
Isomorphism testing of read-once functions and
polynomials
Raghavendra Rao B.V.1 and Jayalal Sarma M.N.2

1 Department of Computer Science, Saarland University
bvrr@cs.uni-saarland.de

2 Department of Computer Science & Engineering,
Indian Institute of Technology Madras, Chennai, India.
jayalal@cse.iitm.ac.in

Abstract
In this paper, we study the isomorphism testing problem of formulas in the Boolean and arith-
metic settings. We show that isomorphism testing of Boolean formulas in which a variable is
read at most once (known as read-once formulas) is complete for log-space. In contrast, we ob-
serve that the problem becomes polynomial time equivalent to the graph isomorphism problem,
when the input formulas can be represented as OR of two or more monotone read-once formulas.
This classifies the complexity of the problem in terms of the number of reads, as read-3 formula
isomorphism problem is hard for coNP.

We address the polynomial isomorphism problem, a special case of polynomial equivalence
problem which in turn is important from a cryptographic perspective[Patarin EUROCRYPT
’96, and Kayal SODA ’11]. As our main result, we propose a deterministic polynomial time
canonization scheme for polynomials computed by constant-free read-once arithmetic formulas.
In contrast, we show that when the arithmetic formula is allowed to read a variable twice, this
problem is as hard as the graph isomorphism problem.

1 Introduction

Computational isomorphism problems between various mathematical structures has intrigu-
ing computational complexity (see [6] for a survey). An important example, the Graph
Isomorphism(GI) problem asks : given two graphs G1(V1, E1) and G2(V2, E2) decide if there
is a bĳection σ : V1 → V2 such that (u, v) ∈ E1 ⇐⇒ (σ(u), σ(v)) ∈ E2. This study becomes
more important when the structures are computational models by themselves. Checking
equivalence between programs is undecidable in general, but has useful special cases with
respect to other computational models. We consider isomorphism testing of two important
computational structures: Boolean and arithmetic circuits.

A Boolean formula (also known as an expression) is a natural non-uniform model of
computing a Boolean function. The corresponding isomorphism question is to decide if the
given boolean functions (input as formulas) are equivalent via a bĳective transformation of
the variables. This problem is known as the Formula isomorphism (FI for short) problem
in the literature. In general FI is in ΣP2 (i.e. , the second level of the polynomial hierarchy),
and unlikely to be ΣP2 -hard unless the polynomial hierarchy collapses to the third level [2].
Goldsmith et al[13] showed that FI for monotone formulas is as hard as general case. (See
also [7, 11] for more results on the structure of FI.) Though it can be easily seen that FI is
coNP-hard, an exact complexity characterization for FI is unknown to date.

This situation motivates one to look for special cases of FI that admit efficient algorithms.
The number of reads of each variable in the formula is a restriction. A formula φ is not
satisfiable if and only if it is isomorphic to the constant formula 0. By duplicating variables

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Isomorphism testing of read-once functions and polynomials

and introducing appropriate equivalence clauses, it follows that even when the number of
reads is bounded by 3, FI(in CNF form) is coNP-hard.

We now address the intermediate cases; that is when the number of reads is bounded
by 1 and 2 respectively. The first case, also known as read-once formulas, is a model that
has received a lot of attention in the literature in various contexts, e.g.,[4] obtained efficient
learning algorithms for read-once formulas. We show:

I Theorem 1. Formula isomorphism for read-once formulas is complete for deterministic
logarithmic space.

However, the bound above seems to be tight. If we allow variables to be read twice, then
FI becomes GI-hard even in the most primitive case:

I Theorem 2. Isomorphism testing of OR of two monotone read-once DNF formulas is
complete for GI.

A natural analogue of the formula isomorphism question in the arithmetic world is about
polynomials : given two polynomials p(x1, x2, . . . , xn) and q(x1, x2, . . . , xn) decide if there is
a non-trivial permutation of the variables such that the polynomials are identical under the
permutation. We denote this problem by PI. We assume that polynomials are presented in
the form of arithmetic circuits in the non-black-box setting.

The polynomial isomorphism problem can also be seen as a special case of the well-
studied polynomial equivalence problem (PE for short), where given two polynomials
p(x1, x2, . . . , xn) and q(x1, x2, . . . , xn), decide if there is a non-singular matrix A ∈ Fn×n such
that q(X) = p(AX), where AX = (

∑
j A1,jxj , . . . ,

∑
j An,jxj). The equivalence problem

has survived intense efforts to give deterministic polynomial time algorithms (See [21, 16]).
The lack of progress was explained by a result in [1], which reduces graph isomorphism
problem to equivalence testing of cubic polynomials. The polynomial equivalence problem
is expected to be very challenging and there are cryptographic schemes which are based
on polynomial equivalence problems[19]. More recently Kayal [16, 15] developed efficient
randomized algorithms for equivalence testing for several special classes of polynomials.
Indeed, in the case of isomorphism problem, the matrix A is restricted to be a permutation
matrix. Our next result shows that this specialization does not really simplify the problem
when degree is 3, and in fact the polynomial isomorphism problem for a constant degree d
polynomial also reduces to that of degree 3 polynomials.

I Theorem 3. For any constant d, the polynomial isomorphism problem for degree d poly-
nomials is polynomial time many-one equivalent to testing isomorphism of degree-3 polyno-
mials, which in turn, is polynomial time many-one equivalent to GI.

This shows that the polynomial isomorphism problem is also likely to be hard even when
the polynomial is given explicitly listing down the monomials, and is harder than graph
isomorphism problem. In general, we show that the isomorphism problem of polynomials is
easier than the equivalence problem (over Z,Q,R,C).

