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Talk Plan

Motivate SINR model and set it up.

Multi-Broadcast - problem statement + related work + motivation.

Achieving multi-broadcast.

Wakeup - problem statement + overview of solution.

Achieving wakeup.

Briefly mention other results obtained.

Possible future directions.
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Motivation
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SINR Model - In a Nutshell

Example Network u trying to transmit to v . Needs to
overcome signals from w1 and w2.

Strength of signal of u at v
= Pu

d(u,v)α .
Similar for w1 and w2.

In SINR model, u’s message is
received by v iff

Pu
d(u,v)α

N + ( Pw1
d(w1,v)α + Pw2

d(w2,v)α )
≥ β.
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SINR Model - General Case

Model Parameters
1 Path loss constant - α ≥ 2

2 Threshold constant - β ≥ 1

3 Ambient noise - N ≥ 0

Following inequality determines if a message from u will be received by a
station v . Let T be set of stations transmitting in given round.

Pu
d(u,v)α

N +
∑

i=T \u

Pi
d(i ,v)α

≥ β
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Addition of Weak Devices

Model Parameter Added

Sensitivity parameter - ε > 0

An additional inequality now also helps determine when a message from u
will be received by a station v .

Pu
d(u,v)α ≥ (1 + ε)βN
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Notations

1 Range of a station u (r) - the distance from u within which another
station can hear a message from u if all other stations are silent.

2 Communication graph G(V,E) - Wireless stations are nodes. If station
v within range of u, there is an edge from u to v . (Weak links.)

3 Uniform network - ranges of all stations (and by extension powers)
same and equal to r .
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Settings

Network & Clock Set Up

1 Alg. works synchronously in rounds.

2 Nodes located on 2D Euclidean plane.

3 Transmission power - fixed & uniform.

4 Size of message - O((∆ logN + n) logN) bits
∆ - max. degree of any node
n - no. of nodes
N - [N] is the range from which node labels (IDs) are taken

5 Assume even with weak devices, communication graph connected.
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Settings

Properties of Stations

1 A node can act either as a receiver or sender in a round, but not both.

2 No collision detection, i.e. in a given round, a receiving node can’t
tell if no one sent a message or too many sent a message.

3 Labels (IDs) of all nodes unique and taken from [1,N].

4 Every node knows value of N, the no. of nodes in the network n, and
own label.

5 No idea about Euclidean coordinates. No idea about nbrs in comm.
graph.

6 At start of multi-broadcast - all nodes initially active (awake).

7 At start of multi-wakeup - some nodes initially active (awake).
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Problem Statement

Problem Statement

Initially, there are several nodes, each with a different piece of information.
Every piece of info must be transmitted to all other nodes within the
network.
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Motivation

Related Work

SINR model has been looked at quite a bit
[Avin et al., 2009, Fanghänel et al., 2009,
Kesselheim and Vöcking, 2010, Kesselheim, 2011].

Specifically the problem of broadcast
[Goussevskaia et al., 2008, Yu et al., 2011, Jurdzinski et al., 2013].

[Jurdzinski et al., 2013] model is very close, except they have
knowledge of coordinates. Alg. running time - O(D∆ log2N) rounds,
D - diameter of communication graph.
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Our Contribution

Our Contribution

We achieve deterministic multi-broadcast w/o knowledge of
coordinates in O(n log2N) rounds, assuming all nodes awake initially.

To the best of our knowledge, no work before ours has been able to
achieve efficient deterministic multi-broadcast w/o knowledge of
coordinates or knowledge of neighbors’ labels.
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Grid

Consider plane as a grid.

Length of each side x .
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Pivotal Grid

x = r√
2

.

Significance: If two nodes
within same box, they can hear
each other.
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A Simple Way to Hear a Message

According to SINR model, only if your signal at destination beats out
interference plus noise can your message be heard.

If there are lots of nodes, this becomes difficult.

Solution: Develop a way to limit the number of people actually
transmitting within some distance of you at any given time. Dilution.
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Dilution

Suppose we know grid
coordinates of nodes.

Group smaller boxes together
into larger boxes.

Example is 2-dilution.
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Dilution

In a given round, only one box
out of 4 participates. Rest are
silent.

This chosen box is the same
across all bigger boxes.
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Dilution
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Dilution
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Dilution
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Dilution

And this cycle of active boxes is
repeated.

