(5.6) = 51.7. Another way would be to use (5.6,
51.7) as one of four points with any three others to see if that interpolating polynomial is
the same. Still another technique would be to plot the interpolating polynomial and see if
the fifth point lies on the curve.

This discussion also points out that extrapolation with an interpolating polynomial
incurs a larger error than does interpolation, a fact that can be observed from Eq. (3.2).
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Neville’s Method

The trouble with the standard Lagrangian polynomial technique is that we do not know
which degree of polynomial to use. If the degree is too low, the interpolating polynomial
does not give good estimates of f(x). If the degree is too high, undesirable oscillations in
polynomial values can occur. (More on this later, in the section on spline curves.)

Neville’s method can overcome this difficulty. It essentially computes the interpolated
value with polynomials of successively higher degree, stopping when the successive values
are close together.* The successive approximations are actually computed by linear inter-
polation from the previous values. The Lagrange formula for linear interpolation to get f(x)
from two data pairs, (x;, f;) and (x,, f,), is

x—x) [+ x—x)

(x; — x) (X2 = x1)

which can be written more compactly as

=) it —0*h
X1 7 X% ‘

fx) =

f27

f) = 3.5)
We will use Eq. (3.5) in Neville’s method.

If we examine Eq. (3.4) for the error term of Lagrangian interpolation, we see that the
smallest error results when we use data pairs where the x,’s are closest to the x-value we are
interpolating. Neville’s method begins by arranging the given data pairs, (x;, f;), so the suc-
cessive values are in order of the closeness of the x; to x.

EXAMPLE 3.2

Suppose we are given these data:

x J@x)
10.1 0.17537
22.2 037784
32.0 0.52992
41.6 0.66393
50.5 0.63608

and we want to interpolate for x = 27.5. We first rearrange the data pairs in order of close-
ness to x = 27.5:

i lx = x,] X; fi=Py
0 4.5 32.0 0.52992
1 5.3 222 0.37784
2 14.1 41.6 0.66393
3 174 10.1 0.17537
4 23.0 50.5 0.63608

* Neville’s method is not the most efficient method to compute an interpolated value. It is better to obtain the
interpolating polynomial by the procedures of the next section and then evaluate it for the desired x-value.
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Neville’s method begins by renaming the f; as P,,. We build a table by first interpolating
linearly between pairs of values fori = 0, 1, = 1,2, i = 2, 3, and so on. These values are
written in a column to the right of the first P of each pair. The next column of the table is
created by linearly interpolating from the previous column fori = 0,2,i = 1,3,i = 2, 4,
and so on. The next column after this uses values for; = 0,3,i =0, 4, ..., and continues
until we run out of data pairs.

Here is the Neville table for the preceding data:

l X Py Py Py Py Py

0 32.0 0.52992 0.46009 0.46200 0.46174 0.45754
1 222 0.37784 0.45600 0.46071 0.47901

2 41.6 0.66393 0.44524 0.55843

3 10.1 0.17537 0.37379

4 50.5 0.63608

The general formula for computing entries into the table is

_ (x - xi)*PiM—l + (X — x)*Pi,j‘l

Xiv; = X

P (3.6)

ij

Thus, the values of P, and P, are computed by

~ (27.5 — 32.0)*0.37784 + (22.2 — 27.5) * 0.52992

= =04
o 222 - 320 046005,
(27.5 — 22.2) * 0.66393 + (41.6 — 27.5) * 0.37784
P, = = 0.45600.
i 41.6 — 222 0456

Once we have the column of P;;’s, we compute the next column. For example,

_ (275 — 41.6) *0.37379 + (50.5 — 27.5) * 0.44524

= 0.55843.
2 50.5 — 41.6 0.558

The remaining columns are computed similarly by using Eq. (3.6).

The top line of the table represents Lagrangian interpolates at x = 27.5 using polyno-
mials of degree equal to the second subscript of the P’s. Each of these polynomials uses the
required number of data pairs, taking them as a set starting from the top of the table. (An
exercise asks you to prove that the top line does represent Lagrangian interpolates with
polynomials of increasing degree.)

The preceding data are for sines of angles in degrees and the correct value for x = 27.5
is 0.46175. Observe that the top line values get better and better until the last, when it
diverges. This divergence becomes apparent when we notice that the successive values get
closer to a constant value until the last one. (If the table is not arranged to center the
x-value within the X, the convergence is not as quick.) .
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If we instead do this computation by hand, we can save computing time by computing,
not the entire table, but only as much as required to get convergence to the desired number
of decimal places. We therefore do only the computations needed to compute those top row
values that are required. In a computer program it is hardly worth the added programming
complications because the entire table is computed so quickly.

Parallel Processing

3.2

The several terms of a Lagrange polynomial, as shown in Eq. (3.1), can all be computed
simultaneously with parallel processing. Each entry in the successive columns of the table
for Neville’s method can be computed simultaneously. An exercise asks you to determine
the number of time steps that are saved.

Divided Differences

There are two disadvantages to using the Lagrangian polynomial or Neville’s method for
interpolation. First, it involves more arithmetic operations than does the divided-difference
method we now discuss. Second, and more importantly, if we desire to add or subtract a
point from the set used to construct the polynomial, we essentially have to start over in the
computations. Both the Lagrangian polynomials and Neville’s method also must repeat all
of the arithmetic if we must interpolate at a new x-value. The divided-difference method
avoids all of this computation.

Actually, we will not get a polynomial different from that obtained by Lagrange’s tech-
nique. As we will show later on, every nth-degree polynomial that passes through the same
n + 1 points is identical. Only the way that the polynomial is expressed is different.

Our treatment of divided-difference tables assumes that the function, f(x), is known at
several values for x:

X0 fo
X h
) b
X3 fi

We do not assume that the x’s are evenly spaced or even that the values are arranged in any
particular order (but some ordering may be advantageous).
Consider the nth-degree polynomial written in a special way:

P (x)=ay+ (x — xpa; + (x — X)X — xpa, + - -
3.7)
T (= xp)(x = X x— X, a,.
If we chose the a; so that P, (x) = f(x) at the n + 1 known points, (x, /)i =0,...,n, then
P (x) is an interpolating polynomial. We will show that the «;’s are readily determined by
using what are called the divided differences of the tabulated values.
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A special standard notation for divided differences is

f[-x()’ xl] = ~f_1}fi;
Xy Xo

called the first divided difference between x, and x,. The function

S, xl = _fz _‘f]‘
X2 T X
is the first divided difference between x, and x,. (We use f[xy] = f; = f(xp).)
In general,

Flxn ] = L—b
Xy T Xs

is the first divided difference between x_ and x,. Observe that the order of the points is
immaterial:

flgrl = 2 L Th

X, — X X, = X,

Second- and higher-order differences are defined in terms of lower-order differences. For
example,

_ Sl ] — flx,x]

f[x07 X1 x2] -
X2 7 Xo

X X — fle X - X
| f[xO, Xis v ooy .xn] =
i Xn — Xo

The concept is even extended to a zero-order difference:
flx] =f
Using the standard notation, a divided-difference table is shown in symbolic form in

Table 3.1. Table 3.2 shows specific numerical values. (These data are the same as in the
first table of Section 3.1.)

Table 3.1

X; J; STxp x4 ST Xy 19 Xl S X415 X020 Xiq3]
%o fo Flxg 2y STxp %15 %] Floxgs Xy %o, X3]

X fi Shxg, x,] Slxps X5, %3] Flxy, Xy, X3, %,]

X2 ) flxy, x5 Sl x5, 4]

X3 B Slxs, x4

X4 Ja
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Table 3.2
X; 5 Sl x;,41 b1 & 7S | Sy e x,5] f[xi_,...,xi+4]
32 22.0 8.400 2.856 —0.528 0.256
2.7 17.8 2.118 2.012 0.0865
1.0 14.2 6.342 2.263
4.8 383 16.750
5.6 51.7

We are now ready to establish that the a; of Eq. (3.7) are given by these divided differ-

ences. We write Eq. (3.7) with x set equal to x;, x,, . . ., x, In succession, giving
X = Xy P (xp) = ay,
X=X P (x) = ay + (x; — xpa,
X=xn P (xy) = ay + (x) — xp)a; + (x, — xx)(x, — xy)a,,
X=X, P (x) = ay+ (x, — xpa; + (x, — x)x, — x)a, + -+~

+(xn—x0)...(x

n xnvl) an’

If P (x) is to be an interpolating polynomial, it must match the table for all n + 1 entries:

P(x)=1; fori=0,1,2,...,n.

If the P, (x,) in each equation is replaced by f;, we get a triangular system, and each a, can

be computed in turn.
From the first equation,

ay = Jfo = flxl makes P (x5) = fo

Ifa; = flxy, x,], then

h—f

1 %o

P x)=fy+ G — xp) o = fi-

If a, = flxy, x;, x,], then

P (x,) = fy + (t, = xp) %}%

+ (6 = xp)x, — x)

(h — G — x) — (fy — foll(x; — Xg)

Xy — Xp

One can show in similar fashion that each P (x,) will equal f; if ¢, = f BTN S

i1+
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We then can write:

P,(0) = flxg] + (x = xp)f [, x)] + (x = xp) (x — x) flxg - - - x5
+(x—xp) (x —x) (x —x) flxg ... x5] + - o 3.8)

T x—x) x—x) ... x—x,_Dflxy. .. x ]

EXAMPLE 3.3

Write the interpolating polynomial of degree-3 that fits the data of Table 3.2 at all points
from x, = 3.2 to x; = 4.8.

Ps(x) = 22.0 + 8.400(x — 3.2) + 2.856(x — 3.2)(x — 2.7)
—0.528(x — 3.2)(x — 2.7)(x — 1.0).
What is the fourth-degree polynomial that fits at all five points? We only have to add one
more term to P5(x):
P,(x) = Py(x) + 0.256(x — 3.2)(x — 2.7)(x ~— 1.0)(x — 4.8).

When this method is used for interpolation, we observe that nested multiplication can be
used to cut down on the number of arithmetic operations, for example, for x = 3:

P5(3) = {[—0.528(3 — 1.0) + 2.856](3 — 2.7) + 8.400}(3 ~ 3.2) + 22.0

= 20.2120.
. |

If we compute the interpolated value at x = 3.0 for each of the third-degree polynomi-
als in Section 3.1, we get the same result: P5(3.0) = 20.2120. This is not surprising,
because all third-degree polynomials that pass through the same four points are identical.
They may look different but they can all be reduced to the same form.

An algorithm for constructing a divided-difference table is

An Algorithm for Interpolation from a Divided Difference Table

Given a set of n + 1 points [(x, f;), i =0,..., n] and a value x = u at which the
interpolating polynomial is to be evaluated:

We first find the coefficients of the interpolating polynomial. These are stored in
vector dd.

Fori=0Ton Step 1 Do
Set dd[i] = f1i]

End For i.

Forj=1TonStep 1 Do
Set templ = dd[j — 1].



For k = j To n Step 1 Do

Set temp2 = dd{k].
Set dd[k] = (dd[k] — temp1)/(x[k] — x[k — j]).
templ = temp2

End For k.

End For j.
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Now we compute the value of the polynomial at u. We do this by nested multiplica-

tion from the highest term.

Set sum = 0
For i = n DownTo 1 Step 1 Do

End For i.

ddvalue = sum.

Set sum = (sum -+ dd[i]) * (v — x[i — 1])
Set sum = sum -+ dd[0]

ddvalue is the value of the polynomial at u, p, (u).

Observe that parallel processing can compute all entries in the successive columns simulta-
neously. If there are N + 1 data pairs and a full table is constracted, the number of time steps
equals the number of new columns, N. Sequential processing would require N(N + 1)/2

steps.

Divided Differences for a Polynomial

It is of interest to look at the divided differences for f(x) = P (x). Suppose that f(x) is the

cubic

=23 —x2+x— 1.

Here is its divided-difference table:

X; STx;] Sl x,,4] Sx;o o x;,,] S oo x;05] SIx; oo x4l Sl oo x; 6l
0.30 —0.7360 2.4800 3.0000 2.0000 0.0000 0.0000
1.00 1.0000 3.6800 3.6000 2.0000 0.0000
0.70 —0.1040 2.2400 5.4000 2.0000
0.60 —0.3280 8.7200 8.2000
1.90 11.0080 21.0200
2.10 15.2120

Observe that the third divided differences are all the same. (It then follows that all higher
divided differences will be zero.) We can take advantage of this fact by not using
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differences beyond the column where the values are essentially constant, because this indi-
cates that the function behaves nearly like a polynomial of that degree.

It is most important to also observe that the third derivative of a cubic polynomial is also
a constant. (In this instance, PG)(x) = 2 * 3! = 12.) The relationship between divided dif-
ferences and derivatives will be explored in detail in Chapter 5. For now, we just state that
for an nth-degree polynomial, P, (x), whose highest-power term has the coefficient a,, the
nth divided differences will always be equal to a,. Because the nth derivative of this poly-
nomial is equal to a, * n!, the relationship between derivatives and divided differences
seems to involve n!. We exploit this later.

Identical Polynomials

The interpolating polynomials obtained by the Lagrangian method and through divided
differences look different but they are really identical. We will explore other methods for
constructing polynomials. It is important to recognize that every polynomial of degree n
that has the same value at n + 1 distinct points is exactly the same.

When a polynomial of the nth degree is developed from n + 1 data points, we have
exactly enough data to determine the n + 1 coefficients, so the conclusion that any result-
ing polynomial is the same is intuitively true. Further, every expression of the polynomial
can be reduced to standard form and this must always be identical.

A more formal and compelling proof is by contradiction:

Suppose there are two different polynomials of degree n that agree at n + 1 distinct
points. Call these P, (x) and Q,(x), and write their difference:

D(x) = P,(x) — Q,(x),

where D(x) is a polynomial of at most degree n. But because P and Q match at the
n + 1 points, their difference D(x) is equal to zero at all n + 1 of these x-values; that
is, D(x) is a polynomial of degree n at most but has n + 1 distinct zeros. However,
this is impossible unless D(x) is identically zero. Hence P,(x) and @, (x) are not
different— they must be the same polynomial.

A most important consequence of this uniqueness property of interpolating polynomials is
that their error terms are also identical (though we may want to express the error terms in
different forms). We only have to derive the error term for one form of interpolating poly-
nomial to have the error term for all forms of interpolating polynomials.

Error of Interpolation from Differences

The error term for an interpolating polynomial derived from a divided-difference table is
identical to that for the equivalent Lagrangian polynomial because, as we have just
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observed, all polynomials of degree » that match at n + 1 points are identical. That means
that the error term associated with the nth-degree polynomial P, (x) of Eq. (3.8) is simply
Eq. (3.4), which we repeat here:
(n+1)
Ex) =@ —x)x—xp) - (x— )”")%1—4—_(1%

It is still not convenient to use this error expression, because the derivative of f that appears
is unknown. However, if f(x) is almost the same as some polynomial of degree n (and we
will know that this is true because the nth divided differences will be almost constant),
interpolating with an nth-degree polynomial should be nearly exact. The reason is that the
(n + 1)st derivative of f(x) will be nearly zero and the error of the nth-degree interpolating
polynomial will be very small.

What if we use a lower-degree polynomial? The error should be larger. If f(x) is a
known function, we can use Eq. (3.4) to bound the error. Here is an example.

EXAMPLE 3.4

Here is a divided difference table for f(x) = x2¢ ¥/

x; flx] Slxpx; 041 Slx; .. x; 5] Slxg oo 2,51 Sl oo x; ]
1.10 0.6981 0.8593 —0.1755 0.0032 0.0027
2.00 1.4715 0.4381 —0.1631 0.0191
3.50 2.1287 —0.0511 —0.0657
5.00 2.0521 —0.2877
7.10 1.4480

Find the error of the interpolates for f(1.75) using polynomials of degrees-1, -2, and -3.

The results are shown in Table 3.3, for which Eq. (3.8) was used to do the interpola-
tions. (MATLAB helped in finding the derivatives and evaluating the maximum and mini-
mum values within the intervals.) The error formula does bracket the actual errors, as
expected. In this case, observe that the use of a cubic polynomial does not improve the
accuracy. In part, this is because we do not have the x-value well centered within the tabu-
lated values; also, the value of the derivative is not decreasing.

i |
Table 3.3 Errors of interpolation for f(1.75)
Interpolated Actual Al f@+h Upper Lower
Degree value error maximum minimum bound bound
1 1.25668 0.01996 —0.3679 0.0594 0.0299 —0.00483
2 128520 —0.00856 —0.8661 0.1249 0.0059 —0.0408

3 1.28611 —0.00947 1.1398 —0.0359 0.0014 —0.0439
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Error Estimation When f{x) Is Unknown —
The Next-Term Rule

Occasionally, almost always when dealing with experimental data, the function is
unknown. Still, there is a way to estimate the error of the interpolation. This is because the
nth-order divided difference is itself an approximation for £ (x)/n!, as will be demon-
strated in Chapter 5. What this means is that the error of the interpolation is given approx-
imately by the value of the next term that would be added!

This most valuable rule for estimating the error of interpolation we call the next-term
rule. It is easy to state and to use:

E (x) = (approximately) the value of the next term that would be added to P (x). W

Here is how it works for the preceding example:

Exact Estimate from

Degree error next-term rule
1 0.01996 0.02852
2 0.00856 0.00091
3 —0.00947 —0.00249

As you can see, the agreement is at least fair.

Interpolation Near the End of a Table

Thus far, we have assumed that the entries are indexed from the top to the bottom of the table.
This would appear to indicate that our formulas do not work well for constructing polynomi-
als from divided differences at the end of the table. Remember, however, that the ordering of
the points is immaterial. We can just as well begin at the bottom and number the entries going
upward, with no adjustment of Eq. (3.8) required. The table is really not changed at all, just
the symbols that we use. We now use Eq. (3.8) with the newly indexed values.

Table 3.4a Conventional divided-difference table

Xy Sl Slxps %] Slxg - x] Sflxg - x50 SFlxg x4l
X, fixd SIxp %] flxg oo xl flxg o ooxy]

Xy flx] Slxy x3] flxy - x4]

X3 flx3) Flxs x4]

4 A
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Table 3.4b Divided-difference table indexed upwardly

X4 flx,)

X3 f[)C3] f[x3a x4]

x, fx] Slxg, %3] Sy x,]

X fix] Flxps %) Sy - x5] Sl xy]

Xy Sixo] Slxg %1 Sflxg - %] Slxg x5 Slxge x4

Tables 3.4a and b compare the two different numbering schemes. The entries in the
rows of Table 3.4b are exactly the same numbers as in the upward diagonals of Table 3.4a.

Evenly Spaced Data

If the x-values are evenly spaced, getting an interpolating polynomial is considerably
simplified. Instead of using divided differences, “ordinary differences” are used; the
differences in f-values are not divided by the differences in x-values. A delta symbol is
used to write them and, for a table of N + 1 (x, f(x)) pairs, differences up the Nth order
can be computed.

We suppose that the table has entries indexed from 0 to N. First-order differences are
then written as Afi and are computed as Afi =fiu1 —f,i=0,..., (N — 1). Second-order
differences, Azfi, are the differences of the first-order differences: Azfi = AN, — Af),
which is easily shown to be A2fi =fiig = 2f;0, Tfi=0,..., (N — 2). Higher-order dif-
ferences are again the differences of the next lower-order differences. They can be com-
puted from the original f~values:

nn—1) .
Anf;':f;'+n—nfi+n—l+—2;—_f;'+u~2_"'ifi’ l:0,...,(N‘I’l).

Observe that the coefficients are the familiar binomial coefficients.

An interpolating polynomial of degree n can be written in terms of these ordinary dif-
ferences, with x evaluated at X

s(s — 1)
2!

+ ssc—D...s—n+1
n!

s(s — D(s — 2)
3!

P (x) = fy+ sAfy + A%, + A+ L

Anfo’

where s = (x — xo)/h, with b = Ay, the uniform spacing in x-values. Observe again that
the coefficients are the familiar binomial coefficients.

This form of the interpolating polynomial is called the Newton~Gregory forward poly-
nomial. We will use this type of interpolating polynomial several times in later chapters.
Several other forms of interpolating polynomials can be written in terms of the differences
of the table. We do not pursue this topic further because the divided difference formulas
apply to evenly spaced data, although earlier editions of this text go into considerable detail.
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The next-term rule applies to this Newton—Gregory polynomial: The error of interpola-
tion is approximated by the next term that would be added. Here is an example.

Given this table of x, f(x) values, and the columns of differences, find £(0.73) from a
cubic interpolating polynomial.

x S Af A% LYi A
0.0 0.000 0.203 0.017 0.024 0.020
0.2 0.203 0.220 0.041 0.044 0.052
04 0.423 0.261 0.085 0.096 0.211
0.6 0.684 0.346 0.181 0.307
0.8 1.030 0.527 0.488
1.0 1.557 1.015
1.2 2.572

In order to center the x-values around x = 0.73, we must use the four entries beginning
with x = 0.4. That makes x; = 0.4 and s = (0.73 — 0.4)/0.2 = 1.65. Inserting the proper
values into the expression for the Newton —Gregory polynomial, we get

(1.65)(0.65) (1.65)(0.65)(—0.35)

0 (0.085) + 5

= (0.423 + 0.4306 + 0.0456 — 0.0060 = 0.893.

The function is actually for f(x) = tan(x), so we know that the true value of £(0.73) is 0.895;
the error is 0.002. The next-term rule estimates the error as 0.004. This estimate is very good.

One nice feature of a table of ordinary differences is that an error in an entry for f(x) can
be readily detected. Such an error causes a disruption to the regular progression of values
in the columns of differences. For example, if the entry for x = 0.6 has two digits reversed
(0.648 rather than 0.684) and the table is recomputed, the columns for A%f and A3f lose
their regularity.

MATLAB’s ‘diff” command gets the differences between the elements of a vector, so the
columns of the above table are generated readily. We exhibit these as rows to save space:

f0.73) = 0.423 + (1.65)(0.261) + (0.096)

EDU>> £=[0.0 0.203 0.423 0.684 1.030 1.557 2.572];
EDU>> diff (f)
ans =
0.2030 0.2200 0.2610 0.3460 0.5270 1.0150
EDU>> diff (ans)
ans =
0.0170 0.0410 0.0850 0.1810 0.4880
EDU>> diff (ans)
ang =
0.0240 0.0440 0.0960 0.3070
EDU>> diff (ans)
ans =
0.0200 0.0520 0.2110
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Table 3.5a Table of function differences for f(x) = 263, h =05

x; fi Af; A%, AY; A% A%
0.00 0.00 025 1.50 150 0.00 0.00
0.50 0.25 175 3.00 1.50 0.00 0.00
1.00 2.00 475 4.50 150 0.00
150 6.75 9.25 6.00 1.50
2.00 16.00 15.25 7.50
2.50 3125 2275
3.00 54.00

Function Differences Versus Divided Differences

Obviously, the table of function differences that we have been discussing is closely related
to the table of divided differences. Except for dividing function differences by a difference
of x-values in the latter, these two tables are the same when the x-values are evenly spaced.
To make this crystal clear, compare the tables for the simple case of f(x) = 2x3 with
h = 0.5, as shown in Tables 3.5a and b.

As expected, the columns of third differences are constant in both tables. For divided
differences, this constant is equal to just 2, the coefficient of x°. For the difference table, it
is equal to that coefficient times (31)(#%), or 2 % 6 * 0.5° = 1.5.

For first differences, the divided differences are equal to the function differences
divided by £ (0.5 here). Second divided differences are equal to second function differ-
ences divided by (#)(2h) (0.5 in this example). Third divided differences are equal to third
function differences divided by (h)(2h)(3h) (0.75 in this instance). The pattern should now

be clear:
A,
Slx .o x,) = ’T!h—n-.

Table 3.5b Table of divided differences for f(x) = 2x3, h = 0.5

X i) flpxg) Sl oxpol flxgeoxgl o flxgo o x,l flx L xsl

0.00 0.00 0.50 3.00 2.00 0.00 0.00
0.50 025 3.50 6.00 2.00 0.00

1.00 2.00 9.50 9.00 2.00

1.50 6.75 18.50 12.00 2.00

2.00 16.00 30.50 15.00

250 3125 45.50

3.00 54.00
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If the values are not evenly spaced, a comparison is impossible because the table of func-

tion differences is not defined.
This difference between the two kinds of tables has a great effect on the relation
between differences and derivatives, a topic that we explore in Chapter 5.

Spline Curves

There are times when fitting an interpolating polynomial to data points is very difficult.
Here is an example where we try to fit to data pairs from a known function. Figure 3.1ais a
plot of f(x) = cos'%(x) on the interval [—2, 2]. It is a nice, smooth curve but has a pro-
nounced maximum at x = 0 and is near to the x-axis for {xi > 1. The curves of Figure 3.1b,
¢, d, and e are for polynomials of degrees-2, -4, -6, and -8 that match the function at evenly
spaced points. None of the polynomials is a good representation of the function. In particu-
lar, observe how the eighth-degree polynomial deviates widely near |x| = 2. Polynomials

fx) S (IX)

{a) Original function (b) Fitted with quadratic

(d} Fitted with Fg(x) (e) Fitted with K (x)

Figure 3.1
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Figure 3.2

of degree higher than 8 will exhibit even greater deviations because, when we try to maich
f{x) where it is flat, the polynomials must have many zeros.

One might think that a solution to the problem would be to break up the interval | -2, 2]
into subintervals and fit separate polynomials to the function in these smaller intervals.
Figure 3.2 shows a much better fit if we use a quadratic between x = —0.65 and x = 0.65,
with P(x) = O outside that interval. That is better (and one could further improve the fit),
but there are discontinuities in the slope where the separate polynomials join.

An answer to the dilemma is to use spline curves. It borrows from the idea of a device
used in drafting. A draftsman fits curves such as our example by bending a flexible rod to
conform to the curve; the rod is held in place by placing weights on it. This device is bet-
ter than using a French curve, for how the French curve is moved to conform is very sub-
jective and is not effective where the curvature is great.

Spline curves may be of varying degrees. Suppose that we have a set of n + 1 points
(which do not have to be evenly spaced):

@®,y), withi=0,1,2,...,n.

A spline fits a set of nth-degree polynomials, g(x), between each pair of points, from x; to
X; - The points at which the splines join are called knots.

If the polynomials are all of degree-1, we have a linear spline and the “curve” would
appear as in the accompanying figure. As you can see, the slopes are discontinuous where
the segments join. Splines of degree greater than 1 do not have this problem. Most often
cubic splines are used.
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The Equation for a Cubic Spline

The drafting spline, from which the concept of spline curves is taken, bends according to
the laws of beam flexure, so both the slope and curvature are everywhere continuous. Our
mathematical spline curve must have this same behavior, requiring that they be of at least
degree-3.

We will create a succession of cubic splines over successive intervals of the data. (There
is no requirement that the points be evenly spaced.) Each spline must join with its neigh-
boring cubic polynomials at the knots where they join with the same slope and curvature.
(The end splines have only one neighbor, so their slope and curvature is not so constrained.
This factor will be covered later.)

We write the equation for a cubic polynomial, g(x), in the ith interval, between points
(x5 ¥ (X4 ¥;41)- It looks like the solid curve shown here. The dashed curves are other
cubic spline polynomials. It has this equation:

gx) = afx — xl.)3 + bix — Jcl.)2 +elx—x) +d. 3.9)
g\i @) /g,-(x)
— i+ l(x)
P s e - -.\\ »
s - = —T
a ; - | : —
%o * X1 X; Fis1 K1 X

Thus, the cubic spline function we want is of the form
g(x) = g/(x) on the interval [x;, x, ], fori=0,1,...,n—1

and meets these conditions:

8/x) = y; i=0,1,....,n—1 and g, 1(x) =y, (3.10a)
gi(xiﬂ) = giﬂ(xiﬂ), i=0,1,....,n—2; (3.10b)
glf(xiH) =g &), i=0,1,...,n—2; (3.10¢)
g;.’(xl.ﬂ) = g;.’H(xl.H), i=0,1,...,n—2. (3.10d)

[Equation (3.10) says that the cubic spline fits to each of the points (3.10a), is continuous
(3.10b), and is continuous in slope and curvature (3.10c) and (3.10d), throughout the

region spanned by the points.]
If there are n + 1 points, the number of intervals and the number of g,(x)’s are n. Thus,

there are four times n unknowns, which are the {a; b,, c;, d}fori=0,1,...,n— 1
Equation (3.10a) immediately gives

d; =y i=0,1,....,n— 1. 3.11)
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Equation (3.10 b) then gives

Vi1 = &1 ) = 8%y ) = afx — xi+1)3 +bx — xi+1)2 tolx —xq) Ty,

3.12
:aihi3+bihi2+cihi+yi’ i=0,1,...,n—1. ( )

[In the last part of Eq (3.12), we used h; = (x;,; — x,), the width of the ith interval.]
To relate the slopes and curvatures of the joining splines, we differentiate Eq. (3.9):
g/(x) = 3ax — x)* + 2bx — x) + ¢, (3.13)
gi(x) = 6ax — x;) + 2b,, fori=0,1,...,n— L (3.14)
Observe that the second derivative of a cubic is linear, so g"(x) is linear within [x;, x; ;1.
The development is simplified if we write the equations in terms of the second

derivative—that is, if we let S, = g"(x) fori = 0,1,...,n — 1 and S, = g, (x,)
From Egs. (3.10d) and (3.14), we have

S, = 6ax; — x) + 2b;

=2b;
Siy1 = 6a(x; — x) + 25
= 6ah; + 2b,.
Hence we can write
Si
b, = EE (3.15)
_ Si+1 - Si
a; = ——6h,- . (3.16)

We substitute the relations for a,, b;, d, given by Egs. (3.11), (3.15) and (3.16) into Eq. (3.9)
and then solve for c;:

S = S S;
yi+1 = (——6“h—)h? + —é—hlz + cihi + yl’

e = Yitr — Vi 2hS; + hiSiiy
i hl’ 6 .

We now invoke the condition that the slopes of the two cubics that join at (x;, y;) are the
same. For the equation in the ith interval, Eq. (3.10c) becomes, with x = x;,

¥, = 3afx; — xi)2 +2b(x; —x) +¢;=¢c;
In the previous interval, from x,_, to x,, the slope at its right end will be

y; = 3a; 4 — xi—1)2 T 2b;_y(x; — X ) T ¢y
= 3611;1]1%#1 26, 1kt
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Equating these, and substituting for a, b, ¢, d their relationships in terms of S and y, we get
b Y T Y 20+ RSy

3< S — 8i- )h.z n 2< Si-1 )h 4 Vi ~ Vi1 2hiySioy + B S
6h,, )1 2 )l By 6 ’

f

I

Simplifying this equation, we get

-

hS e+ 28)S, + hS.,, = 6(”“ /A, S
! = 6(f xp X141 = f iy XD
[

! h; i ) (3.17) ]
|
|

The last part of Eq. (3.17) involves divided differences.

Equation (3.17) applies at each internal point, from i = 1 to i = n — 1, there being
n + 1 total points. This gives n — 1 equations relating the n + 1 values of S,. We get two
additional equations involving S, and S, when we specify conditions pertaining to the end
intervals of the whole curve. To some extent, these end conditions are arbitrary. Four*
alternative choices are often used: Observe that the fourth end condition is “not a knot
condition.”

1. Take S; = 0 and S, = 0. This makes the end cubics approach linearity at their
extremities. This condition, called a natural spline, matches precisely to the
drafting device. This technique is used very frequently.

2. Another often used condition is to force the slopes at each end to assume spec-
ified values. When that information is not known, the slope might be estimated
from the points. If f"(x,) = A and f'(x,) = B, we use these relations (note that
divided differences are employed):

Atleftend: 2h;S, + S, = 6( flxg, x;1 — A).
Atrightend: h, S, | +2h, S, = 6B~ flx, ;. x,]).

n—1%n

3. Take S, = S8, S, = S, ;. This is equivalent to assuming that the end cubics |
approach parabolas at their extremities.

4. Take S, as a linear extrapolation from S, and S,, and S, as a linear extrapola-
tion from §,_; and S, _,. Only this condition gives cubic spline curves that
match exactly to f(x) when f (x) is itself a cubic. For condition 4, we use these
relations:

*A fifth condition is sometimes encountered — a function is periodic and the data cover a full period. In this case,
S, = S, and the slopes are also the same at the first and last points.
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S — S S, — S (hg + h)S; — heS
At left end: L 0 =2 1, Sy = 0 V51 02
hy hy hy
S, —S,_ S, 1 — S,
Atright end: ——-=b = 2ol 2 (3.18)
hn—l hn—Z
_ (hn—2 + hn*l)SnAI B hn—ISan
S, = .
hn—2
This is called “not a knot condition.”
|

Relation 1, where S, = 0 and §, = 0, is called a natural spline. 1t is often felt that this
flattens the curve too much at the ends; in spite of this, it is frequently used. Relation 4 fre-
quently suffers from the other extreme, giving too much curvature in the end intervals.
Probably the best end condition to use is condition 2, provided reasonable estimates of the
derivative are available.

If we write the equation of §, S, ..., S, ; [Eq. (3.17)] in matrix form, we get
- 1r
S, W
hy 2(hy + hy) h, S,
hy 2 thy b 5

hy 2Ahy+hy)  hy S;

hy o 20, o+h ) by |S

n—2 n

f[xl, xz] _f[x()’ xl]
f[-x2= xg] - f[xl’ xz]
=6 f[x_o,a x4] _f[xz’ x3]

f[xn—l’ xn] o f[xn—Z’ xn—l]

In this matrix array there are only n — 1 equations, but # + 1 unknowns. We can eliminate
two unknowns (S, and S,) using the relations that correspond to the end-condition assump-
tions. In the first three cases, this reduces the S vector to n — 1 elements, and the coefficient
matrix becomes square, of size (n — 1 X n — 1). Furthermore, the matrix is always tridiago-
nal (even in case 4), and hence is solved speedily and can be stored economically.

For each end condition, the coefficient matrices become
Condition 1 $,=0,5, =0:

2(hy + hy) hy
hy 2(hy + hy) h,
hy 2(h, + hy) hy

s 2k, th,_ )

n—2 n—1
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Condition 2

F') = Aand f'(x,) = B:

2h, hg
hy  2(hg+ hy) hy
hy 2(h) +hy) by
n—1 Zhﬂ—l
Condition 3 Sy =95 S, =8, _q
(Bhy + 2h)) hy
hy 200 + hy) hy
hy 2hy + hy) by
n—2 (Zhn—Z + 3hn-—l)
Condition 4 Sy and S, are linear extrapolations:
[ (ho + h)(ho +2h) W} — I} ]
hy hy
hy 2(h, + hy) hy
h, 2(h, + hy) h,
]7;2:—2 - hlzlfl (Byey + b )y + 2h,_5)
L hn—Z hn~2 .

With condition after 4, solving the set of equations, we must compute S, and §, using
Eq. (3.18). For conditions 1, 2, and 3, no computations are needed. For each of the first
three cases, the right-hand-side vector is the same; it is given in Eq. (3.17). If the data are

evenly spaced, the matrices reduce to a simple form.
After the §; values are obtained, we get the coefficients a;, b,, c;, and d; for the cubics in

each interval. From these we can compute points on the interpolating curve.

_ Si+1 — Si_
“T 7 en,
S;
b, = 7;
e = Yir:r — Vi 2hS; + hiSiay
! h; 6 ’
di =

EXAMPLE 3.5

Fit the data of Table 3.6 with a natural cubic spline curve, and evaluate the spline values
£(0.66) and g(1.75). [The true relation is f(x) = 2¢* — x2.] We see that hy= 10,8 = 0.5,
and h, = 0.75. The divided differences that we can use to get the right-hand sides of our
equations are f[0, 1] = 2.4366, f[1, 1.5] = 4.5536, and f11.5, 2.25] = 9.5995.
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Table 3.6 14 T T T T
x J(x) 12 e
0.0 2.0000 10
1.0 4.4366
1.5 6.7134 g - 4
225 13.9130
6 — -
4 ]
2 (,’ T T T T |
0 0.5 1 1.5 2 2.5
Figure 3.3

For a natural cubic spline, we use end condition 1 and solve

3.0 050851 1127020

05 25115, 30.2754 |
giving §; = 2.2920 and §, = 11.6518. (S, = S; = 0, of course.) Using these S’s, we com-
pute the coefficients of the individual cubic splines to arrive at

i Interval g,(x)

0 [0.0, 1.0] 0.3820(x — 0)* + O(x — 0)2 + 2.0546(x — 0) + 2.0000

1 [1.0,1.5] 3.1199(x — 1) + 1.146(x — 1)? + 3.2005(x — 1) + 4.4366

2 [1.5,2.25] —2.5893(x — 1.5 + 5.8259(x — 1.5)2 + 6.6866(x — 1.5) + 6.7134

Figure 3.3 shows the cubic spline curve. (You should verify that these equations satisfy all
the conditions that were given for cubic spline curves.)

We use g, to find g(0.66): Tt is 3.4659. (True = 3.4340)

We use g, to find g(1.75): It is 8.7087. (True = 8.4467)

Some observations on this example: (a) We were given four points that define three
intervals, (b) on each of the three intervals a g(x) is defined, and (c¢) because each g has four
coefficients, we must evaluate 12 unknown coefficients. However, by introducing the S’s,
we only had to solve two equations!

Using MATLAB

If you have access to MATLAB’s spline toolbox, you can construct a spline curve that is
almost exactly the same as Figure 3.3 by
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EDU>> x=[0.0 1.0 1.5 2.251;

EDU>> v =[2.0 4.4366 6.7134 13.91397;
EDU>> cs = csapi (X, v);

EDU>> fnplt(cs); hold on; plot(x, v, ‘o’)

We can interpolate to get y-values from the spline at x = 0.66 and x = 1.75 by

EDU>> csapi(x, y, .66)
ans =

3.5115
EDU>> csapi(x, v, 1.75)
ang =

8.4994

which are not identical to those in Example 3.5. The reason is that MATLAB uses a different
end condition, called the “not a knot” end condition. (It is the same as condition 4.) The value
at x = 0.606 is less accurate but that at x = 1.75 is better. MATLAB has another command
that works the same and is avaliable from the student edition without the spline toolbox:

EDU>> yi = interpl(x, v, 0.66, ‘spline’)
vi=
3.5114
EDU>> yi = interpl(x, v, 1.75, ’‘spline’)
yi=
8.4993
Mathematica and Maple can get spline fits to data as well. Maple uses the natural cubic
spline.
Here is another example in which we compare using all four end conditions. The data
appear to be periodic. As a project, see if you can develop the equations and solve the
example for a periodic spline. (Is there much difference in interpolated values?)

EXAMPLE 3.6

The data in the following table are from astronomical observations of a type of variable
star called a Cepheid variable and represent variations in its apparent magnitude with time:

Time 0.0 0.2 0.3 04 0.5 0.6 0.7 0.8 1.0

Apparent
magnitude 0302  0.185 0.106  0.093 0240 0579 0561 0468  0.302

Use each of the four end conditions to compute cubic splines, and compare the values
interpolated from each spline function at intervals of time of 0.05.

The augmented matrices whose solutions give values for S, S,, ..., S, are shown in
Table 3.7. A computer program was used to obtain the results shown in Table 3.8.

The results from the four end conditions between x = 0.2 and x = 0.8 are nearly identi-
cal; they differ by less than 0.001. Only in the end portions is there some difference.
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Table 3.7
Condition 1 Condition 2

Matrix coefficients are Matrix coefficients are
— 0.60 0.10 —1.23 e 0.40 0.10 0.00
0.10 0.40 0.10 3.96 0.20 0.60 0.10 —-1.23
0.10 0.40 0.10 9.60 0.10 0.40 0.10 3.96
0.10 0.40 0.10 11.52 0.10 0.40 0.10 9.60
0.10 0.40 0.10 —21.42 0.10 0.40 0.10 11.52
0.10 0.40 0.10 —4.50 0.10 0.40 0.10 —21.42
0.10 0.60 —_ 0.60 0.10 0.40 0.10 —4.50
0.10 0.60 0.20 0.60
0.10 0.40 — 0.00

Condition 3 Condition 4

Matrix coefficients are Matrix coefficients are
— 0.80 0.10 —1.23 — 1.20 —0.30 —-1.23
0.10 0.40 0.10 3.96 0.10 0.40 0.10 3.96
0.10 0.40 0.10 9.60 0.10 0.40 0.10 9.60
0.10 0.40 0.10 11.52 0.10 0.40 0.10 11.52
0.10 0.40 0.10 —21.42 0.10 0.40 0.10 —21.42
0.10 0.40 0.10 —4.50 0.10 0.40 0.10 —4.50
0.10 0.80 — 0.60 —0.30 1.20 — 0.60

Figure 3.4 shows the points for the four conditions from x = 0.0 to x = 0.2. Condition
4 gives values that are significantly different from the others.

Fitting Splines to a Hump

At the beginning of the section, it was pointed out that a function with a sharp rise from a
base line does not lend itself to being fitted with interpolating polynomials and that cubic
splines are preferred. The example function was f(x) = cos!%(x) between x = —2 and
x = 2 (Fig. 3.1a). Example 3.7 shows that a cubic spline gets a very good fit.

EXAMPLE 3.7

Fit cubic splines to f(x) = cos!%(x) with knots at —2, —1, —0.5, 0, 0.5, 1, and 2. Figure 3.5
shows the points superimposed on the spline function, and Table 3.9 compares the values
from the splines with the true values for the function at several points. The agreement is
excellent. (The figure and table are on p. 179.)
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Table 3.8
Values, Values, Values, Values,

t condition 1 condition 2% condition 3 condition 4
0.00 0.302 0.302 0.302 0.302
0.05 0.278 0.276 0.282 0.297
0.10 0.252 0.250 0.256 0.271
0.15 0.222 0.221 0.224 0.231
0.20 0.185 0.185 0.185 0.185
0.25 0.143 0.143 0.142 0.141
0.30 0.106 0.106 0.106 0.106
0.35 0.087 0.087 0.088 0.088
0.40 0.093 0.093 0.093 0.093
0.45 0.133 0.133 0.133 0.133
0.50 0.240 0.240 0.240 0.240
0.55 0.424 0.424 0.424 0424
0.60 0.579 0.579 0.579 0.579
0.65 0.608 0.608 0.608 0.608
0.70 0.561 0.561 0.561 0.561
0.75 0.511 0.511 0.511 0.511
0.80 0.468 0.468 0.468 0.468
0.85 0.426 0.426 0.426 0.430
0.90 0.385 0.385 0.384 0.392
0.95 0.343 0.343 0.343 0.350
1.00 0.302 0.302 0.302 0.302

* Note that in the values for condition 2 we used forward and backward differences to approximate the slope at either end of the
curve; that is, V'(0.0) = —0.585 and V'(1.0) = —0.830.

031
0.30 %
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0.28 -+

027 + * °
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0.25 + x Cond2
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x@+
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0.23 +
0.22 +
0.21 +
0.20 +
0.19 -+
0.18 —+

x®+ O

0 0.05 0.10 0.15 0.20

Figure 3.4
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Figure 3.5

Bezier Curves and B-Spline Curves

In addition to the splines we have studied in the previous section, there are others that are
important. In particular, Bezier curves and B-splines are widely used in computer graphics
and computer-aided design. B-splines are often used to numerically integrate and differen-
tiate functions that are defined only through a set of data points. These two types of curves
are not really interpolating splines, because the curves do not normally pass through all of
the points. In this respect, they show some similarity to least-squares curves, which are dis-
cussed in a later section. However, both Bezier curves and B-splines have the important
property of staying within the polygon determined by the given points. We will be more
explicit about this property later. In addition, these two new spline curves have a nice

Table 3.9 A cubic spline fitted to the function f(x) = cos!%(x), end condition 1

x-value Spline value f® Error
-2.00 0.0002 0.0002 0.0000
-1.75 —0.0046 0.0000 0.0046
-1.50 —0.0073 0.0000 0.0073
-1.25 —0.0058 0.0000 0.0058
-1.00 0.0021 0.0021 —0.0000
-0.75 0.0467 0.0440 —0.0027
—0.50 0.2709 0.2709 —0.0000
—-0.25 0.7283 0.7292 0.0009
0.00 1.0000 1.0000 0.0000
0.25 0.7283 0.7292 0.0009
0.50 0.2709 0.2709 -0.0000
075 0.0467 0.0440 -0.0027
1.00 0.0021 0.0021 —-0.0000
1.25 —0.00358 0.0000 0.0058
1.50 —0.0073 0.0000 0.0073
1.75 —0.0046 0.0000 0.0046

2.00 0.0002 0.0002 —0.0000
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geometric property in that in changing one of the points we change only one portion of the
curve, a “local” effect. For the cubic spline curve of the previous section, changing just one
point has a “global” effect in that the entire curve from the first to the last point is affected.
Finally, for the cubic splines just studied, the points were given data points. For the two
curves we study in this section, the points in question are more likely “control” points that
we select to determine the shape of the curve we are working on.

For simplicity, we consider mainly the cubic version of these two curves. In what fol-
lows, we will express y = f(x) in parametric form. The parametric form represents a rela-
tion between x and y by two other equations, x = F(u), y = F,(u). The independent vari-
able u is called the parameter. For example, the equation for a circle can be written, with 6
as the parameter, as

x = rcos(6),

y = rsin(6).

If we express x and y in terms of a parameter, u, the point (x, y) becomes (x(u), y(u)). We
will use this with values of the parameter u between 0 and 1.

We discuss Bezier curves first. Bezier curves are named after the French engineer
P. Bezier of the Renault Automobile Company. He developed them in the early 1960s to
fill a need for curves whose shape can be readily controlled by changing a few parameters.
Bezier’s application was to construct pleasing surfaces for car bodies.

Suppose we are given a set of control points, p; = (x;, y)),i = 0,1, ..., n. (These points
are also referred to as Bezier points.) Figure 3.6 is an example.

These points could be chosen on a computer screen, using a pointing device. The points
do not necessarily progress from left to right. We treat the coordinates of each point as a

two-component vector,
X
pP; = -
Yi

The set of points, in parametric form, is
Plu) = [x(u)} 0=u=1
y(u)

The nth-degree Bezier polynomial determined by n + 1 points is given by

y

(x0: o)

°

Po gxh W [ER
(x2,¥2) b p
027 z (x3,¥3) Pn
P2 1'7

3

|
Figure 3.6
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where

<n> _ n!
i/ im0

| |

P(u) is actually a Bernstein polynomial. Bernstein showed in 1912 that a weighted sum of
these polynomials will converge uniformly to any continuous function on the interval [0,
1] as n approaches infinity. (Maple knows the Bernstein polynomials. The command is in
a library: ‘bernstein’.)

When n = 2, P(u) is a quadratic equation defined by three points, p, p;, and p,:

P(uy = (D1 = w’p, + 2(1 — wwp, + (Dup,,

because, for n = 2 and i = 0, 1,2, we have ) = 1, (}) = 2, () = 1. The preceding equa-
tion represents the pair of equations

!

} x() = (1 — wxy + 2(1 — wux, + u’x,,

_} ywy=(1 - u)zy0 +2(0 —wuy, + uzyz.
\

Observe that, if u = 0, x(0) is identical to x;, and similarly for y(0). If # = 1, the point
referred to is (x,, y,). As u takes on values between 0 and 1, a curve is traced that goes from
the first point to the third of the set. Ordinarily the curve will not pass through the central
point of the three. (If the points are collinear, the curve is the straight line through them
all.) In effect, the points of the second-degree Bezier curve have coordinates that are
weighted sums of the coordinates of the three points that are used to define it. From
another point of view, one can think of the Bezier equations as weighted sums of three
polynomials in u, where the weighting factors are the coordinates of the three points.

In one of the exercises, you are to find the Bezier curve for seven points, with (x(0),
¥(0)) = Pg, (x(1), y(1)) = P, and (x(2), ¥(2)) = Py,

Applying the general defining equation for n = 3, we get the cubic Bezier polynomial
that we now consider in some detail. The properties of other Bezier polynomials are the
same as for the cubic. Here is the Bezier cubic:

0
} x(w) =(1 — u)3xo + 3(1 — z,t)zux1 +3(1 — u)u2x2 + u3x3,
‘ y(u) = (1 — u)3yO + 31 - u)zuy1 +3(1 — u)uzy2 + u3y3.

Observe again that (x(0), y(0)) = p, and (x(1), y(1)} = p5, and that the curve will not
ordinarily go through the intermediate points. As illustrated in the example curves in
Figure 3.7, changing the intermediate “control” points changes the shape of the curve. The
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Figure 3.7

Bezier curves defined by four and seven points
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examples are in Figure 3.7a through e. The first three of these show Bezier curves defined
by one group of four points.

Figure 3.7d and e demonstrate how cubic Bezier curves can be continued beyond the
first set of four points; one just subdivides seven points (p;, to p) into two groups of four,
with the central one (p;) belonging to both sets. Figure 3.7e shows that p,, p;, and p, must
be collinear to avoid a discontinuity in the slope at p-.

1t is of interest to list the properties of Bezier cubics:

1. P(0) = py, P(1) = ps.

2. Because dx/du = 3(x; — x;) and dyldu = 3(y; — y,) atu = 0, the slope of the
curve at u = 0 is dyldx = (y; — y)/(x; — x,), which is the slope of the secant
line between p; and p,. Similarly, the slope at u = 1 is the same as the secant

line between the last two points. This is indicated in the figures by dashed
lines.

3. The Bezier curve is contained in the convex hull determined by the four points.

The convex hull of a set of points is the smallest convex set that contains the points. A
set, C, is convex if and only if the line segment between any two points in the set lies
entirely in set C. The following sketches show examples of the convex hull of four points.

It is often convenient to represent the Bezier curve in matrix form. For Bezier cubics,
this is

-1 3 -3

1)} po
—6
PG = [, 12, u, 1] 3 04 p
3 3 0 ollp
. 10 o ollp

Mathematica can draw Bezier curves as well as the splines of the previous section. In
what follows, the first command defines some x, y pairs, the second invokes a graphics
package. One must be sure to use back quotes in this. Then, in [3], a spline curve is set up

which is displayed by [4].
In[l]: =

spdata = {{1,1},{2,4},{3,3},{4,4}}
out[l]: =
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{({1,11},{2.43,{3,3},{4,4}}

In[2]: =
<<Graphics ‘Spline’
Inf(3]: =
gsplin = Splinefspdata, cubic]
Out[3]: =
Spline[{{1,1},{2,4),{3,3},{4,4}},Cubic, <>]
Infd]: =

Show{CGraphics|[{Line[spdatal,splin}]]

We use the same data to draw a Bezier curve:

In[5]: =
Show [Graphics [{Line[spdata],Splinel[spdata, Bezier]}]]

B-Spline Curves

We now discuss B-splines. These curves are like Bezier curves in that they do not ordinar-
ily pass through the given data points. (The least-squares curves that are described in
Section 3.6 are similar in this respect.) They can be of any degree, but we will concentrate
on the cubic form. Cubic B-splines resemble the ordinary cubic splines of the previous sec-
tion in that a separate cubic is derived for each pair of points in the set. However, the
B-spline need not pass through any points of the set that are used in its definition.
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We begin the description by stating the formula for a cubic B-spline in terms of para-
metric equations whose parameter is u.

Given the points p;, = (x;, y,), i =0, 1,..., n, the cubic B-spline for the interval
(Pp Py 1™ 1,2,...,n— 1,18

2
Bj(u) = E bePiie where
k=1

(1 —u
b=
3
u _
= -yt = 3.19
pooow o w1
"2 "2 "2 6
3
%:%; O=u=1

As before, p, refers to the point (x;, y,); it is a two-component vector. The coefficients,
the b,’s, serve as a basis and do not change as we move from one set of points to the next.
Observe that they can be considered weighting factors applied to the coordinates of a set of
four points. The weighted sum, as u varies from 0 to 1, generates the B-spline curve.

If we write out the equations for x and y from Eq. (3.19), we get

1 1
szga—m%ﬂ+€6ﬁ—mhwm

1 3 2 ! 3
+Z(—3u + 3u +3u+1)xi+l+€uxl.+2;

1 1
yi(u) = sy (1 —uly,_, + " (Bu? — 6u* + 4y,

L3 1 L
+6( u u=+ 3u )yi+1+6uyi+2.

Note the notation here: x(x) and y(u) are functions (of «) and x;, y; are components of the
point p. (The end portions are a special situation that we discuss later.)

As we have said, the u-cubics act as weighting factors on the coordinates of the four
successive points to generate the curve. For example, at u = 0, the weights applied are 1/6,
2/3, 1/6, and 0. At u = 1, they are 0, 1/6, 2/3, and 1/6. These values vary throughout the
interval from u = 0 to # = 1. As an exercise, you are asked to graph these factors. This
will give you a visual impression of how the weights change with u.

Let us now examine two B-splines determined from a set of exactly four points.
Figure 3.8a and b shows the effect of varying just one of the points. As you would expect,
when p, is moved upward and to the left, the curve tends to follow; in fact, it is pulled to the
opposite side of p,. You may be surprised to see that the curve is never very close to the two
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(a) (b)
Figure 3.8

intermediate points, though it begins and ends at positions somewhat adjacent. It will be
helpful to think of the curve generated from the defining equation for B, as associated with
a curve that goes from near p; to p,. It is also helpful to remember that points p, p|, p,, and
P4 are used to get B,.

Because a set of four points is required to generate only a portion of the B-spline, that
associated with the two inner points, we must consider how to get the B-spline for more
than four points as well as how to extend the curve into the region outside of the middle
pair. We use a method analogous to the cubic splines of Section 3.3 marching along one
point at a time, forming new sets of four. We abandon the first of the old set when we add
the new one.

The conditions that we want to impose on the B-spline are exactly the same as for ordi-
nary splines: continuity of the curve and its first and second derivatives. It turns out that the
equations for the weighting factors (the u-polynomials, the b,) are such that these require-
ments are met. Figure 3.9 shows how three successive parts of a B-spline might look.

We can summarize the properties of B-splines as follows:

1. Like the cubic splines of Section 3.4, B-splines are pieced together so they
agree at their joints in three ways:

pi tApia t P
6 b

a. B,(1) = B, (0) =

it Pier

b. Bi(1) = B}, (0) =— -,

1

c. B/(1) =B (0) =p; = 2pis 1 + Disy
The subscripts here refer to the portions of the curve and the points in Figure 3.9.

2. The portion of the curve determined by each group of four points is within the
convex hull of these points.
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®p;

Figure 3.9

Successive B-splines joined together

Now we consider how to generate the ends of the joined B-spline. If we have points
from p,, to p,, we already can construct B-splines B, through B, ,. We need Byand B, _ ;.
Our problem is that, using the procedure already defined, we would need additional points
outside the domain of the given points. We probably also want to tie down the curve in
some way —having it start and end at the extreme points of the given set seems like a good
idea. How can we do this?

First, we can add more points without creating artificiality by making the added points
coincide with the given extreme points. If we add not just a single fictitious point at each
end of the set, but two at each end, we will find that the new curves not only join properly
with the portions already made, but start and end at the extreme points as we wanted. (It
looks like we have added two extra portions, but reflection shows these are degenerate,
giving only a single point.)

