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Abstract

Feature-based methods have found increasing use in
many applications such as object recognition, 3D recon-
struction and mosaicing. In this paper, we focus on the
problem of matching such features. While a histogram-of-
gradients type methods such as SIFT, GLOH and Shape
Context are currently popular, several papers have sug-
gested using orders of pixels rather than raw intensities and
shown improved results for some applications. The papers
suggest two different techniques for doing so: (1) A His-
togram of Relative Orders in the Patch and (2) A Histogram
of LBP codes. While these methods have shown good per-
formance, they neglect the fact that the orders can be quite
noisy in the presence of Gaussian noise. In this paper, we
propose changes to these approaches to make them robust
to Gaussian noise. We also show how the descriptors can
be matched using recently developed more advanced tech-
niques to obtain better matching performance. Finally, we
show that the two methods have complimentary strengths
and that by combining the two descriptors, one obtains
much better results than either of them considered sepa-
rately. The results are shown on the standard 2D Oxford
and the 3D Caltech datasets.

1. Introduction
The use of features for image representation and

matching has gained tremendous importance and popu-
larity in recent years for problems as diverse as Im-
age Alignment, mosiacing, 3D Reconstruction, Object
Recognition and Tracking. Features are extracted using
methods such as Harris features[4], Harris-affine, Hes-
sian, Hessian-affine[13], MSER (Maximally Stable Ex-
tremal Regions)[20], DOG (Difference of Gaussians)[10]
and others[6, 25], methods for matching (normalized)
patches include the popular SIFT (Scale Invariant Fea-
ture Transform)[10] and its variants such as GLOH (Gra-
dient Location and Orientation Histogram)[15], Shape
Context[18] and other modifications of such gradient/edge

based methods such as [1, 7, 8, 18, 12].
More recently, methods have been proposed[11, 3] that

use orders of pixels rather than raw intensities and the re-
sults from these methods are encouraging. In this paper, we
propose new ways of using the order between pixels that
are more robust to noise in the underlying data. The two
methods proposed capture orthogonal properties of a fea-
ture region - one captures the overall distribution of pixels
in the patch and the other captures local gradient properties.

The first method is based on orders of pixels relative to
the entire patch and builds a histogram based on the rela-
tive position of the intensities w.r.t. to the entire patch. The
second method looks at local orders of pixels and general-
izes the Center-Symmetric Local Binary Patterns (CS-LBP)
descriptor. Specifically, instead of a binary code, we de-
velop a ternary code, which we call Center Symmetric Lo-
cal Ternary Patterns (CS-LTP). Both these methods are de-
signed to be more robust to Gaussian noise than previously
considered descriptors. They capture orthogonal informa-
tion and a combination of these two methods was found to
improve upon either of the two considered separately.

2. Related Work
The idea of matching images/features using order of in-

tensities rather than raw intensities is not new. By consid-
ering only the orders between pixels rather than their in-
tensities, one obtains invariance to a monotonic change in
the intensities. The Census algorithm[26] transforms the
intensity space to an ”order” space, where a bit pattern is
formed by looking at the orders of a given pixel with its
neighbors. This algorithm essentially counts the number of
flipped point pairs in the patch. Bhat and Nayar[2] use an
improved version of this algorithm where they somewhat
alleviate the problem of counting even one salt-and-pepper
error in a pixel multiple times. Mittal and Ramesh [16] pro-
posed a method in which the penalty for an order flip is pro-
portional to the intensity difference between the two flipped
pixels. This reduces the error due to pixels whose order may
have got flipped due to Gaussian noise. Finally, Singh et
al [23] present a statistical approach whose match measure



can be tuned to the underlying error process. All of these
methods assume that the pixel locations don’t vary across
the two patches and are thus inappropriate for the feature
matching problem where the pixel locations might undergo
some shift.

The LBP Descriptor, which is based on relative order of
neighboring pixels has also shown promise for several ap-
plications. Binary Patterns are created for each pixel by
comparing a pixel value with its neighboring intensities.
The histogram of the such binary patterns computed over
a region is used for texture description in [19]. As the LBP
operator produces a rather higher dimensional histogram
and is therefore difficult to use in the context of a region
descriptor, a Center-Symmetric LBP which only compares
center-symmetric pairs of pixels (Fig. 2) was considered for
feature description in [5]. Recently, there have also been pa-
pers that develop a descriptor based on the overall order of
the pixels in a patch. [11] have proposed converting any de-
scriptor to the order space by simply forming the descriptor
in the normal way (i.e. by using gradient information) and
then considering the ordinal information of the descriptor
values. [3] have proposed building a histogram of orders,
where the orders are computed with respect to the entire
patch.