We can guarantee a box is
active once every 4 rounds.
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Recap of Dilution

(2d + 1)-dilution.

Consider plane as a grid. Group
(2d + 1)2 boxes into a larger
box.

In one round, only one of those
smaller boxes active per larger
box. Same box in every larger
box.

v can now hear message of u.
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Grids & Dilution

We divide the plane into a grid. If we enforce a δ-dilution, it means
that for a group of δ2 boxes, only one of them is active at any given
time. Moreover, it is the same box in each group of δ2 boxes.

Make the boxes small enough so that only node per box.

Q: We’re done then, right?

A: No. Grid-based dilution is only possible when we know coordinates
of each node. We don’t.

So our goal then: Silence boxes within some distance of a given box.

How: Strongly selective families.
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Strongly Selective Family

(N , c)-ssf

A family F of subsets of [N] is an (N, c) strongly selective family if for every non-empty
subset Z of [N], such that |Z | <= c, and for every z ∈ Z , there is a set f ∈ F that
intersects Z at only element z . The number of subsets in the family is O(c2 logN).

Each subset represents set of nodes transmitting in that round.

To complete one execution of an (N, c)-ssf, it takes O(c2 logN) rounds.

If we know there is at most one
node per box, it’s sufficient.

We are now able to silence area
of (2d + 1)2 boxes except box
with u.

v can now hear message of u.
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Comparison

Figure: Grid-Based Dilution

Figure: SSF-Based Dilution
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SSF-Based Dilution

Issues

Issue 1: We don’t know in which round v will be able to hear u.

Issue 2: There may be more than one node per box.

Issue 3: Outside interference may complicate things.

Solutions

Issue 1 & 2 taken care of by our algorithm.

Issue 2 & 3 addressed by our lemma (modified form of proposition
from [Jurdzinski et al., 2013]).
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SSF-Based Dilution

Lemma
For stations with same range r , sensitivity ε > 0, and transmission power, for each
α > 2, there exists a constant d , which depends only on the parameters α, β, and ε of
the model and a constant k, satisfying the following property.

Let W be the set of stations such that at most a constant k of them are present in any
grid box of the grid Gx , x ≤ r√

2
. Let u and v be two stations in different grid boxes such

that the distance between them,
√

2x , is the minimum distance between any two
stations in different grid boxes in Gx . Let A be the set of stations in u’s grid box.

If u is transmitting in a round t and no other station within its box or a box less than d

box distance away from its box is transmitting in that round, then v and all stations in A

can hear the message from u in round t.

Proof Sketch: If d is large enough, the interference by outside nodes will not cause

problems.
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SSF-Based Dilution

Significance of Lemma

No matter how small you make the grid boxes, the number of grid boxes you need
to silence, (2d + 1)2 − 1, only depends on α, β, ε, and k.

The first 3 are parameters of the model. If you can ensure k is a constant, then
you only need to shut down a constant number of boxes.

∴ (N, c)-ssf, where c = k2(2d + 1)2, takes O(c2 logN) = O(logN) rounds to
execute.

∴ Can replace any dilution scheme (req. knowledge of coordinates) with our
scheme with an additional factor of O(logN) rounds.

Very Important Theorem

For a grid Gx , x ≤ r√
2
, let the set of all nodes that want to transmit satisfy the

properties of the Lemma. Every node in this set can successfully transmit a message to

its neighbors within
√

2x distance of it in O(lgN) rounds by executing one (N, c)-ssf,

where c = k2(2d + 1)2 where d is taken from the Lemma and k is an upper limit on the

number of nodes from the set in any box of the grid.
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Overview of Approach

1 Tree Grower

Creates trees which may span multiple grid boxes with at most one
root per grid box.
Running time - O(n logN).

2 Tree Cutter

Cuts the trees to height at most 1.
Running time - O(n log2 N).

3 Broadcast

Takes a message at one of the nodes and spreads it throughout the
network.
Uses Tree Grower & Tree Cutter as subroutines.
Running time - O(n log2 N).
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Tree Grower

Input: A network of connected nodes.

