CS1100 - Introduction to Programming

Instructor: Shweta Agrawal
Lecture 28

CS1100 - Introduction to Programming

Instructor: Shweta Agrawal
Lecture 28

Data Types in C, Operators. Input and the
Output.

Modifying the control flow in Programs
if-else, switch, loops : while, do-while,
for. So far...

Arrays and Strings in C.
Functions & modular programming.

Recursion.

CS1100 - Introduction to Programming

Instructor: Shweta Agrawal
Lecture 28

Data Types in C, Operators. Input and the
Output.

Modifying the control flow in Programs
if-else, switch, loops : while, do-while,
for.

Arrays and Strings in C.
Functions & modular programming.

Recursion.

So far...

Pointers in C, Pass by reference
Dynamic memory allocation

Structures in C

Up Next...

More on pointers : Segmentation Fault

® int *ptri; //ptrl is a pointer to an integer

More on pointers : Segmentation Fault

® int *ptri; //ptrl is a pointer to an integer

® What does ptrl point to before initialization? garbage

More on pointers : Segmentation Fault

® int *ptri; //ptrl is a pointer to an integer

® What does ptrl point to before initialization? garbage
® What is the output of this piece of code?

#include<stdio.h>
int main() {

int count;

int *countPtr;

count = *xcountPtr;
printf ("%d\n", count);

More on pointers : Segmentation Fault

® int *ptri; //ptrl is a pointer to an integer

® What does ptrl point to before initialization? garbage
® What is the output of this piece of code?

#include<stdio.h>
int main() {

int count;

int *countPtr;

count = *xcountPtr;
printf ("%d\n", count);
}

Unpredictable !!

More on Pointers : Pointer to pointers

ptr1

ptr2

66X123X1

XX661111

var

—|_>XX771230
66X123X1

789

L

XX771230

More on Pointers : Pointer to pointers

ptr1

ptr2

66X123X1

XX661111

var

—|_>XX771230
66X123X1

Syntax: type **ptrname

789

L

XX771230

More on Pointers : Pointer to pointers

ptr1 ptr2 var
66X123X1 —I_,XX771230 _L 789
XX661111 66X123X1 XX771230

Syntax: type **ptrname Example : int **ptr;

More on Pointers : Pointer to pointers

ptr1 ptr2 var
66X123X1 —I_,XX771230 _L 789
XX661111 66X123X1 XX771230
Syntax: type **ptrname Example : int **ptr;

int var = 789;
int *ptr2;
int *xptrl; // pointer which points to an integer pointer.

More on Pointers : Pointer to pointers

ptr1 ptr2 var
66X123X1 —I_,XX771230 _L 789
XX661111 66X123X1 XX771230
Syntax: type **ptrname Example : int **ptr;

int var = 789;

int *ptr2;

int *xptrl; // pointer which points to an integer pointer.
ptr2 = &var; // storing address of var in ptr2.

More on Pointers : Pointer to pointers

ptr1 ptr2 var
66X123X1 —I_,XX771230 _L 789
XX661111 66X123X1 XX771230
Syntax: type **ptrname Example : int **ptr;

int var = 789;

int *ptr2;

int *xptrl; // pointer which points to an integer pointer.
&var; // storing address of var in ptr2.

&ptr2; // storing the address of ptr2 in ptri.

ptr2
ptril

More on Pointers : Pointer to pointers

ptr1

ptr2

66X123X1

var

789

XX661111

—|_>XX771230
66X123X1

Syntax: type **ptrname

L

Example : int **ptr;

XX771230

int var = 789;
int *ptr2;

int *xptrl; // pointer which points to an integer pointer.
ptr2 = &var; // storing address of var in ptr2.
ptrl = &ptr2; // storing the address of ptr2 in ptri.

What are the values of var, *ptr2, **ptri?

Pointers and Arrays

® |n C-language, the name of the array is always a pointer to
the beginning of the array.

Pointers and Arrays

® |n C-language, the name of the array is always a pointer to
the beginning of the array.

® When we declare the array, this pointer is also declared and
initialized automatically.

Pointers and Arrays

® |n C-language, the name of the array is always a pointer to
the beginning of the array.

® When we declare the array, this pointer is also declared and
initialized automatically.

® That is, if we declare an array char board[10] ;.

Pointers and Arrays

In C-language, the name of the array is always a pointer to
the beginning of the array.

When we declare the array, this pointer is also declared and
initialized automatically.

That is, if we declare an array char board[10] ;.

The dereferncing *board will gives us the array element
board[0] ;

Pointers and Arrays

In C-language, the name of the array is always a pointer to
the beginning of the array.

