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{Xn, n ≥ 0} a controlled Markov chain with:

• a finite state space S = {1,2, · · · , s},

• a finite action space A = {a1, · · · , ad},

• an A-valued control process {Zn, n ≥ 0},



• a controlled transition probability function

p(j|i, u), i, j ∈ S, u ∈ A,

such that

P (Xn+1 = i|Xm, Zm,m ≤ n) = p(i|Xn, Zn) ∀n,

i.e., the probability of going from Xn = j (say) to

i under action Zn = u (say) is p(i|j, u).



Say that {Zn} is:

• admissible if above holds,

• randomized stationary Markov if

P (Zn = u|Fn−1, Xn = x) = (ϕ(x))(u) ∀n

for some ϕ : S 7→ P(A),

• stationary Markov if Zn = v(Xn) ∀n for some

v : S 7→ A.



With abuse of terminology, the last two are identified

with ϕ, v esp.

Objective: Minimize the discounted cost

Ji({Zn}) := E

 ∞∑
m=0

βmc(Xm, Zm)|X0 = i

 ,
where

• c : S ×A 7→ R is a prescribed ‘running cost’ function,

• β ∈ (0,1) is the discount factor.



Dynamic Programming

Define ‘value function’ V : S 7→ R by

V (i) = inf
{Zn}

Ji({Zn}).

Then by the ‘dynamic programming principle’

V (i) = min
u

c(i, u) + β
∑
j
p(j|i, u)V (j)

 , i ∈ S.
This is the associated dynamic programming equation.

Furthermore, if the minimum of the right is attained

at u = v∗(i), then the stationary Markov policy v∗(·)
is optimal. The converse also holds.



DP equation is a fixed point equation: V = F (V ) for

F (x) = [F1(x), · · · , Fs(x)]T where

Fi(x) := min
u

[c(i, u) + β
∑
j
p(j|i, u)xj].

Then ‖F (x)− F (y)‖∞ ≤ β‖x− y‖∞, i.e., F is an

‖ · ‖∞-contraction

=⇒ V a unique solution to the DP equation and

the ‘value iteration scheme’

V n+1(i) = min
u

c(i, u) + β
∑
j
p(j|i, u)V n(j)

 , n ≥ 0,

converges exponentially to V .



Other schemes: policy iteration, linear programming

(primal/dual)

Problematic if:

• (i) p(·|·, ·) unknown, or,

• (ii)p(·|·, ·) known, but too complex (e.g., extremely

large state space).



Sometimes simulation of the system is ‘easy’, e.g., when

the system is composed of a large number of intercon-

nected simple components whose individual transitions

are easy to simulate

(e.g., queuing networks, robots).

This has motivated simulation based schemes for ap-

proximate dynamic programming, based on stochastic

approximation versions of classical iterative schemes.

(‘reinforcement learning’, ‘approximate dynamic program-
ming’, ‘neurodynamic programming’)



Q-learning: a simulation based scheme for approxi-

mate dynamic programming due to CJCH Watkins (1992).

Define Q-values

Q(i, u) := c(i, u) + β
∑
j
p(j|i, u)V (j), i ∈ S, u ∈ A.

Then

V (i) = min
u
Q(i, u),

Q(i, u) = c(i, u) + β
∑
j
p(j|i, u) min

a
Q(j, a).

This is the ‘DP equation’ for Q-values.



Again, the last equation is of the form Q = G(Q) where

‖G(x)−G(y)‖∞ ≤ β‖x− y‖∞

Thus we have the ‘Q-value iteration’

Qn+1(i, u) = c(i, u) + β
∑
j
p(j|i, u) min

a
Qn(j, a), n ≥ 0.

Then Qn→ the unique solution to the Q-DP equation.

Furthermore, v∗(i) ∈ Argmin Q(i, ·), i ∈ S, yields an

optimal stationary Markov policy v∗.

Note V n ∈ Rs, Qn ∈ Rs×d =⇒ no motivation to do

Q-value iteration.



However, one big change from value iteration:

the nonlinearity (minimization over A) is now inside the

averaging

=⇒ can use an incremental method based on stochastic

approximation.

Advantage: can be based upon simulation,

low computation per iterate

Disadvantage: slow convergence



Stochastic Approximation

Robbins-Monro scheme:

x(n+ 1) = x(n) + a(n)[h(x(n)) +M(n+ 1)].