Output: A forest of trees such that:

Every node is either a leader (root) or a child.
There is at most one leader per grid box of the pivotal grid (length of
side of grid box = r√

2
).
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Tree Grower

Tree Grower, run by each node u

1: for cnt ← 1, n do
2: if u is active then
3: Execute SSF:
4: Transmit u’s label. Listen for others’ labels.
5: Execute SSF:
6: Transmit info about everyone u heard. Figure out who u can bidirectionally

communicate with.
7: Execute SSF:
8: Transmit u’s label in active rounds. Listen for others who u can bidirectionally

communicate with.
9: Execute SSF:

10: Transmit info about who might be u’s potential parent or children. Lower labels
becomes parents.

11: Form links. If u becomes a child, become inactive.
12: end if
13: end for
14: If active, become leader.
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Tree Grower

TG - Initially
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Tree Grower

TG - Step 1

Nodes which are close enough,
hear each other thanks to
SSF-based dilution and our
lemma.

William K. Moses Jr. SINR Networks 06-12-16 42 / 132



Tree Grower

TG - Step 2

A series of connections, where
a < b and b > c.
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Tree Grower

TG - Step 3

A series of connections, where
x > y and y < z .
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Tree Grower

TG - Step 4
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Tree Grower

TG - Finally

Every node either leader or
child.

At most one leader per grid
box.
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Tree Grower - Proof of Claims

Claims
1 Creates trees which may span multiple grid boxes with at most one

root per grid box.

2 Running time - O(n logN) rounds.

Proof Sketch of Correctness (Claim 1)

If two nodes are both active and distance between them is min.
among all distances in graph, they will be able to communicate
because of ssf-based dilution.

At the beginning of every phase i of the alg., either at least i − 1
nodes have become children or all nodes which are not children will
become leaders.
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Tree Grower - Proof of Claims

Claims
1 Creates trees which may span multiple grid boxes with at most one

root per grid box.

2 Running time - O(n logN) rounds.

Proof of Running Time (Claim 2)

Each execution of (N, c)-ssf takes O(c2 logN) = O(logN) rounds,
since c is a constant.

There are n such executions of 2 ssfs, so running time = O(n logN)
rounds.
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Now what?

Why did we build trees?

So that at most there are a constant number of nodes that want to
transmit per grid box.

What could we do now to broadcast?

Use token passing, DFS style. Tree defined by leader. One token per
tree. Transmit when you get token.

Will it work? No.

Why? Several trees pass through single grid box. No bound on them.
What if all tokens end up in one grid box at same time.
(N, c)-ssf-based dilution with constant c fails.

Solution: Cut the trees down to height 1 or less.
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Tree Cutter

Input: Trees such that there is at most one leader per grid box.

Output: Trees of height at most 1 such that there is at most one
leader per grid box.
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Tree Cutter

Tree Cutter, run by each node u

1: Initially, leaders have tokens.
2: for cnt ← 1, 2 · 947 · (n + 1)− 1 do
3: Execute Potential Leader Election.
4: Execute SSF:
5: Transmit u’s status (leader/follower) and update u’s tree.
6: Execute SSF:
7: Pass token, if any, in DFS manner.
8: end for
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Tree Cutter

TC - Initially
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Tree Cutter

TC - Step 1

Leaders transmit.

William K. Moses Jr. SINR Networks 06-12-16 54 / 132



Tree Cutter

TC - Step 2
Non-leaders orient themselves
to whichever leader they hear
first. If they hear from someone
other than original leader first,
then they reorient themselves
to new leader.

Note that non-leaders may hear
from no leader initially, in which
case they stay unoriented.
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Tree Cutter

TC - Step 3

Once a node who reorients
itself gets a token from its old
leader, it can declare its new
allegiance.
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Tree Cutter

TC - Step 4
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Tree Cutter

TC - Step 5
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Tree Cutter

TC - Step 6
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Tree Cutter

TC - Step 7
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Tree Cutter

TC - Step 8
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Tree Cutter

TC - Step 9
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Tree Cutter

TC - Finally

All nodes either leaders or
followers.

At most one leader per grid
box.

All trees of height 1 or less.
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Tree Cutter - Potential Leader Election

Till now we have not made use of the Potential Leader Election part
of the algorithm.

We present an example which shows how it works.