In summary: We add fictitious points p_,, p_1, p, 1, and p, . ,, with the first two iden-
tical with p,, and the last two identical with p,. (There are other methods to handle the start-
ing and ending segments of B-splines that we do not cover.)

The matrix formulation for cubic B-splines is helpful. Here it is:

_1 3 —'3 1 pi—l
1 3 —6 3 0f|p;
Bi = 37 27 s]- !
W=gtowwll 5 0 3 o|p.,
4 0l1piia (3.20)
_ uT™,p
—

This applies on the interval [0, 1] and for the points (p, p,, ;)-
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B-splines differ from Bezier curves in three ways:

1. For a B-spline, the curve does not begin and end at the extreme points. W

2. The slopes of the B-splines do not have any simple relationship to lines drawn
between the points. ’

3. The endpoints of the B-splines are in the vicinity of the two intermediate given
points, but neither the x- nor the y-coordinates of these endpoints normally
equal the coordinates of the intermediate points.

An algorithm for drawing a B-spline curve is as follows:

An Algorithm for Drawing a B-spline Curve

Given a set of n + 1 points, P, = (x y,), i = 0,...,m

Setp_, =p_; =Dy
Setpn+l FPpyn T Py
Fori = 0Ton Step 1 Do
Foru=10,...,1]
Compute
x(u) = (1 — ux,_,/6 + Bu — 6u? + 4)x,/6
+ (=3u® + 36 + 3u + 1) x,, /6 + 1x, /6.
yu) = (1 — wly,_ /6 + (3u® — 6u? + 4)y/6
+ (=3u® + 36 + 3u + 1)y, /6 + udy,, /6.
Plot (x(u), y(u) )
End For u.
End For i.

We conclude this section by looking at several examples of B-splines. The five parts of
Figure 3.10 show B-splines that are defined by the same sets of points as the Bezier curves
in Figure 3.7. (Fictitious points have been added to complete the end portions of these
B-splines.) There are significant differences.

3.5 Interpolating on a Surface

In the opening of this chapter, we mentioned an interpolation problem that is faced by the
National Weather Service, that of interpolating from scattered data to get values at points
on a uniform grid. (The chapter on partial-differential equations will tell why this is
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important.) This very multidimensional problem is not an easy one. We begin therefore
with the simpler case where data values, z = f (x, y), are taken from a table that has the
independent variables, x and y, spaced uniformly.
When a function z is a polynomial function* of two variables x and y—say, of
degree-3 in x and degree-2 in y— we would have
z=fy)=ay+ax+ay+ a3x2 +auxy + a5y2 + a6x3
+axty + agy? + ag®y + a; 7 h? + a Y2, (3:21)
Such a function describes a surface; (x, y, z) is a point on it. The functional relation is seen
to involve many terms. If we are concerned with four independent variables (three space
dimensions plus time, say), even low-degree polynomials would be quite intractable.
Except for special purposes, such as when we need an explicit representation, perhaps to
permit ready differentiation at an arbitrary point, we can avoid such complications by han-
dling each variable separately. We will treat only this case.
Note the immediate simplification of Eq. (3.21) if we let y take on a constant value, say,
y = ¢. Combining the y factors with the coefficients, we get

Zly=c =by+bx+ b2x2 + b3x3.

This suggests that we can interpolate for z at (x, y) = (a, b) by holding one of the indepen-
dent variables constant, say, y = y,, making a table in which there is only one independent
variable, x. Any procedure that we have explained previously can then be used. We can
repeat this at other values for y, y = y,, 5, . . . , 3, so that we develop a table for zatx = a
and various y-values. From this we interpolate for y = b.

Example 3.8 illustrates this attack.

EXAMPLE 3.8

Estimate f(1.6, 0.33) from the values in Table 3.10. Use quadratic interpolation in the
x-direction and cubic interpolation for y. We select one of the variables to hold constant,
say, x. (This choice is arbitrary because we would get the same result, except for
differences due to round off, if we had chosen to hold y constant.) We decide to interpolate

Table 3.0 Tabulation of a function of two variables z = f(x, y)

AN 0.1 0.2 0.3 0.4 0.5 0.6

05 0.165 0.428 0.687 0.942 1.190 1.431
1.0 0271 0.640 1.003 1359 1,703 2.035
15 0.447 0.990 1.524 2.045 2,549 3.031
2.0 0.738 1.568 2384 3.177 3.943 4672
25 1216 2.520 3.800 5.044 6.241 7379
3.0 2.005 4.090 6.136 8.122 10.030 11.841
35 3.306 6.679 9.986 13.196 16.277 19.198

* We approximate a nonpolynomial function by a polynomial that agrees with the function, just as we have done
with a function of one variable.
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Table 3.11 Tabulations at three x-values

y z Az A2z A%
0.2 0.640 0.363 —0.007 -0.005
0.3 1.003 0.356 —-0.012

x=1.0 04 1.359 0.344
0.5 1.703
0.2 0.990 0.534 —0.013 —0.004
0.3 1.524 0.521 —-0.017

x=15 0.4 2.045 0.504
0.5 2.549
0.2 1.568 0.816 —0.023 —0.004
0.3 2.384 0.793 —0.027

x =20 0.4 3.177 0.766
0.5 3.943

for y within the three rows of the table at x = 1.0, 1.5, and 2.0, because the desired value at
x = 1.6 is most nearly centered within this set. We choose y-values of 0.2, 0.3, 0.4, and 0.5
so that y = 0.33 is centralized.

Because the x-values are evenly spaced, we elect to use Newton—Gregory forward poly-
nomials. Table 3.11 shows the ordinary differences that we need.

We need the subtables from y = 0.2 to y = 0.5, because, for a cubic interpolation, four
points are required. Using any convenient formula (remnember that all cubics that agree at
four points are identical), we get Table 3.12. In the last tabulation we carry one extra deci-
mal to guard against round-off errors. Interpolating again, we get z = 1.8406, which we
report as z = 1.841.

The function tabulated in Table 3.10 is f(x, ) = ¢*sin y + y — 0.1, so the true value is
(1.6, 0.33) = 1.8350. Our error of 0.0056 occurs because quadratic interpolation for x is
inadequate in view of the large second difference. In refrospect, it would have been better
to use quadratic interpolation for y, because the third differences of the y-subtables are

small, and let x take on a third-degree relationship. (You may want to verify that this
reduces the error to 0.0022.)

Table 3.12 Tabulation at y = 0.33

x z Az A%

1.5 1.6818 0.9427

1.0 1.1108 0.5710 0.3717
y =033
2.0 2.6245
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It is instructive to observe which of the values in Table 3.10 entered into our computa-
tion. The shaded rectangle covers these values. This is the “region of fit” for the interpo-
lating polynomial that we have used. The principle of choosing values so that the point at
which the interpolating polynomial is used is centered in the region of fit obviously applies
here in exact analogy to the one-way table situation. It also applies to tables of three and
four variables in the same way. Of course, the labor of interpolating in such multidimen-
sional cases soon becomes burdensome.

A rectangular region of fit is not the only possibility. We may change the degree of
interpolation as we subtabulate the different rows or columns. Intuitively, it would seem
best to use higher-degree polynomials for the rows near the interpolating point, decreasing
the degree as we get farther away. The coefficient of the error term, when this is done, will
be found to be minimized thereby, although for multidimensional interpolating polynomi-
als the error term is quite complex. The region of fit will be diamond-shaped when such
tapered degree functions are used.

We may adapt the Lagrangian form of interpolating polynomial to the multidimensional
case also. It is perhaps easiest to employ a process similar to the preceding example.
Holding one variable constant, we write a series of Lagrangian polynomials for interpola-
tion at the given value of the other variable, and then combine these values in a final
Lagrange form. The net result is a Lagrangian polynomial in which the function factors are
replaced by Lagrangian polynomials. The resulting expression for the previous example
would be

b — 0.3)(y — 0.4)(y — 0.5)
(0.2 — 0.3)(0.2 — 0.4)(0.2 — 0.5)

(x — 1.5)(x — 2.0) (x — 1.0)(x — 2.0) (x — 1.0)(x — 1.5)
[(1.0 — 1.5)(1.0 — 2.0) (0.640) + (1.5 — 1.0)(1.5 — 2.0) 0.990) + 2.0 — 1.0)2.0 — 1.5) (1‘568)}
G — 0.2)(y — 0.4)(y — 0.5)
(0.3 — 0.2)(0.3 — 0.4)(0.3 — 0.5)
x — 1.5)(x — 2.0) (x — 1.0)(x — 2.0) G — 1.0)(x — 1.5) ]
[(1.0 — 1.5X1.0 — 2.0) (1.003) + (1.5 — 1.0)(1.5 — 2.0) (1.524) + 2.0 — 1.0)(2.0 — 1.5) (2.384)
b — 02)(y — 0.3)(y — 0.5) (3.22)
0.4 — 0.2)(0.4 — 0.3)0.4 — 0.5)
(x — 1.5)(x — 2.0) (x — 1.0)(x — 2.0) 10615 ]
[(1.0 — 1.5)1.0 — 2.0) (1.359) + (15 — 1.0)(1.5 — 2.0) @04+ 0= 1.0)2.0 — L.5) (3-177)
(y — 0.2)(y — 0.3)(y — 0.4)
(0.5 — 0.2)(0.5 — 0.3)(0.5 — 0.4)
(x — 1.5)(x — 2.0) (x — 1.0)(x — 2.0) (x — 1.0)(x — 1.5) ]
[(1.0 15010 —2.0) O TS T 005 - 20 @3Nt 100 = 15 O )

The equation is easy to write, but its evaluation by hand is laborious. If one is writing a
computer program for interpolation in such multivariate situations, the Lagrangian form is
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recommended. There is a special advantage in that equal spacing in the table is not
required. The Lagrangian form is also perhaps the most straightforward way to write out
the polynomial as an explicit function.

When the given points are not evenly spaced, Lagrangian polynomials or the method
of divided differences should be used for interpolation. With the latter, exactly the same
principle is involved: Hold one variable constant while subtables of divided differences
are constructed, then combine the interpolated values from these subtables into a
new table.

Parallel processing can save many time steps in the preceding computations. Each value
in the column of differences of Tables 3.11 and 3.12 can be computed at the same time.
(We must wait for the interpolations from Table 3.11 to be completed before we do Table
3.12, of course.) Every factor of Eq. (3.22) can be evaluated in parallel.

Interpolation for the Weather Service

Here is a simplified form of interpolation that might be used to estimate a predicted value
for the temperature at a grid point from data from weather stations located in its neighbor-
hood. Suppose that the stations where the temperature is known are as in Table 3.13. The
coordinates of the known temperatures are relative to our desired grid point (so the origin
is there). Because weather comes generally from the west, the data from stations in that
direction are given double weight. One way to give thern this weight is to consider them to
be duplicated.

If these data were to be entered into a table like Table 3.9, we would find entries only
along the diagonal, so we cannot solve this in the same manner as Example 3.8. Still, all
methods for interpolation are really finding a weighted average of data. [Examination of
Eq. (3.1) shows this clearly; the ratios of x-values are weights applied to the f~values.] So

this simplified weather problem gets the predicted temperature at the grid point [coordi-
nates of (0, 0)] by

[56(2) + 62(2) + 59(2) + 64 + 61]1/8 = 59.9°F.

The Weather Service must have more sophisticated ways of doing this.

Table 3.13 Temperature data at weather stations

Station 1:  Coordinates:  —14.2, 25.6, Temperature 56°F
Station 2:  Coordinates:  —22.7, —12.1, Temperature 62°F
Station 3:  Coordinates: ~ —33.6,—2.5, Temperature 59°F
Station4:  Coordinates: 4.7, —8.3, Temperature 64°F
Station 5:  Coordinates:  13.4, 15.7, Temperature 61°F
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Using Cubic Splines, Bezier Surfaces,
and B-Spline Surfaces

Another alternative is to use cubic splines for interpolation in multivariate cases. Here
again, it is perhaps best to hold one variable constant while constructing one-way splines,
then combine the results from these in the second phase. The computational effort would
be significant, however.

Interpolating for values of functions of two independent variables can also be thought
of as constructing a surface that is defined by the given points. Rather than finding values
on a surface that contains the given points, we can construct surfaces that are analogous to
Bezier curves and B-spline curves where the surface does not normally contain the given
points.

So far, we have been able to interpolate on simple surfaces where we are given z as a
function of x and y. Suppose now we are given a set of points, p, = {(x;, y,z), i =0,.. .,
n}, and we wish to fit a surface to those points. This would be the case if we were trying to
draw a mountain, an airplane, or a teapot. But first we consider the representation of more
general surfaces. Let p = (x, y, 7) be any point on the surface. Then the coordinates of each
point are represented as the equations

x = x(u,v),
y =y, v),
z=z(u, v),

where u, v are the independent variables that range over a given set of values and x, y, z
are the dependent variables. This is a slight change of notation from the first part of this

section.
An example of this would be the equations of a sphere of radius r about the origin:

(0, 0, 0). Here any point on the surface of the sphere is given by
x = rcos(u)sin(v),
y = r sin(u)sin(v),
z = rcos(v),
where u ranges in value from 0 to 27 and v ranges from 0 to 7. Figure 3.11 illustrates this.

MATLAB can interpolate on a surface, z = f(x, y). One of four methods can be speci-
fied: ‘nearest,” ‘linear,” ‘cubic,” and ‘spline.” The ‘linear’ method is the default. The meth-

ods do interpolations in the following ways:
‘nearest’— nearest neighbor interpolation
‘linear’ —bilinear interpolation
‘cubic’ — bicubic interpolation
‘spline’ — spline interpolation

Here is an example that uses a known function: z = 2xy + %), so we can see how good
the interpolated results are. We will estimate z(1.7, 2.0).
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We begin by creating a table of z-values for a set of x-values: x = [0, 1.2, 2.5, 2.9] with
y =10, 0.9, 1.8, 3.2]. We will get a matrix of z-values in a very simple way —we first
define the y-vector and compute rows of the table in turn for each x-value.

EDU>>

EDU>>

EDU>>

EDU>>

EDU>>

EDU>>

EDU>>

EDU>>

EDU>>

y=1[0 0.9 1.8 3.2];

x=0;
z1 =2*x*y + exp(x — v)
zl =

1.0000 0.4066
x=1.2;

72 = 2%x*y + exp(x —v)
z2 =

3.3201 3.5099
x=2.5;
z3 = 2*x*y + exp(x — V)
73 =

12.1825 9.4530
X=2.9;
z4 = 2*x*y + exp (X — v)
z4 =

18.1741 12.6091

0.1653

4.8688

11.0138

13.4442

0.0408

7.8153

16.4966

19.3008
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Now we join these to get a matrix of z-values:

Il

EDU>> 2z
7 =

1.0000 0.4066 0.1653 0.0408

3.3201 3.5099 4.8688 7.8153

12.1825 9.4530 11.0138 16.4966

18.1741 12.6091 13.4442 19.3008

[z1; z2; z3; z4]

We need the x-values in a vector:

EDU>> x= [0 1.2 2.5 2.9]
% =

0 1.2000 2.5000 2.9000

and we are ready to do the interpolation. First, using the ‘linear’ method (the default
method):

EDU>> zil = interp2(x,y,z,1.7,2.0)
zil =
10.4643

which does not match well to the correct value of z = 7.5408. Will the cubic interpolant be
better?

EDU>> zic = interp2(x,v,2,1.7,2.0, ‘cubic’)
zic =
9.0978

which is better but still not very good. We would get results closer to the true value if the
table were more closely spaced. A plot of the function shows that the z-values change
rapidly at (x, y) = (1.7, 2.0).

Creating a B-Spline Surface

We now describe constructing a B-spline surface. [A most interesting and informative
description of Bezier surfaces can be found in Crow (1987). See also Pokorny and
Gerald (1989).]

From the previous section, we know that a cubic B-spline curve segment starting near
the point p; to near the point p;  ; is determined by the four points

Piy1
P,v/_\'
e B
.
Y pi+2
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where p(u) = (x,(u), y(w)) in two dimensions, or p(u) == (x,(u), y(u), z,(w)) if we had been
working in three d1mens1ons The segment was then extended by mtroducmg ;.3 deleting
Pi1» and generating the curve for0 = u = 1.

®
Piis

The process is continued until we have B, _,. Finally, the first and last segments are gener-
ated by starting with p, p,, o, Py and ending withp,_ 1, p,. p, P,,-

In an analogous manner the interpolating B-spline surface patch depends on 16 points,
as Figure 3.12 shows. Here p;, J = (x, 7 Yip T ) a point in E>. This patch is generated
by computing the points p, ; (u,v),for0=u= 1 and 0 = y < 1. Here we have changed the
subscripts on the points p, . so as to fit into matrix notation.

For simplicity, we will consider only the x-coordinate in detail. Comparable formula-
tions hold for the y- and z-coordinates. The simplest formulation for xl](u, v) is based on the
matrix formulation of Eq. (3.20) and is given by

AT

_L 3 .2 1M T 3.23
xij(ua V)— 36 [u , U5 U, ] in’ij ’ ( . )

—_—

where X; ; is the 4 X 4 matrix

Xi—1,j-1 Xi—1,7 *i-1j+1 Xi-1,j+2
Xij—1 Xij Xij+1 Xij+2
?

Xitnj-1 Xit1,j Xivlj+1 Xit1,j+2

Xivo,j-1 Xi+aj KXi+2j+1 Xitoj+2

Pi—1,j+1
Pi-1,j+2
)
Pij+2
®
Piv1,j+2
®
Pivoj+1
Piv2 ,
';’J o Div2,j+2
Piv2,j-1 ®

Figure 3.12
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which are just the x-coordinates of the 16 points of Figure 3.12. The matrix M, is the
matrix we saw before in Eq. (3.20)

—1 3 -3 1
3 —
M, = 6 30 .
-3 0 30
1 4 1 0

The y and z equations are then obtained merely by substituting the corresponding matrices
Y, ;and Z, ,, which are formed from the y and z components of the 16 points. Because each
of these equations is cubic in u and v, they are referred to as bicubic equations. The
coordinates of the points on a patch are given by

1

x(u’ V) = %‘ [u37 u27 I/t, I]MleJMbT[V?)’ vz’ V7 I]Ts
1

Y, v) == [, 2, u, UMY, M 02, v, 17,
1

z(u,v) = % (13, u?, u, I]MbZi,ijT[vrj, v2 v, 117,

as u and v range between 0 and 1. It is easily verified that the weights applied to each of the
16 points are

(1 4 1 0]

4 16 4 0

1 4 1 O pl,_l(uv V) (fOr u 07 v 0), and
|0 0 0 0]
[0 0 0 0]

01 4 1

0 4 16 4 Atpl.’j(u, vV(foru=1,v=1)
|01 4 1]

where each (i, j)th element is the coefficient for the corresponding point in Figure 3.12. In
effect, these matrices are templates that overlay the points shown in Figure 3.12.

The surface patch is extended by adding another row or column of points and deleting a
corresponding row or column of points. One should verify that the current and previous
patches are connected smoothly along the edge where they join. An initial or final patch
can be obtained by repeating a corner, as was suggested for the B-spline curve. This will
ensure that the patch actually starts or ends at a point. For the surface, we would repeat a
point nine times, instead of three times as was done for the curve.

For a more detailed and informative discussion of interpolating curves and surfaces, the
reader should consult Pokorny and Gerald (1989).
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Least-Squares Approximations

Until now, in this chapter we have assumed that the data are accurate, but when these values
are derived from an experiment, there is some error in the measurements. This section
explains the usual method of treating such inaccurate data. We begin with a simple example.
Some students are assigned to find the effect of temperature on the resistance of a metal
wire. They have recorded the temperature and resistance values in a table and have plotted
their findings, as seen in Figure 3.13. The graph suggest a linear relationship. If so, then

R=al+ b, (3.24)

and values for the parameters, a and b, can be obtained from the plot.

If someone else were given the data and asked to draw the line, it is not likely that they
would draw exactly the same line and they would get different values for a and b.

We would like a way of fitting a line to experimental data that is unambiguous and that,
in some sense, minimizes the deviations of the points from the line. The usual method for
doing this is called the least-squares method. The deviations are determined by the dis-
tances between the points and the line. How these distances are measured depends on
whether there are experimental errors in both variables or in just one of them.

In analyzing the data from the students’ experiments, we will assume that the tempera-
ture values are accurate and that the errors are only in the resistance numbers; we then will
use the vertical distances. (If both measurements were in error, we might use the perpen-
dicular distances and would modify the following. If this is done, the problem becomes
more complicated. We treat only the simpler case.)

We might first suppose we could minimize the deviations by making their sum a mini-
mum, but this is not an adequate criterion. Consider the case of only two points (Fig. 3.14).

1000 /
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E 900 +
=
=}
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=]
o
= © T,°C R, ohms
3 B 20.5 765
~ 800 32.7 826
51.0 873
€ 73.2 942
95.7 1032
700 f f f f f X
20 40 60 80 100

Temperature, °C

Figure 3.13
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Figure 3.14 Figure 3.15

Obviously, the best line passes through each point, but any line that passes through the
midpoint of the segment connecting them has a sum of errors equal to zero.

Then what about making the sum of the magnitudes of the errors a minimum? This also
is inadequate, as the case of three points shows (Fig. 3.15). Assume that two of the points
are at the same x-value (which is not an abnormal situation, as frequently experiments are
duplicated). The best line will obviously pass through the average of the duplicated tests.
However, any line that falls between the dotted lines shown will have the same sum of the
magnitudes of the vertical distances. We wish an unambiguous result, so we cannot use
this as a basis for our work.

We might accept the criterion that we make the magnitude of the maximum error a min-
imum (the so-called minimax criterion), but for the problem at hand this is rarely done.
This criterion is awkward because the absolute-value function has no derivative at the ori-
gin, and it also is felt to give undue importance to a single large error. The usual criterion
is to minimize the sum of the squares of the errors, the “least-squares” principle.*

In addition to giving a unique result for a given set of data, the least-squares method is
also in accord with the maximum-likelihood principle of statistics. If the measurement
errors have a so-called normal distribution and if the standard deviation is constant for all
the data, the line determined by minimizing the sum of squares can be shown to have val-
ues of slope and intercept that have maximum likelihood of occurrence.

Let Y, represent an experimental value, and let y, be a value from the equation

y; = ax; + b,

where x; is a particular value of the variable assumed to be free of error. We wish to deter-
mine the best values for a and b so that the y’s predict the function values that correspond
to x-values. Let e; = ¥; — y;. The least-squares criterion requires that

S=e%+ez2+~-‘+el%]
N
— 2
_Eei
i=1
N
=E(Yi—axl—b)2

* The various criteria for a “best fit” can be described by minimizing a norm of the error vector. Relate each
criterion to its corresponding vector norm to review the definition of such norms.
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be a minimum. N is the number of (x, ¥)-pairs. We reach the minimum by proper choice of
the parameters a and b, so they are the “variables” of the problem. At a minimum for S, the
two partial derivatives 9S/9a and 85/3b will both be zero. Hence, remembering that the x,
and Y, are data points unaffected by our choice of values for a and b, we have

oS N
a = E xi - b)(_-xi)ﬂ
a i=
E ¥
2 =0 S0 e - HoD

Dividing each of these equations by —2 and expanding the summation, we get the so-
called normal equations

a>x?+b2x;=2xY,

(3.25)
aXx;, +bN=2X7Y.

All the summations in Eq. (3.25) are from i = 1 to { = N. Solving these equations simulta-
neously gives the values for slope and intercept a and 2.
For the data in Figure 3.13 we find that

N=5, 2T,=273.1, 2XT?=18,607.27, R, = 4438, XTR, = 254,932.5.
Our normal equations are then

18,607.27a + 273.1b = 254,932.5,
273.1a + 5b = 4438.

From these we find @ = 3.395, b = 702.2, and hence write Eq. (3.24) as
R =702 + 3.39T.

MATLAB gets a least-squares polynomial with its ‘polyfit’ command, the same one that
fits an interpolating polynomial to data defined in vectors x and y:

eqg =polyfit (x, v, N).

When the numbers of points (the size of x) is greater than the degree plus one, the polyno-

mial is the least squares fit. So, to solve for the equation for the least squares line with the
data of Figure 3.13, we do

EDU>> x = [20.5 32.7 51.0 73.2 95.71;
EDU>> vy = [765 826 873 942 1032];
EDU>> eg=rpolvfit (x, v, 1)
eqg =

3.3949 702.1721

which give us the coefficients of the equation with somewhat more precision.
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Nonlinear Data

In many cases, of course, data from experimental tests are not linear, so we need to fit to
them some function other than a first-degree polynomial. Popular forms that are tried are
the exponential form

y = axt

or

y = aeb*,

We can develop normal equations for these analogously to the preceding development
for a least-squares line by setting the partial derivatives equal to zero. Such nonlinear
simultaneous equations are much more difficult to solve than linear equations. Thus, the
exponential forms are usually linearized by taking logarithms before determining the
parameters:

Iny=lna+blnx

or
Iny=Ina+ bx.

‘We now fit the new variable z = In y as a linear function of In x or x as described eatlier.
Here we do not minimize the sum of squares of the deviations of ¥ from the curve, but
rather the deviations of In Y. In effect, this amounts to minimizing the squares of the per-
centage errors, which itself may be a desirable feature. An added advantage of the lin-
earized forms is that plots of the data on either log-log or semilog graph paper show at a
glance whether these forms are suitable by whether a straight line represents the data when
so plotted. ‘

In cases when such linearization of the function is not desirable, or when no method of
linearization can be discovered, graphical methods are frequently used; one merely plots the
experimental values and sketches in a curve that seems to fit well. Special forms of graph
paper, in addition to log-log and semilog, may be useful (probability, log-probability, and so
on). Transformation of the variables to give near linearity, such as by plotting against
1/x, 1/(ax + b), 1/x?, and other polynomial forms of the argument may give curves with
gentle enough changes in slope to allow a smooth curve to be drawn. S-shaped curves are
not easy to linearize; the Gompertz relation

y = ab®

is sometimes employed. The constants a, b, and ¢ are determined by special procedures.
Another relation that fits data to an S-shaped curve is
1
— =g+ be™.
y
In awkward cases, subdividing the region of interest into subregions with a piecewise fit in
the subregions can be used.
The objection to the graphical technique is its lack of uniqueness. Two individuals will
usually not draw the same curve through the points. One’s judgment is frequently distorted
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by one or two points that deviate widely from the remaining data. Often one tends to pay
too much attention to the extremities in comparison to the points in the central parts of the
region of interest.

Further problems are caused if we wish to integrate or differentiate the function. Our
discussion of least-squares polynomials is one solution to these difficulties.

Least-Squares Polynomials

Because polynomials can be readily manipulated, fitting such functions to data that do not
plot linearly is common. We now consider this case. It will turn out that the normal
equations are linear for this situation, which is an added advantage. In the development, we
use n as the degree of the polynomial and N as the number of data pairs. Obviously, if
N = n + 1, the polynomial passes exactly through each point and the methods discussed
earlier in this chapter apply, so we will always have N > »r + 1 in the following.

We assume the functional relationship

y=a,tax+ a2x2 +oee Faxh (3.26)
with errors defined by

= — = — — _ 2 ... = n
=Y ~y =Y, Gy = a1X; — AyX; ax’.

We again use Y, to represent the observed or experimental value corresponding to x;, with
x; free of error. We minimize the sum of squares,

N N
S = 26% =2 (Y~ ag— ax; —ax}— -+ —ax)

At the minimum, all the partial derivatives aS/aaO, aS/eay, ..., 08/ da, vanish. Writing the
equations for these gives n + 1 equations:

A N
—— = 0= 220 —ag—ap; — -~ ax)(-D),

ddyg i=1

as y
——=0= Ez(Yi —ag — ax;— o ax)(—xy),

da, i=1

as N
=0= 220 —ap— aw, — - = aa)(=x)).

aan i=1

Dividing each by —2 and rearranging gives the n + 1 normal equations to be solved
simultaneously:
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agN + a; 2x; + ay 2xt + - -+ + a, 2x7 = DY,
o Exi +a Exlz + a, Ex? + - +ta, Ex,’-‘“ = Exin

ag 2x} + ay 2xf +ap pxf + 4 a, 2 = DY, (3.27)

G Sa+ a S+ e+ a, Sk = S,

Putting these equations in matrix form shows an interesting pattern in the coefficient
matrix.

[N S S Sk S >y,
2, 2xr Xxd o Xxb o gt Y
2xr o 2x 2 2xd 0 2ar? | el = | 2y (3.28)

Dl Yt s Y 1Y,

e .

All the summations in Eqgs. (3.27) and (3.28) run from 1 to N. (We will let B stand for the
coefficient matrix.) '

Equation (3.28) represents a linear system; how this can be solved was covered in
Chapter 2. However, you need to know that this system is ill-conditioned and round-off
errors can distort the solution: the a’s of Eq. (3.26). Up to degree-3 or -4, the problem is not
too great. Special methods that use orthogonal polynomials are a remedy. We do not pur-
sue this because degrees higher than 4 are used very infrequently. It is often better to fit a
series of lower-degree polynomials to subsets of the data.

Matrix B of Eq. (3.28) is called the normal matrix for the least-squares problem. There
is another matrix that corresponds to this, called the design matrix. It is of the form

1 1 1 ... 1

.xl xz .X3 - . on xN

2 .2 .2 2
A=|X1 X3 X3 Xy
xT x5 x5 x¥

It is easy to show that AAT is just the coefficient matrix of Eq. (3.28). It is also easy to see
that Ay, where y is the column vector of Y-values, gives the right-hand side of Eq. (3.28)
(You ought to try this for, say, a 3 X 3 case to reassure yourself.) This means that we can
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rewrite Eq. (3.28) in matrix form, as
AATg = Ba = Ay.

We can use Gaussian elimination to solve the system (but only for low-degree polynomi-
als). However, because B has special properties, another method can be used that avoids
the problem of ill-conditioning.

1. The matrix B = AAT is symmetric and positive definite. An n X n matrix, M, is said
to be positive semidefinite if, for every n-component vector, x’Mx = 0. If we add the
condition that x”Mx = 0 only if x is the zero vector, M is said to be positive definite.
(You should show that B is positive definite and symmetric.)

2. In linear algebra, it is shown that B can be diagonalized by an orthogonal matrix P:

PBPT = PAATPT = D,

where the diagonal elements of D are the eigenvalues of B. Note that orthogonality
implies that PPT = I, the identity matrix.

3. B is positive definite, so all of its eigenvalues are nonnegative. This means that we
can define a matrix S as

S=VD, o S$=D.

The diagonal elements of S are called the singular values of A.
4. We can rewrite Eq. (3.28) and its solution as follows:

AATa = PTDPa = (SP)I(SP)a = Ay,
a = PTD™1PAy.

This last eliminates having to multiply out AA” and, by extending this approach, leads to
an important method for solving Eq. (3.28) called singular-value decomposition. [See
Press, Numerical Recipes (1992) on this topic.]

MATLAB has acommand ‘ (U, S, V] = svd(A) ' that computes the singular value
decomposition of matrix A. The combination U * S * V is equal to A and the singular val-
ues of A are on the diagonal of S. Mathematica can do the same. (When A is symmetric and
semidefinite, the singular values are the eigenvalues.) We do not pursue this idea further.

We illustrate the use of Eqgs. (3.27) to fit a quadratic to the data of Table 3.14. Figure 3.16
shows a plot of the data. (The data are actually a perturbation of the relation y = 1 — x + 0.2x2.

Table 3.14 Data to illustrate curve fitting

x;, 005 0.11 0.15 031 046 052 070 074 082 098 1.171
Y, 0956 0890 0.832 0717 0571 0539 0378 0370 0306 0242 0.104

3x;=6.01 N=11
3x? = 4.6545 2y, = 5905
2x3 = 4.1150 kY, =2.1839

Sxt =3.9161 Sx2Y, = 13357
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f(x)

0.8 +

0.6 —

0.4 +

0 ——t
0 02 04 06 08 10 1.2

Figure 3.16

It will be of interest to see how well we approximate this function.) To set up the normal
equations, we need the sums tabulated in Table 3.14. The equations to be solved are:

1lgy + 6.0la, + 4.6545a, = 5.905,
6.01a, + 4.6545a, + 4.1150a, = 2.1839,
4.6545a, + 4.1150a, + 3.9161a, = 1.3357.

The result is a, = 0.998, a; = —1.018, a, = 0.225, so the least squares method gives
y =0.998 — 1.018x + 0.225x%,

which we compare to y = 1 — x 4 0.2x% Errors in the data cause the equations to differ.

Use of Orthogonal Polynomials

We have mentioned that the system of normal equations for a polynomial fit is ill-
conditioned when the degree is high. Even for a cubic least-squares polynomial, the condi-
tion number of the coefficient matrix can be large. In one experiment, [Atkinson (1985),
p- 263] a cubic polynomial was fitted to 21 data points. When the data were put into the coef-
ficient matrix of Eq. (3.28), its condition number (using 2-norms) was found to be 22,000!
This means that small differences in the y-values will make a large difference in the solution.
In fact, if the four right-hand-side values are each changed by only 0.01 (about 0.1%), the
solution for the parameters of the cubic were changed significantly, by as much as 44%!
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However, if we fit the data with orthogonal polynomials* such as the Chebyshev poly-
nomials that are described in the next chapter, the condition number of the coefficient
matrix is reduced to about 5 and the solution is not much affected by the perturbations. We
will postpone further discussion of orthogonal polynomials.

What Degree of Polynomial Should Be Used?

In the general case, we may wonder what degree of polynomial should be used. As we use
higher-degree polynomials, we of course will reduce the deviations of the points from the
curve until, when the degree of the polynomial, #, equals N — 1, there is an exact match
{assuming no duplicate data at the same x-value) and we have an interpolating polynomial.
The answer to this problem is found in statistics. One increases the degree of approximat-
ing polynomial as long as there is a statistically significant decrease in the variance, o2,
which is computed by

S
ot=___ (3.29)
N—n-—1

For the preceding example, when the degree of the polynomial made to fit the points is
varied from 1 to 7, we obtain the results shown in Table 3.15.

The criterion of Eq. (3.29) chooses the optimal degree as 2. This is no surprise, in view
of how the data were constructed. It is important to realize that the numerator of Eq. (3.29),
the sum of the deviations squared of the points from the curve, should continually decrease
as the degree of the polynomial is raised. It is the denominator of Eq. (3.29) that makes o2
increase as we go above the optimal degree. In this example, the smallest value for o2 is at
degree-2 as we expect. The small value when the degree is 5 may be due to ill-
conditioning, even though double precision was used to get the values in Table 3.15.

Before leaving this section, we illustrate how to apply these methods to a more compli-
cated function.

Table 3.15

0.2
Degree Equation (Eq.3.27) 3 é?
1 y = 0.95228 — 0.76041x 0.00106  0.00915
2 y = 0.99800 — 1.0180x + 0.22468x> 0.00023  0.00187
3 y = 1.0037 — 1.0794x + 0.35137x2 — 0.06894x3 0.00026  0.00181
4 y = 0.98810 — 0.83690x — 0.52680x2 + 1.0461x3 — 0.45635x* 0.00027  0.00165
5 y = 1.0369 — 1.8241x + 4.8953x% — 10.753x3 + 10.537x*

— 3.6594x3 0.00013 0.00067

* A sequence of polynomials is said to be orthogonal with respect to the interval [a, 5] if

b
[ Px)* P, (x)dx = 0 when n 7 m.
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EXAMPLE 3.9 The results of a wind tunnel experiment on the flow of air on the wing tip of an airplane
provide the following data:

RIC: 0.73,0.78, 0.81, 0.86, 0.875, 0.89, 0.95, 1.02, 1.03, 1.055, 1.135, 1.14, 1.245,
1.32,1.385, 1.43, 1.445, 1.535, 1.57, 1.63, 1.755;

VoV, 0.0788,0.0788, 0.064, 0.0788, 0.0681, 0.0703, 0.0703, 0.0681, 0.0681, 0.079,
0.0575, 0.0681, 0.0575, 0.0511, 0.0575, 0.049, 0.0532, 0.0511, 0.049, 0.0532,
0.0426;

where R is the distance from the vortex core, C is the aircraft wing chord, Ve is the vortex
tangential velocity, and V,, is the aircraft free-stream velocity. Let x = R/Candy = V,/V.,.
‘We would like our curve to be of the form

A 2
g =— (1 —e™™),
X

and our least-squares equation becomes
21
§= 2~ sy
i=1

21 A 2
= E(Yl- -—a- e-Mf*)) :
i=1 i
Setting S, = S, = 0 gives the following equations:

21
2<i>(1 - e“Mf-)(Y,- - %(1 - e-M%)>

i=1 i

0,

21 A
Ex,-(e““%)<Yi - x—(l - e‘“*)) =0.
i=1 i

When this system of nonlinear equations is solved, we get

g(x) = 007618 (1 — ¢=2305742)
X

For these values of A and A, § = 0.000016. The graph of this function is presented in
Figure 3.17.
B

Here is an algorithm for obtaining a least-squares polynomial:
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V versus V,,

7359E-01 +
t f RIC
8750 3500 + 01
Figure 3.17
Given N data pairs, (x, Y)i=1,..., N, obtain an nth-degree least-squares polyno-
mial by the following:

Form the coefficient matrix, M, with n + 1 rows (r) and n + 1 columns (c), by
N
Set M, = g,]x{”*z.
Form the right-hand-side vector b, with n + 1 rows (r), by:
N
Setb, = gle‘lYi,

Solve the linear system Ma = b to get the coefficients in
y=ay+ax+axt+-+axt
which is the desired polynomial that fits the data.

Exercises
Section 3.1 a. Confirm that it reproduces the y’s for each x-value.
1. Write out the Lagrangian polynomial from this table: b Interpolate with it to estimate y at x = 3.
c. Extrapolate for x = 8.
X ¥ d. Plot the polynomial between x = 0 and x = 10
together with the original points and the interpolates
2.1 —12.4 in parts (b) and (c).
4.1 7.3
71 10.1 2. Suppose in Exercise 1 that the y-value for x = 4.1 is mis-

takenly entered as 7.2 rather than 7.3. Repeat Exercise 1
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with this incorrect value. How much difference does this
make to the answers for parts (b) and (c)?

. Multiply out the Lagrangian polynomials in Exercises

1 and 2 to get the quadratics in the form ax? + bx + c.
How different are the values for g, b, and ¢?

Given the four points (2, 1), (4, 3), (3, 5), (8, 9),

a. Find the cubic that passes through them, in
Lagrangian form.

b. Multiply out to express as ax® + bx? + cx + d.

c. How many arithmetic operations (addition, subtrac-
tion, multiplication, division) are required to use the
Lagrangian polynomial to interpolate at x = 6.57

d. How many operations are required to convert the
Lagrangian form to the cubic equation in part (b)?

e. How many operations are used to interpolate at
x = 6.5 with the cubic of part (b)?

f. Interpolating as in part (¢) requires more operations
than in part (e), but to use the polynomial as in part
(d) means that part (b) must be done first. But if we
must interpolate many times, using the cubic of part
(b) would be more efficient. How many interpola-
tions does it take to overcome the overhead work?

Plot the coefficients of each term of the Lagrangian
polynomial of Exercise 4 to see their form. Then super-
impose each of these together with the plot of the cubic
of Exercise 4, part (b).

. If ¢! is approximated by Lagrangian interpolation

from the values for ¢° = 1, e! = 2.7183, and &% =
7.3891, what are the minimum and maximum estimates
for the error? Compare to the actual error.

7. Repeat Exercise 6, but now extrapolate to get ¢>7.

8. Use the following data to construct the Neville table

that interpolates at x = 0.6.

x f&)
0.3 0.404958
0.5 0.824361
0.7 1.40963
0.9 2.21364
1.1 3.30458

a. Compare the result to those when only the first three

data points are used.
b. Repeat part (a), but with the three points from x =
0.5t 0.9.

»10.

»15.

c. Repeat with the first four points.

d. Repeat again with the last four points.

e. The table is for f(x) = x * ¢*. Which of the answers
is closest to the correct result, £(0.6) = 1.09327?
Why this one?

9. Repeat Exercise 8, but after rounding the function val-
ues to four significant digits. Does this make a notice-
able difference in the answers?

If parallel processing with n processors is used to inter-
polate at some x-value from a Lagrangian polynomial
constructed from n (x, f(x)) values, how much comput-
ing time can be saved compared to sequential process-
ing? Express in terms of T, the time it takes to compute
one term of the polynomial by itself. If we have 2n
processors, can the solution be obtained more rapidly?

11. Repeat Exercise 10, but now for Neville’s method
where T is the time to compute one term in a column.
What should be the order in which terms are computed
in getting the table? Assume that there are enough
processors to give maximum speedup. How many
processors can be usefully employed? Can this take
advantage of the fact that not all n points may be
needed?

Section 3.2
12. Construct the divided-difference table from these data:

0.1
—0.06

0.7
—1.05

—03
6.51

0.3
2.34

X —-0.2
fx) 1.23

13. Repeat Exercise 4, but now do it with divided differ-
ences (use the divided-difference polynomial wherever
the Lagrangian polynomial is mentioned). Omit
part (e).

14. Use the divided-difference table from Exercise 12 to

interpolate for £(0.4)

a. Using the first three points.

b. Using the last three points.

c. Using the best set of three points. Which points

should be used?

d. Using the best set of four points.

e. Using all of the points.

f. Explain why the results are not all the same.

Is this table of values from a polynomial? If so, how do

you know that f(x) is truly a polynomial? What is its

degree? What is the polynomial? Use divided differ-
ences to answer the questions.



16.

»p17.

f®

18.

19.

20.

»21.

22.

23.

24,

x S&x)
-1 8
3 0
2 —1
-2 15
4 3

After you have solved Exercise 15, you are told that
f(0) = 5. With this new information, repeat Exercise 15.

Complete the table of ordinary differences from these
data:

120 125 1.30 1.35 140 1.45 1.50
0.1823 0.2231 0.2624 0.3001 0.3365 0.3716 0.4055

a. What degree of polynomial is required to exactly fit
all seven points to within three significant digits?

b. What polynomial of lesser degree will almost fit to
the same precision?

c. Justify your answer to part (b).

Using the data in Exercise 17,

a. Compute f[x, x,, X, x,] directly from the data with-
out making a divided-difference table if x is 1.30.

b. Repeat part (a), but now get A3 fo- Verify from the
divided-difference table you created in Exercise 17.

c. Construct the divided-difference table for the data in
Exercise 17 and verify your answer to part (a).

Estimate the value of f(1.33) from the data in Exercise
17 using the third-degree Newton—Gregory interpolat-
ing polynomial. Use the best starting point. Estimate
the error from the next-term rule.

Repeat Exercise 19, but now estimate f(0.67). Is the
estimated error greater than in Exercise 19? If so,
explain.

The function tabulated in Exercise 17 is not known but
you can still use the data to interpolate. Estimate
Sf(1.32) using the best set of three points. Estimate the
error from the next-term rule.

What are the bounds to the error in the result from
Exercise 7?7 Compare to the actual error,

Repeat Exercise 8, but now from a divided-difference
table. Compare the error of the estimate to the bounds
on the error.

Show how nested multiplication can be used to evalu-
ate the polynomial P, (x) of Eq. (3.8). How many fewer

25.

»26.

217.

28.

29.

211

Exercises

operations are needed when n = 2? When n = 3?
When n = 4?

Prove that the divided difference of order n is always a
constant if f(x) is a polynomial of degree n.

Suppose you have a table of x, f(x) values that has
seven entries.

a. How many computer operations are used in comput-
ing the divided-difference table up to the third
order?

b. How many operations are used to compute the ordi-
nary differences?

Given three points from which polynomial P,(x) has
been found. You know the function that gives the three
points.

a. Show that f"(x) =~ 2 * f[x,, x,, x,] for any three dis-
tinct points.

b. What is the relation if the points are evenly spaced
and you use the table of ordinary differences?

Given the f(x) values at three distinct x-values, x|, x,,
x5. There are six different ways in which the points can
be ordered. Show that the second-order divided differ-
ences are identical for all permutations of the ordering.

In a table of (x, ¥) values, one point is a duplicate of
another point. What happens when the divided-difference
table is constructed? What happens with an ordinary
difference table?

30. Use this ordinary difference table:

x fx) Af A% 4% AYf
0.12 0.79168 —0.01834 —0.01129 0.00134 0.00038
0.24 0.77334 —0.02963 —0.00995 0.00172 0.00028
0.36 0.74371  —0.03958 -0.00823  0.00200

0.48 0.70413  —0.04781 —0.00623

0.60 0.65632  —0.05404

0.72 0.60228

a. Estimate £(0.231) from the Newton-Gregory poly-
nomial of degree-2 with x, = 0.12.

b. Add one term to part (a) to get £(0.231) from the
third-degree polynomial.

c. Estimate the errors of both parts (a) and (b).

d. Is it better to start with x;, = 0.24 or with x;, = 0.36
when getting (0.42) from a quadratic? Justify your
answer.
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€. Demonstrate that the precision of the data can have
a Jarge effect on the table by recomputing it with the
function values chopped after three decimal places.

You have these values for x and y(x):

x 0.1 0.3 05 07 09 11 1.3
y 0.003 0.067 0.148 0.248 0.370 0.518 0.697

. Find y(0.54) from a cubic that starts from x = 0.1.
. Repeat part (a) but start from x = 0.3. Should this be
a better value?
¢. What is the minimum degree of polynomial that fits
all the data?
d. Construct the difference table, then construct the
divided difference table. How do these differ?

oo

Section 3.3

32.

33.

34.

35.

»36.

37.

38.

Fit this function with interpolating polynomials that
match f(x) at equal intervals in [—1, 1]:

0, -l <x<-05
S = 1 —12x], —05<x< 05
0, 05<x< 1.0

a. A polynomial of degree 2.
b. A polynomial of degree 3.
¢. A polynomial of degree 4.
d. Plot the function and each of the polynomials.

Fit the function in Exercise 32 with a natural cubic
spline that matches to f(x) at five evenly spaced points
in [—1, 1]. Plot the spline curve together with f(x).
Repeat Exercise 33 but now use end conditions 3 and 4
as defined in Eq. (3.18). Which end condition gives the
best fit to the function?

Repeat Exercise 33, but now force the slopes at the
ends to be zero. Which spline fits better, this one or one
from Exercises 33 or 347

Find the coefficient matrix and the right-hand-side vec-
tor for the cubic spline that fits to these data:

x 015 027 076 089 1.07 2.11
f(x) 0.1680 0.2974 0.7175 0.7918 0.8698 0.9972

Solve the equations of Exercise 36 to get the equations
for the cubics. Use this to interpolate at x = 0.31,
x = 0.85, and x = 2.05. Compare these interpolates
with the values of ERF(x), the so-called error function,
which you can find in tables.

Develop the equations to get the coefficients of qua-
dratic splines. What end conditions are appropriate for
these quadratic splines?

39.

»40.

41.

42,

43.

bdd.

Repeat Exercise 33 with the equations of Exercise 38.
Use the end conditions that you provided for in
Exercise 38.

A cubic spline with end condition 1 is called a “free
spline.” If the slopes at the ends are specified (condi-
tion 2), it is called a “clamped spline.” Suppose that
S(x) is a third-degree polynomial:

a. Show that f(x) is its own clamped spline.

b. Show that f(x) is not its own free spline.

When data for a periodic function are tabulated, the
first and last points are identical. Develop the equations
for fitting a cubic spline to such periodic data, taking
into account the matching of endpoints.

What if end condition 1 is used at one end (S;, = 0) but
end condition 4 is used at the other end? What are the
first and last rows of the coefficient matrix for such a
spline?

Is f(x) a linear spline?

1 —x —1=x=1
fE =126 -1,  1=x=2
(x + 2)/2, 2=x=4

For the function of Exercise 43, fit the four points
f(=1), f(1), f(2), and f(4) with a cubic spline. What is
the maximum deviation of this spline from f(x) in the
interval [—1, 4]?7 At what x-value does this occur?

Section 3.4

45.

46.
»47.
48.

Show that the matrix form of the equations for the
Bezier curve is equivalent to the algebraic form in
Section 3.4.

Repeat Exercise 45 for B-splines.
What is the matrix form for a Bezier curve of order-4?

Compute the connected Bezier curve from this set of
points:

Point #

6 7 8 9
180 190 160 130
140 120 100 80

0o 1 2 3 4 5
10 50 75 90 105 150
10 15 60 100 140 200

a. Draw the graph determined by the ten points.

b. Why is the graph smoothly connected at points 3
and 6?7

c. Rewrite the Bezier equations so that the parameter u



49.
50.

51.
»52.

53.

54.

»55.

56.

57.

58.

is defined on [0, 1] for points 0 to 3, on [1, 2] for points
3 to 6, and on [2, 3] for points 6 to 9.

Repeat Exercise 48 for a B-spline curve.

Plot the weighting factors that produce a cubic Bezier
curve by letting u vary between zero and one.

Repeat Exercise 50, but for a cubic B-spline.

Prove that the slopes at the ends of a cubic B-spline
curve are the same as the slope between the two
endpoints.

If these four points are connected in order by straight
lines, a zigzag line is created:

0,0),(1,0.3), (2, 1.7), (3, 1.5).

a. Using the two interior points as controls, find the
cubic Bezier curve. Plot this together with the
zigzag line.

b. Use this cubic equation to find interpolates at x =
0.5, x = 0.75, and x = 2.5. How close are these to
the zigzag line?

c. If the second and third points (the control points) are
moved, the Bezier curve will change. If these are
moved vertically, where should they be located so
that the Bezier curve passes through all of the origi-
nal four points?

Repeat Exercise 53, but for B-spline curves. Add ficti-
tious points at the end so the end portions are com-
pleted.

If one of the points used in constructing a connected B-
spline curve is changed, what parts of the curve are
affected? Is there a change that does not affect the
curve? Do the terms local control and global control
apply to what you observe?

Repeat Exercise 55 for a connected Bezier curve.

A fourth-degree B-spline is a natural extension of the
cubic B-spline. Can the degree be reduced to two?
What assumptions are reasonable for such a quadratic?

The function y = x/(x> + 1/5) is discontinuous near
x = —0.6, is zero at x = 0, and has a sharp maximum
near x = 0.5. Find the seven evenly spaced points near
x = 0.5 that define a B-spline that goes through the
endpoints and matches to the maximum within
* 0.002.

Section 3.5

»59.

In Section 3.5, it is asserted that interpolation can be
done by making subtables with x held constant or,
alternatively, from subtables with y held constant.

60.

61.

»62.

63.

64.
65.
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Exercises

Example 3.8 did it the first way. Recompute f(1.6,
0.33) in the second way. Do you get the same result?

After Example 3.8 was completed, it was observed that
a cubic in x and a quadratic in y might be preferred. Use
this preferred attack to estimate f(1.6, 0.33). How does
this compare to the answer in Exercise 59? How much
is it in error from the true value, 1.8350? Was the “pre-
ferred attack” really better?

In Example 3.8 and in Exercises 59 and 60, a rectangu-
lar set of points from the table was used. Is it advanta-
geous to use a more nearly circular set of points?
Estimate f(1.6, 0.33) from a set of the 12 points closest
to (x, y) = (1.6, 0.33) and compare with the results
from Example 3.8, and from Exercises 59 and 60.

From this table, estimate z(x, y) for x = 2.8 and
y = 0.54 using an array of nine points nearest to the
point of interpolation to construct interpolating polyno-
mials. (There may be several ways to choose these
points; try them all.) The function whose values are
tabulated is z = » + €.

x\y 0.2 04 0.5

0.7 0.9

13
25
31
4.7
55

2.521
3.721
4321
5.921
6.721

2.792
3.992
4.592
6.192
6.992

2.949
4.149
4.749
6.349
7.149

3.314
4514
5.114
6.714
7.514

3.760
4.960
5.560
7.160
7.960

Using the data from Exercise 62, construct the B-spline
surface from the rectangular array of 16 points nearest
to (2.8, 0.54) and find z(2.8, 0.54). Compare to the
result of Exercise 62.

Repeat Exercise 63, but now for a Bezier surface.

Repeat Exercise 63, but now use cubic splines.

Section 3.6

66.

Figure 3.13 plots data that appear to be linear and the
least-squares line that fits is R = 702.2 + 3.3957. A
line drawn by eye that also seems to fit the data is
R =700 + 3.5T.

a. Draw both lines on a copy of Figure 3.13 to confirm
that both equations are reasonable representations.

b. Compute the deviations of the R-values of the data
from each of these lines. Find the sum of squares of
the deviations and compare. Which sum is smaller?
By how much?
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68.

69.

»70.

71.
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¢. Compare the maximum of the deviations for each
equation. Are they much different? How do the
averages of the errors compare?

Show that (X, ¥) where X is the average of the x-values
and Y is the average of the y-values for any set of data
points is a point on the least-squares line that fits to the
data.

Fit these six (x, y)-values with a straight line:

x 1.2 3.1 5.6 6.2 8.8 9.1
y 4.957 12909 23404 25981 36907 38.212

a. Do this assuming that the x-values are free of errors,
given y = f(x).

b. Repeat but now assume that the y-values are error
free.

c. Part (b) gives x = g(y). Translate this to y = A(x). Is
h(x) the same as the result of part (a)?

d. For which line is the sum of the squares of the devi-
ations smaller?

The equation of a plane is z = ax + by + c¢. We can fit
experimental data to such a plane using the least-
squares technique. Here are some data for z = f(x, y):

x 040 12 34 41 57 72 9.3
y 070 2.1 40 49 63 81 8.9
z 0031 0933 3.058 3.349 4.870 5.757 8921

a. Develop the normal equations to fit the (x, y) data to
a plane.

b. Use these equations to fit z = ax + by + c.

c. What is the sum of the squares of the deviations of
the points from the plane?

Plot the line between (2, 5) and (6, —1) and get its
equation. Now add a third point at x = 4 and find the
least-squares line for the three points. For which y-
value does the line shift the most

If the y-value at the third point is 57

If the y-value is 0?

If the y-value is 4?

. Find the equations of the least-squares lines for
each.

These data are measured solubilities of n-butane in lig-
uid anhydrous hydrofluoric acid. Fit to the equation
S = a * exp (b * T) using least squares. (This is impor-
tant in a process that converts n-butane to
i-butane, which gives a higher octane number to gaso-
line.)

po o

72.

73.

74.

»75.

76.

T,°F 77 100 185 239 285
S, wt. % 2.4 34 7.0 1.1 19.6

Plot the data of Exercise 71:

a. On ordinary graph paper. Observe the points do not
fall on a line.

b. On semi-log paper. Observe that the points fall near
to a line.

c. Part (b) suggest that fitting a line to

n(S) =In(a) + b* T

will give the same results as in Exercise 71. Do this
to confirm.

y = ax> + bx + ¢ is a quadratic equation, of course.

Compute z = y + a random number within the range

[0, .2] for six x-values chosen randomly within the

range [2, 7].

a. Fit the least-squares line to these points.

b. Fit the least-squares quadratic to them.

c. Fit the least-squares cubic to them.

d. Compare the sum of squares of the deviations for
each part.

If A is the design matrix defined in Section 3.6,

a. Show that A * AT gives the coefficient matrix of Eq.
(3.28).

b. Show that A * y, where y is the column vector of
y-values, gives the right-hand side of Eq. (3.28).

c. Is it more economical to compute the values for Eq.
(3.28) by using the design matrix rather than com-
puting them with Eq. (3.28)?

