
Balanced Allocation: Patience is not a Virtue

John Augustine�, William K. Moses Jr.�, Amanda RedlichF,
Eli Upfal♠

�Indian Institute of Technology Madras, FBowdoin College, ♠Brown University

SODA 2016

Jan. 11th, 2016

SODA 16 Balanced Allocation Jan. 11th, 2016 1 / 25

Outline

1 Load Balancing Problem

2 Past Work

3 FirstDiff[d]

SODA 16 Balanced Allocation Jan. 11th, 2016 2 / 25

Load Balancing Problem

Preliminaries

Balls and Bins model: m balls, n bins, m ≥ n.

Sequential ball throwing, one at a time.

When each ball arrives at the load balancer, loads of bins not known.

One probe = checking load of one bin.

Probes made randomly.

Ball is placed in some bin after suitable number of probes.

Problem Statement

Find an algorithm which minimizes both total number of probes and the
maximum load of any bin after all balls are thrown.

SODA 16 Balanced Allocation Jan. 11th, 2016 3 / 25

Outline

1 Load Balancing Problem

2 Past Work

3 FirstDiff[d]

SODA 16 Balanced Allocation Jan. 11th, 2016 4 / 25

Past Work

N
u

m
b

er
 o

f
b

al
ls

Bins

SODA 16 Balanced Allocation Jan. 11th, 2016 5 / 25

Past Work - Randomly Place each Ball

Bins

N
u

m
b

er
 o

f
b

al
ls

Max. load of any bin = ln n
ln ln n (1 + o(1)) w.h.p. (when m = n)

SODA 16 Balanced Allocation Jan. 11th, 2016 6 / 25

Past Work - Power of Two Choices

Bins

N
u

m
b

er
 o

f
b

al
ls

Max. load of any bin = m
n + ln ln n

ln 2 + Θ(1) w.h.p.
[Karp, Luby & Meyer, Algorithmica ’96] [Azar, Broder, Karlin & Upfal,
SICOMP ’99] [Berenbrink, Czumaj, Steger & Vöcking, SICOMP ’06]

SODA 16 Balanced Allocation Jan. 11th, 2016 7 / 25

Past Work - Power of d choices aka Greedy[d]

Power of two choices → Power of d choices (Greedy[d])

Max. load of any bin = m
n + ln ln n

ln d + Θ(1) w.h.p.
[Azar, Broder, Karlin & Upfal, SICOMP ’99] [Berenbrink, Czumaj, Steger &

Vöcking, SICOMP ’06]

Compare with placing ball u.a.r.:
Max. load of any bin = ln n

ln ln n (1 + o(1)) w.h.p. (when m = n)

SODA 16 Balanced Allocation Jan. 11th, 2016 8 / 25

Past Work - Introduce Asymmetry aka Left[2]

Bins

N
u

m
b

er
 o

f
b

al
ls

SODA 16 Balanced Allocation Jan. 11th, 2016 9 / 25

Past Work - Introduce Asymmetry aka Left[2]

Bins

N
u

m
b

er
 o

f
b

al
ls

Max. load of any bin = m
n + ln ln n

2 lnφ2
+ Θ(1) w.h.p.

[Vöcking, JACM ’03] [Berenbrink, Czumaj, Steger & Vöcking, SICOMP ’06]

SODA 16 Balanced Allocation Jan. 11th, 2016 10 / 25

Past Work - Introduce Asymmetry aka Left[d]

Two choices → d choices (Left[d])

Max. load of any bin = m
n + ln ln n

d lnφd
+ Θ(1) w.h.p.

[Vöcking, JACM ’03] [Berenbrink, Czumaj, Steger & Vöcking, SICOMP ’06]

Compare with Greedy[d]:
Max. load of any bin = m

n + ln ln n
ln d + Θ(1) w.h.p.

SODA 16 Balanced Allocation Jan. 11th, 2016 11 / 25

Past Work - Varying the number of probes per ball

Idea: Probe bins until a threshold is found.

Threshold is a function of maximum number of balls placed.

[Czumaj & Stemann, Random Struct. Algorithms ’01]

When m = n
Number of probes = 1.146194m + o(m), Max. load of any bin = 2
w.h.p.
When m = O(n)
Number of probes = O(m), Max. load of any bin = dmn e+ 1 w.h.p.

[Berenbrink, Khodamoradi, Sauerwald & Stauffer, SPAA ’13]

When threshold is a function of ball’s placement in input order
Number of probes = O(m) , Max. load of any bin = dmn e+ 1 w.h.p.
Extending analysis of prior work to m > n case
Number of probes = m + O(m

3
4 · n 1

4), Max. load of any bin = dmn e+ 1
w.h.p.

SODA 16 Balanced Allocation Jan. 11th, 2016 12 / 25

Our Goal

Get results similar to Left[d].

Remove - clustering of bins.

Remove - knowledge of balls’ positions in the input order.

Remove - knowledge of total number of balls to be placed.

