
CS1100 – Introduction to Programming

Instructor: Shweta Agrawal
Lecture 28

• Data Types in C, Operators. Input and the
Output.

• Modifying the control flow in Programs
if-else, switch, loops : while, do-while,
for.

• Arrays and Strings in C.

• Functions & modular programming.

• Recursion.


So far...

• Pointers in C, Pass by reference

• Dynamic memory allocation

• Structures in C

 Up Next...



CS1100 – Introduction to Programming

Instructor: Shweta Agrawal
Lecture 28

• Data Types in C, Operators. Input and the
Output.

• Modifying the control flow in Programs
if-else, switch, loops : while, do-while,
for.

• Arrays and Strings in C.

• Functions & modular programming.

• Recursion.


So far...

• Pointers in C, Pass by reference

• Dynamic memory allocation

• Structures in C

 Up Next...



CS1100 – Introduction to Programming

Instructor: Shweta Agrawal
Lecture 28

• Data Types in C, Operators. Input and the
Output.

• Modifying the control flow in Programs
if-else, switch, loops : while, do-while,
for.

• Arrays and Strings in C.

• Functions & modular programming.

• Recursion.


So far...

• Pointers in C, Pass by reference

• Dynamic memory allocation

• Structures in C

 Up Next...



More on pointers : Segmentation Fault

• int *ptr1; //ptr1 is a pointer to an integer

• What does ptr1 point to before initialization? garbage

• What is the output of this piece of code?

#include<stdio.h>

int main() {

int count;

int *countPtr;

count = *countPtr;

printf("%d\n", count);

}

Unpredictable !!



More on pointers : Segmentation Fault

• int *ptr1; //ptr1 is a pointer to an integer

• What does ptr1 point to before initialization? garbage

• What is the output of this piece of code?

#include<stdio.h>

int main() {

int count;

int *countPtr;

count = *countPtr;

printf("%d\n", count);

}

Unpredictable !!



More on pointers : Segmentation Fault

• int *ptr1; //ptr1 is a pointer to an integer

• What does ptr1 point to before initialization? garbage

• What is the output of this piece of code?

#include<stdio.h>

int main() {

int count;

int *countPtr;

count = *countPtr;

printf("%d\n", count);

}

Unpredictable !!



More on pointers : Segmentation Fault

• int *ptr1; //ptr1 is a pointer to an integer

• What does ptr1 point to before initialization? garbage

• What is the output of this piece of code?

#include<stdio.h>

int main() {

int count;

int *countPtr;

count = *countPtr;

printf("%d\n", count);

}

Unpredictable !!



More on Pointers : Pointer to pointers

Syntax: type **ptrname Example : int **ptr;

int var = 789;

int *ptr2;

int **ptr1; // pointer which points to an integer pointer.
ptr2 = &var; // storing address of var in ptr2.
ptr1 = &ptr2; // storing the address of ptr2 in ptr1.

What are the values of var, *ptr2, **ptr1?



More on Pointers : Pointer to pointers

Syntax: type **ptrname

Example : int **ptr;

int var = 789;

int *ptr2;

int **ptr1; // pointer which points to an integer pointer.
ptr2 = &var; // storing address of var in ptr2.
ptr1 = &ptr2; // storing the address of ptr2 in ptr1.

What are the values of var, *ptr2, **ptr1?



More on Pointers : Pointer to pointers

Syntax: type **ptrname Example : int **ptr;

int var = 789;

int *ptr2;

int **ptr1; // pointer which points to an integer pointer.
ptr2 = &var; // storing address of var in ptr2.
ptr1 = &ptr2; // storing the address of ptr2 in ptr1.

What are the values of var, *ptr2, **ptr1?



More on Pointers : Pointer to pointers

Syntax: type **ptrname Example : int **ptr;

int var = 789;

int *ptr2;

int **ptr1; // pointer which points to an integer pointer.

ptr2 = &var; // storing address of var in ptr2.
ptr1 = &ptr2; // storing the address of ptr2 in ptr1.

What are the values of var, *ptr2, **ptr1?



More on Pointers : Pointer to pointers

Syntax: type **ptrname Example : int **ptr;

int var = 789;

int *ptr2;

int **ptr1; // pointer which points to an integer pointer.
ptr2 = &var; // storing address of var in ptr2.

ptr1 = &ptr2; // storing the address of ptr2 in ptr1.