From theoretical considerations, it is suspected that the

rate of flow from a fire hose is proportional to some

power of the pressure at the nozzle. Do these data con-
firm that? Get the least-squares values for the exponent
and the proportionality factor.

Flowrate 94 118 147 180 230
Pressure 10 16 25 40 60

If the data of Exercise 75 are plotted on log-log paper,

the points appear to be nearly linear with a slope of 2.

That means that a quadratic, F = aP? + bP + c,

should fit the data.

a. Get the coefficients of the quadratic by least
squares.

b. Is the sum of squares of the deviations less than for
the relation of Exercise 757

[P P
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»77. Fit a polynomial of optimal degree to these points:

X

1.1 1.6 114 41 33 175 94 115 121

fG) 79 248 —288 426 29.6 —346 -—3.1 —28.7 -39.6

78.

79.

Repeat Exercise 77,

a. Using only every other point.

b. Using the other half of the points.

¢. Compare the results of parts (a) and (b) with that of
Exercise 77.

Suppose you want to use least squares to fit the data of
Exercise 77 with this equation:
f&x)=a+ b*sin(c*x).
a. What difficulties will be experienced if the normal
equations for a polynomial are used?

b. If it were known that ¢ = 7/10, would it then be eas-
ier to get values for a and b?

80.
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¢. Does part (b) suggest that it would be preferred to
obtain least-squares values for a and b using a suc-
cession of c-values and thus finding good values for
a, b, and ¢ by seeing when the sum of squares of
deviations is smallest?

In Section 3.6 it was pointed out that the coefficient
matrix in Eq. (3.28) is ill-conditioned if the degree of
the polynomial is more than 3 or 4. If experimental data
are available at ten evenly spaced x-values from x = 3
tox = 7, itis possible to find least-squares polynomials
P (x) for n from 1 to 8.

a. What is the condition number for P,(x)?
b. For P(x)?
¢. For Pg(x)?

Applied Problems and Projects

APP1. In Section 3.2, we described how the Newton—Gregory interpolating polynomial can be constructed
from a table of ordinary differences. There are other ways to get interpolating polynomials from such
a table and these bear the names of famous mathematicians—Gauss—Forward, Gauss-Backward,
Stirling, Bessel. There is even a Newton—Gregory backward polynomial. Do research to find how

these differ from one another.

APP2. The cost of government welfare programs adds significantly to our taxes. The table below gives data

for several years:

Year

Expenditures
in billions of dollars

1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995

731
782
833
886
956
1049
1159
1267
1367
1436
1505

Use the data between 1991 to 1994 to estimate what the value would be in 1995 and compare to the

value in the table. Do this
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a. From a cubic interpolating polynomial.

b. From the least-squares line.

¢. From the least-squares quadratic.

d. From a cubic spline.

From each of these, project to find what one would anticipate the expenditures for the year 2000
might be; then find what the actual expenditures were for comparison.

Use the data of APP2 with several approaches to extrapolate backward to estimate the expected
expenditure for 1980. How do these values compare to 492 billion, the amount actually spent?

S. H. P. Chen and S. C. Saxena report experimental data for the emittance of tungsten as a function of
temperature [Ind. Eng. Chem. Fund. 12,220 (1973)]. Their data follow. They found that the equation

T )1.27591
e(h) = 0.02424< 30316

correlated the data for all temperatures accurately to three digits. What degree of interpolating poly-
nomial is required to match to their correlation at points midway between the tabulated tempera-
tures? Discuss the pros and cons of polynomial interpolation in comparison to using their correlation.

T,°K 300 400 500 600 700 800 900 1000 1100
e 0.024 0.035 0.046 0.058 0.067  0.083 0.097  0.111 0.125

1500 1600 1700 1800 1900 2000
0.219 0.235 0252  0.269

T,°K 1200 1300 1400
e 0.140 0.155 0.170 0.186 0.202

In studies of radiation-induced polymerization, a source of gamma rays was employed to give mea-
sured doses of radiation. However, the dosage varied with position in the apparatus, with these fig-
ures being recorded:

Position, in. from base point 0 0.5 1.0 1.5 2.0 3.0 3.5 4.0

Dosage, 103 rads/hr 1.90 2.39 2.71 2.98 3.20 3.20 2.98 2.74

For some reason, the reading at 2.5 in. was not reported, but the value of radiation there is needed. Fit
interpolating polynomials of various degrees to the data to supply the missing information. What do
you think is the best estimate for the dosage level at 2.5 in.?

Studies of the kinetics of elution of copper compounds from ion-exchange resins gave the following
data. The normality of the leaching liquid was the most important factor in determining the diffusiv-
ity. The data were obtained at convenient values of normality; we desire a table of D for integer val-
ues of normality (N = 0.0, 1.0, 2.0, 3.0, 4.0, 5.0). Use the data to construct such a table.

N D x 108, cm?/sec N D x 108, cm?/sec
0.0521 1.65 0.9863 3.12
0.1028 2.10 1.9739 3.06
0.2036 227 2.443 2.92
0.4946 2.76 5.06 2.07
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When the steady-state heat-flow equation is solved numerically, temperatures u(x, y) are calculated
at the nodes of a gridwork constructed in the domain of interest. (This is the content of Chapter 8.)
When a certain problem was solved, the values given in the following table were obtained. This pro-
cedure does not give the temperatures at points other than the nodes of the grid; if they are desired,
one can interpolate to find them. Use the data to estimate the values of the temperature at the points
(0.7, 1.2), (1.6, 2.4), and (0.65, 0.82).

x\y 0.0 0.5 1.0 1.5 2.0 2.5
0.0 0.0 5.00 10.00 15.00 20.00 25.00
0.5 5.00 7.51 10.05 12.70 15.67 20.00
1.0 10.00 10.00 10.00 10.00 10.00 10.00
1.5 15.00 12.51 9.95 7.32 433 0.0
2.0 20.00 15.00 10.00 5.00 0.00 —35.00

The interpolating polynomials that have been described in this chapter have all fit the polynomial
to match certain function values. One can also fit a polynomial that fits not just to values of the
function but also to values of its derivative. Such an interpolating polynomial is called a Hermite
polynomial.

Develop the relations to construct a cubic Hermite polynomial from [x;, f(x))], [x,, f'(x ), [xy,

Sf@xy)), and [x,, f'(x,)]. Then use your formula to find the cubic polynomial that interpolates from
these data

x fx) [
1 2.71828 0
3 6.69518 4.46345

to estimate f(1.5), £(2.0), and f(2.5).

The data are for the function f(x) = ¢*/x. How great are the errors of the interpolants? Are these
errors less than those from the cubic interpolating polynomial that fits the function at x = 1, 1.5, 2.4,
and 3.0?

Superimpose the graphs of (a) the function, (b) the Hermite polynomial, and (c) the interpolating
polynomial.

Exercise 44 asked you to fit a spline to the four points where the function has changes in its slope.
Experiment with fitting the spline to four other points on the function to find a set that matches bet-
ter to the function throughout its range. Can you conclude from this how a broken-line function
should be fitted?

If you have the graph of a function whose derivative is continuous, where should points be cho-
sen to get the best fit with a cubic spline?

Star S in the Big Dipper (Ursa Major) has a regular variation in its apparent magnitude. Leon
Campbell and Laizi Jacchia give data for the mean light curve of this star in their book The Story of
Variable Stars (Blakeston, 1941). A portion of these data is given here.

Phase -110 —80 —40 -10 30 80 110

Magnitude 7.98 8.95 10.71 11.70 10.01 8.23 7.86
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The data are periodic in that the magnitude for phase = —120 is the same as for phase = +120. The
spline functions discussed in Section 3.4 do not allow for periodic behavior. For a periodic function,
the slope and second derivatives are the same at the two endpoints. Taking this into account, develop
a spline that interpolates the preceding data.

Other data given by Campbell and Jacchia for the same star are

Phase ~100 —60 —20 20 60 100

Magnitude 8.37 9.40 11.39 10.84 8.53 7.89

How well do interpolants based on your spline function agree with this second set of observations?

APP11. A fictitious chemical experiment produces seven data points:

t -1 —0.96 —0.86 -0.79 0.22 0.5 0.930

y -1 —0.151 0.894 0.986 0.895 05 —0.306

a. Plot the points and interpolate a smooth curve by intuition.
b. Plot the unique sixth-degree polynomial that interpolates these points.

Y Cubic spline interpolation:
Lagrangian interpolation:
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Figure 3.18
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¢. Use a spline program to evaluate enough points to plot this curve.
d. Compare your results with the graph in Figure 3.18.

In Exercise 30, what if the entry at x = 0.36 was mistakenly entered as 0.73471, rather than the cor-
rect value of 0.74371? How does this affect the computations of that exercise? How do values in the
difference table change? Is there a pattern to the changes in the table?

The figure below is the profile of a pretty girl. (It is a tracing from a photograph of a daughter-in-law
of one of the authors, taken by Elsie E. Gerald.) What is the best way to construct a sequence of poly-
nomials that essentially duplicate the outline? Where will you choose the points where the polyno-
mials join or what “knots” or “control points” will you specify? Pay particular attention to the por-
tions of the figure at the lips and teeth.

You will want to trace the drawing on graph paper to find the coordinates of the outline. Do this
and use your result to reproduce the figure.
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When your software program asks the computer to get the value of sin(2.113) or e™3,

have you wondered how it can get the values if the most powerful functions it can compute
are polynomials? It doesn’t look these up in tables and interpolate! Rather, the computer
approximates every function other than polynomials from some polynomial that is tailored
to give the values very accurately.

This chapter describes how such approximating polynomials are developed. We want
the approximation to be efficient in that it obtains the values with the smallest error in the
least number of arithmetic operations. Our approach will be gradual, building toward the
more efficient methods from a less powerful starting point.

This chapter includes a second topic of great importance in applied mathematics—
representing a function with a series of sine and cosine terms. In view of the above, this
may seem a very roundabout way of doing the job. Still, such a series, a Fourier series, is
usually the best way to represent a periodic function, something that cannot be done with
a polynomial or a Taylor series. A Fourier series can even approximate functions with dis-
continuities and discontinuous derivatives.

The origin of the subject began with studies of vibrating strings. It reached fuller devel-
opment with Jean Baptiste Joseph Fourier (1768 —1830), who used them in solving heat
conduction problems. The theory behind Fourier series has been extended to methods for
solving other partial-differential equations.

One of the most important applications is in the analysis of the vibrational modes of a
structure to determine which frequencies are of most importance. If external forces act
with one of these frequencies, severe damage can occur.

4.1 Chebyshev Polynomials and Chebyshev Series
Chebyshev polynomials are orthogonal polynomials that are the basis for
fitting nonalgebraic functions with maximum efficiency. They can be used to



modify a Taylor series so that there is greater efficiency. A series of such
polynomials converges more rapidly than a Taylor series.

4.2 - Rational Function Approximations
Are the ratio of two. polynomials that can be developed from a Taylor series;
the result is-a Padé approximation, a better match to the function being
approximated. If the rational function is developed from a Chebyshev series,
an even better-approximation results. Even more improved approximations are
mentioned—a minimax approximation.

4.3 Fourier Series

These are series of sine and cosine terms that can be used to approximate a
function within a given interval very closely, even functions with
discontinuities. Fourier series are important in many areas, particularly in
getting an analytical solution to partial-differential equations.

4.1 Chebyshev Polynomials and Chehyshev Series

If we want to represent a known function as a polynomial, one way to do it is with a Taylor
series. This you learned in your calculus course: Given a function, f(x), we write

P =aytax—a+tax—a?+ax—a®+ -+ ax—a+---

where a;, = f® (a)/i! (we remember that f@ is just f(a)). Unless f(x) is itself a polynomial,
the series may have an infinite number of terms. Terminating the series incurs an error, the

truncation error. The error after the (x — @) term can be written in different ways but a
most useful form is

(x — a)n+1
(n+ 1!

Error =

fOTD(€), € in[a, x].

A problem with using the Taylor series to get polynomial approximations to a transcen-
dental function is that the error grows rapidly as x-values depart from x = a.

For f(x) = ¢, the Taylor series is easy to write because the derivatives are so simple:
" (a) = e for all orders and we have, for a = 0 (which is then called a Maclaurin series),

F~1+1(x—0)+ 1/2(x — 02 + 1/6(x — 0)>

if we use only terms through x3; the error term shows that the error of this will grow about
proportional to x* as x-values depart from zero. There is a way to combat this rapid growth
of the errors, and that is to write the polynomial approximation to f(x) in terms of

Chebyshev polynomials. Chebyshev was a Russian mathematician; an older spelling of his
name is Tschebycheff.

221
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Chebyshev Polynomials

A Maclaurin series can be thought of as representing f(x) as a weighted sum of polynomi-
als. The kind of “polynomials” that are used are just the successive powers of x: 1, x, x2,

13, . ... Chebyshev polynomials are not as simple; the first 11 of these are
To(x) = 1,
Tl(x) =X,
Ty(x) = 24> ~ 1,

Ti(x) = 4x3 — 3x,

Tyfx) = 8x* — 8x2 + 1,

T5(x) = 16x5 — 2043 + 5x,

T6(x) = 32x0 — 48x* + 18x2 ~ 1,

T,(x) = 64x7 — 11225 + 56x% — Tx,

Ty(x) = 128x8 — 25628 + 160x* — 32x% + 1,

Tyx) = 256x% — 576x7 + 432x% — 120x3 + 9x,

Ty = 512x10 — 128048 + 1120x° — 400x* + 50x% — 1.

@.1)

The members of this series of polynomials can be generated from the two-term recursion

formula

T, ) =2Tx)—T, (), Ty =1, T;(x) = x.

4.2)

(Using the symbol T for these derives from the older spelling of Chebyshev.)

Note that the coefficient of x” in T (x) is always 2"~ !, In Figure 4.1 we plot the first four

polynomials of Eq. (4.1).

These polynomials have some unusual properties. They form an orthogonal set, in that

0, n+m,
' T(0)T,(x) =17 n=m=0,
-1 V1 —x? T

7, n=m+0.

The orthogonality of these functions will not be of immediate concern to us.
The Chebyshev polynomials are also terms of a Fourier series,* because

T,(x) = cos né,

where 6 = arccos x. Observe that cos 0 = 1, cos § = cos(arccos x) = x.

* We discuss Fourier series later in this chapter.

4.3)

4.4)
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Figure 4.1

To demonstrate the equivalence of Eq. (4.4) to Eqgs. (4.1) and (4.2), we recall some
trigonometric identities, such as

cos20 =12cos2 6 — 1,
Ty(x) = 202 — 1;
cos 360 =4 cos® 6 — 3 cos 6,
Ty(x) = 4% — 3x;
cos(n + 1) + cos(n — 1)8 = 2 cos 8 cos né,
T, ) +T,_(x) = 2T, (x).

Because of the relation T,(x) = cos(n6), the Chebyshev polynomials will have a suc-
cession of maxima and minima of alternating signs, as Figure 4.1 shows. It follows from
Eq. (4.4), because |cos nf| = 1 fornf = 0, m, 2, . . ., and because 6 varies from 0 to 7 as
x varies from 1to —1, that T (x) assumes a maximum magnitude of one n + 1 times on the
interval [—1, 1]. For example, as seen in Figure 4.1, T,(x) has three maxima and two min-
ima, a total of five, and all are of magnitude 1.

It is most important that, of all polynomials of degree n that have a coefficient of one on
x", the polynomial

1
T T,(x)

has a smaller upper bound to its magnitude in the interval [—1, 1] than any other. Because
the maximum magnitude of 7 (x) is one, the upper bound is I/2"~! (we must make the coef-
ficient of x” equal to one). This is important because we will be able to write power function
approximations to functions whose maximum errors are given in terms of this upper bound.

Error Bounds for Chebyshev Polynomials

‘We have asserted that, of all polynomials of degree n whose highest power of x has a coefficient
of one, Tn(x)/2”_1 has the smallest error bounds on [—1, 1]. The proof is by contradiction.
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Let P,(x) be a polynomial whose leading term* is x" and suppose that its maximum
magnitude on [—1, 1] is less than that of 7,(x)/2"" 1. Write
T,(x)
2n—1 -

Pn(x) = Pn~1(x)’

where P, _,(x) is a polynomial of degree n — 1 or less, as the x" terms cancel. The poly-
nomial 7,(x) has n + 1 extremes (counting endpoints), each of magnitude 1, so
Tn(x)/2""1 has n + 1 extremes each of magnitude 1/2"~1, and these successive extremes
alternate in sign. By our supposition about P, (x), at each of these maxima or minima, the
magnitude of P, (x) is less than 1/27~1; hence, P, _,(x) must change its sign at least for
every extreme of T,(x), which is then at least n + 1 times. Hence, P, _,(x) crosses the axis
at least » times and would have n zeros. However, this is impossible if P, _,(x) is only of
degree n — 1, unless it is identically zero. The premise must then be false and P, (x) has a
larger magnitude than the polynomial we are testing or, alternatively, P, (x) is exactly the
same polynomial.

Using Computer Algebra Systems

The computer algebra systems that we have described in earlier chapters can get
Chebyshev polynomials. Suppose we want T (x).

In Maple, the command to get a Chebyshev polynomial is included in Maple’s
orthopoly package. That package provides several related commands. To use them, we
must first invoke the package; its commands are then available:

with (orthopoly);
T(5,x%)
16x> — 20x3 + 5x

and we see the fifth-degree polynomial exactly as in Eq. (4.1). Mathematica can also do
this with a built-in function:

ChebyshevT (5, x]
5x — 20x° + 16%°

which is the same except the terms are in reverse order.
MATLAB has no commands for these polynomials but this M-file will compute them:

function T = Tch(n)

if n==
disp(‘17")
elgeif n==1
disp(’'x’)
else

* We restrict the polynomials to those whose leading term is x” so that all are scaled alike.



4.1: Chebyshev Polynomials and Chebyshev Series 225

t0="1";

tl="'x";

for i=2:n
T =gsymop {(‘2*x*,'*/,tl, —',t0);
t0=tl;
£l =1T;

end % for

We invoke this by

EDU>> Tch(5)
ans =
2FERF(2FXF(2FxF(2FxN2 — 1) —x) —2*xM2 + 1) — 2¥x*(2Fx"M2 — 1) +x

which is hard to read, but we can input

EDU>> collect {ans)
ans =
16*x"5 — 20*x"3 + 5*x

to see the polynomial.

Economizing a Power Series

We begin a search for better power series representations of functions by using Chebyshev
polynomials to “economize” a Maclaurin series. This example will give a modification of
the Maclaurin series that produces a fifth-degree polynomial whose errors are only slightly

greater than those of a sixth-degree Maclaurin series. We start with a Maclaurin series
for e*:

x? x3 x4 X x0
F=ltx+t— Ty
x 6 ' 24 ' 120 ' 720

R

If we would like to use a truncated series to approximate e* on the interval [0, 1] with a pre-
cision of 0.001, we will have to retain terms through that in %8, because the error after the
term in x> will be more than 1/720. Suppose we subtract

()5
720 7\ 32
from the truncated series. We note from Eq. (4.1) that this will exactly cancel the x° term

and at the same time make adjustments in other coefficients of the Maclaurin series.
Because the maximum value of T'; on the interval [0, 1] is unity, this will change the sum
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of the truncated series by only

1
* e K s
70 32 0.00005

which is small with respect to our required precision of 0.001. Performing the calculations,
we have

2 x3 .7C4 xS x6

el — g +
2 6 24 120 720

1 1
L (L ) 0u8 — agat 4 1802 —
x3 x5
" = 1000043 + x + 0.499219 +“ + 0.043750x* + =,

The resulting fifth-degree polynomial approximates e* on [0, 1] nearly as well as the sixth-
degree Maclaurin series: Its maximum error (at x = 1) is 0.000270, compared to 0.000226
for the Maclaurin polynomial. We “economize” in that we get about the same precision
with a lower-degree polynomial.

By subtracting %0 (T5/16) we can economize further, getting a fourth-degree polynomial
that is almost as good as the economized fifth-degree one. It is left as an exercise to do this
and to show that the maximum error is now 0.000781, so that we have found a fourth-degree
power series that meets an error criterion that requires us to use two additional terms of the
original Maclaurin series. Because of the relative ease with which they can be developed,
such economized power series are frequently used for approximations to functions and are
much more efficient than power series of the same degree obtained by merely truncating a
Taylor or Maclaurin series. Table 4.1 compares the errors of these power series.

Observe in Table 4.1 that even the economized polynomial of degree-4 is more accurate
than a fifth-degree Maclaurin series. Also notice that near x = 0, the economized polyno-

Table 4.1 Comparison of economized series with Maclaurin series

Maclaurin of degree Economized of degree
x ad 6 5 4 5 4
0.0 1.00000 1.00000 1.00000 1.00000 1.00004 1.00004
0.2 1.22140 1.22140 1.22140 1.22140 1.22142 1.22098
04 1.49182 1.49182 1.49182 1.49173 1.49178 1.49133
0.6 1.82212 1.82212 1.82205 1.82140 1.82208 1.82212
0.8 2.22554 2.22549 2.32513 2.22240 2.22553 2.22605
1.0 2.71828 2.71806 2.71667 2.70833 2.71801 2.71749

Maximum error 0.00023 0.00162 0.00995 0.00027 0.00078
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mials are less accurate; in effect, we permit small errors at points within the range but get
a smaller maximum error. We return to this later. Also notice that the desired accuracy of a
maximum error less than 0.001 is met with the economized fourth-degree polynomial.

Computer Algebra Systems Can Economize a Series

All three of the computer algebra systems can get Maclaurin series and Chebyshev poly-
nomials. It follows that they should be able to economize the Maclaurin one. In this
demonstration, we omit the intermediate results.

Maple gets the Maclaurin series for ¢* with

taylor(exp(x), x=0);

and if Order is set at 7, we get the sixth-degree polynomial that we have been working
with. However, this includes the error term. We can remove it with

p: = convert (%, polynom) ;
where * %' refers to the previous answer. Now, doing
p — orthopoly [T] (6,x) /6!/2"5;
produces Eq. (4.5) but with the coefficients expressed as ratios of integers:
23041 639 1

+ x + x2+—x3+—7—x4+ 1x5
23040 1280 6 160 120

Now, if we do evalf (%) we get the coefficients in floating point:

1.000043403 + x + .4992187500x? + .1666666667x> + .04375000000x*
+ .008333333333x°

Mathematica is similar but we do not have to remove the error term:
Series [Exp(x],{x,0,6}] — ChebyshevT[6,x]/6!/2"5

23041 639x? x3 7x* x>

X
23040 1280 6 160 120

+ 0olx]1"

We can get the economized series with MATLAB by employing our M-file for the
Chebyshev series. We must start with x as a symbolic variable, then get the Maclaurin
series and subtract the proper multiple of the Chebyshev series:

EDU>> gyms X
EDU>> ts = taylor(exp(x),7)
1+x+1/2%x"2 -+ 1/6*x"3 + 1/24*x™4 + 1/120*x™5 + 1/720%x"6
EDU>> cg = Tch(6) ;
EDU>> es = ts—cs/factorial (6) /275
es =
23041/23040 +x + 639/1280*x™2 +1/6*x"3 + 7/160*x™4 + 1/120*x™5
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which duplicates the others. If we prefer to see this in floating point with seven digits:

EDU>> vpal(cs,7)

ans =

1.000043 +x+ .4992188*x™2 + .1666667*x"3 + .4375000e — 1*x™4
+ .8333333e — 2*x™5

Chebyshev Series

By rearranging the Chebyshev polynomials, we can express powers of x in terms
of them:

1 =T,
x=Tl,

1
x? = S T+ Ty,
;1
x = X (BT, + 17,
, 1
=BTy + 4T, + T,
s 1
¥ = = (10T, + 5T + T), (4.6)
6 1
X0 = 3—2 (IOTO + 15T2 + 6T4 + T6),
1
x = o O5Ty + 21T + 715 + Ty,

1
x¥ = - (35T, + 56T, + 28T, + 8T + Ty,

1
2 = S (1267, + 84T, + 3615 + 9T, + Ty).

By substituting these identities into an infinite Taylor series and collecting terms in 7(x),
we create a Chebyshev series. For example, we can get the first four terms of a Chebyshev
series by starting with the Maclaurin expansion for ¢*. Such a series converges more
rapidly than does a Taylor series on [—1, 1]:

2 )C3 x4

X
S e R e L
€ YT T e T 4
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Replacing terms by Eq. (4.6), but omitting polynomials beyond T,(x) because we want
only four terms,* we have

1 1 1
=Ty + Ty + - (Ty+ T) + 5 OT, + Ty + 7= BTy + 4T, + )

1
+—— 07, + 5T, + --+) +
1920(01 3T ) 23,040

= 1.2661T,, + 1.1302T, + 0.2715T, + 0.0443T, + - --.

(10T, + 15T, + = ++) + -+~

To compare the Chebyshev expansion with the Maclaurin series, we convert back to
powers of x, using Eq. (4.1):

e = 1.2661 + 1.1302(x) + 0.2715(2x> — 1) + 0.0443(4x> — 3x) + -+ -.

) 5 @.7)
e* = 0.9946 + 0.9973x + 0.54302% + 0.17723 + - - -

Table 4.2 and Figure 4.2 compare the error of the Chebyshev expansion, Eq. (4.7), with the
Maclaurin series, using terms through x> in each case. The figure shows how the
Chebyshev expansion attains a smaller maximum error by permitting the error at the origin
to increase. The errors can be considered to be distributed more or less uniformly through-
out the interval. In contrast to this, the Maclaurin expansion, which gives very small errors
near the origin, allows the etror to bunch up at the ends of the interval.

Table 4.2 Comparison of Chebyshev series for ¢* with Maclaurin series:
e = 0.9946 + 0.9973x + 0.5430x% + 0.1772x3;
& =1+ x+ 0.5x2 + 0.1667x

x e Chebyshev Error Maclaurin Error
-1.0 0.3679 0.3631 0.0048 0.3333 0.0346
—-0.8 0.4493 0.4536 —0.0042 0.4346 0.0147
—0.6 0.5488 0.5534 —0.0046 0.5440 0.0048
-04 0.6703 0.6712 —0.0009 0.6693 0.0010
-0.2 0.8187 0.8154 0.0033 0.8187 0.0001

0 1.0000 0.9946 0.0054 1.0000 0.0000

0.2 12214 1.2172 0.0042 1.2213 0.0001

0.4 1.4918 1.4917 0.0001 1.4907 0.0012

0.6 1.8221 1.8267 —0.0046 1.8160 0.0061

0.8 22255 2.2307 —0.0051 2.2054 0.0202

1.0 2.7183 2.7121 0.0062 2.6667 0.0516

* The number of terms that are employed determines the accuracy of the computed values, of course.
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Error
Error of
0.04 + Maclaurin series
0.03 +
0.02 +
0.01 +
N ]
-1 \/
—0.01+  Error of Chebyshev series
Figure 4.2

If the function is to be expressed directly as an expansion in Chebyshev polynomials,
the coefficients can be obtained by integration. Based on the orthogonality property, the
coefficients are computed from*

_l 1f (0)Ti(x) d
A R

and the series is expressed as
ag S
flx) = - > aTx).
i=1

A change of variable will be required if the desired interval is other than [—1, 1]. In some
cases, the definite integral that defines the coefficients can be profitably evaluated by the
numerical procedures that we discuss in the next chapter.

Because the coefficients of the terms of a Chebyshev expansion usually decrease even
more rapidly than the terms of a Maclaurin expansion, we can get an estimate of the mag-
nitude of the error from the next nonzero term after those that were retained. For the trun-
cated Chebyshev series given by Eq. (4.7), the T,(x) term would be

1
192

Because the maximum value of T,(x) on [—1, 1] is 1.0, we estimate the maximum errors of
Eq. (4.7) to be 0.00525. The maximum error in Table 4.2 is 0.0062. This good agreement
is caused by the very rapid decrease in coefficients in this example.

Only Maple has a built-in command to get a Chebyshev series:

(T, + (6T, + -+ = 0.005257,.

23,040

with (numapprox) ;
chebyshev(exp(x), x=—-1 .. 1);

* The integration is not easy because the integrand is infinite at the endpoints.
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which produces a series up to terms in Ty(x). The first four terms of this match Eq. (4.7):

1.266065878 T(0, x) --1.130318208 T(1, x) + .2714953396 T(2, x)
+ .04433684985 T(3, x) + .005474240443 T(4, Xx)

+ .0005429263119 T(5, x) + .00004497732296 T(6, x)

4+ .3198436462 1075 T(7, x) + .1992124806 107¢ T(8, x)

The computational economy to be gained by economizing a Maclaurin series, or by
using a Chebyshev series, is even more dramatic when the Maclaurin series is slowly
convergent. The previous example for f(x) = €* is a case in which the Maclaurin series
converges rapidly. The power of the methods of this section is better demonstrated in the
following example.

EXAMPLE 4.1

A Maclaurin series for (1 + x)"lis
I+x) '=1—-x+2-F+x+—-- (—1<x<1).

Table 4.3 compares the accuracy of truncated Maclaurin series with the economized series
derived from them.

In Table 4.3, we see that the error of the Maclaurin series is small for x = 0.2, and this
also would be true for other values near x = 0, whereas the economized polynomial has
less accuracy. At x = 0.8, the situation is reversed, however. Economized polynomials of
degrees 8 and 6, derived from truncated Maclaurin series of degrees 10 and 8, actually
have smaller errors than their precursors. Further economization, giving polynomials
of degrees 6 and 4, have lesser or only slightly greater errors than their precursors, at

Table 4.3 Comparison of errors: Maclaurin, Chebyshev, and economized
series for 1/(1 + x)

Maclaurin Chebyshev Economized*
Degree Value Error Value Error Value Error
2 0.840000 0.006667 0.841035 0.007702  0.758600 —-0.074733
At 4 0.833600  0.000267 0.833316 —0.000017 0.7645%4 —0.068739
x=02 6 0.833344 11%1076 0.833359 0.000026  0.803646 —0.029687
8 0.833334 1*107%  0.833365 0.000032  0.822786 —0.010547
10 0.833333 0 0.833364 0.000031
2 0.840000 0.284445 0.549866 —0.005899  0.812600 0.257045
At 4 0.737600  0.182045 0.555518 —0.000038 0.738314 0.122759
Z08 6 0.672064  0.116509 0.555561 0.000006  0.628558%* 0.073003
r=u 8 0.630121 0.074566  0.555568 0.000012  0.602106***  0.046551
10 0.603277 0.047722  0.555568 0.000012

* Economized series were derived from Maclaurin series whose degree is greater by 2.
** A series of degree equal to 4 has a value of 0.658246 with an error of 0.102691.
*xk A series of degree equal to 6 has a value of 0.598199 with an error of 0.042644.
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significant savings of computational effort and with smaller storage requirements in a
computer’s memory for the coefficients of the polynomials.
0

Rational Function Approximations

Approximating a known function with a Chebyshev series is much better than with a
Taylor series in that it has a smaller maximum error in the interval [~1, 1]. (We would
have to make transformations to the function to allow us to translate the x-value into this
interval). Still, there is a way to improve even further.

As has been mentioned several times, the most complicated function that a computer
can directly evaluate is a polynomial. This means that it can also evaluate a ratio of poly-
nomials. Using a rational function permits this further improvement.

We approach this topic in stages: the first is Padé approximations.

Padeé Approximations

A Padé approximation is a rational function, the quotient of two polynomials, the numera-
tor of degree n and the denominator of degree m, which we can write as

ay+ax +axt+ oo Faxt
1+b1x+b2x2+"'+bmxm,

J(x) = Rylx) = N=n+m.

The constant term in the denominator can be taken as unity without loss of generality,
because we can always convert to this form by dividing numerator and denominator by by,
The constant b, will generally not be zero, for, in that case, the fraction would be undefined
at x = 0. The most useful of the Padé approximations are those with the degree of the
numerator equal to, or one more than, the degree of the denominator. Note that the number
of constants in Ry(x)isN +1=n+m+ 1.

The Padé approximations are related to Maclaurin expansions in that the coefficients
are determined in a similar fashion to make f(x) and R,(x) agree at x = 0 and also to make

the first N derivatives agree atx = 0.*
We begin with the Maclaurin series for £(x) (we use only terms through x) and write

ag+ax+ - +ax"
1+bx+ - +bx" 4.8)

C(egtoext s oI +bx A+ - H ™) — (@ taxt - +ax”)
B 1+ bx+ - + bx"

f@) = Ry(x) = (co + cyx + cx? + - -+ + eyx™) =

* A similar development can be derived for the expansion about a nonzero value of x, but the manipulations are
not as easy. By a change of variable we can always make the region of interest contain the origin.
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The coefficients c; are f° @(0)/(i!) of the Maclaurin expansion. Now if f(x) = Ry(x)atx =0,
the numerator of Eq. (4.8) must have no constant term. Hence
cg—ay,=0.

For the first N derivatives of f(x) and R, (x) to be equal at x = 0, the coefficients of the
powers of x up to and including xV in the numerator must all be zero also. This gives N

additional equations for the @’s and b’s. The first n of these involve a’s, the rest only &’s
and ¢’s:

bicy*tcy—a; =0,
bycy +bic; +cy—ay, =0,
bycy + 192c1 + b, + ;a3 = 0,

b c +bm;16

mn—m

n—m+1+.” +cn_an:0’ (49)

m- n—m+1

b ¢ +bm_lcn_m+2+~~~+cn+]=0,

bmcn—m+2 + bm—lcn—m+3 T Cat2 = 0,

bchMm + bm—ICN—m+1 +otey = 0.

Note that, in each equation, the sum of the subscripts on the factors of each product is the
same, and is equal to the exponent of the x-term in the numerator. The N + 1 equations of

Eqgs. (4.8) and (4.9) give the required coefficients of the Padé approximation. We illustrate
by an example.

EXAMPLE 4.2 Find arctan(x) =~ R,,(x). Use degree-5 in both numerator and denominator.
The Maclaurin series through x10 is

arctan(x) =~ x — 1/3x3 + 1/5x°> —1/7x" + 1/9x°. 4.10)
We form f(x) — R,(x):

(x — 13x3 + 1/5x5 — 1U7x7 + 19x%) (1 + byx + bpx + byx® + byx* + bsx®) — (ag + ax + axx® + ax® + ax® + agx®)

(1 + bix + byx? + byx® + bx* + bx”) (4.11)

If we multiply out in the numerator and set the coefficients of the x-terms through x'° to
zero, we get for the @’s:

ag = 0,
a; =1,
a, = by,
a; = —1/3 + b,,

a, = —=1/3b, + bs,
as=1/5— 1/3b, + b,.
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and for the b’s:
1/5b; — 1/3b, = 0,
—UT+ 1/5by, — 1/3b, = 0,
—1/7b; + 1/5b5 — 1/3b5 = 0,
1/9 — 1/7by + 1/5b, = 0,
1/9b, = 1/7b5 + 1/5b5 = 0.

We solve the last five equations for the b’s. The matrix is

5 0 ~-173 0 0 0

0 15 0 —-13 0 1/7
-7 0 U5 0 -173 [6] = 0 |

0 —-17 0 15 0 —1/9

179 0 —-1/77 0 1/5 0

whose solution is
b, =0,b,=10/9,b; = 0,b, = 5/21, b5 = 0.
We get the @’s from the first six equations:
ay=0,a;,=1,a,=0,a;,=7/9,a, =0, as = 64/945.

A rational function that approximates arctan x is then

n 7 5 . 64
x+-—x x
9 045
arctan x = 5 . 4.12)
1+ —x2+—x*
o * T "

In Table 4.4 we compare the errors for this Padé approximation (Eq. 4.12) to the Maclaurin
series expansion (Eq. 4.10). Enough terms are available in the Maclaurin series to give
five-decimal precision at x = 0.2 and 0.4, but at x = 1 (the limit for convergence of the
series) the error is sizable. Even though we used no more information in establishing it, the
Padé formula is surprisingly accurate, having an error only 1/275 as large at x = 1. It is
then particularly astonishing to realize that the Padé approximation is still not the best one
of its form, for it violates the minimax principle. If the extreme precision near x = 0 is
relaxed, we can make the maximum error smaller in the interval.

Figure 4.3 shows how closely the Padé approximation matches arctan(x), especially on

[—1,1].
B

The error of a Padé approximation can often be roughly estimated by computing the
next nonzero term in the numerator of Eq. (4.12). For Example 4.2, the coefficient of x10 is
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Table 4.4 Comparison of Padé approximation to Maclaurin series for arctan x
True Padé Maclaurin

x value (Eq. 4.12) Error (Eq. 4.10) Error
02 0.19740 0.19740 0.00000 0.19740 0.00000
04 0.38051 0.38051 0.00000 0.38051 0.00000
0.6 0.54042 0.54042 0.00000 0.54067 —0.00025
0.8 0.67474 0.67477 —0.00003 0.67982 —0.00508
1.0 0.78540 0.78558 —0.00018 0.83492 —0.04952

zero, and the next term is

(_Lb L1, _L> 0 _L<i>+i(£)_L
74T 9T )t 7\21) " 9\9 /)
= —0.0014x'.
Dividing by the denominator, we have
—0.0014x!"

Error =

1+ 1.1111x% + 0.2381x*

At x = 1 this estimate gives —0.00060, which is about three times too large, but still of the
correct order of magnitude. It is not unusual that such estimates are rough; analogous esti-
mates of error by using the next term in a Maclaurin series behave similarly. The validity
of the rule of thumb that “next term approximates the error” is poor when the coefficients

do not decrease rapidly.

The preference for Padé approximations with the degree of the numerator the same as
or one more than the degree of the denominator rests on the empirical fact that the errors
are usually less for these. There are, however, even more efficient rational functions.

Here is how we can get a Padé approximation to arctan(x) with fifth-degree polynomi-

als in both numerator and denominator from Maple:

Arctan (x) p 4 approximation

The true value

Figure 4.3
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numapprox [padé] (arctan(x), x=20,[5,5]);

to give a result very much like Eq. (4.12):

4
x5+ 7/9x%* + x
945

1+10/9%x% + 5/21x*

Mathematica can do it too, if we first load a package called
<<Calculus’Padé’;

and then do
Padé [ArcTan[x], {x,0,5,5}]

which gives a result exactly like Eq. (4.12):

7x3 64x°
x + +
9 945
10x2 5x*
14+ —+—
9 21

MATLAB does not have a command to get a Padé approximation.

A special feature of rational approximations like a Padé ratio is that these can approxi-
mate a function that is discontinuous. For example, a Padé approximation to tan(x) of
degree-3 in both numerator and denominator is

x — x%15

tan (x) = —1 o5

If you compare the plot of this with that for tan(x), you will find an excellent match
between x = —1.8 and x = 1.8, even though the tangent function is infinite at x = *7/2 =
*1.5708; the portions of the branches beyond x = = 7 are well fitted.

Continued Fractions

Because small differences in computational effort accumulate for a frequently used func-
tion, it is of interest to see if we can reduce the effort to evaluate Eq. (4.12). If we evaluate
it as it stands, using nested form for the polynomials, we have

Numerator = (0.0677x% + 0.7778)x3 + x

Denominator = (0.2381x2 + 1.1111)x* + 1
We need to count adds, subtracts, multiplies, and divides because today’s computers
take about the same time to process each of these operations. For the numerator, there are

three multiplies plus one for x? and two adds. The denominator takes two multiplies and
two adds (x? is reused). There is one division. The total is
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Multiplies =3 + 1 + 2 = 6,
Adds =2 +2 =4,
Divides = 1;
Total = 11.
Using the nested form of the Maclaurin series takes six multiplies and four add/subtracts

for a total of ten. The divide required for the Padé approximation means it takes one more
operation but it gives greater precision.

However, by doing a number of successive divisions, we can express Eq. (4.12) in con-
tinued fraction form:*
0.0677x° + 0.7778x* + x  0.2844x° + 3.2667x* + 4.2x
0.2381x* + 1.1111x% + 1 x* + 4.6667x% + 4.2

0.2844x(x* + 11.4846x% + 14.7659)
x* + 4.6667x% + 4.2

0.2844x
(x* + 4.6667x% + 4.2)/(* + 11.4846x% + 14.7659)

0.2844x

I — (6.8179x* + 10.5659)/(x* + 11.4846x% + 14.7659)
0.2844x

I — 6.8179(x* + 1.5497)/(x* + 11.4846x2 + 14.7659)
0.2844x

1 — 6.8179/[(x* + 11.4846x> + 14.7659)/(x> + 1.5497)]

0.2844x

1 — 6.8179/[x> + 9.9348 — 0.6304/(x> + 1.5497)]"

To evaluate this last formulation, we need one multiply, three divides, and four add/subtracts
for a total of nine operations, one less than for the Maclaurin series and two less than if we did
not put Eq. (4.12) into continued fraction form. In most cases, there is a greater advantage to
continued fractions; the missing powers of x in this example favored evaluation as polynomials.

Only Maple can get a continued fraction from a ratio of polynomials. If we have

obtained the Padé approximation to arctan(x) as above, with: numapprox [padé]
(arctan(x),x =0, [5,5]); and then do

numapprox {confracform] (*,x);
we see
64 1309 1
x +
225 675 + 8743 1
2805 n 236196 1
1167815 1683
+ —1/x
1249

which is not in the same form but is equivalent.

* Acton (1970) is an excellent reference.
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A Better Rational Function for e*

If we start with the third-degree Chebyshev series of Eq. (4.7) and use it to get a Padé-like
rational function, we can get a better approximation to the function. We have

e* = 12661, + 1.1302T, + 0.2715T, + 0.0443T,

and form

126617, + 1.1302T, + 0.2715T, + 0.0443T, — P, (x)/Q, (x)

~(1.2661 + 1.302T; + 0.2715T, + 0.0443T,)(1 + b,T)) — (ag + a,T; + a,T,)
1+ b7, '

where we have takenn = 2, m = 1.
We expand the numerator; we will set the coefficients of each degree of the 17s to zero.
Before we can equate coefficients to zero, we need to resolve the products of
Chebyshev polynomials that occur. Recalling that T, (x) = cos n8, we can use the trigono-
metric identity

1
cos nf cos mo = 5 [cos(n + m)6 + cos(n — m)b],

1
A [Tn+m(x) + T|n~m\(x)]

LT, =

The absolute value of the difference n — m occurs because cos(z) = cos(—z). Using this
relation we can write the equations

1.1302
ay = 1.2661 + by,
0.2715
a, = 1.1302 + (——— + 1.2661)171,
11302 0.0443
a, = 02715 + + by,
2 2
0.2715
0 = 0.0443 + b,.

Solving, we first get b, = —0.3263, then we get a, = 1.0817,a, = 0.6727, a, = 0.0799, and

10817 + 0.6727T, + 0.07997,
- 1 — 0.32637,
1.0018 + 0.6727x + 0.1598x2
1 — 0.3263x '

s

(4.13)
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Table 4.5 Comparison of rational approximations [Eq. (4.13)]
with Chebyshev series for ¢*

Rational
x e* Chebyshev Error function Error
-1.0 0.3679 0.3631 0.0048 0.3686 —0.0007
-0.8 0.4493 0.4536 —0.0042 0.4488 0.0006
—0.6 0.5488 0.5534 —0.0046 0.5484 0.0005
04 0.6703 0.6712 —0.0009 0.6707 —0.0004
—0.2 0.8187 0.8154 0.0033 0.8201 —0.0014
0 1.0000 0.9946 0.0054 1.0018 —0.0018
0.2 1.2214 1.2172 0.0042 1.2225 —0.0011
0.4 1.4918 1.4917 0.0001 1.4911 0.0008
0.6 1.8221 1.8267 —0.0046 1.8191 0.0030
0.8 2.2255 2.2307 —0.0051 22224 0.0032
1.0 27183 27121 0.0062 27227 —0.0044

The last part of Eq. (4.13) results when we rewrite the T”s in powers of x. Table 4.5 shows
that we have a better appproximation than the original third-degree Chebyshev series.
Maple can get this same P,(x)/Q,(x):

with (numapprox) :

chebpade (exp (x) ,x, (2,11);

1.086272879T (0, x) + .6843619105T (1, x) + .08464994161T (2, X)
T (0, x) — .3181281121T(1,x)

which is more accurate than Eq. (4.13) because Maple reduced it from a Chebyshey series
of higher order. We could have had it expressed in powers of x if we inserted the command:

with (orthopoly)
which would have given

1.001622938 + .6843619105x + .1692998832x?
1-—.3181281121x

If we should tabulate the values from this rational function as done in Table 4.5, we would
find that the maximum error is —0.0026, about 60% as great.

It was mentioned that the error of a Padé rational function is often less if the numerator
is of greater degree than the denominator. Let us test this, using Maple:

chebpade (exp (%) ,x, [1,2]);
we get

.9267185059 + .3066786271x
.9279844930 — .6177257111x + .1440310141x?

and the maximum error is greater; it is —0.0032,
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Minimax Approximations

4.3

We have made several improvements over a Maclaurin series approximation to a function:
by economizing it, forming a Chebyshev series, developing a Pad€ rational function, and,
last, creating a Chebyshev—Padé rational function.

Still, none of these is “optimal.” A theorem, due to Chebyshey, tells us whether a given
approximation is optimal. This states that, in order to be optimal, an approximation of
degree N is minimax if and only if there are at least N + 2 maxima and minima and all are
of equal magnitude. (For a rational function, N is the sum of the degrees of the numerator
and denominator.) Table 4.5 shows five maxima and minima, the correct number, but they
are not equal in magnitude. The same is true in Table 4.2 for the Chebyshev series.

A consequence of the minimax theorem is that a bound to the error of the minimax
approximation is given by the magnitudes of the smallest and largest errors of an approxi-
mation with the correct number of maxima/minima. Thus, we see, from Table 4.5, that the
error of a minimax approximation of degree-3 lies between 0.0006 and 0.0044.

Finding a truly minimax approximation is not an easy task;* nonlinear equations are
involved. An algorithm due to Remes is the usual way to find it; it begins with an approxi-
mation that has the correct number of maxima/minima and, by iterations, converges on the
minimax one. The Chebyshev of Eq. (4.7) could be a good starting point, as illustrated by
Figure 4.2. The rational function of Eq. (4.13) would work but is far from minimax, as seen
in Table 4.5.

Actually, Maple and Mathematica will do the work for us. Maple gets a minimax ratio-
nal approximation to ¢* of degrees 2 and 1:

numapprox [minimax] (exp(x), x=0..1, [2,1]);

1.164275859 + (.8302764291 + .2779023279x)x
1.164066084 — .3281321682x

We leave it to the student to do this in Mathematica.

Fourier Series

Polynomials are not the only functions that can be used to approximate known functions.
Another means for representing known functions are approximations that use sines and
cosines, called Fourier series after the French mathematician who first proposed, in the
early 1800s, that “any function can be represented by an infinite sum of sine and
cosine terms.”

Fourier used these series in his studies of heat conduction. His belief that any function
can be represented in the form of a sum of sine and cosine terms with the proper coeffi-
cients, possibly with an infinite number of terms, was disputed by other mathematicians
because he did not adequately develop the theory. Actually, the belief is false, for there are

* Ralston is an excellent reference.



4.3: Fourier Series 241

functions (mostly esoteric) that do not have a representation as a Fourier series. However,
most functions can be so represented.

Representing a function as a trigonometric series is important in solving some partial-
differential equations analytically. In this section we will see how to determine the coeffi-
cients of a Fourier series.

Because a Fourier series is a sum of sine and/or cosine terms, it will obviously always
be a periodic function.

We will only summarize the important theorems concerning Fourier series. Proofs can
be found in Conte and de Boor (1980), Fike (1968), Brigham (1974), Ramirez (1985), and
Ralston (1965). In the following theorems, f(x) refers to the periodic function being repre-
sented or to the periodic extension given by a redefinition. It is essential that f(x) be
integrable if we are to compute the coefficients of a Fourier series.

1. f(x) is said to be piecewise continuous on (0, L) if it is continuous on (0, L) except for
a finite number of finite discontinuities. If f(x) and/or f'(x) is piecewise continuous
on (0, L), f(x) is said to be piecewise smooth. An infinite series is said to converge
pointwise to f(x) if the sum of n terms of the series converges to f(x) at the point in
(0, L) as n — 0. An infinite series is said to converge uniformly if it converges point-
wise to f(x) at all points in (0, L).

2. I f(x) is continuous and piecewise smooth, its Fourier series converges uniformly to
S If f(x) is piecewise smooth, the series converges pointwise to f(x) at all points
where f(x) is continuous and converges to the average value where f(x) has a finite
discontinuity.

3. If f(x) is piecewise continuous, its Fourier series can be integrated term by term to
yield a series that converges pointwise to the integral of f(x).

4. If f(x) is continuous and f'(x) is piecewise smooth, then the Fourier series of f(x) can
be differentiated term by term to give a series that converges pointwise to f (x) wher-
ever f"(x) exists.

The theory of Fourier series is a major topic in mathematics. Most mathematical texts that
cover Fourier series at least outline proofs of the preceding theorems.

Any function, f(x), is periodic of period P if it has the same value for any two x-values
that differ by P, or

O =f0c+ Py =flc+2P) = =fw = P) = fx=2P) = - - -.

Figure 4.4 shows such a periodic function. Additional occurrences are shown as dashed
on the plot. Observe that the period can be started at any point on the x-axis. Sin(x) and
cos(x) are periodic of period 27r; sin(2x) and cos(2x) are periodic of period r; sin(nx)
and cos(nx) are periodic of period 27/n.

We now discuss how to find the A’s and B’s in a Fourier series of the form

fx) ~ % + i [4, cos(nx) + B, sin(nx)]. (4.14)
n=1

[We read the symbol “=" in Eq. (4.14) as “is represented by.”] The determination of the
coefficients of a Fourier series [when a given function, f(x), can be so represented] is based
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Figure 4.4

Plot of a periodic function of period P

on the property of orthogonality for sines and cosines. For integer values of n, m:

f sin(nx) dx = 0; (4.15)
= 0, # 0,
f cos(nx) dx = " (4.106)
— 27, n=0;
J’ sin(nx) cos(mx) dx = 0; 4.17)
T . 0, n*m,
f sin(nx) sin(mx) dx = { (4.18)
. T, n=m

0, n#*m,
T, n=m,

f ’ cos(nx) cos(mx) dx = { 4.19)

-7

Although the term orthogonal should not be interpreted geometrically, it is related to the
same term used for orthogonal (perpendicular) vectors whose dot product is zero. Many
functions, besides sines and cosines, are orthogonal, such as the Chebyshev polynomials

that were discussed previously.
To begin, we assume that f(x) is periodic of period 2 and can be represented as in Eq.
(4.14). We find the values of A, and B, in Eq. (4.14) in the following way.

1. Multiply both sides of Eq. (4.14) by cos(0x) = 1, and integrate term by term between
the limits of — 77 and 7. (We assume that this is a proper operation; you will find that
it works.)

T T A i kg @ T
f f) dx = f ~21 de + > | A, cos(nx)dx + 2, B, sin(nx) dx  (4.20)
-7 - n=1J—m n=1J—q
Because of Eqs. (4.15) and (4.16), every term on the right vanishes except the first,
giving

fj fxydx = %0— 2m), or Ay = %J:w f(x) dx. (4.21)
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Hence, A is found and it is equal to twice the average value of f(x) over one
period.

2. Multiply both sides of Eq. (4.14) by cos(mx), where m is any positive integer, and
integrate:

~
T

Jﬂ cos(mx)f(x) dx = J ! %cos(mx) dx + i A, cos(mx) cos(nx) dx

T - n=1J-7

. 4.22)
+ > B, cos(mx) sin(nx) dx.
n=1J—-m
Because of Egs. (4.16), (4.17), and (4.19), the only nonzero term on the right is when
m = n in the first summation, so we get a formula for the A’s:

1 ks
A, = —j fcos(nx)dx, n=1,2,3,.... (4.23)
T )

3. Multiply both sides of Eq. (4.14) by sin(mx), where m is any positive integer, and
integrate:

f ’ sin(mx)f(x)dx = j ’ % sin(mx)dx + i . Ap sin{mx) cos(nx) dx
- o e 4.24)
+ > | B, sin(mx)sin(nx) dx.

n=1d—7

Because of Egs. (4.15), (4.17), and (4.18), the only nonzero term on the right is when
m = n in the second summation, so we get a formula for the B’s:

1 T
B, = —-J fosin(nx) dx,  n=1,2,3,.... (4.25)
T J-n

By comparing Eqs. (4.21) and (4.23), you now see why Eq. (4.14) had A/2 as its
first term. That makes the formula for all of the A’s the same:

I
A= J fcos)dx,  n=0,1,2.... (4.26)
mJ

It is obvious that getting the coefficients of Fourier series involves many integrations.
We observe that this can be facilitated by a computer algebra system.

The integrations to find the coefficients of a Fourier series can be done numerically, as
we explain in Chapter 5. This allows one to get a series that approximates to experimental

data, a specially important application. The fast Fourier transform (FFT) is the efficient
way to do this.

Fourier Series for Periods Other Than 2

What if the period of f(x) is not 27? No problem-—we just make a change of variable. If
f(x) is periodic of period P, the function can be considered to have one period between
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—P/2 and P/2. The functions sin(27x/P) and cos(27mx/P) are periodic between —P/2 and
P/2. (When x = —P/2, the angle becomes — ; when x = P/2, it is 7.) We can repeat the
preceding developments for sums of cos(2nx/P) and sin(2nx/P), or rescale the preced-
ing results. In any event, the formulas become, for f(x) periodic of period P:

2 (P2 nTx >
A =— dx, =012,..., 4.27
n=p 7P/2f (X)COS< I n (4.27)
N ( nwX )
B = — i dx, =1,2,3,.... 4.28
i . fx)sin I n 4.28)

Because a function that is periodic with period P between —P/2 and P/2 is also periodic
with period P between A and A + P, the limits of integration in Eqs. (4.27) and (4.28) can
be from 0 to P.

EXAMPLE 4.3

Let f(x) = x be periodic between —r and 7. (See Figure 4.5.) Find the A’s and B’s of its

Fourier expansion.

For AO:

1 T 1 T xz T
Ag=—| f@dx=—| xdx=— = 0. 4.29)
g - T J)r 27 |,
For the other A’s:
w 1 1 kia
A, =—| xcos(nx)dx =— < cos(znx ), xomim) )] = 0. (4.30)
T)n T n n _W
For the B’s:
T 1 M T
B,=—|  xsin(nx)dx = — < sm(;/zx) _ xcos(nx) )]
T T n n _7,
(4.31)
-1 nt1
I Gl A
n
S)
/ T
//
// //
7 /
ya I | / x
7 ‘ ‘ 7
/ -7 s /
/ //
/ /
s/
o /
Figure 4.5 Figure 4.6

Plot of f(x) = x, periodic of period 27

Plot of Eq. (4.32) for N = 2,4, 8
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We then have
© (_ 1 )n+1 ]
x =2 y————sin(w), -—w<x<m (4.32)
n=1 n
Figure 4.6 shows how the series approximates to the function when only two, four, or eight
terms are used.

