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Abstract 

This paper presents an unsupervised method of texture 
classification by combining the two most commonly used 
multi-resolution, multi-channel filters: Gabor filters and 
wavelet transform. We used a set of 8 Gabor filters and 2 
wavelet filters: Daubeschies and Haar, for our analysis. The 
parameters (viz. frequency, orientation and size) of the 
Gabor filter bank are obtained by trial and error method, 
based on visual observation of an energy measure of the 
response. A fuzzy classifier has been used which uses no a 
priori knowledge of the textures and hence provides 
unsupervised segmentation. For comparing the performance 
of the features from the Gabor filter bank, the two wavelet 
filters separately and a combination of all the three, the 
classification algorithm was kept identical. A combination 
of Gabor and wavelet features provides better performance 
compared to the individual features alone. 
 
 
1.  Introduction  
In the field of computer vision, texture plays an important 
role in low-level image analysis and understanding. Its 
range of potential applications include analysis of remote 
sensing images, industrial monitoring of product quality, 
medical imaging, and recently, content-based image and 
video retrieval. There is no formal or unique definition of 
texture, making texture analysis a difficult and challenging 
problem. Classification and segmentation of texture content 
in digital images has received considerable attention during 
the past decades and numerous approaches have been 
presented. Statistical, model-based, and signal processing 
techniques are the most commonly used approaches.  
 
The focus of this paper will be on multi-rate and multi-
resolution signal processing approaches. A common 
denominator for most signal processing approaches is that 
the textured image is submitted to a linear transform, filter, 
or filter bank, followed by some energy measure. Two 
filtering-based texture feature extraction schemes have been 
presented. The focus will be on filtering, keeping the other 
components same. Texture segmentation deals with 
identification of regions where distinct textures exist, so that 
further analysis can be done on the respective texture 
regions alone. We have used the fuzzy c-means (FCM) 
classifier, which provides an unsupervised segmentation.  In 
this paper we have used multi-texture images of size 256 X 
256 having four or five distinct texture regions. 
 

2. Brief review of related literature 
Most researchers have attempted to use well-established and 
standard texture segmentation techniques for the 
identification of different texture surfaces. Most methods are 
based on wavelet features, MRF models, STFT features, co-
occurrence matrices, geometric shape of texels and PCA 
analysis. We discuss here a few papers, relevant to our 
work, which deal with the segmentation of textures using 
wavelet transform and Gabor filters.  
 
Dunn et. al. [2] presents an algorithm to design specially 
tuned Gabor filters to segment images with bipartite 
textures. The parameter tuning of the set of Gabor filter 
bank is the key contribution of this approach. Results are 
shown mostly on simulated and a few real world samples. 
Grigorescu et. al. [3] presents a comparative study of the 
different texture features based on Gabor filter bank outputs. 
The three features (obtained by non-linear processing) being 
compared are: Gabor energy, complex moments and grating 
cell operator features. Yegnanarayana et. al. [10] uses a pair 
of 1-D Gabor filters in orthogonal directions to process a 
texture image and obtain the texture boundaries quite 
accurately. Although the size of the filter bank is large, the 
efficiency of 1-D processing helps in reducing the 
computation complexity. Segmentation is edge based for 
this method. 

 
Wavelet based methods have also been popular for texture 
segmentation. Charalampidis and Kasparis [1] use a set of 
new roughness features for texture segmentation and 
classification. Wavelets are used to extract single-scale and 
multiple-scale texture roughness features. These are then 
transformed to a rotational invariant feature vector, which 
has the information of texture direction. Iterative K-means 
algorithm has been used for segmentation and Baye's 
classifier for classification. Results are shown using a large 
set of real world texture images. Salari and Ling [8] used a 
hierarchical wavelet decomposition technique for texture 
image segmentation. Daubechies 4-tap filters were used to 
decompose the original image into three detail and one 
approximate sub-band images. A K-means clustering 
algorithm was used for segmentation of the image using 
textural features obtained from the different bands starting 
from the lowest band, where coarse resolutions provide 
information about larger structures and fine resolution 
provides the details for refining the results. Results are 
shown on a few regular and homogeneous real-world 
textures. Lu et. al. [4] proposed a method of unsupervised 
texture description using wavelet transform. The proposed 
methodology has four stages. The first stage computes a 



smoothed local energy of the wavelet coefficients in high-
frequency bands, as features for segmentation. The second 
stage performs a coarse segmentation using a multi-
thresholding technique. In the third stage, the features at 
different orientations and scales are fused in intra-scale and 
inter-scale respectively. In the last stage, ambiguously 
labeled pixels are reclassified in a fine segmentation 
technique. Segmentation results at various scales are 
integrated by inter-scale fusion to determine the number of 
classes. Results are shown on a few real-world images, with 
the use of various types of wavelet filters. Mallet et. al. in 
[5] proposed a method to design adaptive wavelets for the 
purpose of classification of mineralogical spectral data. The 
purpose of designing adaptive wavelets was to optimize a 
specified discriminant criterion and reduce the 
dimensionality of the feature space. The choice of adaptive 
wavelets proved to be beneficial compared to standard 
wavelets such as Daubechies or Coiflet families - the 
classification accuracy was better. 
 