I Theorem 4. PI polynomial time many-one reduces to PE

A naive algorithm for this problem would be to guess the permutation and then verify
whether the polynomials are the same under this permutation, which is an instance of the
well-studied polynomial identity testing and can be solved in coRP. Thus the isomorphism
testing problem is in MA. Indeed, the problem is also harder than the polynomial identity
testing problem, because a polynomial is isomorphic to a zero polynomial if and only if

Rao-Sarma 3

it is identically zero. Thus, derandomizing the above MA algorithm in general to NP will
imply circuit lower bounds[14]. From the above discussion it also follows that polynomial
isomorphism problem is in NP if and only if polynomial identity testing is in NP. Also,
Thierauf [24] showed that if PI(over Q) is NP-hard then PH collapses to Σp2.

This motivates looking at special cases of polynomial isomorphism problem for making
progress. A read-once polynomial is a polynomial f(X) ∈ Z[x1, . . . , xn] that can be computed
by a read-once arithmetic formula. Read-once polynomials have been studied in various
contexts in the literature. Bshouty et. al [10] developed efficient learning algorithms for
read-once polynomials with membership and equivalence queries. (See also [8, 9].) More
recently, Shpilka and Volkovich [22, 23] developed deterministic black-box sub exponential
time algorithms for identity testing of read-once polynomials. In the non-black-box setting
they give a polynomial time algorithm. We show the following for the isomorphism problem
(which is harder than identity testing problem) as our main result.

I Theorem 5. Isomorphism testing for constant-free read-once polynomials can be done in
deterministic polynomial time.

We then extend this to the case of arbitrary coefficients but still constant-free (see The-
orem 14). As in the case of FI, we show that if we allow variables to be read twice then the
polynomial isomorphism problem becomes GI-hard(see Theorem 16.). The structure of the
rest of the paper is as follows. We introduce the basics and prove Theorem 4 in section 2.
We prove Theorem 1 and 2 in section 3, and the main Theorem 5 in section 4.

2 Preliminaries

All the complexity theory notions used in this paper are standard. For more details, reader
is referred to any standard complexity theory book. (See e.g., [5].)

A Boolean formula φ is a directed acyclic graph, where out-degree of every node is
bounded by 1, and the non-leaf nodes are labeled by {∨,∧,¬} and the leaf nodes are labels
by {x1, . . . , xn, 0, 1}, where x1, . . . , xn are Boolean variables. Without loss of generality, we
assume that φ has at most one node of out-degree zero, called the output gate of the formula.
Naturally, with every formula φ, we can associate a Boolean function fφ : {0, 1}n → {0, 1}
defined as the function computed at the output node of the formula. A Boolean circuit is a
generalization of formula wherein the out-degree of every node can be unbounded.

An arithmetic circuit C over a ring F, is a directed acyclic graph where the non-leaf nodes
are labeled by {+,×}, and the leaf nodes are labeled by {x1, . . . , xn}∪F, where x1, . . . , xn are
variables that take values from F, where F is a ring. In this paper we restrict our attention to
cases where F ∈ {Z,R,Q}. Naturally, we can associate a polynomial pg ∈ F[x1, . . . , xn] with
any gate g of the arithmetic circuit C. The polynomial computed by C is the polynomial
associated with the output gate of C. An arithmetic formula is an arithmetic circuit where
the out-degree of every node can be at most one.

A read-once formula (ROF for short), is a Boolean formula in which every variable xi
appears at most once as a leaf label, i.e. , every variable is read at most once. Similarly we
can define read-once arithmetic formulas, i.e. , arithmetic formulas where a variable appears
at most once. Polynomials computed by read-once arithmetic formulas are also known as
read-once polynomials (ROPs for short).

A constant-free read-once arithmetic formula is a read-once arithmetic formula, where
the only allowed leaf labels are xi or −xi. A constant-free ROP is a polynomial that can
be computed by constant-free read-once arithmetic formula. A general-constant-free ROP is

4 Isomorphism testing of read-once functions and polynomials

an ROP computed by arithmetic read-once formulas with the leaves labeled by aixi, where
ai ∈ Z \ {0}. For computational purposes, we assume that a constant-free ROP is given as
a constant-free read-once formula in the input.

Now we define some notations that are used in Section 4. Let C1, . . . , Ck denote a
collection of ordered tuples. Then sort(C1, . . . , Ck) denotes the lexicographic sorted list of
C1, . . . , Ck. For k > 0, Σk denotes the set of all permutations of a k element set. Let
S1, . . . , Sn ∈ {0, 1}, then parity(S1, . . . , Sn)

4= (
∑n
i=1 Si mod 2); and binary(S1, . . . Sn)

4=∑n
i=1 Si2n−i. For a ∈ Z \ {0}, sgn(a) = 1 if a < 0, and sgn(a) = 0 otherwise.

Isomorphism testing problems : We now define the problems we address in the paper.

Formula Isomorphism(FI): Given two Boolean formulas F1(x1, . . . , xn), and F2(x1, . . . , xn)
on n variables : X = {x1, . . . , xn}, test if there exists a permutation π ∈ Sn, such that the
functions computed by F1(x1, . . . , xn) and F2(xπ(1), . . . , xπ(n)) are the same.

Polynomial Isomorphism(PI): Given two polynomials P,Q ∈ F[x1, . . . , xn], test if there
exists a permutation π ∈ Sn such that P (x1, . . . , xn) = Q(xπ(1), . . . , xπ(n)). PId(F) denotes
the special case when P , and Q are of degree at most d. A notion related to isomorphism
is canonization. A canonical code for polynomials is a function C : F[x1, . . . , xn] → {0, 1}∗
such that C(f) = C(g) if and only if the polynomials f and g are isomorphic.