What are the values of var, *ptr2, **ptr1?



More on Pointers : Pointer to pointers

Syntax: type **ptrname Example : int **ptr;

int var = 789;

int *ptr2;

int **ptr1; // pointer which points to an integer pointer.
ptr2 = &var; // storing address of var in ptr2.
ptr1 = &ptr2; // storing the address of ptr2 in ptr1.

What are the values of var, *ptr2, **ptr1?



More on Pointers : Pointer to pointers

Syntax: type **ptrname Example : int **ptr;

int var = 789;

int *ptr2;

int **ptr1; // pointer which points to an integer pointer.
ptr2 = &var; // storing address of var in ptr2.
ptr1 = &ptr2; // storing the address of ptr2 in ptr1.

What are the values of var, *ptr2, **ptr1?



Pointers and Arrays

• In C-language, the name of the array is always a pointer to
the beginning of the array.

• When we declare the array, this pointer is also declared and
initialized automatically.

• That is, if we declare an array char board[10];.

• The dereferncing *board will gives us the array element
board[0];

• That is, &board[0] is equivalent to board.

• This pointer board can only point to this array and cannot be
reassigned.



Pointers and Arrays

• In C-language, the name of the array is always a pointer to
the beginning of the array.

• When we declare the array, this pointer is also declared and
initialized automatically.

• That is, if we declare an array char board[10];.

• The dereferncing *board will gives us the array element
board[0];

• That is, &board[0] is equivalent to board.

• This pointer board can only point to this array and cannot be
reassigned.



Pointers and Arrays

• In C-language, the name of the array is always a pointer to
the beginning of the array.

• When we declare the array, this pointer is also declared and
initialized automatically.

• That is, if we declare an array char board[10];.

• The dereferncing *board will gives us the array element
board[0];

• That is, &board[0] is equivalent to board.

• This pointer board can only point to this array and cannot be
reassigned.



Pointers and Arrays

• In C-language, the name of the array is always a pointer to
the beginning of the array.

• When we declare the array, this pointer is also declared and
initialized automatically.

• That is, if we declare an array char board[10];.

• The dereferncing *board will gives us the array element
board[0];

• That is, &board[0] is equivalent to board.

• This pointer board can only point to this array and cannot be
reassigned.



Pointers and Arrays

• In C-language, the name of the array is always a pointer to
the beginning of the array.

• When we declare the array, this pointer is also declared and
initialized automatically.

• That is, if we declare an array char board[10];.

• The dereferncing *board will gives us the array element
board[0];

• That is, &board[0] is equivalent to board.

• This pointer board can only point to this array and cannot be
reassigned.



Pointers and Arrays

• In C-language, the name of the array is always a pointer to
the beginning of the array.

• When we declare the array, this pointer is also declared and
initialized automatically.

• That is, if we declare an array char board[10];.

• The dereferncing *board will gives us the array element
board[0];

• That is, &board[0] is equivalent to board.

• This pointer board can only point to this array and cannot be
reassigned.



Pointers and Arrays

int arr[4];



Array access using pointers

int arr[4];

• &arr[0] is same as arr.

• &arr[1] is same as (arr+1).

• &arr[2] is same as (arr+2).

• &arr[3] is same as (arr+3).

• &arr[i] is same as (arr+i).

• arr[0] is same as *arr.

• arr[1] is same as *(arr+1).

• arr[2] is same as *(arr+2).

• arr[3] is same as *(arr+3).

• arr[i] is same as *(arr+i).



Array access using pointers

int arr[4];

• &arr[0] is same as arr.

• &arr[1] is same as (arr+1).

• &arr[2] is same as (arr+2).

• &arr[3] is same as (arr+3).

• &arr[i] is same as (arr+i).

• arr[0] is same as *arr.

• arr[1] is same as *(arr+1).

• arr[2] is same as *(arr+2).

• arr[3] is same as *(arr+3).

• arr[i] is same as *(arr+i).



Array access using pointers

int arr[4];

• &arr[0] is same as arr.

• &arr[1] is same as (arr+1).

• &arr[2] is same as (arr+2).

• &arr[3] is same as (arr+3).

• &arr[i] is same as (arr+i).

• arr[0] is same as *arr.

• arr[1] is same as *(arr+1).

• arr[2] is same as *(arr+2).

• arr[3] is same as *(arr+3).

• arr[i] is same as *(arr+i).



