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THE MAXIMUM FLOW  problem and its dual, the 
minimum cut problem, are classical combinatorial 
optimization problems with many applications in 
science and engineering; see, for example, Ahuja et al.1 
The problem is a special case of linear programming 
and can be solved using general linear programming 
techniques or their specializations (such as the 
network simplex method9). However, special-purpose 
algorithms are more efficient. Moreover, algorithm 
design techniques and data structures developed to 
compute maximum flows are useful for other problems 
as well. Although a special case of linear programming, 
the maximum flow problem is general enough so 
several important problems (such as the maximum 
bipartite matching problem) reduce to it.

Here, we survey basic techniques behind efficient 
maximum flow algorithms, starting with the history 
and basic ideas behind the fundamental maximum 

flow algorithms, then explore the al-
gorithms in more detail. We restrict 
ourselves to basic maximum flow al-
gorithms and do not cover interest-
ing special cases (such as undirected 
graphs, planar graphs, and bipartite 
matchings) or generalizations (such as 
minimum-cost and multi-commodity 
flow problems).

Before formally defining the maxi-
mum flow and the minimum cut prob-
lems, we give a simple example of 
each problem: For the maximum flow 
example, suppose we have a graph that 
represents an oil pipeline network 
from an oil well to an oil depot. Each 
arc has a capacity, or maximum num-
ber of liters per second that can flow 
through the corresponding pipe. The 
goal is to find the maximum number of 
liters per second (maximum flow) that 
can be shipped from well to depot. For 
the minimum cut problem, we want 
to find the set of pipes of the smallest 
total capacity such that removing the 
pipes disconnects the oil well from the 
oil depot (minimum cut).

The maximum flow, minimum cut 
theorem says the maximum flow value 
is equal to the minimum cut capacity. 
This fundamental theorem has many 
applications, particularly in the design 
of maximum flow algorithms.

We distinguish between flow algo-
rithms that are polynomial or strongly 
polynomial. We denote the number of 
vertices and arcs in the input network 
by n and m, respectively. For polyno-
mial algorithms, the arc capacities are 
integral, with U denoting the largest 
capacity; capacities can be represented 
by O(logU)-bit integers. (In practice, 
it is reasonable to assume capacities 
are integral; as implemented by com-
puter hardware, even floating point 
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numbers are represented as integers.) 
A polynomial algorithm is one with a 
worst-case time bound polynomial in 
n, m, and log U. For many applications, 
algorithms manipulate numbers that 
fit in a machine word, and elementary 
arithmetic operations take unit time. 
We assume this is the case when stating 
polynomial bounds. A strongly polyno-
mial algorithm is one with a worst-case 
time bound polynomial in n and m, 
even if capacities are arbitrary real 
numbers, assuming a computational 
model in which elementary arith-
metic operations on real numbers 
take unit time. Strongly polynomial 
algorithms are more natural from a 

combinatorial point of view, as only 
their arithmetic operation complex-
ity depends on the input number 
size, and other operation counts are 
independent of the size.

The first special-purpose algorithm 
for the maximum flow problem was the 
augmenting path method developed by 
Ford and Fulkerson.14 This method is, in 
general, not polynomial time but can be 
made so. One way to do this is through 
scaling, as introduced by Dinic.11

Edmonds and Karp12 introduced the 
shortest augmenting path method, mak-
ing the Ford-Fulkerson method strongly 
polynomial. To define path lengths, the 
Edmonds-Karp method uses the unit 

length function, which sets the length 
of each arc to one. Edmonds and Karp 
note that other length functions can be 
used but do not seem to lead to better 
time bounds. The key to the analysis is 
the observation that the shortest aug-
menting path length is non-decreasing 
and must eventually increase.