It is only used by nodes who get the token but have not oriented
themselves to a leader yet.
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Tree Cutter - Potential Leader Election

Potential Leader Election, run by each node u

1: Execute SSF:
2: Transmit u’s label. Record other nodes heard in every round.
3: Execute SSF:
4: Transmit info about which nodes u heard and which round heard

in during previous ssf.
5: Determine which round is the round in which u alone transmits in the

ssf. Call it R.
6: for i ← 1, c1 logN do
7: Execute SSF:
8: If i = R and u is not follower, transmit, else stay silent.
9: If u transmits, become leader. If u hears from another node v

and u is not a leader/follower, become v ’s follower.
10: end for
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Potential Leader Election

PLE - Initially
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Potential Leader Election

PLE - Step 1
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Potential Leader Election

PLE - Step 2

Now, these nodes with tokens
haven’t oriented themselves to
any leader. So now they
participate in Potential Leader
Election.
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Potential Leader Election

PLE - Step 3

They’ve figured out the number
of the round in which they
alone transmit to the others.

Notice that the grey node
outside does not get involved.
Reason - no token.
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Potential Leader Election

PLE - Finally

Tokens sent back. Now the
leader has his own token.
Others recognize him as leader
and have already transmitted
the same.
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Tree Cutter - Proof of Claims

Claims
1 There is at most one leader per grid box of pivotal grid.

2 Cuts the trees to height at most one.

3 Running time - O(n log2N).
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Tree Cutter - Proof of Claims

Proof Sketch of Correctness (Claim 1)

Goal: At most one leader per grid box of pivotal grid (Invariant 1 across phases of
Tree Cutter).

When is this true? When Potential Leader Election works as desired, i.e. no more
than one leader created per grid box (Lemma 8).

But for Potential Leader Election and Tree Cutter to work properly, there must be
a constant no. of tokens in any grid box of pivotal grid at the beginning of every
phase of Tree-Cutter (Invariant 2).

Intertwined proof.
Step 1: Assume Inv. 2 holds in every phase ≤ i of Tree-Cutter, then Inv. 1 holds
in phase i (Lemma 9).
Step 2: To prove Inv. 2, we need to bound the number of tokens that can get into
a grid box. We do this by bounding the distance a token can move away from its
leader (Lemma 10).
Step 3: Strong induction on Inv. 2, to show it holds with help from Lemma 9 and
Lemma 10.
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Tree Cutter - Proof of Claims

Proof Sketch of Correctness (Claim 2)

Goal: All trees cut down to height at most one.

Using Tree Cutter & Potential Leader Election, a node will be either a
leader or declare itself a follower of a leader within range of it.

We show that after 2 · 947 · (n + 1)− 1 phases of Tree Cutter, every
node has a chance to transmit its status (i.e. gets to participate in
Potential Leader Election if necessary).

∴ After so many phases, all trees cut down to size.
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Tree Cutter - Proof of Claims

Proof of Running Time (Claim 3)

Potential Leader Election performs O(c2 logN) executions of an
(N, c)-ssf of size O(c2 logN). Since c is a constant, it takes
O(log2N) rounds.

We perform O(n) executions of Potential Leader Election. Total
running time = O(n log2N) rounds.
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Now what?

Now we can actually perform multi-broadcast.
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Multi-Broadcast

Input: Several nodes, each with a different piece of information.

Output: Every node has every piece of information.

First we look at the problem of Broadcast, where only one node has
info and it needs to be spread.

After showing how this is done, we show how Multi-Broadcast is
achieved in a similar manner.
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Broadcast

Broadcast, run by each node u

1: Run Tree Grower.
2: Run Tree Cutter.
3: Initially leaders have tokens.
4: for cnt ← 1, 4 ∗ n do
5: Execute SSF:
6: If u has token and info, transmit it. Else stay silent.
7: Execute SSF:
8: Pass token, if any, in DFS manner.
9: end for
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Broadcast

Broadcast - Initially

Initially one node has info.
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Broadcast

Broadcast - Step 1

When token comes to node, it
transmits and its leader hears
the info.
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Broadcast

Broadcast - Step 2

Leader gets token, transmits,
and all its children get info.
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Broadcast

Broadcast - Step 3

Once all children transmit,
since connected graph,
someone new will hear.
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Broadcast

Broadcast - Step 4

And the cycle continues...
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Broadcast

Broadcast - Step 5
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Broadcast

Broadcast - Step 6
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Broadcast

Broadcast - Finally

Until finally all nodes have info.
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Broadcast - Proof of Claims

Claims
1 Takes a message at one of the nodes and spreads it throughout the

network.