Both these methods for feature description use only or-
ders and completely neglect the intensities. While this gives
invariance to monotonic change, the orders can be noisy in
the presence of Gaussian noise, especially when the nearby
pixels are close in intensity. In this paper, we propose meth-
ods that are more robust to Gaussian noise, although they
are still based on orders. Experiments show improved per-
formance over standard datasets.

3. Histogram of Relative Intensities
The basic idea is to use the intensity directly rather than

gradients. In order to obtain invariance to illumination
changes, the range of the intensity values is first determined,
which is used to normalize the intensities. While the small-
est and largest pixels can be used, we make it more robust
by using the average of the first j and last j pixels for the
normalization (j of around 1/32 of the total number of pix-
els was found to give the best results). Since our intensity
normalization assumes a linear change of intensities and a
non-linear effect takes place due to under-saturation and
over-saturation, these values can be noisy when these val-
ues are close to 0 and 255. Thus, we employ an adaptive
scheme whereby we use the lowest block of pixels that give
a value above 10 and the highest block of pixels that give a
value below 245 and use these to normalize the intensities.
In doing so, we assume a uniform distribution of the pixels
(note that the range may sometimes go out of 0-255 when
we do this). We also tried using simply the mean and stan-
dard deviation for this normalization, but the results were

Figure 1. Illustrative histogram for our descriptor for the patch
shown on the top.

worse than the method used.
Once we determine the starting and ending point of the

intensity range, we obtain intervals by dividing this range
into k equal intervals based on intensities. Note that this
is different from the earlier proposed method which we call
Histogram of Orders (HOO)[3] in that HOO forms intervals
based on orders and we form intervals based on intensities.
Our method is more robust to Gaussian noise since small
changes in intensities due to noise does not lead to large
changes in the descriptor whereas if a lot of points have
similar intensities in a patch, then even small changes in
the intensites can lead to a large change in the order of the
pixels.

Now, the patch is divided into s × s spatial bins in a
manner similar to the SIFT descriptor and at each spatial
bin, k bins are created where the j-th bin stores the number
of pixels in that spatial region that have their intensities in
the j-th interval as determined above. Similar to the SIFT
descriptor; we distribute the weight of each pixel into adja-
cent histogram bins using trilinear interpolation depending
on the exact intensity and location of the pixel. This helps in
gaining robustness to small localization and normalization
errors common in the feature extraction and normalization
process. Furthermore, similar to the SIFT descriptor, we
also give more weight to the center pixels as opposed to
the boundary ones as these pixels are more stable and more
likely to be always present in a corresponding patch. The σ
for this Gaussian weight function is set to half of the spatial
descriptor window size.

We thus have a total of s × s × k bins in the descrip-
tor. This is shown diagrammatically in Fig. 1 for the image
patch shown in Fig. 1. Best results were obtained for a de-
scriptor of size 4 × 4 × 16 = 256 and this value was used
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Figure 2. Illustrative diagram for CS-LBP Operator

for all the results in the paper. We call this method HRI
(Histogram of Relative Intensities).

4. Center Symmetric Local Ternary Patterns

The above-mentioned approach works on the overall dis-
tribution/order of the pixels in the patch but does not capture
local gradient information. Such information can be useful
since it is orthogonal to the global order information in the
patch. In the second part of our descriptor, we propose a
method that works on the local gradient information. In this
method, we construct a histogram of Center-Symmetric Lo-
cal Ternary Patterns(CS-LTP) accumulated in spatial bins
similar to the previous approach. The CS-LTP codes are a
variant of the CS-LBP codes proposed in [5] and were found
to give superior performance to CS-LBP codes in most of
our experiments.

4.1. CenterSymmetricLocal Ternary Patterns

The CS-LBP descriptor has recently been proposed by
[5]. In these descriptor, the LBP operator has been modified
such that at each pixel, neighboring pixels that are opposite
to each other are compared in order to generate a binary
code. This is illustrated in Fig. 2. Since only 4 compar-
isons are made, we get histograms of size 16 at each spatial
bin. In this work, we have modified the CS-LBP descriptor
in several ways in order to improve upon the performance
of this descriptor. First, since the order of pixels in ho-
mogenous regions is very noisy, we propose using a third
value which states that the orders of two pixels are almost
the same, i.e. within some threshold value. This gives us
ternary codes (Fig. 3). However, if we were to use 4 com-
parisons as in CS-LBP, we would get a histogram of size 81.