Array access using pointers

int arr[4];

• &arr[0] is same as arr.

• &arr[1] is same as (arr+1).

• &arr[2] is same as (arr+2).

• &arr[3] is same as (arr+3).

• &arr[i] is same as (arr+i).

• arr[0] is same as *arr.

• arr[1] is same as *(arr+1).

• arr[2] is same as *(arr+2).

• arr[3] is same as *(arr+3).

• arr[i] is same as *(arr+i).



Array access using pointers

int arr[4];

• &arr[0] is same as arr.

• &arr[1] is same as (arr+1).

• &arr[2] is same as (arr+2).

• &arr[3] is same as (arr+3).

• &arr[i] is same as (arr+i).

• arr[0] is same as *arr.

• arr[1] is same as *(arr+1).

• arr[2] is same as *(arr+2).

• arr[3] is same as *(arr+3).

• arr[i] is same as *(arr+i).



Array access using pointers

int arr[4];

• &arr[0] is same as arr.

• &arr[1] is same as (arr+1).

• &arr[2] is same as (arr+2).

• &arr[3] is same as (arr+3).

• &arr[i] is same as (arr+i).

• arr[0] is same as *arr.

• arr[1] is same as *(arr+1).

• arr[2] is same as *(arr+2).

• arr[3] is same as *(arr+3).

• arr[i] is same as *(arr+i).



Array access using pointers

int arr[4];

• &arr[0] is same as arr.

• &arr[1] is same as (arr+1).

• &arr[2] is same as (arr+2).

• &arr[3] is same as (arr+3).

• &arr[i] is same as (arr+i).

• arr[0] is same as *arr.

• arr[1] is same as *(arr+1).

• arr[2] is same as *(arr+2).

• arr[3] is same as *(arr+3).

• arr[i] is same as *(arr+i).



Array access using pointers

int arr[4];

• &arr[0] is same as arr.

• &arr[1] is same as (arr+1).

• &arr[2] is same as (arr+2).

• &arr[3] is same as (arr+3).

• &arr[i] is same as (arr+i).

• arr[0] is same as *arr.

• arr[1] is same as *(arr+1).

• arr[2] is same as *(arr+2).

• arr[3] is same as *(arr+3).

• arr[i] is same as *(arr+i).



Array access using pointers

#include<stdio.h>

int main()

{

int A[10] = {12, 3, 4, 5, 8, 16, 7, 88, 19, 10};

int *ptr = &A[0];

int i;

for (i=0; i<10; i++) {

printf("%d\t", A[i]);

printf("%d\t", *(ptr+i));

printf("%d\n", *ptr+i);

}

}



Arrays and pointers

#include<stdio.h>

int main()

{

int A[10] = {12, 3, 4, 5, 8, 16, 7, 88, 19, 10};

int *ptr = &A[0];

int i;

for (i=0; i<10; i++) {

printf("%d\t", A[i]);

printf("%d\t", *(ptr+i));

printf("%d\n", *ptr+i);

}

}



string copy using pointers

#include<stdio.h>

#include<string.h>

void mystrcpy(char *source, char *dest) {

int len = strlen(source);

int i;

for (i = 0; i < len; i++) {

dest[i] = source[i];

}

dest[i] = ’\0’;

}

void main() {

char s1[20] = "This is a string";

char s2[20];

mystrcpy(s1, s2);

printf("%s\n", s2);

}



Another string copy using pointers

#include<stdio.h>

#include<string.h>

void mystrcpy(char *source, char *dest) {

while(*source) {

*dest = *source;

dest++;

source++;

}

*dest = ’\0’;

}

void main() {

char s1[20] = "This is a string";

char s2[20];

mystrcpy(s1, s2);

printf("%s\n", s2);

}



Reading input using pointers

#include <stdio.h>

int main() {

int i, x[6], sum = 0;

printf("Enter 6 numbers: ");

for(i = 0; i < 6; ++i) {

// Equivalent to scanf("%d", &x[i]);

scanf("%d", x+i);

// Equivalent to sum += x[i]

sum += *(x+i);

}

printf("Sum = %d", sum);

return 0;

}



Array of pointers

Goal: We wish to store the names of three students in our class –
“Sai”, “Narasimhan”, “Lakshmi” in some appropriate data-type.

• What data-structure will you use?
How about char Names[3][11]?
• Use char* Names[3]

• “Names” is an array of pointers to characters.