Polynomial Equivalence(PE): Given two polynomials P,Q ∈ F[x1, . . . , xn], test if there
is a non-singular matrix A = (ai,j) ∈ GL(n,F) such that the polynomials P (x1, . . . , xn) =
Q(y1, . . . , yn) where y1, . . . , yn are obtained by applying the linear transformation defined
by the row-vectors of A, i.e. , yi =

∑n
j=1 ai,jxj .

In general we assume that the input polynomials are given as arithmetic circuits. PEd

denotes the restriction of PE where the input polynomials are of degree d. (See [21] for a
detailed exposition on this problem). The following equivalence was proved in [21].

I Proposition 6 ([21, 20]). GI poly time many one reduces to PE3.

In general, though PI is a special case of PE where A is restricted to be a permutation
matrix, it is unclear a priori whether PI is easier than PE. We give a reduction from PI to
PE over Z,Q,R, and C, this proves Theorem 4.

Proof of Theorem 4: Let f(X) and g(X) be the two polynomials given as an input
instance of PI, where X = {x1, . . . , xn}. Let d = max{deg(f), n}, m > max{2n, n+ d+ 4},
such that gcd(m− 2n, d+ n+ 4) = 1, and X ′ = X ∪ {y, z}. Define

f ′(X, y, z) 4= f(X) + yd+1x1 · · ·xn + zd+n+2(x1 + · · ·+ xn) + zd+n+4 + yd+1zm; and

g′(X, y, z) 4= g(X) + yd+1x1 · · ·xn + zd+n+2(x1 + · · ·+ xn) + zd+n+4 + yd+1zm

Suppose f(X) ∼= g(X), then clearly f ′(X ′) ∼= g′(X ′). Suppose f ′(X ′) = g′(A′X ′) for
some non-singular matrix A′. We claim that A′ has to be a permutation matrix. By the
degree conditions, A′ sends y to by , and z to cz, where cd+n+4 = 1, and bd+1cm = 1. Also
note that y and z both have zero coefficients in A′xi for all i, by the unique factorization of
x1 · · ·xn. Similarly, for all i, A′xi cannot have two non-zero coefficients, again by the degrees
of y and z, and the unique factorization of x1 · · ·xn. The only possibility is, A′ could be
the product of a permutation matrix P and a diagonal matrix D with determinant equal
to 1. Let the i th entry in the diagonal D be λi. Then, zd+n+2A′xi will have coefficient
λic

d+n+2, but in the target polynomial f ′, it has coefficient 1, so λi = c2. This implies

Rao-Sarma 5

bd+1c2n = 1, and hence cm−2n = 1. As gcd(m− 2n, d+ n+ 4) = 1, c = 1, and hence b = 1,
λi = 1 1 ≤ i ≤ n. Thus, f(X) ∼= g(X) if and only if the polynomials f ′(X ′) and g′(X ′)
are equivalent. Note that f ′(X ′) can be computed by a circuit of size s+ 4d+ 4n+m+ 9,
where s is the size of a circuit computing f(X). This completes the proof.

3 Isomorphism testing of Boolean read-once formulas

For a Boolean read-once formula φ, let G(φ) = (Vφ, Eφ) denote the formula graph of φ as
defined in [4], i.e. , Vφ = {x1, . . . , xn}, and Eφ = {(xi, xj) | LCA(xi, xj) is labeled ∧}, where
LCA(x, y) denotes the least common ancestor of the leaves labeled x and y in φ.

3.1 Logspace characterization : Proof of Theorem 1
Proof. We first argue the upper bound. We argue for the special case of monotone read-
once formulas. Let φ1 and φ2 be two minimal monotone read-once formulas. First observe
that G(φ1) ∼= G(φ2) ⇐⇒ φ1 ∼= φ2. Let F1 (resp. F2) be the minimum read-once formula
computing the same function as φ1 (resp. φ2) by merging consecutive gates of the same type
into one gate of larger fan-in. Construct two trees T1 and T2 from F1 and F2 respectively
as follows. We describe the construction for T1. Treat the formula F1 as a undirected tree
with ∧ gates colored as Red, ∨ gates colored as Blue and the leaf nodes colored as Green.

I Claim 1. G(φ1) ∼= G(φ2) ⇐⇒ T1 ∼= T2.

Assuming the claim, testing whether φ1 ∼= φ2 is equivalent to isomorphism testing of colored
trees. As the latter can be done in deterministic logarithmic space [18], it is enough to prove
the claim.

Proof of the claim. (⇒) Suppose G(φ1) ∼= G(φ2), and σ be such a bĳection between the
vertices of G(φ1) and G(φ2). Fix the corresponding map between the leaves of T1 and T2.
For any two leaves x, y of T1, let LCA(x, y) denote the least common ancestor of x and y in
T1. Colors and degrees of LCA(x, y) and LCA(σ(x), σ(y)) are the same. (This follows from
the property of the graphs G(φ1) and G(φ2).) So σ induces a color-preserving isomorphism
between T1 and T2.

(⇐) Let σ be a color preserving isomorphism between T1 and T2. Let π denote the
corresponding bĳection between the leaves of T1 and T2 induced by σ. It is sufficient to
argue that G(φ1) = π(G(φ2)). Consider two variables x and y. As color(LCA(x, y)) =
color(LCA(π(x), π(y))), we have (x, y) ∈ E(G(φ1)) ⇐⇒ (π(x), π(y)) ∈ E(G2). This com-
pletes the proof of the Claim. J

The argument above can be extended to the non-monotone case by coloring the leaves of
Tf (resp. Tg) that correspond to positive literals as yellow, and those corresponding to
negative literals as red.