Randon and Hüsoy [7] provide a comparative study of 
various types of filters (heuristically designed and optimized 
filter banks) for texture classification, which includes, 
Gabor dyadic filters, wavelet transforms, DCT, AR models, 
co-occurrence matrices and eigenfilters. They compare the 
filters, using classification errors and computational 
complexity as the performance criteria. One important result 
is that wavelets performed better than Gabor filters, in 
general. Pichler et. al. in [6] compares the pyramidal and 
tree-structured wavelet with the adaptive Gabor filtering for 
texture classification. Results show that both the wavelet-
based methods are sub-optimal for feature extraction 
purpose, because the center frequency, orientation and 
bandwidth cannot be selected. The paper also concludes that 
Gabor filtering outperforms the wavelet cases but is 
computationally more expensive. 
 
The work presented in our paper uses a combined 
representation of texture classification, based on Gabor and 
wavelet features. This representation combines the 
discriminability of these multi-rate, multi-resolution filters 
to provide improved segmentation results. 
 
3. Overall Methodology 
The steps of the overall methodology for texture 
classification are shown in Figure 1. The filtering stage 
consists of either a bank of Gabor filters or dyadic discrete 
wavelet transforms. The filter coefficients (responses) are 
post-processed using a set of non-linear functions, which 
compute the local energy estimates of the filtered 
coefficients.  These non-linear functions consist of two 
stages: (i) subtracting the local mean and obtaining the 
magnitude followed by (ii) smoothing by a large Gaussian 
function. These steps are described in the section 3.3.   The 
feature vectors computed from the local energy measure 
estimates are local mean and local variance, which represent 
local texture characteristics. These feature vectors are 
computed from the various filtered images and provided to 
the FCM to segment the texture patterns in the image. In our 
experiment, user provides the desired number of classes as 
an input to the classifier.  

3.1 Gabor Filter Definition 
The input image i(x, y) is comprised of disjoint regions of N 
textures t1, t2,…tN with N ≥ 2. This input is applied to k filter 
channels, where each channel consists of a bandpass Gabor 
function hj(x, y). The Gabor filter in channel j has impulse 
response hj(x,y): 
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where (uj, vj )is the center frequency of the filter. 

Figure 1: Stages of processing for texture classification 
 
The filtered output ihj(x,y)  is the convolution of the input 
image with Gabor filter given by:  

),(),(),( yxiyxhyxih jj ∗∗=  
where ** denotes convolution in 2-D. Thus, the parameters  
(σ1j, uj, vj) determine the response of filter channel j, and are 
varied to generate a bank of 2-D Gabor filters. Figure 2(a) 
and (b) show two typical examples of Gabor filters with 
different parameters. The corresponding filtered outputs of 
the image in Figure 3(c), are shown in Figure 2(c) and (d) 
respectively. 
 

3.2 Discrete wavelet transform (DWT)  
The discrete wavelet transform analyses a signal based on 
its content in different frequency ranges. Therefore it is very 
useful in analyzing repetitive patterns such as texture. The 
wavelet transform is expressed as a decomposition of a 
signal f(x) ∈L2(R) into a family of functions which are 
translations and dilations of a mother wavelet function Ψ(x). 
Employing the definition:  

                           ))(()( axssxx −= ψψ  
the wavelet transform of f(x) is defined by: 
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where s,a ∈ R  indicate scale and translation parameters 
respectively. Since the continuous wavelet transform is 
redundant, it is discretized by sampling parameters, s, a. 
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 The most common choice is s = 2i and a = n/2i; i, n ∈ Z. 
Inserting these values in equation (1) yields the DWT of the 
signal f(x) as: 
                    >−<= − )2(),(   ),( 2

i
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where <…> denotes the inner product. 
Since some existing wavelets Ψ(x) ∈ L2(R) constitute an 
orthonormal basis: 
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 this transform is called an orthogonal wavelet transform. 
 

