
82 COMMUNICATIONS OF THE ACM | AUGUST 2014 | VOL. 57 | NO. 8

review articles

THE MAXIMUM FLOW problem and its dual, the
minimum cut problem, are classical combinatorial
optimization problems with many applications in
science and engineering; see, for example, Ahuja et al.1
The problem is a special case of linear programming
and can be solved using general linear programming
techniques or their specializations (such as the
network simplex method9). However, special-purpose
algorithms are more efficient. Moreover, algorithm
design techniques and data structures developed to
compute maximum flows are useful for other problems
as well. Although a special case of linear programming,
the maximum flow problem is general enough so
several important problems (such as the maximum
bipartite matching problem) reduce to it.

Here, we survey basic techniques behind efficient
maximum flow algorithms, starting with the history
and basic ideas behind the fundamental maximum

flow algorithms, then explore the al-
gorithms in more detail. We restrict
ourselves to basic maximum flow al-
gorithms and do not cover interest-
ing special cases (such as undirected
graphs, planar graphs, and bipartite
matchings) or generalizations (such as
minimum-cost and multi-commodity
flow problems).

Before formally defining the maxi-
mum flow and the minimum cut prob-
lems, we give a simple example of
each problem: For the maximum flow
example, suppose we have a graph that
represents an oil pipeline network
from an oil well to an oil depot. Each
arc has a capacity, or maximum num-
ber of liters per second that can flow
through the corresponding pipe. The
goal is to find the maximum number of
liters per second (maximum flow) that
can be shipped from well to depot. For
the minimum cut problem, we want
to find the set of pipes of the smallest
total capacity such that removing the
pipes disconnects the oil well from the
oil depot (minimum cut).

The maximum flow, minimum cut
theorem says the maximum flow value
is equal to the minimum cut capacity.
This fundamental theorem has many
applications, particularly in the design
of maximum flow algorithms.

We distinguish between flow algo-
rithms that are polynomial or strongly
polynomial. We denote the number of
vertices and arcs in the input network
by n and m, respectively. For polyno-
mial algorithms, the arc capacities are
integral, with U denoting the largest
capacity; capacities can be represented
by O(logU)-bit integers. (In practice,
it is reasonable to assume capacities
are integral; as implemented by com-
puter hardware, even floating point

Efficient
Maximum
Flow
Algorithms

DOI:10.1145/2628036

Though maximum flow algorithms have
a long history, revolutionary progress
is still being made.

BY ANDREW V. GOLDBERG AND ROBERT E. TARJAN

 key insights
 The idea of augmenting along shortest

paths leads to polynomial-time algorithms.

 Data structures and fine-grain
operations lead to faster algorithms.

 Discriminating based on residual
capacities when assigning arc lengths
leads to improved time bounds.

AUGUST 2014 | VOL. 57 | NO. 8 | COMMUNICATIONS OF THE ACM 83

I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 J
U

R
G

E
N

 Z
I

E
W

E

numbers are represented as integers.)
A polynomial algorithm is one with a
worst-case time bound polynomial in
n, m, and log U. For many applications,
algorithms manipulate numbers that
fit in a machine word, and elementary
arithmetic operations take unit time.
We assume this is the case when stating
polynomial bounds. A strongly polyno-
mial algorithm is one with a worst-case
time bound polynomial in n and m,
even if capacities are arbitrary real
numbers, assuming a computational
model in which elementary arith-
metic operations on real numbers
take unit time. Strongly polynomial
algorithms are more natural from a

combinatorial point of view, as only
their arithmetic operation complex-
ity depends on the input number
size, and other operation counts are
independent of the size.

The first special-purpose algorithm
for the maximum flow problem was the
augmenting path method developed by
Ford and Fulkerson.14 This method is, in
general, not polynomial time but can be
made so. One way to do this is through
scaling, as introduced by Dinic.11

Edmonds and Karp12 introduced the
shortest augmenting path method, mak-
ing the Ford-Fulkerson method strongly
polynomial. To define path lengths, the
Edmonds-Karp method uses the unit

length function, which sets the length
of each arc to one. Edmonds and Karp
note that other length functions can be
used but do not seem to lead to better
time bounds. The key to the analysis is
the observation that the shortest aug-
menting path length is non-decreasing
and must eventually increase.

The blocking flow method augments
along a maximal set of shortest paths by
finding a blocking flow. Such augmenta-
tion increases the shortest augment-
ing path length and thereby speeds up
the shortest augmenting path method.
Blocking flows are implicit in Dinic’s
algorithm10 and made explicit by
Karzanov,23 who also introduced a

84 COMMUNICATIONS OF THE ACM | AUGUST 2014 | VOL. 57 | NO. 8

review articles

maximum flow algorithm. Note a
decomposition of flows into paths can
have a size of Ω(nm). This makes O(nm)
a natural target bound. In 2013, Orlin27
developed an algorithm that achieves
this bound.