-
EXAMPLE 4.4 Find the Fourier coefficients for f(x) = x| on —7rto m
1 (° 1" 2 (7
Ag=—| (x)dx+—| xdx=—| xdx=m; (4.33)
)= ™ Jo T Jo
I 1 ("
A, = —| (—x)cos(nx)dx + —| x cos(nx) dx
mJ-n 7 Jo
2 ( cos(nx) x sin(nx) )]”
= — 2 +
T n n 0
0, n=2,4,6,..., (4.34)
“l=— n=135,...,
PO
(4.35)

1 [° NN
B, = —J (—x)sin(nx) dx + —J x sin(nx) dx = 0.
Ol ™ Jo

Because the definite integrals in Eq. (4.34) are nonzero only for odd values of #, it sim-
plifies to change the index of the summation. The Fourier series is then

4 & cos(@n — 1)x)
T ,Zl Qn— 17

Figure 4.7 shows how the series approximates the function when two, four, or eight terms
are used.

ar
Ixl ~ = —
"G

{4.36)

Figure 4.7
Plot of Eq. (4.36) for N = 2, 4, 8
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When you compare Eqs. (4.32) and (4.36) and their plots in Figures 4.6 and 4.7, you
will notice several differences:

1. The first contains only sine terms, the second only cosines.

2. Equation (4.32) gives a value at both endpoints that is the average of the end values
for f(x), where there is a discontinuity.

3. Equation (4.36) gives a closer approximation when only a few terms are used.

Example 4.5 will further examine these points.

EXAMPLE 4.5

Find the Fourier coefficients for f{ix) = x(2 — x) = 2x — x? over the interval [—2, 2] if it is

periodic of period 4. Equations (4.27) and (4.28) apply.
2 —8

2
A = -2 R 4.3
0=y ) xmdr=— (4.37)

2 [? 16(— 1)
AnZ—J (2x—x2)cos<nm>dx=——(2—)’ n=123,... 438
41, 2 nm?

2 2 8 _1 n+1
B, =—=| @x- x2)sin< i ) de=2CT 0 439)
4], n
._4 16 © _1 n+1 8 o _1 n+1
2 -9~y 8 3D cos<"m> s 25 sin<”7’x> (4.40)
3 T oo R 2 Ty N 2

You will notice that both sine and cosine terms occur in the Fourier series and that the
discontinuity at the endpoints shows itself in forcing the Fourier series to reach the average
value. It should also be clear that the series is the sum of separate series for 2x and —x?.
Figure 4.8 shows how the series of Eq. (4.40) approximates to the function when 40 terms
are used. It is obvious that many more terms are needed to reduce the error to negligible
proportions because of the extreme oscillation near the discontinuities, called the Gibbs
phenomenon. The conclusion is that a Fourier series often involves a lot of computation as
well as awkward integrations to give the formula for the coefficients.

iy

Exact value

Approximation

/

Figure 4.8
Plot of Eq. (4.40) for N = 40




)\ K

PRI Y

Fondin

[

4.3: Fourier Series 247

Mathematica has a built-in command to get the Fourier series for a function; the others can
get the coefficients by integration, of course. (Maple’s fourier command gets the
Fourier transforms, not the series.)

With Mathematica, we must first load a package:

<<Calculus’'FourierTransform’
and, because there is a warning message, do
Clear [FourierTrigSeries]; Remove|[FourierTrigSeries]
and then
FourierTrigSeries|[x* (2 —x),{x,—2,2},4]
which gives the series. However, the sine terms are hard to interpret until we do
Collect[%,Pi]

which gives a correct result [see Eq. (4.40)], but all the cosine terms are grouped together
with a denominator of Pi? and the sine terms are similarly grouped with a denominator
of Pi.

All of the computer algebra systems can do the required integrations to get the coeffi-
cients of a Fourier series. If f(x) = x(2 — x) over [—Z, 2] and we want A, here are the
commands that are used:

In Maple, we do

2/4*int (x* (2 — x)*cos (3*P1*x/2), x=—2..2);
Mathematica’s command is
2/4*Integrate[x*(2 — %) *Cos [3*Pi*x/2],{x,—2,2}]

With MATLAB, two commands are needed because the first result is symbolic and the

integration operation does not permit a multiplier (although the 2/4 could be included in
the integrand):

a3 = int ('x* (2 — x) *cos (3*pi*x/2)',—2, 2)
symmul (a3, '2/4")

In all cases, the correct result is obtained.

Fourier Series for Nonperiodic Functions
and Half-Range Expansions

The development until now has been for a periodic function. What if f(x) is not periodic?
Can we approximate it by a trigonometric series? We assume that we are interested in
approximating the function only over a limited interval and we do not care whether the
approximation holds outside of that interval. This situation frequently occurs when we
want to solve partial-differential equations analytically.
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Figure 4.9

Figure 4.10

Plot of a function reflected about the y-axis, an even

A function, flx), of interest on [0, 3] function

Suppose we have a function defined for all x-values, but we are only interested in repre-
senting it over (0, L).* Figure 4.9 is typical. Because we will ignore the behavior of the
function outside of (0, L), we can redefine the behavior outside that interval as we wish.
Figures 4.10 and 4.11 show two possible redefinitions.

In the first redefinition, we have reflected the portion of f(x) about the y-axis and have
extended it as a periodic function of period 2L. This creates an even periodic function. If
we reflect it about the origin and extend it periodically, we create an odd periodic function
of period 2L. More formally, we define even and odd functions through these relations:

S isevenif f(—x) = f(x), (4.41)
fx)is odd if f(—x) = —f(x). (4.42)

Figure 4.11
Plot of a function reflected about the origin, an odd
function

* If the range of interest is [a, ], a simple change of variable can make this [0, L].
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Tt is easy to see that cos(Cx) is an even function and that sin(Cx) is an odd function for any
real value of C.

There are two important relationships for integrals of even and odd functions. (If you
think of the integrals in a geometric interpretation, these relationships are obvious.)

2 L
If f(x) is even, J fx)ydx = ZJ f(x) dx. 4.43)
-L Jo

L
If £(x) is odd, f f(x)dx = 0. (4.44)
—-L

It is also easy to show that the product of two even functions is even, that the product of
two odd functions is even, and that the product of an even and an odd function is odd.
This means that, if f(x) is even, f(x)cos(nx) is even and f(x)sin(nx) is odd. Further, if f(x)
is odd, f(x)cos(nx) is odd and f(x)sin(nx) is even. Because of Eq. (4.41), the Fourier series
expansion of an even function will contain only cosine terms (all the B-coefficients are
zero). Also, if f(x) is odd, its Fourier expansion will contain only sine terms (all the A-
coefficients are zero). These facts are important when we develop the “half-range” expan-
sion of a function.

Therefore, if we want to represent f(x) between 0 and L as a Fourier series and are inter-
ested only in approximating it on the interval (0, L), we can redefine f within the interval
(—L, L) in two importantly different ways: (1) We can redefine the portion from —L to O by
reflecting about the y-axis. We then generate an even function. (2) We can reflect the por-
tion between 0 and L about the origin to generate an odd function. Figures 4.10 and 4.11
showed these two possibilities.

Thus two different Fourier series expansions of f(x) on (0, L) are possible, one that has

only cosine terms or one that has only sine terms. We get the A’s for the even extension of
f(x) on (0, L) from

2 L
A, = —f f(x)cos( nm ) d, n=012.... (4.45)
L Jo L

We get the B’s for the odd extension of f(x) on (0, L) from

2 L
B, = —f f(x)sin< ”m>dx, n=1,23,.... (4.46)
L Jo 2

EXAMPLE 4.6

Find the Fourier cosine series expansion of f(x), given that

0, 0<x<l,
1, 1<x<2.

) = { (4.47)
Figure 4.12 shows the even extension of the function.

Because we are dealing with an even function on (—2, 2), we know that the Fourier
series will have only cosine terms. We get the A’s with
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Figure 4.12
Plot of Eq. (4.47) reflected about the y-axis

2 2
Aoz—f (1) dx = 1;
2 h

{4.48)

5 [2 o 0, neven,

A, =— Dcos dx = 4 2(— 1)t he
2J:()C0<2> 2007 . nodd.
nw
Then the Fourier cosine series is
1 2 & (—Dcos((@n — 1)(mx/2))

~— {4.49
f =7 77,21 @n— 1) “@49)
]

EXAMPLE 4.7
shows the odd extension of the function.

Figure 4.13
Plot of Eq. (4.47) reflected about the origin

Find the Fourier sine series expansion for the same function as in Example 4.6. Figure 4.13
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We know that all of the A-coefficients will be zero, so we need to compute only the B’s:

2 {2 [ nm
Bn—7£(1)s1n< > )dx

2
= —[—cos(mr) + cos(ﬂﬂ, n=123,....
nir 2

The term in brackets gives the sequence 1, =2, 1,0, 1, =2, 1, 0, . ... Because this
sequence is awkward to reduce (except by use of the mod function), we simply write

(4.50)

4.51)
B

foy = 23 Leosam’2) = cosnm)] Sin( n;x )

T =1 n

Summary of Formulas for Computation
of Fourier Coefficients

A function that is periodic of period P and meets certain criteria (see below) can be repre-
sented by Eq. (4.52):

Ag i nmx - X
=—+4+ DA + 2 B, si . 4.52
= Saco(t) S ow(M)
The coefficients can be computed with
2 | ( nx )
A, =— dx, =0,1,2,..., {4.53
"= p %f (x)cos I n (4.53)
2 |2 ( nmx >
B,=— i dx, =1,2,3,.... (4.54
? ) f(x)sin P n » )

(The limits of the integrals can be fromatoa + P.)

If f(x) is an even function, only the A’s will be nonzero. Similarly, if f(x) is odd, only
the B’s will be nonzero. If f(x) is neither even nor odd, its Fourier series will contain both
cosine and sine terms.

Even if f(x) is not periodic, it can be represented on just the interval (0, L) by redefining
the function over (—L, 0) by reflecting f(x) about the y-axis or, alternatively, about the ori-
gin. The first creates an even function, the second an odd function. The Fourier series of
the redefined function will actually represent a periodic function of period 2L that is
defined for (=L, L).

When L is the half-period, the Fourier series of an even function contains only cosine
terms and is called a Fourier cosine series. The A’s can be computed by

2 L
A, = —J f(x)cos< ”m> &, n=012,.... (4.55)
L Jo 2
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The Fourier series of an odd function contains only sine terms and is called a Fourier sine
series. The B’s can be computed by

L
B, = % fo f(x)sin( mLTx

If f(x) (or its redefined extension) has a finite discontinuity, the Fourier series will converge
to the average of the two limiting values at the discontinuity. The Fourier series converges
slowly at a point of discontinuity and exhibits more pronounced oscillations (the Gibbs
phenomenon) near that point. If f{x) (or the redefined function) has a discontinuity in its

>dx, n=1,23.... (4.56)

first derivative, convergence will be slower at that point.

Exercises

Section 4.1

1.

Write a computer program that generates 7, (x) when
the value of » is an input quantity.

Extend the graphs of several of the Chebyshev polyno-
mials to [—3, 3] and observe that the maximum magni-
tudes are larger than one outside of [—1, 1].

Show that Eq. (4.3) is true for several combinations of
and m. How can you handle the discontinuity at x = 17
Graph T(x) for x between —1 and 1. Read approximate

values for the zeros from the graph. Then use Newton’s
method to find the values to a precision of £0.0001.

. Expand cos(6x) and compare this to T(x). The formula

for the cosine of the sum of two angles will help you in
this.

. T,(x)/8 has four zeros in [—1, 1]. What are their val-

ues? Create some other fourth-degree polynomial
whose coefficient of x* is unity that has different zeros
in [—1, 1]. Compare the graphs of this with that of
T,(x)/8 to verify that it has a larger upper bound to its
magnitude within the interval.

Verify that the values in Table 4.1 are accurate.

8. For the interval {0, 1], superimpose the graph for the

10.

»11.

economized polynomial of degree-4 on the graph of the
Maclaurin series of the same degree for f(x) = e*. Do it
again for those of degree-5.

Repeat Exercise 8, but for the interval [—1, 0].
Make a table equivalent to Table 4.1 but for the func-
tion f(x) = €* cos(x).

Extend Eq. (4.6) to include equations for x1° and x

12.

13.

»>14.

15.

16.

17.

»>18.

The function arctan(x) can be represented by this power
series:

x3 » X X

arctan(x) = x — — + — — +
3 5 7 9
Economize this three times to give a third-degree poly-
nomial. Graph the errors, and compare this graph to the

errors of the ninth-degree expansion.

9

Find the first few terms of the Chebyshev series for cos(x)
by rewriting the Maclaurin series in terms of the 7(x)’s
and collecting terms. Convert this to a power series in x.
Compare the error of both the Chebyshev series and the
power series after truncating each to the fourth degree.
A series expansion for (1 + x/5)172 is
x x? X3 x*
+ - + - +
10 200 2000 16,000

7x5 —_— . .
800,000

Convert this to a Chebyshev series, including terms to
T,. What is the maximum error of the truncated
Chebyshev series? Compare this to the error of the
power series when it is truncated to second degree.
Make a table similar to Table 4.2 but for f(x) =
sin (x)/exp (x). Also do a graph similar to Figure 4.2.
Compute the coefficients of Eq. (4.7) from the integra-
tion formula for a, given in Section 4.1.

To get the smaller error of a Chebyshev series or an
economized power series requires that the approxima-
tion be for the interval [—1, 1]. Show what change of
variable will change f(x) on [a, b] to f(y) on [—1, 1].
The Legendre polynomials (which we will discuss in
the next chapter) resemble the Chebyshev polynomials



19.

20.

in that they have the same number of zeros within [—1,
1] and the same number of maxima and minima. These
Legendre polynomials can be obtained through this
recursion formula:
Lyx) =1, Lix) = x,

(n+ DL, (x) = Cn + DxL,(x) — nL,_(x).

Compare the graphs of several of these polynomials
with Chebyshev polynomials of the same degree. Why
are the Legendre polynomials less suited to economiz-
ing a power series?

Verify Eq. (4.3) after making the substitution from Eq.
(4.4). Do this analytically.

sin(nx) is orthogonal over [—, ] [see Eq. (4.18)].
Make a change of variable so that it is orthogonal over
[—1, 1]. What value of »r causes this new function to
have exactly five minima/maxima on [—1, 1].
Compare its graph to that of T,(x). Then do the same
for cos(x).

Section 4.2

21.

»22.

23.

24.

25.

Find Padé approximations for these functions, with
pumerators and denominators each of the third degree:

cos(x), sin(x* — x), xe*.

Compare the errors in [—1, 1] for each of the approxi-
mations of Exercise 2 with the errors of the corre-
sponding sixth-degree Maclaurin series.

Express the following rational fractions in continued-
fraction form. In each part, compare the number of
multiplication and division operations with that result-
ing from evaluating the polynomials by Horner’s
method (in nested form).

x> —2x+2
a .
X+2x—2
23+ x>+ x+3
b 2
x*—x—4
2x* + 45x3 + 381x% + 1353x + 1511
X3+ 21x% + 157x + 409

Convert each of the Padé approximations of Exercise
21 to continued fractions.

Estimate the errors of each of the Padé approximations
of Exercise 21 by computing the coefficient of the next
nonzero term in the numerator. Compare to the actual
errorsatx = —l and x = 1.

26.

»27.

28.

29.

Exercises 253

A Chebyshev series for cos(mx/4) is
0.851632 — 0.146437T, + 0.00192145T, — 9.965 * 10~6T.

Use this series to develop a Padé-like rational func-
tion by the method of Section 4.2 where the function
iS R, 5.

33

Fike (1968) gives this example of a rational fraction

approximation to I' (1 + x) on [0, 1]:

R3,4(x) =
0.999999 + 0.601781x + 0.186145x? + 0.0687440x3
1 + 1.17899x — 0.122321x2 — 0.260996x> + 0.060992x*

Is this a minimax approximation? If not, what are the
bounds of the errors of the R, , minimax approximation?

The rational function of Exercise 27 is R, ,. Getting
R, 5 should have a smaller error. Is this true?

The approximations obtained in Exercise 21 are not
minimax. However, you can set bounds to the errors of
the corresponding minimax approximations from them.
What are these bounds?

Section 4.3

»30.

31

32.

33.

>34,

35.

36.

»37.

Which of these functions is periodic? What is the
period if it is periodic?

a. sin(2x) + 2 cos(x)  c. sind(x)

b. e~ 1% cos(x) d. 2™ wherei=~v—1
Duplicate Example 4.3 and Figures 4.5 and 4.6, but for
fo =&+ 12

Example 4.4 gets the Fourier series for f(x) = |x|
betweenx = —7rand x = . f(x) is also periodic with a

period of 27r. Extend the function to the range [— 8, 8]
and duplicate Figure 4.7 for this larger range.

Duplicate the plot of Figure 4.6, but for the extended
range of [—10, 10].

Find the Fourier coefficients for f(x) = x3 if it is peri-
odic and one period extends fromx = —1tox = 2.

Find the Fourier coefficients for f(x) = x2 — 1 if it is
periodic and one period extends fromx = —1tox = 2.

Show that the Fourier series for
fo=x+x2 -1,

between x = —1 and x = 2, is just the sum of the
series in Exercises 34 and 35.

Is the Fourier series for f(x) * g(x) equal to the product
of the series for f(x) and g(x)?
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38.

39.

40.

41.
42,

43.

p44.
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What are the plots of the functions in Exercises 34 and
35 when reflected about the x-axis? When reflected
about x = —1? When reflected about x = 2?7 Are any
of these odd functions?

Repeat Exercise 38 but reflect about the y-axis. Are the
results even or odd?

Suppose we are interested in f(x) = ¢ * sin(2x — 1)
only in the interval [0, 2]. Sketch the half-range exten-
sions that give

a. An even function.

b. An odd function.

Repeat Exercise 40, but for the range [—1, 3].

Find the Fourier coefficients for the periodic functions

of Exercise 40.

Repeat Exercise 42 for the functions of Exercise 41. Is

there any relation between these and the series of

Exercise 427

As Figure 4.7 shows, a finite Fourier series does not

match to £(0) = 0 for f(x) = | x|.

a. How many terms are needed for it to match to within
0.00001?

»45.

46.

b. Looking at Figure 4.7 again, a finite Fourier series
does not match f(7) = mratx = . How many terms
are needed to match within 0.00001?

c. Is the error of a given finite series the same at these
two points?

Figure 4.6 shows how a Fourier series behaves at a

discontinuity—it equals the average value of the func-

tion. The figure also shows, for f(x) = x, that the series

matches exactly to f(x) 2N + 1 times when there are N

terms in the series. For this example, what are the x-

values where there is match for N = 47

Reproduce Figure 4.6, but for N = 3 and 5. Based on
the figure, it would appear that these two series should
match exactly to f(x) at 7 and 11 x-values.

a. Is this true?

b. At what x-values do the series match to f(x)?

c. Using this together with the result of Exercise 45,
what can you say about the location of points where
the series and the function agree?

d. Is the conclusion of part (c) true for other definitions

of f(x)?

Applied Problems and Projects

APP1.

In Section 4.2, the Padé rational functions were developed to approximate f(x) on the interval [—1,

1]. If we want to approximate f(x) on a different interval, say, [a, ], a simple linear transformation
can change the interval to [—1, 1]. What if we want to approximate a function on an interval with one
or both endpoints infinite? Devise a transformation for such cases.

APP2.

Investigate, for some computer system available to you, how some or all of the following transcen-

dental functions are approximated in Fortran 90. Classify these into Taylor series formulas,
Chebyshev polynomials, rational functions, or other types. Which of these are minimax?

. sin(x)
. cos(x)
. tan(x)
. atan(x)
. exp(x)
. In(x)

o o0 o

APP3.
APP4.

Repeat APP2 for other computer languages: BASIC, Pascal, and C.
As illustrated by Figure 4.8, the sum of » terms of the Fourier series for a function that has a jump

discontinuity has larger oscillations near the discontinuity —the Gibbs phenomenon. For f(x) equal
to a square wave, investigate whether the departure of the sum of the series from f(x) for the last
“hump” in the curve (the “ear”), decreases when » is increased. What can you conclude about the

size of the ear?
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One way to eliminate the Gibbs phenomenon (see APP4) is to abolish the jump discontinuity by sub~
tracting a linear function from f(x). Suppose the linear function is L(x). For f(x) equal to square wave,
find the L(x) for which f(x) — L(x) has no jump discontinuities. Compare the accuracy of the sum of
10 terms of the Fourier series for f(x) with that for the sum of 10 terms of the Fourier series for
8 = f(x) — L(x).

Another way to ameliorate the problem of the Gibbs phenomenon is to use the so-called Lanczos’s

factors. Search the literature to find out more about this method. Apply it to obtain an improved
approximation to a square wave.

Chapter 3 described the fitting of functions with polynomials and this chapter describes fitting them
with sinusoids (Fourier series). Another possibility is to fit with exponentials, y(x) = Xc; exp(a; x). Is it
possible to do this? Under what conditions is it possible? How can the values of ¢; and a, be determined?
Specifically, fit a four-term sum to these data and compare to the exact solution, y = sin(mx/6):

L

X:

[\.)|>—~ —_
PN
i\)b.)"



Numerical Differentiation
and Integration

256

The heart of calculus is to find derivatives and integrals of functions that are exploited in
many applications. We show in this chapter how derivatives and definite integrals can be
computed with a computer program. Of course, computer algebra systems such as
MATLAB, Maple, or Mathematica can obtain analytic results through their symbolic
capabilities.

In this chapter, as in the previous two, we continue to exploit the useful properties of
polynomials to develop methods for a computer to do integrations and to find derivatives.
Because we can use an interpolating polynomial to approximate a function even if it is
known only through a table of values, these methods find application when working with
experimental data.

When the function is explicitly known, we can emulate the methods of calculus. But
doing so in getting derivatives requires the subtraction of quantities that are nearly equal
and that runs into round-off error. However, integration involves only addition, so round
off is no problem; of course, we cannot often find the true answer numerically because the
analytical value is the limit of the sum of an infinite number of terms. We must be satisfied
with approximations for both derivatives and integrals but, for most applications, the
numerical answer is adequate.

If we are working with experimental data that are displayed in a table of [x, f(x)] pairs,
emulation of calculus is impossible; we must approximate the function behind the data in
some way. The polynomial approximations of Chapter 3 are an obvious approach. Still,
even if the experimental data are exact, approximating the function with a polynomial is
itself inexact. If there is experimental error in the data, there is additional error due to this.

The topics of this chapter are important enough that there are many techniques and
these have been implemented in libraries of computer programs in various languages. The
history of the methods is rich and goes back more than 300 years; names of famous math-
ematicians like Newton, Gauss, Lagrange, and Legendre are associated with them.



5.1 Differentiation with a Computer
Employs the interpolating polynomials of Chapter 3 to derive formulas for
getting derivatives. These can be applied to functions known explicitly as well
as those whose values are found in a table. Based on a consideration of the
error term, a method for getting improved estimates can be found, a procedure
called Richardson extrapolation.

5.2 Numerical Integration— The Trapezoidal Rule
Approximates the integrand function with a linear interpolating polynomial to
derive a very simple but important formula for numerically integrating
functions between given limits. The method can be applied to tabular data.
Romberg integration, an extrapolation technique, can improve the accuracy.

5.3 Simpson’s Rules

Develops more accurate integration formulas based on approximating the
integrand with quadratic or cubic polynomials.

5.4 An Application of Numerical Integration— Fourier Series and Fourier
Transforms
Shows how the methods for numerical integration can be used to compute the
terms of a Fourier series. When a Pourier series is developed from
experimental measurements of periodic phenomena, a discrete Fourier series
can be obtained. This is a transformation of the data to reveal the fundamental
vibrational frequencies of the system.

5.5 Adaptive Integration
Describes a way to reduce the number of function evalvations when
Simpson’s rule is used. A kind of binary search is used to locate subregions
where the size of intervals can be larger. An interesting bookkeeping problem
is involved.

5.6 Gaussian Quadrature
Gives the development of an integration method that uses fewer function
evaluations by properly selecting the points where the value of the function is
computed. The section introduces a representative of orthogonal polynomials,
the Legendre polynomials.

5.7 Multiple Integrals
Explains how numerical methods can evaluate a multiple integral, with either
fixed or variable limits.

5.8 Application of Cubic Splines

Gives the details for using a spline approximation to compute derivatives and
integrals.

257
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Differentiation with a Computer

When you studied calculus, you learned that the derivative of a function, f(x) at x = a, is
defined as

i fla + Ax) — f(a)
im
Ax

(dfldx);=o = ,as Ax — 0.
(This is called a forward-difference approximation. The limit could be approached from
the opposite direction, giving a backward-difference approximation.)

It should be clear that a computer can calculate an approximation to the derivative from

(has),., - L2

if a very small value is used for Ax. What if we do this, recalculating with smaller and
smaller values of Ax starting from an initial value that is not small? We should expect to
find an optimal value for Ax because round-off errors in the numerator will become great
as Ax approaches zero, and these are magnified by the small value in the denominator.

When we try this for f(x) = ¢* sin(x) at x = 1.9, starting with Ax = 0.05 and halving Ax
each time, we find that the errors of the approximation decrease as Ax is reduced until
about Ax = 0.05/128. The analytical answer is 4.1653826. Table 5.1 gives the results from
a computer program. Notice that each successive etror is about 1/2 of the previous error as
Ax is halved until Ax gets quite small, at which time round off affects the ratio. At values
for Ax smaller than 0.05/128, the error of the approximation increases due to round off. If
double precision is used, a more accurate estimate is achieved. In effect, the best value for
Ax is when the effects of round-off and truncation errors are balanced.

Table 5.1 Forward-difference approximations for f(x) = €* sin(x)

Ratio of
Ax Approximation Error errors
0.05 4.05010 —0.11528
0.05/2 4.10955 —0.05583 2.06
0.05/4 4.13795 —0.02743 2.04
0.05/8 4.15176 —0.01362 2.01
0.05/16 4.15863 —0.00675 2.02
0.05/32 4.16199 —0.00389 1.99
0.05/64 4.16382 —0.00156 2.18
0.05/128 4.16504 —0.00034 4.67*
0.05/256 4.16504 —0.00034
0.05/512 4.16504 —0.00034
0.05/1024 4.16992 0.00454
0.05/2048 4.17969 0.01430

* At this point, round-off and truncation errors are in balance, but we still do not achieve
six-digit accuracy.
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If a backward-difference approximation is used:

_ J@ ~ fla — Ax)
(dfldx);-o = Ax ;

similar results are obtained.

MATLAB knows a lot about derivatives. First, it can get the analytical answer to the
function of Table 5.1:

EDU>> £ ='exp(x)*sin(x)’
f =
exp (x) *sin (x)
EDU>> df = diff (£, 'x")
df =
exp (X) *sin (x) + exp (x) *cos (x)
EDU>> numeric (subs{(df,1.9,'x'))
ans =
4.,1654

Of course it can compute numerically:

EDU>> x=[1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9];
EDU>> del = [.05 .05/2 .05/4 .05/8 .05/16 .05/32. ..
.05/64 .05/128 .05/256];
EDU>> xplus = x + del;
EDU>> £ = exp(x).*sin(x);
EDU>> fplus = exp(xplus) .*sin(xplus) ;
EDU>> num = fplus — £;
EDU>> deriv = num. /del
deriv =
4.0501 4.1096 4.1379 4.1518 4.1586
4.1620 4.,1637 4 .1645 4.1650

In this, we first created several vectors: the x-values, and values for Ax, x + Ax, f(x), f(x +
Ax), and the numerator values. This last was divided by the Ax’s to give essentially the
same results as in Table 5.1.

You may want use Maple to see how round off causes the results to be less accurate
when the precision of the computations is poorer. We found that with a precision of only
five digits, the best estimate was 4.1600 at Ax = 0.05/8. The ratio of errors was again
about 2 to 1.

It is mot by chance that the errors are about halved each time. Look at this Taylor series
where we have used % for Ax:

fG+ h) = f@) + f' () * b+ 7€) * W12,

where the last term is the error. The value of £is at some point between x and x + . If we
solve this equation for f’(x), we get

J'@) = (f& + h) — fO))h — [ (&) * hi2, (5.1
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which shows that the errors should be about proportional to 4, precisely what Table 5.1
shows. In terms of the order relation, we see that error is O(h). If we repeat this but begin
with the Taylor series for f(x — h), it turns out that

') = (f®) = flx = Ik + f(0) * hi2, (3.2)

where  is between x and x — £, so the two error terms are not identical though both are
O(h).

Now, if we add Egs. (5.2) and (5.1), then divide by 2, we get the central-difference
approximation to the derivative:

f1x) = (flx + h) = flx — B)2h) — [ (ER%6. (5.3)
Error is O(H2).

We had to extend the two Taylor series by an additional term to get the error because the
/" (x) terms cancel.

This shows that using a central-difference approximation is a much preferred way to
estimate the derivative; even though we use the same number of computations of the func-
tion at each step, we approach the answer much more rapidly. Table 5.2 illustrates this,
showing that errors decrease about four fold when Ax is halved [as Eq. (5.3) predicts] and
that a more accurate value is obtained.

All of this reminds us that it is best to center the x-value within the points used in the
estimate, as we found for interpolation.

What we have found is also in accord with the mean-value theorem for derivatives:

fb) — fla)

= f'(§), wherea < &<b.
b—a

The forward-difference approximation will give a value for f'(x) at a point between x and
x + h; the backward approximation gives a value at a point between x — h and x; the cen-
tral approximation at a point between x — h and x + k. Unless the function behaves wildly
near the point x, these three points are close to x -+ A/2, x — h/2, and x.

Table 5.2 Central-difference approximations for f(x) = e* sin(x)

Ratio of
Ax Approximation Error errors
0.05 4.15831 —0.00708
0.05/2 4.16361 —0.00177 4.00
0.05/4 4.16496 —0.00042 421
0.05/8 4.16527 —0.00011 3.80
0.05/16 4.16534 —0.00004 2.75
0.05/32 4.16534 —0.00004

0.05/64 4.16565 —0.00027
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Derivatives from Divided-Difference Tables

There is another way to get derivatives numerically. We can build a table of values for the
function, get an interpolating polynomial from appropriate entries, and then differentiate
this polynomial. If the x-values are evenly spaced, we could employ a polynomial derived
from ordinary differences. If the entries are unevenly spaced, we use divided differences.
Because divided differences apply in either case, we do this first. Recall that

flx) = P, (x) + error
= f[x()] + f[x0> Xl](x - x())

+ flxg Xps 16 — X)X = x;) (5.4)
n—1

+ o +f[x0axl’ PR ,X,,]H(x - Xi)
i=0

+ error.

If the polynomial is a good match to the function near the x-value where we want the derivative,
we should get a good match to the derivative by differentiating Eq. (5.4). Doing this* we get:

P, (x) = flxg, x1] + flxg, xp, x2J[(x — x) + (x — x)] + -+~

S = xx —xp) o (X, .
+ f[x09 -x11 ) xn]z ( g 1) 1) . (5.3)
i=0 (x — x;)
To get the error term for Eq. (5.5) we have to differentiate the error term for P, (x):
(n+1)
Error = (x — xg)(x — x¢) -+ (x — x,) i(c;z_—i—% (5.6)

When this error term is differentiated, we will find a sum that has in one of its terms

i n+1)
e FAGECI]

which is impossible to evaluate because ¢ depends on x in an unknown way. However, if
we take x = x; (where X is one of the tabulated points), the difficult term drops out and we
get this expression for the error:

Error of the approximation to f”(x), when x = x;, is

n (1)
Error = [}1;[0 (x; — xj):l %1—_1_‘(1—6)3, &in [x, xq, x,]- (3.7)

j#1

* Recall that the derivative of a product of # factors is a sum of # terms, where each term in this sum is the same
n factors but one of the factors is replaced by its derivative in succession. For example,

w*v*w) =u' *vEw+u*tv fw+urvEn,
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Observe that the error is not zero even when x is a tabulated value, although the interpolat-
ing polynomial agrees with f(x) at this point. In fact, the error of the derivative is less at
some x-values between the points.

It is not surprising that the next-term rule applies here as it did for interpolating polyno-
mials.

Suppose we have the table given in Table 5.3. The table is for f(x) = €* sin(x), so we can
compare with the previous computations.

Remember that the first divided differences are computed as

Sl %p4] = (g =M — %)

which are precisely the forward differences of f,. Hence, between each successive pairs of
the entries in the table, the estimates of f'(x) are just these first differences that are
constants. Figure 5.1a shows these estimates superimposed on the curve of analytical
values for f'(x). The value of x where f'(x) = 4.6311 (the first entry in the table for the
first-order difference) is 1.7527, almost exactly halfway between the x-values used to com-
pute it. That is true as well for the other estimates in that column.

If we use two terms of Eq. (5.5) we can compute the estimated derivatives from succes-
sive triples of the data. These give linear relations in x as shown in Figure 5.1b. Three terms
of Eq. (5.5), which involve groups of four entries from the table, produce the quadratic
relations shown in Figure 5.1c. Notice that the estimated derivatives are very close to the
analytical when three terms are used.

As we saw in Chapter 3 for interpretation, if we want to estimate the derivative for an
x-value near the end of the table, we appear to be severely limited in the degree of interpo-
lating polynomial. We can overcome this limitation by reordering i-values, putting them in
reverse order. Our formulas still work correctly, but we must remember to go diagonally
upward to get the values for a given value of i.

Because an interpolating polynomial fits better to the function if the x-values used in its
construction are such that the x-value for the derivative is centered within them, we should
choose the starting point (the i-value) to make this true. (If the x-values are in order, our

task is easier.)

Table 5.3 Divided-difference table for ¢* sin(x)

i x; S Slxy x, 41 Sfx; .. x; 051 SfIx; .o ox;4] SIx; oo x4 4]
0 1.70 5.4283 4.6311 —1.6469 —3.1137 —1.1493

1 1.80 5.8914 4.1371 —3.6708 —4.0331

2 2.00 6.7188 2.1182 —6.4939

3 2.35 7.4602 —1.1288

4 2.50 7.2909
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Figure 5.1

An Algorithm to Obtain an Estimate of the DerivatiVe, f'(u), from a
Divided-Difference Table given n + 1 data pairs, (x;, f),i = 0,...,n:

I\

14 1.6 1.8 2 22 2.4

(Create Table of Divided Differences)
Fori = 0Ton Step 1 Do
Set f(i, 0) = f(i) End Do (For i)
Forj = 1Ton Step 1 Do
Fori=0Ton — jStep 1 Do
JG) =10+ 1,j— 1 = f0,j— DVIxGE + j) = x(D)]
EndDo (For i)
EndDo (For j)

(Now get user inputs)
u = value to be chosen for f' ()
Deg = chosen degree of the polynomial

(Compute the derivative)
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Set PolySum = 0
Forj = Deg To 2 Step — 1 Do
Set Sum =0
Fork=0Toj— 1Step 1 Do
(p computes the value: [( — xp) . . . (u — xp])
Setp =1
For £ =0toj — 1Step 1 Do
(evaluates the product: [(u — xy) . . . (u — xj_l)]/(u — Xp)
If £ # k Then
p=p*lu—x] EndIf
End Do (For £)
Set Sum = Sum + f0,)) * p
End Do (For k)
Set PolySum = Polysum + Sum
End Do (For j).
PolySum = PolySum + £(0, 1)

Display PolySum as derivative value at u.

Evenly Spaced Data

Even though divided differences can handle any table, it is instructive to see how ordinary
differences can estimate the derivative when a table is evenly spaced. Recall from Chapter 3
that we can write an interpolating polynomial in terms of the differences [in this, s =
(x — x;)/h, which means that x = x; + s * hJ:

P,x;) = P(s) = f; + sAf; + sts _' D) A%, + s(s — 13)'(5 -2 A
+ o 4 H(S—J)—Ai—l—error
j=0
n n+1)
Error = [jl;[o(s - j):l'(f;{‘_%, Einfx, xp, ..., x,l

(In this formula, i is the index value where we enter the difference table.)
The derivative of P,(s) should approximate f'(x). We do exactly the same as we did for
the polynomial constructed from a divided-difference table, getting

d d
2 ) = o Pils )—

ds
-+ 3 {5 o - o} 5|
=

(5.8)

(The 1/h factor comes from ds/dx = dldx(x — x)/h = 1/h.)
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Again, the error term involves an unknown quantity unless x is one of the tabulated
values. When x = x,, s = 0. In this case, we get this analog of Eq. (5.7) when an interpo-
lating polynomial of degree n is used:

Error _(=Lyn"
(when x = x;) n-+ 1

FerNE), Einlxy, ..., x,l (5.9

Equation (5.8) is a formula for estimating derivatives from a table of differences that we
enter at index value i.
We will illustrate with the data from Table 5.4, which again are for f(x) = ¢* sin(x).
The values of the first order differences, Af,, give the forward-difference approxima-
tions to f;' when divided by Ax = 0.2 (we do not have to divide with divided
differences). If we use two terms of Eq. (5.8), we get linear approximations; three terms

give quadratics. Plots similar to those in Figure 5.1 result if these are graphed together
with ' (x).

Simpler Formulas

Equation (5.8) is awkward to use, but if we stipulate that the x-value where we want the
value of the derivative is one of the tabulated values, there is great simplification. To get
f'(x;) we just use

&) = (UBAS; — (UDAY + (1A, — -« + (Un)(—1y " 'AF]  (5.19)

because at x = x;, s = 0. Equation (5.10) is easy to use because the multipliers of the dif-
ferences are so simple. In addition, the errors are very conviently expressed as “order of.”
For example, with just one term of Eq. (5.6) we have

&) = (UDIAS] — (U2Af(E),  erroris O(h).
With two terms,
T = (UDAf; — (UDAY] + (13K O(E),  error is O(h?).

So, we see that with n terms, the error is O(#"). We also see that we can estimate the error
with the next-term rule. It is easy to show that the use of two terms of Eq. (5.10) gives the
central-difference formula for f'(x; ) and that this has an error of o).

Table 5.4 Differences of f(x) = ¢* sin(x)

i X, f, Af, A%, AY, A%,

1 1.7 5.4283 0.8985 ~0.1763 ~0.1573 ~0.0448
2 1.9 6.3269 0.7223 ~0.3336 ~0.2020

3 2.1 7.0491 0.3887 ~0.5356

4 23 7.4378 ~0.1469

5 25 7.2909
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Higher-Order Derivatives

If we want formulas to estimate the second and higher-order derivatives of tabulated
values, we could differentiate Eq. (5.5) or Eq. (5.8). However, we prefer to show you
another way to do the job, a technique that has wide applicability. This is the method of
undetermined coefficients. It is easiest to demonstrate this for a table of evenly spaced
x-values.

We begin by getting a formula for the first derivative, one that we have seen already.

Suppose we have three values of f(x) with the x-values differing by a uniform amount,
h. We can tabulate these:

X_ f
X0 fo
Xy I+

where x_ = x; — hand x, = x; + h. We want a formula for f(x,) in terms of the three
function values. The arithmetic is simplified if we translate axes to make x, = 0, so the

values of x becomes —#h, 0, +A.
A second-degree polynomial, P(x), can be fitted to the three points and P(x) is then an

approximation to f(x). The derivative of P(x), P'(x), is then an approximation to f”(x). We
will want it for f'(0), the derivative at x = 0, the center of the x-values:

FO=PO)=A*f +B*f+C*f,, (5.11)
where A, B, and C are the unknown coefficients. We write P(x) as the general quadratic
P(x) = ax* + bx + c.
We look at three instances of Eq. (5.11):
Case 1, P(x) = 1 implies:
c=la=b=0,f_=1%=1f =1LP@0)=0:
A*¥(D+B*()+C*(1)=0.
Case 2, P(x) = x implies:
b=la=c=0,f_=-hf,=0,f. =hP0)=1
A¥(=h)y+B*(O)+ C*(h)= 1.
Case 3, P(x) = x* implies:
a=1,b=c=0,f =k, f,=0,f, =h,P'(0)=0:
A*(HD) + B*(0)+ C* (K> =0.

In matrix form, these three equations are:

1 1 1A 0
-k O R J|B|=]1]) (5.12)
K2 0 RYLC 0
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We can write the solution to Eq. (5.12) by inspection: From the third equation, A = —C;
then, from the second, A = —1/(2h) and C = +1/(2h); substituting into the first, B = 0.
We then have this equation that approximates the derivative:

PO =~ *f + O+ v s f, =Tt
which is the central-difference formula, as we would expect.
We now do the same for the second derivative. The cases are the same, but now, when
P(x) =1, P"(0) = 0; when P(x) = x, P"(0) = 0; when P(x) = x2, P"(0) = 2. The coeffi-
cient matrix is identical to that in Eq. (5.12), so we get

1 1 10[a] [o
—h 0 R I|IB|=]|1]| (5.13)
K 0 njicC 2
Again, the solution is easy: from the second equation, A = C; from the third, A = C =
1/h?%; from the first, B = —2/h2. The formula for the second derivative is
; fo =2+
10y = ——}{2 fs (5.14)

If we want the error term for Eq. (5.14), we work with the Taylor series for f(x + A) and for
flx — h). The result is that the error is O(#2), which we leave as an exercise.
We also leave as exercises to show that

_fz + 16fl - 30f0 + 16f-—1 _f—z

f(x) = o + O(h"),
fm(xo) — f2 — 2f1 ;hif—l _f—Z 4 O(hz),
f%m=ﬁ_%+%f%”””+mm.

Higher Derivatives with MATLAB

We saw earlier that MATLAB can get the analytical derivatives of a function. It can do the

same for higher derivatives. Here we find the second and eighth derivatives of f(x) = e*/x
and evaluate these at x = 3.

EDU>> £ = ‘exp(x)/x’;
EDU>> df2 =diff(f, ‘x’, 2)
dfz =
exp (x) /x — 2%exp (x) /x"2 + 2*%exp (x) /™3
EDU>> df8 =diff (f, 8)
dfg =
exp (x) /x—8%exp (x) /x"2 + 56*exp (x) /x"3 —
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336*exp(x) /x*4 + 1680*%exp (x) /x5 —
6720%exp (x) /x"6 + 20160%*exp (x) /x"7 —
40320%exp (x)/x"8 + 40320*exp (x) /x™9

The expression for the eighth derivative is pretty complicated. We can get the numerical
values of these at x = 3:

EDU>> numeric(subs (df2, 3))
ans =
3.7195
EDU>> numeric(subs (df8, 3))
ans =
3.7563

Extrapolation Techniques

We found earlier that the errors of a central-difference approximation to f'(x) were of
O(h?). In effect, that suggests that the errors are proportional to /42 although that is true only
in the limit as # — 0. Unless 4 is quite large, we can assume the proportionality. So, from
two computations with 4 being half as large in the second, we can estimate the proportion-
ality factor which we call C. For example, in Table 5.2 we had:

h Approximation
0.05 4.15831
0.025 4.16361

If errors were truly C(h?), we can write two equations:

True value = 4.15831 + C(0.05%)
True value = 4.16361 + C(0.025%)

from which we can solve for the true value, eliminating the unknown “constant” C, getting:

True value = 4.16361 + (1/3) * (4.16361 — 4.15831)
= 4.16538,

which is very close to the exact value for f7(1.9), 4.165382.
You can easily derive the general formula for improving the estimate, when errors

decrease by O(h™):

Better = more + (1/(2" — 1))(more — less), (5.15)
estimate accurate

where more and less in the last term are the two estimates at #, and h, = h; /2. “More accu-
rate” is the estimate at the smaller value of & and » is the power of 7 in the order of the errors.

As a second example, let us apply this to values from Table 5.1 which were from for-
ward-difference approximations. Here the errors are O(h).
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h Approximation
0.05 4.05010
0.025 4.10955

Using Eq. (5.15), we have

Better estimate = 4.10955 + (4.10955 — 4.05010) (1/2! — 1))
= 4.16900,

which shows considerable improvement but not as good as from the central differences.
This extrapolation technique applies to any set of computations where the order of the
error is known, and we will see later in this chapter that we can apply it to integration

methods. Of course it also applies to the computation of higher derivatives, such as from
Eq. (5.14).

Richardson Extrapolation

When we compute an extrapolation from two estimates of the derivative using, say, & =
0.1 and & = 0.03, both of which are of O(h2), the improved estimate has an error O(h*) as
we show below. If we do another computation of f/(x) at & = 0.025 to get a third estimate
of f'(x) and use this with the estimate at 2 = 0.05 to extrapolate, we get a second further
improved estimate also of error O(h*). What is the error if we use these two improved esti-
mates to extrapolate again?

Consider the difference between the pair of Taylor series that gave rise to Eq. (5.3) but
with more terms:

f=(f+ b)) = flx = mYQh) + a)® + ah* + ash® + -+ (5.16)

(The terms on the right after the first represent the error of the central difference approxi-
mation; the odd powers of & drop out through cancellations.)

If we compute a second approximation for f; but with 4 cut in half, we get a better
approximation:

fi = (fG + hi2) — f(x — h2)I(h) + a kY4 + a,h*16 + ah%64 + - - - (5.17)

Adding 1/3 of the difference between Eqs. (5.17) and (5.16) to Eq. (5.17) gives Eq. (5.15),
but now we see that n will be 4 because the first of the errors terms cancel.

Using the two improved estimates for the derivative, but now adding 1/15 of the differ-
ence to the better estimate, results in canceling the next error term; it will be of O(h®).
Continuing in the same fashion gives estimates of O(#%), O(h!0), . . . , until there is no
change in the improvements. Doing these successive extrapolations is called Richardson
extrapolation.

Here is an example with f(x) = x* * cos(x) for which f(1.0) = 0.23913363. The original
values of f(1.0) are from central differences so they are of O(h?).
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Value First Second Third

of h @0 extrapolations extrapolations extrapolations
0.1 0.226736

0.05 0.236031 0.239129

0.025 0.238258 0.239133 0.239134

0.0125 0.238940 0239132 0.239132 0.239132

There really was no point in doing the third extrapolation because the second one did not

change the value.
The merit of Richardson extrapolation is that we get greatly improved estimates without
having to evaluate the function additional times. We can use this technique to extrapolate

higher derivatives as well.

An Algorithm to Compute a Richardson
Table That Computes the Derivative, f'(x)

Given a function f(x):

Input
x = value for x
h = starting value for stepsize A
MaxStage = maximum number of stages (lines of table)
Tol = tolerance value for termination
d(0, 1) = 0: the initial value of the table

(Compute lines, (stages) of the table)
For stage = 1 To MaxStage Step 1 Do
Set d(stage, 1) = [fix + k) — f(x — WI/(2A).
For j = 2 to stage Step 1 Do
Set d(stage, j) = d(stage,j — 1)
+ [d(stage, j — 1) — d(stage — 1,j — 1)}/(2% — 1)
EndDo (For j).
If |d(stage, stage) — d(stage, stage — 1)| < Tol
Then Exit EndIf.
Seth = h/2
EndDo (For stage).

On termination, the last computed value is the extrapolated estimate of the derivative.

Extrapolation with Tabulated Values

If we only have an evenly spaced table of (x, f (x)) values, as we might have from a set of
experiments, we have no way to get new function values where the differences in x are
halved. However, if there are enough entries in the table, we may be able to double the

Ax’s. Table 5.5 is an example.
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Table 5.5
t X Ji
0 2.0 0.123060
1 2.1 0.105706
2 22 0.089584
3 2.3 0.074764
4 2.4 0.061277
5 2.5 0.049126
6 2.6 0.038288
7 2.7 0.028722
8 2.8 0.020371
9 2.9 0.013164

10 3.0 0.007026

Suppose we want the derivative at x = 2.4. The central difference approximation is
—0.12819 from f(2.3) and f(2.5), h = 0.1. Now, if we compute the value again, but use the
values at x = 2.2 and 2.6, where k2 = 0.2, we get —0.12824, a poorer estimate because # is
twice as large. However, since we known that both are of O(h?), we can employ Eq. (5.15)
to get an improvement:
f(2.4) limproved] = —0.12819 + (—0.12819 + 0.12824)/3
= —0.12817.

[The function in Table 5.5 is for f(x) = e™* sin(x) for, which f'(2.4) = —0.128171.]
For convenience, here we collect formulas for computing derivatives.

Formulas for Computing Derivatives

Formulas for the first derivative:

7o = 2220+ ogn
f/( _ fl —f -1 2 .
Xg) = ————2 Y + O(h%) Central difference
Fleg = L= ;"Z‘ ~3h | omy
fixg) = ~ht 8 1—2h8f_] e + O(h" Central difference

Formulas for the second derivative:

hH-2fith
hz

fr(xo) = + O



272 Chapter Five: Numerical Differentiation and Integration

- 2fs + 1
JFlxg) = Il‘—fz“—f_l + O(h?) Central difference
—fs +4f, — 5+ 2
f”(x()) — fS f2h2 fl .ﬁ) + 0(/’12)
~f, + 16f; — 30f; + 16f-;, — /-
J(xo) = e /i I 2;?2 Jo1 /o + O(h*)  Central difference

Formulas for the third derivative:

=363~ h

") = x + O(h)
-2+ 2 f-
(o) = f — 2 2h3f 1= o + O(h?) Averaged difference

Formulas for the fourth derivative:

fo— AL+ 6h —4fi t o

f¥xe) = E + O0(h)
, —4f + 6fy —4f + /-
F¥xg) = L= 4, J;(Z4 fatro + O(h? Central difference

5.2 Numerical Integration —The Trapezoidal Rule

Integral calculus is a most important branch of calculus. It is used to find the velocity
of a body when its acceleration is known, to find the distance traveled using the
velocity, to compute areas, to predict population growth, and in many other important

applications.

In your calculus course, you learned many formulas to get the indefinite integral of
function f(x), the antiderivative. [Given the function, f(x), the antiderivative is a function

F(x) such that F’(x) = f(x).] You learned that the definite integral,

b
ff(X) = F(b) — Fla),

can be evaluated from the antiderivative. Still, there are functions that do not have an anti-

derivative expressible in terms of ordinary functions.

All of our computer algebra systems can find the antiderivative if its table of integrals

has it. For example, in Maple,

>int (x*sin(x), x);
gin(x) — x cos (x)

but, if the antiderivative in unknown, it just returns [f(x) dx:
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>int (exp (x) /1n(x), %);

f ex
—dx
In(x)

If we give limits for the integral,

>int (x*sin(x), x=1..2);
sin(2) — 2 cos(2) —sin(l) + cos (1)

Maple gives us F(b) — F(a), which we can evaluate with

>evalf (%)
1.440422421

Now we ask, “Is there any way that the definite integral can be found when the antideriva-
tive is unknown?”” The answer is “Yes, we can do it numerically.”

You learned that the definite integral is the area between the curve of f(x) and the x-axis.
That is the principle behind all numerical integration— we divide the distance fromx = g
to x = b into vertical strips and add the areas of these strips (the strips are often made equal
in widths but that is not always required).

The Trapezoidal Rule

When the area between the curve of f(x) and the x-axis is subdivided into strips, one way
to draw the strips is to make the top of the strips touch the curve, either at the left corner or
the right corner, but that is less accurate than making the top of the strip even with the
curve at its midpoint. In effect, these schemes replace the curve for f(x) with a sequence of
horizontal lines. We can think of these lines as interpolating polynomials of degree zero.

A much better way is to approximate the curve with a sequence of straight lines; in
effect, we slant the top of the strips to match with the curve as best we can. We are approx-
imating the curve with interpolating polynomials of degree-1. The gives us the trapezoidal
rule. Figure 5.2 illustrates this.

i1 X Xit+1 X;

+
[N

Figure 5.2
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From Figure 5.2, it is intuitively clear that the area of the strip from x; to x; , ; gives an
approximation to the area under the curve:

e fi * fina
f [y dx = = 2l (Xipp — x)-
X;

We will usually write & = (x;; — x;) for the width of the interval.

Another Derivation of the Trapezoidal Rule

An alternative way to obtain the trapezoidal rule is to fit f(x) between pairs of x-values with
polynomials of degree-1 and integrate those polynomials. We learned in Chapter 3 that a
first-degree Newton—Gregory interpolating polynomial between points x; and x;, ; was

f@x) = P (x) = f; + sAf; + error,
where s = (x — x,)/h and the error is given by
(F12)(s)s = Df"(é).

We can estimate [f(x) between the two points by integrating P, (x):

i+l Xiti Xit1 1
f fx) dx = f Pyx) = J (fi + sAf) dx = hf (fi + sAf) ds,
X; X, X 0

i i

where we have replaced dx with 2 * ds, and noted that s = O atx; and s = 1 atx, .
Carrying out the integration, we find that

f o0 dx = f TP = BOf + (UDAR) = B2+ fi),

exactly as we found intuitively. The real reason for this development is to find the error
term for one application of trapezoidal integration. We get this by integrating the error
term. Doing so, we find

Error = —(1/12)A3F"(€) = O(W3).

The Composite Trapezoidal Rule

If we are getting the integral of a known function over a larger span of x-values, say, from
x = atox = b, we subdivide [a, b] into n smaller intervals with Ax = &, apply the rule to
each subinterval, and add. This gives the composite trapezoidal rule:

b n—1
fGydx =~ X (W2Y(fi + fir) = WDy + 2 + 26+ - + 2 1) (518)F
a i=0

* In a computer program, you should do A(fy/2 + f; + f, + - - - + f,_; + f,/2) in order to reduce the number of
operations.
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The error now is not the local error O(h3) but the global error, the sum of n local errors:
Global error = (-1/12)h3[f”(§1) + (&) + o+ (E]

In this equation, each of the & is somewhere within each subinterval. If f”(x) is continuous
in [a, b}, there is some point within [, b] at which the sum of the f"(§) is equal to f"(£),
where £is in [a, b]. We then see that, because nh = (b — a),

“b-a

Global error = (—1/12)h%nf" (£) = )

" (€) = 0.
The fact that the global error is O(h2) while the local error is O(h%) seems reasonable

because, for example, if we double the number of subintervals, we add together twice as
many local errors.

EXAMPLE 5.1

Given the values for x and f(x) in Table 5.6, use the trapezoidal rule to estimate the integral
fromx = 1.8tox = 3.4.
Applying the trapezoidal rule:

3.4 0.2
f o) dx = ==16.050 + 2(7.389) + 2(9.025) + 2(11.023) + 2(13.464)
1

.8

+2(16.445) + 2(20.086) + 2(24.533) + 29.964] = 23.9944,

The data in Table 5.6 are for f(x) = ¢ and the true value is €34 — ¢!8 = 23.9144. The

trapezoidal rule value is off by 0.08; there are three digits of accuracy. How does this com-
pare to the estimated error?

1
Error = —Eh%f"(g), 1.8 = ¢=34,

1 18 -0.0323
Lo 0] (002 tmun)
12 e>*  (min) —0.1598 (min)
Table 5.6
x f) x fx)
1.6 4.953 2.8 16.445
1.8 6.050 3.0 20.086
2.0 7.389 3.2 24.533
2.2 9.025 34 29.964
24 11.023 3.6 36.598
2.6 13.464 3.8 44701
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Alternatively,

| e'?  (max) —0.0323
Error = ——— (0.2%(3.4 — 1.8)* = -
ITor 2 0.2)X ) {63-4 (min)} {~0.1598}

The actual error was —0.080.

