
Goal-Directed MDPs
Models and Algorithms

Mausam

Indian Institute of Technology, Delhi

Joint work with Andrey Kolobov and Dan Weld

Planning à la Sutton

• control

• full sequential

• model-based

• value-based

• tabular/function-approximation

• TD/Monte-Carlo

Typical Planning Setting

• vs. RL: model of the world is known

• vs. flat: model of the world in a declarative representation
– symbolic
– large problems

• vs. reward: goal directed

• vs. complete state space: knowledge of the start state

• domain independent: no additional human input

3 Key Messages
• M#0: No need for exploration-exploitation tradeoff

– planning is purely a computational problem (V.I. vs. Q)

• M#1: Search in planning

– states can be ignored or reordered for efficient computation

• M#2: Representation in planning

– develop interesting representations for Factored MDPs
 Exploit structure to design domain-independent algorithms

• M#3: Goal-directed MDPs

– design algorithms/models that use explicit knowledge of goals

4

Agenda

• Background: Stochastic Shortest Paths MDPs

• Background: Heuristic Search for SSP MDPs

• Algorithms: Automatic Basis Function Discovery

• Models: SSPs Generalized SSPs

Infinite Horizon Discounted Reward MDP

• S: A set of states

• A: A set of actions

• T(s,a,s’): transition
model

• R(s,a,s’): reward

• γ: discount factor

Where Does γ Come From?

• γ can affect optimal policy significantly

– γ = 0 + ε: yields myopic policies for “impatient” agents

– γ = 1 - ε: yields far-sighted policies, inefficient to compute

• How to set it?

– Sometimes suggested by data
• (e.g., inflation or interest rate)

– Often set to whatever gives a reasonable policy

7

Infinite Horizon Discounted Reward MDP

• S: A set of states

• A: A set of actions

• T(s,a,s’): transition
model

• R(s,a,s’): reward

• γ: discount factor

Stochastic Shortest Path MDP

• S: A set of states

• A: A set of actions

• T(s,a,s’): transition
model

• R(s,a,s’): reward

• γ: discount factor

Stochastic Shortest Path MDP

• S: A set of states

• A: A set of actions

• T(s,a,s’): transition
model

• C(s,a,s’): cost

• γ: discount factor

Stochastic Shortest Path MDP

• S: A set of states

• A: A set of actions

• T(s,a,s’): transition
model

• C(s,a,s’): cost

•

Stochastic Shortest Path MDP

• S: A set of states

• A: A set of actions

• T(s,a,s’): transition
model

• C(s,a,s’): cost

• G: set of goals

Minimize
- expected cost to reach a goal
- under full observability
- indefinite horizon

Bellman Equations for SSP

add base case; no discount factor

V ¤(s) = 0 if s 2 G
= min

a2A

X

s02S
T (s; a; s0) [C(s; a; s0) + V ¤(s0)]

SSP vs. IHDR?

SSP
Discounted-

reward MDPs
Finite-horizon

MDPs

Discounted Reward MDP SSP
[Bertsekas&Tsitsiklis 95]

15

S0
a

C=-r1

C=-r2

T= γ t1

T= γ t2

S1

S2

SG

C=0

T=1-γ

C=0

T=1-γ

S0
a

R=r1

R=r2

T=t1

T=t2

S1

S2

When is SSP well formed/defined

Under two conditions:
• There is a proper policy (reaches a goal with P= 1 from all states)

• Every improper policy incurs a cost of ∞ from every state from
which it does not reach the goal with P=1

16

[Bertsekas, 1995]

• S: A set of states

• A: A set of actions

• T(s,a,s’): transition model

• C(s,a,s’): cost

• G: set of goals

Agenda

• Background: Stochastic Shortest Paths MDPs

• Background: Heuristic Search for SSP MDPs

• Algorithms: Automatic Basis Function Discovery

• Models: SSPs Generalized SSPs

Heuristic Search

• Limitations of VI

– enumeration of state space

– curse of dimensionality

• Heuristic search: insights

– knowledge of a start state to save on computation

~ (all sources shortest path single source shortest path)

– additional knowledge in the form of heuristic fn

~ (dfs/bfs A*)

SSPs0

Under two conditions:
• There is a proper policy (reaches a goal with P= 1 from all states)

• Every improper policy incurs a cost of ∞ from every state from
which it does not reach the goal with P=1

19

• S: A set of states

• A: A set of actions

• T(s,a,s’): transition model

• C(s,a,s’): cost

• G: set of goals

• s0: start state

SSPs0

• What is a solution to SSPs0

• Policy (S !A)?

– are states that are not reachable from s0 relevant?

– states that are never visited (even though reachable)?

Partial Policy

• Define Partial policy

– ¼: S’ ! A, where S’µ S

• Define Partial policy closed w.r.t. a state s.

– is a partial policy ¼s

– defined for all states s’ reachable by ¼s starting
from s

21

Partial policy closed wrt s0

22

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

s9

Partial policy closed wrt s0

23

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

s9

¼s0(s0)= a1

¼s0(s1)= a2

¼s0(s2)= a1

Is this policy closed wrt s0?

Partial policy closed wrt s0

24

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

s9

¼s0(s0)= a1

¼s0(s1)= a2

¼s0(s2)= a1

Is this policy closed wrt s0?

Partial policy closed wrt s0

25

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

s9

¼s0(s0)= a1

¼s0(s1)= a2

¼s0(s2)= a1

¼s0(s6)= a1

Is this policy closed wrt s0?