2 Running time - O(n log2N).

Proof Sketch of Correctness (Claim 1)

If a node with message belongs to a tree of size si , it takes at most
O(si logN) time for the node to get a token.

Once that node transmits, it takes at most O(si logN) time for all
nodes in that tree to transmit.

Let us say that a tree has a message if one of its nodes has a
message. If all nodes belonging to trees with messages transmit, and
if there still exist nodes in the network without the message, then at
least one node belonging to a new tree will now have the message
because the underlying communication graph is connected.
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Broadcast - Proof of Claims

Claims
1 Takes a message at one of the nodes and spreads it throughout the

network.

2 Running time - O(n log2N).

Proof of Running Time (Claim 2)

Each node executes two (N, c)-ssfs 4n times. Total running time =
O(n logN) rounds.

Overall running time from start to finish =
O(n logN) + O(n log2N) + O(n logN) = O(n log2N) rounds.
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Multi-Broadcast

In Multi-Broadcast, more messages.

Large enough message size ensures that even if there are n pieces of
information, still only one round reqd. to transmit them.

Each piece of info takes same time to traverse network.

Therefore, just have nodes always transmit messages (if they have
one) when they get token.

Running time is same, i.e. O(n log2N) rounds from start to finish.
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Problem Statement

Problem Statement

Initially, only a subset of the total nodes are awake. Our goal is to wake
them all up.
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Our Contribution

Our Contribution

We achieve deterministic non-spontaneous wakeup w/o knowledge of
coordinates in O(n log2N log n) rounds.
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Overview

We use Tree Grower, Tree Cutter, and another algorithm called Token
Passing Transfer as subalgorithms in our main algorithm, which we
call Multi-Wakeup.

We also use techniques of slotting and multiplexing and the idea of
epochs.
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Token Passing Transfer

Input: The trees obtained from running Tree Grower and Tree Cutter
on participating nodes.

Output: Any sleeping nodes within range are woken up.
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Token Passing Transfer

Token Passing Transfer, run by each node u

1: Initially leaders have tokens.
2: for cnt ← 1, 4 · n do
3: Execute SSF:
4: If u has token, transmit wakeup message. Else stay silent.
5: Execute SSF:
6: Pass token, if any, in DFS manner.
7: end for
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Slots

When we run an algorithm in slot i , it means that we are assuming at
most 2i nodes will participate in that algorithm in that slot.

We have blog nc+ 1 slots in Multi-Wakeup.
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Phases

Either one round of 
Tree-Grower can be 
executed.

Or one round of Tree-
Cutter can be executed.

Or one round of Token-
Passing-Transfer can be 
executed.

Round 1

Round 2

Round 3

Arbitrary Slot i

Arbitrary 
phase p

Figure: One phase of one slot for a given awake node.
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Epochs

Round 1

Round 2

Round 3

Slot i Slot i+1Slot 1 Slot ⌊lg 𝑛⌋ + 1

Phase j

One epoch in slot i
= sequence of phases to 
complete 3 procedures 

with 2𝑖 as upper bound 
on participating nodes

One epoch in slot i is of 
size 𝑡𝑖 phases, where

𝑡𝑖 = 2𝑖(4𝑐1 lg𝑁 +
1894(𝑐1

2 lg2𝑁 + 4𝑐1 lg𝑁)
+ 8𝑐1 lg𝑁)) +
1893(𝑐1

2 lg2𝑁 + 4𝑐1 lg𝑁)

One epoch in 
slot i+1 
= twice as 
many phases 
as one epoch 
in slot i

Phase j+1

Phase j+2

Phase j+3

Phase j+4

Phase j+5

Phase j+6

Phase j+7

Phase j+8

Executing one slot
= executing 3 rounds

Executing one phase 
= executing ⌊log 𝑛⌋ + 1 slots

Figure: One epoch across multiple phases for a given slot.
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Epochs (contd.)