The blocking flow method augments 
along a maximal set of shortest paths by 
finding a blocking flow. Such augmenta-
tion increases the shortest augment-
ing path length and thereby speeds up 
the shortest augmenting path method. 
Blocking flows are implicit in Dinic’s 
algorithm10 and made explicit by  
Karzanov,23 who also introduced a 
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maximum flow algorithm. Note a 
decomposition of flows into paths can 
have a size of Ω(nm). This makes O(nm) 
a natural target bound. In 2013, Orlin27 
developed an algorithm that achieves 
this bound.

The flow decomposition size is not a 
lower bound for computing maximum 
flows. A flow can be represented in O(m) 
space, and dynamic trees can be used 
to augment flow on a path in logarith-
mic time. Furthermore, the unit capac-
ity problem on a graph with no parallel 
arcs can be solved in  
time,13,22 which is much better than 
O(nm). For a quarter century, there was 
a big gap between the unit capacity 
case and the general case. The gap was 
narrowed by Goldberg and Rao,17 who 
obtained an O(min(n2/3, )m log(n2/m) 
log U)-time algorithm for the problem 
with integral capacities.

To achieve this bound, Goldberg and 
Rao used a non-unit length function. In 
combination with new design and anal-
ysis techniques, this leads to the binary 
blocking flow algorithm that achieves 
the bound mentioned earlier. As the 
name implies, the algorithm is based on 
blocking flows. No comparable bound 
for the push-relabel method is known. 
This fact revives the theoretical impor-
tance of the blocking flow method.

Here, we assume familiarity with basic 
graph algorithms, including breadth- and 
depth-first search and have organized the 
article as follows: After introducing basic 
definitions, we discuss the algorithms. 
Our presentation is informal, including 
intuitive algorithm descriptions and the 
corresponding time bounds, but omits 
technical details, which can be found in 
the references.

Background
The input to the maximum flow prob-
lem is (G, s, t, u), where G = (V, A) is a 
directed graph with vertex set V and arc 
set A, s ∈ V is the source, t ∈ V is the sink 
(with s ≠ t), and u : A ⇒ R+ is the strictly 
positive capacity function. We some-
times assume capacities are integers 
and denote the largest capacity by U.

A flow f is a function on A that sat-
isfies capacity constraints on all arcs 
and conservation constraints at all 
vertices except s and t. The capac-
ity constraint for a ∈ A is 0 ≤ f (a) ≤ 
u(a) (flow does not exceed capacity). 
The conservation constraint for v is  

relaxation of flow called a “preflow” that 
allows an algorithm to change the flow 
on a single arc instead of on an entire 
augmenting path. Arc flow is updated 
through a push operation. Preflows 
allow faster algorithms for finding 
blocking flows.

An interesting special case of the 
maximum flow problem involves all 
arcs having unit capacities. As shown 
independently by Karzanov22 and Even 
and Tarjan,13 the blocking flow algo-
rithm in this case achieves better time 
bounds than in the general case for two 
reasons: the number of blocking flow 
computations is reduced, and the com-
putations are faster—linear time in the 
graph size.

The operations of a blocking flow 
algorithm can be divided into two parts: 
those that manipulate distances and 
those that manipulate flows. In theory, 
the latter dominate, motivating devel-
opment of data structures that allow 
changing flow values on a path more 
efficiently than one arc at a time. The 
first such data structure was developed 
by Galil and Naamad.15 A few years 
later, Sleator and Tarjan29,30 introduced 
the dynamic tree data structure, allow-
ing changing flow values on a path 
with k arcs in O(log k) time. This led to 
improvement in the theoretical time 
bound for finding a blocking flow, mak-
ing it almost linear.

Goldberg and Tarjan18 developed the 
push-relabel method as an alternative 
to the blocking flow method.a It main-
tains a preflow and updates it through 
push operations. It introduces the rela-
bel operation to perform fine-grain 
updates of the vertex distances. Push 
and relabel operations are local; that 
is, they apply to a single arc and vertex, 
respectively. These fine-grain opera-
tions provide additional flexibility that 
can be used to design faster algorithms. 
The fastest general-purpose maximum 
flow codes are based on the push-relabel 
method.7,16

For arbitrary real-valued capacities, 
the blocking flow problem can be solved 
in O(m log(n2/m) ) time,19 giving an  
O(nm log(n2/m) ) bound for the 

a The push-relabel method is sometimes called 
the preflow-push method, which is mislead-
ing, as Karzanov’s algorithm uses preflows 
and the push operation but does not use the 
relabel operation and is therefore not a push-
relabel algorithm.

