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Abstract

An architecture for real time face recognition using
weighted modular principle component analysis (WMPCA)
is presented in this paper. The WMPCA methodology splits
the test face horizontally into sub-regions and analyzes each
sub-region separately using PCA. The final decision is taken
based on a weighted sum of the errors obtained from each
region. This is based on assumption that different regions
in a face vary at different rates with variations in expres-
sion and illumination. The WMPCA methodology has a
better recognition rate, when compared with conventional
PCA, for faces with large variations in expression and il-
lumination. This methodology has a wide scope for paral-
lelism. An architecture which exploits this parallelism is
proposed in this paper. We also present a Syst em On
Pr ogr anmabl e Chi p (SOPC) implementation of face
recognition system using this architecture.

1. Introduction

Real time face recognition is an increasingly important
area of research today. Its applications are becoming more
important, as in ATM machines, criminal identification,
access restriction, video conferencing, issuing drivers’ li-
cense, passports and monitoring public areas for known
faces. The task of automated face recognition is very dif-
ficult due to two orthogonal reasons:

o Inter-person similarity of faces in general.

e Intra-person variance of faces due to variations in ex-
pression, pose and illumination.

Automated face recognition (AFR), being a fundamental
problem in computer vision and pattern analysis, is being
addressed by several scientists from different areas. Var-
ious algorithms have been proposed for the automatic face
recognition in last few decades, with varying degrees of suc-
cess. Rama Chellappa et al. [15] gave a detailed survey of
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face recognition algorithms based on neural network mod-
els, statistical models, and feature-based models. Major-
ity of the contributions are based on Principle Component
Analysis (PCA) [12], Linear Discriminant Analysis (LDA)
[9] and Support Vector Machine (SVM) [1] techniques.
Many variations and improvements have been proposed for
these basic methods. Weighted Modular PCA (WMPCA)
[8] is one such improvement proposed over PCA. Most of
the AFR algorithms evaluate faces as one unit which leads
to problems due to variations in expression, illumination
and pose. This neglects the important fact that few facial
features are expression invariant and others are more sus-
ceptible to the expressions.

In weighted modular PCA, different parts of face (eyes,
nose, lips) are separately analyzed and the final decision is
based on the weighted sum of errors obtained from separate
modules. These weights are based on the extent to which
each sub-region of a subject is spread in the eigenspace.
The weights are the measures of intra-subject variance of
the sub-region.

Vision algorithms are classified into high, middle and
low-level based on the computation and communication
characters of the algorithms [13]. Ratha and Jain [7] use
a custom computing approach to meet the computation and
communication needs of vision algorithms at all levels. In
this approach, hardware architecture is customized at in-
struction level for every application. This approach can also
reuse the same hardware by reconfiguring at software level
for different applications at different levels.

Most AFR techniques require large memory and have
high computational cost. Due to these characteristics ap-
propriate hardware accelerators are used for real-time appli-
cations. The performance is also improved by tailoring the
architecture for the application in hand. Examples of such
architectures are NETRA [2] developed at University of Illi-
nois, Image Understanding Architecture [14] developed at
University of Massachusetts and VisTA [11] developed at
University of Texas at Austin.

Face recognition algorithms deal with raw uncompressed
images, which leads to millions of operations. We need to



have specialized architectures for real time implementation
of these algorithms. Weighted modular PCA modularizes
the process of recognition giving room for parallel process-
ing. We present an architecture that exploits the parallel
nature of weighted modular PCA, to implement real time
face recognition.

This paper is organized as follows: Section 2 gives an
overview of WMPCA. Section 3 describes the architectural
features. In Section 4, we discuss the design and imple-
mentation of a SOPC for face recognition using WMPCA
architecture. Finally Section 5 gives the conclusions and
future scope of work.

2. Weighted modular PCA

Weighted modular PCA modularizes the face into sub-
regions and performs recognition on each sub-region indi-
vidually. This assumes that there are n-tasks of recognition,
one for each sub-region and all may be done in parallel.
Net error is calculated as a weighted sum of errors in each
sub-region, where these weights are obtained based on vari-
ations of each feature across various expressions and illumi-
nations. This follows the hypothesis that different regions
vary at different rates across various expressions and illumi-
nations.

Each face is horizontally split into a set of sub-regions
such as forehead, eye, nose and chin. For each sub-region,
p, of each face, we now compute average sub-region, cal-
culate covariance matrix, eigenvectors and the weight set
as in PCA. All these computations can be implemented in
parallel. Finally net error is obtained as a weighted sum of
the error vectors of individual sub-regions. The given face
is classified as to belong to that class which is at nearest
euclidean distance in face space.