When we declare the array, this pointer is also declared and
initialized automatically.

That is, if we declare an array char board[10] ;.

The dereferncing *board will gives us the array element
board[0] ;

That is, &board [0] is equivalent to board.

Pointers and Arrays

In C-language, the name of the array is always a pointer to
the beginning of the array.

When we declare the array, this pointer is also declared and
initialized automatically.

That is, if we declare an array char board[10] ;.

The dereferncing *board will gives us the array element
board[0] ;

That is, &board [0] is equivalent to board.

This pointer board can only point to this array and cannot be
reassigned.

Pointers and Arrays

int arr[4];

arr

| arr[0] arr[1] arr[2] arr[3]

Array access using pointers

int arr[4];

arr

arr[0] arr[1] arr[2] arr[3]

® garr[0] is same as arr.

Array access using pointers

int arr[4];

arr

arr[0] arr[1] arr[2] arr[3]

® garr[0] is same as arr.

® garr[1] is same as (arr+1).

&arr [0]
&arr[1]
&arr[2]
&arr [3]

Array access using pointers

int arr[4];

arr

arr[0] arr[1] arr[2] arr[3]

is same as arr.
is same as (arr+1).
is same as (arr+2).

is same as (arr+3).

Array access using pointers

int arr[4];

arr

arr[0] arr[1] arr[2] arr[3]

&arr[0] is same as arr.

&arr[1] is same as (arr+1).
&arr[2] is same as (arr+2).
&arr[3] is same as (arr+3).

&arr[i] is same as (arr+i).

&arr [0]
&arr[1]
&arr[2]
&arr [3]

&arr[i]

Array access using pointers

int arr[4];

arr

arr[0] arr[1] arr[2] arr[3]

is same as arr.

is same as (arr+1).
is same as (arr+2).
is same as (arr+3).

is same as (arr+i).

® arr[0] is same as *arr.

&arr [0]
&arr[1]
&arr[2]
&arr [3]

&arr[i]

Array access using pointers

int arr[4];

arr

arr[0] arr[1] arr[2] arr[3]

is same as arr.

is same as (arr+1).
is same as (arr+2).
is same as (arr+3).

is same as (arr+i).

® arr[0] is same as *arr.

® arr[1] is same as *(arr+1).

&arr [0]
&arr[1]
&arr[2]
&arr [3]

&arr[i]

Array access using pointers

int arr[4];

arr

arr[0] arr[1] arr[2] arr[3]

is same as arr.

is same as (arr+1).
is same as (arr+2).
is same as (arr+3).

is same as (arr+i).

arr[0]
arr[1]
arr[2]
arr[3]

is same as *arr.
is same as *(arr+1).
is same as * (arr+2).

is same as *(arr+3).

&arr [0]
&arr[1]
&arr[2]
&arr [3]

&arr[i]

Array access using pointers

int arr[4];

arr

arr[0] arr[1] arr[2] arr[3]

is same as arr.

is same as (arr+1).
is same as (arr+2).
is same as (arr+3).

is same as (arr+i).

arr[0]
arr[1]
arr[2]
arr[3]

arr[i]

is same as *arr.

is same as *(arr+1).
is same as * (arr+2).
is same as *(arr+3).

is same as *(arr+i).

Array access using pointers

#include<stdio.h>

int main()

{
int A[10] = {12, 3, 4, 5, 8, 16, 7, 88, 19, 10};
int *ptr = &A[0];
int 1i;

for (i=0; i<10; i++) {
printf ("%d\t", A[il);
printf ("%d\t", *(ptr+i));
printf ("%d\n", *ptr+i);

Arrays and pointers

#include<stdio.h>

int main()

{
int A[10] = {12, 3, 4, 5, 8, 16, 7, 88, 19, 10};
int *ptr = &A[0];
int 1i;

for (i=0; i<10; i++) {
printf ("%d\t", A[il);
printf ("%d\t", *(ptr+i));
printf ("%d\n", *ptr+i);

string copy using pointers

#include<stdio.h>

#include<string.h>

void mystrcpy(char *source, char *dest) {
int len = strlen(source);

int i;

for (i = 0; i < len; i++) {
dest[i] = sourcelil;

}

dest[i] = ’\0’;
}

void main() {
char s1[20] = "This is a string";
char s2[20];

mystrcpy(sl, s2);
printf ("%s\n", s2);

Another string copy using pointers

#include<stdio.h>
#include<string.h>
void mystrcpy(char *source, char *dest) {
while(*source) {
*dest = *source;

dest++;
source++;
}
*dest = ’\0’;

}

void main() {
char s1[20] = "This is a string";
char s2[20];

mystrcpy(sl, s2);
printf ("%s\n", s2);

Reading input using pointers

#include <stdio.h>
int main() {
int i, x[6], sum = 0;
printf ("Enter 6 numbers: ");
for(i = 0; i < 6; ++i) {
// Equivalent to scanf("%d", &x[i]);
scanf ("%d", x+i);

// Equivalent to sum += x[i]
sum += *(x+i);

}

printf("Sum = %d", sum);

return 0;

Array of pointers

Goal: We wish to store the names of three students in our class —

“Sai”, “Narasimhan”, “Lakshmi” in some appropriate data-type.

