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Planning à la Sutton

• control

• full sequential

• model-based

• value-based

• tabular/function-approximation

• TD/Monte-Carlo



Typical Planning Setting

• vs. RL: model of the world is known

• vs. flat: model of the world in a declarative representation
– symbolic
– large problems

• vs. reward: goal directed 

• vs. complete state space: knowledge of the start state

• domain independent: no additional human input



3 Key Messages
• M#0: No need for exploration-exploitation tradeoff

– planning is purely a computational problem (V.I. vs. Q)

• M#1: Search in planning

– states can be ignored or reordered for efficient computation

• M#2: Representation in planning

– develop interesting representations for Factored MDPs
 Exploit structure to design domain-independent algorithms

• M#3: Goal-directed MDPs

– design algorithms/models that use explicit knowledge of goals
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Agenda

• Background: Stochastic Shortest Paths MDPs

• Background: Heuristic Search for SSP MDPs

• Algorithms: Automatic Basis Function Discovery

• Models: SSPs  Generalized SSPs



Infinite Horizon Discounted Reward MDP

• S: A set of states

• A: A set of actions

• T(s,a,s’): transition 
model

• R(s,a,s’): reward

• γ: discount factor



Where Does γ Come From?

• γ can affect optimal policy significantly

– γ = 0 + ε: yields myopic policies for “impatient” agents

– γ = 1 - ε: yields far-sighted policies, inefficient to compute

• How to set it?

– Sometimes suggested by data 
• (e.g., inflation or interest rate)

– Often set to whatever gives a reasonable policy
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Infinite Horizon Discounted Reward MDP

• S: A set of states

• A: A set of actions

• T(s,a,s’): transition 
model

• R(s,a,s’): reward

• γ: discount factor



Stochastic Shortest Path MDP

• S: A set of states

• A: A set of actions

• T(s,a,s’): transition 
model

• R(s,a,s’): reward

• γ: discount factor



Stochastic Shortest Path MDP

• S: A set of states

• A: A set of actions

• T(s,a,s’): transition 
model

• C(s,a,s’): cost

• γ: discount factor



Stochastic Shortest Path MDP

• S: A set of states

• A: A set of actions

• T(s,a,s’): transition 
model

• C(s,a,s’): cost

•



Stochastic Shortest Path MDP

• S: A set of states

• A: A set of actions

• T(s,a,s’): transition 
model

• C(s,a,s’): cost

• G: set of goals

Minimize
- expected cost to reach a goal
- under full observability
- indefinite horizon



Bellman Equations for SSP

add base case; no discount factor

V ¤(s) = 0 if s 2 G
= min

a2A

X

s02S
T (s; a; s0) [C(s; a; s0) + V ¤(s0)]



SSP vs. IHDR?

SSP
Discounted-

reward MDPs
Finite-horizon 

MDPs



Discounted Reward MDP  SSP
[Bertsekas&Tsitsiklis 95]
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When is SSP well formed/defined

Under two conditions:
• There is a proper policy (reaches a goal with P= 1 from all states)

• Every improper policy incurs a cost of ∞ from every state from 
which it does not reach the goal with P=1
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[Bertsekas, 1995]

• S: A set of states

• A: A set of actions

• T(s,a,s’): transition model

• C(s,a,s’): cost

• G: set of goals



Agenda

• Background: Stochastic Shortest Paths MDPs

• Background: Heuristic Search for SSP MDPs

• Algorithms: Automatic Basis Function Discovery

• Models: SSPs  Generalized SSPs



Heuristic Search

• Limitations of VI

– enumeration of state space

– curse of dimensionality

• Heuristic search: insights

– knowledge of a start state to save on computation

~ (all sources shortest path  single source shortest path)

– additional knowledge in the form of heuristic fn

~ (dfs/bfs  A*)



SSPs0

Under two conditions:
• There is a proper policy (reaches a goal with P= 1 from all states)

• Every improper policy incurs a cost of ∞ from every state from 
which it does not reach the goal with P=1

19

• S: A set of states

• A: A set of actions

• T(s,a,s’): transition model

• C(s,a,s’): cost

• G: set of goals

• s0: start state



SSPs0

• What is a solution to SSPs0

• Policy (S !A)?