The flow decomposition size is not a
lower bound for computing maximum
flows. A flow can be represented in O(m)
space, and dynamic trees can be used
to augment flow on a path in logarith-
mic time. Furthermore, the unit capac-
ity problem on a graph with no parallel
arcs can be solved in
time,13,22 which is much better than
O(nm). For a quarter century, there was
a big gap between the unit capacity
case and the general case. The gap was
narrowed by Goldberg and Rao,17 who
obtained an O(min(n2/3,)m log(n2/m)
log U)-time algorithm for the problem
with integral capacities.

To achieve this bound, Goldberg and
Rao used a non-unit length function. In
combination with new design and anal-
ysis techniques, this leads to the binary
blocking flow algorithm that achieves
the bound mentioned earlier. As the
name implies, the algorithm is based on
blocking flows. No comparable bound
for the push-relabel method is known.
This fact revives the theoretical impor-
tance of the blocking flow method.

Here, we assume familiarity with basic
graph algorithms, including breadth- and
depth-first search and have organized the
article as follows: After introducing basic
definitions, we discuss the algorithms.
Our presentation is informal, including
intuitive algorithm descriptions and the
corresponding time bounds, but omits
technical details, which can be found in
the references.

Background
The input to the maximum flow prob-
lem is (G, s, t, u), where G = (V, A) is a
directed graph with vertex set V and arc
set A, s ∈ V is the source, t ∈ V is the sink
(with s ≠ t), and u : A ⇒ R+ is the strictly
positive capacity function. We some-
times assume capacities are integers
and denote the largest capacity by U.

A flow f is a function on A that sat-
isfies capacity constraints on all arcs
and conservation constraints at all
vertices except s and t. The capac-
ity constraint for a ∈ A is 0 ≤ f (a) ≤
u(a) (flow does not exceed capacity).
The conservation constraint for v is

relaxation of flow called a “preflow” that
allows an algorithm to change the flow
on a single arc instead of on an entire
augmenting path. Arc flow is updated
through a push operation. Preflows
allow faster algorithms for finding
blocking flows.

An interesting special case of the
maximum flow problem involves all
arcs having unit capacities. As shown
independently by Karzanov22 and Even
and Tarjan,13 the blocking flow algo-
rithm in this case achieves better time
bounds than in the general case for two
reasons: the number of blocking flow
computations is reduced, and the com-
putations are faster—linear time in the
graph size.

The operations of a blocking flow
algorithm can be divided into two parts:
those that manipulate distances and
those that manipulate flows. In theory,
the latter dominate, motivating devel-
opment of data structures that allow
changing flow values on a path more
efficiently than one arc at a time. The
first such data structure was developed
by Galil and Naamad.15 A few years
later, Sleator and Tarjan29,30 introduced
the dynamic tree data structure, allow-
ing changing flow values on a path
with k arcs in O(log k) time. This led to
improvement in the theoretical time
bound for finding a blocking flow, mak-
ing it almost linear.

Goldberg and Tarjan18 developed the
push-relabel method as an alternative
to the blocking flow method.a It main-
tains a preflow and updates it through
push operations. It introduces the rela-
bel operation to perform fine-grain
updates of the vertex distances. Push
and relabel operations are local; that
is, they apply to a single arc and vertex,
respectively. These fine-grain opera-
tions provide additional flexibility that
can be used to design faster algorithms.
The fastest general-purpose maximum
flow codes are based on the push-relabel
method.7,16

For arbitrary real-valued capacities,
the blocking flow problem can be solved
in O(m log(n2/m)) time,19 giving an
O(nm log(n2/m)) bound for the

a The push-relabel method is sometimes called
the preflow-push method, which is mislead-
ing, as Karzanov’s algorithm uses preflows
and the push operation but does not use the
relabel operation and is therefore not a push-
relabel algorithm.

The maximum
flow, minimum cut
theorem says
the maximum flow
value is equal
to the minimum
cut capacity.

AUGUST 2014 | VOL. 57 | NO. 8 | COMMUNICATIONS OF THE ACM 85

review articles

∑(u,v)∈A f (u, v) = ∑(v,w)∈ A f(v, w) (the incom-
ing flow is equal to the outgoing flow). The
flow value is the net flow into the sink:
|f| = ∑(v,t)∈ A f (v, t) − ∑(t,v)∈ A f (t, v). If | f |
is as large as possible, f is a maximum
flow. A cut is a bipartition of the vertices
S ∪ T = V with s ∈ S, t ∈ T.b The capacity of a
cut is defined by u(S,T) = ∑v∈S,w∈T, (v,w)∈ Au(S,T)
(the sum of capacities of arcs from S to
T). The max-flow/min-cut theorem14 says
the maximum flow value is equal to the
minimum cut capacity. Figures 1 and 2
give an input network and a maximum
flow on it, respectively.

Without loss of generality, we assume
G is connected. Then m ≥ n − 1 and
therefore n + m = O(m). We can also
assume the graph has no parallel arcs,
since we can combine parallel arcs and
add their capacities.