The maximum 
flow, minimum cut 
theorem says  
the maximum flow 
value is equal  
to the minimum  
cut capacity.
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∑(u,v)∈A f (u, v) = ∑(v,w)∈ A  f(v, w) (the incom-
ing flow is equal to the outgoing flow). The 
flow value is the net flow into the sink:  
|f| = ∑(v,t)∈ A f (v, t) − ∑(t,v)∈ A f (t, v). If | f | 
is as large as possible, f is a maximum 
flow. A cut is a bipartition of the vertices 
S ∪ T = V with s ∈  S, t ∈  T.b The capacity of a 
cut is defined by u(S,T) = ∑v∈S,w∈T, (v,w)∈ Au(S,T) 
(the sum of capacities of arcs from S to 
T ). The max-flow/min-cut theorem14 says 
the maximum flow value is equal to the 
minimum cut capacity. Figures 1 and 2 
give an input network and a maximum 
flow on it, respectively.

Without loss of generality, we assume 
G is connected. Then m ≥ n − 1 and 
therefore n + m = O(m). We can also 
assume the graph has no parallel arcs, 
since we can combine parallel arcs and 
add their capacities.

Residual Graph and 
Augmenting Paths
An important notion for flow algorithms 
is a residual graph, encoding the possi-
ble changes of flow on arcs in a way that 
facilitates algorithm design. Suppose 
we have an arc a = (v, w) with u(a) = 9 and 
f (a) = 4. We can then increase the flow on 
a by up to five units without violating 
the capacity constraint. Furthermore, 
we can decrease the flow on a by up to 
four units. We would like to interpret 
decreasing flow on an arc a = (v.w) 
as increasing flow on the reverse arc 
aR = (w, v).

Given a flow f in G, we define the 
residual graph Gf = (V, Af) as follows: Af 
contains arcs a ∈ A such that f (a) < u(a) 
and arcs aR : a ∈ A such that f (a) > 0. We 
call these forward and reverse resid-
ual arcs, respectively. We define the 
residual capacity uf to be u(a) − f (a) for 
the former and f (aR) for the latter. For 
every arc a ∈ A, Gf contains the forward 
arc, the reverse arc, or both. Figure 3 
gives the residual graph for the flow 
in Figure 2. Note the residual graph 
can have parallel arcs even if the input 
graph is simple, as it can contain both 
an arc and its reversal.

A flow g in Gf defines the flow f ′ in 
G as follows: For a forward arc a ∈ Gf , 
f ′(a) = f (a) + g (a); for a reverse arc a ∈ Gf , 
f ′(aR) = f (aR) − g (a). Seeing that f ′ is a 

b Formally, this defines an s-t cut, though, here, 
we deal only with s-t cuts; in the literature, a 
minimum cut may also refer to the minimum 
cut value over all s, t pairs of minimum s-t cuts.

valid flow is straightforward.
An augmenting path is a path from 

s to t in Gf. Given an augmenting path 
P, we can augment f as follows: Let δ be 
the minimum residual capacity of the 
arcs on P and g be the flow of value on P.  
The corresponding flow f ′ on G has 
| f ′| = | f | + δ > | f |. An augmenting path 
can be found in O(m) time (such as by 
using breadth- or depth-first search).

Note that during an augmentation, 
at least one arc of P has residual capac-
ity δ before the augmentation and zero 
after the augmentation. We say such an 
arc is saturated by the augmentation. 
Saturated arcs are deleted from Gf . An 
arc a is added to Gf if uf (a) is zero before 
the augmentation, and the augmenta-
tion increases the flow on aR.

