I What does the JVM do with my code?
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Image source: http://www.bbc.co.uk/education/guides/zgmpr82/revision
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Compiler vs Interpreter
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Image source: https://stackoverflow.com/a/31551282
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Input ... takes an entire program as its input.

.. generates intermediate object code.

.. executes faster.

.. reguires more memory in order to
create object code.

Memory

.. doesn’t need to compile every
single time, just once.

Workload

.. displays errors once the entire

Errors program is checked.

Compiler vs Interpreter

AN INTERPRETER

... takes a single line of code, or

instruction, as its input.

... does not generate any intermediate

object code.

... executes slower.

.. requires less memory

(doesn't create object code).

.. has to convert high-level languages

to low-level programs at execution.

... displays errors when each

instruction is run.

Image source: https://www.upwork.com
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I Outline

* The Java way
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HONEST JON by Jon Clark

Brothers and sisters, I've just spent
the last ten minutes giving you an
outline of everything I'm going to
speak on but unfortunately, my
time is now up...

)

Ways to begin a talk: The Overdone Overview

www. honesiioncomics.blogspol com



The Java Compilation+Execution Model

/Hello./ |

/ java /|

Machine 1

Java Compiler
(javac)

Hello
— class
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Machine 2

Java Runtime
Environment
(java)

JDK
Library

Java Virtual Machine
(JVM)



I A Bit of Bytecode

bipush 10
1store 1

bipush 20
1store 2

1load 1

1load 2

1add

1store 3

return

1nt a 10;
int b 20;
1nt ¢ = a + b;

QW OO O Un WKN OO

=

Bytecode indices

jJavap -c class_name
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I What does the JVM do with my code?

HotSpot under the hood
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Is Java Bytecode interpreted or compiled?

Java Bytecode is interpreted as well as compiled!!

Oracle HotSpot Execution Engine

C++/Template
Interpreter

Client Server
Compiler Compiler
(C1) (C2)
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I The “"HotSpot” JVM

* HotSpot uses tiered compilation with profiling

- Starts off with interpreter Oracle Hoéﬁgi‘r’]te'fxec““"”

- Hot spots get compiled as they get executed e

* Method entry-points changed dynamically Interpreter
* Loops replaced on-the-stack
* Interpreters:
Client Servgr
- (C++interpreter (deprecated) CO(rg%Ier Co(rgg;ler

- Template interpreter
* Just-In-Time (JIT) Compilers:
- C1 (aka client)

- C2 (aka server)
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The C++ Interpreter

* Simple switch-case

switch (bytecode) {

case nop : break;
case aconst _null: push(null); break;
case 1const 1 : push(1); break;

* Disadvantage: Slow

- Too many comparisons

- No idea where to go for the next bytecode
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I The C1 Compiler

* Targets fast compilation

* Still performs several optimizations:

Method inlining

Dead code/path elimination
Heuristics for optimizing call sites
Constant folding

Peephole optimizations

Linear-scan register allocation, etc.

* Threshold: 1000 to 2000
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I The C2 Compiler

* Targets more-and-more optimization

* Performs expensive optimizations (apart from the
ones performed by CT1):

- Escape analysis

— Null-check elimination

- Loop unrolling/unswitching
- Branch prediction

- Graph-coloring based register allocation, etc.
* Threshold: 10000 to 15000
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I Compilation Levels

* 0 - Interpreter

* 1 -Pure C1

2 - C1 with invocation and backedge counting

* 3 - C1 with full profiling 0 — 3 — 4

4 - C2 (full optimization) 0 —— 4
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I Deoptimization

* Optimistic optimizations:
- Branch prediction

= Implicit null checks

- Morphism

* When an assumption fails, the compiled method may be
invalidated, and the execution falls back to the interpreter

* Consistency maintained using safepoints

* Method states; in use, not entrant, zombie, unloaded

Deoptimization is costly; happens lesser the better
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HotSpot in Action

jemo time

GIF source: https://plus.google.com/115554596490492757072
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When Theory becomes Practice

* Playing around

"It was here when Harris decided to 'tweak’ things a bat..."
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Some Useful Flags

Compilation details: -XX:+PrintCompilation

Dum
Inter

Com

0 assembly: -XX:+PrintInterpreter

oreter-only mode: -Xint

niler-only mode: -Xcomp

Disable levels 1, 2, and 3: -XX:-TieredCompilation

Stop

compilation at level n: -XX:TieredStopAtLevel=n
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Some key learnings

Java programs are not inherently slow.

Compiler analyses/optimizations tremendously affect the
program performance.

Java programs are interpreted as well as compiled.

Trust the JVM, and help it.

Keep experimenting.

Manas Thakur
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Pointers for the enthusiast

* https://www.cubrid.org/blog/understanding-jvm-internals
* https:.//www.artima.com/insidejvm/ed2/jvmP.html|
* https://declara.com/content/3gBB6/ge

* https.//www.infoq.com/presentations/hotspot-memory-data-
structures

* http.//www.progdoc.de/papers/|ax2012/jax2012.html]
* https.//www.ibm.com/developerworks/library/j-jtp12214/index.html
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Stay Hungry, Stay Foolish, Stay Connected

www.cse.iitm.ac.in/~manas
manasthakur.github.io

manasthakur17@gmail.com M
linkedin.com/in/manasthakur m
®

www.cse.iitm.ac.in/~manas/docs/cs6843-hotspot.pdf

github.com/manasthakur
gist.github.com/manasthakur

manasthakur.wordpress.com
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