Residual Graph and
Augmenting Paths
An important notion for flow algorithms
is a residual graph, encoding the possi-
ble changes of flow on arcs in a way that
facilitates algorithm design. Suppose
we have an arc a = (v, w) with u(a) = 9 and
f (a) = 4. We can then increase the flow on
a by up to five units without violating
the capacity constraint. Furthermore,
we can decrease the flow on a by up to
four units. We would like to interpret
decreasing flow on an arc a = (v.w)
as increasing flow on the reverse arc
aR = (w, v).

Given a flow f in G, we define the
residual graph Gf = (V, Af) as follows: Af
contains arcs a ∈ A such that f (a) < u(a)
and arcs aR : a ∈ A such that f (a) > 0. We
call these forward and reverse resid-
ual arcs, respectively. We define the
residual capacity uf to be u(a) − f (a) for
the former and f (aR) for the latter. For
every arc a ∈ A, Gf contains the forward
arc, the reverse arc, or both. Figure 3
gives the residual graph for the flow
in Figure 2. Note the residual graph
can have parallel arcs even if the input
graph is simple, as it can contain both
an arc and its reversal.

A flow g in Gf defines the flow f ′ in
G as follows: For a forward arc a ∈ Gf ,
f ′(a) = f (a) + g (a); for a reverse arc a ∈ Gf ,
f ′(aR) = f (aR) − g (a). Seeing that f ′ is a

b Formally, this defines an s-t cut, though, here,
we deal only with s-t cuts; in the literature, a
minimum cut may also refer to the minimum
cut value over all s, t pairs of minimum s-t cuts.

valid flow is straightforward.
An augmenting path is a path from

s to t in Gf. Given an augmenting path
P, we can augment f as follows: Let δ be
the minimum residual capacity of the
arcs on P and g be the flow of value on P.
The corresponding flow f ′ on G has
| f ′| = | f | + δ > | f |. An augmenting path
can be found in O(m) time (such as by
using breadth- or depth-first search).

Note that during an augmentation,
at least one arc of P has residual capac-
ity δ before the augmentation and zero
after the augmentation. We say such an
arc is saturated by the augmentation.
Saturated arcs are deleted from Gf . An
arc a is added to Gf if uf (a) is zero before
the augmentation, and the augmenta-
tion increases the flow on aR.

Using the max-flow/min-cut theo-
rem, one can show a flow f has maximum
value if and only if Gf does not contain an
augmenting path. This motivates the
augmenting path algorithm: while Gf
contains an augmenting path, find such
a path and augment the flow on it.

If capacities are integral, the aug-
menting path algorithm always ter-
minates, since each augmentation
increases the flow value by at least one.
This observation, and the fact that the
capacity of the cut ({s}, V − {s}) is O(nU),
gives a pseudo-polynomial bound of
O(nmU) on the algorithm’s running
time. The bound is not polynomial
because U can be exponential in the
size of the problem input. If the capaci-
ties are real-valued, the algorithm need
not terminate. As we shall see later,
variants of this algorithm do run in
polynomial time.

Scaling
Scaling is one way to make the augment-
ing path algorithm polynomial-time if the
capacities are integral.

Recall that U is the largest arc capac-
ity and let k = élog2 Uù + 1, the number
of bits needed to represent capacities.
For i = 0, . . .,k, define ui(a) = ëu(a)/2k−iû.
Note u0 ≡ 0, and for i > 0, ui is defined by
the i most significant bits of u. The zero
flow is maximum for u0.

Given a maximum flow fi for
capacities ui (0 ≤ i < k), the algo-
rithm computes a maximum flow
fi+1 for capacities ui+1 as follows. Note
ui+1 = 2ui + bi+1, where bi+1(a) is the
(i + 1)-st most significant bit of u(a). Thus
f = 2fi is a feasible flow for capacities ui+1.

We start with f and apply the augment-
ing path algorithm to compute fi+1.

To bound the number of augmenta-
tions, consider a minimum cut (S, T)
for capacities ui. Since ff is a maximum
flow, for every arc a from S to T we have
ui(a) = fi(a), and thus for the initial flow f,
we have ui+1(a) − f (a) ≤ 1. Therefore |f | is
within m of maximum, and we need at
most m augmentations to compute fi+1
from fi. The running time of the scaling
algorithm is thus O(m2 log U).

Shortest Augmenting Paths
Define the length of every arc in Gf to be
one, and suppose we always choose a
shortest augmenting path. This is nat-
ural, since breadth-first search finds
shortest augmenting paths and takes
linear time.

Consider a shortest-path augmenta-
tion. Let d(v) denote the distance from
a vertex v to t in Gf, and let k = d(s). For
an arc (v, w) on the augmenting path,
we have d(v) = d(w) + 1. Therefore the
reverse arc (w, v) is not on a path from
s to t of length k or less. The augmenta-
tion deletes at least one arc on a path

Figure 1. Input example.