Figure 3. Illustrative diagram for CS-LTP Operator

In order to reduce the size of the histograms, we only con-
sider two comparisons as shown in Fig. 3. Due to feature
normalization (that typically puts high gradients along the x
or y axis) and general image characteristics, we found that
using only the diagonal comparisons to generate the CS-
LTP code for each pixel in the patch was sufficient while
the vertical and horizontal comparisons were quite noisy.
Using only these two comparisons, we obtain a histogram
of 9 bins for each spatial bin..

Mathematically, the Center-Symmetric Local Ternary
Pattern at point p with center symmetric pairs of pixels at
a dn neighboring distance is given by (Fig. 3):

CS − LTP (p, dn, T ) = f(n0−n4)+f(n2−n6)×3 (1)

where

f(x) =

 0 x < -T
2 x > T
1 else

For our experiments, we have chosen dn = 2 and T = 3.
As in previous methods, a bilinear interpolation is used

to distribute the weight of each feature into adjacent bins.
Also, it was found that the codes corresponding to 1, i.e.
ones that say that the two matched points are almost the
same, were less reliable than the other ones and had more
tendency to shift. Because of this, we give less weight to
the bins that correspond to codes having a 1. In particular,
the weight for a bin corresponding to code (t1, t2) is taken
to be |t1 − 1|+ |t2 − 1|. We found much improved perfor-
mance with this modification. It is to be noted that under
this weighting scheme, the code 11 receives zero weight,
i.e. the homogenous regions are totally neglected in such
a scheme. Thus, the number of bins at each spatial bin is
further reduced to 8, yielding a CS-LTP feature descriptor
of size 4 × 4 × 8 = 128. It may be noted that the CS-LTP
codes we develop are different from the LTP codes proposed
by [24] in that [24] separate the positive and negative values
into two codes (i.e. use two thresholds of ±δ to obtain two
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codes) while we use the two thresholds together to obtain a
ternary code. We believe this is more robust, although it can
increase the descriptor size if not used carefully.

The two descriptors developed by us give orthogonal in-
formation. While the first one gives information about the
overall distribution of intensities the patch, the second one
encodes local gradient information. These two may be con-
catenated for improved results. We call this concatenated
descriptor the HRI-CSLTP descriptor in the rest of the pa-
per. The total size of this descriptor is 256 + 128 = 384.

5. Descriptor Matching
The two histograms obtained by our methods may be

matched using the common bin-by-bin L2 or L1 distance
measures with fairly good results. At the same time, the
Earth Movers Distance(EMD) has shown to give superior
performance for many descriptors[9, 21] as it can account
for possible shifts of values to nearby bins.

The Earth Mover’s Distance (EMD) is measure of dis-
tance between two distribution d1 and d2 over some region
R. It denotes, the minimum cost required to convert distri-
bution d1 to distribution d2. The EMD generally defined
over two distributions having same integral for given re-
gion such as normalized histogram. The EMD computation
is based on solution of Hitchcock transportation problem,
where one distribution d1 is considered as supplier and dis-
tribution d2 as consumer and cost associated is nothing but
the distance between an element of d1 and an element of
d2. Intuitively, the cost is measure of minimum amount of
work needed to remove dissimilarity between two distribu-
tions. In case of histograms, the EMD [22] is defined as the
minimal cost that must be paid to transform one histogram
into the other, where there is a ”ground distance” between
the basic features that are aggregated into the histogram.
Given two histograms P , Q the EMD as defined by Rubner
et al. [22] is:

EMD(P,Q) = min {fij}
Σi,j(fi,jdi,j)

Σi,jfi,j
(2)

where each fij represents the amount transported from
the ith source histogram bin to the jth destination histogram
bin. The distance dij the ground distance between bin i and
bin j in the histograms.

In particular, [21] have recently shown that their usage
of the EMD matching technique gives a small improvement
in the matching accuracy of SIFT while many other ways of
using EMD such as the L1 or L2 ”ground distance” based
one in fact reduces the discriminability of the descriptor, at
least for the standard dataset from Oxford[14]. They con-
nect only the adjacent bins in the gradient orientation di-
mension and do not do so in the spatial dimension. Fur-
thermore, they only connect the adjacent bins with a cost of

1 and give a fixed cost of 2 for movement of more than 1
bins, considering such movement as being due to outliers.
The matching method uses max flow customized for this
problem and is much faster compared to other methods of
computing EMD.