SODA 16 Balanced Allocation Jan. 11th, 2016 13 / 25

Outline

1 Load Balancing Problem

2 Past Work

3 FirstDiff[d]

SODA 16 Balanced Allocation Jan. 11th, 2016 14 / 25

FirstDiff[d] - How it works

Each ball - probe until one of 3 conditions met.

Empty Bin Condition:
Probe an empty bin.

First Diff. Condition:
Probe a bin with
different load than last
seen.

Flat Bins Condition:
Run out of probes
(2Θ(d) probes allowed
per ball, d - average
number of probes per
ball).

Bins

N
u

m
b

er
 o

f
b

al
ls

SODA 16 Balanced Allocation Jan. 11th, 2016 15 / 25

FirstDiff[d] - How it works

Each ball - probe until one of 3 conditions met.

Empty Bin Condition:
Probe an empty bin.

First Diff. Condition:
Probe a bin with
different load than last
seen.

Flat Bins Condition:
Run out of probes
(2Θ(d) probes allowed
per ball, d - average
number of probes per
ball).

Bins

N
u

m
b

er
 o

f
b

al
ls

SODA 16 Balanced Allocation Jan. 11th, 2016 15 / 25

FirstDiff[d] - How it works

Each ball - probe until one of 3 conditions met.

Empty Bin Condition:
Probe an empty bin.

First Diff. Condition:
Probe a bin with
different load than last
seen.

Flat Bins Condition:
Run out of probes
(2Θ(d) probes allowed
per ball, d - average
number of probes per
ball).

Bins

N
u

m
b

er
 o

f
b

al
ls

SODA 16 Balanced Allocation Jan. 11th, 2016 15 / 25

FirstDiff[d] - How it works

Each ball - probe until one of 3 conditions met.

Empty Bin Condition:
Probe an empty bin.

First Diff. Condition:
Probe a bin with
different load than last
seen.

Flat Bins Condition:
Run out of probes
(2Θ(d) probes allowed
per ball, d - average
number of probes per
ball).

Bins

N
u

m
b

er
 o

f
b

al
ls

SODA 16 Balanced Allocation Jan. 11th, 2016 15 / 25

FirstDiff[d] - How it works

Each ball - probe until one of 3 conditions met.

Empty Bin Condition:
Probe an empty bin.

First Diff. Condition:
Probe a bin with
different load than last
seen.

Flat Bins Condition:
Run out of probes
(2Θ(d) probes allowed
per ball, d - average
number of probes per
ball).

Bins

N
u

m
b

er
 o

f
b

al
ls

SODA 16 Balanced Allocation Jan. 11th, 2016 15 / 25

FirstDiff[d] - How it works

Each ball - probe until one of 3 conditions met.

Empty Bin Condition:
Probe an empty bin.

First Diff. Condition:
Probe a bin with
different load than last
seen.

Flat Bins Condition:
Run out of probes
(2Θ(d) probes allowed
per ball, d - average
number of probes per
ball).

Bins

N
u

m
b

er
 o

f
b

al
ls

SODA 16 Balanced Allocation Jan. 11th, 2016 15 / 25

FirstDiff[d] - How it works

Each ball - probe until one of 3 conditions met.

Empty Bin Condition:
Probe an empty bin.

First Diff. Condition:
Probe a bin with
different load than last
seen.

Flat Bins Condition:
Run out of probes
(2Θ(d) probes allowed
per ball, d - average
number of probes per
ball).

Bins

N
u

m
b

er
 o

f
b

al
ls

SODA 16 Balanced Allocation Jan. 11th, 2016 15 / 25

FirstDiff[d] - How it works

Each ball - probe until one of 3 conditions met.

Empty Bin Condition:
Probe an empty bin.

First Diff. Condition:
Probe a bin with
different load than last
seen.

Flat Bins Condition:
Run out of probes
(2Θ(d) probes allowed
per ball, d - average
number of probes per
ball).

Bins

N
u

m
b

er
 o

f
b

al
ls

SODA 16 Balanced Allocation Jan. 11th, 2016 15 / 25

Algorithm

Algorithm 1 FirstDiff[d] (Assume d ≥ 2. The following algorithm is
executed for each ball.)

1: Repeat 2Θ(d) times
2: Probe a new bin chosen uniformly at random
3: if probed bin has zero load then
4: Place ball in probed bin & exit

5: if probed bin has load different from those probed before then
6: Place ball in least loaded bin (breaking ties arbitrarily) & exit

7: Place ball in last probed bin

SODA 16 Balanced Allocation Jan. 11th, 2016 16 / 25

Comparison of Results

FirstDiff[d]

Expected number of probes = md .
Max. load of any bin (m = n) = ln ln n

Θ(d) + O(1) w.h.p.

Max. load of any bin (m� n) = m
n + ln ln n

Θ(d) + Θ(ln ln ln n) with

probability 1− o(1).