Using the max-flow/min-cut theo-
rem, one can show a flow f has maximum 
value if and only if Gf does not contain an 
augmenting path. This motivates the 
augmenting path algorithm: while Gf 
contains an augmenting path, find such 
a path and augment the flow on it.

If capacities are integral, the aug-
menting path algorithm always ter-
minates, since each augmentation 
increases the flow value by at least one. 
This observation, and the fact that the 
capacity of the cut ({s}, V − {s}) is O(nU), 
gives a pseudo-polynomial bound of 
O(nmU) on the algorithm’s running 
time. The bound is not polynomial 
because U can be exponential in the 
size of the problem input. If the capaci-
ties are real-valued, the algorithm need 
not terminate. As we shall see later, 
variants of this algorithm do run in 
polynomial time.

Scaling
Scaling is one way to make the augment-
ing path algorithm polynomial-time if the 
capacities are integral.

Recall that U is the largest arc capac-
ity and let k = élog2 Uù + 1, the number 
of bits needed to represent capacities. 
For i = 0, . . .,k, define ui(a) = ëu(a)/2k−iû. 
Note u0 ≡ 0, and for i > 0, ui is defined by 
the i most significant bits of u. The zero 
flow is maximum for u0.

Given a maximum flow fi for 
capacities ui (0 ≤ i < k), the algo-
rithm computes a maximum flow 
fi+1 for capacities ui+1 as follows. Note 
ui+1 = 2ui + bi+1, where bi+1(a) is the  
(i + 1)-st most significant bit of u(a). Thus 
f = 2fi is a feasible flow for capacities ui+1. 

We start with f and apply the augment-
ing path algorithm to compute fi+1.

To bound the number of augmenta-
tions, consider a minimum cut (S, T) 
for capacities ui. Since ff is a maximum 
flow, for every arc a from S to T we have 
ui(a) = fi(a), and thus for the initial flow f, 
we have ui+1(a) − f (a) ≤ 1. Therefore |f | is 
within m of maximum, and we need at 
most m augmentations to compute fi+1 
from fi. The running time of the scaling 
algorithm is thus O(m2 log U).

Shortest Augmenting Paths
Define the length of every arc in Gf to be 
one, and suppose we always choose a 
shortest augmenting path. This is nat-
ural, since breadth-first search finds 
shortest augmenting paths and takes 
linear time.

Consider a shortest-path augmenta-
tion. Let d(v) denote the distance from 
a vertex v to t in Gf, and let k = d(s). For 
an arc (v, w) on the augmenting path, 
we have d(v) = d(w) + 1. Therefore the 
reverse arc (w, v) is not on a path from 
s to t of length k or less. The augmenta-
tion deletes at least one arc on a path 

Figure 1. Input example.
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be reused later. In particular, the saved 
paths are linked during the augment-
ing path search, work that is amortized 
over the search for augmenting paths. 
Flow augmentation is performed using 
dynamic tree operations, at the cost of 
the logarithm of the corresponding 
augmenting path length. This appli-
cation of dynamic trees reduces the 
running time of the blocking flow 
algorithm from O(nm) to O(m log n). By 
restricting the maximum tree size and 
using additional data structures, this 
bound can be further improved to O(m 
log(n2/m) ),19 yielding an O(nm log(n2/m) ) 
maximum flow algorithm.

Although dynamic trees yield the best 
worst-case bounds, they have so far not 
been used in practical implementations 
because most practical instances are 
relatively easy, and the constant factors 
in dynamic tree implementations are 
relatively large.

Push-Relabel Method
The blocking flow algorithm uses 
global operations (such as building 
the auxiliary network and augment-
ing along a path). The push-relabel 
method uses local operations. These 
fine-grain operations give the method 
more flexibility, which can be used to 
make the method faster in practice.