Now we argue the L-hardness. We reduce directed forest reachability (which is known to
be L-complete[12]) to FI. Given the instance (G, s, t) of directed forest reachability where
the task is to check if there is a directed path from s to t, we construct the formula(F) as
follows. Ignore the incoming edges to s and outgoing edges from t. Replace s with a variable
x and label every other leaf node with the constant 1. Replace all intermediate nodes by ∧
gates. Label t as the output node. Since G is a directed forest, F will be a formula and is
a read-once formula by construction. Moreover, F will evaluate to x (and hence isomorphic
to the trivial formula x) if and only if there is a directed path from s to t. J

6 Isomorphism testing of read-once functions and polynomials

3.2 Larger Number of Reads : Proof of Theorem 2
Naturally, one could hope to extend theorem 1 to boolean formulas that read a variable at
most a constant number of times. Surprisingly, it turns out that if the input formulas are
represented as OR of two monotone read-once formulas, then isomorphism testing becomes
GI hard.

I Lemma 7. GI polynomial time many-one reduces to testing isomorphism of OR of two
monotone read-once formulas given in DNF form.

Proof. The reduction is from GI for bipartite graphs which is as hard as the general GI[17].
For a simple undirected bipartite graph G = (U, V,E), define a formula φ(G) on variables
{xe | e ∈ E} as follows. For every v ∈ U ∪ V , φ(G) contains the term xe1 ∧ xe2 ∧ . . . ∧ xe`
as a minterm, where e1, e2, . . . , e` are the edges that are incident on v in G. i.e. ,

φG =
∨

v∈U∪V

∧
e incident on v

xe =
(∨
u∈U

∧
e incident on u

xe
)
∨
(∨
v∈V

∧
e incident on v

xe
)

(1)

So φ(G) can be written as an OR of two monotone read-once formulas. , G1 ∼= G2 ⇐⇒
φ(G′1) ∼= φ(G′2). This concludes the proof. J

Observe that a monotone boolean formula φ given in DNF form, can also be represented
as a bipartite graph with vertices of one side corresponding to variables of φ and the terms of
φ as vertices on the other side, edge relations is defined with respect to inclusion. Combined
with Lemma 7, this proves Theorem 2.

4 Isomorphism testing of Read-once polynomials

As starting point, observe that the deterministic polynomial identity testing algorithm for
read-once formulas [22] gives an NP upper bound for isomorphism testing of read-once
polynomials. A natural question is to see if the NP upper bound above can be improved to
a polynomial time algorithm. In the following, we provide a polynomial time algorithm for
the isomorphism testing of certain special classes of read-once polynomials. We begin with
the toy case of monotone read-once polynomials f such that f(0) = 0.

I Lemma 8. Isomorphism testing of monotone read-once polynomials that can be computed
by monotone read-once arithmetic formulas with leaves labeled from {x1, . . . , xn}, can be
done in deterministic logarithmic space.

Proof. Let f be a monotone read-once polynomial computed by a monotone read-once
formula φf . Without loss of generality assume that φf is in the minimal form, i.e., inputs
of a × gate are either + gates or variables and that of a + gate are either × gates or
variables. Let Gf = (Vf , Ef) be the undirected graph with Vf = {x1, . . . , xn} and Ef =
{(xi, xj) | LCAφf (xj , xj) is a × gate}. By the definition of Gf , a monomial M =

∏k
j=1 xij

has coefficient 1 in f if and only if the vertices xi1 , . . . , xik form a maximal clique in Gf .
Let Tf denote the underlying (undirected) tree of φf , where a node corresponding to a +
gate is colored blue and that corresponding to a × gate is colored red.

Let f and g be two monotone read-once formulas as above. Clearly, f ∼= g ⇐⇒ Gf ∼=
Gg. Now we show that Gf ∼= Gg if and only if Tf is isomorphic to Tg as a colored tree.

Suppose Tf ∼= Tg via a bĳection π between the vertices of Tf and Tg. Let σ be the
bĳection between the leaves of Tg and Tf induced by π. Then ∀i 6= j, LCAφf (xi, xj) is a ×
gate if and only if LCAφg (xσ(i), xσ(j)) is a × gate. So σ defines an isomorphism between Gf
and Gg.

Rao-Sarma 7

For the converse direction, suppose f ∼= g. The proof is by induction on the structure of
f and g. The base case is when f and g are single variables, in which case the claim follows.
There are two cases:

Case 1: f and g can be written uniquely as f = f1 + . . . + fk, g = g1 + . . . + gk, where
f ′is and g′is cannot be written as sum of two or more variable disjoint monotone ROP’s.
Then, f ∼= g if and only if there is a permutation σ ∈ Σk such that fi ∼= gσ(i) ⇐⇒ Gfi

∼=
Ggσ(i) ⇐⇒ Tfi

∼= Tgσ(j) , where the last equivalence is available from induction. So, Tf ∼= Tg.
Case 2: f = f1× . . .×fk and g = g1× . . .× gk, where f ′is and g′is cannot be decomposed

into products of two or more variable disjoint ROPs. Then, f ∼= g implies there is a
permutation σ ∈ Σk such that fi ∼= gσ(i). By induction. This implies Tfi ∼= Tgσ(i) , which in
turn implies Tf ∼= Tg. Now the algorithm is obvious: given f and g, compute Tf , and Tg.
Then test if Tf ∼= Tg, using the log-space algorithm for testing isomorphism for trees [18]. J

Our goal now is to extend Lemma 8 to the case of non-monotone read-once polynomials.
Consider a constant-free read-once formula, i.e. , a read-once formula where a leaf is labeled
from {−xi, xi} for some i. An obvious approach would be to use Lemma 8 with an additional
coloring of -ve terms. Then the two representations: f = f1 × f2 × . . . × fk, and g =
(−f1)× (−f2)× f3× . . .× fk will give rise to two non-isomorphic trees whereas f and g are
identical polynomials.