If we had not known the function for which we have tabulated values, we would have
estimated #2f"(£) from the second differences.

An Algorithm for Integration by the Composite Trapezoidal Rule

Given a function f(x):

(Get user inputs).
Input
a, b = endpoints of interval
n = number of intervals

(Do the integration)
Seth = (b — ayn.
Set sum = 0
Fori=1ton — 1 Step 1 Do
Setx=a+h*i
Set sum = sum + 2 * f(x)
End Do (For ).
Set sum = sum + f(a) + f(b).
Set ans = sum * A/2.

The value of the integral is given by ans.

Unevenly Spaced Data

Data from experimental observations may not be evenly spaced. The trapezoidal rule still
applies. Suppose there are five points:

J oo = B,y ARy BBy e £
C+ fiy
= 2 I%(XH—I - X))
i=0

There is no simple way to express this.

Romberg Integration

We can improve the accuracy of the trapezoidal rule integral by a technique that is similar
to Richardson extrapolation, This technique is known as Romberg integration.
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First set
of points:

0 = New points
Second set

of points:

x = Old points

Third set
of points:

Next set
of points:

Figure 5.3

Because the integral determined with the trapezoidal method has an error of O(h?), we
can combine two estimates of the integral that have h-values in a 2:1 ratio by Eq. (5.15),
which we repeat here:

Better estimate = more accurate + ?1—1— (more accurate — less accurate).* (5.19)
When we apply this equation to get the integral of a known function, we begin with an
arbitrary value for % in Eq. (5.18). A second estimate is then made with the value of A
halved. From these two estimates we extrapolate to get an improved estimate using Eq.
(5.19). This has an error of O(h?).

Obviously, this can be extended to produce a table of successively better estimates.
When we find that the values converge, we have the best estimate that we can make in the
light of round-off error. As shown before, each new extrapolation has error orders that
increase: O(hY), O(h%), O(h®), . . ..

We can reduce the number of computations because, when 4 is halved, all of the old
points at which the function was evaluated to get Eq. (5.18) appear in the new computation
and we thus can avoid repeating the evaluations. Figure 5.3 illustrates this point.

This next example shows how the Romberg table appears for the function f(x) = e®
integrated between the limits of 0.2 and 1.5. This integral has no closed form solution. It is
closely related to the error function, a quantity that is so important in statistics and other
branches of applied mathematics that values have been tabulated.

EXAMPLE 5.2

Use Romberg integration to find the integral of ¢ ™ between the limits of a = 0.2 and
b = 1.5. Take the initial subinterval size as &z = (b — a)/2 = 0.65.
Our first estimate is

Integral = —Izz-[f(a) + 2f(a + h) + f(b)]

* In Eq. (5.19), n is the order of the error. In the first extrapolation, n = 2. In successive extrapolations, it
is4,6,8,....
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Table 5.7 Romberg table of integrals over interval from 0.2
to 1.5 with an initial 4 of 0.65

0.66211

0.65947 0.65859

0.65898 0.65881 0.65882

0.65886 0.65882 0.65882 0.65882

065 2 2 2
_ [6_0'2 + 26*0.85 + 6-1.5]

= 0.66211.
The next estimate uses 2 = 0.65/2 = 0.325:

Integral = %[ f(a) + 2f(a + h) + 2f(a + 2h) + 2f(a + 3h) + f(b)]

0325
2

= 0.65947.

[e~0.2Z + 28*0.5252 + 2e—0.85z +- 26‘1.1752 + e—1.52]

Observe that only two new function evaluations appear in the second estimate.
We now extrapolate:

1
Improved = 0.65947 + EY [0.65947 — 0.66211]

= (0.65859.

Table 5.7 exhibits the calculations when we repeat the estimations, halving the A-value
each time.

The Romberg Method for a Tabulated Function

We can apply the Romberg method to integrate a function known only as a table of evenly
spaced function values, but now we cannot make % smaller. Instead, we use estimates of
the integral with 2 doubled each time, just as we did to improve the estimates of derivatives
in Section 5.1. Here is an example.

EXAMPLE 5.3 Use the Romberg method to get an improved estimate of the integral from x = 1.8 to x =
3.4 from the data in Table 5.6. In Example 5.1, we found an estimate of 23.9944 when

h = 0.2. If we now use & = 0.4, we compute
Integral = (0.4/2) [6.050 + 2(9.025) + 2(13.464) + 2(20.086) + 29.964]
= 24.2328.
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Table 5.8 Romberg table for Example 5.3

h=02 23.9944 23.9149 23.9147
h=04 24.2328 239181
h=038 25.1768

We can extrapolate from these two estimates:
Improved = 23.9944 + (23.9944 — 24.2328)/3 = 23.9149.

Now, if we use h = 0.8, we get

Integral = (0.8/2) [6.050 + 2(13.464) + 29.964]

= 25.1768.

Using this with the estimate when 2 = 0.4:

Improved = 24.2328 + (24.2328 — 25.1768)/3

= 23.9181.
We can use these two improved estimates to extrapolate a second time:
Further improved = 23.9149 + (23.9149 — 23.9181)/15
= 23.9147.

Table 5.8 shows the results. Considering that the function values in Table 5.6 are given
only to three decimals, this compares well to the analytical answer of 23.9144 and this is
much better than the result from the single estimate with A = 0.2, which was 23.9944.

3

The Romberg method is applicable to a wide class of functions. Smoothness and conti-
nuity are not required. However, when f(x) is discontinuous, we should make the evenly
spaced points fall on the discontinuities. This can be done if we break the interval into
subintervals that are bounded by the discontinuities.

An Algorithm for Romberg Integration

Given a function f(x):

(Get user inputs).
Input
a, b = endpoints of interval
Maxstages = number of refinements
(Do the integration)

Seth = (b — a)/2.
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(Do the lines of the table)
Set sum = f(a) + 2 * f(a + h) + f(b).
Set integral(0, 0) = sum * A/2 (first value)
Set distance = 2 * h (distance between added points)
For stage = 1 To Maxstages Step 1 Do
Set h = h/2.
Set distance = distance/2.
For i = 1 To 25 Step 1 Do
Setx = a — h + i * distance.
Set sum = sum + 2 * f(x).
End Do (For ).
Set integral(stage,0) = sum * A/2.
(Now extrapolate)
For j = 1 To stage Step 1 Do
Set integral(stage, j) = integral(stage,j — 1) +
[integral(stage, j — 1) — integral(stage — 1,j — DI/ — 1)
End Do (For j).
End Do (For stage)

The last computed value is the estimate of the integral.

An alternative stopping criterion is when two successive computations in a line
differ by less than some tolerance value.

5.3 Simpson’s Rules

The trapezoidal rule is based on approximating the function with a linear polynomial. We
can fit the function better if we approximate it with a quadratic or a cubic interpolating
polynomial. Simpson’s rules are based on these approximations. There are two of these
rules: Simpson’s 1/3 rule and Simpson’s 3/8 rule, so-named because the values 1/3 and 3/8
appear in their formulas.

We get the 1/3 rule by integrating the second-degree Newton—Gregory forward polyno-
mial, which fits f(x) at x-values of x,, x,, x,, which are evenly spaced a distance & apart:

[y = [ (5 + sa + 252w )

= hj2<f0+ sAﬁ)+—S(s—2_-1—)—A2ﬁ)>ds
0

2 sz ]2 R <s3 s2> 2
= —_— —+ _ —
hfos]o + hAf, 5 ]O hA?, . 2 ]

0
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1 h
= h<2fo + 24+ A%) = S b+ 4f +f)
We get the error by integrating the error of the polynomial:
1
Error = 50 @), Xy < £<x,.

It is convenient to think of the strips defined by successive x-values as panels. For
Simpson’s 1/3 rule, there must be an even number of panels.

We get the 3/8 rule similarly, by integrating the third-degree Newton—Gregory interpo-
lating polynomial that fits to four evenly spaced points, and its error term:

X3 X3 34
f f&x)dx = J Pyxs) dx = == (fo + 3 + 3 + o)

3
Error = 0 BF (&), xg< & <xy

If the number of panels is divisible by 3, the 3/8 rule applies. Observe that the error of the
3/8 rule is actually larger than for the 1/3 rule and both have a local error of O(#°). The
global errors will be O(h*) for the same reason as with the trapezoidal rule.

You may wonder why we use the 3/8 rule when it has a larger error. One useful applica-
tion of it is to find the integral from a table of values that has an odd number of panels.
Still, the error should be less for a table with an odd number of points by applying the 3/8
rule for the first or last set of three panels and then using the 1/3 rule for the rest. Where the
3/8 rule is used, it is best to choose the panels at one end or the other, or at intermediate
points where the function is most nearly straight.

In the example below, we compare the three rules. We will obtain the integral of
exp(—x?) between x = 0.2 and x = 2.6 with different values for &, the even spacing
between points. This integral has no closed form; it is required to get values for the error
function, a special function that is important in certain statistical applications and is related
to another special function, the gamma function.

First, we will use MATLAB to get the true value of the integral:

EDU>> £ =sym(‘exp{—x"2) ")
f =
exp (—x"2)
EDU>> fint = int (f)
fint =
1/2*%pi~(1/2) *erf (x)
EDU>> fintdef = 1int(f,.2,2.6)
fintdef =

* This is the way that the rule is usually written and is responsible for its being called the 1/3 Rule. If the
coefficient is written 24/6, it more closely parallels the trapezoidal rule and the 3/8 rule.



282

Chapter Five: Numerical Differentiation and Integration

Tabie 5.2 Comparison of integration methods for the integral of exp(—x?) between x =

0.2 and 2.6
Trapezoidal Simpson’s Simpson’s
rule 1/3 rule 3/8 rule
Number
of panels Value Error Value Error Value Erorr
6 0.69378 —0.00513 0.68824 —0.00041 0.68723 -0.00142
12 0.68992 —0.00127 0.68863 —0.00002 0.68860 —0.00005
18 0.68921 —0.00056 0.68865 0.00000 0.68864 ~0.00001
24 0.68897 —0.00031 0.68865 0.00000 0.68865 0.00000
1/2*erf (13/5) *pi™ (1/2) — 1/2*erf(1/5)*pi*(1/2)

EDU>> digits(10)
EDU>> vpa (fintdef)
ans =
.6886527145

In this, we define the function symbolically, ask for the indefinite integral (which does
involve the error function), get the definite integral (but this is not numeric), and finally get
the numeric answer with the vpa command.

EXAMPLE 5.4

Find the integral of exp(—x2) between x = 0.2 and x = 2.6. Compare the results at varying
values for & with the trapezoidal rule, Simpson’s 1/3 rule, and Simpson’s 3/8 rule.

Table 5.9 gives the results. With the trapezoidal method, five significant digits of accu-
racy are not obtained until almost 300 panels have been used. The 1/3 method is better than
the 3/8, as we would expect. The ratio of errors when the A-value is halved is close to 24 for
the 1/3 rule, not quite that for the 3/8 rule (we do not have enough data for a good value),

and almost exactly 22 for the trapezoidal rule.

Formulas for Integration (Uniform spacing, Ax = )

Trapezoidal rule:
b h
f fodx=—(fi + 2+ 2+ 0 F 2+ fusd)

_®b-a

n R¥"(E), asE=D (5.30)



5.3: Simpson's Rules 283

Simpson’s % rule:
b
h
f fe) dx = = (f; TAL T2 A2+ AL S

(b =) e <i<
_N e 2 <i<p
g0 T, a=g¢

(requires an even number of panels)
: s 3 .
Simpson’s £ rule:

b
Jf(x)dx=%h(f]+3fz+3f3+2f4+3f5+3f6+ 3 E )

_ b9 — e
0 RYOE), a=éE<b

(requires a number of panels divisible by 3)

These formulas, based on approximating the integrand with a polynomial of different
degree, are known as Newton— Cotes formulas.

It is of interest to see that each of these integration formulas is just the width of the
interval, (b — a), times an average value for the function within that interval. That average
value is a sum of the weighted values divided by the sum of the weights. For example, if
there are six panels (seven points),

Trapezoidal rule: Weights are [1 2 2 2 2 2 1], whose sum is 12 and (b — @)/12 =
h* (1/2).

Simpson’s 1/3 rule: Weights are [1 4 2 4 2 4 1], whose sum is 18 and (b — a)/18 is
h*(1/3).

Simpson’s 3/8 rule: Weights are [1 3 3 2 3 3 1], whose sum is 16 and (b — a)/16 is
h* (3/8).

Discontinuous Functons and Improper integra.s

If the function being integrated is discontinuous or whose slope is discontinuous, it is
essential that the region be broken up into subintervals bounded by the discontinuities. (It
could be that the chosen points within the interval fall at the points of discontinuity and
that takes care of this.)

An improper integral is (a) one whose integrand becomes infinite at one or more points
on the region of interest, or (b) one with infinity at one or both of the endpoints of the inte-
gration. Some improper integrals have a finite value; the integral is said to converge. If the
limiting value of the integration as we approach the point of singularity is infinite, it is said
to diverge. It is obvious that none of the integration rules that we have described will work
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for improper integrals, although we can approximate the answer by gradually closing in on
the point of singularity. This is not an easy way to get a good value; there are other inte-
gration techniques (called open formulas) that we do not discuss here that are better
adapted. [Numerical Recipes (W.H. Press et al., 1992) is a good reference.] When an
improper integral is integrable, often a change of variable will make it proper.

Another problem that is somewhat related is finding the value of the integral for a func-
tion that increases exponentially. Formulas that use evenly spaced points will not be ade-
quate. We should use points that are much closer together in the subregion(s) where the
slope is great. A plot of the function will reveal this.

Getting Integration Formulas in a Different Way

In Section 5.1, we used the method of undetermined coefficients to get formulas for differ-
entiation. We can use this technique to get formulas for integration. We will illustrate it by

starting with the simplest formula.
Suppose we want a formula to estimate the integral of f(x) between x = x; and x = x,,
where x, — x; = h, using only the function values f(x,) and f(x,), and is of the form

b
f J(x)dx =A% fix)) + B* f(x)),

where A and B are coefficients to be determined. The two pairs of points, (x;, f(x;)) and
(x,, f(x,)), permit us to write an interpolating polynomial, P(x), of degree-1:
f(x) = P(x) =ax + b.

It simplifies the arithmetic if we translate axes to make x; = 0 so that x, = h. There are
two cases to consider:

Case 1: P(x) = 1 requires b = 1,a = 0, so
LhP(x)dx= Lh(l)dx=h=A*P(O) + B*Ph) = A*(1) + B*(1).
Case 2: P(x) = x requiresa = 1,0 = 0, so
thP(x)dx= Joh(x)dx= (h*)/2 = A*P0) + B*P(h) = A*(0) + B*(h).

We can set up these two equations in matrix form:

[(1) llz] [2] ) {h?/z}

whose solution is easy: From the second equation, B = #/2; from the first A + B = A, so
A=h— B =h— k2= h2. Ourformula is the familiar trapezoidal rule:

(h12) * (f(x)) +f(xp)).

Now for another formula. If we use three evenly spaced values of f(x), at x_; = —4,
x; = h, and the midpoint, x, = 0 (which we get after translating the axes), the interpolating
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polynomial, P(x) [which is an approximation to f(x)], is now a quadratic,
P(x) = ax® + bx + c.
The formula we desire is

JX] foydx = A*fr_y) + B* flrg) + C* flay).

‘We have three cases for P(x):

Case l: P(x) =1 requiresc = 1, a=b =0, s0

h [
j P(x)dx=f MW dx=2h=A*P(—h) + B*P0) + C* P(h)
—h —h
=A*()+B*()+ C*(1).
Case 2: P(x) = x requitesb =1, a=c =0, s0
n )
j P(x)dx=f xX)dx=0=A*P(—h) + B*P0) + C* P(h)
h —h

= A% (=h) + B* (0) + C* (.
Case 3: P(x) = x* requiresa = 1,b = ¢ =0, so

h h
J P(x) dx = f (x?) dx = 2h%3 = A* P(—h) + B* P(0) + C * P(h)
h —h

=A*(hD) + B*(0) + C* (h?).
The matrix is
1 1 1|4 Zh
~h 0 h||B|=]0
h* 0 R*|C] [2n3

H]

whose solution is easy: From the second equation, A = C; from the third, A = C = }/3;
from the first, B = 4h/3, so we get Simpson’s 1/3 rule:

h/3 % [f(x_y) + 4f(xp) + flxpl.

Simpson’s 3/8 rule can be derived if one uses four evenly spaced points of (x, f(x)). We
leave this as an exercise.

An Application of Numerical Integration —Fourier
Series and Fourier Transforms

In Chapter 4, we saw that a Fourier series can approximate functions, even those with dis-
continuities. The coefficients of the terms of the series are determined by definite integrals.
There are functions for which the necessary integrals cannot be found analytically; for
these, numerical procedures can be employed.
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In this next example, we compare the accuracy of computing Fourier coefficients by the
trapezoidal rule and by Simpson’s 1/3 rule in a case where the analytical values are possible.

EXAMPLE 5.5

Evaluate the coefficients for the half-range expansions for f{x) = x on [0, 2] numerically
and compare to the analytic values. Do this with both 20 intervals and 200 intervals.
For the even extension (the Fourier cosine series), we use Eq. (4.55) to get the A’s (all

B’s are zero):
2 2
An=<?>ﬁ)xcos<ngx>dx, n=0,1,2....

For the even extension (the Fourier sine series), we use Eq. (4.56) to get the B’s (all A’s are

Zero):
2 2
B, = (—2—>Lxsin<mzrx>dx, n=1,23,....

Tables 5.10 and 5.11 show the results. Observe that the accuracy is poorer as the value of
n increases.
2

Discrete Fourier Series

There are a number of applications when measurements of a periodic phenomenon are
studied: musical chords, vibrations of structures, shock in automobiles, outputs in electri-
cal and electronic circuits, for example. In analyzing such phenomena, we want to know
the frequency spectrum.

When the data are from measurements of the system, we do not know the “function”
that generates the information; we only have samples. Most often, this sampling is at
successive intervals of time, with At being constant. When we fit such data with
sine/cosine terms, it is called Fourier analysis. Other names are harmonic analysis and the

Table 5.10 Comparison of numerical integration with analytical results:
20 subdivisions of [0, 2]

Trapezoidal rule Simpson’s rule Analytical integration

n A, B, A, B, A, B,

0 2 2 2

1 —0.81224 1.27062 —0.81056 1.27324 —0.81057 1.27323
2 0 —0.63138 0 —0.63665 0 —0.63662
3 -0.09175 0.41653 —0.08999 0.42453 —0.09006 0.42441
4 0 ~0.30777 0 —0.31860 0 —0.31831
5 —0.03414 0.24142 —0.03219 0.25523 —0.03242 0.25465
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Table 5.13 Comparison of numerical integration with analytical results:
200 subdivisions of [0, 2]

Trapezoidal rule Simpson’s rule Analytical integration

n A, B, A, B, A, B,

0 2 2 2

1 —0.81059 1.27321 —0.81057 1.27324 —0.81057 1.27323
2 0 —0.63657 0 —0.63662 0 —0.63662
3 —0.09008 0.42433 —0.09006 0.42441 —0.09006 0.42441
4 0 —-0.31821 0 —0.31831 0 —0.31831
5 —-0.03244 0.25452 —0.03242 0.25465 —0.03242 0.25465

finite Fourier transform. This is a “transform” because we change data that are a function
of time to a function of frequencies. We form what is called a discrete Fourier series.

Why should we want to so transform a set of experimental data? Because knowing
which frequencies of a Fourier series are most significant (have the largest coefficients)
gives information on the fundamental frequencies of the system. This knowledge is impor-
tant because an applied periodic external force that includes components of the same fre-
quency as one of these fundamental frequencies causes extremely large disturbances.
(Such a periodic force may come from vibrations from rotating machinery, from wind, or
from earthquakes.) We normally want to avoid such extreme responses for fear that the
system will be damaged.

1t is clear from Example 5.5 that the coefficients of a Fourier series can be computed
numerically. Example 5.6 demonstrates getting the coefficients from measurements:

EXAMPLE 5.6

An experiment (actually, these are contrived data) showed the displacements given in
Table 5.12 when the system was caused to vibrate in its natural modes. The values represent
a periodic function on the interval for ¢ of [2, 10] because they repeat themselves after t = 10.

We will use trapezoidal integration to find the Fourier series coefficients for the data.
Doing so gives these values for the A’s and B’s:

n A B

0 4.6015

1 1.5004 -0.5006
2 —-0.0009 0.0016
3 —0.0017 0.0016
4 0.0008 4.0011
5 —-0.0017 0.0000
6 —0.0009 0.0022
7 —0.0005 —0.0023
8 —0.0008 0.0009
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Table 5.12 Measurements of displacements versus time

t Displacement t Displacement
2.000 3.804 6.250 3.746
2.250 6.503 6.500 5115
2.500 7.496 6.750 4.156
2.750 6.094 7.000 1.593
3.000 3.003 7.250 -0.941
3.250 —0.105 7.500 —1.821
3.500 —1.598 7.750 —0.329
3.750 —0.721 8.000 2.799
4.000 1.806 8.250 5.907
4250 4.350 8.500 7.338
4.500 5.255 8.750 6.380
4.750 3.878 9.000 3.709
5.000 0.893 9.250 0.992
5.250 —2.048 9.500 —0.116
5.500 —3.280 9.750 1.047
5.750 —2.088 10.000 3.802
6.000 0.807

This shows that only A, A,, B, and B, are important. There would be no amplification of
motion from forces that do not include the frequencies corresponding to these.
(Table 5.12 was constructed from

() =23 + 1.5 cos(r) — 0.5 sin(z) + 4 sin(41),

plus a small random variation whose values ranged from —0.01 to +0.01. It is the random
variations that cause nonzero values for the insignificant A’s and B’s.)
B

The Fast Fourier Transform

If we need to do a finite Fourier transform on lots of data, the amount of effort used in
carrying out the computations is exorbitant. In the preceding examples, where we
reevaluated cosines and sines numerous times, we should have recognized that many of
these values are the same. When we evaluate the integrals for a finite Fourier transform,
we compute sines and cosines for angles around the origin, as indicated in the figure on
the following page.

When we need to find cos(nx) and sin(zx), we move around the circle; when n = 1, we
use each value in turn. For other values of n, we use every nth value, but it is easy to see
that these repeat previous values. The fast Fourier transform (often written as FFT) takes
advantage of this fact to avoid the recomputations.

In developing the FFT algorithm, the preferred method is to use an alternative form of
the Fourier series. Instead of



5.4: An Application of Numerical Integration—Fourier Series and Fourier Transforms 289

A - , )
fx) = 70 + Y [A,cos(nx) + B,sin(nx)],  (period = 2), (5.23)
n=1
we will use an equivalent form in terms of complex exponentials. Utilizing Euler’s identity
(using i asvV—1),
e¥* = cos(jx) + i sin(jx),
we can write Eq. (5.52) as

Sl = i(cje"fx + c_jei)

j=0

2¢, + i[(cj + c_)) cos(jx) + i(c; — c_p)sin(jix)] {8.24)

j=1

20
> el

j=—=

It

11

17 13

Angles used in computing for 16 points

‘We can match up the A’s and B’s of Eq. (5.23) to the ¢’s of (5.24):

Aj =¢ + c_js Bj = i(cj — c_j),
A, —iB; _ A +iB;
¢ = ——Lz , c; = ——2 .

When f(x) is real valued it is easy to show that ¢, = ¢, and ¢;=Cjs where the bars rep-
resent complex conjugates.
For integers j and %, it is true that

2 27 "
j (e*)(e™) dx = f et gy = 0 TorkF =),
0 0 2w  fork = —j.

(You can verify the first of these through Euler’s identity.) This allows us to evaluate the ¢’s
of Eq. (5.24) by the following.
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For each fixed k, we get

f(x)eil’kx = E Ckei(j_k)xa

j=—=
27
F(x)e™® dx = 2arcy, or
0
1 [* .
a=—-—| f&e *dx, k=0, %1,%2,....
27T [}

EXAMPLE 5.7 (You should verify each of these.)
1. Let f(x) = x; then

= L e dy = i k#0
= = —— )
iy § xe P
2. Let f(x) = x(27 — x); then
= ! fzw Qm Ye M dx = 2 k#0
= = - = —— .
= ox xX)e X R

3. Let f(x) = cos(x); then

1
1 [ . — fork=1lor—1,
c,=—]| cos(x)e™®dx =12
2 [}

0  for all other k.
Note that for Eq. (5.23) this makes A; = 1 and all the other A j’s =0.

Thus, for a given f(x) that satisfies continuity conditions, we have

1 [ y
¢ =—5—| fe ¥dx, j=0,x1,*x2,....
27 0

The magnitudes of the Fourier series coefficients |c;| are the power spectrum of f; these
show the frequencies that are represented in f(x). If we know f(x) in the time domain, we
can identify f by computing the cj’s. In getting the Fourier series, we have transformed
from the time domain to the frequency domain, an important aspect of wave analysis.

Suppose we have N values for f(x) on the interval [0, 2] at equispaced points, x, =
2mkIN, k=0, 1,...,N — 1. Because f(x) is periodic, fy = f;, fy+1 = f1» and so on. Instead
of formal analytical integration, we would use a numerical integration method to get the
coefficients. Even if f(x) is known at all points in [0, 27], we might prefer to use numerical
integration. This would use only certain values of f(x), often those evaluated at uniform
intervals. It is also often true that we do not know f(x) everywhere, because we have sam-
pled a continuous signal. In that case, however, it is better to use the discrete Fourier trans-
form, which can be defined as
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i N=1
1 X(n) = X xplk)e @™ N 5 =0,1,2,...,N— 1. (5.25)
k=0

In Eq. (5.25), we have changed notation to conform more closely to the literature on
FFT. X(n) corresponds to the coefficients of N frequency terms, and the x,(k) are the N
values of the signal samples in the time domain. You can think of n as indexing the
X-terms and k as indexing the x,-terms. Equation (5.25) corresponds to a set of N linear
equations that we can solve for the unknown X(n). Because the unknowns appear on the
left-hand side of Eq. (5.25), this requires only the multiplication of an N-component vec-
tor by an N X N matrix.

Tt will simplify the notation if we let W = ¢~>"¥ making the right-hand-side terms of

Eq. (5.25) become xo(k)W”k. To develop the FFT algorithm, suppose that N = 4. We write
the four equations for this case:

X(0) = W%y (0) + Woxy(1) + Woxy(2) + Woxy(3),

X(1) = WOy (0) + Wlxy(1) + Wxy(2) + W3xy(3),

X(2) = Wox(0) + Wley(1) + Wiry(2) + Wx,(3),

X(3) = WOxy(0) + Wixy(1) + Wxy(2) + Wox,(3).
In matrix form:

X(0) wo wo wo wo

x| _|we wt w2 w? PPy
X) “lwe w2 we we Xo- (2.26)
X(3) we w: we w°

In solving the set of N equations in the form of Eq. (5.26) we will have to make N2 com-
plex multiplications plus N(N — 1) complex additions. Using the FFT, however, greatly
reduces the number of such operations. Although there are several variations on the algo-
rithm, we will concentrate on the Cooley—Tukey formulation.

The matrix of Eq. (5.26) can be factored to give an equivalent form for the set of equa-
tions. At the same time we will use the fact that WO = 1 and Wk =k mod(\).

x| 1t w® 0o o0 1 0 wo o

X2 1 W> 00 [[01 0 W ‘
@ _ 1 , X, 5.27)
x| oo 1 w1 0o w2 o

X(3) 00 1 WwW3jo 10 w?

You should verify that the factored form [Eq. (5.27)] is exactly equivalent to Eq. (5.26) by
multiplying out. Note carefully that the elements of the X-vector are scrambled. (The develop-
ment can be done formally and more generally by representing # and k as binary values, but it
will suffice to show the basis for the FFT algorithm by expanding on this simple N = 4 case.)

By using the factored form, we now get the values of X(n) by two steps (stages), in each
of which we multiply a matrix times a vector. In the first stage, we transform X into x; by
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Xg X1 Xy x
0 ; 0 70 0
1 1 2> 2
XX

2 222 72 1
3 233 >3 3
Figure 5.4

multiplying the right matrix of Eq. (5.27) and x,. In the second stage, we multiply the left
matrix and x,, getting x,. We get X by unscrambling the components of x,. By doing the
operation in stages, the number of complex multiplications is reduced to N llog, (V)]. For
N = 4, this is a reduction by one-half, but for large N it is very significant; if N = 1024,
there are 10 stages and the reduction in complex multiplies is a hundredfold!

It is convenient to represent the sequence of multiplications of the factored form [Eq. (5.27)
or its equivalent for larger N] by flow diagrams. Figure 5.4 is for N = 4 and Figure 5.5 is for ¥
= 16. Each column holds values of Xgrs where the subscript tells which stage is being com-
puted; ST ranges from 1 to 2 for N = 4 and from 1 to 4 for N = 16. [The number of stages, for
N a power of 2, is log,(V).] In each stage, we get x-values of the next stage from those of the
present stage. Every new x-value is the sum of the two x-values from the previous stage that

X0 1 X2 X3 X4 x
0 — ° 7 ° o~ 0 o~ O 0
AN/ SANARD=o= g S —
7 8 4
RN/ C St .
NN/ XX ] iy )
S\W:::ﬁS XX s - 1o
6 6 & 6 \lix 6 6 6 6
7 0 7 7 1 7 4= 7 14
8 8 7 8 3 8 i 8 1
9 & 9 9 5= 9 o= 9 9
10 W\i 10 j 10 /\1(3x 10 3 10 5
11/ in ><><:C i - 1 10~ 11 5=1u 13
12 /\\& 12 2612 12 3 12 3
12X 6
13 / 8 13 12> 13 13 =B -1
[\ °
14 14 &%14 14>~ 14 == 14 7
157 8 15 12> 15 14— 15 ZIS> 15 ——— 1§

Figure 5.5



5.4: An Application of Numerical Integration—Fourier Series and Fourier Transforms 293

connect to it, with one of these multiplied by a power of W. The diagram tells which xg terms
are combined to give an xgp | term, and the numbers shown within the lines are the powers of
W that are used. For example, looking at Figure 5.5 we see that

%,(6) = x)(2) + Wex(6),
x;(13) = x,(13) + WOx,(15),
x409) = x55(8) + Wx,(9), and so on.
The last columns in Figures 5.4 and 5.5 indicate how the final x-values are unscrambled
to give the X-values. This relationship can be found by expressing the index k of x in the last

stage as a binary number and reversing the bits; this gives » in X(n). For example, in Figure
5.5 we see that x,(3) = X(12) and x,(11) = X(13). From the bit-reversing rule, we get

3 =0011, —> 1100, = 12, 11 = 1011, — 1101, = 13.

Observe also that the bit-reversing rule can give the powers of W that are involved in
computing the next stage. For the last stage, the powers are identical to the numbers
obtained by bit reversal. At each previous stage, however, only the first half of the powers
are employed, but each power is used twice as often. It is of interest to see how we can gen-
erate these values. Computer languages that facilitate bit manipulations make this an easy
job, but there is a good alternative. Observe how the powers in Figure 5.4 differ from those
in Figure 5.5 and how they progress from stage to stage. The following table pinpoints this:

Stage N=16
1: 0 2 0 0 0 0 0 0 0 0 8 8 8 8 8 8 8 8
2: 0 3 0 0 0 0 8 8 8 8 4 4 4 4 12 12 12 12
3 0 0 8 8 4 4 12 12 2 2 10 10 6 6 14 14
4: 0 8 4 12 2 10 6 14 1 9 5 13 3011 7 15

Can you see what a similar table for N = 2 would look like? Its single row would be
0 1. Now we see that the row of powers for the last stage can be divided into two halves,
with the numbers in the second half always one greater than the corresponding entry in the
first half. The row above is the left half of the current row with each value repeated. This
observation leads to the following algorithm:

Algorithm to Generate Powers of Win FFT

For N a power of 2, let Q = log,(N)

Initialize an array P of length N to all zeros.
Set st = 1.
Repeat

Double the values of P(k) for k = 1..25t"L,
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Let each P(k + 2871 = P(k) + 1 fork=1..2571 — 1.
Increment stage
Until stage > Q.

The successive new values for powers of W are now in array P.

EXAMPLE 5.8

Use the algorithm to generate the powers of W for N = 8:

Q= log2(8) =3.
K 0 1 2 3 4 5 6 7
Initial P array: 0 0 0 0 0 0 0 0
ST = 1, doubled: 0 0 0 0 0 0 0 0
add 1: 0 1 0 0 0 0 0 0
ST = 2, doubled: 0 2 0 0 0 0 0 0
add 1: 0 2 1 3 0 0 0 0
ST = 3, doubled: 0 4 2 6 0 0 0 0
add 1: 0 4 2 6 1 5 3 7

The last row of values corresponds to the bits of the binary numbers 000 to 111, after reversal.
B

Our discussion has assumed that N is a power of 2; for this case, the economy of the FFT
is a maximum. When N is not a power of 2 but can be factored, there are adaptations of the
general idea that reduce the number of operations, but they are more than Nlog,(N). See
Brigham (1974) for a discussion of this as well as a fuller treatment of the theory behind FFT.

More recently, there has been interest in another transform, called the discrete Hartley
transform. A discussion of this transform would parallel our discussion of the Fourier trans-
form. Moreover, it has been shown that this transform can be converted into a fast Hartley
transform (FHT) that reduces to N log,(V) computations. For a full coverage of the FHT, one
should consult Bracewell (1986). The advantages of the FHT over the Fourier transform are
its faster and easier computation. Moreover, it is easy to compute the FFT from the Hartley
transform. However, the main power of the FHT is that all the computations are done in real
arithmetic, so that we can use a language like Pascal that does not have a complex data type.
An interesting and easy introduction into the FHT is found in O’Neill (1988).

An Algorithm to Perform a Fast Fourier Transform

Given n data points, (x,, f,), i =0, ..., n — 1 (with n a power of 2) and x on
[0..27]:

Setyr,=f,i=0,...,n— 1
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Setyi,=0,i=0,...,n— L

Set ¢, = cosim/n),i =0,...,n— 1.

Set s, = sin2imw/n),i=0,...,n— L.

Set numstages = log,(n)

Setpi=0,i=0,...,n~l

For stage = 1 To numstages Do
Setp,=2p,i=1,..., 2stage-1
Setp, ,=p;,+1,i=0,..., 28!

End Do (For stage)
Set stage = 1

Set nsets = 1

Set del = n/2
Setk=0

Repeat

For set = 1 To nsets Do
For i = 0 To n/nsets — 1 Do

Setj = i Mod del + (set — 1) * del * 2

Set € = Prouacn

Set yyr, = yr; + Ce: Yjeael ~ St * Vit dor
Set yyi, = yi; + €% Yirga = S¢ ™ Yitaer

Setk=k+1
End Do (For i).
End Do (For set).
Setyr, = yyr,i=0, ... ,n—1L
Setyl, = yyi,i=0, ....,n—1

Set stage = stage + 1,
Set nsets = nsets * 2.
Set del = del/2.
Setk = 0.

Until stage > numstages.

(These are the trigonometric
values that are used.)

(The number of stages)
(Use the previous alogrithm
to get “bit reversal” values)

(These values
are for the
first stage—

k indexes the y-values to be computed.)

(Indexes old y-values)
(Indexes c;, 5; values)

(Reset
values
for
next
stage.)

When terminated, the A’s and B’s of the Fourier series are contained in the yr and yi
arrays. These must be divided by »/2 and should be unscrambled using the p-array
values as indices.

Note: If the f; are complex numbers, set the imaginary parts into array yi.

EXAMPLE 5.9 Use the FFT algorithm to obtain the finite Fourier series coefficients for the same data as in

Table 5.12 [These are perturbed values from

f®) = 2.3 + 1.5 cos(®) — 0.5 sin(r) + 4 sin(4¢).]
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A computer program that implements the algorithm gave these results:

n A, B,
0 4.6017
1 1.4993 —0.4994
2 0.0017 -0.0010
3 0.0003 —0.0005
4 0.0015 3.9990
5 0.0019 0.0009
6 —0.0004 -0.0009
7 -0.0003 -0.0019
8 0.0017 —0.0008
9 —0.0023 0.0019
10 —0.0024 -0.0011
11 0.0003 0.0020
12 0.0008 —0.0033
13 —0.0004 0.0011
14 0.0025 0.0003
15 —0.0005 0.0013
16 —0.0010

The results are essentially the same as those of Example 5.6, which were computed by the

trapezoidal rule.
Observe that we compute exactly as many A’s and B’s as there are data points. This is
not only reasonable (we cannot “manufacture” information) but is in accord with informa-

tion theory.
B

Information Theory — The Sampling Theorem

In performing a discrete Fourier transform, we work with samples of some function of ¢,
f(®. We normally have data taken at evenly spaced intervals of time. If the interval between
samples is D sec, its reciprocal, 1/D, is called the sampling rate (the number of samples per
second).

Corresponding to the sampling interval, D, is a critical frequency, called the Nyquist
critical frequency, f,, where

fo==D
c 2 *

The reason this is a critical frequency is seen from the following argument. Suppose we
sample a sine wave whose frequency is f, and get a value corresponding to its positive
peak amplitude. The next sample will be at the negative peak, the next beyond that at
the positive peak, and so on—that is, critical sampling is at a rate of two samples per
cycle. We can construct the magnitude of the sine wave from these two samples. If the
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frequency is less than f,, we will have more than two samples per cycle and again we
can construct the wave correctly. On the other hand, if the frequency is greater than f,,
we have fewer than two samples per cycle and we have inadequate information to
determine (7).

The significance of this theorem is that if the phenomenon described by f(7) has no fre-
quencies greater than f,, then f(7) is completely determined from samples at the rate 1/D.
Unfortunately, this also means that if there are frequencies in f(#) greater than f,, all these
frequencies are spuriously crowded into the range [0, f,], causing a distortion of the power
spectrum. This distortion is called aliasing.

All of this is very clear if we think of the results of an FFT on the samples. If we have N
samples of the phenomenon, we certainly cannot determine more than a total of exactly N
of the Fourier coefficients, the A’s and B’s. The last of these will be A, , (assuming an even
number of samples). We see that this corresponds to the Nyquist frequency.

Adaptive Integration

The trapezoidal rule and Simpson’s % rule are often used to find the integral of f(x) over a
fixed interval [a, b] using a uniform value for Ax. When f(x) is a known function, we can
choose the value for Ax = h arbitrarily. The problem is that we do not know a priori what
value to choose for A to attain a desired accuracy. Romberg-type integration is a way to
find the necessary h. We start with two panels, 1 = h; = (b — a)/2, and apply one of the
formulas. Then we let h, = h /2 and apply the formula again, now with four panels, and
compare the results. If the new value is sufficiently close, we terminate and use a
Richardson extrapolation to further reduce the error. If the second result is not close
enough to the first, we again halve /1 and repeat the procedure. We continue in this way
until the last result is close enough to its predecessor.
We illustrate this obvious procedure with an example.

EXAMPLE 5.10

Integrate f(x) = 1/x? over the interval [0.2, 1] using Simpson’s % rule. Use a tolerance value

of 0.02 to terminate the halving of 4 = Ax. From calculus, we know that the exact answer
is 4.0.

We introduce a special notation that will be used throughout this section:
S, la, b] = the computed value using Simpson’s % rule with Ax = h, over |a, b].

If we use this notation, the composite Simpson rule becomes

1) = sia 0l = LoD niyore), a<e<n

Using this with ; = (1.0 — 0.2)/2 = 0.4, we compute S, [0.2, 1.0]. We continue halv-
ing , h, ., = h,/2, computing its corresponding S, , ,[a, b] until |S, ; — S | < 0.02, the
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tolerance value. The following table shows the results:

n hn Sn |Sn+1 - Snl
1 04 4.948148
0.761111
2 0.2 4,187037
0.162819
3 0.1 4.024218
0.022054
4 0.05 4002164
0.002010
5 0.025 4.000154

From the table we see that, at n = 5, we have met the tolerance criterion, because |§ PR 4l

< 0.02. A Romberg extrapolation gives

S5 - S4
15

RS[a, b} = S5 + = 4.00002.

(We use RS|a, b] to represent the Romberg extrapolation from Simpson’s rule.)

The Adaptive Scheme

Using the same value for & throughout the interval may be disadvantageous because the
behavior of f(x) may not require such uniformity. Consider Figure 5.6. It is obvious that, in
the subinterval [c, b], k can be much larger than in subinterval [a, c], where the curve is
much less smooth. We could subdivide the entire interval [a, b] nonuniformly by personal
intervention after examining the graph of f(x). We prefer to avoid such intervention.
Adaptive integration automatically allows for different 4’s on different subintervals of
[a, b], choosing values adequate for a specified accuracy. We do not specify where the size

fix)

™

a c b

Figure 5.6
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change for A occurs; this can occur anywhere within it. We use something like a binary
search to locate the point where we should change the size of h. Actually, the total interval
{a, b] may be broken into several subintervals, with different values for 2 within each of
them. This depends on the tolerance value, TOL, and the nature of f(x).

To describe this strategy, we repeat the preceding example to find the integral of f(x) =
1/x* between x = 0.2 and x = 1. We choose a value for TOL of 0.02, and do the computa-
tions in double precision to minimize the effects of round off.

We begin as before by specifying just two subintervals in [a, b]. The first computation
is a Simpson integration over [0.2, 1] with &; = 0.4. The result, which we call §,[0.2, 1], is
4,94814815. The next step is to integrate over each half of [0.2, 1] but with 4 half as large,
h, = 0.2. We get

S,[0.2,0.6] = 3.51851852 and S,[0.6, 1] = 0.66851852.

We now test the accuracy of our initial computations by seeing whether the difference
between §,[0.2, 1] and the sum of §,[0.2, 0.6] and §,[0.6, 1] is greater than TOL.
(Actually, we compare the magnitude of this difference.)

5,102, 1] = (5,102, 0.6] + S,[0.6, 1]) = 0.7611111.

Because this result is greater than TOL = 0.02, we must use a smaller value for A.

We continue by applying the strategy to one-half of the original interval. We arbitrarily
choose the right half and compute S,[0.6, 1] with 2 = h, = (1 — 0.6)/2 = 0.2, comparing
it to $5[0.6, 0.8] + 55[0.8, 1] (both of these use h; = h,/2 = 0.1). We also halve the value
for TOL, getting

S,[0.6, 1] — (55[0.6, 0.8] + §5[0.8, 1]) = 0.66851852 — (0.41678477 + 0.25002572)
= 0.66851852 - 0.66681049
= (.001708 versus TOL = 0.01.

This passes the test, so we take advantage of the results that we have available and do a
Richardson extrapolation to get
1
RS[0.6, 1] = 0.66681049 + 15 (0.66681049 — 0.66851852)

= 0.66669662.

We now move to the next adjacent subinterval, [0.2, 0.6], and repeat the procedure. We
compute

$,[0.2, 0.6] = 3.51851852, with A, = 0.2;
§,[0.2, 0.4] = 2.52314815; §5[0.4, 0.6] = 0.83425926;
5,00.2,0.6] — (55[0.2, 0.4] + S5[0.4, 0.6]) = 0.161111 versus TOL = 0.01,
which fails, so we proceed to another level with the right half:
§,[0.4, 0.6] = 0.83425926, with h, = 0.1;
5,[0.4, 0.5] = 0.50005144; 5,10.5, 0.6] = 0.333348064;
5300.4, 0.6] — (5,[0.4, 0.5] + §,[0.5, 0.6]) = 0.000859 versus TOL = 0.005,
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which passes. We extrapolate:
RS[0.4, 0.6] = 0.8333428.

The next adjacent interval is [0.2, 0.4]. For this we use TOL = 0.005. We find that this
does not meet the criterion, so we next do [0.3, 0.4]. We do meet the TOL level of 0.0025:

§,00.3, 0.4] 0.83356954, with i, = 0.05;
§5[0.3, 0.35] = 0.47620166; §5[0.35, 0.4] = 0.35714758;
§400.3, 0.4] — (55[0.3, 0.35] + §5[0.35, 0.4]) = 0.000220 versus TOL = 0.0025,
which passes, so
RS[0.3, 0.4] = 0.83333492.

Our last subinterval is [0.2, 0.3]. We find that we again meet the test. We give only the
extrapolated result

RS[0.2, 0.3] = 1.666686.
Adding all of the RS-values gives the final answer:
Integral over [0.2, 1] = 4.00005957.

By employing adaptive integration, we reduced the number of function evaluations from
33to 17.

Bookkeeping and Avoiding
Repeating Function Evaluations

1t should be obvious that we recomputed many of the values of f(x) in the previous inte-
gration. We can avoid these recalculations if we store these computations in such a way as
to retrieve them appropriately. We also need to keep track of the current subinterval, the
previous subintervals that we return to, and the appropriate value for 4 and TOL for each
subinterval. The mechanism for storing these quantities is a stack, a data structure that is a
last-in, first-out device that resembles a stack of dishes in a restaurant. Actually, we use
just a two-dimensional array of seven columns and as many rows as levels that we wish to
accommodate. (Often a large number of levels is provided—say, 200—even though we
hardly ever need so many.)

After an initial calculation to get b, = (b — a)/2, ¢ = a + hy, f(a), f(0), f(b), and S;[a,
b], we store a set of seven values: a, f(a), f(¢), f(b), h, TOL, S[a, b]. We retrieve these val-
ues into variables that represent these quantities and continue with the first stage of the
computations.

Whenever the test fails after computing for the current subinterval, we store two sets of
values in two rows of the seven columns:

First row: a, f(a), f(d). f(c), h,, TOL, S[a, cI,
Next row: ¢, f(c), f(e), f(b), h,, TOL, S[c, b] <~ TOP,
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where the letters a, d, ¢, e, b refer to points in the last subinterval that are evenly spaced from
left to right in that order. We also use a pointer to the last row stored. It is named TOP to indi-
cate it is the “top” of the stack (even though it points to the last row stored as we normally view
an array). Whenever we store a set of vatues, we add one to TOP; whenever we retrieve a set of
values, we subtract one so that TOP always points to the row that is next available for retrieval.

We begin each iteration by retrieving the row of quantities pointed to by TOP (the one
labeled ‘“Next row” above). In this way, we can reuse the previously computed function
values to get values for computing the rightmost remaining subinterval. (Observe that the
next subinterval begins at the c-value for the last subinterval.)

The following algorithm implements the adaptive integration scheme that we have
described.

An Algorithm for Computing I( f) = f% f(x) dx
with an Adaptive Procedure ‘

Set Value = 0.0.
Evaluate: hi = (b —a)2,c=a+ h;, Fa=fla),
Fe = f(c), F(b) = f(b), Sab = §,(a, b)
Store (a, Fa, Fc, Fb, h;, Tol, Sab).
Set top = 1.
Repeat
Retrieve (a, Fa, Fc, Fb, hy, Tol, Sab).
Set top = top — 1.
Evaluate: b, = h,/2,d = a + h,, e = a + 3h,y, Fd = f(d),
Fe = fe),
Sac = §,(a, ©), Scb = §,(c, b), S,(a, b) = Sac + Scb.
If 1S2(a, b) — S,(a, b)| < Tol Then
Compute RS(a, b),
Value = Value + RS(a, b),

Else
h; = h,, Tol = Tol/2,
Set top = top + 1,
Store(a, Fa, Fd, Fc, hy, Tol, Sac),
Settop = top + 1,
Store(c, Fc, Fe, Ib, hy, Tol, Scb),
Until top = 0.

I(f), the value of the integral, is in variable Value.

5.6 Gaussian Quadrature

Our previous formulas for numerical integration were all predicated on evenly spaced
x-values; this means the x-values were predetermined. With a formula of three terms,
then, there were three parameters, the coefficients (weighting factors) applied to each of
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the functional values. A formula with three parameters corresponds to a polynomial of
the second degree, one less than the number of parameters. Gauss observed that if we
remove the requirement that the function be evaluated at predetermined x-values, a
three-term formula will contain six parameters (the three x-values are now unknowns,
plus the three weights) and should correspond to an interpolating polynomial of degree-
5. Formulas based on this principle are called Gaussian quadrature formulas. They can
be applied only when f(x) is known explicitly, so that it can be evaluated at any desired

value of x.
We will determine the parameters in the simple case of a two-term formula containing

four unknown parameters:

1
ﬁ 1f(r) = qgf(t;) + bf(ty).

The method is the same as that illustrated in the previous section, by determining unknown
parameters. We use an integration interval that is symmetrical about the origin, from —1 to
1 to simplify the arithmetic, and call our variable 7. (This notation agrees with that of most
authors. As the variable of integration is only a dummy variable, its name is unimportant.)
Our formula is to be valid for any polynomial of degree-3; hence it will hold if f(z) = £,

f@&) =2, f@) =t,and f() = 1

1
fo = 8 f £de=0=ar} + bt
-1

1
2
) =r* f 2dt = 3= at? + bt}; (5.28)
-1

1
f=r f tdt =0 =at, + bty
1

1
@) = 1; fdt=2=a+b.
-1

Multiplying the third equation by #2, and subtracting from the first, we have
0 =0+ b[13 — 1,131 = b1ty — 1))(t, + 1)) (5.29)

We can satisfy Eq. (5.29) by either b = 0,1, = 0,1, = 1,, or t; = —t,. Only the last of
these possibilities is satisfactory, the others being invalid, or else reduces our formula to
only a single term, so we choose #; = —2,. We then find that

a=b=1,
=—t = \{L = 0.5773
l.2 - 1 - 3 - . .
1
J f@ dt = f(—0.5773) + f(0.5773).
-1

It is remarkable that adding these two values of the function gives the exact value for the
integral of any cubic polynomial over the interval from —1 to 1.
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Suppose our limits of integration are from a to b, and not —1 to 1 for which we derived
this formula. To use the tabulated Gaussian quadrature parameters, we must change the
interval of integration to (—1, 1) by a change of variable. We replace the given variable by
another to which it is linearly related according to the following scheme:

If we let

b—ayp+b+a

b_.
x = 5 sothatdx=< 2a>dt,

be(x)dx: b—aj‘f((b—a)z‘+b+a>dr.
. 2 ) 2

then

EXAMPLE 5.11

BEvaluate I = [ sin x dx. (It is not hard to show that 7 = 1.0, so we can readily see the
error of our estimate.)

To use the two-term Gaussian formula, we must change the variable of integration to
make the limits of integration from —1to 1.
Let

/2t + 72
x = E)—z—-w—, sodx = —Z—:—dt.
Observe that when t = —1, x = 0; when t = 1, x = 7/2. Then

a (U (w+m
I= —4—f1 sm(——r) dr.

The Gaussian formula calculates the value of the new integral as a weighted sum of two
values of the integrand, at 1 = —0.5773 and at = 0.5773. Hence,

I= % [(1.0)sin(0.10566 7)) + (1.0)(sin(0.39434m))]

= (.99847.
The error is 1.53 X 1073,

The power of the Gaussian method derives from the fact that we need only two func-
tional evaluations. If we had used the trapezoidal rule, which also requires only two evalu-
ations, our estimate would have been (7/4)(0.0 + 1.0) = 0.7854, an answer quite far from
the mark. Simpson’s % rule requires three functional evaluations and gives 7 = 1.0023,
with an error of —2.3 X 1073, somewhat greater than for Gaussian quadrature.

Gaussian quadrature can be extended beyond two terms. The formula is then given by

n

1
f f@®dt = wf(t),  fornpoints. (5.30)
-1

i=1
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This formula is exact for functions f(¢) that are polynomials of degree 2n — 1 or less!
Moreover, by extending the method we used previously for the 2-point formula, for each n
we obtain a system of 2n equations:

0, fork=1,3,5...,2n—1;
with+ o+ wpk = 2 fork=0,2,4,...,2n — 2.
k+1°

This approach is obvious. However, this set of equations, obtained by writing f(7) as a suc-
cession of polynomials, is not easily solved. We will use an approach that is easier than the
methods for a nonlinear system that we used in Chapter 1.

It turns out that the ¢;’s for a given n are the roots of the nth-degree Legendre polyno-
mial. The Legendre polynomials are defined by recursion:

(n+ DL, (x) = 2n+ DxL (x) +nL,_,(x) =0,

with L) =1,  L,(x) =«

Then L,(x) is

L) ~ WL _ 3 , 1

L ==
2%) 2 2 2

L]

whose zeros are *= \g = +.5773, precisely the 7-values for the two-term formula.
By using the recursion relation, we find

5x%% — 3x
L =
3(x) )
35x* — 30x% + 3
Lix) = 3 , and so on.

The methods of Chapter 1 allow us to find the roots of these polynomials. After they
have been determined, the set of equations analogous to Eq. (5.28) can easily be solved for
the weighting factors because the equations are linear with respect to these unknowns.

Table 5.13 lists the zeros of Legendre polynomials up to degree-5, giving values that we
need for Gaussian gquadrature where the equivalent polynomial is up to degree-9. For
example, L,(x) has zeros at x = 0, +0.77459667, and —0.77459667.

Before continuing with another example of the use of Gaussian quadrature, it is of inter-
est to summarize the properties ot Legendre polynomials.

1. The Legendre polynomials are orthogonal over the interval [—1, 1]. That is,

=0ifn # m;
>0ifn = m.

1
f L, (x)L,(x) dx {
1
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Table 5.13 Values for Gaussian quadrature

Number of Weighting Valid up to
terms Values of ¢ factor degree
2 —0.57735027 1.0 3

0.57735027 1.0
3 —0.77459667 0.55555555 5
0.0 0.88888889
0.77459667 0.55555555
4 —0.86113631 0.34785485 7
—0.33998104 0.65214515
0.33998104 0.65214515
0.86113631 0.34785485
5 —0.90617975 0.23692689 9
—0.53846931 0.47862867
0.0 0.56888889
0.53846931 0.47862867
0.90617975 0.23692689

This is a property of several other important functions, such as {cos(nx), n = 0,
1,...}. Here we have

=0ifn # m;
>0ifn =m.

2
f cos(mx)cos(nx) dx {
0

In this case, we say that this function is orthogonal over the interval [0, 277].
2. Any polynomial of degree n can be written as a sum of the Legendre polynomials:

P = YL,

i=0
3. The nroots of L (x) = 0 lie in the interval [—1, 1].
Using these properties, we are able to show that Eq. (5.30) is exact for polynomials of

degree 2n — 1 or less.

The weighting factors and #-values for Gaussian quadrature have been tabulated. [Love,

(1966) gives values for up to 200-term formulas.] We are content to give a few of the val- -
ues in Table 5.13.

Maple can produce the Legendre polynomials:

>with (orthopoly) ;
>f(x): =P(4,%);

35 . 15 3
b4 x4 +

>plot (f(x),x=—1..1);
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and we see from the plot that the graph crosses the x-axis at the values of the ¢-values of

Table 5.13.
Example 5.12 illustrates the use of the four-term formula.

“XAMPLE 5.12  Repeat Example 5.4, but use the four-term Gaussian formula. Compare to the result of
Example 5.4. We are to evaluate
26
I= j e *dx.
02

We change to variable ¢ for limits [—1, 1]:

26 - 02+ 26+ 02
x = 5

=12t + 14.