– are states that are not reachable from s0 relevant?

– states that are never visited (even though reachable)?



Partial Policy

• Define Partial policy

– ¼: S’ ! A, where S’µ S

• Define Partial policy closed w.r.t. a state s.

– is a partial policy ¼s

– defined for all states s’ reachable by ¼s starting 
from s
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Partial policy closed wrt s0
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Partial policy closed wrt s0
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s0
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s5 s6 s7 s8

s9

¼s0(s0)= a1

¼s0(s1)= a2

¼s0(s2)= a1

Is this policy closed wrt s0?



Partial policy closed wrt s0
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Partial policy closed wrt s0
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s0

Sg
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s5 s6 s7 s8

s9

¼s0(s0)= a1

¼s0(s1)= a2

¼s0(s2)= a1

¼s0(s6)= a1

Is this policy closed wrt s0?



Policy Graph of ¼s0

26

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

s9

¼s0(s0)= a1

¼s0(s1)= a2

¼s0(s2)= a1

¼s0(s6)= a1



Greedy Policy Graph

• Define greedy policy: ¼V = argmina QV(s,a)

• Define greedy partial policy rooted at s0

– Partial policy rooted at s0

– Greedy policy

– denoted by 

• Define greedy policy graph
– Policy graph of         : denoted by  

27

¼Vs0

¼Vs0 GV
s0



Heuristic Function

• h(s): S!R

– estimates V*(s) 

– gives an indication about “goodness” of a state

– usually used in initialization V0(s) = h(s)

– helps us avoid seemingly bad states

• Define admissible heuristic
– optimistic

– h(s) · V*(s)
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A General Scheme for 
Heuristic Search in MDPs

• Two (over)simplified intuitions
– Focus on states in greedy policy wrt V rooted at s0

– Focus on states with residual > ²

• Find & Revise: 
– repeat

• find a state that satisfies the two properties above

• perform a Bellman backup

– until no such state remains
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FIND & REVISE [Bonet&Geffner 03a]

• Convergence to V* is guaranteed
– if heuristic function is admissible

– ~no state gets starved in 1 FIND steps
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(perform Bellman backups)
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LAO* family

add s0 to the fringe and to greedy policy graph

repeat
 FIND: expand some states on the fringe (in greedy graph)
 initialize all new states by their heuristic value
 choose a subset of affected states
 perform some REVISE computations on this subset
 recompute the greedy graph

until greedy graph has no fringe & residuals in greedy 
graph small

output the greedy graph as the final policy
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LAO* [Hansen&Zilberstein 98]

add s0 to the fringe and to greedy policy graph

repeat
 FIND: expand best state s on the fringe (in greedy graph)
 initialize all new states by their heuristic value
 subset = all states in expanded graph that can reach s
 perform VI on this subset
 recompute the greedy graph

until greedy graph has no fringe & residuals in greedy 
graph small

output the greedy graph as the final policy
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add s0 in the fringe and in greedy graph

s0
V(s0) = h(s0)
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s0
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LAO*

s0
V(s0) = h(s0)

FIND: expand some states on the fringe (in greedy graph)
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FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform VI on this subset
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M#1: some states 
can be ignored for 

efficient compuation
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LAO* [Hansen&Zilberstein 98]

add s0 to the fringe and to greedy policy graph

repeat
 FIND: expand best state s on the fringe (in greedy graph)
 initialize all new states by their heuristic value
 subset = all states in expanded graph that can reach s
 perform VI on this subset
 recompute the greedy graph

until greedy graph has no fringe

output the greedy graph as the final policy

one expansion

lot of computation
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Optimizations in LAO*

add s0 to the fringe and to greedy policy graph

repeat
 FIND: expand best state s on the fringe (in greedy graph)
 initialize all new states by their heuristic value
 subset = all states in expanded graph that can reach s
 VI iterations until greedy graph changes (or low residuals)
 recompute the greedy graph

until greedy graph has no fringe

output the greedy graph as the final policy
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Optimizations in LAO*

add s0 to the fringe and to greedy policy graph

repeat
 FIND: expand all states in greedy fringe
 initialize all new states by their heuristic value
 subset = all states in expanded graph that can reach s
 VI iterations until greedy graph changes (or low residuals)
 recompute the greedy graph

until greedy graph has no fringe

output the greedy graph as the final policy
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iLAO* [Hansen&Zilberstein 01]

add s0 to the fringe and to greedy policy graph

repeat
 FIND: expand all states in greedy fringe
 initialize all new states by their heuristic value
 subset = all states in expanded graph that can reach s
 only one backup per state in greedy graph
 recompute the greedy graph

until greedy graph has no fringe

output the greedy graph as the final policy

in what order?
(fringe  start)
DFS postorder



Real Time Dynamic Programming
[Barto et al 95]