Array of pointers

Goal: We wish to store the names of three students in our class —

“Sai”, “Narasimhan”, “Lakshmi” in some appropriate data-type.

® What data-structure will you use?

Array of pointers

Goal: We wish to store the names of three students in our class —

“Sai”, “Narasimhan”, “Lakshmi” in some appropriate data-type.

® What data-structure will you use?
How about char Names[3] [11]7

Array of pointers

Goal: We wish to store the names of three students in our class —

“Sai”, “Narasimhan”, “Lakshmi” in some appropriate data-type.

® What data-structure will you use?
How about char Names[3][11]7
® Use char* Names[3]

Array of pointers

Goal: We wish to store the names of three students in our class —
“Sai”, “Narasimhan”, “Lakshmi” in some appropriate data-type.
® What data-structure will you use?
How about char Names[3][11]7
® Use char* Names[3]
® “Names” is an array of pointers to characters.

Array of pointers

Goal: We wish to store the names of three students in our class —
“Sai”, “Narasimhan”, “Lakshmi” in some appropriate data-type.
® What data-structure will you use?
How about char Names[3][11]7
® Use char* Names[3]
® “Names” is an array of pointers to characters.
#include<stdio.h>
main() {
char *Names[3]={"Sai", "Narasimhan", "Lakshmi"};
int i;
for (i=0; i<3; i++) {
printf ("%s\n",Names[i]);
}

An array of pointers

Goal: Read the three names from standard input.

An array of pointers

Goal: Read the three names from standard input.

#include<stdio.h>

main() {
char *Names[3];
int i;

for (i=0; i<3; i++) {
printf ("Enter Name %d\t", i+1);
scanf ("%s", Names[i]);

An array of pointers

Goal: Read the three names from standard input.

#include<stdio.h>
main() {
char *Names[3];
int i;

for (i=0; i<3; i++) {
printf ("Enter Name %d\t", i+1);
scanf ("%s", Names[i]);

}

This program is incorrect! There is no memory allocated for
Names[i]. The program most likely gives a core dump.

An array of pointers — Another program

Goal: Read the three names from standard input.

An array of pointers — Another program

Goal: Read the three names from standard input.

#include<stdio.h>

int main() {
char *Names[3]; char temp[100]; int i;

for (i=0; i<3; i++) {

scanf ("%s", temp);

Names[i] = temp;

printf ("String input %s\n",Names[i]);
}
for (i=0; i<3; i++) {

printf ("String output %s\n",Names[i]);
}

An array of pointers — Another program

Goal: Read the three names from standard input.

#include<stdio.h>
int main() {
char *Names[3]; char temp[100]; int i;

for (i=0; i<3; i++) {
scanf ("%s", temp);
Names[i] = temp;
printf ("String input %s\n

This program is still in-

correct! All 3 array
Qcanns[pggw to the
ame array temp.

}
for (i=0; i<3; i++) {
printf ("String output %s\n",Names[i]);

Allocating memory using malloc

® malloc — memory allocator — is a function that allocates
memory to the program and returns a pointer to that memory.

Allocating memory using malloc

® malloc — memory allocator — is a function that allocates
memory to the program and returns a pointer to that memory.
® int *ptr;
ptr = (int *) malloc(sizeof (int));

Allocating memory using malloc

malloc — memory allocator — is a function that allocates
memory to the program and returns a pointer to that memory.
int *ptr;

ptr = (int *) malloc(sizeof (int));

The input to malloc is size of the memory required.

malloc returns a pointer to the memory allocated — the type
of the pointer is (void *).

Allocating memory using malloc

malloc — memory allocator — is a function that allocates
memory to the program and returns a pointer to that memory.

int *ptr;
ptr = (int *) malloc(sizeof (int));
The input to malloc is size of the memory required.

malloc returns a pointer to the memory allocated — the type
of the pointer is (void *).

Note the typecasting into (int *).

Allocating memory using malloc

malloc — memory allocator — is a function that allocates
memory to the program and returns a pointer to that memory.

int *ptr;
ptr = (int *) malloc(sizeof (int));
The input to malloc is size of the memory required.

malloc returns a pointer to the memory allocated — the type
of the pointer is (void *).