So that
I = _2_6____0_.2_[1 e—(1,21+1.4) ds
2 -1

— 1.2[0.3478 L e—[1.2(—0.8611 ..o t14]
+ 0.6521 . .. e—[l.2(—~0.3398. .o)+1.4]
+0.6521 .. ¢ (1203398, . )+14]
+ 0.3478 . .. e~[1.2(0.8611 .. .)+1.4]]

= (.68833, whose error is —0.00032.

This error is less than the error from Simpson’s 1/3 Rule with six intervals (its error
is —0.00041) and less than the error with the trapezoidal rule with 18 intervals (its error is

—0.00056).
B
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Improper Integrals

W1

Because Gaussian quadrature does not use the value of the integrand at the endpoints, it
would seem that it could evaluate some improper integrals, those with a singularity at an
end of the interval of integration. Analytically, a convergent improper integral is handled
by substitutions and taking limits. How does the Gaussian technique work on

*odx
04—"‘)6

=4

Using the fourth-order formula with endpoints of [0, 4] gives 3.6127 as a result—not very
good. If we add the results for two intervals, [0, 3.9] and [3.9, 4], we get 3.8883. This is
better, but still not close. This could be extended. As with the other kinds of numerical
integration, when the integrand increases extremely rapidly, we have trouble.

We might hope to evaluate

J 2dx =2 =15708 ...
0 X + 1

if we use a very large number for the upper limit. The four-term formula gets 0.03992
when the interval is [0, 1000]. Adding the results for [1000, 10000], which is only 0.00856,
and that for {10000, 100000] which is 0.000085 still does not help. Even though the inte-
grand is very small at large values of x, there is still considerable area under the curve.

Mulitiple ntegrals

When we need the definite integral of z = f(x, y) over a region defined by limit values for

x and y, we do multiple integration. In calculus, you learned that a double integral can be
evaluated as an iterated integral. So we write

b d d b
”Af(x,y) dA =J (ff(x,y) dy>dx= f (j fG,y) dx) dy. {3.3D)

In Eq. (5.31), the region is the rectangle bounded by the lines
x=a, x=b, y=c, y=d.

The region does not have to be a rectangle; the limits ray not be constants, but we post-
pone that situation. In computing the iterated integrals, we hold x constant while integrat-
ing with respect to y (vice versa in the second case).

We can easily adapt the previous integration formulas to get a multiple integral. Recall
that any one of the integration formulas is just a linear combination of values of the func-
tion, evaluated at varying values of the independent variable. In other words, a quadrature
formula is just a weighted sum of certain functional values. The inner integral is written
then as a weighted sum of function values with one variable held constant. We then add
together a weighted sum of these sums. If the function is known only at the nodes of a
rectangular grid through the region, we are constrained to use these values. The
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Newton—Cotes formulas are a convenient set to employ. There is no reason why the same
formula must be used in each direction, although it is often particularly convenient to do so.

EXAMPLE 5.13

We illustrate this technique by evaluating the integral of the function of Table 5.14 over the
rectangular region bounded by

x=15, x =30, y=0.2, y = 0.6.

Let us use the trapezoidal rule in the x-direction and Simpson’s % rule in the y-direction.
(Because the number of panels in the x-direction is not even, Simpson’s % rule does not
apply readily.) It is immaterial which integral we evaluate first. Suppose we start with y
being constant:

30 30 A
y=02; flsf(x,y)dx:jlsf(x,O.Z)dX:‘z—(fl+2f2+2f3+f4)

= ~02—5- [0.990 + 2(1.568) + 2(2.520) + 4.090]
= 3.3140;
30 0.5
y=103: f(x, 03)dx = N [1.524 + 2(2.384) + 2(3.800) + 6.136]
13

= 5.0070.
Similarly, at
y =04, I =6.6522;
y = 0.5, I = 8.2368;
y = 0.6, I =9.7435.

We now sum these in the y-direction according to Simpson’s rule:

flx, y)ydx = —03—1 [3.3140 + 4(5.0070) + 2(6.6522) + 4(8.2368) + 9.7435]

= 2.6446

-]
Table 5.14 Tabulation of a function of two variables, u = f(x, y)
x J 0.1 0.2 0.3 0.4 0.5 0.6
0.5 0.165 0.428 0.687 0.942 1.190 1.431
1.0 0.271 0.640 1.003 1.359 1.703 2.035
1.5 0.447 0.990 1.524 2.045 2.549 3.031
2.0 0.738 1.568 2.384 3.177 3.943 4.672
2.5 1.216 2.520 3.800 5.044 6.241 7.379
3.0 2.005 4.090 6.136 8.122 10.030 11.841
3.5 3.306 6.679 9.986 13.196 16.277 19.198
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(In this example, our answer does not check well with the analytical value of 2.5944
because the x-intervals are large. We could improve our estimate somewhat by fitting a
higher-degree polynomial than the first to provide the integration formula. We can even
use values outside the range of integration for this, using undetermined coefficients to get
the formulas.)

The previous example shows that double integration by numerical means reduces to a
double summation of weighted function values. The calculations we have just made could
be written in the form

ﬁmww@=EWEMg
j=1 i=1
Ax

=3 5 [(fia T 2 + 2650 T fa0)

A, + Uyt Uy i)
+fist s+ 255 Tl

1t is convenient to write this in pictorial operator form, in which the weighting factors are
displayed in an array that is a map to the location of the functional values to which they are
applied.

>

1 4 2 41
Ay Ax |2 8 4 8 2 i}
ff(x,y)dxdy— 3 212 8 4 38 Zfi,j- (5.32)
1 4 2 4 1

We interpret the numbers in the array of Eq. (5.32) in this manner: We use the values 1,
4,2, 4, and 1 as weighting factors for functional values in the top row of the portion of
Table 5.14 that we integrate over (values were x = 1.5 and y varies from 0.2 to 0.6).
Similarly, the second column of the array in Eq. (5.32) represents weighting factors that
are applied to a column of function values where y = 0.4 and x varies from 1.5 to 3.0.
Observe that the values in the pictorial operator of Eq. (5.32) follow immediately from the
Newton~ Cotes coefficients for single-variable integration.

Other combinations of Newton—Cotes formulas give similar results. It is probably eas-
iest for hand calculation to use these pictorial integration operators, Pictorial integration is
readily adapted to any desired combination of integration formulas. Except for the diffi-
culty of representation beyond two dimensions, this operator technique also applies to
triple and quadruple integrals.

There is an alternative representation to such pictorial operators that is easier to trans-

late into a computer program. We also derive it somewhat differently. Consider the numer-
ical integration formula for one variable

1 n
fjmmmzwm> (5.33)
- i=1

We have seen in Section 5.3 that such formulas can be made exact if f(x) is any polynomial
of a certain degree. Assume that Eq. (5.33) holds for polynomials up to degree s.
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We now consider the multiple integral formula

1 1 1 nonoRn
J 1 f f lf(x, ¥,z)dxdydz = 2 2 2 aa;a f(x;, vy 20)- (5.34)
-1J-1J- i=1j=1k=1

We wish to show that Eq. (5.34) is exact for all polynomials in x, y, and z up to degree
5. Such a polynomial is a linear combination of terms of the form x* y® z7, where a, B8, and
v are nonnegative integers whose sum is equal to s or less. If we can prove that Eq. (5.34)
holds for the general term of this form, it will then hold for the polynomial.

To do this we assume that

fx,y,2) = x%BzY,

Then, because the limits are constants and the integrand is factorable,

(L)l <)

Replacing each term according to Eq. (5.34), we get,

I= (2 ﬂﬂf‘) (2 aﬂf)(E akzg) =3 a;x% > ayf > az]. (5.35)
j=1 k=1 i=1 k=1

i=1 j=1

We need now an elementary rule about the product of summations. We illustrate it for a

simple case. We assert that
3 2 3 /2
(Z0)(3)- 2 (5
i=1 =1 i=1 \j=1

= (u; +uy +ugdlv, tvy)

= Uy Uy, + vy + UV, + ugvy + UsVs}
3 2
E 2 uy; = (v + uv,y) + (v + UyV,) T+ (Ugvy T UgVy).

On removing parentheses, we see the two sides are the same. Using this principle, we can
write Eq. (5.35) in the form
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=233 2 agaxiyfz], (5.36)
k=1

i=1j=1

which shows that the questioned equality of Eq. (5.34) is valid, and we can write a program
for a triple integral by three nested DO loops. The coefficients a; are chosen from any
numerical integration formula. If the three one-variable formulas corresponding to Eq.
(5.34) are not identical, an obvious modification of Eq. (5.36) applies. In some cases a
change of variable is needed to correspond to Eq. (5.33).

If we are evaluating a multiple integral numerically where the integrand is a known
function, our choice of the form of Eq. (5.33) is wider. Of higher efficiency than the
Newton-Cotes formulas is Gaussian quadrature. Because it also fits the pattern of Eq.
(5.33), the formula of Eq. (5.36) applies. We illustrate this with a simple example.

EXAMPLE 5.14

Evaluate

1 |0 1
Izj J J yze* dx dy dz
o J-1J1

by Gaussian quadrature using a three-term formula for x and two-term formulas for y and
z. We first make the changes of variables to adjust the limits for y and z to (—1, 1):

1 1
y=—2—(u—1), dy=?du;

1 1
=—@+1), dz=—av
Z 2(v ) 7 2dv

1 1 1 1
= ——-J J J (u — D + De*dx du dv.
6 J-1J-1)a

The two- and three-point Gaussian formulas are, from Section 5.6,

Our integral becomes

1
J f) dx = (1)f(—0.5774) + (1)£(0.5774),
-1

1
L &) dx = (%) £(—0.7746) + (%) £(0) + (%) £(0.7746).

The integral is then

1 2 2 3
=—2 2 2 aabdu; + 1) — De,
16 555
1, a, = ].,
5 8 5
b framiad -———’ b = -——’ - = —-—-’
1= 2=y b=

and values of u, v, and x as given.
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A few representative terms of the sum are

I= % [(1)(1)(3) (—0.5774 + 1)(~0.5774 — 1)e~ 07446
+ (1)(1)(%) (—0.5774 + 1)(—0.5774 — I)e?
+ (1)(1)(%) (—0.5774 + 1)(—0.5774 — 1)e07%6

)(0.5774 + 1)(~0.5774 — 1)e=076

oL

+ (1)(1)<

+}

On evaluating, we get [ = —0.58758. The analytical value is

1
7 (e — e 1)y = —0.58760.

MATLAB can solve Example 5.14:

EDU>> int (int(int (‘y*z*exp(x)’, 'x’,—1,1),'y',=1,0),'2",0,1)
ans =
—1/4*exp (1) +1/4%exp(—1)
EDU>> numeric(ans)
ans =
—0.5876

and both the analytical and numeric results are obtained.

Integrating with Variable Limits

As we said, the region for which we want the integral does not have to be a rectangle.

Suppose we want to integrate
jff(x,y)dydx

over the region bounded by the lines x = 0, x = 1, y = 0, and the curve y = x2 + 1.
The region is sketched in Figure 5.7. If we draw vertical lines spaced at Ax = 0.2 apart,
shown as dashed lines in Figure 5.7, it is obvious that we can approximate the inner
integral at constant x-values along any one of the vertical lines (including x = 0 and
x = 1). If we use the trapezoidal rule with five panels for each of these, we get the
series of sums

h
S, =—51—(fa+2fb+2fc+2fd+2fe + £,
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h
%=fﬁp@&+%+%+%+@,

h
53273(f1n+2fn+“.)’

=%(fu+2fv+2fw+2ﬁc+2fy+ﬁ).

The subscripts here indicate the values of the function at the points so labeled in
Figure 5.7. The values of the &, are not equal in each of the equations, but in each they are

the vertical distances divided by five. The combination of these sums to give an estimate of
the double integral will then be

0.2
Integral = TN (§; + 285, + 28, + 2§, + 285 + Sp).

To be even more specific, suppose that f(x, y) = xy. Then,
1.0/5
S, =—F— > O+0+0+0+0+0) =

1.04/5
S, = S (0 + 0.0832 + 0.1664 + 0.2496 + 0.3328 + 0.208) = 0.1082,

116/
S, =

(0 + 0.1856 + 0.3712 + 0.5568 + 0.7424 + 0.464) = 0.2691,
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1.36/5
S, = Y (0 + 0.3264 + 0.6528 + 0.9792 + 1.3056 + 0.816) = 0.5549,

1.64/5
S = 5 (0 + 0.5248 + 1.0496 + 1.5744 + 2.0992 + 1.312) = 1.0758,

2.0/5
Sg="5—(0+08+1.6+24 +32+20) =20,

0.2
Integral = BN (0 + 0.2164 + 0.5382 + 1.1098 + 2.1516 + 2.0)

= 0.6016 versus analytical value of 0.583333.

The extension of this to more complicated regions and the adaptation to the use of
Simpson’s rule should be obvious. If the functions that define the region are not single-
valued, we must divide the region into subregions to avoid the problem, but we must also
do this when we integrate analytically.

The previous calculations were not very accurate because the trapezoidal rule has rel-
atively large errors. Gaussian quadrature should be an improvement, even using fewer
points within the region. Let us use three-point quadrature in the x-direction and four-
point quadrature in the y-direction. As in Section 5.6, we must change the limits of

integration:
1 xX2+1
xy dy dx
0 Jo

LJ] fl s+ 1 [(xz(s)-l-1)t+(x2(s)+1)}dtds
4 )40 2 2

to

in which we make the following substitutions:
s+1 CGH) D+ )+ D
2 Y 2 '
The integral is approximated by the sum
3 4
2 2 wiWif(s, 1),
i=1j=1
where the w’s, Wj’s, si’s, and ¢.’s are the values taken from Table 5.13. Using that table, we
set w; = 0.55555555, wy = wy, and w, = 0.88888889; we set 5; = —0.77459667,
§3 = —sy, and s, = 0.0. The values for the Wj’s and t.’s are obtained in the same way. For
each fixed i, i = 1, 2, 3, let S, be the corresponding value obtained using Gaussian quadra-
ture for a fixed s, where S, = 3¢_ W f(s;, 1;).
The following intermediate values are easily verified:
S, = (0.00279158 + 0.02487506 + 0.05050174 + 0.03741447) = 0.11558285,
S, = (0.01886891 + 0.16813600 + 0.34135240 + 0.25289269) = 0.78125000,

Sy = (0.06845742 + 0.61000649 + 1.23844492 + 0.91750833) = 2.83441716.

x =
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We sum these values as follows:

wiSp + w8, + wsS,
4

= 0.58333334,

which agrees with the exact answer to seven places. In this case, we used only 12 evalua-

tions of the function (exceptionally simple to do here, but usually more costly), compared
to the 36 used with the trapezoidal rule.

To keep track of the intermediate computations, it is convenient to use a template such as

I3

5]

f

51 S 53

and to compute the S;’s along the verticals. The points (s;, #;) within the region are often
called Gauss points.

MATLAB has no trouble in solving this problem:

EDU>> int (int (‘x*y’, ‘y*, 0, ’'x*2+1"), ‘x*, 0, 1)
ans =
7/12
EDU>> numeric (ans)
ans =
0.5833

Errors in Multiple Integration and Extrapolations

The error term of a one-variable quadrature formula is an additive one just like the other
terms in the linear combination (although of special form). It would seem reasonable that
it would go through the multiple summations in a similar fashion, so we should expect
error terms for multiple integration that are analogous to the one-dimensional case. We
illustrate that this is true for double integration using the trapezoidal rule in both directions,
with uniform spacings, choosing # intervals in the x-direction and m in the y-direction.
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From Section 5.2 we have

Lw2re) = o),

b _
Erroroff fx)dx = _b12

b—a
—

h:Ax:

In developing Romberg integration, we observed that the error term could be written as
Error = O(h%) = AR + O(h*) = AW? + BR*,
where A is a constant and the value of B depends on a fourth derivative of the function.

Appending this error term to the trapezoidal rule, we get

h
E«ﬁJ+2ﬁJ+2ﬁJ+-~“+hp+Aﬁ2+@m.

b
ff(x,y)dx =
» Y=

i

Summing these in the y-direction and retaining only the error terms, we have
d [b noom k
f(x,y)dxdy~7722 Aoy T o B+ 24+ 24, + e AR

+7(B0+2B1 + 2B, + -+ + B,)h* + Ak> + BK*,

d—c¢
—

k= Ay =

In this, A and B are the coefficients of the error term for y. The coefficients A and B for the
error terms in the x-direction may be different for each of the (m + 1) y-values, but each of
the sums in parentheses is 2n times some average value of A or B, so the error terms
become

k k -
Error = 5 (nA )h? + ) (Bt + Ak* + Bk

Because both Ax and Ay are constant, we may take Ay = k = aAx = «h, where a =
Ay/Ax, and the equation can be written, with nh = (b — a),

b — b —
Error=< > a Aava>h2+<

= K,h? + K,h*.

4 Bava> h* + Ad’h® + Ba'n*

Here, K, will depend on fourth-order partial derivatives. This confirms our expectation that
the error term of double integration by numerical means is of the same form as for single
integration.

Because this is true, a Romberg integration may be applied to multiple integration,
whereby we extrapolate to an O(h*) estimate from two trapezoidal computations at a
2:1 interval ratio. From two such O(h*) computations we may extrapolate to one of
O(h®) error.
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Applications of Cubic Splines

1n addition to their obvious use for interpolation, splines (Chapter 3) can be used for find-
ing derivatives and integrals of functions, even when the function is known only as a table
of values. The smoothness of splines can give improved accuracy in some cases, because
of the requirement that each portion have the same first and second derivatives as its neigh-
bor where they join.

For the cubic spline that approximates f(x), we can write, for the interval x, = x = x,, |,
g(x) = afx — xl.)3 + bix — )cl.)2 +c(x —x) + d,

where the coefficients are determined as in Section 3.3. The method outlined in that sec-
tion computes S, and §,, |, the values of the second derivative at each end of the subin-

terval. From these S-values and the values of f(x), we compute the coefficients of the
cubic:

Sic1 = S

a;=———7,

6(x;+1 — X))
bi i,

2
o = J&ivy) = fx) _ 205 — x)8 + Oe g — X)8i44

l Xivr T X 6 ’

d; = f(x,).

Approximating the first and second derivatives is straightforward; we estimate these as
the values of the derivatives of the cubic:

f'x) = 3afx — xt.)2 +2b(x — x;) + ¢ {3.37)
f'(x) = 6a(x — x;) + 2b, {5.38)

At the n + 1 points x; where the function is known and the spline matches f(x), these for-
mulas are particularly simple:

f/(xi) = cl'a
f1(x,) =~ 2b,.

(We note that a cubic spline is not useful for approximating derivatives of order higher
than second. A higher degree of spline function would be required for these values.)

Approximating the integral of f(x) over the n intervals where f(x) is approximated by
the spline is similarly straightforward:

fmf(x) . fmg(x)dx

1
:" Xi+)

i=1

[% (x—x)t + —[;—i(x —x)° + %(x —x) +d(x — xi)}

XI
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n bl
= E [ Kie1 — xi)4 + ?(xi+l - xi)3

c; 5
+ 7(xi+l —x)tdlx —x) |

If the intervals are all the same size, (h = x,,; — x,), this equation becomes
Xpt 1 h4 n n
f f(x)dszEa,.+ 2b+ 2c+h2d
X i=1

We illustrate the use of splines to compute derivatives and integrals by a simple example.

EXAMPLE 5.15

Compute the integral and derivatives of f(x) = sin 7rx over the interval 0 = x = 1 from the
spline that fits at x = 0, 0.25, 0.5, 0.75, and 1.0. (See Table 5.15.) We use end condition 1:
§, =0, S5 = 0. Solving for the coefficients of the cubic spline, we get the results shown in
Table 5.16.

The estimated values for f'(x) and f"(x) computed with Egs. (5.37) and (5.38) are
shown in Table 5.17. The errors of these estimates from the exact values (f'(x) = mrcos(mx)
and f"(x) = — 2 sin(7rx)) are shown in the last two columns.

In general, the cubic spline gives good estimates of the derivatives, the maximum error
being 2.5% for the first derivative and 5.0% for the second.

It is of interest to compare these values with estimates of the derivatives from a fourth-
degree interpolating polynomial that fits f(x) at the same five points. Table 5.18 exhibits
these estimates. For the first derivative, the spline curve gives better results near the ends of
the range for f(x); the polynomial gives better results near the midpoint. Both are very
good in this example.

Comparison of estimates for the second derivative shows a similar relationship, except
for the fourth-degree polynomial, which is very bad at the endpoints.

We readily compute the integral from the cubic spline:

2
©. 25) (3.1340)

1 4 3
f Fx) dx ~ (O‘is) ) + (0?5) (—12.5376) + ——2—
0

+ 0.25(2.4142)
= 0.6362 (exact = 0.6366; error = +0.0004).

Tabie 5.15

i, point

number X fx)
1 0 0
2 0.25 0.7071
3 0.50 1.0000
4 0.75 0.7071
5 1.0 0
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Table 5.16

i x S; a; b, ¢ d

1 0 0 —4.8960 0 3.1340 0

2 0.25 —7.3440 —2.0288 —3.6720 2.2164 0.7071
3 0.50 —10.3872 2.0288 —5.1936 0 1.000
4 0.75 —17.3440 4,8960 —3.6720 —2.2164 0.7071

The value for the integral using splines is better than getting it with Simpson’s ; rule using
the same panels (Ax = 0.25), which gives a value of 0.6381. The error there is —0.0015,

almost four times greater than from the spline fit.

Observe that the error in the integral is only 0.24%, while the maximum errors in the
derivatives are about 2.5% and 5.0%. This is generally true—numerical differentiation,
in the words of many authorities, is basically an unsiable process. We have seen how
round-off error is terribly important when a numerical value for the derivative is
computed.

Differentiation of “noisy” data encounters a similar problem. If the data being differen-
tiated are from experimental tests, or are observations subject to errors of measurement,

Table 5.17 Estimates of f'(x) and f"(x) from a cubic spline

Error in Error in
x f'x) J'&) f'x) f'&)
0.00 3.1344 0.0000 0.007146 0.000000
0.05 3.0977 —1.4689 0.005191 —0.075053
0.10 2.9876 —2.9378 0.000275 —0.112090
0.15 2.8039 —4.4067 —0.004766 —0.074028
0.20 2.5469 —5.8756 —0.005287 0.074363
0.25 2.2164 —17.3445 0.005053 0.365600
0.30 1.8340 —7.9529 0.012627 -0.031778
0.35 14211 —8.5613 0.005155 —0.232546
0.40 0.9778 —9.1698 —-0.007015 —0.216781
045 0.5041 —9.7782 —0.012668 0.030114
0.50 —0.0000 —10.3866 0.000000 0.517038
0.55 —0.5041 —-9.7782 0.012668 0.030113
0.60 —0.9778 —9.1698 0.007015 —0.216781
0.65 ~14211 —8.5613 —0.005155 —0.232547
0.70 ~1.8340 —7.9529 —0.012628 —0.031778
0.75 —2.2164 —7.3445 —0.005053 0.365598
0.80 —2.5469 ~5.8756 0.005287 0.074362
0.85 —2.8039 —4.4067 0.004766 —0.074028
0.90 —2.9876 —2.9378 —0.000275 —0.112088
0.95 —3.0977 —1.4689 —0.005190 —0.075051
1.00 —3.1344 0.0000 —0.007146 0.000003
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Table 5.18 Estimates of f'(x) and f"(x) from a polynomial, P ,(x)

Error in Error in
x S S J'@®) S'x)
0.00 3.0849 1.1505 0.056643 —1.150496
0.05 3.0894 —0.9358 0.013513 —0.608130
0.10 2.9950 —2.8025 —0.007196 —0.247359
0.15 2.8128 ~-4.4496 —0.013630 —0.031101
0.20 2.5537 —-5.8771 —0.012126 0.075874
0.25 2.2288 —17.0849 —0.007321 0.106083
0.30 1.8489 —8.0732 —-0.002311 0.088523
0.35 1.4251 ~-8.8418 0.001151 0.047960
0.40 0.9684 —9.3909 0.002436 0.004319
045 0.4897 —9.7203 0.001778 —0.027803
0.50 —0.0000 —9.8301 —0.000000 —0.039509
0.55 —0.4897 —9.7203 —0.001779 —0.027803
0.60 —0.9684 —-9.3909 -0.002437 0.004321
0.65 —1.4251 —8.8418 —0.001152 0.047961
0.70 —1.8489 —8.0732 0.002311 0.088524
0.75 —2.2288 —7.0849 0.007320 0.106084
0.80 —2.5537 —-5.8771 0.012125 0.075876
0.85 —2.8128 —4.4496 0.013630 —0.031100
0.90 —2.9950 —2.8025 0.007196 —0.247358
0.95 —3.0894 —0.9358 —0.013513 —0.608130
1.00 —3.0849 1.1505 —0.056643 —1.150496

the errors so influence the derivative values calculated by numerical procedures that they
may be meaningless. The usual recommendation is to smooth the data first, using methods
that are discussed in Chapter 3. Passing a cubic spline through the points and then getting
the derivative of this approximation to the data has become quite popular. A least-squares
curve may also be used. The strategy involved is straightforward—we don’t try to repre-
sent the function by one that fits exactly to the data points, because this fits to the errors as
well as to the trend of the information. Rather, we approximate with a smoother curve that
we hope is closer to the truth than the data themselves. The problem, of course, is how
much smoothing should be done. One can go too far and “smooth” beyond the point where
only errors are eliminated.

A final situation should be mentioned. Some functions, or data from a series of tests, are
inherently “rough.” By this we mean that the function values change rapidly; a graph
would show sharp local variations. When the derivative values of the function incur rapid
changes, a sampling of the information may not reflect them. In this instance, the data indi-
cate a smoother function than actually exists. Unless enough data are at hand to show the
local variations, valid values of the derivatives just cannot be obtained. The only solution is
more data, especially near the “rough” spots. And then we are beset by problems of accu-
racy of the data!

Fortunately, this problem does not occur with numerical integration. As you have seen,
all the integration formulas add function values together. Because the errors can be positive
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or negative and the probability for each is the same, errors tend to cancel out. That means
that integration is a smoothing process. We assess integration as inherently stable. This is
generally true of computations that are global, in contrast to those that are local in nature,

such as differentiation.

Hxercises

Section 5.1

> 1.

Duplicate Table 5.1, but with double precision arith-
metic. At what value for Ax is round-off error apparent?

Computer algebra systems permit you to use a speci-
fied number of digits in the computations. Repeat
Exercise 1, but with only three digits of precision.
What is the effect of the precision of arithmetic on
Table 5.2 where central differences are used?

Make a graph for f(x) = e 3 * cos(x) from x = —1 to

x=73.

a. From the graph, predict for what x-value(s) the
accuracy of a forward-difference approximation
to the derivative with 2 = 0.05 will be most
accurate.

b. Confirm your prediction by doing computations.

5. Repeat Exercise 4 but for backward differences.

6. Repeat Exercise 4 but for central differences.

10.

»11.

. Make a divided-difference table similar to Table 5.3,

but for the function f(x) = 2x * cos(2x). Use the data in
the table to compute f'(2.0)

a. Using a forward-difference approximation.
b. Using a backward-difference approximation.
c. Using a central-difference approximation.

Find bounds to the errors of each of the computations
of Exercise 7 from Eq. (5.7). What are the actual
errors?

Duplicate Figure 5.1a, b, and ¢ with the function of
Exercise 7.

Compute a difference table like Table 5.4 but for the
same function as in Exercise 7, f(x) = 2x * cos(2x).
Use one, two and three terms of Eq. (5.10) to construct
graphs similar to Figure 5.1a, b, and c.

Compute a value for f'(0.268) from a quadratic inter-
polating polynomial that fits the table at the three
points that should give the most accurate answer.

- Which points are these?

L]

X S

Flxp Xpqd Slxg-x o] Sl xp45]

wnm WD —=O

0.15
0.21
0.23
0.27
0.32
0.35

0.1761
0.3222
0.3617
0.4314
0.5051
0.5441

2.4355
1.9754
1.7409
1.4757
1.2973

—5.7505
—3.9088
—2.9464
—2.2307

15.3476
8.7492
5.9642

12.

»13.

14.

15.

16.

The function in Exercise 11 is for f(x) =1+

log, ().

a. What is the error of your answer in Exercise 11?

b. How does this compare with that estimated from the
next-term rule?

¢. Compute f'(0.268) from other sets of three points
and repeat parts (a) and (b) for each of these.

The differences in the table of Exercise 11 are actually
the divided differences of f(x) accurate to six decimal
places, even though the function values are shown to
only four decimals. Recompute the differences using
the tabulated function values and repeat Exercise 12.
How much does the rounding affect the errors? Is
rounding more important than truncation?

Repeat Exercise 11, but this time for f'(x) at x = 0.21,
0.22,0.23,0.24,0.25,0.26, and 0.27. Plot the estimates
and compare to a graph of the true values. Make
another plot of the errors versus x. At what point is the
error smallest?

As described in Exercise 13, the differences tabulated
in Exercise 11 are based on more accurate function val-
ues. Recompute the divided-difference table using the
tabulated function values, then repeat Exercise 14.
How does rounding change the errors you found in
Exercise 147

Use Eq. (5.7) to find bounds for the errors at x = 0.21,
0.23, and 0.27 in Exercise 14. Do these bounds bracket
the errors found in Exercise 14?
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17.

18.

»19.

~.

Use the next-term rule to estimate the error in Exercise
14. Compare these errors with the actual errors. Are the
estimates always larger?

Repeat Exercise 17, but with the recomputed table
done in Exercises 13 and 15.

The following ordinary difference table is for f(x) =
x + sin(x)/3. Use it to find

a. f'(0.72) from a cubic polynomial.
b. f'(1.33) from a quadratic.
¢. f'(0.50) from a fourth-degree polynomial.

In each part, choose the best starting i-value.

A

AW =D

—0.0022
—0.0018
—0.0014
—=0.0010

0.0003
0.0004
0.0005

0.3985
0.6598
0.9147
1.1611
1.3971
1.6212
1.8325

0.2613
0.2549
0.2464
0.2360
0.2241
0.2113

—0.0064
—0.0086
~-0.0104
-0.0118
—0.0128

0.30
0.50
0.70
0.90
1.10
1.30
1.50

20.

21.
»22,

23.

24,

25.

26.

Use the next-term rule to estimate the errors in
Exercise 19. Compare these to the actnal errors. Are
the estimates always larger?

Show that the error of Eq. (5.14) is O(#2).

Use the method of undetermined coefficients to obtain
the formulas for f"(x), f"(x) and f ®(x) at x, using five
evenly spaced points from x, to x_,, together with their
error terms.

Get estimates for the second third and fourth deriva-
tives of f(x) at x = 0.90 from the data of the table of
Exercise 19. What are the errors?

Extrapolate to get /7(0.90) from the table of Exercise
19 as many times as you can. What is the error? How
much of this is due to the precision of the data?

Show that the first extrapolation for f'(x;) with
h-values differing by 2 to 1 is the same as the formula

1 (Af—l A, 1 ANf,+ A3f—l)

o= 2 6 2

where H is the smaller of the 4’s.

Can extrapolations similar that of Eq. (5.15) be used
for unevenly spaced data? (A Taylor series expan-

p27.

28.
29.

30.
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sion may be helpful.) If you succeed in getting a for-
mula, use it to estimate a better value for £'(0.27)
from the table of Exercise 11. What order of error
results?

Apply Richardson extrapolation to get f'(0.32) accu-
rate to five significant figures for f(x) = sin®(x/2), start-
ing with 2 = 0.1 and using central differences. When
the extrapolations agree to five significant figures, are
they that accurate?

Repeat Exercise 27, but now for f(0.32).

Can Richardson extrapolation be used with forward
differences? If you can do this, repeat Exercise 27
employing forward differences.

Create a Richardson table with a computer algebra sys-
tem. The trick is how to get a display similar to that in
Section 5.1.

Section 5.2

»31.

32,

33.

3.

»35.

The global error of the integral, [f(x) dx, between two
x-values by the trapezoidal rule is
—(L12)BF"(£).

where £lies inside the two x-values. For these functions
and x-values, find the value for &
a. f(x) = %%, x = [0.2,0.5].
b. f(x) =&, x=[—.1,0.2].
c. f(x) = sin(x), x = [0, 0.4].
The global error of the trapezoidal rule is

(=(b — ANHf(£),
where £ lies within the range for the integral. Repeat
Exercise 31 when the step size, &, is

a. 0.1.
b. 0.01.
c. What are the limiting values as # — 07

Repeat Example 5.1, but now use only four values, for
x=1.6,2.2,2.8,and 3.4.

How small must 4 be for the trapezoidal rule to attain
an error less than 0.001 for

[ x% sin(x) dx, between x = 0.2 and 2.8?

Use the data in the table to find the integral between
x = 1.0 and 1.8, using the trapezoidal rule:

a. With 2 = 0.1
b. Withs =0.2.
c. Withz = 04.



36.

37.

»38.

39.

40.

x Jx)
1.0 1.543
1.1 1.669
12 1.811
13 1971
1.4 2.151
1.5 2352
1.6 2577
1.7 2.828
1.8 3.107

The function tabulated in Exercise 35 is cosh(x). What
are the errors in parts (a), (b), and (c)? How closely are
these proportional to A?? What errors are present
besides the truncation error?

Extrapolate from the results of Exercise 35 to get an
improved value for the integral (Romberg integration).
What is the order of error for this extrapolated answer?
How accurate is it?

If the integral of Example 5.1 is wanted correct to five
decimal places (error < 0.000005), how small should A
be? Recompute the table with this value for 4 and ver-
ify that this gives the desired accuracy.

Repeat Exercise 38, but now use Romberg integration.
What is the degree of improvement over Exercise 38?

Use Romberg integration to evaluate the integral of f(x)
= 1/x between x = 1 and x = 3. Using six significant
digits in your computations, continue until there is no
change in the fourth decimal place. Is this answer that
correct?

Section 5.3

»41.
42,

43.

4.

Repeat Exercise 35, but now use Simpson’s 1/3 rule.

Use the error term for Simpson’s 1/3 rule to bound the
errors in Exercise 41 for each application of the rule.
What are the values for £ for each value of 4?

Simpson’s 3/8 rule cannot be applied directly to
Exercise 41 because the number of panels is not divisi-
ble by three. Still, you can use it in combination with
the 1/3 rule over two panels. There are several choices
of where to use the 1/3 rule. Which of these choices
gives the most accurate answer?

The function f(x) = x> * sin(2x) is zero at the origin
and is zero again at multiples of /2.

45.
»46.

47.

48.

49.

»50.

ke

I}

51.

»52,
53.

54.
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a. Use Simpson’s 1/3 rule to approximate the integral
under the first “hump.” How large can 4 be and still
attain a value with an error less than 0.001?

b. Repeat part (a) but now get the integral from x = 0
tox =

Repeat Exercise 44, but now use Simpson’s 3/8 rule.

Show that extrapolating once with the trapezoidal rule
is equivalent to using Simpson’s 1/3 rule with a compa-
rable value for .

Is there an equivalent relation, between extrapolations
of the trapezoidal rule and Simpson’s 3/8 rule as found
in Exercise 467 Find such a relationship if it exists or
prove that there is none.

Simpson’s % rule, although based on passing a quadratic
through three evenly spaced points, actually gives the
exact answer if f(x) is a cubic. The implication is that
the area under any cubic between x = g and x = b is
identical to the area of a parabola that matches the cubic
atx = a,x = b, and x = (a + b)/2. Prove this.

Simpson’s rules are derived by fitting polynomials of
degrees 2 and 3 to the integrand. Obtain a formula that
results from fitting a fourth-degree polynomial and its
error term. Would this have any advantage over the
Simpson’s rules?

In solving differential equations, one method finds the
integral of the derivative function from a linear sum of
past values for the derivative. One example is

xzﬂf(x) dx = C()f(xn_3) T ooy fl,_p) + oy flx, g} + 3 flx,).

What values should be used for the ¢’s?

Compute the integral of f(x) = sin(x)/x between x = 0
and x = 1 using Simpson’s 3 rule with 2 = 0.5 and then
with 2 = 0.25. (Remember that the limit of sin(x)/x at x
= 0 is 1.) From these two results, extrapolate to get a
better result. What is the order of the error after the
extrapolation? Compare your answer with the true
answer,

Repeat Exercise 51, but use Simpson’s 3/8 rule.

Prove that all integration methods that are based on
even-order interpolation formulas (quadratic, quartic,
etc.) have a global error order equal to two more than
the order of the polynomial, while those based on a
polynomial of odd order have a global error just one
more than the order of the polynomial.

A way to derive integration formulas (as well as formu-
las for differentiation) is the symbolic method. Do
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research to find out about this method and use it to
derive several of the formulas of this chapter.

Section 5.4

»55.

56.

57.

58.

»59.
60.
61.

62.
63.

Use trapezoidal integration with 24 panels to get the
first nine Fourier coefficients for these functions and
compare to those from analytical integration:

a. f(x) = x> — 1on|0, 3].

b. f(x) =2x* + lon[—-2,1].

c¢. f(x) = & cos (3x) on [0, 5].

Repeat Exercise 55, but with Simpson’s 1/3 rule. How
much more accurate are these than the results of
Exercise 557

Repeat Exercise 55, but with Simpson’s 3/8 rule. Are
these less accurate than those from Exercise 577

How many panels would be needed to match to the
analytical coefficients to within 0.00001

a. in Exercise 557

b. in Exercise 567

c. in Exercise 577

Verify that Egs. (5.26) and (5.27) are truly identical.
Make a diagram similar to Figure 5.5 forn = 8.

Use the algorithm given in Section 5.4 that generates
the powers of W to be used in an FFT to obtain the val-
ues for n = 16. These should agree with those in Figure
5.5; do they?

Repeat Exercise 61 but now with the bit-reversing rule.
Write a procedure in a computer algebra system that

does an FFT, with up to 33 pairs of #, f(¢) values as an
input. Test it by duplicating Example 5.9.

Section 5.5

64.

65.
66.

67.
»68.

Repeat Example 5.10, but use the trapezoidal rule. At
what value for /2 do the computations terminate? How
many function evaluations are required compared to
Simpson’s 1/3 rule?

Repeat Exercise 64, but now use Simpson’s 3/8 rule.
Solve the problem of Example 5.10 with an adaptive
trapezoidal rule. Compare the number of function eval-
uations with that for Simpson’s 1/3 rule.

Repeat Exercise 66, but now with Simpson’s 3/8 rule.
Use adaptive Simpson’s 1/3 rule to obtain the integral
of e* cos(2x) over the interval [0, 7/4]. Use a value for

TOL, the tolerance value, sufficiently small to attain an
answer within 0.001 of the exact answer, 0.677312.

69.

»70.

Repeat Exercise 68, but now use adaptive trapezoidal
rule. Compare the number of function evaluations with
that used in Exercise 68.

Most programs for adaptive integration will compute
the appropriate step size if they use the procedure of
Section 5.5. However, in some cases this leads to sig-
nificant errors. For instance, the integral of sin*(16x)
between x = 0 and x = 71/2 is w/4, but it is easy to see
that the values of [0, /2] and S,[0, 71/2] both equal
zero, where by = /4 and h, = 7/8.

How can we solve this problem correctly with the
adaptive method of Section 5.57 (It is interesting to
know that the HP-15C calculator avoids this error.)

Section 3.6

71.

72.

73.

»74.

75.

»76.

77.

78.

79.

The integral of e between 0 and 3 is (¢° — %) = ¢° —
1 = 19.085537. How many terms of Gaussian quadra-
ture must be used to obtain the result correct to within
0.001?

If Simpson’s 1/3 rule were used to get the integral of
Exercise 71, how many more function evaluations
would be needed?

What is the error if the integral of sin(x)/x over x = [0,
2] is evaluated with a four-term Gaussian formula?
How many intervals would be needed with Simpson’s
1/3 rule to get the value with the same accuracy?

By using Gaussian formulas of increasing complexity,
determine how many terms are needed to evaluate the
integral of x3 * sin(x2)e* 3 over the interval [—1.5, 2.7]
to get accuracy to six significant figures.

An n-term Gaussian formula assumes that a polyno-
mial of degree 2n — 1 is used to fit the function
between x = a and x = b. Does this mean that the error
is the same as for a Newton—Cotes integration formula
based on a polynomial of degree 2n — 1?

Confirm that the values for ¢ in Table 5.13 are correct
by getting the zeros of the appropriate Legendre poly-
nomials. Use any method from Chapter 1.

Repeat Exercise 76, but get the zeros with a computer
algebra system.

Two improper integrals are given in Section 5.6 as
examples where Gaussian quadrature can be applied.
How many terms are needed to get the integrals correct
to within 0.0001?

Instead of using a Gaussian quadrature formula of
higher degree to evaluate an integral, one could break



up the interval of integration into subintervals and com-
bine the results from a formula of lower degree. Is there
merit to this idea? Find a function where this is of
advantage and find another where it is not.

Section 5.7

80. The statement is made in Example 5.13 that “it is
immaterial which integral we evaluate first.” Confirm
that this is true by repeating Example 5.13, but inte-
grate first with respect to y.

»81. Write pictorial operators similar to Eq. (5.32) for

a. Simpson’s % rule in the x-direction and the trape-
zoidal rule in the y-direction.

b. Simpson’s % rule in both directions.

c. Simpson’s % rule in both directions.

d. What conditions are placed on the number of panels
in both directions by parts (a), (b), and (c)?

82. Because Simpson’s % rule is exact when f(x) is a cubic,
evaluation of the following triple integral should be
exact. Confirm by evaluating both numerically and
analytically. Use Eq. (5.36) adapted for this integral.

120
J f xPyz% dx dy dz
0 Jo J-1

83. Draw a pictorial operator that represents the formula
used in Exercise 82. You may want to do this on three
widely separated planes, such as

84. Evaluate the following integral, and compare your
answers to the analytical solution. Use 2 = 0.1 in both
directions in parts (a) and (b),

a. using the trapezoidal rule in both directions.
b. using Simpson’s % rule in both directions.

c. using Gaussian quadrature, three-term formulas in
both directions.

14 (26
f J e* sin(2y) dy dx
-02 Jos
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Exercises

85. Solve Exercise 84 by performing the trapezoidal rule
integrations first with 2 = 0.2 (in both directions), then
with & = 0.1. and extrapolate. The answer should
match part (b) of the exercise. Does it?

P 86. Integrate with varying values of Ax and Ay using the
trapezoidal rule in both directions, and show that the

error decreases about in proportion to #2:

1 (1
j J (x? + y?) dx dy.
o Jo

87. Apply Romberg integration to Exercise 86 to get a
value of O(hF).

88. Repeat Exercise 86, but now use Simpson’s 1/3 rule.
How do errors decrease with h?

89. Extrapolate from two results of Exercise 88. What is
the order of the error of the extrapolation?

Section 5.8

»90. The following table is for f(x) = 1/(x + 2). Find values
for f'(x) and f"(x) at x = 1.5, 2.0, and 2.5 from cubic
spline functions that approximate f(x). Compare to the
true values to determine the errors. Also compare to
derivative values computed from central-difference for-
mulas.

a. Use end condition 1.
b. Use end condition 3.
c. Use end condition 4.

x 1.0 1.5 20 25 3.0

fx) 0.333 0286 0250 0.222 0.200

91. Plot the values of f'(x) and f"(x) from the cubic splines
of Exercise 90 on [1.0, 3.0], and compare to plots of the
true values.

92. The comparisons in Exercise 90 may favor the cubic
spline because they are based on cubic polynomials,
whereas the central-difference formulas are based on
quadratics. Repeat Exercise 90, but now use interpolat-
ing polynomials of degrees 3 and 4.

93. Repeat Exercise 90, but this time use cubic splines that
have the correct slopes at the ends, condition 2.

»94. Integrate sech(x) over [0, 2] by integrating the natural
cubic spline curve (end condition 1) that fits at five

evenly spaced points on [0, 2]. Compare the result to
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the analytical value. Also compare to the integral from 96. Repeat Exercise 94 but now force the values of f”(x) at

: )
Simpson’s 5 rule.

the ends to the analytical values of the second deriva-

95. Repeat Exercise 94 using end conditions 2, 3, and 4. tive of sech(x).
For condition 2, use the analytical values for f'(x).

Applied Problems and Projects

APP1.

APP2.

APP3.

When one first hears of Gaussian quadrature, it seems remarkable that just adding the value of the
integrand at two points is equivalent to integrating from an interpolating polynomial of degree-3, and
that adding a weighted sum of three points is equivalent to using a polynomial of degree-5.

Table 5.13 gives values that determine where to select the points. What if we use values that are

slightly incorrect? How much is the approximation of the integral affected if the selected points are
off by 1%? By 5%?
Differential thermal analysis is a specialized technique that can be used to determine transition termn-
peratures and the thermodynamics of chemical reactions. It has special application in the study of
minerals and clays. Vold [Anal. Chem. 21, 683 (1949)] describes the technique. In this method, the
temperature of a sample of the material being studied is compared to the temperature of an inert ref-
erence material when both are heated simultaneously under identical conditions. The furnace hous-
ing the two materials is normally heated so that its temperature (7}) increases (approximately) lin-
early with time (¢), and the difference in temperatures (A7) between the sample and the reference is
recorded. Some typical data are

t, min 0 1 2 3 4 5 6 7

AT, °F 0.00 0.34 1.86 432 8.07 13.12 16.80 18.95
T, °F 86.2 87.8 894 91.0 92.7 94.3 95.9 97.5

t 8 9 10 11 12 13 14 15 16
AT 18.07 16.69 15.26 1386 12.58 11.40 10.33 8.95 6.46
T, 99.2 100.8 102.3 1039 1055 107.1 108.6 110.2 111.8
t 17 18 19 20 21 22 23 24 25
AT 4.65 3.37 2.40 1.76 1.26 0.88 0.63 0.42 0.30
T, 1135 115.1 116.8 1184 1200 121.6 1232 1249 126.5

The AT values increase to a maximum, then decrease, due to the heat evolved in an exothermic reac-
tion. One item of interest is the time (and furnace temperature) when the reaction is complete. Vold
shows that the logarithm of AT should decrease linearly after the reaction is over; while the chemical
reaction is occurring, the data depart from this linear relation. Vold used a graphical method to find
this point. Perform numerical computations to find, from the preceding data, the time and the furnace
temperature when the reaction terminates. Compare the merits of doing it graphically or numerically.

The temperature difference data in APP2 can be used to compute the heat of reaction. To do this, the
integral of the values of AT is required, from the point where the reaction begins (which is at the
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APPS.

APPo.
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point where AT becomes nonzero) to the time when the reaction ceases, as found in APP2.
Determine the value of the required integral. Which of the methods of this chapter should give the
best value for the integral?

There is a way to integrate numerically called the midpoint rule. The estimates the integral of f(x) on
the interval [a, b] by this equation:

b a+b
Jf(x)dx%(b—a)f( 2 _>-

a. Derive this formula in three different ways.

b. Find its error term.

c. Find at least three functions for which this gives the exact answer. State the condition for this to be
true.

d. What is the composite rule for the midpoint rule? What is the error term for it?

e. Outline how adaptive integration would be used for this method.

The stress developed in a rectangular bar when it is twisted can be computed if one knows the values
of a torsion function U that satisfies a certain partial-differential equation. Chapter 8 describes
a numerical method that can determine values of U. To compute the stress, it is necessary to integrate
{ | U dx dy over the rectangular region for which the data given here apply. Determine the stress.
(You may be able to simplify the integration because of the symmetry in the data.)

x ! 0.0 0.2 04 0.6 0.8 1.0 1.2
0.0 0 0 0 0 0 0 0
0.2 0 2.043 3.048 3.354 3.048 2.043 0
04 0 3.123 4.794 5319 4.794 3.123 0
0.6 0 3.657 5.686 6.335 5.686 3.657 0
0.8 0 3.818 5.960 6.647 5.960 3.818 0
1.0 0 3.657 5.686 6.336 5.686 3.657 0
12 0 3.123 4.794 5.319 4.794 3123 0
1.4 0 2.043 3.048 3.354 3.048 2.043 0
1.6 0 0 0 0 0 0 0

Fugacity is a term used by engineers to describe the available work from an isothermal process. For
an ideal gas, the fugacity f is equal to its pressure P, but for real gases,

! JPC—l
In* = dp,
P, TP #

where C is the experimentally determined compressibility factor. For methane, values of C are

P(atm) C P(atm) C
1 0.9940 30 0.3429
10 0.9370 120 0.4259
20 0.8683 160 0.5252
40 0.7043 250 0.7468

60 0.4515 400 1.0980
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APPS.

APPY.

APP10.
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Write a program that reads in the P and C values and uses them to compute and print f corresponding
to each pressure given in the table. Assume that the value of C varies linearly between the tabulated
values (a more precise assumption would fit a polynomial to the tabulated C values). The value of C
approaches 1.0 as P approaches 0.

The highway patrol uses a radar gun to clock the speed of a motorist. The gun is equipped with a
device that records the speed at 4-second intervals as given in the table below.

a. What is the total distance traveled by the car?
b The speed limit is 65 mph. What fraction of the time is he speeding?
c. When do you think the motorist noticed the officer?

Time 0 4 8 12 16 20 24 28 32 36 40
Speed (mph) 64 68 71 74 76 72 64 63 68 73 72
A cardiod curve is heart-shaped. It can be drawn from the equation

r = a(l — cos(6)).
Use a numerical method to compute the length of the curve if a = 3 and compare to the analytical
answer.
A variation on APPS is a lemniscate; the equation is

r=a *sin(26).

Draw the curve for a = 3. Then repeat APPS for this curve using Gaussian quadrature.

Outline a procedure for an adaptive Gaussian quadrature that uses the three-term formula.



umerical Solution of Ordinary
Jifferential Equations

Most problems in the real world are modeled with differential equations because if,is easier
to see the relationship in terms of a derivative. An obvious example is Newton’s Law —f =
M * a—where the acceleration a is the rate of change of the velocity. Velocity is also a
derivative, the rate of change the position, s, of an object of mass, M, when it is acted on by
force, f. So we should think of Newton’s Law as

d3sldt® = a = fIM,

a second-order ordinary differential equation. It is ordinary because it does not involve
partial differentials and second order because the order of the derivative is two. The solu-
tion to this equation is a function, s(f). This is a particularly easy problem to solve analyti-
cally when the acceleration is constant:

s = (112) ar* + vt + 5

The solution contains two arbitrary constants, v, and s, the initial values for the veloc-
ity and position. The equation for s(¢) allows the computation of a numerical value for s,
the position of the object, at any value for time, the independent variable, 1.

Many differential equations can be solved analytically and you probably learned how to
do this in a previous course. The general analytical solution will include arbitrary constants
in a number equal to the order of the equation. If the same number of conditions on the
solution are given, these constants can be evaluated.

When all of the conditions on the problem are specified at the same value for the
independent variable, the problem is termed an initial-value problem. If these are at two
different values for the independent variable, usually at the boundaries of some region of
interest, it is called a boundary-value problem.

This chapter describes techniques for solving ordinary differential equations by numer-
ical methods. To solve the problem numerically, the required number of conditions must be
known and these values are used in the numerical solution. We will begin the chapter with
a Taylor series method that is not only a good method in itself but serves as the basis for

329
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several other methods. We start with first-order initial-value problems and later cover
higher-order problems and boundary-value problems.

With an initial-value problem, the numerical solution begins at the initial point and
marches from there to increasing values for the independent variable. With a boundary
problem, one must march toward the other boundary and match with the condition(s)
there. This is not as easy to accomplish. Certain boundary-value problems have a solution
only for characteristic values for a parameter; these are known as characteristic-value

problems.

When we attempt to solve a differential equation, we must be sure that there really is a
solution and that the solution we get is unique. This requires that f(x, y) in dy/dx = f(x, y)
meet the Lipschitz condition:

Let f(x, y) be defined and continuous on a region R that contains the point (x,, y,). We
assume that the region is a closed and bounded rectangle. Then f(x, y) is said to satisfy the
Lipschitz condition if:

There is an L > 0 so that for all x, y;, y, in R, we have

If(xa y) — [, y2)| < L1y1 - )’2|-

For most problems and all examples of this chapter, the condition is met.
There is a similar set of conditions for the solution to a boundary-value problem to exist
and be unique. A linear problem of the form

du ,
—d—x7=pu +qutr, for x on [a, b],
with
u(a) = ul, u(b) = uR,
where p, g, and r are functions of x only, has a unique solution if two conditions are met:
P, ¢, and r must be continuous on [a, b},
and

g > 0on[a, b].

If the problem is nonlinear, more severe conditions apply that involve the partial deriva-
tives of the right-hand side with respect to « and u'.

6.1 The Taylor-Series Method
Adapts this method from calculus to develop a power series that, if
truncated, approximates the solution to a first-order initial-value problem.
Unless many terms are used, the solution cannot be carried far beyond the

initial point.



6.2

6.3

6.4

6.5

6.6

6.7

6.8

The Euler Method and Its Modifications

Describes a method that is easy to use but is not very precise unless the step
size, the intervals for the projection of the solution, is very small.
Modifications permit the use of a larger step size or give greater accuracy at
the same size of steps. These methods are based on low-order Taylor series.

Runge -Kutta Methods

Presents methods that are based on more terms of a Taylor series than the
Euler methods and are thereby much more accurate. A very widely used
method, the Runge—Kutta—Fehlberg method (RKF) allows an estimation of
the error as computations are made so the step size can be changed
appropriately.

Multistep Methods

Covers methods that are more efficient than the previous methods, which are
called single-step methods. They require a number of starting values in
addition to the initial value. A Runge—Kutta method is frequently used to get
these starting values. A valuable adjunct to a multistep method is to first
compute a predicted value and then do a second computation to get a
corrected value. Doing this monitors the accuracy of the computations.

Higher-Order Equations and Systems
Describes how the methods previously covered can solve an equation of
order higher than the first. This is done by converting the equation to a

system of first-order problems. Hence, even a system of higher-order
problems can be handled.

Stiff Equations

Discusses a type of problem that poses difficulties in avoiding instability, the
growth of initial error as the solution proceeds.

Boundary-Value Problems

Extends the methods previously described to solve a differential equation
whose conditions are specified at not just the initial point. This section also
describes how the solution can be approximated if the derivatives are
replaced by difference quotients, as explained in Chapter 5.

Characteristic-Value Problems

Shows how that class of boundary-value problems that have a solution only
for certain values of a parameter can be solved. These certain values are the
eigenvalues of the system; eigenvalues and their associated eigenvectors are
essential matrix-related quantities that have applications in many fields. Two
different ways to obtain eigenvalues are described.
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The faylor-Series Method

As you have seen before, a Taylor series is a way to express (most) functions as a power
series. When expanded about the point x = g, the coefficients of the powers of (x — a)
include the values of the successive derivatives of the function at x = a. This means that if
we know enough about a function at some point x = a, that is, its value and the value of all
of its derivatives, we can (usually) write a series that has the same value as the function at
all values of x. We will use x;, to represent x = a.

In the present application, we are given the function that is the first derivative of
y(x): y" = f (x, y), and an initial value, y(x;). With this information we can write the
Taylor series for y(x) about x = x,. We just differentiate y'(x) = f(x, y) as many times as
we desire and evaluate these derivatives at x = x,. The problem is that, when y’(x)
involves not just x but the unknown y as well, the higher derivatives may not be easy to
come by.