2.1. Training

Let the training set contain L subjects, where each sub-
ject is one person. Each person has N different faces. So
the training set has M = LN faces. All M faces are di-
vided in to R regions. Hence, each rt* partition of nt"
sample of I** subject is, Pl Wherel = 1,2, L; n =
1,2,...,N; r = 1,2,..., R. Thus entire training set can be
represented as Tset = { pin,r | VI,n,r}. The following
steps are repeated for each sub-region r = 1,2, ..., R. For
each r** sub-region, an average sub-region, 1, is computed
over all faces.

1 L N
P = N Z Z Pln,r

=1 n=1

This equation can be conveniently rewritten as,

1 M
Yy = M mZ:l(’rm)r

where r = 1,2,...,R, M = LN, and (Y,,), is the rt"
sub-region of mt" face.

The covariance matrix C,. of 7" sub-region is calculated
as,

M
Cr = Z[(Tm)r - ¢T][(TW)T - ¢T]T
i=1

where » = 1,2,..., R. The eigenvectors of this matrix
are computed and the most significant S eigenvectors,
(M) ..., (Vs),), are considered for each sub-region r
as mentioned in section 2. Then each sub-region r of face
m can be expressed as a linear combination of these eigen-
vectors.

S
(Tm)r = wr + Z(wm,s)r(vs)r

where (wp, s), is the weight of rt* sub-region of m" face
and is calculated as,

(wm,S)r = (VS)z((Tm)T — ) 1)

wherem =1,2,...,. M, s=1,2,...,5andr = 1,2, ..., R.
Similarly weight vector of each sub-region (), is gener-
ated from these weights as,

(Qm)r = [ (wm,l)r (wm,Z)T (wm,S)T ] (2)

wherem =1,2,.... Mandr =1,2,...,R.
2.2. Intra-subject variance of each sub-region

As mentioned, the final decision is based on the weighted
sum of error vectors obtained from each sub-region. These
weights represent a measure of the extent of variation in
eigenspace for a sub-region of a subject across all samples.
For each sub-region r of each subject, /, with N faces, cal-
culate average (®;) as,

1 IxN
((il)r = N Z (Qn)r
n=Nx*(l—1)+1

where r = 1,2,....,Rand [ = 1,2, ..., L. For each sub-
region r, the measure of variance for It" subject is,

IxN

(]Dl)r = % Z

n=N=x(l—1)+1

[(Qn)r - (cI)l)T]2 (3)

wherel = 1,2,...,Land r = 1,2,..., R. It may be noted
that more compact sub-regions have lesser value of (FP;), .



2.3. Recognition

The training phase, consists of obtaining (i) Weight vec-
tor of each sub-region r of each face m in the training set:
(), as in eqn.(2), and (ii) measure of variance of each
sub-region r for each subject I: (P),, as in eqn.(3). Now
given a test face, T';eq, it is split into R horizontal sub-
regions as in the training phase. These regions can be rep-
resented as (Yiest)r Where r = 1,2, ..., R. These regions
are then projected onto face space and weights are calcu-
lated as in eqn.(1), (wtest,s)T = (VS)Z((TteSt)T - ).
The corresponding weight vector is built as,

(Qtest)r = [(wtest,l)r (wtest,2)r e (wtest,S)r]

wherer =1,2,..., R.
The error vector for a region  which is the euclidean
distance between (Qyes:) and () is computed as,

S
(Em)r = (-Pl)r Z[(wtest,i)r - (wm,i)r]2 (4)

wherem = 1,2,..., M, r = 1,2, ..., R and [ is the subject
of m*" sample.

For each subject, the sub-region that is more invariant to
expressions and illuminations is given more priority in the
net error function. This is implemented by multiplying each
error of the sub-region with the measure obtained in egn.(3).
The net error function for comparing a test face T';.s¢ With

T,,is,
R

(Ftest)m = Z(Em)r (5)
r=1
where m = 1,2,...,M. The test face is said to
have matched with face m’, for which (Fiest)m =
min(Fiest)m, Ym. Suitable threshold is used to reduce
false acceptance.

2.4. Performance

The algorithm was tested on Yale database [6]. The
database had 11 samples each of 15 different subjects.
We performed PCA on the actual samples and modular
PCA, weighted modular PCA (WMPCA) on the partitioned
set. The experiment was repeated with different number
of eigenvectors. It was observed that, as number of eigen-
vectors increase the recognition rate also increases, but at
the cost of computational complexity. It was observed that
WMPCA is able to achieve higher rates of recognition than
PCA at lower number of eigenvectors itself.