Here, for Fn := σ(x(0),M(k), k ≤ n) (i.e., the ‘history

till time n’),

• a(n) > 0 with
∑
n a(n) =∞, ∑

n a(n)2 <∞, and,

• {M(n)} a martingale difference sequence:

E[M(n+ 1)|Fn] = 0 ∀n.



Need: h Lipschitz and

E[‖M(n+ 1)‖2|Fn] ≤ K(1 + ‖x(n)‖2).

Typically,

x(n+ 1) = x(n) + a(n)f(x(n), ξ(n+ 1)),

with {ξ(n)} IID. Then set

h(x) = E[f(x, ξn)],

M(n+ 1) = f(x(n), ξ(n+ 1))− h(x(n)).



‘ODE’ approach (Derevitskii-Fradkov, Ljung):

Treat the iteration as a noisy discretization of the ODE

ẋ(t) = h(x(t)).

If this has x∗ as its unique asymptotically stable

equilibrium, then

sup
n
‖x(n)‖ <∞ =⇒ x(n)→ x∗ a.s.

(LHS needs separate ‘stability’ tests)



Idea of proof:

Treat the iteration as noisy discretization of the ODE.

Specifically,

• define x̄(t), t ≥ 0, by x̄(
∑n−1
m=0 a(m)) := x(n),

with linear interpolation,

• compare x̄(s), t ≤ s ≤ t + T , with ODE trajectory on

the same time interval with the same initial condition,



• Gronwall inequality yields bound in terms of discretiza-

tion error and error due to noise,

• verify that these errors go to zero asymptotically (the

latter follows by martingale arguments, using square-

summability of {a(n)}),

• use either a Liapunov function argument (when avail-

able) or a characterization of limit set (Benaim) to

conclude.



Synchronous Q-learning:

1. Replace conditional average
∑
j p(j|i, u) minaQn(j, a) by

evaluation at an actual simulated sample:

min
a
Qn(ζi,u(n+ 1), a),

where ζi,u(n+ 1) ≈ p(·|i, u).

2. replace ‘full move’ by an incremental move, i.e.,

a convex combination of the previous iterate and

the correction term due to the new observation.



The algorithm is:

Qn+1(i, u) = (1− a(n))Qn(i, u)

+ a(n)[c(i, u) + βmin
u′

Qn(ξi,u(n+ 1), u′)]

= Qn(i, u) + a(n)[c(i, u)

+ βmin
u′

Qn(ξi,u(n+ 1), u′)−Qn(i, u)].

Limiting ODE is

ẋ(t) = G(x(t))− x(t)

has the desired Q as its globally asymptotically stable

equilibrium (‖x−Q‖∞ works as a Liapunov function)

=⇒ a.s. convergence to Q

(stability is separately proved).



Asynchronous version (single simulation case):

Qn+1(i, u) = Qn(i, u) + a(n)I{Xn = i, Zn = u} ×

[c(i, u) + βmin
u′

Qn(Xn+1, u
′)−Qn(i, u)].

Limiting ODE: ẋ(t) = Λ(t)(G(x(t))− x(t)),

Λ(·) diagonal, non-negative (‘relative frequency’)

Convergence to Q if diagonal elements of Λ(·) are

bounded away from zero

⇐⇒ all pairs (i, u) are sampled comparably often.

(‘infinitely often’ suffices (Yu-Bertsekas))

Problem: slow!



Non-incremental Q-learning

Fix N := number of samples per stage. The algorithm

is:

Qn+1(i, u) = c(i, u) + β

 1

N

N∑
m=1

min
a
Qn(ξmi,u(n+ 1), a)

 ,
where:

• {ξmi,u(n)} are IID ≈ p(·|i, u) for each (i, u), and,

• {ξmi,u(n)}i,u,m,n are independent.



This is equivalent to

Qn+1(i, u) = c(i, u) + β
∑
j
p̃(n)(j|i, u) min

a
Qn(j, a),

where p̃(n)(·|i, u) are the empirical transition probabilities

given by

p̃(n)(j|i, u) :=
1

N

N∑
m=1

I{ξmi,u(n+ 1) = j}.