#include<stdio.h>

main() {

char *Names[3]={"Sai", "Narasimhan", "Lakshmi"};

int i;

for (i=0; i<3; i++) {

printf("%s\n",Names[i]);

}

}



Array of pointers

Goal: We wish to store the names of three students in our class –
“Sai”, “Narasimhan”, “Lakshmi” in some appropriate data-type.

• What data-structure will you use?

How about char Names[3][11]?
• Use char* Names[3]

• “Names” is an array of pointers to characters.

#include<stdio.h>

main() {

char *Names[3]={"Sai", "Narasimhan", "Lakshmi"};

int i;

for (i=0; i<3; i++) {

printf("%s\n",Names[i]);

}

}



Array of pointers

Goal: We wish to store the names of three students in our class –
“Sai”, “Narasimhan”, “Lakshmi” in some appropriate data-type.

• What data-structure will you use?
How about char Names[3][11]?

• Use char* Names[3]
• “Names” is an array of pointers to characters.

#include<stdio.h>

main() {

char *Names[3]={"Sai", "Narasimhan", "Lakshmi"};

int i;

for (i=0; i<3; i++) {

printf("%s\n",Names[i]);

}

}



Array of pointers

Goal: We wish to store the names of three students in our class –
“Sai”, “Narasimhan”, “Lakshmi” in some appropriate data-type.

• What data-structure will you use?
How about char Names[3][11]?
• Use char* Names[3]

• “Names” is an array of pointers to characters.

#include<stdio.h>

main() {

char *Names[3]={"Sai", "Narasimhan", "Lakshmi"};

int i;

for (i=0; i<3; i++) {

printf("%s\n",Names[i]);

}

}



Array of pointers

Goal: We wish to store the names of three students in our class –
“Sai”, “Narasimhan”, “Lakshmi” in some appropriate data-type.

• What data-structure will you use?
How about char Names[3][11]?
• Use char* Names[3]

• “Names” is an array of pointers to characters.

#include<stdio.h>

main() {

char *Names[3]={"Sai", "Narasimhan", "Lakshmi"};

int i;

for (i=0; i<3; i++) {

printf("%s\n",Names[i]);

}

}



Array of pointers

Goal: We wish to store the names of three students in our class –
“Sai”, “Narasimhan”, “Lakshmi” in some appropriate data-type.

• What data-structure will you use?
How about char Names[3][11]?
• Use char* Names[3]

• “Names” is an array of pointers to characters.

#include<stdio.h>

main() {

char *Names[3]={"Sai", "Narasimhan", "Lakshmi"};

int i;

for (i=0; i<3; i++) {

printf("%s\n",Names[i]);

}

}



An array of pointers

Goal: Read the three names from standard input.

#include<stdio.h>

main() {

char *Names[3];

int i;

for (i=0; i<3; i++) {

printf("Enter Name %d\t", i+1);

scanf("%s", Names[i]);

}

}

This program is incorrect! There is no memory allocated for
Names[i]. The program most likely gives a core dump.



An array of pointers

Goal: Read the three names from standard input.

#include<stdio.h>

main() {

char *Names[3];

int i;

for (i=0; i<3; i++) {

printf("Enter Name %d\t", i+1);

scanf("%s", Names[i]);

}

}

This program is incorrect! There is no memory allocated for
Names[i]. The program most likely gives a core dump.



An array of pointers

Goal: Read the three names from standard input.

#include<stdio.h>

main() {

char *Names[3];

int i;

for (i=0; i<3; i++) {

printf("Enter Name %d\t", i+1);

scanf("%s", Names[i]);

}

}

This program is incorrect! There is no memory allocated for
Names[i]. The program most likely gives a core dump.



An array of pointers – Another program

Goal: Read the three names from standard input.

#include<stdio.h>

int main() {

char *Names[3]; char temp[100]; int i;

for (i=0; i<3; i++) {

scanf("%s", temp);

Names[i] = temp;

printf("String input %s\n",Names[i]);

}

for (i=0; i<3; i++) {

printf("String output %s\n",Names[i]);

}

}

This program is still in-
correct! All 3 array
locations point to the
same array temp.



An array of pointers – Another program

Goal: Read the three names from standard input.