We overcome this by building a canonical code for general constant-free read-once poly-
nomials along the lines of the well-known tree canonization algorithm [3]. Recall that a
canonical code for a polynomial is an object that is unique for every isomorphism class.
Also, note that efficient computation of canonical code for a class of polynomials implies
efficient algorithm for isomorphism testing for that class, though the converse may not be
true in general. For ease of exposition, we give details for the case of constant-free ROPs.
We first observe some simple structural properties of constant-free read-once polynomials
that serves as a foundation for our construction of canonization.

I Proposition 9. A constant-free read-once polynomial f 6= 0 has the following recursive
structure:

f = aixi, where a ∈ {−1, 1}; or
f is of Type-1, i.e., f(X) = f1(X1)+f2(X2)+ . . .+fk(Xk) for a unique k ≥ 2, where f ′is
are constant-free variable disjoint read-once polynomials and X = X1]X2] . . .]Xk.
Also, fi cannot be written as a sum of two or more variable disjoint constant-free ROPs;
or
f is of Type-2, i.e, f(X) = f1(X1)× f2(X2)× . . .× ft(Xt) for a unique t ≥ 2, where f ′is
are constant-free variable disjoint read-once polynomials and X = X1] X2] . . .] Xt.
Also, fi cannot be written as a product of two or more constant-free variable disjoint
ROPs.

The following structural characterization of constant-free ROPs follows from Proposition 9.

I Lemma 10. (a) If f , g are constant-free ROPs of Type-1, i.e. , f = f1 + . . . + fk, g =
g1 + . . . + gk, where fis and gis are constant-free ROPs of Type-2. Then, f ∼= g ⇐⇒
∃σ ∈ Σk fi ∼= gσ(i).

(b) If f and g are constant-free ROPs of Type-2, i.e. , f = f1×. . .×fk, and g = g1×. . .×gk,
where fis and gis are constant-free ROPs of Type-1. Then,

f ∼= g ⇐⇒
{
∃σ ∈ Σk, and a1, . . . , ak ∈ {−1, 1} such that fi ∼= aσ(i)gσ(i)
and parity(a1, . . . , ak) = 0.

}

8 Isomorphism testing of read-once functions and polynomials

Proof. For (a), suppose f = f1+. . .+fk, and g = g1+. . .+gk. As fis (resp. gis) are variable
disjoint, there is no cancellation of monomials of fis in f , i.e. , every monomial appearing in
fi also appears in f with the same coefficient as in fi. Since each of the fi’s (and gi’s) cannot
be written as a sum of two or more variable disjoint constant-free ROPs we have (a). For (b),
note that converse direction is clear as f1, ..., fk are variable disjoint. Suppose f ∼= g, via a
permutation σ of the variables. Then, σ(f) = σ(f1)×σ(f2)× . . .×σ(fk) = g1×g2× . . .×gk.
Then, as σ(f1), . . . , σ(fk) are variable disjoint, there is a π ∈ Σk such that σ(fi) = gπ(i) or
σ(fi) = −gπ(i), and {i | σ(fi) = −gπ(i)} is even. J

A canonization for constant-free ROPs
Combining Lemma 10 with the standard canonization for trees [3], we propose a polynomial
time canonization scheme for constant-free read-once polynomials.

We start with an informal description of code. As a toy example consider a linear
polynomial f with coefficients in {−1, 1}. Let Nf be the number of variables with -ve
coefficients and Pf be those with +ve coefficients. Clearly, a linear polynomial g is isomorphic
to f if and only if Pg = Pf and Ng = Nf . So, Pf , and Nf are the canonical values of f that
are invariant under permutation of variables. Similarly, if f =

∏k
i=1 aixi with ai ∈ {−1, 1},

then any g =
∏k
i=1 bixi is isomorphic to f if and only if the parity of the number of negative

coefficients of g is equal to that of f . So, the number of variables, and the parity of the
number of -ve coefficients would be an invariant set for f under permutations of variables.

By Lemma 10, if f is of Type-1, i.e. ,f = f1 + . . . + fk, then any constant-free ROP
isomorphic to f , will look like a permutation of fis. So, a canonization of f would be a sorted
ordering of those for fis. If f is of Type-2, i.e. ,f = f1 × . . .× fk, then, the canonization of
f should be invariant when an even number of fis are multiplied by −1. We handle these
constraints by building the canonization for f , denoted by code(f) in a bottom-up fashion
depending on the structure of the constant-free read-once arithmetic formula computing f .

For a constant-free read-once formula f , code(f) is a quadruple (C,P,N, S), where C is a
string, P,N ∈ N, and S ∈ {0, 1}. Here C stores information about the read-once polynomials
computed by the sub-formulas at the root gate of the arithmetic formula computing f . The
values of P,N , and S depend on the type of f (as in Proposition 9). If f is of Type-1,
then S = 0, and N intuitively represents the number of “negative” polynomials fi, and
P = k−N . When f is of Type-2, P = N = 0, and S in some sense represents the parity of
the number of “negative” polynomials in f1, . . . , fk, where f = f1 × · · · × fk. Here the term
“negative” is used in a tentative sense.