We have found that using the approach of [21] gives im-
provement for our descriptor as well. Therefore, we show
the results in this paper using both the bin-by-bin L2 dis-
tance and the EMD matcher of [21]. Similar to the results
for SIFT as found by [21], other methods for using the EMD
reduced the matching accuracy. For our usage of the EMD,
we connect the adjacent bins in the order dimension as there
might be some movement across these bins due to some ex-
tra or missing pixels in one of the patches compared to the
other. The circular property i.e. possible movement from
last bin to the first bin, holds only for SIFT and CS-LTP
histograms and not for HRI and for HRI, we do not connect
the arcs that make this EMD matcher circular. Furthermore,
the different weights of CS-LTP bins is not a good choice
while using the EMD matcher since a given pixel must be
given the same weight for all bins. Thus, no weighting is
used for CS-LTP bins while using EMD. However, the code
11 is again neglected and the other codes are considered
in a circular fashion. This was found to give good results.
However, since no such simple (single) adjacency is possi-
ble for CS-LBP codes, the EMD matcher was not used for
CS-LBP and the default L2 distance was used for compari-
son purposes.

6. Experiments and Results

We demonstrate the results of our experiments on two
datasets: the ’2D’ Oxford dataset which tests robustness to
different image degradations in images such as illumination
changes, blur, JPEG compression, zoom, rotation changes
and affine/viewpoint change and the ’3D’ dataset from Cal-
tech which tests the distinctiveness of feature description on
3D objects.

6.1. The ’2D’ Oxford dataset

For the proposed descriptor, we first compare our re-
sults on the standard dataset obtainable from Oxford uni-
versity site http://www.robots.ox.ac.uk/ṽgg/research/affine.
Although many descriptors exists, for clarity purposes, we
compare results on this dataset only with SIFT, HOO[3] and
CS-LBP [5] since the first one was shown to be among the
best in a standard evaluation [15] uptil a couple of years
back and the approaches of HOO and CS-LBP are close
to our approach. Circular binning can also be used with
our method as in GLOH [15] and [3]. The relative perfor-
mance of the descriptors is very similar to the experiments
on square bins that we show in this paper.

The dataset contains images with different geometric

4



0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1−Precision

R
ec

al
l

Sift :haraff
HOO :haraff
CS LBP :haraff
HRI − CSLTP :haraff

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1−Precision

R
ec

al
l

Sift :hesaff
HOO :hesaff
CS LBP :hesaff
HRI − CSLTP :hesaff

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

1−Precision

R
ec

al
l

Sift :haraff
HOO :haraff
CS LBP :haraff
HRI − CSLTP :haraff

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

1−Precision

R
ec

al
l

Sift :hesaff
HOO :hesaff
CS LBP :hesaff
HRI − CSLTP :hesaff

(affine change)

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1−Precision

R
ec

al
l

Sift :haraff
HOO :haraff
CS LBP :haraff
HRI − CSLTP :haraff

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

1−Precision

R
ec

al
l

Sift :hesaff
HOO :hesaff
CS LBP :hesaff
HRI − CSLTP :hesaff

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1−Precision

R
ec

al
l

Sift :haraff
HOO :haraff
CS LBP :haraff
HRI − CSLTP :haraff

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1−Precision

R
ec

al
l

Sift :hesaff
HOO :hesaff
CS LBP :hesaff
HRI − CSLTP :hesaff

(illumination change)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

1−Precision

R
ec

al
l

Sift :haraff
HOO :haraff
CS LBP :haraff
HRI − CSLTP :haraff

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

1−Precision

R
ec

al
l

Sift :hesaff
HOO :hesaff
CS LBP :hesaff
HRI − CSLTP :hesaff

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1−Precision

R
ec

al
l

Sift :haraff
HOO :haraff
CS LBP :haraff
HRI − CSLTP :haraff

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

1−Precision

R
ec

al
l

Sift :hesaff
HOO :hesaff
CS LBP :hesaff
HRI − CSLTP :hesaff

(blur)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

1−Precision

R
ec

al
l

Sift :haraff
HOO :haraff
CS LBP :haraff
HRI − CSLTP :haraff

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1−Precision

R
ec

al
l

Sift :hesaff
HOO :hesaff
CS LBP :hesaff
HRI − CSLTP :hesaff

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1−Precision

R
ec

al
l

Sift :haraff
HOO :haraff
CS LBP :haraff
HRI − CSLTP :haraff

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1−Precision

R
ec

al
l

Sift :hesaff
HOO :hesaff
CS LBP :hesaff
HRI − CSLTP :hesaff

(a1) (a2) (b1) (b2)
(compression)

Figure 4. Comparison of SIFT[10], Histogram of Orders(HOO)[3], CS-LBP [5], and HRI + CS-LTP (proposed method) on (i) affine
changes (graf), (ii) illumination change (leuven), (iii) blur (bikes) and (iv) compression (ubc) for images (a) 1-2 and (b) 1-4 from the
dataset. The image degradation is much higher in 1-4 pair than in the 1-2 pair. Columns 1 and 2 are results on the Harris-affine and
Hessian-affine detectors respectively and the EMD matcher of [21] is used for all results in this figure. Note that the scales are different for
different figures to improve the clarity of the plots.
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Figure 5. Comparison of different methods on different degrada-
tions for images 1-2 for Hessian-affine detectors for (a) L2 and (b)
EMD matcher of [21].

and photometric transformations and for different scene
types. Six different transformations are evaluated: view-
point change, scale change, image rotation, image blur, il-
lumination change, and JPEG compression.