#include<stdio.h>

int main() {

char *Names[3]; char temp[100]; int i;

for (i=0; i<3; i++) {

scanf("%s", temp);

Names[i] = temp;

printf("String input %s\n",Names[i]);

}

for (i=0; i<3; i++) {

printf("String output %s\n",Names[i]);

}

}

This program is still in-
correct! All 3 array
locations point to the
same array temp.



An array of pointers – Another program

Goal: Read the three names from standard input.

#include<stdio.h>

int main() {

char *Names[3]; char temp[100]; int i;

for (i=0; i<3; i++) {

scanf("%s", temp);

Names[i] = temp;

printf("String input %s\n",Names[i]);

}

for (i=0; i<3; i++) {

printf("String output %s\n",Names[i]);

}

}

This program is still in-
correct! All 3 array
locations point to the
same array temp.



Allocating memory using malloc

• malloc – memory allocator – is a function that allocates
memory to the program and returns a pointer to that memory.

• int *ptr;

ptr = (int *) malloc(sizeof(int));

• The input to malloc is size of the memory required.

• malloc returns a pointer to the memory allocated – the type
of the pointer is (void *).

• Note the typecasting into (int *).

• Memory obtained using malloc is destroyed only when it is
explicitly freed or the program terminates.

• This is unlike variables which are unavailable outside their
scope.



Allocating memory using malloc

• malloc – memory allocator – is a function that allocates
memory to the program and returns a pointer to that memory.

• int *ptr;

ptr = (int *) malloc(sizeof(int));

• The input to malloc is size of the memory required.

• malloc returns a pointer to the memory allocated – the type
of the pointer is (void *).

• Note the typecasting into (int *).

• Memory obtained using malloc is destroyed only when it is
explicitly freed or the program terminates.

• This is unlike variables which are unavailable outside their
scope.



Allocating memory using malloc

• malloc – memory allocator – is a function that allocates
memory to the program and returns a pointer to that memory.

• int *ptr;

ptr = (int *) malloc(sizeof(int));

• The input to malloc is size of the memory required.

• malloc returns a pointer to the memory allocated – the type
of the pointer is (void *).

• Note the typecasting into (int *).

• Memory obtained using malloc is destroyed only when it is
explicitly freed or the program terminates.

• This is unlike variables which are unavailable outside their
scope.



Allocating memory using malloc

• malloc – memory allocator – is a function that allocates
memory to the program and returns a pointer to that memory.

• int *ptr;

ptr = (int *) malloc(sizeof(int));

• The input to malloc is size of the memory required.

• malloc returns a pointer to the memory allocated – the type
of the pointer is (void *).

• Note the typecasting into (int *).

• Memory obtained using malloc is destroyed only when it is
explicitly freed or the program terminates.

• This is unlike variables which are unavailable outside their
scope.



Allocating memory using malloc

• malloc – memory allocator – is a function that allocates
memory to the program and returns a pointer to that memory.

• int *ptr;

ptr = (int *) malloc(sizeof(int));

• The input to malloc is size of the memory required.

• malloc returns a pointer to the memory allocated – the type
of the pointer is (void *).

• Note the typecasting into (int *).

• Memory obtained using malloc is destroyed only when it is
explicitly freed or the program terminates.

• This is unlike variables which are unavailable outside their
scope.



An array of pointers – a correct program

Goal: Read the three names from standard input.

#include<stdio.h>

#include<stdlib.h>

#include<string.h>

int main() {

char *Names[3]; char temp[100]; int i;

for (i=0; i<3; i++) {

scanf("%s", temp);

Names[i]=(char *)malloc(sizeof(strlen(temp)));

strcpy(Names[i], temp);

printf("String input %s\n",Names[i]);

}

for (i=0; i<3; i++)

printf("String output %s\n",Names[i]);

return 0;

}

Note the use of malloc and also the stdlib.h



An array of pointers – a correct program

Goal: Read the three names from standard input.

#include<stdio.h>

#include<stdlib.h>

#include<string.h>

int main() {

char *Names[3]; char temp[100]; int i;

for (i=0; i<3; i++) {

scanf("%s", temp);

Names[i]=(char *)malloc(sizeof(strlen(temp)));

strcpy(Names[i], temp);

printf("String input %s\n",Names[i]);

}

for (i=0; i<3; i++)

printf("String output %s\n",Names[i]);

return 0;

}

Note the use of malloc and also the stdlib.h



An array of pointers – a correct program

Goal: Read the three names from standard input.