Now we formally define code via induction based on the structure of f as given by
Proposition 9. Abusing the notation we use the symbol ∅ also to denote empty string.

We consider the following four base cases:
base case 1: f = xi, then code(f) = (∅, 0, 1, 0).
base case 2: f = −xi, then code(f) = (∅, 1, 0, 0).
base case 3: f =

∑k
i=1 aixi, for some k > 2, and ai ∈ {−1, 1}. Let Ci = code(aixi). Let

i1, . . . , ik be such that Ci1 , . . . , Cik represents the lexicographical sorting of C1, . . . , Ck.
Let Si = sgn(ai). Let N = binary(Si1 , . . . , Sik), and P = binary(S̄i1 , . . . , S̄ik). Then

code(f) 4= ((〈∅, 0, 1〉, k times. . . 〈∅, 0, 1〉), N, P, 0)

base case 4: f =
∏k
i=1 aixi, ai ∈ {−1, 1}. Let S = 1, if the number of −1’s in a1, . . . , ak is

odd, and S = 0 otherwise. Define

code(f) 4= ((〈∅, 0, 1〉, k times. . . 〈∅, 0, 1〉), 0, 0, S)

Rao-Sarma 9

Inductively, assume that, code(g) = (C,N, P, 0) for a constant-free ROP g of Type-1 on at
most n − 1 variables, and code(g) = (C, 0, 0, S) for a constant-free ROP g of Type-2 in at
most n − 1 variables. Consider a constant-free ROP f on n variables. By Proposition 9,
there are two cases
Type 1: Let f = f1 + f2 + . . . fk, where f1, . . . , fk are constant-free ROPs of Type-2. By

induction, suppose code(fi) = (Ci, 0, 0, Si). If fi = axji for some 1 ≤ ji ≤ n, and
a ∈ {−1, 1} then we need to take code(fi) = (〈∅, 0, 1〉, 0, 0, sgn(a)). Let 〈Ci1 , . . . , Cik〉 =
sort(C1, . . . , Ck), N = binary(Si1 , . . . , Sik), and P = binary(S̄i1 , . . . , S̄ik). Then,

code(f) 4= (〈Ci1 , . . . , Cik〉, N, P, 0) (2)
Type 2: f = f1×f2×. . .×fk, where f1, . . . , fk are constant-free ROPs of Type-1. By induc-

tion, suppose code(fi) = (Ci, Ni, Pi, 0). Let N ′i = min{Ni, Pi}, and P ′i = max{Ni, Pi}.
Let C̃i = 〈Ci, N ′i , P ′i 〉 and 〈C̃i1 , . . . , C̃ik〉 be the lexicographically sorted sequence of C̃i’s,
S = |{i | N ′i 6= Ni}| mod 2. Then,

code(f) = (〈C̃i1 , . . . , C̃ik〉, 0, 0, S) (3)

The following lemma describes some of the properties of the function code.

I Lemma 11. (a) Let f1, . . . , fk be constant-free ROPs of Type-1, a1, . . . , ak, b1, . . . , bk ∈
{−1, 1}. Then

code(
k∏
i=1

aifi) = code(
k∏
i=1

bifi) ⇐⇒ parity(sgn(a1), . . . , sgn(ak)) =

parity(sgn(b1), . . . , sgn(bk)).

(b) code(−
∏k
i=1 fi) = (C, 0, 0, S̄), where code(

∏k
i=1 fi) = (C, 0, 0, S).

(c) Let f1, . . . , fk be ROPs of Type-2 and suppose code(
∑k
i=1 fi) = (C,N, P, 0). Then

code(−
∑k
i=1 fi) = (C,P,N, 0).

Proof. Proof is by induction on the number of variables in the constant-free read-once
formula f . We consider two base cases. Let f =

∏k
i=1 xk. Then by base case 4 in the

definition of code,

code(−f) =
(
(〈∅, 1, 0〉, . . . , 〈∅, 0, 1〉), 0, 0, S̄

)
(a), (b) follow immediately now, and (c) is not relevant for this case. The second base case
is when f =

∑
i aixi. Note that only (c) is relevant here. Then −f =

∑
i−aixi, and hence

code(−f) = (C,P,N, 0), where code(f) = (C,N, P, 0). This proves (c) for the second base
case.

Inductively suppose that statements (a)-(c) hold for all constant-free ROPs on n′ ≤ n−1
variables. Let f be a constant-free ROP of Type-2 on n variables, i.e. , f =

∏k
i=1 fi, where

fis are constant-free ROPs of Type-1. Then, for a = (a1, . . . , ak) ∈ {−1, 1}k, fa =
∏k
i=1 aifi

is also a constant-free ROP of Type-2 on n variables. Suppose code(fi) = (Ci, Ni, Pi, 0) for
1 ≤ i ≤ k, then by (3),

code(f) = ((〈C1, N
′
1, P

′
1〉, . . . , 〈C1, N

′
k, P

′
k〉), 0, 0, S).

By (c) of the induction hypothesis, we have code(−fi) = (Ci, Pi, Ni, 0). Then, applying the
construction given by (3),

code(fa) = (sort(〈C1, N
′
1, P

′
1〉, . . . , 〈Ck, N ′k, P ′k〉), 0, 0, Sa)

10 Isomorphism testing of read-once functions and polynomials

with Sa = S, if parity(sgn(a1), . . . , sgn(ak)) = 0, and Sa = S̄ otherwise. This proves (a) and
(b).

