I What does the JVM do with my code?

Manas Thakur ((

PACE Lab, IIT Madras ) Java




Language Translator

o

. .
| —
High level language

Easy for
programmer to
understand

The computer’s
own language

Translator
program

Contains Binary
English numbers
words All 1s and 0s

Image source: http://www.bbc.co.uk/education/guides/zgmpr82/revision

Manas Thakur




Compiler vs Interpreter

Compiler

ES e
A

Image source: https://stackoverflow.com/a/31551282

Manas Thakur 3




Input ... takes an entire program as its input.

.. generates intermediate object code.

.. executes faster.

.. reguires more memory in order to
create object code.

Memory

.. doesn’t need to compile every
single time, just once.

Workload

.. displays errors once the entire

Errors program is checked.

Compiler vs Interpreter

AN INTERPRETER

... takes a single line of code, or

instruction, as its input.

... does not generate any intermediate

object code.

... executes slower.

.. requires less memory

(doesn't create object code).

.. has to convert high-level languages

to low-level programs at execution.

... displays errors when each

instruction is run.

Image source: https://www.upwork.com

Manas Thakur



I Outline

* The Java way

Manas Thakur

HONEST JON by Jon Clark

Brothers and sisters, I've just spent
the last ten minutes giving you an
outline of everything I'm going to
speak on but unfortunately, my
time is now up...

)

Ways to begin a talk: The Overdone Overview

www. honesiioncomics.blogspol com



The Java Compilation+Execution Model

/Hello./ |

/ java /|

Machine 1

Java Compiler
(javac)

Hello
— class

Manas Thakur

Machine 2

Java Runtime
Environment
(java)

JDK
Library

Java Virtual Machine
(JVM)



I A Bit of Bytecode

bipush 10
1store 1

bipush 20
1store 2

1load 1

1load 2

1add

1store 3

return

1nt a 10;
int b 20;
1nt ¢ = a + b;

QW OO O Un WKN OO

=

Bytecode indices

jJavap -c class_name

Manas Thakur




I What does the JVM do with my code?

HotSpot under the hood

Manas Thakur




Is Java Bytecode interpreted or compiled?

Java Bytecode is interpreted as well as compiled!!

Oracle HotSpot Execution Engine

C++/Template
Interpreter

Client Server
Compiler Compiler
(C1) (C2)

Manas Thakur




I The “"HotSpot” JVM

* HotSpot uses tiered compilation with profiling

- Starts off with interpreter Oracle Hoéﬁgi‘r’]te'fxec““"”

- Hot spots get compiled as they get executed e

* Method entry-points changed dynamically Interpreter
* Loops replaced on-the-stack
* Interpreters:
Client Servgr
- (C++interpreter (deprecated) CO(rg%Ier Co(rgg;ler

- Template interpreter
* Just-In-Time (JIT) Compilers:
- C1 (aka client)

- C2 (aka server)

Manas Thakur 10




The C++ Interpreter

* Simple switch-case

switch (bytecode) {

case nop : break;
case aconst _null: push(null); break;
case 1const 1 : push(1); break;

* Disadvantage: Slow

- Too many comparisons

- No idea where to go for the next bytecode

Manas Thakur

11



I The C1 Compiler

* Targets fast compilation

* Still performs several optimizations:

Method inlining

Dead code/path elimination
Heuristics for optimizing call sites
Constant folding

Peephole optimizations

Linear-scan register allocation, etc.

* Threshold: 1000 to 2000

Manas Thakur

12



I The C2 Compiler

* Targets more-and-more optimization

* Performs expensive optimizations (apart from the
ones performed by CT1):

- Escape analysis

— Null-check elimination

- Loop unrolling/unswitching
- Branch prediction

- Graph-coloring based register allocation, etc.
* Threshold: 10000 to 15000

Manas Thakur




I Compilation Levels

* 0 - Interpreter

* 1 -Pure C1

2 - C1 with invocation and backedge counting

* 3 - C1 with full profiling 0 — 3 — 4

4 - C2 (full optimization) 0 —— 4

Manas Thakur

14



I Deoptimization

* Optimistic optimizations:
- Branch prediction

= Implicit null checks

- Morphism

* When an assumption fails, the compiled method may be
invalidated, and the execution falls back to the interpreter

* Consistency maintained using safepoints

* Method states; in use, not entrant, zombie, unloaded

Deoptimization is costly; happens lesser the better

Manas Thakur 15



HotSpot in Action

jemo time

GIF source: https://plus.google.com/115554596490492757072

Manas Thakur

16



When Theory becomes Practice

* Playing around

"It was here when Harris decided to 'tweak’ things a bat..."

Manas Thakur 17




Some Useful Flags

Compilation details: -XX:+PrintCompilation

Dum
Inter

Com

0 assembly: -XX:+PrintInterpreter

oreter-only mode: -Xint

niler-only mode: -Xcomp

Disable levels 1, 2, and 3: -XX:-TieredCompilation

Stop

compilation at level n: -XX:TieredStopAtLevel=n

Manas Thakur 18



Some key learnings

Java programs are not inherently slow.

Compiler analyses/optimizations tremendously affect the
program performance.

Java programs are interpreted as well as compiled.

Trust the JVM, and help it.

Keep experimenting.

Manas Thakur

19



Pointers for the enthusiast

* https://www.cubrid.org/blog/understanding-jvm-internals
* https:.//www.artima.com/insidejvm/ed2/jvmP.html|
* https://declara.com/content/3gBB6/ge

* https.//www.infoq.com/presentations/hotspot-memory-data-
structures

* http.//www.progdoc.de/papers/|ax2012/jax2012.html]
* https.//www.ibm.com/developerworks/library/j-jtp12214/index.html

Manas Thakur 20




Stay Hungry, Stay Foolish, Stay Connected

www.cse.iitm.ac.in/~manas
manasthakur.github.io

manasthakur17@gmail.com M
linkedin.com/in/manasthakur m
®

www.cse.iitm.ac.in/~manas/docs/cs6843-hotspot.pdf

github.com/manasthakur
gist.github.com/manasthakur

manasthakur.wordpress.com

Manas Thakur 21




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