For a fixed sample run, we can view this as ‘quenched’

randomness, leading to a time-dependent sequence of

transition matrices.



Claim: Qn→ Q a.s.!

Empirical observation: Convergence extremely fast

initially to a ‘ball park’ estimate, then very slow.

=⇒ one can consider hybrid schemes where one switches

to stochastic approximation after the initial period.



Idea of proof

Consider a controlled Markov chain {Xn} governed by

time-inhomogeneous transition probabilities

p̃(n)(j|i, u), n ≥ 0.

V n in value iteration (always) has the interpretation of

being the optimal finite horizon cost with ‘terminal cost’

V 0, i.e.,

V n(i) = min
{Zn}

E

 n−1∑
m=0

βmc(Xm, Zm) + βnV 0(Xn)|X0 = i





Thus

V n(i) = E

 n−1∑
m=0

βmc(X∗m, v
∗(m,X∗m)) + βnV 0(X∗n)|X∗0 = i

 ,
where (X∗n, v

∗(n,X∗n)) is the optimal state-control

process, defined consistently because the function

v(n, ·) depends on the remaining time horizon.

Similarly,

Qn(i, u) = E

 n−1∑
m=0

βmc(X∗m, Z
∗
m) + βnmin

a
Q0(X∗n, a)|X∗0 = i

 ,
where Z∗0 = u and Z∗n = v∗(n,X∗n) thereafter.



Consider time-reversed version of this:

Qn(i, u) = E

 −1∑
m=−n

βmc(X∗m, Z
∗
m) + βnmin

a
Q0(X∗0, a)|X∗0 = i

 .
For each i, u,−n, generate a chain from i, u.

Consider iterates Qm, Q̌m,m ≥ −n, initiated at (i, u), (i′, u′)

resp., and associated state-control processes (X∗n, Z
∗
n),

(X̂∗n, Ẑ
∗
n).

Fact: As n ↑ ∞, X∗n, X̂
∗
n couple a.s.

(Needs a suitable irreducibility & aperiodicity

hypothesis.)



Fact: As n ↑ ∞, X∗n, X̂
∗
n couple a.s.

(Recall Propp-Wilson scheme for exact sampling accord-

ing to the stationary distribution of a Markov chain through

backward coupling.)

=⇒ Qn(i, u)− Q̌n(i′, u′) converges a.s.

But

Qn(i, u) = c(i, u) + β
∑
j
p̃(n)(j|i, u)(min

a
Qn(j, a)−

Q̌n(i, u)) + βQ̌n(i, u)



Iterating, one gets

Qn(i, u)

= c(i, u) + β
∑
j
p̃(n)(j|i, u)(min

a
(Qn(j, a)− Q̌n(i, u))

+ β(c(i, u) + β
∑
j
p̃(n)(j|i, u)(min

a
(Qn(j, a)− Q̌n(i, u)))))

· · · · · ·

= c(i, u)
n∑

m=0
βm +

β
n∑

m=0
βm(

∑
j
p̃(n−m)(j|i, u)(min

a
(Qn−m(j, a)−

Q̌n−m(i, u))) + βn+1Q0(i, a).

By coupling argument, the second term on right con-

verges a.s. Hence Qn(i, u)→ Q∗(i, u) a.s.



Blackwell-Dubins lemma: {Yn} bounded, Yn → Y a.s,

{Fn} nested and either ↑ or ↓ F. Then a.s.,

E[Yn|Fn]→ E[Y |F].

Thus Qn+1 −Qn→ 0 a.s.

=⇒ E[Qn+1|Fn]−Qn→ 0 a.s.

=⇒

E[c(i, u) + β
∑
j p̃

(n)(j|i, u) minbQ
n(j, b)|Fn] − Qn(i, u) → 0

a.s.



=⇒ c(i, u) + β
∑
j p(j|i, u) minbQ

n(j, b)−Qn(i, u)→ 0 a.s.

=⇒ Q∗ satisfies the DP equation

=⇒ Q∗ = Q.

Trade-off: larger N =⇒ faster convergence and less

fluctuations, but higher computation per iterate.



Future work:

• asynchronous version

• sample complexity

(some progress achieved in both)

• other cost criteria



• more general state spaces

• function approximation



“With every mistake we must

surely be learning,

still my guitar gently weeps.”

- George Harrison