• Original Motivation
– agent acting in the real world

• Trial 
– simulate greedy policy starting from start state;
– perform Bellman backup on visited states
– stop when you hit the goal

• RTDP: repeat trials forever
– Converges in the limit #trials ! 1
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No termination
condition!



Trial
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Trial
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Trial
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Trial
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Trial
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Trial
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Trial
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Trial
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repeat
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RTDP Family of Algorithms

repeat
s Ã s0

repeat //trials
REVISE s; identify agreedy

FIND: pick s’ s.t. T(s, agreedy, s’) > 0
s Ã s’

until s 2 G

until termination test
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• Admissible heuristic

⇒ V(s) · V*(s)

⇒ Q(s,a) · Q*(s,a)

• Label a state s as solved 

– if V(s) has converged
best action

ResV(s) < ²

) V(s) won’t change!
label s as solved

sgs

Termination Test: Labeling



Labeling (contd)
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best action

ResV(s) < ²

s' already solved
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Labeling (contd)
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best action

ResV(s) < ²

s' already solved

) V(s) won’t change!

label s as solved

sgs

s'

best action

ResV(s) < ²

ResV(s’) < ²

V(s), V(s’) won’t change!
label s, s’ as solved

sgs

s'best action

M#3: some algorithms 
use explicit 

knowledge of goals

M#1: some states 
can be ignored for 

efficient computation



Labeled RTDP [Bonet&Geffner 03b]

repeat
s Ã s0

label all goal states as solved

repeat //trials
REVISE s; identify agreedy

FIND: sample s’ from T(s, agreedy, s’)
s Ã s’

until s is solved

for all states s in the trial 
try to label s as solved

until s0 is solved
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• terminates in finite time

– due to labeling procedure

• anytime

– focuses attention on more probable states

• fast convergence

– focuses attention on unconverged states

69

LRTDP



LRTDP Extensions

• Different ways to pick next state

• Different termination conditions

• Bounded RTDP [McMahan et al 05]

• Focused RTDP [Smith&Simmons 06]

• Value of Perfect Information RTDP [Sanner et al 

09]
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Where do Heuristics come from?

• Domain-dependent heuristics

• Domain-independent heuristics

– dependent on specific domain representation
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M#2: factored 
representations 
expose useful 

problem structure



Take-Homes

• efficient computation given start state s0

– heuristic search

• automatic computation of heuristics

– domain independent manner



Shameless Plug
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Agenda

• Background: Stochastic Shortest Paths MDPs

• Background: Heuristic Search for SSP MDPs

• Algorithms: Automatic Basis Function Discovery

• Models: SSPs  Generalized SSPs



Previous Work
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• Determinization
– Determinize the MDP
– Classical planners fast
– E.g., FF-Replan
– Cons: may be troubled by

• Complex contingencies
• Probabilities

• Function Approximation
– Dimensionality reduction
– Represent state values 

with basis functions
• E.g., V*(s) ≈ ∑iwi bi(s)

– Cons:
• Need a human to get bi

Our Work

Marry these paradigms to extract problem-specific 
structure in a fast, problem-independent way. 



Example Domain
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Example Domain (cont’d)
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SSPs0 MDP

• S: A set of states

• A: A set of actions

• T(s,a,s’): transition 
model

• C(s,a,s’): action cost

• s0: start state

• G: set of goals

GetW, GetH, GetS, Tweak, Smash 



Contributions

ReTrASE — a scalable approximate MDP solver

– Combines function approximation with         
classical planning

– Uses classical planner to automatically generate 
basis functions 

– Fast, memory-efficient,  high-quality policies
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The Big Picture: ReTrASE
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[Kolobov, Mausam, Weld, AIJ’12]

Basis Functions



Determinizing the Domain

P = 9/10

P = 1/10
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Generating Trajectories
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Generating Trajectories
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Regressing Trajectories
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Basis Functions
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Meaning of Basis Function Weights
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Want to compute basis function weights 
so that the blue basis function looks 

“better” than the pink one!