To prove (c), suppose f is a constant-free ROP of Type-1 on n variables, i.e., f =
∑k
i=1 fi.

Suppose code(fi) = (Ci, 0, 0, Si), and 〈C1, . . . , Ck〉 be the lexicographically sorted order of
Ci’s, without loss of generality. Then, by the definition of code given in (2), code(f) =
((C1, . . . , Ck), N, P, 0), where N = binary(S1, . . . , Sk), and P = binary(S̄1, . . . , S̄k). Applying
induction hypothesis (b) on fi, code(−fi) = (Ci, 0, 0, S̄i). As −f =

∑k
i=1−fi, by (2) and

the induction hypothesis, we have

code(f) = (〈C1, . . . , Ck〉, Ñ , P̃ , 0) where
Ñ = binary(S̄1, . . . , S̄k) and
P̃ = binary(S1, . . . , Sk)

This implies P = Ñ , and N = P̃ , and hence (c) follows. J

Using these properties we prove that code is indeed a canonization for constant-free ROPs.

I Lemma 12. Let f , and g be two constant-free ROPs. Then, f ∼= g ⇐⇒ code(f) =
code(g)

Proof. Proof is by induction on the structure and number of variables in f and g. For base
Case, f = ±xi,

∑k
i=1 aixi, or

∏k
i=1 aixi, where ai ∈ {−1, 1}. By examining the four base

cases in the definition of code, the Lemma follows for these cases. For the induction step,
we consider two cases depending on whether f is of Type-1 or Type-2.

Type 1: Let f = f1 + . . . + fk and g = g1 + . . . + gk. First suppose f ∼= g via a
bĳection φ between the variables of f and g. As fi’s are variable disjoint, there exists
a σ ∈ Σk such that φ(fi) = gσ(i), and hence fi ∼= gσ(i), and by induction hypothesis,
we have code(fi) = code(gσ(i)) = (Ci, 0, 0, Si). By (2), we can conclude that code(f) =
code(g). For the converse direction, suppose that code(f) = code(g). Let code(f) =
(〈C1, . . . , Ck〉, binary(S1 . . . Sk), binary(S̄1, . . . , S̄k), 0) = code(g). Then by the structure of
code(g) as in (2), we conclude code(fi) = (Ci, 0, 0, Si) = code(gi) =⇒ fi ∼= gi (by induction
hypothesis). Then, we have g ∼= f by Lemma 10.

Type 2: Let f = f1×f2×. . . fk and g = g1×g2×. . .×gk. Let code(f) = (C, 0, 0, S), and
code(g) = (D, 0, 0, R), where C = (〈C1, N

′
1, P

′
1〉, . . . , 〈Ck, N ′k, P ′k〉), and D = (〈D1, L

′
1,M

′
1〉,

. . . , 〈Dk, L
′
k,M

′
k〉). Suppose code(g) = code(f). Then, by the definition of code, and

Lemma 11, we have ∀i ∈ [k], either code(fi) = code(gi) or code(fi) = code(−gi), and
hence either fi ∼= gi or fi ∼= −gi. As S = R, |{i | code(fi) = code(−gi)}| must be even.
Then by Lemma 10, we have f ∼= g. For the converse direction, suppose f ∼= g. Then by
Lemma 10, there is a σ ∈ Σk, and a1, . . . , ak ∈ {−1, 1} with parity(sgn(a1), . . . , sgn(ak)) = 0
such that fi ∼= aigσ(i), and hence code(fi) = code(aigσ(i)). Then, by the definition of
code, we have code(

∏k
i=1 fi) = code(

∏k
i=1 aigσ(i)). As parity(sgn(a1), . . . , sgn(ak)) = 0, by

Lemma 11, code(
∏k
i=1 aigσ(i)) = code(

∏k
i=1 gi), which completes the proof. J

I Theorem 13. Isomorphism testing of constant-free read-once polynomials can be done in
time polynomial in the number of variables in the input formulas.

Proof. Given Lemma 12, the algorithm is obvious: on input f and g, compute code(f) and
code(g), then check if code(f) = code(g). Given f as an arithmetic constant-free read-once
formula, code(f) can be computed in time polynomial in the size of the input formula. As
size of code(.) as a collection of sets is at most the size of the input formula, we can test if
code(f) = code(g) in time linear in the size of the input formulas f and g. J

Rao-Sarma 11

Extension to constant-free ROPs with arbitrary coefficients: The function code
defined for constant-free ROPs can be extended to include constant-free ROPs where leaf
nodes are labeled with aixi, where ai ∈ Z. We denote this extension by general-constant-
free ROPs. There is one main bottleneck for general-constant-free ROPs of Type-2: suppose
f = f1×· · ·×fk, and if a1 is the GCD of coefficients of f1, then f = (f1/a1)(a1f2)×· · ·×fk.
So, a canonical code has to be invariant under taking out GCD of the coefficients of some of
the fi’s and multiplying out these values among the remaining fj ’s, provided the polynomial
remains general-read-once. This can be achieved by explicitly carrying the GCD of the
coefficients. For the sake of notational convenience, we denote the canonical function for
general-constant-free ROPs by code′. For a general-constant-free ROP f , we define code′(f)
as a quintuple (C,N, P, S, α), where C is a string, N,P, α ∈ N, S ∈ {0, 1}. The values C,
P , N , and S have the same meaning as in the definition of code, and α is the GCD of the
coefficients of f . We generalize the properties of code (details are skipped) to show:

I Theorem 14. Isomorphism testing of general-constant-free ROPs can be done in P.

