
Manas Thakur
PACE Lab, IIT Madras

What does the JVM do with my code?

 Manas Thakur 2

Language Translator

Image source: http://www.bbc.co.uk/education/guides/zgmpr82/revision

 Manas Thakur 3

Compiler vs Interpreter

Image source: https://stackoverfow.com/a/31551282

 Manas Thakur 4

Image source: https://www.upwork.com

Compiler vs Interpreter

 Manas Thakur 5

Outline

● Basics
● The Java way
● HotSpot under the hood
● Playing around

 Manas Thakur 6

The Java Compilation+Execution Model

Java Compiler
(javac)

Hello.
java

Hello.
class

Java Runtime
Environment

(java)

Machine 1 Machine 2

Java Virtual Machine
(JVM)

JDK
Library

 Manas Thakur 7

A Bit of Bytecode

Bytecode indices

javap -c class_name

 Manas Thakur 8

What does the JVM do with my code?

● Basics
● The Java way
● HotSpot under the hood
● Playing around

 Manas Thakur 9

Is Java Bytecode interpreted or compiled?

Java Bytecode is interpreted as well as compiled!!

Oracle HotSpot Execution Engine

C++/Template
Interpreter

Client
Compiler

(C1)

Server
Compiler

(C2)

 Manas Thakur 10

The “HotSpot” JVM
● HotSpot uses tiered compilation with profling

– Starts of with interpreter

– Hot spots get compiled as they get executed
● Method entry-points changed dynamically
● Loops replaced on-the-stack

● Interpreters:

– C++ interpreter (deprecated)

– Template interpreter

● Just-In-Time (JIT) Compilers:

– C1 (aka client)

– C2 (aka server)

Oracle HotSpot Execution
Engine

C++/Template
Interpreter

Client
Compiler

(C1)

Server
Compiler

(C2)

 Manas Thakur 11

The C++ Interpreter
● Simple switch-case

● Disadvantage: Slow

– Too many comparisons
– No idea where to go for the next bytecode

 Manas Thakur 12

The C1 Compiler
● Targets fast compilation
● Still performs several optimizations:

– Method inlining
– Dead code/path elimination
– Heuristics for optimizing call sites
– Constant folding
– Peephole optimizations
– Linear-scan register allocation, etc.

● Threshold: 1000 to 2000

 Manas Thakur 13

The C2 Compiler
● Targets more-and-more optimization
● Performs expensive optimizations (apart from the

ones performed by C1):
– Escape analysis
– Null-check elimination
– Loop unrolling/unswitching
– Branch prediction
– Graph-coloring based register allocation, etc.

● Threshold: 10000 to 15000

 Manas Thakur 14

Compilation Levels

● 0 – Interpreter
● 1 – Pure C1
● 2 – C1 with invocation and backedge counting
● 3 – C1 with full profling
● 4 – C2 (full optimization)

0 3 4

4

130

0

 Manas Thakur 15

Deoptimization
● Optimistic optimizations:

– Branch prediction

– Implicit null checks

– Morphism

● When an assumption fails, the compiled method may be
invalidated, and the execution falls back to the interpreter

● Consistency maintained using safepoints

● Method states: in use, not entrant, zombie, unloaded

 Deoptimization is costly; happens lesser the better

 Manas Thakur 16

HotSpot in Action

GIF source: https://plus.google.com/115554596490492757072

 Manas Thakur 17

When Theory becomes Practice

● Basics
● The Java way
● HotSpot under the hood
● Playing around

 Manas Thakur 18

Some Useful Flags

● Compilation details: -XX:+PrintCompilation
● Dump assembly: -XX:+PrintInterpreter
● Interpreter-only mode: -Xint
● Compiler-only mode: -Xcomp
● Disable levels 1, 2, and 3: -XX:-TieredCompilation
● Stop compilation at level n: -XX:TieredStopAtLevel=n

 Manas Thakur 19

Some key learnings

● Java programs are not inherently slow.

● Compiler analyses/optimizations tremendously afect the
program performance.

● Java programs are interpreted as well as compiled.

● Trust the JVM, and help it.

● Keep experimenting.

 Manas Thakur 20

Pointers for the enthusiast

● https://www.cubrid.org/blog/understanding-jvm-internals

● https://www.artima.com/insidejvm/ed2/jvmP.html

● https://declara.com/content/3gBB6Jge

● https://www.infoq.com/presentations/hotspot-memory-data-
structures

● http://www.progdoc.de/papers/Jax2012/jax2012.html

● https://www.ibm.com/developerworks/library/j-jtp12214/index.html

 Manas Thakur 21

Stay Hungry, Stay Foolish, Stay Connected

www.cse.iitm.ac.in/~manas
manasthakur.github.io

linkedin.com/in/manasthakur

github.com/manasthakur
gist.github.com/manasthakur

manasthakur.wordpress.com

manasthakur17@gmail.com

www.cse.iitm.ac.in/~manas/docs/cs6843-hotspot.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