Note the typecasting into (int *).

Memory obtained using malloc is destroyed only when it is
explicitly freed or the program terminates.

This is unlike variables which are unavailable outside their
scope.

An array of pointers — a correct program

Goal: Read the three names from standard input.

An array of pointers — a correct program

Goal: Read the three names from standard input.

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
int main() {
char *Names[3]; char temp[100]; int i;
for (i=0; i<3; i++) {
scanf ("%s", temp);
Names [i]=(char *)malloc(sizeof (strlen(temp)));
strcpy (Names[i], temp);
printf("String input %s\n",Names[i]);
}
for (i=0; i<3; i++)
printf ("String output %s\n",Names[il);
return 0;

An array of pointers — a correct program

Goal: Read the three names from standard input.

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
int main() {

}

char *Names[3]; char temp[100]; int i;
for (i=0; i<3; i++) {
scanf ("}s", temp);
Names [i]=(char *)malloc(sizeof (strlen(temp)));
strcpy (Names[i], temp);
printf ("String input %s\n",Names[i]);
}
for (i=0; i<3; i++)
printf ("String output %s\n",Names[il);
return 0;

Note the use of malloc and also the stdlib.h

2D Arrays using pointers

Consider the following declaration:
int nums[2][3] = {{16, 18,20}, {25,26,27}};
How to reference these elements using pointers?

2D Arrays using pointers

Consider the following declaration:
int nums[2][3] = {{16, 18,20}, {25,26,27}};
How to reference these elements using pointers?

In general, nums[i][j] is equivalent to *(*(nums-i)+j)

Pointer Notation Array Notation Value
*("nums) nums[0][0] 16
*(*nums+1) nums[0][1] 18
*(*nums+2) nums[0][2] 20
((nums + 1)) nums[1]1[0] 25
F(*(nums + 1)+1) nums[1][1] 26
*("(nums + 1)+2) nums[1][2] 27

2D Arrays using pointers

Consider the following declaration:
int nums[2][3] = {{16, 18,20}, {25,26,27}};
How to reference these elements using pointers?

In general, nums[i][j] is equivalent to *(*(nums-i)+j)

Pointer Notation Array Notation Value
*("nums) nums[0][0] 16
*(*nums+1) nums[0][1] 18
*(*nums+2) nums[0][2] 20
((nums + 1)) nums[1]1[0] 25
F(*(nums + 1)+1) nums[1][1] 26
*("(nums + 1)+2) nums[1][2] 27

Some more practice

® Consider the following declaration:
char * ptr = “geek”;

Some more practice

® Consider the following declaration:
char * ptr = “geek”;

® What is char x = *(ptr+3); ?

Some more practice

® Consider the following declaration:
char * ptr = “geek”;

e What is char x = *(ptr+3); 7

® Null Pointer: We can create a null pointer by assigning null
value during the pointer declaration.

Some more practice

Consider the following declaration:

char * ptr = “geek”;

What is char x = *(ptr+3); ?

Null Pointer: We can create a null pointer by assigning null
value during the pointer declaration.

This method is useful when you do not have any address
assigned to the pointer.

Some more practice

Consider the following declaration:

char * ptr = “geek”;

What is char x = *(ptr+3); ?

Null Pointer: We can create a null pointer by assigning null
value during the pointer declaration.

This method is useful when you do not have any address
assigned to the pointer.

Declaration: int *p = NULL

Some more practice

Consider the following declaration:
char * ptr = “geek”;

What is char x = *(ptr+3); 7

Null Pointer: We can create a null pointer by assigning null
value during the pointer declaration.

This method is useful when you do not have any address
assigned to the pointer.

Declaration: int *p = NULL

if(ptr) : succeeds if p is not null

Some more practice

Consider the following declaration:
char * ptr = “geek”;
What is char x = *(ptr+3); 7

Null Pointer: We can create a null pointer by assigning null
value during the pointer declaration.

This method is useful when you do not have any address
assigned to the pointer.

Declaration: int *p = NULL
if(ptr) : succeeds if p is not null

if(!ptr) : succeeds if p is null

More practice: Pointers and strings

#include <stdio.h>

#include <string.h>

int main()

{

char str[]="Hello Guru99!'!";

char *p;

p=str;

printf ("First character is:%c\n",*p);
p =p+1;

printf ("Next character is:%c\n",*p);
printf ("Printing all the characters in a string\n");
p=str; //reset the pointer

for(int i=0;i<strlen(str) ;i++)

{

printf ("%c\n",*p) ;

pt+;

}

return O;

}