Even so, these higher derivatives can be written in terms of x and the lower derivatives
of y. We only want their values at x = x,,. Here is an example:

dy
dx

(This particularly simple example is chosen to illustrate the method so that you can readily
check the computational work. The analytical solution,

yix) = —3eF—2x+2

=—2x—y, y0)=-—1 ©.1)

is obtained immediately by application of standard methods and will be compared with our

numerical results to show the error at any step.)
We develop the relation between y and x by finding the coefficients of the Taylor series

in which we expand y about the point x = x:

I/( 0)

) + ylll(xo)

y(x) = ¥(xo) + ¥ (i)x — xo) + (x — xp) 31 (x — x) +
If weletx — x, = h, we can write the series as
” x mn x
y@=ﬂw+y%m+y;&ﬁ+yédﬁ+-m (6.2)
Because y(x,) is our initial condition, the first term is known from the initial condition
y(0) = —1. (Because the expansion is about the point x = 0, our Taylor series is actually
the Maclaurin series in this example.)
We get the coefficient of the second term by substituting x = 0, y = —1 in the equation

for the first derivative, Eq. (6.1):
Y'(xg) =y'(0)=—-200) — (=)= 1.

We get the second- and higher-order derivatives by successively differentiating the
equation for the first derivative. Each of these derivatives is evaluated corresponding to
x = 0 to get the various coefficients:
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Table 6.1
x y(x) Anal Error

0.00000 —1.00000 —1.00000 0.00000
0.10000 —0.91451 —0.91451 0.00000
0.20000 —0.85620 —0.85619 0.00001
0.30000 —0.82251 —0.82245 0.00006
0.40000 —0.81120 —0.81096 0.00024
0.50000 —0.82031 —0.81959 0.00072
0.60000 —0.84820 —0.84643 0.00177

YO =-2-y, YO =-2-1=-3
yﬂl(x) = _y”’ y/l/(o) —_ 3’
YD) = -y, yH(O0) = -3.

We then write our series solution for y, letting x = % be the value at which we wish to
determine y:

y(h) = —1 + 1.0h — 1.5h% + 0.5h% — 0.125h* + error.

Table 6.1 shows how the computed solutions compare to the analytical between x = Q
and x = 0.6. At the start, the Taylor-series solution agrees well, but beyond x = 0.3 they
differ increasingly. More terms in the series would extend the range of good agreement.

The error of this computation is given by the next term in the series, evaluated at a point
between 0 and x:

Error = (x/120)yO0(¢), 0< ¢é<nx.

‘We have used the so-called next-term rule before. How good is this estimate of the error at
x = 0.6? The next term is (3/120) * (0.6)° = 0.00194, comparing well to the actual error
of 0.00177.

We stated earlier that the analytical sofution of the example differential equation can be
obtained by “the application of standard methods.” MATLAR can do this:

EDU>> dgolve(‘Dy = —2*x —vy’, ‘yv(0)=-17, ‘x’)
ans =

—2*x + 2 — 3*exp (—x)

which is the same as the above with terms in a different order.
Maple can get the Taylor-series solution:

>deqg : =diff(y(x),x) = —2*x —v(x):
>dsolve ({deq, v(0) =—-1), v(x), series);
3 1 1 1
=—-l+x——x*+—x——x*+—x°+0(x°
Y {x) 2 2 g " 40 (=)

which is the series of order 6 and the error order.
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When the function that defines y'(x) is not as simple as this, getting the successive
derivatives is not as easy. Consider

/( — X

You will find that the successive derivatives get very messy.

Even though computers are not readily programmed to produce these higher derivatives,
computer algebra systemns like Maple and Mathematica do have the capabilities that we need.

There is another approach—automatic differentiation. This is different from the sym-
bolic differentiation that computer algebra systems use. It produces machine code that
finds values of the derivatives when dy/dx is defined through a code list.

We will not give a thorough explanation, only an example, but L. R. Rall (1981) and
Corliss and Chang (1982) are good sources for more information. Here is our example:

Solve y' = f(x,y) = —(y—sz—) using automatic differentiation with y(0) = 1.

To do this, we first create a code list, which is just a name for a sequence of statements that
define dy/dx, with only a single operation on each line:

Tl = x*x
T2 =y —T1
dy/dx = x/T2 [which is f(x, y)].

We will use a simplified notation for the terms of the Taylor series:

1 dy
(}’)k:<‘]‘€‘!‘> [Zk‘}’ k=0,...,n

And we will use (x), = x,, We then have (y), = Y(xg)-

The software for automatic differentiation includes the standard rules for differentiation
in recursive form, such as the derivatives of (u + v),, (4 — v),, (u * v),, and (ufv),, plus the
elementary functions, including sin, cos, In, exp, and so on.

In our example, we have (x), = 0, (x); = 1 (because dx/dx = 1), so that (x), = 0 for all
higher derivatives of x. From the initial condition, (y), = 1 and from the expression for
y'(x), (¥); = 0. It is not hard to determine that (y), = 0.5. The automatic differentiation
software develops a recursion formula for the additional coefficients of the Taylor series.
This formula is something like this:

k=1
O = 2 (Nk-15
i=1
where the multiplier, a, is a complicated function of k.
Similar recursion formulas will be derived by the software for any differential equation
that can be compiled into a code list, and these can have any initial condition.
For our example, all the odd-order terms are zero; the even-order terms are:

Order 0 2 4 6 8

oetheren 2 8 48 384
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Using this in the Taylor series produces y(0.1) = 1.0050125, ¥(0.2) = 1.0202013.

The authors are especially grateful to Professor Ramon E. Moore of Ohio State University
for calling our attention to this method for solving ordinary differential equations.

While getting the higher derivatives of y' = x/(y — x?) is awkward by hand, Maple has
no trouble. If we want these up to the 22nd power of x, we must first reset the Order from
its default value, then use the series option of dsolve.

> Order: = 22:
>deq: = diff(y(x), x) =x/(y(x) —x"2):
> dsolve ({deq, y(0) =1}, y(x), series);

1 1 1 13 47
yvix) =1+ —x*+—x+ x5 — x8 — 10— x12
2 8 48 384 3840 46080
3 2447 .. 16811 . 15551 . oo
645120 10321920 185794560 3715891200

The Taylor series is easily applied to a higher-order equation. For example, if we are given
Y=3+x—y, yO=1L y0=-2
we can find the derivative terms in the Taylor series as follows:
¥(0), and y’(0) are given by the initial conditions.
v"(0) comes from substitution into the differential equation from y(0) and y’(0).

¥"(0) and higher derivatives are found by differentiating the equation for the previous
order of derivative and substituting previously computed valoes.

The Euler Method and Its Modifications

The first truly numerical method that we discuss is the Fuler method. We can solve the dif-
ferential equation

dyldx = f(x, y), .Y(xo) = Yo
by using just one term of the Taylor-series method:
y(x) = ¥(xy) + y'(xg) (x ~ x,) + error,
error = (K*12)y"(¢) = O(h?).

This is known as the Euler method. In effect, we project along the tangent line from the

starting point, y(xy). If the increment to x, (x — x,) = h, is small enough, the error will be
small. Once we have y at x, + 4, we can repeat to get more y-values:

Ypi1 = ¥y T hy), + OP).* (6.3)

The method is easy to program for we know the formula for y'(x) and a starting value,
Yo =¥ (xp)-

* This error is just the local error. Over many steps, the global error becomes O(h).
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Table 6.2

X In y;z h.)’;,
0.0 —1.00000 1.00000 0.10000
0.1 -0.90000 0.70000 0.07000
0.2 -0.83000 0.43000 0.04300
0.3 ~-0.78700 0.18700 0.01870
04 —0.76830 —0.03170

(Analytical answer is —0.81096, error is —0.04266.)

To see this in action, we apply it to the sample equation:

b 0)=—1

I x—y,  y0) ;
where the computation can be done rather simply. It is convenient to arrange the work as in
Table 6.2. Here we take 2 = 0.1.

Each of the y, values is computed using Eq. (6.3), adding hy, and y, of the previous
line. Comparing the last result to the analytical answer ¥(0.40) = —0.81096, we see that
there is only one-decimal-place accuracy, even though we have advanced the solution only
four steps! To gain four-decimal-place accuracy, we must reduce the error by more than
400-fold. Because the global error is about proportional to /, we will need to reduce the
step size about 426-fold, to <0.00024.

Improving the Simple Euler Method

The trouble with this most simple method is its lack of accuracy, requiring an extremely
small step size. Figure 6.1 suggests how we might improve this method with just a little
additional effort.

In the simple Euler method, we use the slope at the beginning of the interval, y;, to
determine the increment to the function. This technique would be correct only if the func-
tion were linear. What we need instead is the correct average slope within the interval. This
can be approximated by the mean of the slopes at both ends of the interval.

Suppose we use the arithmetic average of the slopes at the beginning and end of the
interval to compute y, , ;:

. T
Voe1 =y + b 2Tl 2y 2 (6.4)

This should give us an improved estimate for y at x, . However, we are unable to employ
Eq. (6.4) directly, because the derivative is a function of both x and y and we cannot evalu-
ate y,  , with the true value of y, , | unknown. The modified Euler method works around
this problem by estimating or “predicting” a value of y, ., by the simple Euler relation,
Eq. (6.3). It then uses this value to compute y’ _,, giving an improved estimate
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Figure 6.1

(a “corrected” value) for y, , ;. Because the “predicted” value for y, , , is not usually very
accurate, the value for y; . ; that we compute from it is also inaccurate. One might be
tempted to recorrect, using the first “corrected” value to recompute y; . | to get a better
value for y; , , and repeat this until there is no significant change. However, this is less effi-
cient than using a more powerful method, as we describe in the next section.

Table 6.3 shows the results of this modified Euler method on this same problem, dy/dx =
—2x —y,y(0) = —1.

We can find the error of the modified Euler method by comparing it with the Taylor
series:

1
Yar1 = Vo + Yuh + —yih* +

y1é
— <éE< + A
> p h3, x, < éE<x,+h

Replace the second derivative by the forward-difference approximation for y”, (y;_., — y,)/h,
which has error of O(#), and write the error term as O(#%):

1 ’ ! )
Yar1 = ¥n R Y, +—[———y"“h Yo g O(h)}h“roof),

2

Tabie 6.3

Xy Yu hy;, yn+1,p hy;1+1,p m,hl:ll’ o N,,iy",tl,zﬁ,
0.0 —1.0000 0.1000 —0.9000 0.0700 0.0850 -0.9150
0.1 —0.9150 0.0715 —0.8435 0.0444 0.0579 —0.8571
0.2 —0.8571 0.0457 —0.8114 0.0211 0.0334 —0.8237
0.3 —0.8237 0.0224 -0.8013 0.0001 0.0112 —0.8124
0.4 —0.8124 0.0012 -0.8112 —0.0189 —0.0088 -0.8212
0.5 —0.8212

[y (0.5) = —0.81959, the analytical value]
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, L 1
%m,.il’l$-Yn‘,+ h<yn +!7)y,n+ﬂl - ?)’Z) + O(h?’)’
RN i 4 '

; AL Pl Sﬁ%*éﬂl‘ ’
Yn+1 Zyn+h<yn 2”+1 )+0(h3)

This shows that the error of one step of the modified Euler method is O(#3). This is the
local error. There is an accumulation of errors from step to step, so that the error over the
whole range of application, the so-called global error, is O(h?). This seems intuitively rea-
sonable, because the number of steps into which the interval is subdivided is proportional
to 1/h; hence the order of error is reduced to O(h?) on continuing the technique.

Another Way to Improve the Euler Method

The technique that we have called the modified Euler method tries to find a value for the
average slope of y between x, and x, + h by averaging the slopes at x, and at x, . There
are other ways to do this. The midpoint method uses the slope at the midpoint of the inter-
val as the average slope. It uses the simple Euler method to estimate y at x + 4/2 and eval-
nates y’ at the midpoint with this. For some derivative functions this is better than modified
Euler and for others it is less accurate; for the example used to construct Tables 6.2 and 6.3,
this midpoint method gives precisely the same resullts.

Propagation of Errors

The errors that we have mentioned for these Euler methods are the truncation errors, those
due to truncating the Taylor series on which they are based. There are other errors; round
off in particular will enter, It is important to understand that errors made early in the
process will also affect the later computations —the early error will be propagated. The
analysis of propagated error is not easy. We do it here only for the simple Euler method —
this will indicate how such analysis can be accomplished.

We consider the first-order equation dy/dx = f(x, y), y (x;) = y,. Let

Y, = calculated value at x,,,
y, = true value at x,,
e, =y, — Y, = emor inY;y =Y, te,
By the Euler algorithm,
Y, =Y, +hfix,Y).
By Taylor series,

/’l2
Yn+1 = I + hf(xm yn) + _Zy’,(gn)s Xn < gn < Xn + ha

h2
€at1 = Ynr1 T Yn+1 = Yn T Yn + h[f(xm yn) _f(xm Yn)] + 7)’"(@) (6'5)
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—_ 2
— en + h f(xn’ yﬂ) f(xn’ Yn) (yn - Yn) + h— y”(gn)
Yo = Y, 2

h2
= e, + hf,(x,, ne, + ?y”(fn), 7, between y,, Y,.

In Eq. (6.5), we have used the mean-value theorem, imposing continuity and existence
conditions on f(x, y) and f We suppose, in addition, that the magnitude of f is bounded by
the positive constant K in the region of x, y-space in which we are 1nterested * Hence,

eye1 = (1 + hK)e, + —hz y"(&)- (6.6)

Here, y(x,) = y, is our initial condition, which we assume free of error. Because ¥, =y,
e =0
0

ep = (1 + hK)ey + _hz Y'(&) = _"hz V'(&),

ep= (1 + hK)[ h ”(fo)] + ‘—hz Y'(é) = *hz[(l + hK)Y' (&) + Y'(é)].

Similarly,

1
= 3h2[(1 + hK)YY'(&) + (1 + hK)Y'(&) + ¥'(&)),

1 ,
ey = 7}#[(1 + hKY Y (&) + (1 + hKYH(E) + -+ Y& )]

If £, < K is positive, the truncation error at every step is propagated to every later step
after being amplified by the factor (1 + Af,) each time. Note that as 1 — 0, the error at any
point is just the sum of all the previous errors. If the f are negative and of magnitude such
that |hf | < 2, the errors are propagated with d1m1n1sh1ng effect.

We now show that the accumulated error after n steps is O(h); that is, the global error of
the simple Euler method is O(h). We assume, in addition, that y” is bounded, |y"(x)| < M,
M > 0. After taking absolute values, Eq. (6.6) becomes

eyl = (1 + BK)[e, | + %th.

Now we compare to the first-order difference equation:

(6.7)

| 1

| Zye1 = (A + hK)Z, + thM, |
| ’ |
| Zy=0. |
: j

* This is essentially the same as the Lipschitz condition, which will guzrantee existence and unigueness of a solution.
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Obviously the values of Z, are at least equal to the magnitudes of |e |. The solution to
Eq. (6.7) is (check by direct substitution)

hM hM
Z,=—— (1 +hKy' — —.
2K 2K

The Maclaurin expansion of e/ is

(hK)* | (hK)’

ehK:1+hK_|_ + 5 _*_...,
so that
1+ KK <% (K> 0),
hM hM M
7 < — RN . T 7 nhK
S O T T @ T

hM
| = —— (%K — 1) = O(h).
| > (e ) (h)

It follows that the global error e, is O(h). (This result can be derived without difference
equations.)

Runge - Kutta Methods

The simple Euler method comes from using just one term from the Taylor series for y(x)
expanded about x = x,. The modified Euler method can be derived from using two

terms:
y(xg T h) = ylxy) + ¥ (xp) *h+ ¥ (xgp) * W22,
If we replace the second derivative with a backward-difference approximation,
Yty + h) = ¥xg) + ¥'Gg) * i+ (' Cxg + B) = ' Cip/h] * 1212

V') + ¥+ h) h
2

= y(xy) + ,
we get the formula for the modified method. What if we use more terms of the Taylor
series? Two German mathematicians, Runge and Kutta, developed algorithms from using
more than two terms of the series. We will consider only fourth- and fifth-order formulas.
The modified Euler method is a second-order Runge —Kutta method.

Second-order Runge —Kutta methods are obtained by using a weighted average of two
increments to y(x,), k; and k,. For the equation dy/dx = f(x, y):
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\ Vpa1 =¥, T ak; + bk,,
] ky = B, 3,), 6.8)

k, = hf(x, + ah,y, + Bk)). E

We can think of the values k; and k, as estimates of the change in y when x advances by A,
because they are the product of the change in x and a value for the slope of the curve, dy/dx.
The Runge—Kutta methods always use the simple Euler estimate as the first estimate of Ay;
the other estimate is taken with x and y stepped up by the fractions « and 8 of / and of the
earlier estimate of Ay, k;. Our problem is to devise a scheme of choosing the four parameters,
a, b, a, B. We do so by making Eq. (6.8) agree as well as possible with the Taylor-series
expansion, in which the y-derivatives are written in terms of f, from dy/dx = f(x, y),

h2
Yut1 =V T hf('xmyn) + Tf,(xmyn) + o

An equivalent form, because df/dx = f, + fy dy/dx = f, + fy fiis

1 1

[All the derivatives in Eq. (6.9) are calculated at the point (x,, y,).] We now rewrite
Eq. (6.9) by substituting the definitions of k; and k,:

Yor1 = Yyt abf(x,, y,) + bhflx, + ah, y, + Bhf(x,, y,)]. (6.10)

To make the last term of Eq. (6.10) comparable to Eq. (6.9), we expand f(x, y) in a
Taylor series in terms of x,, y,, remembering that fis a function of two variables,* retain-
ing only first derivative terms:

flx, + ah y, + Bhf(x,, y)] = (f+ fah +fyﬁhf)n. 6.11)

On the right side of both Eqgs. (6.9) and (6.11) fand its partial derivatives are all to be eval-
uated at (x,, y,,).

Substituting from Eq. (6.11) into Eq. (610), we have
Vpt1 =¥, + alf, + bh(f + f.ah +fyﬁhf)n,
or, rearranging,
Y1 = Yp + (@ + Df, + W*(abf, + B, 1), 6.12)
Equation (6.12) will be identical to Eq. (6.9) if

at+tb=1, ab=? Bb = —.

* Appendix A will remind readers of this expansion.
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Note that only three equations need to be satisfied by the four unknowns. We can choose
one value arbitrarily (with minor restrictions); hence, we have a set of second-order methods.

One choice can be a = 0, b = 1; @ = 1/2, B = 1/2. This gives the midpoint method.
Another choice can be a = 1/2, b = 1/2; @ = 1, B = 1, which give the modified Euler.
Still another possibility is a = 1/3, b = 2/3, o = 3/4, B = 3/4; this is said to give a
minimum bound to the error. All of these are special cases of second-order Runge —Kutta
methods.

Fourth-order Runge—Kutta methods are most widely used and are derived in similar
fashion. Greater complexity results from having to compare terms through 44, and this
gives a set of 11 equations in 13 unknowns. The set of 11 equations can be solved with 2
unknowns being chosen arbitrarily. The most commonly used set of values leads to the
procedure:

1
Yos1 = Yo t g(kl + 2k, + 2ks + ky),
kl = hf(xm yn)’

1 1
k2 = hf<xn + E_ha Y T —2_k1>’ (6-13)

1 1
= +—h,y, + =k
k3 hf<xn 2 s Yn 2 2>,

k4 = hf(xn + h’ Vn + k3)

Using Egs. (6.13) to apply the Runge—Kutta fourth order to the problem, dy/dx = —2x — y,
y(0) = —1 with & = 0.1, we obtain the results shown in Table 6.4. The results here are very
impressive compared to those given in Table 6.1, where we computed the values using
the terms of the Taylor series up to the #* term. Table 6.4 agrees to five decimals with the
analytical result—illustrating a further gain in accuracy with less effort than with the
Taylor-series method of Section 6.1 —and it certainly is better than the Euler or modified Euler
methods.

Table 6.4

x y k, k, ks ky Koyg
0.0 —1.00000 0.1000 0.0850 0.0858 0.0714 0.0855
0.1 —0.91451 0.0715 0.0579 0.0586 0.0456 0.0584
0.2 —0.85619 0.0456 0.0333 0.0340 0.0222 0.0338
03 —0.82246 0.0222 0.0111 0.0117 0.0011 0.0115
0.4 —0.81096 0.0011 —0.0090 —0.0085 —0.0181 —0.0086
0.5 —0.81959 -0.0180 —=0.0271 —0.0267 —0.0354 —0.0268
0.6 —0.84644

(The analytical value of ¥(0.6) is —0.846434.)
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Figure 6.2 illustrates the four slope values that are combined in the four k’s of the
Runge—Kautta method.

The local error term for the fourth-order Runge—Kutta method is O(A%); the global error
would be O(h*). It is computationally more efficient than the modified Euler method
because, although four evaluations of the function are required per step rather than two, the
steps can be manyfold larger for the same accuracy. The Runge—Kutta techniques have
been very popular, especially the fourth-order method just presented. Because going from
second to fourth order was so beneficial, we may wonder whether we should use a still
higher order of formula. Higher-order (fifth, sixth, and so on) Runge —Kutta formulas have
been developed and can be used to advantage in determining a suitable size for A, as we
will see. Still, Runge—Kutta methods of order greater than 4 have the disadvantage that the
number of function evaluations that are required is greater than the order of the method,

while Runge —Kutta methods of order-4 or less require the same number of evaluations as the
order.

How Do We Xnow If the Step-Size Is Right?

One way to determine whether the Runge—Kutta values are sufficiently accurate is to
recompute the value at the end of each interval with the step size halved. If only a slight
change in the value of y, , | occurs, the results are accepted; if not, the step must be halved
again until the results are satisfactory. This procedure is very expensive, however. For
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instance, to implement Eq. (6.13) this way, we would need an additional seven function
evaluations to determine the accuracy of our y, , ;. The best case then would require 4 +
6 = 10 function evaluations to go from (x,, y,) to (x, , ;, ¥, ;. 1)-

A different approach uses two Runge —Kutta methods of different orders. For instance,
we could use one fourth-order and one fifth-order method to move from (x,, y,) to (C
Y,+1)- We would then compare our results at y, , . The Runge—Kutta—Fehlberg method,
now one of the most popular of these methods, does just this. Only six functional evalua-
tions (versus ten) are required, and we also have an estimate of the error (the difference of
the two y’satx = x, , |):

An Algorithm for the Runge— Kutta—Fehlberg Method

Giveny' = f(x,y) and y (x,) = y,, to compute y(x,,, ;) =¥, Wherex, ., = x + A,
evaluate:

ky =R f (X, yo)s

b= (v, e 2y 4 A1)

SRVE BT |

R N )

SR . .

R . =
Porr =y, + < 2251]2 1;22;@ 2219;]:4 - %—), with global error O(h"),

16k, 6656k, 28561k,  Oks 2k
Yat+1 = n + — — et — ,
! 135 12825 56430 50 55

with global error O(h%);
o o k128 2197k ks 2k
TOLE T 560 T 4275 75240 50 | 55

The basis for the Runge—Kutta—Fehlberg scheme is to compute two Runge—Kutta
estimates for the new value of y, _; but of different orders of errors. Thus, instead of com-
paring estimates of y,  ; for 4 and A/2, we compare the estimates §, ., and y, . ; using
fourth- and fifth-order (global) Runge—Kutta formulas. Moreover, both equations make
use of the same k’s, so only six function evaluations are needed versus the previous 11. In
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addition, one can increase or decrease i depending on the value of the estimated error. As
our estimate for the new y, . ,, we use the fifth-order (global) estimate.

As an example, we once more solve dy/dx = —2x — y, (0) = —1 with & = 0.1, using
the Runge —Kutta—Fehlberg method:

k, = 0.1,

k, = 0.0925000,
k; = 0.0889609,
k, = 0.0735157,
kg = 0.0713736,
kg = 0.0853872,

9, = —0.914512212, y; = —0.914512251,

Error, E = —0.000000040.

The exact value is y(0.1) = —0.914512254. Thus, on the first step, y, agrees with the exact
answer to eight decimal places with only two additional function evaluations. Moreover,
we have the value E to adjust our step size for the next iteration. Of course, we would use
the more accurate y, , , for the next step. This algorithm is well documented and imple-
mented in the FORTRAN program, RKF45, of Forsythe, Malcolm, and Moler (1977).
MATLAB has two numerical procedures ode45 and ode23. Maple has rk£45 in its
arsenal to get the numerical solution to differential equations.

A summary and comparison of the numerical methods we have studied for solving
y' = f(x, y) is presented in Table 6.5.

To see empirically that the global errors of Table 6.5 hold, again consider the example
dyldx = —2x — y, y(0) = —1. Table 6.6 shows how the errors of y(0.4) decrease as # is
halved. The table shows the ratios of errors of successive calculations.

In Table 6.6, we obtain the second row in this way: For a step size of 4 = 0.2, we com-
pute the errors in the values for y at x = 0.4 using the three methods indicated at the top of
columns two through four. We write down the values of the differences between the com-
puted value and the analytical value. The last three colurans represent the ratio between the
previous error (larger step size /) and the current. For instance, the 3.3 in the second row is
the ratio of 2.11E-01/9.10E-2 for the errors from Euler’s method for # = 0.4 and & = 0.2.
We do the same for the modified Euler method and the Runge—Kutta fourth-order method
in columns six and seven. We see that as 4 gets smaller, the last three columns approach the

Table 6.5
Global  Local Evaluations

Method Estimate of slope error error per step
Euler Initial value Oh) o) {
Modified Euler Average, initial and final O o) 2
Midpoint Midpoint of interval O3 OH3) 2
Runge—Kutta (fourth-order) ~ Weighted average, four values Oh* o) 4
Runge—Kutta—Fehlberg Weighted average, six values o) O(H®) 6
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Table 6.6
Error in value Ratios of
computed at x = 0.4 successive errors
Modified Runge-Kutta Modified Runge—-Kutta

h Euler Euler 4th Euler Euler 4th
0.4000  2.11E-01 2.90E-02 2.40E-04
0.2000  9.10E-02 6.42E-03 1.27E-05 23 4.5 18.9
0.1000  4.27E-02 1.44E-03 7.29E-07 2.1 4.5 17.4
0.0500  2.07E-02 3.48E-04 4.37E-08 2.1 4.1 16.7
0.0250 1.02E-02 8.54E-05 2.76E-09 2.0 4.1 15.8
0.0125 5.06E-03 2.11E-05 1.65E-10 2.0 4.0 16.7

ratios of 2.0, 4.0, and 16.0. This is what we expect, because these three methods are,
respectively, O(h), O(h2), and O(h*) and because at each stage the step size is halved.

We end this section by showing the Runge —Kutta—Merson method, another fourth-
order method even though five different k’s must be computed. It can be seen from the
formula that the order is given, not by the number of £’s, but by the global error.

ki = k- f (5 yo),

h k1>
ky=h- + =y + =)
2 f(xn 3)7 3

h kK
k3:h'f xn+_7yn+—+—6—a

3 6
tom e e 36)
4 Xn Zayn 8 8 3
k 3k
kszh.f(xn+h,,,+71 23+2k4>,
k, + 4k, + k
PP ke ko o )+ oy,

1
Error, E = 30 2k, ~— 9%y + 8k, — ks). s

As we have already indicated, there are methods that use Runge —Kutta formulas of orders
5, 6, and higher. In fact, the IMSL routine DVERK uses formulas or orders 5 and 6 that were
developed by J. H. Verner. In this case, the method uses eight function evaluations. Maple has
an option in its procedure for solving differential equations that is called dverk78.

Although the Runge - Kutta method has been very popular in the past, it has its limita-
tions in solving certain types of differential equations. However, for a large class of
problems the methods presented in this section produce some very stunning results. Also
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the technique introduced by Fehlberg in comparing two different orders rather than halving
step sizes increases the efficiency of the Runge—Kutta methods.

The methods so far discussed are called single-step methods. They use only the infor-
mation at (x,, y,) to get to (x, . , y,. ;)- In the next sections, we examine methods that uti-
lize past information from previous points to get (x, , 1, ¥, )-

Here is the MATLAB solution to our sample problem through its ode45 command,
which uses the RKF method with the step size automatically adjusted. We first create an
M-file that defines the derivative function:

function dydx = deql (x,Vy)
dydx = —2*x —y;

Now we use the ‘ode45’ command to get the solution between x = 0 and x = 0.6 using the
RKF method:

EDU>> [x,y] = ode4s (@deqgl, [0,.6], —1)

and MATLAB displays a list of the x-values used in the computations followed by the
corresponding y-values. Though not apparent here, the procedure uses automatic step-size
adjustment. We show only a portion of the whole output; the default of 40 intervals is used.
We show the y-values side by side with the x-values. (The solution is much more accurate
than four digits.)

x = y =

0 —1.0000
0.0150 —0.9853
0.0300 —0.9713
0.0450 —0.9580
0.0600 —0.9453
0.5100 —0.8215
0.5250 —0.8247
0.5400 —0.8282
0.5550 —0.8322
'0.5700 —0.8366
0.5850 —0.8413
0.6000 —0.8464

6.4 Multistep Methods

Runge—Kutta-type methods (which include Fuler and modified Euler as special cases) are
called single-step methods because they use only the information from the last step com-
puted. In this, they have the ability to perform the next step with a different step size and
are ideal for beginning the solution where only the initial conditions are available. After
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the solution has begun, however, there is additional information available about the func-
tion (and its derivative) if we are wise enough to retain it in the memory of the computer. A
multistep method is one that takes advantage of this fact,

The principle behind a multistep method is to utilize the past values of y and/or y' to
construct a polynomial that approximates the derivative function, and extrapolate this into
the next interval. Most methods use equispaced past values to make the construction of the
polynomial easy. The Adams method is typical.* The number of past points that are used
sets the degree of the polynomial and is therefore responsible for the truncation error. The
order of the method is equal to the power of £ in the global error term of the formula,
which is also equal to one more than the degree of the polynomial.

To derive the relations for the Adams method, we write the differential equation
dyldx = f(x, y) in the form

dy = f(x, y) dx,

and we integrate between x, and x, , |

n

“ X 1 Xn+1
‘ J dy =Yt T Vn T f(x’y) dx.
1 X, X,

To integrate the term on the right, we approximate f(x, y) as a polynomial in x, deriving this
by making it fit at several past points. If we use three past points, the approximating poly-
nomial will be a quadratic. If we use four points, it will be a cubic. The more points we use,
the better the accuracy (until round off interferes, of course).

You saw in Chapter 3 how interpolating polynomials can be developed. Mathematica
can do this for us with its Interpolating Polynomial function. With this, we can
get a quadratic approximation:

1 1
Joey) == P(fy = 21 T fodx® + > M A1 T Sfu2dX F S

Now we again use Mathematica to integrate between the limits of x = x, and x = x, ;.
The result is a formula for the increment in y:

h
Yn+1 = Yn = E (23_}‘;1 - 16_]‘;1*1 + an72)7

and we have the formula to advance y:

h )
Int1 T Ve = Ty [23f, = 16f,-1 + 5f,-0] + O (6.14)

* This is often called the Adams —Bashford method.
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Observe that Eq. (6.14) resembles the single-step formulas of the previous sections in that
the increment to y is a weighted sum of the derivatives times the step size, but differs in that
past values are used rather than estimates in the forward direction.

EXAMPLE 6.1

We illustrate the use of Eq. (6.14) to calculate y(0.6) for dy/dx = —2x — y, y(0) = —1. We
compute good values for y(0.2) and y(0.4) using a single-step method. In this case we
obtain these values using the Runge —Kutta—Fehlberg method with & = 0.2. These values
are given in Table 6.7.

Then, from Eq. (6.14), we have

0.2
¥(0.6) = —0.81096 + NTY [23(0.01096) — 16(0.45619) + 5(1.0)]

Il

—0.84508.

Comparing our result with the exact solution (—0.84643), we find that the computed value
has an error of 0.00135. We can reduce the size of the error by doing the calculations with
a smaller step size of 0.1. We use the fifth-order values of the Runge—Kutta—Fehlberg
method once again to obtain the values in Table 6.8.

Using Eq. (6.14) again with the values for f(x, y) at x = 0.3, x = 0.4, x = 0.5 from
Table 6.8, we recompute y(0.6):

0.1
¥(0.6) = —0.81959 + ETY [23(—0.18041) — 16(0.01096) + 5(0.22245)]
= —0.84636,

which has an error of 0.00007.

Adams Fourth-Order Formula

Equation (6.14) is a third-order formula that uses y-values at three past points, x,, x, |, and
Xy to estimat.e ¥,.1- Using four past points is equivalent to integrating a cubic interpo-
lating polynomial through four past points. We can use the method of undetermined coef-

ficients to obtain this.

Table 6.7

X y y, analytical fix,y
0.0 —1.0000000 —1.0000000 1.0000000
0.2 —0.8561921 —0.8561923 0.4561921

0:4 —0.8109599 —0.8109601 0.0109599
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Table 6.8

X y ¥, analytical f&x,y)
0.0 —1.00000 —1.00000 1.00000
0.1 —0.91451 —0.91451 0.71451
0.2 —0.85619 —0.85619 0.45619
03 —0.82245 —0.82245 0.22245
0.4 —0.81096 —0.81096 0.01096
0.5 —0.81959 —0.81959 —0.18041

We desire a formula of the form
f J@ dx = cofy 53+ ¢1fa t fmy T oaf

With four constants, we can make the formula exact when f(x) is any polynomial of degree-3
or less. Accordingly, we replace f(x) successively by x3, x2, x, and 1 to evaluate the coefficients.

It is apparent that the formula must be independent of the actual x-values. To simplify
the equations, let us shift the origin to the point x = x,; our integral is then taken over the
interval from O to A4, where i = X,y X,

h
jof(x) dx = cpf(=3h) + ¢, f(=2h) + ¢, f(—h) + ¢, f(0).

Carrying out the computations by replacing f(x) with the particular polynomials, we have

h4
o= (3 + e (=2R)® + cy(—h)? + ¢3(0),

h3
3= =30 F ey (=207 + (=) + e3(0),

2

h? = co(=3h) + ¢,(=2h) + cy(—h) + ¢3(0),

h=cy(1) + c;(1) + cy(1) + c5(D).

The linear system we are to solve is

-27 =8 -1 0][e 1/4
9 4 1 ofjel |13
-3 =2 -1 0lle| |12
1 1 1 1f]e 1

whose solution is
¢y = —924, ¢, = 37124, c, = —59/24, c; = 55/24.

The fourth-order Adams formula is then
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Table 6.9
Number of Estimate of Error
points used y(0.6) (h =0.1)
3 —0.8463626 0.000072
4 —0.8464420 0.000007
. ]
Yar1 =Yu Y [55f, = 59—1 + 37f—2 — Uzl + OGP). {6.13)

i
|
|
|

If we repeat Example 6.1 with this fourth-order formula, taking values at x = 0.2, 0.3, 0.4,
and 0.5, we compute:

0.1
3(0.6) = ~0.81959 + —- [55(~0.18041) — 59(0.01096)
+ 37(0.22245) — 9(0.45619)]
= —0.84644.

The error of this computation has been reduced to 0.00001. We summarize the results of
these two formulas in Table 6.9.

The Error Term  We get the error term for the fourth-order Adams formula by integrating
the error of the cubic interpolating polynomial. This turns out to be

251
E = WyON§),
ITOr 70 YONE)

which is O(%°) as we have used before.

The Adams—-Mouiton Method

An improvement over the Adams method is the Adams-—-Moulton method. It uses the
Adams method as a predictor formula, then applies a corrector formula, based on con-
structing another cubic interpolating formula through four points—the one obtained with

the predictor formula and three previously computed points. (You may want to use unde-
termined coefficients to confirm this.)

J—

Predictor: !

251
720

h
Yat1 = Yn T+ EZ (551, = 591 + 37y — Ya) + hjy(s)(é:l)- {6..6)
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| Corrector:
19
720

h
| Toet =0+ o Ot ¥ 19, = Foo + ) = o 9. (617)

We illustrate the Adams—Moulton method using our earlier example, dy/dx = —2x — y,
¥(0) = —1. Using Eqgs. (6.16) and (6.17) we construct Table 6.10. Here is how the entries
in the table were obtained. By the predictor formula of (6.16), we get

0.1
¥(0.4) = —0.8224547 + —-~[55(0.2224547) — 59(0.4561923)

+ 37(0.7145123) — 9(1.0)]
= —0.8109687.

Then f(0.4, —0.8109687) is computed, to get 0.0109688, and we use the corrector formula
of Eq. (6.17) to get

1l

0.1
¥(0.4) = —0.8224547 + By [9(0.0109688) + 19(0.2224547)

—5(0.4561923) + 0.7145123]
—0.8109652.

The computations are continued in the same manner to get ¥(0.5). The corrected value
almost agrees to five decimals with the predicted value. Comparing error terms of
Eqgs. (6.16) and (6.17) and assuming that the two fifth-derivative values are equal, we see
that the true value should lie between the predicted and corrected values, with the error in
the corrected value being about

It

IECHN
251 + 19 14.2

times the difference between the predicted and corrected values. A frequently used crite-
rion for accuracy of the Adams—Moulton method with four starting values is that the
corrected value is not in error by more than 1 in the last place if the difference between

Table 6.10
X y f(x5 J’)

0.0 —1.0000000 1.0000000

0.1 —0.9145122 0.7145123

0.2 —0.8561923 0.4561923

0.3 —0.8224547 0.2224547

0.4 (—0.8109687) predicted

(—0.8109652) corrected (—0.8109601 analytical)

0.5 (—0.8195978) predicted

(—0.8195905) corrected (—0.8195920 analytical)




6.4: Multistep Methods 353

predicted and corrected values is less than 14 in the last decimal place. If this degree of
accuracy is not met, we know that A is too large.

Changing the Step Size

When the predicted and corrected values agree to as many decimals as the desired accu-
racy, we can save computational effort by increasing the step size. We can conveniently
double the step size, after we have seven equispaced values, by omitting every second one.
When the difference between predicted and corrected values reaches or exceeds the accu-
racy criterion, we should decrease step size. If we interpolate two additional y-values with
a fourth-degree polynomial, where the error will be O(/°), consistent with the rest of our
work, we can readily halve the step size. Convenient formulas for this are

1
Y112 = 128 [35)7" + 140))",1 o 70}’”,2 + 28}7”,3 - 5)),1,4],

1
Ya-32 7 128 [—5y, + 60y,_, + 90y, _, — 20y, 5+ 3y,_,I.

Use of these values withy,, y, | gives four values of the function at intervals of Ax = h/2.

The efficiency of Adams—Moulton is about twice that of the Runge - Kutta—Fehlberg
and Runge--Kutta methods. Only two function evaluations are needed per step for the for-
mer method, whereas six or four are required with the single-step alternatives. All have
similar error terms. Change of step size with the multistep methods is considerably more
awkward, however.

Stability Considerations

In getting the solution to a differential equation, one must always worry whether the
method is stable. In a stable method, early errors (due to the imprecision of the method or
to an initial value that is slightly incorrect) are damped out as the computations proceed;
they do not grow without bound. The opposite is true for an unstable method.

In the discussion of the Euler method in Section 6.2, we showed the conditions for
stability. This was not a simple task. It is easier to see if a method is stable or unstable by
testing it with certain kinds of derivative functions, y'(x) = f(x, y).

Consider this equation:

dyldx = f(x,y) = =2y +2,  (0) = —1,

whose analytical solution is y(x) = 1 — 2e~%*. The curve for y(x) is smooth, starting at
y = —1, proceeding rapidly upward with a slope of 4, crossing the x-axis at about

x = 0.35, and approaching the asymptote of y = 1 as x increases. By x = 3, the y-value is
within 0.5% of its limiting values.

Suppose that we use a very simple multistep formula:

Vo1 = Yoo T 20 (x,, 3,), (6.18)
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"

which has a truncation error of (1/6)h3y”(£), smaller than for the simple Euler method,
which is (1/2)h%y"(£), particularly with small values for A.

If we apply Eq. (6.18) toy' = —2y + 2, y(0) = —1, with an A-value of 0.1 we get the
results in Table 6.11. (We need starting values at x = 0 and x = 0.1; these were from the
given y(0) = —1 and the analytical value at x = 0.1.)

Table 6.11 Results from Eq. (6.18)

X y Analytical Error Rel error
0.20 —0.34502 —0.34064 0.00438 —-0.01284
0.30 —0.09946 -0.09762 0.00183 —0.01877
0.40 0.09477 0.10134 0.00658 0.06488
0.50 0.26264 0.26424 0.00160 0.00607
0.60 0.38971 0.39761 0.00790 0.01987
0.70 0.50675 0.50681 0.00005 0.00010
0.80 0.58701 0.59621 0.00920 0.01543
0.90 0.67195 0.66940 —0.00255 —0.00380
1.00 0.71823 0.72933 0.01110 0.01522
1.10 0.78466 0.77839 —0.00626 —0.00805
1.20 0.80437 0.81856 0.01420 0.01734
1.30 0.86291 0.85145 —0.01146 —0.01346
1.40 0.85920 0.87838 0.01918 0.02183
1.50 0.91923 0.90043 —0.01880 —0.02088
1.60 0.89151 0.91848 0.02696 0.02936
1.70 0.96262 0.93325 —0.02937 —0.03147
1.80 0.90646 0.94535 0.03889 0.04114
1.90 1.00004 0.95526 —0.04478 —0.04688
2.00 0.90645 0.96337 0.05692 0.05909
2.10 1.03746 0.97001 —0.06745 ~0.06954
2.20 0.89146 0.97545 0.08398 0.08610
2.30 1.08087 0.97990 —0.10098 —0.10305
2.40 0.85911 0.98354 0.12443 0.12651
2.50 1.13723 0.98652 -0.15070 —0.15276
2.60 0.80422 0.98897 0.18474 0.18681
2.70 1.21554 0.99097 —0.22457 —0.22662
2.80 0.71801 0.99260 0.27460 0.27664
2.90 1.32834 0.99394 —0.33439 —0.33643
3.00 0.58667 0.99504 0.40837 0.41041
3.10 1.49367 0.99594 -0.49773 —0.49976
3.20 0.38920 0.99668 0.60747 0.60950
3.30 1.73799 0.99728 —0.74071 —0.74273
3.40 0.09401 0.99777 0.90376 0.90578
3.50 2.10038 0.99818 —1.10221 —1.10422
3.60 —0.34614 0.99851 1.34465 1.34666
3.70 2.63884 0.99878 —1.64006 —1.64207
3.80 —1.00168 0.99900 2.00068 2.00269
3.90 3.43951 0.99918 —~2.44033 —2.44234

4.00 —1.97749 0.99933 2.97682 2.97882
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Table 6.12 Results from Simple Euler Method

x y Analytical Error Rel error
0.00 —1.00000 —1.00000 0.00000 0.00000
0.10 —0.60000 -0.63746 —0.03746 0.05877
0.20 —0.28000 —0.34064 —0.06064 0.17802
0.30 —0.02400 —0.09762 —0.07362 0.75416
0.40 0.18080 0.10134 —0.07946 —0.78406
0.50 0.34464 0.26424 —0.08040 —0.30426
0.60 047571 0.39761 —0.07810 —0.19642
0.70 0.58057 0.50681 —0.07376 —0.14555
0.80 0.66446 0.59621 —0.06825 —0.11447
0.90 0.73156 0.66940 —0.06216 —0.09286
1.00 0.78525 0.72933 —0.05592 —0.07668
1.10 0.82820 0.77839 —0.04981 —0.06399
1.20 0.86256 0.81856 —0.04400 —0.05375
1.30 0.89005 0.85145 —0.03860 —0.04533
1.40 0.91204 0.87838 —0.03366 —0.03832
1.50 0.92963 0.90043 —0.02921 —0.03244
1.60 0.94371 0.91848 —0.02523 —0.02747
1.70 0.95496 0.93325 —0.02171 —0.02326
1.80 0.96397 0.94535 —0.01862 —0.01969
1.90 0.97118 0.95526 —0.01592 —0.01666
2.00 0.97694 0.96337 -0.01357 —0.01409
2.10 0.98155 0.97001 —0.01154 —0.01190
2.20 0.98524 0.97545 —0.00980 —0.01004
2.30 0.98819 0.97990 —0.00830 —0.00847
2.40 0.99056 0.98354 —0.00701 —0.00713
2.50 0.99244 0.98652 —0.00592 —0.00600
2.60 0.99396 0.98897 -0.00499 -0.00504
2.70 0.99516 0.99097 —0.00420 —0.00424
2.80 0.99613 0.99260 —0.00353 —0.00355
2.90 0.99691 0.99394 —0.00296 —0.00298
3.00 0.99752 0.99504 —0.00248 —0.00249
3.10 0.99802 0.99594 —0.00208 —0.00209
3.20 0.99842 0.99668 —0.00174 —0.00174
3.30 0.99873 0.99728 —0.00145 —0.00146
3.40 0.99899 0.99777 —0.00121 —0.00122
3.50 0.99919 0.99818 —0.00101 -0.00101
3.60 0.99935 0.99851 —0.00084 —{1.00085
3.70 0.99948 0.99878 —0.00070 —0.00070
3.80 0.99958 0.99900 —0.00059 —0.00059
3.90 0.99967 0.99918 —0.00049 —0.00049
4.00 0.99973 0.99933 —0.00041 —0.00041

Observe in Table 6.11 that we get good results up to about x = 0.8, but from x = 2 the
computed values are increasingly poor, and as x approaches 4 they are completely useless;
they oscillate widely about the asymptotic value for y.

Compare these with the results from a simple Euler computation, also with A = 0.1, that
are given in Table 6.12. These are much less accurate at small values of x (the magnitudes
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of the errors from the simple Euler computation between x = 0.2 and x = 0.5 are on the
average nearly 20 times as large).

On the other hand, the Euler results closely resemble the analytical values at larger val-
ues for x and do not show the same oscillations.

The method of Eq. (6.18) is unstable while the Euler method is stable.

There is another unstable method but its instability is less apparent. Milne’s method is a
multistep predictor —corrector that uses these equations:

Predictor:

4h 28
Yo+l = Yu—3 ™ T (zf;z _fr‘171 + 2fn—2) + —9“0115_)](5)(61)’ X3 < gl < X1

Corrector:

h »
Ynttie = Yu-1 7 —3‘ (for1 T 46+ fim) — ‘9”0”)’@(52), Yo <& <Xy (6.19)
! I

Observe that the error term after correcting has a multiplier that is less than half that of
Adams~Moulton so we should expect very accurate results. However, if we solve the
same equation,

dyldx = fix, yy = -2y +2, 0= —1,

with the formulas of Eq. (6.19), we again observe oscillatory behavior as exhibited in
Table 6.13, but the oscillations are slight and do not appear until about x = 2 and even at
x = 8 they are not large but they are increasing in magnitude.

Of course, this demonstration of instability for Milne’s method is not entirely satisfac-
tory. We can do this more theoretically. Consider the differential equation

dyldx = Ay,

where A is a constant. The general solution is y = ce4*. Suppose now that y(xg) = ¥, is the
initial condition; it then follows that the value of ¢ must be ¢ = yOe*AJ‘O. Hence, letting y,
be the value of the function when x = x , the analytical solution is

yn = yOeA(xn_XO)-

If we solve the differential equation by the method of Milne, we have, from the correc-
tor formula,

h ? ’ 1
Ynt1 = Yot T _3—(yn+1 + 4yn + yn*l)-
Letting y!, = Ay,, from the original differential equation, and rearranging, we get

h
Yut1 = Yn—1 + ?(Ayn-kl + 4Ayn + Ayn*])’
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x y Analytical Error Rel error
0.40 0.101355 0.101342 -0.000013 —0.000127
0.50 0.264249 0.264241 —~0.000008 -0.000029
0.60 0.397630 0.397612 —-0.000019 —0.000047
0.70 0.506816 0.506806 —0.000010 —0.000020
0.80 0.596227 0.596207 —0.000020 —0.000033
1.80 0.945365 0.945353 —0.000012 —0.000013
1.90 0.955257 0.955258 0.000002 0.000002
2.00 0.963380 0.963369 ~0.000011 —0.000012
2.10 0.970006 0.970009 0.000003 0.000003
2.20 0.975456 0.975445 ~0.000010 —0.000011
3.50 0.998167 0.998176 0.000010 0.000010
3.60 0.998518 0.998507 ~0.000011 —-0.000011
3.70 0.998767 0.998778 0.000010 0.000010
3.80 0.999010 0.998999 —0.000011 —0.000011
3.90 0.999169 0.999181 0.000011 0.000011
4.00 0.999341 0.999329 —0.000012 —0.000012
7.70 0.999968 1.000000 0.000031 0.000031
7.80 1.000032 1.000000 —0.000032 —0.000032
7.90 0.999967 1.000000 0.000033 0.000033
8.00 1.000033 1.000000 —0.000034 —0.000034
.10 0.999965 1.000000 0.000035 0.000035

4hA hA
(]— - _> Ynt1 — 3 1+ T) Yn—1 = 0.

This a second-order difference equation that has the solution:

Yn = ClZfl + CZZZ"?

where Z,, Z, are the roots of the quadratic

(1__

4hA
o,

3

+h—A>—o
3 2

which you may check by direct substitution. We can simplify this by letting 2A/3 = r; the

roots of the quadratic are then

Ii

2r 4+ \3r2 + 1

1—r

2r —N\3r2 + 1

1—r

What happens if the step size 4 becomes small? As k — 0, r — 0, and 2 — 0 even faster.
We then can neglect the 372 terms in comparison to 1 under the radical and get, after
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dividing the fractions,

2r + 1 )
T =1+43r+ 0@ =1+ Ah + Oh?),
2r—1 Ah
Z, =~ 1r :—1+r+0(r2)=—<1——3—>+0(h2).
- r

We now compare this to the Maclaurin series for the exponential function,

e =1+ hA + O(h?),
el =1 — %4— + O(h?).
We see that, for 27 — 0,
Z, = e, Z, = —e M5,

Hence, the Milne solution is represented by

; Y, = C[(ehA)" + Cz(e~hA/3)n — CleA(x,,fxo) + CZE_A(X"—XD)B.

In this, we have used x, — x, = nh. The solution consists of two parts. The first term
obviously agrees with the analytical solution. The second term, called a parasitic term,
will die out as x, increases if A is a positive constant, but if A is negative, it will grow expo-
nentially with x,. Note that we get this peculiar behavior independent of 4; smaller step

size is of no benefit in eliminating the error.

Hamming's Metnod

The analysis of Milne’s method shows that the instability comes from the corrector equa-
tion. Hamming describes a way to avoid this instability while still using the Milne predic-

tor with its simplicity. Hammings equations are
Predictor:

4h
Virrp = Viez T '_3" 2fi — fie1 + 2fi0),
which is first modified as
112
yi+1,m = yi-H,p - _ﬁ (yi,p - yi,c)9
and the modified value is used in the corrector:

1
Yit1e = —8— [9% = yi2 + 38(fiv1m + 2 — fi-D)s
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The error of this method is not as small as with Milne, but it is a little better than
Adams—Moulton.

Higher-Order Equations and Systems

In the opening portion of this chapter, we pointed out that Newton’s law of motion, f = m * a,
is a differential equation with a being the acceleration, the rate of change of velocity with
time. Velocity is itself the derivative of distance with time, dx/dt. So, f = ma is really

f=m*d*ldi,

a second-order differential equation.

We can solve this equation numerically by changing it into a pair of first-order equa-
tions. We rearrange the equation to put the derivative on the left

d*xldt* = fim,
and then, by letting dx/dt = y, a new variable, we have

dxldt =y,
dyldt = d*x/dt? = fim.

To solve the original second-order equation for x as a function of time, we need two initial
conditions, the starting position, x;, and the starting velocity, x(’). So, the equation for dx/dt
begins with x = x,,, and that for dy/dt begins with y = y, = x|,

Here is another example, a variation on the familiar spring-mass problem. Figure 6.3
shows our system. Mass 1 is a block that rolls along a horizontal surface and whose motion
is controlled by the linear spring whose spring constant is k;. The second mass, m,, is a
wheel of radius r, that rolls on the top of mass 1 and is attached to another spring whose
spring constant is k,. The equations of motion for this system are:

d? d%
(m1 + Osmz)jtsz - OSMZEZL + k1x1 = 0,
dz d?,
—O.5m27;-2— + 1.5m, “Efxz_l + ko, =
Mass = m, *2

Radius =r,

Higure 6.3
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These equations make up a system of two second-order equations. To solve this prob-
lem numerically, we reduce to a system of four first-order equations by substituting dy/dt
for d?x,/ds* and dz/dt for d*x,/df*. You should write out these for equations for practice.
‘What are the four initial conditions?

Systems of First-Order Equations

It is clear that all we need to do to solve higher-order equations, even a system of higher-
order initial-value problems, is to reduce them to a system of first-order equations. We
illustrate how a system of first-order problems can be solved with a pair of equations
whose solution at t = 0.1 is x = 0.913936, y = —0.909217.

dx
eyt w0 =1,

|
|
F .
dt (6.20) ;
Y
— =1y +x, 0)=—1. !
i ty + x, ¥(0) |
Taylor-Series Method
We need the various derivatives x’, x”, x”, . .., y", ", y", ..., all evaluated at t = 0:
X =xy+t, X(0) = (1)(=1)+0=—1
y =t+ux YO =0O)(-D+1=1,
¥=xy'+xy+1, X0y =01+ (=D(=DH +1=3,
Y =y+un +x, Y'(0) = =1+ (O)1) — 1= -2,
x"l — xly7 + x)}ll + .X"y + x!y!, x!l!(o) — __7,
ylﬂ — yl + yl + zy/! + x/l’ y!II(O) = 5’
and so on; and so on;
3 7 27 124
=1—-t+—F2—-—8B+—1*———p+..-,
2 6 24 120 621)
5 13 47
= — _ 42 _3____t4+__,_t5+....
y(®) 1+¢ t+6t >4 120

Atr=0.1,x = 09139 and y = —0.9092.

Equations (6.21) are the solution to the set (6.20). Note that we need to alternate
between the functions in getting the derivatives; for example, we cannot get x"(0) until
¥'(0) is known; we cannot get y"(0) until x"(0) is known. After we have obtained the coef-
ficients of the Taylor-series expansions in Eq. (6.21), we can evaluate x and y at any value
of z, but the error will depend on how many terms we employ.
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Euler Predictor - Corrector Method (Modified Euler;

We apply the predictor to each equation; then the corrector can be used. Again, note that
we work alternately with the two functions.

Take h = 0.1. Let p and ¢ subscripts indicate predicted and corrected values,
respectively:

xp(O.l) =1+ 0.1[(1)(—1) + 0] = 0.9,
yp(O.l) = —1+0.1{(0)—1) + 1] = —0.9,

x,(0.1)=1+0.1 ( i [(0'9)(2_0'9) £ 01 ) = 0.9145,
y,0.1) = —1+0.1 ( L [(0'1)(_02'9) O] > = —0.9088.