Comparison:
vs. Greedy[d] - for same expected number of probes, significantly
better max. load (Greedy[d] max. load = m

n + ln ln n
ln d + Θ(1) w.h.p.).

vs. Left[d] - for same expected number of probes, similar max. load
(Left[d] max. load = m

n + ln ln n
d ln φd

+ Θ(1) w.h.p.). But no overhead.

Experimentally, when m = n, FirstDiff[d] performed better than both
Greedy[d] & Left[d].

SODA 16 Balanced Allocation Jan. 11th, 2016 17 / 25

FirstDiff[d] - Number of Probes

SODA 16 Balanced Allocation Jan. 11th, 2016 18 / 25

FirstDiff[d] - Number of Probes

SODA 16 Balanced Allocation Jan. 11th, 2016 19 / 25

FirstDiff[d] - Number of Probes

Let max. number of probes per
ball = k, i.e. k = 2Θ(d).

Expected number of probes per
ball = k.

First n
k balls.

SODA 16 Balanced Allocation Jan. 11th, 2016 20 / 25

FirstDiff[d] - Number of Probes

Expected number of probes per

ball =
(
x
n

n
n−x + n−x

n
n
x

)
.

Middle n − 2 ∗ n
k balls.

SODA 16 Balanced Allocation Jan. 11th, 2016 21 / 25

FirstDiff[d] - Number of Probes

Expected number of probes per
ball = k.

Last n
k balls.

SODA 16 Balanced Allocation Jan. 11th, 2016 22 / 25

FirstDiff[d] - Results

Number of probes = O(n log k) = nd .

Proving max. load - layered induction proof.

SODA 16 Balanced Allocation Jan. 11th, 2016 23 / 25

Extending Results to m� n Case

Max. load

Need to handle base case of layered induction when m� n.
Try to avoid any computational component for proof.
Start with gap from [Peres, Talwar & Wieder, SODA ’10].
Use gap reduction lemma from [Talwar & Wieder, ICALP ’14] to
improve gap.

Number of probes

Must capture U-shaped pattern of probes after every n balls placed.
Requires us to analyze levels (heights) of balls.

SODA 16 Balanced Allocation Jan. 11th, 2016 24 / 25

Conclusions

FirstDiff[d] - Max. load similar to Left[d] without clustering.
d probes per ball on average.

Future - apply FirstDiff[d] to a parallel setting.

SODA 16 Balanced Allocation Jan. 11th, 2016 25 / 25

Appendix - FirstDiff[d] - Number of Probes

Result

When m > n, expected total number of probes = md .

Let maximum possible probes per ball, k = 2Θ(d).
Split balls into complete and incomplete levels.
We show that number of incomplete levels is O(log n).
Each level - at most n balls. Totally O(n log n) balls.
Each ball takes at most k probes.

Expected number of probes to place all balls in incomplete levels

= O(m log k) when m ≥ O(k
log k n log n).

SODA 16 Balanced Allocation Jan. 11th, 2016 26 / 25

Appendix - FirstDiff[d] - Number of Probes

Bins (sorted in non-increasing order of load)

N
u

m
b

er
 o

f
b

al
ls

𝑙

𝑥

Ball ID (𝑙, 𝑥)

Closer look at complete levels.

Bound expected number of
probes for one ball on a given
level.

Sum up expected number of
probes for all balls on that level.

Sum up expected number of
probes over all balls of all
complete levels.

SODA 16 Balanced Allocation Jan. 11th, 2016 27 / 25

Appendix - FirstDiff[d] - Number of Probes

Expected number of probes per level of balls = O(n log k).

Number of complete levels = O(mn − O(log n))

∴ Expected number of probes to place all balls in complete levels
= O((mn − O(log n))n log k).

SODA 16 Balanced Allocation Jan. 11th, 2016 28 / 25

Appendix - Tools for Max. Load Proof

[Berenbrink, Czumaj, Steger & Vöcking, SICOMP ’06] used
computational component in proof of max. load.

[Talwar & Wieder, ICALP ’14] provide a tool to simplify proof
without a computational component.

Tradeoff - slightly weaker bound (upto Θ(log log log n)).

Tool - Given that there exists a gap between max. load and average
load at some time t. Gap reduction lemma reduces this gap under
some conditions.

SODA 16 Balanced Allocation Jan. 11th, 2016 29 / 25

Appendix - FirstDiff[d] - Max. Load

Result

When m > n,
max. load of any bin = m

n + log log n
Θ(d) + Θ(log log log n) with probability 1− o(1).

Proof Sketch

G t - gap b/w max. loaded bin and average load after tn balls placed.

Theorem from [Peres, Talwar & Wieder, SODA ’10] - loose upper bound on
G t for arbitrary t.

Adapt gap reduction lemma from [Talwar & Wieder, ICALP ’14].

Start at G t , reduce gap twice to required value.

Use lemma from [Talwar & Wieder, ICALP ’14] to s.t. gap holds for all
values of t.

Hence required bound on max. load proved.

SODA 16 Balanced Allocation Jan. 11th, 2016 30 / 25

	Load Balancing Problem
	Past Work
	FirstDiff[d]