Value of a Basis Function

• Basis function enables at least one trajectory 

– applicable from all relevant states

• Trajectories combine to form policies

• Value of a basis function ~ “quality” of its policies

• Algorithm based on RTDP

– Learn basis function values

– Use them to compute values of states
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Experimental Results

• Criteria:

– Scalability (vs. VI/RTDP-based planners)

– Solution quality (vs. IPPC winners)

• Domains: 6 from IPPC-06 and IPPC-08

• Competitors: 

– Best performer on the particular domain

– Best performer in the particular IPPC

– LRTDP
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The Big Picture

• ReTrASE is vastly more scalable than   
VI/RTDP-based planners

• ReTrASE typically rivals or outperforms the 
best-performing planners on IPPC goal-
oriented domains
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Triangle-Tire: Memory Consumption
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Triangle-Tire: Success Rate
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Exploding Blocks World: Success Rate
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SSPs0

Under two conditions:
• There is a proper policy (reaches a goal with P= 1 from all states)

• Every improper policy incurs a cost of ∞ from every state from 
which it does not reach the goal with P=1

97

• S: A set of states

• A: A set of actions

• T(s,a,s’): transition model

• C(s,a,s’): cost

• G: set of goals

• s0: start state

?



Key Drawback of ReTrASE…

• Dead-end handling expensive

– expensive to identify: drain on time

– too many to store: drain on space



99

Det(P)

Run a state space 
exploration routine 

(e.g, RTDP)

MDP P

State s

Policy

Value(s)

Extraction Module

Evaluate s

Determinize P

Trajectory

Run a classical planner

Regress 
trajectory SixthSense

State s

Dead End

NogoodsBasis Functions

Computing Values



Research Question

Can we devise a sound dead-end identification 
procedure fast enough to obviate memoization?
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Learns feature combinations whose presence 
guarantees a state to be a dead end



Nogoods
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Nogood



Generate-and-Test Procedure

• Generate a nogood candidate
– Key insight: Nogood = conjunction that defeats all b.f.s

– For each b.f., pick a literal that defeats it

• Test the candidate
– Needed for soundness, since we don’t know all b.f.s

– Use the non-relaxed Planning Graph algorithm
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• Can act as submodule of many planners and ID dead ends
– By checking discovered nogoods against every state

–

Benefits of SixthSense
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Take Homes

• Novel ideas to learn structure in the domain

• Basis functions
– Learn by regressing trajectories

– Represent good structure

– Generalize across states 

• Nogoods
– Learn inductively; prove using a sound procedure

– Represent bad structure

– Generalize across dead-end states



Take Homes

• A novel use of classical planners for MDP algos

– retains the decision-theoretic nature of MDPs

– exploits the scalability of classical planners

• Automatic ways to generate basis functions

– no longer an onus on human designer

– exploits factored domain model

M#2: factored 
representations 
expose useful 

problem structure



Agenda

• Background: Stochastic Shortest Paths MDPs

• Background: Heuristic Search for SSP MDPs

• Algorithms: Automatic Basis Function Discovery

• Models: SSPs  Generalized SSPs



Theme of the Workshop

• Value Functions  Generalized Value Functions

• Gradient Extra-gradient

• KL divergence  Bergman divergence

• Contextual bandits  Linear bandits

• SSPs  ?



SSP/SSPs0

SSP MDP is a tuple <S, A, T, C, G, (s0)>, where:
• S is a finite state space
• A is a finite action set
• T is a stationary transition function
• C is a stationary cost function
• G is a set of absorbing cost-free goal states
• (s0 is an initial state)

Under two conditions:
• There is a proper policy (reaches a goal with P=1 from all states)
• Every improper policy incurs a cost of ∞ from every state from 

which it does not reach the goal with PG = 1
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Disallows dead ends
Prevents algos from halting if we allowed 

dead ends, make cost a meaningless criterion 



Stochastic Shortest-Path MDPs

• Example applications:

– Controlling a Mars rover

“How to collect scientific

data without damaging

the rover?”