Following Karzanov,23 the push-relabel 
method uses preflows. Preflows are like 
flows, but the conservation constraints 
are relaxed: ∑(u, v)∈A f (u, v) ≥ ∑(v,w)∈A f (v, w)  
for all v ∈  V − {s, t} (the incoming flow 
is at least the outgoing flow). We define 
excess by ef (v) = ∑(u, v)∈A f(u, v) − ∑(v,w)∈A f (v, w). 
A vertex with excess can push some of it 
to its residual neighbor. Intuitively, we 
want to push only to a neighbor that is 
closer to the sink. Karzanov23 uses dis-
tances in the auxiliary network to deter-
mine where to push flow.

The push-relabel method replaces 
the distances by a valid labeling, a 
relaxation of distances that can be 
updated locally. Given a flow f, we say 
a function d : V → N is a valid labeling 
if d(t) = 0 and for every (v, w) ∈ Af , we 
have d(v) ≤ d(w) + 1. One can show a 
valid labeling gives lower bounds on 
distances to t. In particular, if d(v) ≥ n,  
then there is no path from v to t in 
Gf, meaning v is on the source side of 
some minimum cut.

The push-relabel method maintains 
a preflow f and a valid distance labeling 

from s to t of length k and does not add 
any arcs on paths from s to t of length 
k or less. This observation leads to 
the key monotonicity property of the 
shortest augmenting path algorithm: 
For every vertex v, residual graph dis-
tances from s to v and from v to t are 
non-decreasing.

The monotonicity property yields a 
strongly polynomial time bound. Each 
augmentation saturates an arc on a 
path of the current shortest length. 
Therefore, after at most m augmenta-
tions, the distance from s to t must 
increase. Initially, the distance is at least 
one, and if t is reachable from s, the dis-
tance is at most n − 1. The total number  
of augmentations is thus O(nm). The 
time for one augmentation is O(m) to 
find the augmenting path and propor-
tional to the path length; that is, O(n) = 
O(m) to modify the flow. This gives an 
O(nm2) bound on the running time.

Blocking Flow Method
Given a network G with arc capacities, a 
flow f in G is blocking if every s-to-t path  
in G contains a saturated arc. Note 
f need not be a maximum flow, as 
there can be an s-to-t path in Gf that 

will contain the reverse of an arc of G 
(see Figure 4). But a maximum flow 
is always a blocking flow. As we shall 
see later, in an acyclic graph, blocking 
flows can be found more quickly than 
maximum flows.

The blocking flow algorithm con-
structs an auxiliary network G′f = (V, A′f ) 
where A′f contains all residual arcs 
belonging to some shortest s-to-t path. 
Note if (v, w) ∈ A′f , then d(v) = d(w) + 1, 
so G′f is acyclic. G′f can be constructed 
in O(m) time using breadth-first search. 
Suppose we compute a blocking flow 
g in G′f . Then f + g is a feasible flow in G. 
Furthermore, one can show the s-to-t dis-
tance in Gf+g is greater than that in Gf . It 
follows that a maximum flow can be com-
puted in at most n − 1 iterations, where 
the time for an iteration is dominated 
by the blocking flow computation.

Dinic10 introduced an algorithm for 
finding blocking flows in acyclic graphs, 
using depth-first search to find an aug-
menting path in G′f  that augments along 
the path and deletes saturated arcs 
from G′f . The key to the analysis is the 
observation that if depth-first search 
retreats from a vertex, there is no path 
from the vertex to t in G′f and the vertex 
can be deleted. One can use this obser-
vation to show the running time of the 
algorithm is proportional to n plus the 
total length of the augmenting paths 
found; the total length term domi-
nates. As an augmenting path has O(n) 
arcs and each augmentation saturates 
an arc, the running time of the block-
ing flow algorithm is O(nm). This gives 
an O(n2m) bound for Dinic’s maximum 
flow algorithm.