     
               (a)        (b) 

     
             (c)        (d) 

Figure 2: Real part of Gabor Filter at different scales (σ) and 
orientations (θ):  (a) σ=6, θ=0°, ω=2 (b) σ=6, θ=45°, ω=2.8. 
(c), (d): Gabor filter responses for the sample image shown 
in Figure 3 (c) 
 
Introducing the so-called scaling function φ(x), the 
interscale coefficients g(n) with high-pass (HP) 
characteristics and h(n) with low-pass (LP) characteristics, it 
is possible to decompose the signal f(x)  using the following 
L-level decomposition scheme: 
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which is a finite approximation of equation (2). The 
coefficients ci,n and di,n are obtained by 
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k
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which is same as convolving the signal ci-1,n with impulse 
responses  

( ) ( )nhnh −=   ~ , ( ) ( )ngng −=~  
 

respectively and subsequently discarding every other 
sample. The 2-D transform uses a family of wavelet 
functions and its associated scaling function to decompose 

the original image into different channels, namely the low-
low, low-high, high-low and high-high (A, V, H, D 
respectively) channels. The decomposition process can be 
recursively applied to the low frequency channel (LL) to 
generate decomposition at the next level.  Figure 3(a), (b) 
show the 2-channel level-2 dyadic decomposition of an 
image. The LP and HP filters are used to implement the 
wavelet transform. This results in an output with the same 
size as that of the input. Figure 3(d) shows a level-1 DWT 
decomposition of a sample image in Figure 3(c).         
                               

       
              (a)         (b)  

        
         (c)        (d) 

Figure 3: (a) Input image (b) Decomposition at level-2 (c) A 
texture image (d) The DWT level-1 coefficients using the 
Daubechies 8-tap filter 
 
3.3 Post-processing of filter response 
The filter coefficients are post-processed using a set of non-
linear functions, which compute the local energy estimates 
(as shown in Figure 1). The mean-subtracted magnitude of 
the filter output is taken as: 
 

mj(x,y)=⏐ihj(x,y) - µj(x,y)⏐ 
 
where ihj(x,y) is the jth channel output of the filter and µj(x, 
y) is the local mean image of the filter output. A lowpass 
Gaussian post-filter gp(x, y) is then applied to each mj(x, y) 
yielding post-filtered energy of the jth filter channel as: 
 

ej(x, y) = mj(x, y) **gp (x, y)   
where, 
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The feature vectors computed from the local energy 
estimates are (i) mean µ[ej(x, y)] and (ii) variance σ[ej(x, 
y)]. The mean subtracted magnitude of the four wavelet 
channels coefficients given in Figure 3 (d), are shown in 
Figure 4(a)-(d). The corresponding Gaussian post-filtered 
outputs of the mean subtracted magnitudes are shown in 
Figure 5(a)-(d). Figure 6(a), (b) shows the energy measure 
computed from the Gabor filtered coefficients, given in 
Figure 2 (c), (d). The post-processing stage to compute the 
features (local mean and variance) from the energy 
estimates, is the same for both the filtering techniques.  



     
(a)                                (b)  

 

     
(c)                                 (d) 

Figure 4: (a)-(d) Mean subtracted magnitude of the DWT 
coefficients A1, H1, V1, D1 in Figure 3(d) 
 

      
  (a)             (b)  

 

      
            (c)       (d)  

Figure 5: (a)-(d) Energy computed from the post-processed 
outputs in Figure 4(a)-(d) 
 

      
              (a)        (b)  
Figure 6: (a), (b) Energy of the Gabor filtered coefficients 
corresponding to Figure 2(c), (d) 
 
 
4. Classification 
There are already a large number of supervised and 
unsupervised texture segmentation algorithms existing in 
literature.The difference between supervised and 
unsupervised segmentation is that supervised segmentation 
assumes priori knowledge on the type of textures present in 
the image. We have used here, the fuzzy c-means clustering 
(FCM) algorithm as an iterative procedure, which is 
described below: 
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3.    Compare  with U(l+1) in a convenient matrix norm.  

  If  ε≤−+ )()1( ll UU   Stop  

Otherwise return to Step 1.  
 

where, M is the size of input data {xm; m= 1,..M}, C is the 
number of clusters, w is the fuzzy weighting exponent 
(1<w<∞) and U(l) is the membership function matrix at 
iteration l. The value of the weighting exponent w 
determines the fuzziness of the clustering decision. A 
smaller value of w, i.e. w close to unity, will lead to a 
zero/one hard decision membership function, while a larger 
w corresponds to a fuzzier output.  
 