9s

a b

t

c d

4

9

5

5
9

3

Figure 2. Maximum flow (capacity/flow)
and minimum cut.

9/1s

a b

t

c d

9/4

5/4

5/5
9/5

4/4

3/3

Figure 3. Residual graph and residual
 capacities corresponding to Figure 2.

5

s

a b

1

4

4

5 4

1

8 4

5

3

c d

86 COMMUNICATIONS OF THE ACM | AUGUST 2014 | VOL. 57 | NO. 8

review articles

be reused later. In particular, the saved
paths are linked during the augment-
ing path search, work that is amortized
over the search for augmenting paths.
Flow augmentation is performed using
dynamic tree operations, at the cost of
the logarithm of the corresponding
augmenting path length. This appli-
cation of dynamic trees reduces the
running time of the blocking flow
algorithm from O(nm) to O(m log n). By
restricting the maximum tree size and
using additional data structures, this
bound can be further improved to O(m
log(n2/m)),19 yielding an O(nm log(n2/m))
maximum flow algorithm.

Although dynamic trees yield the best
worst-case bounds, they have so far not
been used in practical implementations
because most practical instances are
relatively easy, and the constant factors
in dynamic tree implementations are
relatively large.

Push-Relabel Method
The blocking flow algorithm uses
global operations (such as building
the auxiliary network and augment-
ing along a path). The push-relabel
method uses local operations. These
fine-grain operations give the method
more flexibility, which can be used to
make the method faster in practice.

Following Karzanov,23 the push-relabel
method uses preflows. Preflows are like
flows, but the conservation constraints
are relaxed: ∑(u, v)∈A f (u, v) ≥ ∑(v,w)∈A f (v, w)
for all v ∈ V − {s, t} (the incoming flow
is at least the outgoing flow). We define
excess by ef (v) = ∑(u, v)∈A f(u, v) − ∑(v,w)∈A f (v, w).
A vertex with excess can push some of it
to its residual neighbor. Intuitively, we
want to push only to a neighbor that is
closer to the sink. Karzanov23 uses dis-
tances in the auxiliary network to deter-
mine where to push flow.

The push-relabel method replaces
the distances by a valid labeling, a
relaxation of distances that can be
updated locally. Given a flow f, we say
a function d : V → N is a valid labeling
if d(t) = 0 and for every (v, w) ∈ Af , we
have d(v) ≤ d(w) + 1. One can show a
valid labeling gives lower bounds on
distances to t. In particular, if d(v) ≥ n,
then there is no path from v to t in
Gf, meaning v is on the source side of
some minimum cut.

The push-relabel method maintains
a preflow f and a valid distance labeling

from s to t of length k and does not add
any arcs on paths from s to t of length
k or less. This observation leads to
the key monotonicity property of the
shortest augmenting path algorithm:
For every vertex v, residual graph dis-
tances from s to v and from v to t are
non-decreasing.

The monotonicity property yields a
strongly polynomial time bound. Each
augmentation saturates an arc on a
path of the current shortest length.
Therefore, after at most m augmenta-
tions, the distance from s to t must
increase. Initially, the distance is at least
one, and if t is reachable from s, the dis-
tance is at most n − 1. The total number
of augmentations is thus O(nm). The
time for one augmentation is O(m) to
find the augmenting path and propor-
tional to the path length; that is, O(n) =
O(m) to modify the flow. This gives an
O(nm2) bound on the running time.

Blocking Flow Method
Given a network G with arc capacities, a
flow f in G is blocking if every s-to-t path
in G contains a saturated arc. Note
f need not be a maximum flow, as
there can be an s-to-t path in Gf that

will contain the reverse of an arc of G
(see Figure 4). But a maximum flow
is always a blocking flow. As we shall
see later, in an acyclic graph, blocking
flows can be found more quickly than
maximum flows.

The blocking flow algorithm con-
structs an auxiliary network G′f = (V, A′f)
where A′f contains all residual arcs
belonging to some shortest s-to-t path.
Note if (v, w) ∈ A′f , then d(v) = d(w) + 1,
so G′f is acyclic. G′f can be constructed
in O(m) time using breadth-first search.
Suppose we compute a blocking flow
g in G′f . Then f + g is a feasible flow in G.
Furthermore, one can show the s-to-t dis-
tance in Gf+g is greater than that in Gf . It
follows that a maximum flow can be com-
puted in at most n − 1 iterations, where
the time for an iteration is dominated
by the blocking flow computation.

Dinic10 introduced an algorithm for
finding blocking flows in acyclic graphs,
using depth-first search to find an aug-
menting path in G′f that augments along
the path and deletes saturated arcs
from G′f . The key to the analysis is the
observation that if depth-first search
retreats from a vertex, there is no path
from the vertex to t in G′f and the vertex
can be deleted. One can use this obser-
vation to show the running time of the
algorithm is proportional to n plus the
total length of the augmenting paths
found; the total length term domi-
nates. As an augmenting path has O(n)
arcs and each augmentation saturates
an arc, the running time of the block-
ing flow algorithm is O(nm). This gives
an O(n2m) bound for Dinic’s maximum
flow algorithm.