Using Dynamic Trees
The running time of the blocking flow 
algorithm is dominated by changes 
of arc flows that do not saturate the 
arc. A natural approach to improv-
ing the running time bound is to 
use a data structure that allows one 
to make several such changes in one 
data structure operation. This can be 
achieved by using a data structure to 
remember non-saturated portions of 
the augmenting paths. The dynamic 
tree data structure29,30 was devel oped 
for this purpose.

Intuitively, the dynamic tree block-
ing flow algorithm uses the data 
structure to remember non-saturated 
portions of augmenting paths that may 

Figure 4. Example of a blocking flow that is 
not a maximum flow.
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special case of  
the maximum flow 
problem involves  
all arcs having  
unit capacities.

d and updates them using operations 
push and relabel, respectively. We 
describe these operations next; a full 
description of the algorithm can be 
found in Goldberg and Tarjan.18

One way to start the push-relabel 
method is to saturate all arcs out of the 
source by setting their flow values to 
the corresponding capacity values, and 
to set d(s) = n (t is not reachable from s) 
and d(v) = 0 for v ¹ s. This creates ini-
tial flow excesses on vertices adjacent 
to the source. Intuitively, the method 
pushes flow excesses toward the sink 
and relabels vertices with excess if the 
excess cannot be pushed toward the 
sink. We say a vertex v is active if v ¹ t 
and ef (v) > 0.

The push operation applies to an 
arc (v, w) if v is active and d(w) < d(v), 
or w is closer to t according to d. The 
operation determines the maximum 
amount of flow that can be pushed, 
δ = min(ef (v); uf (v, w) ) and pushes this 
amount of flow along (v, w) by setting 
uf (v, w) = uf (v, w) − δ, uf (w, v) = uf (w, v) +  
δ, ef (v) = ef (v) − δ, and ef (w) = ef (w)+ δ. 
We say a push is saturating if δ = uf 
(v, w) and non-saturating otherwise. 
Note that a non-saturating push gets 
rid of all the excess of v; see Figure 5 
for an example of a non-saturating 
push operation.

The relabel operation applies to an 
active vertex v such that no push opera-
tion applies to an arc (v, w), or for all 
(v, w) ∈ Af, d(v) ≤ d(w). The operation 
sets d(v) = min{n, 1 + min(v, w)∈ Af

d(w)}. (A 
vertex with excess always has an outgo-
ing residual arc.) Note the relabel oper-
ation always increases d(v); see Figure 
6 for an example of a relabel operation.

The time complexity of the push-
relabel method is as follows. The total 
time for relabeling operations is O(nm), 
and the time for saturating pushes is 
O(nm) as well. The time for non-saturat-
ing pushes is O(n2m); these operations 
dominate the running time bound, 
which is also O(n2m).

Note our description of the push-
relabel method is generic; we have 
not specified the rule to select the 
next active vertex to process. Some 
operation orderings lead to better 
bounds. In particular, for the highest 
label push-relabel algorithm, which 
always selects an active vertex with 
the highest distance label to process 
next, the time for non-saturating 

pushes and the overall time bound 
are O(n2 ).6 Using dynamic trees, 
one can get an O(nm log(n2/m) ) 
bound18 more simply than through 
the blocking flow method.

The highest-label algorithm is also 
one of the most practical variants of 
the push-relabel method. However, 
robust practical performance requires 
additional heuristics. The push rela-
bel method is very flexible, making 
it easy for the algorithm designer to 
add heuristics. For example, one can 
restrict active vertices to those with 
d(v) < n and do post-processing to 
compute the final flow. One can also 
do periodic backward breadth-first 
searches to maximize d(v) values. 
See, for example, Cherkassky and 
Goldberg7 and Goldberg.16

Unit Capacities
Now consider the special case of the 
maximum flow problem in which all 
input arc capacities are one. Since 
merging parallel arcs results in non-
unit capacities, we cannot assume 
the graph has no parallel arcs, so we 
consider two cases—parallel arcs and 
no parallel arcs—in both of which 
one obtains better bounds for Dinic’s 
algorithm.