Using a training set of 6 samples per subject, and other
5 for testing, WMPCA achieved an accuracy of over 87%
while PCA achieved only 76%. Using modular PCA, de-
scribed in [10], the recognition rate reached only 80%. The
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Figure 1. Results of WMPCA compared to MPCA and
PCA for different number of eigenvectors.

recognition rate of WMPCA improved to 89%, if 7 samples
of each subject were used for training. The figure 1 gives
a plot of results obtained in the experiment with 7 samples
per subject used as training set and other 4 samples used for
testing.

3. Hardware Implementation

We propose an architecture that exploits the inherent
parallelism of the WMPCA methodology. The WMPCA
methodology has a two fold parallelism.

o Parallelism across the sub-regions.

e Parallelism with in each subregion across various
eigenfeatures.

To exploit this two-fold parallelism and for computational
simplicity,we bring out the following changes in the equa-
tions used in WMPCA. Considering eqn.(4) , we replace the
square operation by the absolute value operator. The weight
values of test region are computed as,

S

(EM)T = (Pl)r z |‘/;'((Ftest)r - 'Qbr) - (wTrL)r|

i=1

wherem = 1,2,..., M, r = 1,2,..., R and ¢, is the aver-
age sub-region.

For any test region, the term [(T¢est )~ — 1] is @ constant
and computed only once per recognition,

S

(Bm)r = (P)r D Vil(Taigs)r = (w):)| - (6)

i=1



wherem = 1,2,.... M andr = 1,2, ..., R. Thus, we need
to calculate R errors, where R is the number of subregions
used, and each error is a sum of S partial sums, where S is
the number of eigenvectors.

3.1. Architecture

Figure 2 shows the proposed architecture with » process-
ing elements. Recall that r represents the number of sub-
regions into which the face image is divided. The host sends
the test face image to the cropping unit. The cropping unit
divides the face image into sub-regions and place each of
these sub-regions onto an R-BUS. As seen in figure 2, the
R-bus in turn feeds the corresponding PEpc 4 processing
elements with the sub-region. The function of the process-
ing element PEpc 4 is to perform PCA on the sub-region
and multiply the estimated error of the sub-region with the
corresponding variance measure which is obtained from the
training phase. Each PEpc4 has its own local memory
where the eigenvectors, intra-subject variance measures and
weights of each sub-regions obtained in the training phase
are stored. The PEp¢ 4 places the error of the input image
with respect to each of those in the database on the O-BUS.
The summing unit collects these errors from each O-BUS
and generates the net error. The host sorts all the net errors
and outputs the best of the matches, whose net error falls
below the rejection threshold.

Each processing element has a local memory where the
following data obtained during the off-line training phase is
stored:

e Average of each sub-region.

e Eigenvectors of the covariance matrix obtained during
the off-line training phase.

e Each sub-region used in the training phase is stored as
a set of S weights, S being number of eigenvectors
used.

e Intra-subject variance of the sub-region for each of the
subjects.

3.2. The PCA processing element

Each PCA processing element is designed to implement
the above modified equation (6). we employ S parallel
blocks to compute the partial sums of this equation and pass
onto the region summing unit. Each of these parallel blocks
multiply T'4; ¢y with a eigenvector and generate correspond-
ing weight. The difference between this weight and the
corresponding weight of the sub-region in the database is
computed. This difference is multiplied with corresponding
intra-subject variance measure obtained from the database.
The absolute value of this product is passed onto the region
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Figure 2. The WMPCA architecture.

summing unit. Figure 3 shows the internal architecture of
each of PEp¢ 4 with S parallel blocks.

The output of region summing unit is the error obtained
in that region of the test image. The errors of each subre-
gion are added together in the summing unit of the circuit.
This is the net error of test face from the given face in the
database. This is repeated for all the images in the database
and net errors with respect to all the images in the database
are obtained.

The host collects all these net errors, and sorts them in
order, and displays the top matches, whose error is below
the threshold value.

4. SOPC realization of the architecture

The architecture proposed in the previous section was
realized as a System On Programmable Chip. The device
used was ALTERA EP20K200EFC484-2X [3].

4.1. Design of the system

The system was designed using Quartus-I1 tool. The
SOPC builder of Quartus-11 was used to add following cores
to the architecture.

e Nios-processor core [5].