Using Dynamic Trees
The running time of the blocking flow
algorithm is dominated by changes
of arc flows that do not saturate the
arc. A natural approach to improv-
ing the running time bound is to
use a data structure that allows one
to make several such changes in one
data structure operation. This can be
achieved by using a data structure to
remember non-saturated portions of
the augmenting paths. The dynamic
tree data structure29,30 was devel oped
for this purpose.

Intuitively, the dynamic tree block-
ing flow algorithm uses the data
structure to remember non-saturated
portions of augmenting paths that may

Figure 4. Example of a blocking flow that is
not a maximum flow.

s

a b

t

c d

4/0

9/5

5/5

5/5
9/5

3/0

9/5

Figure 5. Push operation example: before
(left) and after (right); zero excesses and
non-residual arcs not shown.

+3

wv 8

+3

v w

3

5

Figure 6. Relabel operation example: before
(left) and after (right).

5
v

7

5

4

3
v

4

5

7

88

AUGUST 2014 | VOL. 57 | NO. 8 | COMMUNICATIONS OF THE ACM 87

review articles

An interesting
special case of
the maximum flow
problem involves
all arcs having
unit capacities.

d and updates them using operations
push and relabel, respectively. We
describe these operations next; a full
description of the algorithm can be
found in Goldberg and Tarjan.18

One way to start the push-relabel
method is to saturate all arcs out of the
source by setting their flow values to
the corresponding capacity values, and
to set d(s) = n (t is not reachable from s)
and d(v) = 0 for v ¹ s. This creates ini-
tial flow excesses on vertices adjacent
to the source. Intuitively, the method
pushes flow excesses toward the sink
and relabels vertices with excess if the
excess cannot be pushed toward the
sink. We say a vertex v is active if v ¹ t
and ef (v) > 0.

The push operation applies to an
arc (v, w) if v is active and d(w) < d(v),
or w is closer to t according to d. The
operation determines the maximum
amount of flow that can be pushed,
δ = min(ef (v); uf (v, w)) and pushes this
amount of flow along (v, w) by setting
uf (v, w) = uf (v, w) − δ, uf (w, v) = uf (w, v) +
δ, ef (v) = ef (v) − δ, and ef (w) = ef (w)+ δ.
We say a push is saturating if δ = uf
(v, w) and non-saturating otherwise.
Note that a non-saturating push gets
rid of all the excess of v; see Figure 5
for an example of a non-saturating
push operation.

The relabel operation applies to an
active vertex v such that no push opera-
tion applies to an arc (v, w), or for all
(v, w) ∈ Af, d(v) ≤ d(w). The operation
sets d(v) = min{n, 1 + min(v, w)∈ Af

d(w)}. (A
vertex with excess always has an outgo-
ing residual arc.) Note the relabel oper-
ation always increases d(v); see Figure
6 for an example of a relabel operation.

The time complexity of the push-
relabel method is as follows. The total
time for relabeling operations is O(nm),
and the time for saturating pushes is
O(nm) as well. The time for non-saturat-
ing pushes is O(n2m); these operations
dominate the running time bound,
which is also O(n2m).

Note our description of the push-
relabel method is generic; we have
not specified the rule to select the
next active vertex to process. Some
operation orderings lead to better
bounds. In particular, for the highest
label push-relabel algorithm, which
always selects an active vertex with
the highest distance label to process
next, the time for non-saturating

pushes and the overall time bound
are O(n2).6 Using dynamic trees,
one can get an O(nm log(n2/m))
bound18 more simply than through
the blocking flow method.

The highest-label algorithm is also
one of the most practical variants of
the push-relabel method. However,
robust practical performance requires
additional heuristics. The push rela-
bel method is very flexible, making
it easy for the algorithm designer to
add heuristics. For example, one can
restrict active vertices to those with
d(v) < n and do post-processing to
compute the final flow. One can also
do periodic backward breadth-first
searches to maximize d(v) values.
See, for example, Cherkassky and
Goldberg7 and Goldberg.16

Unit Capacities
Now consider the special case of the
maximum flow problem in which all
input arc capacities are one. Since
merging parallel arcs results in non-
unit capacities, we cannot assume
the graph has no parallel arcs, so we
consider two cases—parallel arcs and
no parallel arcs—in both of which
one obtains better bounds for Dinic’s
algorithm.

First, note that after an augmenta-
tion, all arcs on the augmenting path
are saturated. Therefore, an arc partici-
pates in at most one augmentation per
blocking flow, and the blocking flow
algorithm runs in O(m) time.

Moreover, one can show the num-
ber of blocking flow computations is
O(). To prove this bound, we divide
the maximum flow computation into
two phases. In the first phase, the s-to-t
distance is less than . Since an aug-
mentation by a blocking flow increases
the distance, the first phase consists of
at most augmentations. One can
show if the s-to-t distance is at least ,
the residual flow value is O(). Since
an augmentation decreases the value,
the number of augmentations in the
second phase is O().