First, note that after an augmenta-
tion, all arcs on the augmenting path 
are saturated. Therefore, an arc partici-
pates in at most one augmentation per 
blocking flow, and the blocking flow 
algorithm runs in O(m) time.

Moreover, one can show the num-
ber of blocking flow computations is 
O( ). To prove this bound, we divide 
the maximum flow computation into 
two phases. In the first phase, the s-to-t 
distance is less than . Since an aug-
mentation by a blocking flow increases 
the distance, the first phase consists of 
at most  augmentations. One can 
show if the s-to-t distance is at least ,  
the residual flow value is O( ). Since 
an augmentation decreases the value, 
the number of augmentations in the 
second phase is O( ).

This analysis implies an O(m3/2) 
bound for the unit capacity problem. 
If G has no parallel arcs, one can also 
obtain an O(n2/3m) bound, which is bet-
ter for dense graphs.

Binary Blocking Flow Algorithm
The time bounds for the blocking flow 
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The maximum flow 
problem is far from 
being completely 
understood, and 
new and improved 
algorithms continue 
to be discovered.

and stops the blocking flow computa-
tion if the value of the flow being com-
puted reaches ∆. One can show that 
since each strongly connected compo-
nent is induced by large-capacity arcs, 
one can always route a flow of value 
∆ through it. At the end of each itera-
tion, we expand G′f  and extend the flow 
we found to Gf . One can show that a 
blocking flow in G′f  extends to a block-
ing flow in Gf . This gives us two types of 
iterations: ones that find a blocking  
flow and ones that find a flow of value ∆. 
The s-to-t distance increases in the for-
mer case and does not decrease in the 
latter case.

To deal with the second problem, 
one can show the arcs (v, w) that may 
have their length decrease (the special 
arcs) have the property that the residual 
capacity of (v, w) is at least 3∆ and the 
residual capacity of (w, v) at least 2∆. The 
algorithm contracts such arcs, assuring 
that after an augmentation by a block-
ing flow, the s-to-t distance increases 
even if these arc lengths decrease.

Using the dynamic-tree data struc-
ture, the binary flow algorithm runs in 
O(min(n2/3, )m log(n2/m) logU) time, 
which is within a log(n2/m) log U factor of 
the best known upper bound for the unit 
capacity problem with no parallel arcs.

Conclusion
As mentioned here, a 2013 algorithm 
of Orlin27 achieves an O(nm) strongly 
polynomial bound for the maximum 
flow problem, as well as an O(n2/log n)  
bound for m = O(n). This result is quite 
sophisticated and uses a combination of  
ideas from maximum flow, minimum-
cost flow, and dynamic connectivity algo-
rithms. In particular, Orlin uses the binary 
blocking flow algorithm as a subroutine. 
His result closes a longstanding open 
problem of the existence of an O(nm) 
maximum flow algorithm. However, the 
binary blocking flow algorithm bounds 
suggest an O(nm/nε) strongly polyno-
mial algorithm may exist.

The maximum flow problem is far 
from being completely understood, and 
new and improved algorithms con-
tinue to be discovered. We would like 
to mention four intriguing directions 
that have yielded new results: The 
first is to generalize the push-rela-
bel approach to allow the flow excess 
(incoming minus outgoing flow) at 
a vertex to be arbitrary—positive, 

and push-relabel algorithms are Ω(nm) 
in the general case, while for unit 
capacities, the algorithm of Dinic runs 
in O(min(n2/3, )m) time. Here, we 
discuss the intuition behind the binary 
blocking flow algorithm of Goldberg 
and Rao,17 which narrows the gap for 
the integral capacity case.

Instead of assigning unit length 
to every residual arc, the binary 
blocking flow algorithm uses a zero-
one length function, assigning zero 
length to the arcs with large residual 
capacity and unit length to the arcs 
with small residual capacity. The fact 
that arcs with unit length have small 
residual capacity allows the algo-
rithm to come close to the unit capac-
ity time bound.