– Route planning

“How to climb mount Everest 

in the cheapest way?”
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Dead ends are common!



Discrete MDP Research So Far

SSP MDPs
Negative MDPs 

Positive-
bounded MDPs 

Goal-oriented MDPs

????

-Model many 
interesting scenarios
-Efficiently* solvable 
by heuristic search

-What interesting 
problems are here?
-How do we solve 
them efficiently?
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SSPADE: Dead Ends are Avoidable from s0

• D.e.s may be avoidable from s0 via an optimal policy

• Can’t compute V*(s) for every state

• But need only “relevant” states to get the “right” value

• Can be solved with optimal heuristic search from s0

– FIND shouldn’t starve states; REVISE should halt 123

S0 S1

a1

a2

a2
SG

S2
a2

a1

a1

a2

a3

[Kolobov, Mausam, Weld, UAI’12]



fSSPUDE: SSP with Unavoidable Dead 
Ends (and a Finite Penalty on Them)

• First attempt: if the agent reaches a d.e., it pays D

V*(s) = ε(D+1) + ε·0 + (1- ε)·D = D + ε

• Makes non-d.e.s more “expensive” than d.e.s!
– Oops…
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ds

sg

a T(s, a, d) = 1- ε

T(s, a, sg) = ε

C= ε(D+1)

D



fSSPUDE: SSP with Unavoidable Dead 
Ends (and a Finite Penalty on Them)

• Second attempt: agent allowed to stop at any state

– by paying a price = penalty D

– Intuition: achieving a goal is worth –D to the agent

• Equivalent to SSP MDP with a special astop action

– applicable in each state

– leads directly to a goal by paying cost D

• Thus, algorithms for SSP apply to fSSPUDE!

[Kolobov, Mausam, Weld, UAI’12]



MAXPROB: Dealing with Unavoidable 
Infinitely Damaging Dead Ends-1
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S0 S1

a1

C = 2

C = 1

a2

a2

C = 7

C = 1

SG

C = 3

T = 0.3

T = 0.7

Sd
C = 0.8a2

a1
a3

C = 5
P*G(s1)= 0.3

P*G(sd)= 0

P*G(s1)= 0.3

• Comparing policies in terms of cost meaningless
• MAXPROB/GSSP MDPs: evaluate policies by probability of reaching goal

– Set all action costs to 0 (they don’t matter), reward 1 for reaching goal
– Fixed-point methods such as VI or LRTDP don’t converge because of traps

0 0

0
0

0

0

-1 [Kolobov, Mausam, Weld, 
Geffner ICAPS’11]



MDP Examples
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Generalized SSPs: Definition

• An MDP M = <S, A, T, R, G, s0> for which

– There is a proper policy (reaches the goal with P=1)

– Sum of non-negative rewards accumulated by any 
policy starting at s0 is bounded from above

• Solving a GSSP = finding a reward-maximizing 
Markovian policy that reaches the goal
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Generalized SSPs: Example
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Generalized SSPs: Example

S0
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Proper policy exists
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Generalized SSPs: Example

S0
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For any ∏, sum of non-negative rewards ≤ 2
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Generalized SSPs: Example
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Not a solution
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GSSPs: Is V* A Fixed Point of B?

• Reminder: in SSPs,  V* = B V*, where

– B is the Bellman backup operator

– B V(s) = maxa {R(s, a) + ∑s’ in succ(s,a)T(s, a, s’)V(s’)

• In SSPs, V* is a fixed point of B

– Still true in GSSPs:
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GSSPs: Is V* The Unique Fixed Point of B?

• In SSPs, V* is the unique fixed point of B
– I.e., V* = B o B o … B V0, V0 is a heuristic value function
– Not true in GSSPs:

– Moreover, all suboptimal fixed points are admissible!
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GSSPs: Is Every V*-greedy ∏ A Solution?

• In SSPs, every ∏ greedy w.r.t V* reaches the 
goal

– Not true in GSSPs:
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Efficiently Solving GSSPs: Attempt #1

• Just Run F&R!