This analysis implies an O(m3/2)
bound for the unit capacity problem.
If G has no parallel arcs, one can also
obtain an O(n2/3m) bound, which is bet-
ter for dense graphs.

Binary Blocking Flow Algorithm
The time bounds for the blocking flow

88 COMMUNICATIONS OF THE ACM | AUGUST 2014 | VOL. 57 | NO. 8

review articles

The maximum flow
problem is far from
being completely
understood, and
new and improved
algorithms continue
to be discovered.

and stops the blocking flow computa-
tion if the value of the flow being com-
puted reaches ∆. One can show that
since each strongly connected compo-
nent is induced by large-capacity arcs,
one can always route a flow of value
∆ through it. At the end of each itera-
tion, we expand G′f and extend the flow
we found to Gf . One can show that a
blocking flow in G′f extends to a block-
ing flow in Gf . This gives us two types of
iterations: ones that find a blocking
flow and ones that find a flow of value ∆.
The s-to-t distance increases in the for-
mer case and does not decrease in the
latter case.

To deal with the second problem,
one can show the arcs (v, w) that may
have their length decrease (the special
arcs) have the property that the residual
capacity of (v, w) is at least 3∆ and the
residual capacity of (w, v) at least 2∆. The
algorithm contracts such arcs, assuring
that after an augmentation by a block-
ing flow, the s-to-t distance increases
even if these arc lengths decrease.

Using the dynamic-tree data struc-
ture, the binary flow algorithm runs in
O(min(n2/3,)m log(n2/m) logU) time,
which is within a log(n2/m) log U factor of
the best known upper bound for the unit
capacity problem with no parallel arcs.

Conclusion
As mentioned here, a 2013 algorithm
of Orlin27 achieves an O(nm) strongly
polynomial bound for the maximum
flow problem, as well as an O(n2/log n)
bound for m = O(n). This result is quite
sophisticated and uses a combination of
ideas from maximum flow, minimum-
cost flow, and dynamic connectivity algo-
rithms. In particular, Orlin uses the binary
blocking flow algorithm as a subroutine.
His result closes a longstanding open
problem of the existence of an O(nm)
maximum flow algorithm. However, the
binary blocking flow algorithm bounds
suggest an O(nm/nε) strongly polyno-
mial algorithm may exist.

The maximum flow problem is far
from being completely understood, and
new and improved algorithms con-
tinue to be discovered. We would like
to mention four intriguing directions
that have yielded new results: The
first is to generalize the push-rela-
bel approach to allow the flow excess
(incoming minus outgoing flow) at
a vertex to be arbitrary—positive,

and push-relabel algorithms are Ω(nm)
in the general case, while for unit
capacities, the algorithm of Dinic runs
in O(min(n2/3,)m) time. Here, we
discuss the intuition behind the binary
blocking flow algorithm of Goldberg
and Rao,17 which narrows the gap for
the integral capacity case.

Instead of assigning unit length
to every residual arc, the binary
blocking flow algorithm uses a zero-
one length function, assigning zero
length to the arcs with large residual
capacity and unit length to the arcs
with small residual capacity. The fact
that arcs with unit length have small
residual capacity allows the algo-
rithm to come close to the unit capac-
ity time bound.

The algorithm maintains a flow
f and an upper bound F on the dif-
ference between the maximum flow
value and the current flow value |f|.
The algorithm proceeds in phases;
each phase decreases F by a factor of
two. In a phase, the value of F remains
constant except for the very end of the
phase, when it is decreased. A thresh-
old parameter ∆, which is a function
of F and thus remains constant during
a phase, determines whether residual
arcs are large or small; large arcs have a
residual capacity of at least 3∆, and the
remaining ones are small.

As in the case of the unit length func-
tion, we define the auxiliary network
G′f to be the graph induced by the arcs
on shortest s-to-t paths. The algorithm
repeatedly computes a blocking flow in
G′f , updating G′f before each computa-
tion, until F decreases by a factor of two.
The decrease in F happens if one either
increases the flow by F/2 or the s-to-t
distance becomes sufficiently large. As
in the unit capacity case, a large s-t dis-
tance implies a bound on the residual
flow value.

This use of the binary length func-
tion leads to two problems that must
be addressed: First, G′f need not be
acyclic (it can contain cycles of zero-
length arcs), and, second, an arc
length can decrease from one to zero,
and, as a side effect, the s-to-t distance
may fail to increase after a blocking
flow augmentation.