In computing x (0.1), we used the X, and Ypr In computing y, (0.1) after x (0.1) is known,
we have a choice between X, and x,. There is an intuitive feel that one should use x o with the
idea that one should always use the best available values. This does not always expedite
convergence, probably due to compensating errors. Here we have used the best values to
date. If we use the corrected values to recompute the value of the derivatives at h = 0.1, we
can obtain better values. Doing so gives

x(0.1) = 0.9135,
$(0.1) = —0.9089,

but this is not as efficient as using a more powerful method. We can now advance the solu-
tion another step if desired, by using the computed values at ¢ = (.1 as the starting values.
From this point, we can advance one more step, and so on for any value of 7. The errors will
be the combination of local truncation error at each step plus the propagated error resulting
from the use of inexact starting values.

Runge - Kutta - Fehlberg Method

Again there is an alternation between the x and y calculations, In applying this method, one
always uses the previous k-value in incrementing the function values and the value of 4 to
increment the independent variable. As in the previous calculations, we alternate

between computations for x and for y; for example, we do k, _, then kl.y’ before doing
and so on. /

Keeping in mind that the equations are

1Lx 2,x°

dx

- = -+ =
s Jexy =0+ x0) =1,

d
7)’:: gt x,y) =ty +x, »0)=-1,
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the k-values for x and y are

for x:

Then, using the fifth-order formula, we get

ki, = h0,1, 1)

= 0.1[(D)(—1) + 0]

= —0.1;

= hf(0.025, 0.975, —0.975)

= (.1[(0.975)(—0.975) + 0.025]
= —0.092562;

= hf(0.038, 0.965, —0.964)

= 0.1[(0.965)(—0.964) + 0.038]
= —(.089226;

= hf(0.092, 0.919, —0.915)

= 0.1{(0.919)(—0.915) + 0.092]
= —0.074892;

= hf(0.1, 0.913, —0.908)

= 0.1[(0.913)(—0.908) + 0.1]

= —0.072904;

= hf(0.05, 0.954, —0.953)

= (.1[(0.954)(—0.953) + 0.05]
= —0.085868.
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for y:

kl’y =hg0,1, 1)
=0.1[(O)(—1) + 1]
=0.1;

kz,y = hg(0.025, 0.975, —0.975)
= 0.1{(0.025)(—0.975) + 0.975]
= 0.095062;

k3’y = hg(0.038, 0.965, ~0.964)
= 0.1(0.038)(—0.964) + 0.965]
= 0.092845;

k4,y = hg(0.092,0.919, —0.915)
= 0.1[(0.092)(-0.915) + 0.919]
= (.083461;

kS,y = hg(0.1, 0.913, —0.908)
= (.1[(0.1)(—0.908) + 0.913]
= 0.082178;

kﬁ’y = hg(0.05, 0.954, —0.953)
= 0.1[(0.05)(—0.953) + 0.954]
= (0.090628.

\
i
f
|

x(0.1) = 1 + (—0.01185 — 0.046307 — 0.037905 + 0.013123 — 0.003122)

= (0.913936;

y(0.1)
—0.909217.

—1 +.(0.01185 + 0.048185 + 0.042242 — 0.014792 + 0.003296)

5
]

Extending the Taylor-series solution even further shows that the Runge—Kutta—Fehlberg
values are correct to more than five decimals, whereas the modified Euler values are

correct to only three, so & = (.1 may be too large for that method.

Advancing the solution by the Runge —Kutta—Fehlberg method will again involve using
the computed values of x and y as the initial values for another step. The errors here will be

much Iess than those for the Euler predictor—corrector method.
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Table 6.14
t x x' t y y'
0.000 1.0 —-1.0 0.00 —-1.0 1.0
Starting 0.025 0.9759 —-0.9271 0.025 —0.9756 0.9515
values 0.050 0.9536 —0.8582 0.050 —0.9524 0.9060
0.075 0.9330 —0.7929 0.075 —0.9303 0.8632
Predicted 0.10 (0.9139) (—0.7310) 0.10 (—0.9092) (0.8230)
Corrected 0.9139 —0.9092

Adams - Moulton Method

After getting four starting values, we proceed with the algorithm of Egs. (6.16) and (6.17),
again alternately computing x and then y (see Table 6.14.)
In the computations we first get predicted values of xx and y:

0.025
24

x(0.1) = 0.9330 + [55(—0.7929) — 59(—0.8582) + 37(—0.9271) — 9(—1.0)}

= 0.913937;

25 [55(0.8632) — 59(0.90¢0) + 37(0.9515) — 9(1.0)]

0.1) = —0.9303 +
y(0.1) 9 a

= —(.909217.
After getting x" and y" at r = 0.1, using x(0.1) and y(0.1), we then correct:

24

5
x(0.1) = 0.9330 + [9(—0.7310) + 19(—0.7929) — 5(—0.8582) + (—0.9271)]

= (.913936;
0.025 <
¥(0.1) = —0.9303 + YR [9(0.8230) + 19(0.8632) — 5(0.9060) + (0.9515)]

= —0.909217.

The close agreement of predicted and corrected values indicates six-decimal-place
accuracy.

In this method, as we advance the solution to larger values of ¢, the comparison between
predictor and corrector values tells us whether the step size needs to be changed.

Our computer algebra systems have no trouble in solving a system of first-order equations.
Here is how Maple can solve the same problem that we have used to illustrate the methods:

>degs : = {D(x) (t) =x(t)*y(t) +t, D(y) () =t*y(t) +x(t)}:
>inits : = {x(0) =1, y(0) =—1}:
>sgoln : =dsolve(degs union inits, {x(t),y(t)}, numeric,
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output = array ([0, 0.1, 0.2, 0.3, 0.4]1));
[t, x(£) y(t)]

0 1. —1.

A .91393569117289 —.90921691879919
soln: = .2 .85218609746503 —.83408937511807

.3 .81063353106742 —.77108331990007

.4 .78634968913429 —.71735810231063

Here, we asked for the solution at x-values between O and 0.4 in steps of 0.1 and the results
are given in tabular form. MATLAB and Mathematica can do so similarly.

Stiff Equations

Some initial value problems pose significant difficulties for their numerical solution.
Acton points out several kinds of such difficulties—one of his examples is Bessel’s
equation:

y'+yix+y=0, y(0) =1, y'(0) = 0.

There is a singularity at the origin, but this is surmounted by the initial value for y (y = 0),
so that one can replace the equation at x = 0 and get a starting value with

2y" +y=0.

There are other difficult situations: The equation may change its form at certain critical
points, or it may have a sharp narrow peak that will be missed if too large an interval is used.

One particular difficult case is one that we now discuss—stiff’ differential equations.
The word stiff comes from an analogy to a spring system where the natural frequency of
vibration is very great if the spring constant is large.

When the solution to a differential equation (say, of second order) has a general solution
that involves the sum or difference of terms of the form ae® and he? where both ¢ and d are
negative but ¢ is much smaller than d, the numerical solution can be very unstable even
with a very small step size.

An example is the following:

x' = 1195x — 1995y, x(0) =2,
y' = 1197x — 1997y, y(0) = —2.

(6.22)

The analytical solution of Eq. (6.22) is
x(t) = 10e™2 — 8¢ 800, —y(f) = 6e=2 — e 8007,
Observe that the exponents are all negative and of very different magnitude, qualifying this

as a stiff equation. Suppose we solve Eq. (6.22) by the simple Euler method with 2 = 0.1,
applying just one step. The iterations are

X = x; + hf(x;, y) = x; + 0.1(1195x; — 1995y)),
Vi =¥+ hglx, ) =y, + 0.1(1197x; — 1997y,).
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This gives x(0.1) = 640, ¥(0.1) = 636, while the analytical values are x(0.1) = 8.187
and y(0.1) = 4.912. Such a result is typical (although here exaggerated) for stiff
equations.

One solution to this problem is to use an implicit method rather than an explicit one. All
the methods so far discussed have been explicit, meaning that new values, x,, ; and y,, ;,
are computed in terms of previous values, x; and y;. An implicit method computes the
increment only with the new (unknown) values. Suppose that

x'=fxy) and y' =g, y).
The implicit form of the Euler method is
Xy = X T A O Vi)
Yie1 = ¥ T hg (115 Vi y)- .23

If the derivative functions f(x, y) and g(x, y) are nonlinear, this is difficult to solve.
However, in Eq. (6.22) they are linear. Solving Eq. (6.22) by use of Eq. (6.23) we have

Xy = %+ 0.1(1195x, | — 1995y, . ),
Yier = ¥ T 0.1Q0197x,, | — 1997y, ).

The system is linear, so we can write

X | [ (1= 1195(0.1) 1995(0.1) 1 x
Vit1 —1197(0.1) (1 + 1997(0.1)) V;
which has the solution x(0.1) = 8.23, y(0.1) = 4.90, reasonably close to the analytical values.
In summary, our results for the solution of Eq. (6.22) are

x(0.1) y(0.1)
Analytical 8.19 491
Euler
Explicit 640 636
Implicit 8.23 4.90

If the step size is very small, we can get good results from the simpler Euler after the
first step. With # = 0.0001, the table of results becomes

x(0.0001) y(0.0001)
Analytical 2.61 -1.39
Euler
Explicit 2.64 —1.36
Implicit 2.60 —1.41

but this would require 1000 steps to reach ¢ = 0.1, and round-off errors would be large.
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If we anticipate some material from Section 6.8, we can give a better‘description of
stiffness as well as indicate the derivation of the general solution to Eq. (6.22). We rewrite
Eq. (6.22) in matrix form:

ﬂ :Aﬂ’ where A 1195 —1995.
y y 1197 —1997

The general solution, in matrix form, is

x
[ } = ae_%v1 + ce_SOOtvz,
Yy

HIEES

You can easily verify that Av; = —2v, and Av, = —800v,. This means that v, is an eigen-
vector of A and that —2 is the corresponding eigenvalue. Similarly, v, is an eigenvector of
A with the corresponding eigenvalue of —800. (In Section 6.8, you will learn additional
methods to find the eigenvectors and eigenvalues of a matrix.)

A stiff equation can be defined in terms of the eigenvalues of the matrix A that repre-
sents the right-hand sides of the system of differential equations. When the eigenvalues of
A have real parts that are negative and differ widely in magnitude as in this example, the
system is stiff. In the case of a nonlinear system

where

x| filxg, X0 oo X,)
X9 _ ‘fz(xl, Xgy oo - ,xn)
. . Rt
Xn ﬁz(xlﬁ X5 e ey xn)

one must consider the Jacobian matrix whose terms are Bfi/axj. See Gear (1971) for more
information.

Jounoary- vaiue Jrobiens

As we have seen, a second-order differential equation (or a pair of first-order problems)
must have two conditions for its numerical solution. Up until now, we have considered that
both of these conditions are given at the start—these are initial-value problems. That is not
always the case; the given conditions may be at different points, usually at the endpoints of
the region of interest. For equations of order higher than two, more than two conditions are
required and these also may be at different x-values. We consider now how such problems
can be solved.

Here is an example that describes the temperature distribution within a rod of uniform
cross section that conducts heat from one end to the other. Look at Figure 6.4. By concen-
trating our attention on an element of the rod of length dx located at a distance x from the
left end, we can derive the equation that determines the temperature, u, at any point along
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P
n—-_u._J

the rod. The rod is perfectly insulated around its outer circumference so that heat
flows only laterally along the rod. It is well known that heat flows at a rate (measured in
calories per second) proportional to the cross-sectional area (4), to a property of the mate-
rial [k, its thermal conductivity, measured in cal/(sec * cm? * (°C/cm))], and to the temper-
ature gradient, du/dx (measured in °C/cm), at point x. We use u(x) for the temperature at
point x, with x measured from the left end of the rod. Thus, the rate of flow of heat into the

element (at x = x) is
du
—kAl —— ).
( dx )

The minus sign is required because du/dx expresses how rapidly temperatures increase
with x, while the heat always flows from high temperature to low.

The rate at which heat leaves the element is given by a similar equation, but now the
temperature gradient must be at the point x + dx:

du d { du
—kA | — + —|— ] dx|,
[ dx dx ( dx ) }
in which the gradient term is the gradient at x plus the change in the gradient between x and
x + dx.

Unless heat is being added to the element (or withdrawn by some means), the rate that
heat flows from the element must equal the rate that heat enters, or else the temperature of
the element will vary with time. In this chapter, we consider only the case of steady-state
or equilibrium temperatures, so we can equate the rates of heat entering and leaving the

element:
_,m(ﬂ) - ﬂ+i(ﬂ>dx |
dx dx dx \ dx

‘When some common terms on each side of the equation are canceled, we get the very sim-
ple relation

d ( du d*u
kA L) gy = s 25 =
dx(dx)x PR

where we have written the second derivative in its usual form. For this particularly simple
example, the equation for u as a function of x is the solution to

du

dx? ’




368

Chapter Six: Numerical Solution of Ordinary Differential Equations

and this is obviously just
u=ax+b,

a linear relation. This means that the temperatures vary linearly from TL to TR as x goes
from 0 to L.

The rod could also lose heat from the outer surface of the element. If this is Q (cal/
(sec * cm?)), the rate of heat flow in must equal the rate leaving the element by conduction
along the rod plus the rate at which heat is lost from the surface. This means that:

du du d [ du

—kA\— | = —“KA|— + — | — ] dx| + dx,
<dx> [dx dx(dx) } o

where p is the perimeter at point x. (Q might also depend on the difference in temperature

within the element and the temperature of the surroundings, but we will ignore that for

now.)
If this equation is expanded and common terms are canceled, we get a somewhat more

complicated equation whose solution is not obvious:

v Op
a? (kA

{6.24)

In Eq. (6.24), Q can be a function of x.

The situation may not be quite as simple as this. The cross section could vary along the
rod, or k could be a function of x (some kind of composite of materials, possibly). Suppose
first that only the cross section varies with x. We will have, then, for the rate of heat leav-

ing the element

du

—k[A + A’ dx] [—— + u” dx},

dx
where we have used a prime notation for derivatives with respect to x. Equating the rates in
and out as before and canceling common terms results in

kAu" dx + kA'u' dx + kA'u" dx* = Qp dx.

We can simplify this further by dropping the term with dx? because it goes to zero faster

than the terms in dx. After also dividing out dx, this results in a second-order differential
equation similar in form to some we have discussed in Section 6.5:

kAu" + kA'vw' = Qp. (6.25)

The equation can be generalized even more if k also varies along the rod. We leave to the
reader as an exercise to show that this results in

kKA + (kA" + K A)u’ = Op. (6.26)

If the rate of heat loss from the outer surface is proportional to the difference in tempera-
tures between that within the element and the surroundings (x,), (and this is a common sit-
uation), we must substitute for Q:

Q= q(u — uy),
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giving
kAu" + (kA" + K'Ay’ — q * pu = —q * pug B.27
This chapter will discuss two ways to solve equations like Eqs. (6.24) to (6.27).
Heat flow has been used in this section as the physical situation that is modeled, but
equations of the same form apply to diffusion, certain types of fluid flow, torsion in objects

subject to twisting, distribution of voltage, in fact, to any problem where the potential is
proportional to the gradient.

The Shooting Method

We can rewrite Eq. (6.27) as

d’u du B o
72 + BE + Cu =D, 5.28)

where the coefficients, A, B, C, and D are functions of x. (Actually, they could also be func-
tions of both x and u, but that makes the problem more difficult to solve. In a temperature-
distribution problem, such nonlinearity can be caused if the thermal conductivity, &, is con-
sidered to vary with the temperature, «. That is actually true for almost all materials but, as
the variation is usually small, it is often neglected and an average value is used.)

To solve Eq. (6.28), we must know two conditions on u or its derivative. If both u and u’
are specified at some starting value for x, the problem is an initial-value problem. In this
section, we consider Eq. (6.28) to have two values of u to be given but these are at two dif-
ferent values for x—this makes it a boundary-value problem. In this section, we discuss
how the same procedures that apply to an initial-value problem can be adapted.

The strategy is simple: Suppose we know u at x = a (the beginning of a region of inter-
est) and u at x = b (the end of the region). We wish we knew u’ at x = g; that would make
it an initial-value problem. So, why not assume a value for this? Some general knowledge
of the situation may indicate a reasonable guess. Or we could blindly select some value.
The test of the accuracy of the guess is to see if we get the specified u(b) by solving the
problem over the interval x = a to x = b. If the initial slope that we assumed is too large,
we will often find that the computed value for u(b) is too large. So, we try again with a
smaller initial slope. If the new value for u(b) is too small, we have bracketed the correct
initial slope. This method is called the shooting method because of its resemblance to the
problem faced by an artillery officer who is trying to hit a distant target. The right elevation
of the gun can be found if two shots are made of which one is short of the target and the
other is beyond. That means that an intermediate elevation will come closer.

A

EXAMPLE 6.2

Solve

u"—(l —%) =x, W) =2, u@ =-1

(This is an instance of Eq. (6.28) withA =1, B=0, C= —(1 — x/5), and D = x.)
Assume that u'(1) = —1.5 (which might be a reasonable guess, because u declines
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Table 56,15

Assume Assume Assume

u'(l)=-1.5 u'(l)y =-3.0 u'(1) = —-3.4950

x u u’ u u’ u u’
1.00 2.0000 ~1.5000 2.0000 —3.0000 2.0000 —3.4950
1.20 1.7614 —0.9886 1.4598 —-2.5118 1.3503 —3.0145
1.40 1.6043 ~0.4814 0.9921 -2.0719 0.7900 —2.5967
1.60 1.5597 0.0389 0.6192 —1.6598 0.3099 —2.2204
1.80 1.6218 0.5876 0.3275 —1.2580 —0.0997 ~1.8671
2.00 1.7976 1.1783 0.1163 —0.8512 —0.4385 ~1.5209
2.20 2.0967 1.8227 —-0.0118 —0.4259 -0.7076 —1.1679
2.40 2.5309 2.5310 —0.0520 0.0299 —0.9043 —0.7955
2.60 3.1139 3.3116 0.0029 0.5266 —1.0237 —0.3925
2.80 3.8608 4.1706 0.1620 1.0732 —1.0586 0.0511
3.00 4.7876 5.1119 0.4360 1.6773 —1.0000 0.5439

between x = 1 and x = 3; this number is the average slope over the interval). If we use a
program that implements the Runge — Kutta—Fehlberg method, we get the values shown in
the first part of Table 6.15.

Because the value for u(3) is 4.7876 rather than the desired —1, we try again with a differ-
ent initial slope, say u'(1) = —3.0, and get the middle part of Table 6.15. The resulting
value for u(3) is still too high: 0.4360 rather than —1. We could guess at a third trial for
u'(1), but let us interpolate linearly between the first two trials.* Doing so suggests a value
for u'(1) of —3.4950. Lo and behold, we get the correct answer for #(3)! These results are
shown in the third part of Table 6.15.

It was not just by chance that we got the correct solution by interpolating from the first
two trials. The problem is linear and for linear equations this will always be true. Except
for truncation and round-off errors, the exact solution to a linear boundary-value problem
by the shooting method is a linear combination of two trial solutions:

Suppose that x,(7) and x,(f) are two trial solutions of a boundary-value problem

x" + Fx' + Gx = H, x(ty) = A, x(t) = B

(where F, G, and H are functions of ¢ only) and both trial solutions begin at the correct

value of x(z,).
We then state that

CXp Xy

l-:
Y9 ¢+ ¢y

*If G = guess, and R = result: DR = desired result: G3 = G2 + (DR — R2)(G1 — G2)/(R1 — R2)
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is also a solution. We show that this is true, because, since x; and x, are solutions, it follows that
x| + Fx; + Gx; = H, and x5 + Fxy + Gx, = H.
If we substitute y into the original equations, with

x| + cxp cxi + oxy

I/ S—
y = and y = s
o te i g+
we get
cx] +oexy cix; + e P cixp + ey G = cix{ + ¢ Fx{ + ¢;Gx; + cxy + ooFx] + ¢,Gx,

C1+Cz CI+C2 C1+C2 Cl+C2

CIH Cqu
= + = N
¢t ¢t o

which shows that y is also a solution that begins at the correct value for x(z,). The implica-
tion of this is that, if ¢; and c, are chosen so that y(¢;) = x(#;) = B, y(¢) is the correct solu-
tion to the boundary-value problem.
It must also be true that y'(%,) is the correct initial slope and that one can interpolate
between every pair of computed values to get correct values for y(x) at intermediate points.
This next example shows that we cannot get the correct solution so readily when the
problem is nonlinear.

EXAMPLE 6.3

Solve

W — (1 - %) w' =x,  wl)=2, u@ = -1
This resembles Example 6.2 but observe that the coefficient of u' involves u, the dependent
variable. This problem is nonlinear and we shall see that it is not as easy to solve. If we
again use the Runge—Kutta—Fehlberg method, we get the results summarized in
Table 6.16. Here the third trial, which used the interpolated value from the first two trials,

Table 6.16

Assumed value Calculated value
for u'(1) for u(3)
~1.5 —-0.0282
-3.0 -2.0705
—2.2137* —1.2719
—1.9460* —0.8932
—2.0215* —1.0080
—2.0162% —1.0002
—2.0161* —1.0000

* Interpolated from two previous values
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Table 6.17
x u u'

1.0000 2.0000 —-2.0161
1.2000 1.5552 —2.4130
1.4000 1.0459 —~2.6438
1.6000 0.5318 —2.6352
1.8000 0.0082 —2.3832
2.0000 —0.4272 —1.9472
2.2000 -0.7640 —14110
2.4000 —0.9896 —0.8441
2.6000 -1.1022 —0.2848
2.8000 —1.1047 0.2569
3.0000 —1.0000 0.7909

does not give the correct solution. A nonlinear problem requires a kind of search operation.
We could interpolate with a quadratic from the results of three trials, an adaptation of
Muller’s method. Table 6.17 gives the computed values for u(x) between x = 1 and x = 3
with the final (good) estimate of the initial slope.

The shooting method is often quite laborious, especially with problems of fourth or
higher order. With these, the necessity of assuming two or more conditions at the starting
point (and matching with the same number of conditions at the end) is slow and tedious.

There are times when it is better to compute ‘“backwards” from x = b to x = a. For exam-
ple, if u(b) and u’(a) are the known boundary values, the technique just described works best if
we compute from x = b to x = a. Another time that computing backwards would be preferred
is in a fourth-order problem where three conditions are given at x = b and only one at x = a.

|

Maple’s dsolve command works with boundary-value problems. Here is how it can
solve Example 6.3.

>de2 : =diff (u(x),x$2)— (1 —x/5)*u(x)*diff (u(x)x) =x:
>F : =dsolve({de2, u(l) =2, u(3) =—1}, ulx), numeric);
F : =proc(bvp x ... end proc
>F(1l); F(2); F{(3);
x=1., ul(x) =2.,3/9x u(x) =—2.01607429521390014
x=2., u{x) =—.427176163177449108, 3/9x u(x) =
—1.94723020165843686
x=3., u(x) =-1.00000000000000022, d4/0x u(x) =
.790910254537530277

>F(l.4); F(2.6);
x=1.4, u(x) =1.04594603838311962, 9/0x u(x) =
—2.64376847138324100
x=2.6, u{x) =—1.10221333664797760, d/dx u(x) =
—.284818239545453100
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In this, we first defined the second-order equation, then used the dsolve command to get
the solution, F, (a “procedure” that is not spelled out). When we asked for values of the
solution at x = 1, 2, 3, 1.4, and 2.6, Maple displayed results that match to Table 6.17 but
with many more digits of precision.

Solurion Through a Set of Equations

There is another way to solve boundary-value problems like Example 6.2. We have seen in
Chapter 5 that derivatives can be approximated by finite-difference quotients. If we replace
the derivatives in a differential equation by such expressions, we convert it into a difference
equation whose solution is an approximation to the solution of the differential equation. This
method is sometimes preferred over the shooting method, but it really can be used only with
linear equations. (If the differential equation is nonlinear, this technique leads to a set of non-
linear equations that are more difficult to solve. Solving such a set of nonlinear equations is
best done by iteration, starting with some initial approximation to the solution vector.)

tXAMPLE 6.4

Solve the boundary-value problem of Example 6.2 but use a set of equations obtained by
replacing the derivative with a central difference approximation. Divide the region into
four equal subintervals and solve the equations, then divide into ten subintervals. Compare
both of these solutions to the results of Example 6.2.

When the interval from x = 1 to x = 3 is subdivided into four subintervals, there are
interior points (these are usually called nodes) at x = 1.5, 2.0, and 2.5. Label the nodes as
X, X,, and x;. The endpoints are x, and x,. We write the difference equation at the three

interior nodes. The equation, " — (1 — x/S)u = x, u(1) = 2, u(3) = —1, becomes
(ug — 2u; + uy) x
Atx;: —O——h;—-—z—— 1——5]— = x,
(uy — 2u, + u3) X
At x,: ﬂl——h;——?’—— 1 —'Si Uy = Xy,
— 2us +
At x5 —(Hz——hb?—ui)—~ (1 —%) U3 = X3.

These equations are all of the form:

U, — 2u. + u; .
Atx,-: ( i1 U; uz—H) _ (1 _i) w, = x,

h2

which can be rearranged into:

Atx: g — [2 + h2(1 - %’—)

Substitute 2 = 0.5, substitute the x-values at the nodes, and substitute the u-values at the
endpoints and arrange in matrix form, which gives

= 2
w, + uq = h'x,.
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2175 1 0 i, ~1.625
1 -2.150 1 | =] 05
0 1 —2.125 | | u5 1.625

Observe that the system is tridiagonal and that this will always be true even when there are
many more nodes, because any derivative of u involves only points to the left, to the right,
and the central point.

When this system is solved, we get

X, =0552, x,=-0424 and x, = —0.964.

If we solve the problem again but with ten subintervals (2 = 0.2), we must solve a system
of nine equations, because there are nine interior nodes where the value of u is unknown.
The answers, together with the results from the shooting method for comparison, are

Values from the Values from the
finite-difference shooting
X method method
1.2 1.351 1.350
14 0.792 0.790
1.6 0.311 0.309
1.8 —0.097 —0.100
2.0 —0.436 —0.438
2.2 —0.705 —0.708
2.4 -0.903 -0.904
2.6 -1.022 ~1.024
2.8 —1.058 —1.059

There is quite close agreement. It is difficult to say from this which method is more accu-
rate because both are subject to error. We can compare the methods and determine how
making the number of subintervals greater increases the accuracy by examining the results
for a problem with a known analytical answer.

EXAMPLE 6.5

Compare the accuracy of the finite-difference method with the shooting method on this
second-order boundary-value problem:

U =u, u(l) = 1.17520, u(3) = 10.01787,

whose analytical solution is u = sinh(x).
When the problem is solved by finite-difference approximations to the derivatives, the

typical equation is
u ; — 2+ Pu; + uyy = 0.
Solving with & = 1, h = 0.5, and h = 0.25, we get the values in Table 6.18. If we solve this
with the shooting method (employing Runge —Kutta—Fehlberg), we get Table 6.19.
#
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Table 6.18 Solutions with the finite-difference method

u-values with

x 2 subintervals 4 subintervals 8 subintervals
1.25 1.60432
1.50 2.14670 2.13372
1.75 2.79647
2.00 373102 3.65488 3.63400
225 4.69866
2.50 7.07678 7.05698
2.75 E 7.79387

error at
x=2.00 0.10416 0.02802 0.00714

In both tables, the errors at x = 2.0 are shown. This is nearly the maximum error of any
of the results.

When the results from the two methods are compared, it is clear that (1) the shooting
method is much more accurate at the same pumber of subintervals, its errors being from 80
to over 500 times smaller; and (2) the errors for the finite-difference method decrease
about four times when the number of subintervals is doubled, which is as expected.

The reader should make a similar comparison for other equations.

Derivative Boundary Conditions

The conditions at the boundary often involve the derivative of the dependent variable in
addition to its value. A hot object loses heat to its surroundings proportional to the

Table 6.19 Solutions with the shooting method

u-values with

X 2 subintervals 4 subintervals 8 subintervals
1.25 1.60192
1.50 2.12931 2.12928
1.75 2.79042
2.00 3.62814 3.62692 3.62686
2.25 4.69117
2.50 7.05025 7.05020
2.75 7.78935

error at

x=2.00 0.00128 0.00006 0.00000
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X=xg
U =uy

Figure 6.5

difference between the temperature at the surface of the object and the temperature of the
surroundings. The proportionality constant is called the heat-transfer coefficient and is
frequently represented by the symbol A. (This can cause confusion because we use A for
the size of a subinterval. To avoid this confusion, we shall use a capital letter, H, for the
heat-transfer coefficient.) The units of H are cal/sec/cm?/°C (of temperature difference).
In this section we consider a rod that loses heat to the surroundings from one or both ends.
Of course, heat could be gained from the surroundings if the surroundings are hotter than
the rod.

Names have been given to the various types of boundary conditions. If the value for u is
specified at a boundary, it is called a Dirichlet condition. This is the type of problem that
we have solved before. If the condition is the value of the derivative of u, it is a Neumann
condition. When a boundary condition involves both # and its derivative, it is called a
mixed condition.

We now develop the relations when heat is lost from the ends of a rod that conducts heat
along the rod but is insulated around its perimeter so that no heat is lost from its lateral sur-
face. First consider the right end of the rod and assume that heat is being lost to the sur-
roundings (implying that the surface is hotter than the surroundings). Figure 6.5 will help
to visualize this. At the right end of the rod (x = xp), the temperature is ug; the temperature
of the surroundings is ug,. Heat then is being lost from the rod to the surroundings at a rate
[measured in (cal/sec)] of

HA(up — ugp),

where A is the area of the end of the rod. This heat must be supplied by heat flowing from
inside the rod to the surface, which is at the rate of

di

e

dx
where the minus sign is required because heat flows from high to low temperature.
Equating these two rates and solving for du/dx (the gradient) gives (the A’s cancel):
d H .
_d)u? —(—k—>(uR — Ugp)s at the right end.
Now consider the left end of the rod, at x = 0, where u = u; . Assume that the temperature
of the surroundings here are at some other temperature, ug; . Here, heat is flowing from
right to left, so we have

Heat leaving the rod: —HA(u; — ug).
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For the rate at which heat flows from inside the rod we still have

du
_kA —_—,
dx
and, after equating and solving for the gradient:
d H
EM = (—-k->(uL — Ugp)s at the left end.

The fact that the signs in the equations for the gradients are not the same can be a source of
confusion. Of course, if both ends lose heat to the surroundings, the equilibriam or steady-
state temperatures of the rod will just be a linear relation between the two (possibly differ-
ent) surrounding temperatures. In practical situations of heat distribution in a rod, only one
end of the rod loses (or gains) heat to (from) the surroundings, the other end being held at
some constant temperature.

A minor problem is presented in the cases under consideration. We need to give consid-
eration to how to approximate the gradient at the end of the rod. One could use a forward
difference approximation (at the right end, a backward difference at the left), but that seems
inappropriate when central differences are used to approximate the derivatives within the
rod. This conflict can be resolved if we imagine that the rod is fictitiously extended by
one subinterval at the end of the rod that is losing heat. Doing so permits us to approximate
the derivative with a central difference. The “temperature” at this fictitious point is elimi-
nated by using the equation for the gradient. The next example will clarify this.

EXAMPLE 6.6

An insulated rod is 20 cm long and is of uniform cross section. It has its right end held at
100° while its left end loses heat to the surroundings, which are at 20°. The rod has a ther-
mal conductivity, k, of 0.52 cal/(sec * cm * °C), and the heat-transfer coefficient, H, is
0.073 cal/(sec/cm?/°C). Solve for the steady-state temperatures using the finite-difference
method with eight subintervals.

For this example, because the boundary condition at the left end involves both the u-
value at the left end and the derivative there, this example has a mixed condition at the left
end, whereas it has a Dirichlet condition at the right end.

The equation that applies is Eq. (6.24) with Q = 0, because no heat is added at points
along the rod:

The typical equation is
u,_ = 2u; T u =0,

and this applies at each node. At the left end we imagine a fictitious point at x_,, and this
allows us to write the equation for that node. At the left endpoint, at x = Xo, We write an

equation for the gradient:
du H
e = 7 (uy, — ugp),
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or,
(u, —uy) _ () —u_y)
2h (2 % 2.5)
B <0.073
0.52

) *(ug — 20),

which we use to eliminate u_
0.073
u_ =u—2*25)* [(—0——57) (ug — 20)}
= u; — 0.70192u, + 14.0385.
We will use this last for the equation written at X 1O give, at that point:
u_ | = 2uy toup = (uy — 0701924, + 14.0385) — 2uy + u; =0,
or,
—2.70192u, + 2u, = —14.0385,

which is the first equation of the set. Here is the augmented matrix for the problem:

270192 2 0 0 0 0 0 0  —14.0385

1 -2 1 0 0 0 0 0 0

0 - 1 0 0 0 0 0

0 0 R 1 0 0 0 0

0 0 0 | 1 0 0 0

0 0 0 0 - 1 0 0

0 0 0 0 0 1 =2 1 0
0 0 0 0 0 0 1 =2 ~100

for which the solution is
i: 0 1 2 3 4 5 6 7 8)
u;: 41.0103 48.3840 55.7577 63.1314 70.5051 77.8789 85.2526 92.6263 (100)

Observe that the gradient all along the rod is a constant (2.94948°C/cm).

Here is another example that illustrates an important point about derivative boundary
conditions.

EXAMPLE 6.7 Solve ’ = u, u'(1) = 1.17520, u'(3) = 10.01787, with the finite-difference method.
This example is identical to that of Example 6.5, except that the boundary conditions
are the derivatives of u rather than the values of #. (It has Neumann conditions at both
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ends.) For this problem, the known solution is u = cosh(x) + C, and the boundary values
are values of sinh(1) and sinh(3).

Because the values of u are not given at either end of the interval, we must add fictitious
points at both ends; call these u; and upyp. With four subintervals, (h = 2/4 = 0.5), we can
write five equations (at each of the three interior nodes plus the two endpoints where u is
unknown). We label the nodes from x,, (at the left end) to x, (at the right end). Each equa-
tion is of the form:

w, o~ 2u; tu =k, i=0,1,2,3,4, k=025,

1

where u_, and ug are the fictitious points U g and Upp-
Doing so gives this augmented matrix:

—225 1 0 0 0 —uy
1 —225 1 0 0 0
0 1 —225 1 0 0
0 0 1 —225 1 0
0 0 0 1 =225 —upe

There are two more unknowns in this than equations: the unknown fictitious points.
However, these can be eliminated by using the derivative conditions at the ends. As before,
we use central difference approximation to the derivative:

(u; — urp)
2h ’
(Ugp ~ U3)
2h ’

W' (1) = 1.17520 =

W'(3) = 10.01787 = (h = 0.5),

which we solve for the fictitious points in terms of nodal points:
up = u; — 1.17520, ugp = 10.01787 + u,.

Substituting these relations for the fictitious points changes the first and last equations
to

—2.25u, + 2u, = 117520,
2uy — 2.25u, = —10.01787.

When the five equations are solved, we get these answers:

X Answers cosh(x) Error
1.0 1.55219 1.54308 —0.00911
1.5 2.33382 2.35241 0.01859
2.0 3.69870 3.76220 0.06350
2.5 5.98870 6.13229 0.14359
3.0 9.77568 10.06770 0.29202
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We observe that the accuracy is much poorer than it was in Example 6.5. Take note of the
fact that the numerical solution is not identical to the analytical solution; the arbitrary con-
stant is missing (or, we may say, is equal to zero).

Using the Shooting Method

We can solve boundary-value problems where the derivative is involved at one or both end
conditions by “shooting.” In fact, as this method computes both the dependent variable and
its derivative, this is quite natural. Here is how Example 6.7 can be solved by the shooting
method.

EXAMPLE 6.8

Solve u” = u, u’(1) = 1.17520, u'(3) = 10.01787 by the shooting method.

We can begin at either end, but it seems more natural to begin from x = 1. To begin the
solution, we must guess at a value for #(1)—not for the derivative as we have been doing.
From this point, we compute values for u and #’ by, say, RKF. If the value of u'(3) is not
10.01787, we try again with a guess for u(1). This will probably not give the correct value
for u’(3), but, because the problem is linear, we can interpolate to find the proper value to
use for u(1). Here are the answers when four subintervals are used:

x u(x) u'(x) cosh(x)
1.0 1.54319 1.17520 1.54308
1.5 2.35250 2.12932 2.35241
2.0 3.76228 3.62692 3.76220
2.5 7.13236 7.05027 6.13229
3.0 10.06767 10.01790 10.06770

The results are surprisingly accurate even though the subdivision was coarse; the largest
error in the u(x) values is 0.00011 at x = 1 and the errors are less as x increases. For this
example, the shooting method is much more accurate than using finite-difference approxi-
mations to the derivative.

Here is an example that has a mixed end condition.

EXAMPLE 6.9

Solve Example 6.6 by the shooting method. We restate the problem:

An insulated rod is 20 ¢cm long and is of uniform cross section. It has its right end held
at 100° while its left end loses heat to the surroundings, which are at 20°. The rod has a
thermal conductivity, k, of 0.52 cal/(sec * cm * °C), and the heat-transfer coefficient, H, is
0.073 cal/(sec * cm? * °C). Use the shooting method with eight subintervals.

The procedure here is similar to that used in Example 6.8 but it is necessary to begin at
the right end and solve “backwards.” (That is no problem; we just use a negative value for
Ax.) Beginning at x = 0 would be very difficult because we would have to guess at both

u(0) and u'(0).
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Finding the correct value for ' at x = 20 is not as easy as in the previous example
because we must fit to a combination of #(0) and u'(0). Here are the results after finding
the correct value for u'(20) by a trial and error technique.

i 0 1 2 3 4 5 6 7 (8)
u: 41005 48379 55754 63.128 70.502 77.877 85251 92.626 (100)

(The gradient here is 2.94975 throughout.) These values match those of Example 6.6 very
closely.

)

We note that Maple can solve a boundary-value problem with an end condition that
involves the derivative.

Characteristic-Value Problems

Problems in the fields of elasticity and vibration (inclucling applications of the wave equa-
tion of modern physics) fall into a special class of boundary-value problems known as
characteristic-value problems. Some problems of statistics also fall into this class. We dis-
cuss only the most elementary forms of characteristic-value problems.

Consider the homogeneous* second-order equation with homogeneous boundary
conditions:

d’u )
e + Ky =0, u(0) = 0, u(1) = 0, 6.29)

where k? is a parameter. (Using k? guarantees that the parameter is a positive number.) We
first solve this equation nonnumerically to show that there is a solution only for certain
particular or “characteristic” values of the parameter. These characteristic values are more
often called the eigenvalues from the German word. The general solution is

= g sin(kx) + b cos(kx),

which can easily be verified by substituting into the differential equation. The solution
contains the two arbitrary constants a and b because the equation is of second order. The
constants g and b are to be determined to make the general solution agree with the bound-
ary conditions.

Atx=0,u=0=asin(0) + b cos(0) = b. Then & must be zero. At x =1, u=0=
a sin(k); we may have either @ = 0 or sin(k) = 0 to satisfy the end condition. However, if
a = 0, y is everywhere zero—this is called the trivial solution, and is usually of no inter-

est. To get a useful solution, we must choose sin(k) = 0, which is true only for certain
“characteristic” values:

k== nm n=1273, ....

* Homogeneous here means that all terms in the equation are functions of u or its derivatives.
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_11

Sigure 5.6

These are the eigenvalues for the equation, and the solution to the problem is
u = g sin(nmx), n=1273, .... {6.38)

The constant a can have any value, so these solutions are determined only to within a mul-
tiplicative constant. Figure 6.6 sketches several of the solutions to Eq. (6.30).

These eigenvalues are the most important information for a characteristic-value
problem. In a vibration problem, these give the natural frequencies of the system, which
are important because, if the system is subjected to external loads applied at or very
near to these frequencies, resonance causes an amplification of the motion and failure is
likely. _
Corresponding to each eigenvalue is an eigenfunction, u(x), which determines the pos-
sible shapes of the elastic curve when the system is at equilibrium. Figure 6.6 shows such
eigenfunctions. Often the smallest eigenvalue is of particular interest; at other times, it is
the one of largest magnitude.

We can solve Eq. (6.29) numerically, and that is what we concentrate on in this section.
We will replace the derivatives in the differential equation with finite-difference approxi-
mations, so that we replace the differential equation with difference equations written at all
nodes where the value of # is unknown (which are all the nodes of a one-dimensional sys-
tem except for the endpoints).

SXAMPLE 6.10

Solve Eq. (6.29) with five subintervals. We restate the problem:
d’u

I + k*u = 0, w(0) = 0, u(l) = 0.

The typical equation is

Wy = 20 + uy4y)
h2

+ Ku; = 0.
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With five subintervals, # = 0.2, and there are four equations because there are four interior
nodes. In matrix form these are

12 — 0.04k2 -1 0 0 u; 0
-1 2 — 0.04k? —1 0 Uy 0 v
= 8.31)

0 -1 2 — 0.04k? -1 Uz 0

0 0 -1 2 — 0.04k% | | uy 0

where we have multiplied by — 1 for convenience. Observe that this can be written as the
matrix equation (A — ADu = 0, where [ is the identity matrix and the A matrix is

2 -1 0 0
-1 2 -1 0
0 -1 2 —1F
0 0 -1 2
and A = 0.04%%.
The approximate solution to the characteristic-value problem, Eq. (6.29) is found by
solving the system of Eq. (6.31). However, this system is an example of a homogeneous

system (the right-hand sides are all equal to zero), and it has a nontrivial solution only if
the determinant of the coefficient matrix is zero. Hence, we set

det(A — D) = 0.

Expanding the determinant will give an eighth-degree polynomial in k. (This is rot the pre-
ferred way!) Doing so and getting the zeros of that polynomial gives these values for k:

k= *3.09, k= =588, k= =8.09, k= *£9.51.
The analytical values for k are
k= *3.14 (£tm), k= %728 (F2m),
k= %942 (£3m), k= *12.57 (x4m),

and we see that the estimates for k are not very good and get progressively worse. We
would need a much smaller subdivision of the interval to get good values. There are other
problems with this technique: Expanding the determinant of a matrix of large size is com-
putationally expensive, and solving for the roots of a polynomial of high degree is subject
to large round-off errors. The system is very ill-conditioned.*

We normally find the eigenvalues for a characteristic-value problem from (A — ADu = 0
in other ways that are not subject to the same difficulties. We describe these now. For clarity
we use small matrices.

-

The Power Method

The power method is an iterative technique. The basis for this is presented below. We illus-
trate the method through an example.

* One authority says never to use the characteristic polynomial for a matrix larger than 5 X 5.
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EXAMPLE 6.11

Find the eigenvalues (and the eigenvectors) of matrix A:

3 -1 0
A=|-2 4 -3
0 -1 1

(The eigenvalues of A are 5.47735, 2.44807, and 0.074577, which are found, perhaps, by
expanding the determinant of A — Al The eigenvectors are found by solving the equations
Au = Au for each value of A. After normalizing, these vectors are

u; = [—0.40365, 1, —0.22335],
u, = [1,0.55193, —0.38115],
uy = [0.31633, 0.92542, 1],

where the normalization has been to set the largest component equal to unity.)*

We will find that both the eigenvalues and the eigenvectors are produced by the power
method. We begin this by choosing a three-component vector more or less arbitrarily.
(There are some choices that don’t work but usually the column vector u = [1, 1, 1]is a
good starting vector.) We always use a vector with as many components as rows or
columns of A.

We repeat these steps:

1. Multiply A * u.
2. Normalize the resulting vector by dividing each component by the largest in magni-
tude.

3. Repeat steps 1 and 2 until the change in the normalizing factor is negligible. At that
time, the normalization factor is an eigenvalue and the final vector is an eigenvector.
Step 1, withu = [1, 1, 1]:
A*u gives [2, —1,0].
Step 2:
Normalizing gives 2 * [1, —.5, 0], and # now is [1, —.5, 0].
Repeating, we get
A¥u=1[35, -4, 5]
normalized: —4 * [— .875, 1, —.125];
A *u=1[-3.6256.125, —1.125],
normalized: 6.125 * [—.5918, 1, —.1837];
A *y = [—2.7755,5.7347, —1.1837],
normalized: 5.7347 * [—.4840, 1, —.2064};

After 14 iterations, we get

* It is more common to set some norm equal to 1.
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A*y=[-2.21113,5.47743, —1.22333],
normalized: 5.47743 * [—.40368, 1, —.22334].

The fourteenth iteration shows a negligible change in the normalizing factor: We have
approximated the largest eigenvalue and the corresponding eigenvector. (Twenty iterations
will give even better values.) Although not very rapid, the method is extremely simple and
easy to program. Any of the computer algebra systems can do this for us.

The Inverse Power Method

The previous example showed how the power method gets the eigenvalue of largest mag-
nitude. What if we want the one of smallest magnitude? All we need to do to get this is to
work with the inverse of A. For the matrix A of Example 6.11, its inverse is

11 3
2 3 9|
2 3 10

Applying the power method to this matrix gives a value for the normalizing factor of
13.4090 and a vector of [.3163, .9254, 1]. For the original matrix A, the eigenvalue is the
reciprocal, 0.07457. The eigenvector that corresponds is the same; no change is needed.

Shifting with the Power Method

As we have seen, the power method may not converge very fast. We can accelerate the con-
vergence as well as get eigenvalues of magnitude intermediate between the largest and
smallest by shifting. Suppose we wish to determine the eigenvalue that is nearly equal to
some number s. If s is subtracted from each of the diagonal elements of A, the resulting
matrix has eigenvalues the same as for A but with s subtracted from them. This means that
there is an eigenvalue for the shifted matrix that is nearly zero. We now use the inverse
power method on this shifted matrix, and the reciprocal of this very small eigenvalue is
usually very much larger in magnitude than any other. As shown below, this causes the
convergence to be rapid. Observe that if we have some knowledge of what the eigenvalues
of A are, we can use this shifted power method to get the value of any of them.

How can we estimate the eigenvalues of a matrix? Gerschgorin’s theorem can help
here. This theorem is especially useful if the matrix has strong diagonal dominance. The
first of Gerschgorin’s theorems says that the eigenvalues lie in circles whose centers are at
a; with a radius equal to the sum of the magnitudes of the other elements in row i.
(Eigenvalues can have complex values, so the circles are in the complex plane.)

Gerschgorin’s Theorem We will not give a proof of this theorem,* but only show that it
applies in several examples.

* Proofs can be found in Ralston (1965) and in Burdern and Faires (2001).
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If matrix A is diagonal, its eigenvalues are the diagonal elements:

10 0 0O
0 7 0 — 4,7,10, whicharein
0 0 4 4+0, 7+x0, 10=*0.

If matrix A has small off-diagonal elements:

10 0.1 041
01 7 01 — 3.9951, 6.9998, 10.0051, in
0.1 01 4 4*02 7%x02, 10x0.2,

and there is a small change.
When the off-diagonals are larger:

100 1 1
1 7 1 — 3.6224, 6.8329, 10.5446, in
1 1 4 4x2, 7x£2, 102,

there is a greater change.
If they are still larger:

10 2 2
2 7 2 — 28606, 62151, 11.9243,in
2 2 4 44, 7Tx4, 104,

there is a still greater change, but the theorem holds.
Even in this case, the theorem holds:

10 4 4
4 7 4 — 1.0398, 4.4704, 15.4898,in
4 4 4 4+8 7=x8, 10x8.

Whenever the matrix is diagonally dominant or nearly so, shifting by the value of a diago-
nal element will speed up convergence in the power method.

EXAMPLE 6.12

Given matrix A:

4 -1 1
1 1 1
-2 0 -6

find all of its eigenvalues using the shifted power method.

Gerschgorin’s theorem says that there are eigenvalues within —6 += 2,1+ 2, and 4 =
2. We shift first by —6 and get an eigenvalue equal to —5.76851 (vector = [—.11574,
—.13065, 1]) using the inverse power method in four iterations; the tolerance on change in
the normalization factor was 0.0001. (Getting this largest-magnitude eigenvalue through
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the regular power method required 23 iterations.) If we repeat but shift by one, the inverse
power method gives 1.29915 as an eigenvalue (vector = [.41207, 1, —.11291}]) in six iter-
ations. (Using just the inverse power method to get this smallest of the eigenvalues
required eight iterations.)

For this 3 X 3 matrix, we do not have to get the other eigenvalue; the sum of the eigen-
values equals the trace of the matrix. So, if we subtract (—5.76851 + 1.29915) from —1
(the trace) we get the third eigenvalue, 3.46936. (It is always true that the sum of the eigen-
values equals the trace.) The eigenvalues satisfy Gerschgorin’s theorem: —5.76851 is in
—6+2,1.29915isin 1 * 2,3.46936isin 4 *+ 2.

Getting the third eigenvalue from the trace does not give us its eigenvector; we can use
the shifted inverse power method on the original matrix to find it.

Shifting by 4 in this example runs into a problem; a division by zero is attempied. We
overcome this problem by distorting the shift amount slightly. Shifting by 3.9 and employ-
ing the inverse power method gives the eigenvalue: 3.46936, and the vector |1, .31936,
—.21121] in six iterations. (If a division by zero occurs, it is advisable to distort the shift
amount slightly.)

g |

The Basis for the Power Method

The utility of the power method is that it finds the eigenvalue of largest magnitude and its
corresponding eigenvector in a simple and straightforward manner. It has the disadvan-
tage that convergence is slow if there is a second eigenvalue of nearly the same magni-
tude. The following discussion proves this and also shows why some starting vectors are
unsuitable.

The method works because the eigenvectors are a set of basis vectors. A set of basis
vectors is said to span the space, meaning that any n-component vector can be written as a
unique linear combination of them. Let v be any vector and x,, x,, . . ., x,, be eigenvec-
tors. Then, for a starting vector, v(©,

0) — ool 4
VO = cx; + cox, + + €, X,

If we multiply v© by matrix A, because the x; are eigenvectors with corresponding eigen-
values A, and remembering that Ax; = Ax, we have,

D — A0 —
Vi = 4O = CAx; + Axy + -0+ A x, 632)
= oA FopAx, s F e A x e

n-nn’

Upon repeated multiplication by A, after m such multiplies, we get,

Vi) = Amy®) = ¢ M+ e A0, + o0 + e A

nnon

Now, if one of the eigenvalues, call it Ay, is larger than all the rest, it follows that all the

coefficients in the last equation become negligibly small in comparison to A}” as m gets
large, so

A"VO — e Nix ),
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which is some multiple of eigenvector x; with the normalization factor A,, provided only
that ¢; 7 0. This is the principle behind the power method. Observe that if another of the
eigenvalues is exactly of the same magnitude as A;, there never will be convergence to a
single value. Actually, in this case, the normalization values alternate between two num-
bers and the eigenvalues are the square root of the product of these values. If another eigen-
value is not equal to A but is near to it, convergence will be slow. Also, if the starting
vector, V¥, is such that the coefficient ¢, in Eq. (6.32) equals zero, the method will not
work. (This last will be true if the starting vector is “perpendicular” to the eigenvector that
corresponds to A;—that is, the dot-product equals zero.) On the other hand, if the starting
vector is almost “parallel” to the eigenvector of A, all the other coefficients in Eq. (6.32)
will be very small in comparison to ¢, and convergence will be very rapid.

The preceding discussion also shows why shifting and then using the inverse power
method can often speed up convergence to the eigenvalue that is near the shift quantity. Here
we create, in the shifted matrix, an eigenvalue that is nearly zero, so that using the inverse
method makes the reciprocal of this small number much larger than any other eigenvalue.

The power method with its variations is fine for small matrices. However, if a matrix
has two eigenvalues of equal magnitude, the method fails in that the successive normaliza-
tion factors alternate between two numbers. The duplicated eigenvalue in this case is the
square root of the product of the alternating normalization factors. If we want all the eigen-
values for a larger matrix, there is a better way.

The QR Method, Part 1—Similarity Transformations

If matrix A is diagonal or upper- or lower-triangular, its eigenvalues are just the elements
on the diagonal. This can be proved by expanding the determinant of (A — AJ). This sug-
gests that, if we can transform A to upper-triangular, we have its eigenvalues! We have
done such a transformation before: The Gaussian elimination method does it
Unfortunately, this transformation changes the eigenvalues!!

There are other transformations that do not change the eigenvalues. These are called
similarity transformations. For any nonsingular matrix, M, the product M * A = M ~l=p,
transforms A into B, and B has the same eigenvalues as A. The trick is to find matrix M
such that A is transformed into a similar upper-triangular matrix from which we can read
off the eigenvalues of A from the diagonal of B. The QR technique does this. We first
change one of the subdiagonal elements of A to zero; we then continue to do this for all the
elements below the diagonal until A has become upper-triangular. The process is slow;
many iterations are required, but the procedure does work.

Suppose that A is 4 X 4. Here is a matrix, Q, also 4 X 4, that will create a zero in posi-

tion a 0

[
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where

d = \(ay, + aby),

_ 9»

c= i
S_a42
d

EXAMPLE 6.13

Given this matrix A, create a zero in position (4, 2) by multiplying by the proper O matrix.

7 8 6 6

A_l 6 —1 -2
1 -2 5 =2
3 4 3 4

We compute:

d = \(6* + 4% = 721110,

6
c= r = (.83205,
4
= — = (0.55470.
T
The Q matrix is
1 0 0 0
0 83205 O .55470
0 0 1 0 |
0 —.55470 0 .83205
When we multiply Q by A, we get for Q * A:
7 8 6 6
249615 7.21110 83205  .55470
1 -2 5 -2

1.94145 0 3.05085 4.43760

where the element in position (4, 2) is zero, as we wanted. However, we do not yet have
a similarity transformation. (The trace has been changed, meaning that the eigenvalues
are not the same as those of A.) To get the similarity transformation that is needed, we
must now postmultiply by the inverse of Q. Getting the inverse (which is Q1) is easy
in this case because for any Q as defined here, its inverse is just its transpose! (When
this is true for a matrix, it is called a rotation matrix.) If we now multiply Q * A * Q1
we get
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7 9.98460 6 0.55470
2.49615 6.30769 0.83205 —3.53846
1 —2.77350 5 —0.55470 |

1.94145  2.46154 3.05085 3.69231

for which the trace is the same as that of the original A and whose eigenvalues are the
same. However, it seems that we have not really done what we desired; the element in posi-
tion (4, 2) is zero no longer! There has been some improvement, though. Observe that the
sum of the magnitudes of the off-diagonal elements in row 4 is smaller than in matrix A.
This means that 3.69231 is closer to one of the eigenvalues (which will turn out to be 1)
than the original value, 4. Also, the element in position (2, 2) (6.30769) is closer to another
eigenvalue (which is equal to 7) than the original number, 6.

This suggests that we should continue doing such similarity transformations to reduce
all below-diagonal elements to zero. It takes many iterations, but, after doing 111 of these,
we get

10 1.5811 —11.0680 —3.0000

0 7 —1.0000  0.0000
0 0 4 -3.1623 [
0 0 0 1

where the numbers have been rounded to four decimals. (All the below-diagonal elements

have a value of 0.00001 or less.) We have found the eigenvalues of A; these are 10, 7, 4, and 1.
2

The QR Method, Part 2—
Making the Matrix Upper Hessenberg

The trouble with doing such similarity transformations repeatedly is poor efficiency. We
can improve the method by first doing a Householder transformation, which is a similarity
transformation that creates zeros in matrix A for all elements below the 