The algorithm maintains a flow 
f and an upper bound F on the dif-
ference between the maximum flow 
value and the current flow value |f|. 
The algorithm proceeds in phases; 
each phase decreases F by a factor of 
two. In a phase, the value of F remains 
constant except for the very end of the 
phase, when it is decreased. A thresh-
old parameter ∆, which is a function 
of F and thus remains constant during 
a phase, determines whether residual 
arcs are large or small; large arcs have a 
residual capacity of at least 3∆, and the 
remaining ones are small.

As in the case of the unit length func-
tion, we define the auxiliary network 
G′f to be the graph induced by the arcs 
on shortest s-to-t paths. The algorithm 
repeatedly computes a blocking flow in 
G′f , updating G′f before each computa-
tion, until F decreases by a factor of two. 
The decrease in F happens if one either 
increases the flow by F/2 or the s-to-t 
distance becomes sufficiently large. As 
in the unit capacity case, a large s-t dis-
tance implies a bound on the residual 
flow value.

This use of the binary length func-
tion leads to two problems that must 
be addressed: First, G′f need not be 
acyclic (it can contain cycles of zero-
length arcs), and, second, an arc 
length can decrease from one to zero, 
and, as a side effect, the s-to-t distance 
may fail to increase after a blocking 
flow augmentation.

To deal with the first problem, the 
algorithm contracts strongly connected 
components of G′f , looks for a block-
ing flow in the resulting acyclic graph, 
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negative, or zero. Given a residual arc 
(v, w) such that the excess at v exceeds 
the excess at w, one can balance the 
arc by increasing its flow to either sat-
urate the arc or equalize the excesses 
at v and w. The flow balancing algo-
rithm31 starts with some initial flow 
(such as zero flow), dummy excesses 
of plus infinity at s and minus infin-
ity at t, and repeats arc-balancing 
steps until all such steps move a suf-
ficiently small amount of flow, then 
rounds the flow to obtain an exact 
maximum flow. Although the run-
ning time of this algorithm (O(n2m 
log U) ) is not competitive with that 
of the best algorithms, the method 
is simple and extends to give a very 
simple and practical algorithm for a 
parametric version of the maximum 
flow algorithm.2,31

Another approach that yields a 
fast practical algorithm for maximum 
flow problems in computer-vision 
applications is that of Boykov and 
Kolmogorov,5 improving the basic 
augmenting path method by using 
bidirectional search to find augment-
ing paths, in combination with a clever 
method for retaining information 
from previous searches to speed up 
future ones. The Boykov-Kolmogorov 
method does not augment on short-
est paths and has not been proved to 
be polynomial but can be modified to 
find exact shortest paths and to be poly-
nomial without sacrificing its practical 
performance, indeed improving it in 
many cases. The resulting algorithm20 
computes shortest augmenting paths 
incrementally, using information from 
previous searches. Special techniques 
have yielded fast maximum flow algo-
rithms for planar graphs and for undi-
rected graphs; for the latest results, see 
Borradaile and Klein,3 Borradaile et al.,4 
and Karger and Levine.21

A recent series of papers, including 
Christiano et al.,8 Kelner et al.,24 Lee et 
al.,25 and Sherman,28 have studied the 
problem of finding an approximately 
maximum flow (within a factor of 1 + ε 
of maximum) in undirected graphs 
and culminates in a near-linear time 
algorithm. These papers used linear 
algebraic techniques and electrical 
flows. Building on this work, Madry26 
in 2013 obtained a breakthrough result, 
an exact algorithm for unit capacity 
flows in directed graphs running in  

Õ(m10/7) time. This improves the clas-
sical O(min(n2/3, m1/2)m) bound for 
the problem, suggesting that better 
bounds for the exact capacitated maxi-
mum flow problem in directed graphs 
may be possible. Whether these ideas 
can be used to find exact maximum 
flows in directed graphs with inte-
gral capacities is an intriguing open 
question. In summary, progress on 
maximum flow algorithms has been 
made for more than half a century, 
and continues.
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