To deal with the first problem, the
algorithm contracts strongly connected
components of G′f , looks for a block-
ing flow in the resulting acyclic graph,

AUGUST 2014 | VOL. 57 | NO. 8 | COMMUNICATIONS OF THE ACM 89

review articles

negative, or zero. Given a residual arc
(v, w) such that the excess at v exceeds
the excess at w, one can balance the
arc by increasing its flow to either sat-
urate the arc or equalize the excesses
at v and w. The flow balancing algo-
rithm31 starts with some initial flow
(such as zero flow), dummy excesses
of plus infinity at s and minus infin-
ity at t, and repeats arc-balancing
steps until all such steps move a suf-
ficiently small amount of flow, then
rounds the flow to obtain an exact
maximum flow. Although the run-
ning time of this algorithm (O(n2m
log U)) is not competitive with that
of the best algorithms, the method
is simple and extends to give a very
simple and practical algorithm for a
parametric version of the maximum
flow algorithm.2,31

Another approach that yields a
fast practical algorithm for maximum
flow problems in computer-vision
applications is that of Boykov and
Kolmogorov,5 improving the basic
augmenting path method by using
bidirectional search to find augment-
ing paths, in combination with a clever
method for retaining information
from previous searches to speed up
future ones. The Boykov-Kolmogorov
method does not augment on short-
est paths and has not been proved to
be polynomial but can be modified to
find exact shortest paths and to be poly-
nomial without sacrificing its practical
performance, indeed improving it in
many cases. The resulting algorithm20
computes shortest augmenting paths
incrementally, using information from
previous searches. Special techniques
have yielded fast maximum flow algo-
rithms for planar graphs and for undi-
rected graphs; for the latest results, see
Borradaile and Klein,3 Borradaile et al.,4
and Karger and Levine.21

A recent series of papers, including
Christiano et al.,8 Kelner et al.,24 Lee et
al.,25 and Sherman,28 have studied the
problem of finding an approximately
maximum flow (within a factor of 1 + ε
of maximum) in undirected graphs
and culminates in a near-linear time
algorithm. These papers used linear
algebraic techniques and electrical
flows. Building on this work, Madry26
in 2013 obtained a breakthrough result,
an exact algorithm for unit capacity
flows in directed graphs running in

Õ(m10/7) time. This improves the clas-
sical O(min(n2/3, m1/2)m) bound for
the problem, suggesting that better
bounds for the exact capacitated maxi-
mum flow problem in directed graphs
may be possible. Whether these ideas
can be used to find exact maximum
flows in directed graphs with inte-
gral capacities is an intriguing open
question. In summary, progress on
maximum flow algorithms has been
made for more than half a century,
and continues.

Acknowledgment
Robert E. Tarjan was supported
by National Science Foundation
grant CCF-0830676 and U.S.-Israel
Binational Science Foundation Grant
2006204. Some of his work was done
while visiting Stanford University and
supported by an Air Force Office of
Scientific Research Multidisciplinary
University Research Initiative grant.

References
1. Ahuja, R.K., Magnanti, T.L., and Orlin, J.B. Network

Flows: Theory, Algorithms, and Applications. Prentice-
Hall, Inc., Upper Saddle River, NJ, 1993.

2. Babenko, M.A., Derryberry, J., Goldberg, A.V.,
Tarjan, R.E., and Zhou, Y. Experimental evaluation
of parametric max-flow algorithms. In Proceedings
of the Sixth Workshop on Experimental Algorithms,
Lecture Notes in Computer Science. Springer,
Heidelberg, Germany, 2007, 256–269.

3. Borradaile, G. and Klein, P.N. An O(n log n) algorithm
for maximum st-flow in a directed planar graph.
Journal of the ACM 56, 2 (2009), 1–34.

4. Borradaile, G., Klein, P.N., Mozes, S., Nussbaum, Y.,
and Wulff-Nilsen, C. Multiple-source multiple-sink
maximum flow in directed planar graphs in near-
linear time. In Proceedings of the 52nd Annual IEEE
Symposium on Foundations of Computer Science.
IEEE Press, New York, 2011,170–179.

5. Boykov, Y. and Kolmogorov, V. An experimental
comparison of min-cut/max-flow algorithms for
energy minimization in vision. IEEE Transactions
on Pattern Analysis and Machine Intelligence 26, 9
(2004), 1124–1137.

6. Cheriyan, J. and Maheshwari, S.N. Analysis of preflow
push algorithms for maximum network flow. SIAM
Journal on Computing 18, 6 (1989), 1057–1086.

7. Cherkassky, B.V. and Goldberg, A.V. On implementing
push-relabel method for the maximum flow problem.
Algorithmica 19, 4 (1997), 390–410.

8. Christiano, P., Kelner, J.A., Madry, A., Spielman, D.A.,
and Teng, S-H. Electrical flows, laplacian systems, and
faster approximation of maximum flow in undirected
graphs. In Proceedings of the Annual ACM Symposium
on Theory of Computing. ACM Press, New York, 2011,
273–282.

9. Dantzig, G.B. Application of the simplex
method to a transportation problem. In Activity
Analysis and Production and Allocation,
T.C. Koopmans, Ed. John Wiley & Sons, Inc.,
New York, 1951, 359–373.

10. Dinic, E.A. Algorithm for solution of a problem
of maximum flow in networks with power
estimation. Soviet Mathematical Docladi 11 (1970),
1277–1280.