#include<stdio.h>

#include<stdlib.h>

#include<string.h>

int main() {

char *Names[3]; char temp[100]; int i;

for (i=0; i<3; i++) {

scanf("%s", temp);

Names[i]=(char *)malloc(sizeof(strlen(temp)));

strcpy(Names[i], temp);

printf("String input %s\n",Names[i]);

}

for (i=0; i<3; i++)

printf("String output %s\n",Names[i]);

return 0;

}

Note the use of malloc and also the stdlib.h



2D Arrays using pointers

Consider the following declaration:
int nums[2][3] = {{16, 18, 20}, {25, 26, 27}};
How to reference these elements using pointers?

In general, nums[ i ][ j ] is equivalent to *(*(nums+i)+j)



2D Arrays using pointers

Consider the following declaration:
int nums[2][3] = {{16, 18, 20}, {25, 26, 27}};
How to reference these elements using pointers?

In general, nums[ i ][ j ] is equivalent to *(*(nums+i)+j)



2D Arrays using pointers

Consider the following declaration:
int nums[2][3] = {{16, 18, 20}, {25, 26, 27}};
How to reference these elements using pointers?

In general, nums[ i ][ j ] is equivalent to *(*(nums+i)+j)



Some more practice

• Consider the following declaration:
char * ptr = “geek”;

• What is char x = *(ptr+3); ?

• Null Pointer: We can create a null pointer by assigning null
value during the pointer declaration.

• This method is useful when you do not have any address
assigned to the pointer.

• Declaration: int *p = NULL

• if(ptr) : succeeds if p is not null

• if(!ptr) : succeeds if p is null



Some more practice

• Consider the following declaration:
char * ptr = “geek”;

• What is char x = *(ptr+3); ?

• Null Pointer: We can create a null pointer by assigning null
value during the pointer declaration.

• This method is useful when you do not have any address
assigned to the pointer.

• Declaration: int *p = NULL

• if(ptr) : succeeds if p is not null

• if(!ptr) : succeeds if p is null



Some more practice

• Consider the following declaration:
char * ptr = “geek”;

• What is char x = *(ptr+3); ?

• Null Pointer: We can create a null pointer by assigning null
value during the pointer declaration.

• This method is useful when you do not have any address
assigned to the pointer.

• Declaration: int *p = NULL

• if(ptr) : succeeds if p is not null

• if(!ptr) : succeeds if p is null



Some more practice

• Consider the following declaration:
char * ptr = “geek”;

• What is char x = *(ptr+3); ?

• Null Pointer: We can create a null pointer by assigning null
value during the pointer declaration.

• This method is useful when you do not have any address
assigned to the pointer.

• Declaration: int *p = NULL

• if(ptr) : succeeds if p is not null

• if(!ptr) : succeeds if p is null



Some more practice

• Consider the following declaration:
char * ptr = “geek”;

• What is char x = *(ptr+3); ?

• Null Pointer: We can create a null pointer by assigning null
value during the pointer declaration.

• This method is useful when you do not have any address
assigned to the pointer.

• Declaration: int *p = NULL

• if(ptr) : succeeds if p is not null

• if(!ptr) : succeeds if p is null



Some more practice

• Consider the following declaration:
char * ptr = “geek”;

• What is char x = *(ptr+3); ?

• Null Pointer: We can create a null pointer by assigning null
value during the pointer declaration.

• This method is useful when you do not have any address
assigned to the pointer.

• Declaration: int *p = NULL

• if(ptr) : succeeds if p is not null

• if(!ptr) : succeeds if p is null



Some more practice

• Consider the following declaration:
char * ptr = “geek”;

• What is char x = *(ptr+3); ?

• Null Pointer: We can create a null pointer by assigning null
value during the pointer declaration.

• This method is useful when you do not have any address
assigned to the pointer.

• Declaration: int *p = NULL

• if(ptr) : succeeds if p is not null

• if(!ptr) : succeeds if p is null



More practice: Pointers and strings

#include <stdio.h>

#include <string.h>

int main()

{

char str[]="Hello Guru99!";

char *p;

p=str;

printf("First character is:%c\n",*p);

p =p+1;

printf("Next character is:%c\n",*p);

printf("Printing all the characters in a string\n");

p=str; //reset the pointer

for(int i=0;i<strlen(str);i++)

{

printf("%c\n",*p);

p++;

}

return 0;

}


