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So far...

Pointers in C, Pass by reference
Dynamic memory allocation

Structures in C

Up Next...
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More on pointers : Segmentation Fault

® int *ptri; //ptrl is a pointer to an integer

® What does ptrl point to before initialization? garbage
® What is the output of this piece of code?

#include<stdio.h>
int main() {

int count;

int *countPtr;

count = *xcountPtr;
printf ("%d\n", count);
}

Unpredictable !!
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More on Pointers : Pointer to pointers
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Syntax: type **ptrname

L

Example : int **ptr;

XX771230

int var = 789;
int *ptr2;

int *xptrl; // pointer which points to an integer pointer.
ptr2 = &var; // storing address of var in ptr2.
ptrl = &ptr2; // storing the address of ptr2 in ptri.

What are the values of var, *ptr2, **ptri?
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Pointers and Arrays

In C-language, the name of the array is always a pointer to
the beginning of the array.

When we declare the array, this pointer is also declared and
initialized automatically.

That is, if we declare an array char board[10] ;.

The dereferncing *board will gives us the array element
board[0] ;

That is, &board [0] is equivalent to board.

This pointer board can only point to this array and cannot be
reassigned.
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#include<stdio.h>

int main()

{
int A[10] = {12, 3, 4, 5, 8, 16, 7, 88, 19, 10};
int *ptr = &A[0];
int 1i;

for (i=0; i<10; i++) {
printf ("%d\t", A[il);
printf ("%d\t", *(ptr+i));
printf ("%d\n", *ptr+i);



Arrays and pointers

#include<stdio.h>

int main()

{
int A[10] = {12, 3, 4, 5, 8, 16, 7, 88, 19, 10};
int *ptr = &A[0];
int 1i;

for (i=0; i<10; i++) {
printf ("%d\t", A[il);
printf ("%d\t", *(ptr+i));
printf ("%d\n", *ptr+i);



string copy using pointers

#include<stdio.h>

#include<string.h>

void mystrcpy(char *source, char *dest) {
int len = strlen(source);

int i;

for (i = 0; i < len; i++) {
dest[i] = sourcelil;

}

dest[i] = ’\0’;
}

void main() {
char s1[20] = "This is a string";
char s2[20];

mystrcpy(sl, s2);
printf ("%s\n", s2);



Another string copy using pointers

#include<stdio.h>
#include<string.h>
void mystrcpy(char *source, char *dest) {
while(*source) {
*dest = *source;

dest++;
source++;
}
*dest = ’\0’;

}

void main() {
char s1[20] = "This is a string";
char s2[20];

mystrcpy(sl, s2);
printf ("%s\n", s2);



Reading input using pointers

#include <stdio.h>
int main() {
int i, x[6], sum = 0;
printf ("Enter 6 numbers: ");
for(i = 0; i < 6; ++i) {
// Equivalent to scanf("%d", &x[i]);
scanf ("%d", x+i);

// Equivalent to sum += x[i]
sum += *(x+i);

}

printf("Sum = %d", sum);

return 0;
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Array of pointers

Goal: We wish to store the names of three students in our class —
“Sai”, “Narasimhan”, “Lakshmi” in some appropriate data-type.
® What data-structure will you use?
How about char Names[3][11]7
® Use char* Names[3]
® “Names” is an array of pointers to characters.
#include<stdio.h>
main() {
char *Names[3]={"Sai", "Narasimhan", "Lakshmi"};
int i;
for (i=0; i<3; i++) {
printf ("%s\n",Names[i]);
}
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scanf ("%s", Names[i]);



An array of pointers

Goal: Read the three names from standard input.

#include<stdio.h>
main() {
char *Names[3];
int i;

for (i=0; i<3; i++) {
printf ("Enter Name %d\t", i+1);
scanf ("%s", Names[i]);

}

This program is incorrect! There is no memory allocated for
Names[i]. The program most likely gives a core dump.
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#include<stdio.h>

int main() {
char *Names[3]; char temp[100]; int i;

for (i=0; i<3; i++) {

scanf ("%s", temp);

Names[i] = temp;

printf ("String input %s\n",Names[i]);
}
for (i=0; i<3; i++) {

printf ("String output %s\n",Names[i]);
}



An array of pointers — Another program

Goal: Read the three names from standard input.

#include<stdio.h>
int main() {
char *Names[3]; char temp[100]; int i;

for (i=0; i<3; i++) {
scanf ("%s", temp);
Names[i] = temp;
printf ("String input %s\n

This program is still in-

correct!  All 3 array
Qcanns[pggw to the
ame array temp.

}
for (i=0; i<3; i++) {
printf ("String output %s\n",Names[i]);
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Allocating memory using malloc

malloc — memory allocator — is a function that allocates
memory to the program and returns a pointer to that memory.

int *ptr;
ptr = (int *) malloc(sizeof (int));
The input to malloc is size of the memory required.

malloc returns a pointer to the memory allocated — the type
of the pointer is (void *).

Note the typecasting into (int *).

Memory obtained using malloc is destroyed only when it is
explicitly freed or the program terminates.

This is unlike variables which are unavailable outside their
scope.
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An array of pointers — a correct program

Goal: Read the three names from standard input.

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
int main() {
char *Names[3]; char temp[100]; int i;
for (i=0; i<3; i++) {
scanf ("%s", temp);
Names [i]=(char *)malloc(sizeof (strlen(temp)));
strcpy (Names[i], temp);
printf("String input %s\n",Names[i]);
}
for (i=0; i<3; i++)
printf ("String output %s\n",Names[il);
return 0;



An array of pointers — a correct program

Goal: Read the three names from standard input.

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
int main() {

}

char *Names[3]; char temp[100]; int i;
for (i=0; i<3; i++) {
scanf ("}s", temp);
Names [i]=(char *)malloc(sizeof (strlen(temp)));
strcpy (Names[i], temp);
printf ("String input %s\n",Names[i]);
}
for (i=0; i<3; i++)
printf ("String output %s\n",Names[il);
return 0;

Note the use of malloc and also the stdlib.h
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Some more practice

Consider the following declaration:
char * ptr = “geek”;
What is char x = *(ptr+3); 7

Null Pointer: We can create a null pointer by assigning null
value during the pointer declaration.

This method is useful when you do not have any address
assigned to the pointer.

Declaration: int *p = NULL
if(ptr) : succeeds if p is not null

if(!ptr) : succeeds if p is null



More practice: Pointers and strings

#include <stdio.h>

#include <string.h>

int main()

{

char str[]="Hello Guru99!'!";

char *p;

p=str;

printf ("First character is:%c\n",*p);
p =p+1;

printf ("Next character is:%c\n",*p);
printf ("Printing all the characters in a string\n");
p=str; //reset the pointer

for(int i=0;i<strlen(str) ;i++)

{

printf ("%c\n",*p) ;

pt+;

}

return O;

}