The evaluation criterion is based on the number of cor-
rect and false matches between a pair of images. The num-
ber of correct matches is determined with the ”overlap er-
ror” [13]. A match is assumed to be correct if the ovelap
area is > 0.5 of the union of the two areas of the descriptors.
We use this criteria for all results in this section.

The results of our combined method when compared
with existing techniques are shown in Figure 4. For these
plots, the matching method used is the EMD matcher from
[21] as it gave better results than the L2 distance for all
methods with not so much increase in the running time
(about double). We performed better than almost all ex-
isting methods for almost all cases (7 out of 8 cases, al-
though only 4 are shown here). For illumination change
(leuven), the problem seems to be inconsistent normaliza-
tion as our method assumes a linear change in the intensi-
ties and the very low intensities encountered in this set of
images leads to non-linearity close to the lower range of the
sensor. The adaptive normalization technique helped im-
prove the results for this case, although still the results were
still not consistent with results on other images.

In Figure 5, we show some more details of our method
by showing the results separately for the two descriptors
and how the combination of the two gives results superior
to both. We also show the results using the L2 measure
which may be compared to the results obtained using the
EMD matcher which are better for all the methods. We have
also compared our results with HRI + SIFT which performs
lower then our current results.

Finally, in Figure 6, we show the result of our matcher on
some other detectors: MSER, IBR and EBR for the leuven
(illumination change) and bikes (blur) image sets. As can
be seen, the relative performance of the different methods
on these detectors is similar to Hessian-affine and Harris-
affine. Similar behavior was found for other image sets as
well.

6.2. Caltech 3D dataset

The second dataset that we tested our algorithm on is
the 3D dataset from Caltech[17]. The tests on this dataset
mimic the Object Recognition problem and should give us
some idea of the performance of our detector for this popu-
lar and important problem. Objects are put on a turntable
and keypoints are matched for different rotation angles.
They are also matched with points from a random database.
If the distance of the keypoint from its best matching key-
point is less than a factor of its distance to the second best
match, then it is accepted as a matched point. Then, it is
tested whether the matched keypoint comes from an image
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Figure 6. Comparison of our matching approach with SIFT for
illumination and blur changes for image pair 1 and 2 from the Ox-
ford dataset using different detectors.

of the same object and satisfies the epipolar constraint(s). It
is taken as a correct match if it satisfies both these criteria,
else it is flagged as a false match.

Since Hessian-affine combined with SIFT was shown to
give the best results in [17], we have shown the comparative
results only on Hessian-affine and against SIFT. These re-
sults are shown in Fig 7 and Fig. 8 for the L2 and EMD[21]
metrics respectively. The detection rate is plotted against
the false alarm rate. The detection rate is the number of cor-
rect matches divided by the total number of matches tried
while the false alarm rate is the ratio of wrong matches to
the total number of matches. Also shown in the figures is the
detection rate as a function of the viewing angle for a false
alarm rate of 0.01. As was observed for the Oxford dataset,
we got substantial improvement when the false alarm rate
was low but the results are close to SIFT at the higher false

alarm rates. Again, since mostly we would like to work
at low false alarm rates, the improvement in performance
in significant. More information on this dataset and these
plots can be obtained from [17] as we have followed their
convention for the results.

7. Conclusions and Future Work
We have presented two different order-based methods

for feature description: the Histogram of Relative Intensi-
ties (HRI) and Center-Symmetric Local Ternary Patterns
(CS-LTP). These methods were designed to be more ro-
bust to Gaussian noise than previous methods based on or-
ders. This was achieved by considering intensity informa-
tion along with order information rather than using only or-
der information as in previous methods. While the individ-
ual results of the two methods developed were encouraging
in themselves, the combination of the two gave results better
than either of them individually due to the orthogonal nature
of the two descriptors. Better performance than gradient-
based approaches is perhaps due to the more stable nature
of the raw intensities compared to raw gradients, especially
in the presence of image degradations such as affine trans-
formation, image blur and image compression. The EMD
distance measure of [21] improves the matching accuracy
for all methods and we recommend it as the match measure
instead of the commonly used L2 distance.
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