While combining the Gabor and wavelet features for 
providing input to the FCM classifier, we had to ensure that 
the dimensionality and resolution of the feature vectors were 
compatible. We have used 8 different Gabor filters and 2 
types of wavelet transforms. Daubechies 8-tap and Haar 
gave 8 features for every pixel, which ensured equal 
weightage for both the filtering techniques. To ensure 
resolution compatibility, the wavelet features were 
upsampled to the same size as that of the Gabor. Results of 
the FCM classifier using the features of both the filters are 
described in the next section. 

5. Experimental results  

In this section, we illustrate the performance of the feature 
extraction methods using several examples of texture 
images. These images are 8-bit grayscale images of size 256 
X 256. The DWT was computed using the two most 
commonly used filters viz. Daubechies and Haar with level-
1 decomposition only.  The Gaussian width used for post-
filtering was chosen to be 1.5 times the width of the window 
used for feature extraction. Eight different Gabor filters 
were selected based on a trial and error method. We 
observed the energy responses with varying parameter 
values and the ones that provided contrasting signatures for 
at least 2-3 different regions were chosen. This set of eight 
filters for the Gabor filter bank is not optimal, but we 
avoided specific tuning which could lead to a supervised 
approach. The parameters of the eight Gabor filters are 
given in Table I. The width of the Gaussian filter in this 
case was twice that used for computing the local mean. To 
ensure unbiased comparison, the segmentation algorithm 
was kept the same. The feature vector for Gabor filter based 
classification had a set of 16 features, while the wavelet 
based technique had 8 each. 
 



Table II shows the results of texture classification on 6 
images, each containing four different texture regions. 
Column (a) in Table II shows the input texture images. 
Corresponding outputs of the FCM classifier are shown in 
the columns of Table I with different features obtained 
using: (b) Gabor, (c) Daubechies, (d) Haar and (e) combined 
features of Gabor, Haar and Daubechies filters. 
 
The error in segmentation of the FCM classifier is used as a 
measure to compare the performances of the filters. Error in 
each region is calculated as: 
 

No of pixels incorrectly classified in that region 
Total number of pixels in that region 

 
which is averaged over the entire image. This measure is 
obtained for all the results shown in Table II and is tabulated 
for comparison purpose in Table III. Since the size of 
wavelet coefficients is half of the original image, they were 
up-sampled to ensure that all features have identical 
resolution. It was observed that the errors were the least 
when features from Gabor and wavelet filters were 
combined together for classification. Figure 7 shows the 
results of segmentation with an image containing five 
texture regions, similar to that in Table II. 
 

               
              (a)            (b) 

        
              (c)            (d) 

 
(e) 

Fig. 7: (a) Input image with five textures. Segmented image 
with features obtained using (b) Gabor filter only (c) 
Daubechies filter only (d) Haar transform only and (e) 
Combined features from Gabor, Daubechies and Haar filters 
 
6. Conclusions 
The results of our proposed method reveal that a 
combination of features from two different types of multi-
resolution and multi-channel filters (instead of a ‘war’ 

between Gabor and wavelet) provides superior 
classification of texture images. The method combines the 
advantages (or feature discriminability) of both these 
filters to provide an improved performance. This has been 
the main objective and aim of this paper. One may down-
sample the feature vectors of the Gabor filtered output and 
obtain feature vectors at lower resolution. However, this 
obviously results in poorer performance. One can also 
follow [2], [9] to determine an optimal set of parameters 
for the Gabor filter to obtain better results. 
 

Filter(i) 1 2 3 4 5 6 7 8 
σ1i 2 2 1 2 2 3 1 2 
ui 5 1 5 3 2.7 2 4 6 
vi 5 4 5 1 2.7 -1 4 -3 

Table I:  Gabor filter parameters (σ1i, ui, vi) of the 8 filters 
in the bank 
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Table II:  Experimental results of classification:  (a) Input images. Segmented image with features obtained using (b) Gabor filter 
only (c) Daubechies filter only (d) Haar transform only and (e) Combined features from Gabor, Daubechies and Haar filters 
 
 

Table III: Classification errors corresponding to the experimental results in Table I. 

Results of classification 
(a) Input Image 

(b) Gabor  (c) Daubeschies (d) Haar (e) Combined features 

1      

2      

3      

4      

5      

6      

Error in classification 
Image 

Gabor Daubechies Haar Combined Features 
1 5.3650 3.5034 3.7109 2.9541 
2 21.6141 37.4853 18.4156 15.6036 
3 12.2330 19.9130 18.3625 5.7782 
4 27.2964 22.8796 12.0404 10.6079 
5 17.5079 21.8721 22.0379 15.1474 
6 9.4177 8.3638 15.5295 4.7287 