11. Dinic, E.A. Metod porazryadnogo sokrashcheniya
nevyazok i transportnye zadachi [Excess scaling
and transportation problems]. In Issledovaniya
po Diskretnoi. Matematike Nauka, Moscow, Russia,
1973.

12. Edmonds, J. and Karp, R.M. Theoretical improvements
in algorithmic efficiency for network flow problems.
Journal of the ACM 19, 2 (1972), 248–264.

13. Even, S. and Tarjan, R.E. Network flow and testing
graph connectivity. SIAM Journal on Computing 4, 4
(1975), 507–518.

14. Ford, Jr., L.R. and Fulkerson, D.R. Maximal flow
through a network. Canadian Journal of Mathematics
8 (1956), 399–404.

15. Galil, Z. and Naamad, A. An O(EV log2 V)
algorithm for the maximal flow problem. Journal of
Computer and System Sciences 21, 2 (1980), 203–217.

16. Goldberg, A.V. Two-level push-relabel algorithm
for the maximum flow problem. In Proceedings
of the Fifth Conference on Algorithmic Aspects in
Information Management, Volume 5564 of Lecture
Notes in Computer Science. Springer, Heidelberg,
Germany, 2009, 212–225.

17. Goldberg, A.V. and Rao, S. Beyond the flow
decomposition barrier. Journal of the ACM 45, 5
(1998), 753–782.

18. Goldberg, A.V. and Tarjan, R.E. A new approach to the
maximum flow problem. Journal of the ACM 35, 4
(1988), 921–940.

19. Goldberg, A.V. and Tarjan, R.E. Finding
minimum-cost circulations by successive
approximation. Mathematics of Operations Research
15, 3 (1990), 430–466.

20. Goldberg, A.V., Hed, S., Kaplan, H., Tarjan, R.E.,
and Werneck, R.F. Maximum flows by
incremental breadth-first search. In Proceedings
of the 19th European Symposium on Algorithms.
Springer-Verlag, Heidelberg, Germany, 2011, 457–468.

21. Karger, D.R. and Levine, M. Finding maximum flows
in undirected graphs seems easier than bipartite
matching. In Proceedings of the 30th Annual ACM
Symposium on Theory of Computing. ACM Press, New
York, 1997.

22. Karzanov, A.V. Tochnaya otzenka algoritma
nakhojdeniya maksimalnogo potoka, primenennogo k
aadache ‘o predstavitelyakh’ [The exact time bound
for a maximum flow algorithm applied to the set
representatives problem]. In Problems in Cibernetics
5 (1973), 66–70.

23. Karzanov, A.V. Determining the maximal flow
in a network by the method of preflows. Soviet
Mathematical Dokladi 15 (1974), 434–437.

24. Kelner, A., Lee, Y.T., Orecchia, L., and Sidford, A. An
almost-linear-time algorithm for approximate max
flow in undirected graphs, and its multicommodity
generalizations. In Proceedings of the ACM-
SIAM Symposium on Discrete Algorithms. SIAM,
Philadelphia, 2014, 217–226.

25. Lee, T., Rao, S., and Srivastava, N. A new approach to
computing maximum flows using electrical flows. In
Proceedings of the Annual ACM Symposium on Theory
of Computing. ACM Press, New York, 2013, 755–764.

26. Madry, A. Navigating central path with electrical flows:
From flows to matchings, and back. In Proceedings
of the Annual IEEE Symposium on Foundations of
Computer Science. IEEE Press, New York, 2013,
253–262.

27. Orlin, J.B. Max Flows in O(nm) time, or better. In
Proceedings of the Annual ACM Symposium on
Theory of Computing. ACM Press, New York, 765–774.

28. Sherman, J. Nearly maximum flows in nearly linear
time. In Proceedings of the Annual IEEE Symposium
on Foundations of Computer Science. IEEE Press, New
York, 2013, 263–269.

29. Sleator, D.D. and Tarjan, R.E. A data structure for
dynamic trees. Journal of Computer and System
Sciences 26, 3 (1983), 362–391.

30. Sleator, D.D. and Tarjan, R.E. Self-adjusting binary
search trees. Journal of the ACM 32, 3 (1985), 652–686.

31. Tarjan, R.E., Ward, J., Zhang, B., Zhou, Y., and Mao, J.
Balancing applied to maximum network flow
problems. In Proceedings of the 14th European
Symposium on Algorithms. Springer-Verlag, Berlin,
2006, 612–623.

Andrew V. Goldberg (goldberg@microsoft.com) is a
principal researcher at Microsoft Research Silicon Valley
Lab, Mountain View, CA.

Robert E. Tarjan (ret@cs.princeton.edu) is the James S.
McDonnell Distinguished University Professor of
Computer Science at Princeton University, Princeton, NJ,
and a visiting researcher at Microsoft Research Silicon
Valley Lab, Mountain View, CA.

© 2014 ACM 0001-0782/14/08 $15.00