Extension to Pre-processed ROPs: Motivated by [23], we extend Theorem 14 to the case
of pre-processed constant-free ROPs. (See [23] for more on pre-processed ROPs). In a pre-
processed constant-free ROP, a leaf labeled by variable xi computes an arbitrary univariate
polynomial fi(xi) with coefficients from Z. By providing an efficient way of canonically
encoding the univariate polynomials that appear at the leaves, we obtain the following:

I Theorem 15. Canonization of a pre-processed general constant-free ROP can be done in
time polynomial in the number of variables and the degree of the univariate polynomials at
the leaves.

5 Polynomials with higher reads

As a natural extension, one could ask if the canonization procedure presented in the previous
section can be extended to arithmetic formulas that read a variable at most twice. However,
as in the case of Boolean formulas, it turns out that allowing variables twice makes the
problem as hard as GI. In fact, even for the most primitive classes of Read-2 polynomials
1) Sum of two depth two monotone ROPs and, 2) Read-2 polynomials given in the ΠΣ
form, isomorphism testing is complete for GI. It is already known that PI is harder than
GI[24, 16]). We provide a different reduction that optimizes the number of reads. We skip
some details here.

I Theorem 16. GI polynomial time many-one reduces to testing isomorphism of two poly-
nomials when both of the polynomials are given in one of the following representations:

(a) Sum of two monotone read-once depth-2 arithmetic formulas with a + gate at the top.
(b) Read-2 monotone arithmetic formulas of depth two, with a × gate at the top.

Hardness of PI for the above special cases also forces one to ask whether the hardness
given by Proposition 16 extends to the polynomial equivalence (PE) problem. Though we
do not know the exact answer, we observe that PE for read-4 polynomials is hard for GI.
I Proposition 17. PE for the case of read-4 polynomials is hard for GI, for F ∈ {Z,Q,R}.

References
1 M. Agrawal and N. Saxena. Equivalence of f-algebras and cubic forms. In STACS, pages

115–126, 2006.

12 Isomorphism testing of read-once functions and polynomials

2 M. Agrawal and T. Thierauf. The Formula Isomorphism Problem. SIAM J. Comput.,
30(3):990–1009, 2000.

3 A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesly, 1974.

4 D. Angluin, L. Hellerstein, and M. Karpinski. Learning read-once formulas with queries.
J. ACM, 40:185–210, January 1993.

5 S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, 2009.

6 V. Arvind and J. Torán. Isomorphism testing: Perspective and open problems. Bulletin of
the EATCS, 86:66–84, 2005.

7 B. Borchert, D. Ranjan, and F. Stephan. On the complexity of some classical equivalence
relations on boolean functions. Theory of Computing Systems, 31(6):679–693, 1998.

8 D. Bshouty and N. H. Bshouty. On learning arithmetic read-once formulas with exponen-
tiation (extended abstract). In COLT, pages 311–317, 1994.

9 N. H. Bshouty and R. Cleve. Interpolating arithmetic read-once formulas in parallel. SIAM
J. Comput., 27(2):401–413, 1998.

10 N. H. Bshouty, T. R. Hancock, and L. Hellerstein. Learning arithmetic read-once formulas.
SIAM J. Comput., 24(4):706–735, 1995.

11 P. Clote and E. Kranakis. Boolean functions, invariance groups, and parallel complexity.
SIAM J. Comput., 20(3):553–590, 1991.

12 S. A. Cook and P. McKenzie. Problems complete for L. Jl. of Algorithms, 8:385–394, 1987.
13 J. Goldsmith, M. Hagen, and M. Mundhenk. Complexity of dnf minimization and isomor-

phism testing for monotone formulas. Inf. Comput., 206(6):760–775, 2008.
14 V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means proving

circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004.
15 N. Kayal. Affine projections of polynomials. ECCC-Report TR11-061, 2011.
16 N. Kayal. Efficient algorithms for some special cases of the polynomial equivalence problem.

In SODA. SIAM, 2011.
17 J. Köbler, U. Schöning, and J. Torán. The graph isomorphism problem: its structural

complexity. Birkhauser Verlag, Basel, Switzerland, Switzerland, 1993.
18 S. Lindell. A logspace algorithm for tree canonization (extended abstract). In STOC, pages

400–404, 1992.
19 J. Patarin. Hidden fields equations (hfe) and isomorphisms of polynomials (ip): Two new

families of asymmetric algorithms. In EUROCRYPT’96, pages 33–48, 1996.
20 B. V. R. Rao and J. M. N. Sarma. On the complexity of matroid isomorphism problems.

In CSR, pages 286–298, 2009.
21 N. Saxena. Morphisms of Rings and Applications to Complexity. PhD thesis, Department

of Computer Science, Indian Institute of Technology, Kanpur, India, 2006.
22 A. Shpilka and I. Volkovich. Read-once polynomial identity testing. In STOC, pages

507–516, 2008.
23 A. Shpilka and I. Volkovich. Improved polynomial identity testing for read-once formulas.

In APPROX-RANDOM, pages 700–713, 2009.
24 T. Thierauf. The isomorphism problem for read-once branching programs and arithmetic

circuits. Chicago J. Theor. Comput. Sci., 1998, 1998.

	Introduction
	Preliminaries
	Isomorphism testing of Boolean read-once formulas
	Logspace characterization : Proof of Theorem 1
	Larger Number of Reads : Proof of Theorem 2

	Isomorphism testing of Read-once polynomials
	Polynomials with higher reads