Slot 1 Slot 2 Slot 3 Slot ⌊lg 𝑛⌋ + 1
Phase 0

Phase 𝑡1

Phase 𝑡2

Phase 𝑡3

Phase 𝑡4

Phase 𝑡5

Phase 𝑡6

Phase 𝑡7

Phase 𝑡8

Phase 𝑡9

Phase 𝑡10

Phase 𝑡11

Phase 𝑡12

Slot 4

𝑒1
1

𝑒1
2

𝑒1
3

𝑒1
4

𝑒2
1

𝑒2
2

𝑒2
3

𝑒2
4

𝑒1
5

𝑒1
6

𝑒1
7

𝑒1
8

𝑒1
9 𝑒4

2

𝑒3
2

𝑒3
3𝑒2

5

𝑒⌊lg 𝑛⌋+1
1

𝑒1
10

𝑒1
11

𝑒1
12

𝑒2
6

𝑒4
1

𝑒3
1

Slot 5

𝑒5
1

Figure: Phases, slots, & epochs together.
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Overview of Approach

Consider Tree Grower, Tree Cutter and Token Passing Transfer as one
combo pack T3.

As soon as a node wakes up, it begins T3 in each slot at the first
opportunity (next epoch of that slot).

In one of the slots, the correct assumption on no. of nodes
participating will be made.

After T3 finishes executing in that slot, if there are any nodes within
range that are asleep, they will be woken up.

The cycle continues until all nodes are woken up.
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Multi-Wakeup

Multi-Wakeup, run by each node u

1: Initially leaders have tokens.
2: for phase ← 0, 4nt1 − 1 do
3: for slot ← 1, blog nc+ 1 do
4: If asleep, stay silent for 3 rounds.
5: Else if awake and Tree Grower not started yet or going on
6: If not executing anything yet, wait (stay silent) till the start of next epoch.
7: If waiting over, start executing Tree Grower. Execute one round of it.
8: Else if Tree Grower over, start executing Tree Cutter. Execute one round of it.
9: Else if Tree Cutter over, start executing Token Passing Transfer. Execute one round

of it.
10: Else if Token Passing Transfer over, stay silent for 3 rounds.
11: end for
12: end for
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Multi-Wakeup

Multi-Wakeup - Initially

Initially some nodes awake.
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Multi-Wakeup

Multi-Wakeup - Step 1

They execute in slot 1.
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Multi-Wakeup

Multi-Wakeup - Step 2
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Multi-Wakeup

Multi-Wakeup - Step 3

New nodes woken up.
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Multi-Wakeup

Multi-Wakeup - Step 4
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Multi-Wakeup

Multi-Wakeup - Step 5

Only those in slot 1 can
execute immediately.
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Multi-Wakeup

Multi-Wakeup - Step 6
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Multi-Wakeup

Multi-Wakeup - Step 7

Larger group of woken up nodes
absorbs nodes which haven’t
executed in a higher slot yet.
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Multi-Wakeup

Multi-Wakeup - Step 8

Slot 1 execution.
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Multi-Wakeup

Multi-Wakeup - Step 9
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Multi-Wakeup

Multi-Wakeup - Step 10
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Multi-Wakeup

Multi-Wakeup - Step 11

Slot 2 execution.
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Multi-Wakeup

Multi-Wakeup - Step 12
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Multi-Wakeup

Multi-Wakeup - Step 13
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Multi-Wakeup

Multi-Wakeup - Step 14

Slot 1 execution.
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Multi-Wakeup

Multi-Wakeup - Step 15
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Multi-Wakeup

Multi-Wakeup - Step 16
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Multi-Wakeup

Multi-Wakeup - Step 17

Next epoch for slot 3 arrives.
Slot 3 execution.
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Multi-Wakeup

Multi-Wakeup - Finally

All nodes awake.
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Multi-Wakeup - Proof of Claims

Proof Sketch of Correctness & Running Time

The worst case scenario for running time is when nodes wake up in
increasingly larger batches and cause other nodes to keep
participating in larger slots.

This worst case is covered by waiting the time period required for 2
executions of T3 in the largest slot (blog nc+ 1) to complete.

This takes at most O(n log2N log n) rounds.

Running our algorithm that long ensures all nodes wake up. Also,
running time of algorithm is fixed.
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Other Results Obtained using SSF-based Dilution

When knowledge of N, n, and your label is known, solved problem of
deterministic creation of backbone. Running time = O(n log2N)
rounds.

When knowledge of N, n, your own label and your neighborhood is
known, solved problem of deterministic creation of backbone.
Running time = O(∆ log2N) rounds.
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Possible Future Research

When only knowledge of N and your label is known, solve the
following:

1 Broadcast.
2 Backbone creation.
3 Non-spontaneous wake-up.
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The End
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