– Start with an admissible V0

– Done!
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Attempt #1: What Went Wrong? 

• In GSSPs, suboptimal fixed points are admissible!
– When starting with V0 ≥ V*, F&R hit one of them.

– B can’t change V over traps – strongly connected 
components in V’s greedy graph

• Can yield an arbitrarily poor solution
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Efficiently Solving GSSPs: FRET

• Find, Revise, Eliminate Traps

– First heuristic search algorithm for MDPs beyond SSP

– Provably optimal if the heuristic is admissible

• Main idea 

– Run F&R until convergence

– Eliminate traps in the policy envelope

– Repeat until no more traps

139



5
2

0.5
2.3 2 1 1.1

0

0

0
-1

0 0
0

4
2

0.5
2 2 1 1

0

0

0
-1

0 0
0

4
2

0.5
1 1

-1
0 0

0

1.5
2

0.5
1 1

-1
0 0

0

0

0

1.5
2

0.5
-1

0
0

1.5
2

0.5
-1

0
0

-∞

-∞

-∞ -1

-∞ -1

Start with an 
admissible V0

Run F&R until 
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FRET Example: Finding V*
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FRET Example: Extracting ∏*

-0.5
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0.5
-∞ -∞ -1 -1

0
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0

• Iteratively “connect” states to the goals

– Using optimal actions

– Until s0 is connected

141



Experimental Setup

• Problems: MAXPROB versions of EBW

• Planners: VI vs FRET

• Heuristics: Zero for VI, One+SixthSense for FRET

– SixthSense soundly identifies some of the “dead 
ends”; their values are set to 0
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Experimental Setup
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Goal-Oriented MDP Hierarchy
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SSP
Discounted-

reward MDPs
Finite-horizon 

MDPs

SSPADE

fSSPUDE

iSSPUDE

GSSP

S3Ps



Future Work: Solving S3P 

• Stochastic Safest and Shortest Path (S3P) MDPs

– Teichteil-Koenigsbuch, AAAI’12

– Goal-oriented MDPs with no restriction on costs
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S0 S1

a1

C(s1, a1, s0) = -1
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S2 C(s2, a2, s2) = 0.8C(s2, a1, s2) = 2.4 a1 a2
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Alternating 
cycles 

Non-positive 
cycles 

Unavoidable 
dead ends



Take Homes

• SSP MDPs exclude interesting planning scenarios

• Generalized SSPs
– handle zero-cost cycles
– GSSP contains SSP and several other MDP classes
– heuristic search algorithm (FRET)

• Dead-ends tricky in undiscounted goal MDPs
• Well-formed extensions of SSP MDPs

– can have unintuitive DP properties
– what is beyond GSSPs?
– loads of open questions: theoretical & algorithmic

M#3: some models 
use explicit 

knowledge of goals



Agenda

• Background: Stochastic Shortest Paths MDPs

• Background: Heuristic Search for SSP MDPs

• Algorithms: Automatic Basis Function Discovery

• Models: SSPs  Generalized SSPs
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[1]: Robert Givan, Thomas Dean, and Matthew Greig. Equivalence notions and model minimization in Markov decision 
processes. Artificial Intelligence, 2003
[2]: Balaraman Ravindran and A Barto. Approximate homomorphisms: A framework for
nonexact minimization in Markov decision processes. In ICKBCS, 2004.



Key Properties

PROPERTY 1: The original MDP does not reduce 
to an abstract MDP

PROPERTY 2: ASAP subsumes abstractions 
computed by AS and ASAM

PROPERTY 3: Value Iteration on abstract AND-OR 
graph returns optimal value functions for the 
original MDP



Experiments
[Anand, Grover, Mausam, Singla – submitted]

M#1: states can be 
ignored (abstracted) 

for efficient 
computation



3 Key Messages
• M#0: No need for exploration-exploitation tradeoff

– planning is purely a computational problem (V.I. vs. Q)

• M#1: Search in planning

– states can be ignored or reordered for efficient computation

• M#2: Representation in planning

– develop interesting representations for Factored MDPs
 Exploit structure to design domain-independent algorithms

• M#3: Goal-directed MDPs

– design algorithms/models that use explicit knowledge of goals
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