On-board memory of 2KB (Boot-ROM).
Flash memory.

128MB SDRAM module through SODIMM con-
troller.

UART (RS-232 interface).
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e Custom logic of WMPCA.

7 =

PROCESSOR

BOOT-ROM

TT T

CUSTOM
LOGIC (WMPCA)

wn

mr cCcooZXZ

UART

TIMER

UART Interface
(RS-232 logic)

FLASH
MEMORY

SODIMM

SDRAM

CONTROLLER

1l

=

!

PARALLEL
1-O MODULE

:> LCD-DISPLAY

Figure 4. The components of SOPC for Face Recogni-

tion.

o Parallel 1/O interface to LCD display.

e Timer.

These components are connected by Avalon bus [4]. The
Nios-processor core was used as the host in the architecture.
The UART port of board was connected to the PC using RS-
232 cable to transfer image files. The SDRAM was used to
store test image, results and other intermediate data. A LCD
panel was added to view results. Figure 4 shows a block
diagram of interconnected components used in the system.
The data obtained during off-line training is also stored as a
part of custom-logic of the system.

The processor reads the test image from UART-port and
stores it in the SDRAM. Once the entire image is down-
loaded, the processor invokes the custom-logic of the sys-
tem to perform WMPCA on the image. Figure 5 shows
detailed view of the custom logic.

The custom-logic has two inputs, data and index. The
multiplexer M1, based on the value of index, places the
data either in the Test register sets R1, R2 or select regis-
ter, S. The test register sets R1 and R2 are used to store the
test image weights of regions 1 and 2 respectively. The se-
lect register is used to store a number, the index of image in
the database with which the test image should be compared
with. The multiplexers MA and MB multiplex one of the
subregions in the database to the corresponding Error Gen-
erating unit EGU, based on the value of select register. The
architecture of EGU follows the one shown in Figure 3. the
EGU’s compute the error with respect to the image corre-
sponding to the contents of S register. The error is obtained
from result port of the custom logic.
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Figure 5. Detailed view of each processing element.




The Nios-processor, after placing the test image into reg-
ister sets, starts placing the values 1, 2, 3,...,N (N=No. of
faces used in training) in the S register sequentially, and
collects the errors Er1, Er2, ..., ErN, which are errors cor-
responding to each face in the database. The host then sorts
these errors. If the minimum of these is below the threshold,
the output is displayed onto LCD panel.

4.2. Experiments and Results

The experiment had two phases:

1. Off-line training: Off-line training was done on
MATLAB model of WMPCA training methodology. Dur-
ing off-line training, a covariance matrix for each sub-
region was built using training images, eigenvectors were
computed and each training image was projected into
eigenspace and represented as a set of weights. Intra-subject
variance measure of each subject was also computed. All
this data was stored onto local memories of each processing
element.

2. On-line testing: On-line testing was done on the
SOPC realization of the architecture presented in previ-
ous section. On-line testing was done by writing the test-
image’s sub-regions onto test register sets. These sub-
regions were read by the processing elements which pro-
jected the test sub-regions onto eigenspace and net error
with respect to each of training images was computed.
These error values were read, sorted and the best matches
were obtained.

The UART-port was connected to P-1V 3GHz, Linux
based PC. The test images were sent to the board and the
outputs were available at the LCD panel. The LCD panel
displayed the index of the best matched face and the time
taken to compute it. The time to transfer the image from
PC to board was not considered in calculating time for
recognition. Table 1 gives details of the experiment. The

Device EP20K200EFC484-2X
Tool Quartus-I1
Total Logic Elements 7760
Total Memory Elements 26,496
Worst case Tco 12.108 nsec
Clock 33.33Mhz
Time for recognition 38 msec

Table 1. Detalils of the experiment.

SOPC designed above was able to achieve a speedup of 2.15
times when compared its software counterpart at a clock
frequency 75 times slower than the P-1V system on which
its software counterpart was executed. This shows the ef-
ficiency achieved by the hardware implementation that ex-
ploited the parallelism of the WMPCA approach.

5. Conclusions

We proposed an architecture to implement face recog-
nition in real time using weighted modular PCA. The WM-
PCA algorithm was selected owing to its potential for paral-
lelism and improved accuracy in recognizing faces. Using
this architecture, a System On Programmable Chip for
Face Recognition was developed. We were able to achieve
a speed suitable for real-time applications. To make the sys-
tem complete, we are presently working to add a face detec-
tion and a pre-processing module.
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