Policy Graph of ¼s0

26

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

s9

¼s0(s0)= a1

¼s0(s1)= a2

¼s0(s2)= a1

¼s0(s6)= a1

Greedy Policy Graph

• Define greedy policy: ¼V = argmina QV(s,a)

• Define greedy partial policy rooted at s0

– Partial policy rooted at s0

– Greedy policy

– denoted by

• Define greedy policy graph
– Policy graph of : denoted by

27

¼Vs0

¼Vs0 GV
s0

Heuristic Function

• h(s): S!R

– estimates V*(s)

– gives an indication about “goodness” of a state

– usually used in initialization V0(s) = h(s)

– helps us avoid seemingly bad states

• Define admissible heuristic
– optimistic

– h(s) · V*(s)

28

A General Scheme for
Heuristic Search in MDPs

• Two (over)simplified intuitions
– Focus on states in greedy policy wrt V rooted at s0

– Focus on states with residual > ²

• Find & Revise:
– repeat

• find a state that satisfies the two properties above

• perform a Bellman backup

– until no such state remains

29

FIND & REVISE [Bonet&Geffner 03a]

• Convergence to V* is guaranteed
– if heuristic function is admissible

– ~no state gets starved in 1 FIND steps

30

(perform Bellman backups)

32

LAO* family

add s0 to the fringe and to greedy policy graph

repeat
 FIND: expand some states on the fringe (in greedy graph)
 initialize all new states by their heuristic value
 choose a subset of affected states
 perform some REVISE computations on this subset
 recompute the greedy graph

until greedy graph has no fringe & residuals in greedy
graph small

output the greedy graph as the final policy

33

LAO* [Hansen&Zilberstein 98]

add s0 to the fringe and to greedy policy graph

repeat
 FIND: expand best state s on the fringe (in greedy graph)
 initialize all new states by their heuristic value
 subset = all states in expanded graph that can reach s
 perform VI on this subset
 recompute the greedy graph

until greedy graph has no fringe & residuals in greedy
graph small

output the greedy graph as the final policy

34

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

add s0 in the fringe and in greedy graph

s0
V(s0) = h(s0)

35

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0
V(s0) = h(s0)

FIND: expand some states on the fringe (in greedy graph)

36

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform VI on this subset

s0

s1 s2 s3 s4

V(s0)

h h h h

37

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform VI on this subset

recompute the greedy graph

s0

s1 s2 s3 s4

V(s0)

h h h h

38

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

s1 s2 s3 s4

s6 s7

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform VI on this subset

recompute the greedy graph

h h h h

h h

V(s0)

39

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

s1 s2 s3 s4

s6 s7

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform VI on this subset

recompute the greedy graph

h h h h

h h

V(s0)

40

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

s1 s2 s3 s4

s6 s7

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform VI on this subset

recompute the greedy graph

h h V h

h h

V

41

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

s1 s2 s3 s4

s6 s7

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform VI on this subset

recompute the greedy graph

h h V h

h h

V

42

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

Sg

s1 s2 s3 s4

s5 s6 s7

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform VI on this subset

recompute the greedy graph

h h V h

h h

V

V

h 0

43

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

Sg

s1 s2 s3 s4

s5 s6 s7

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform VI on this subset

recompute the greedy graph

h h V h

h h

V

V

h 0

44

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

Sg

s1 s2 s3 s4

s5 s6 s7

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform VI on this subset

recompute the greedy graph

V h V h

h h

V

V

h 0

45

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

Sg

s1 s2 s3 s4

s5 s6 s7

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform VI on this subset

recompute the greedy graph

V h V h

h h

V

V

h 0

46

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

Sg

s1 s2 s3 s4

s5 s6 s7

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform VI on this subset

recompute the greedy graph

V V V h

h h

V

V

h 0

47

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

Sg

s1 s2 s3 s4

s5 s6 s7

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform VI on this subset

recompute the greedy graph

V V V h

h h

V

V

h 0

48

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

Sg

s1 s2 s3 s4

s5 s6 s7

output the greedy graph as the final policy

V V V h

V h

V

V

h 0

49

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

Sg

s1 s2 s3 s4

s5 s6 s7

output the greedy graph as the final policy

V V V h

V h

V

V

h 0

50

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

Sg

s1 s2 s3 s4

s5 s6 s7

s4 was never expanded
s8 was never touched

V V V h

V h

V

V

h 0 s8

M#1: some states
can be ignored for

efficient compuation

51

LAO* [Hansen&Zilberstein 98]

add s0 to the fringe and to greedy policy graph

repeat
 FIND: expand best state s on the fringe (in greedy graph)
 initialize all new states by their heuristic value
 subset = all states in expanded graph that can reach s
 perform VI on this subset
 recompute the greedy graph

until greedy graph has no fringe

output the greedy graph as the final policy

one expansion

lot of computation

52

Optimizations in LAO*

add s0 to the fringe and to greedy policy graph

repeat
 FIND: expand best state s on the fringe (in greedy graph)
 initialize all new states by their heuristic value
 subset = all states in expanded graph that can reach s
 VI iterations until greedy graph changes (or low residuals)
 recompute the greedy graph

until greedy graph has no fringe

output the greedy graph as the final policy

53

Optimizations in LAO*

add s0 to the fringe and to greedy policy graph

repeat
 FIND: expand all states in greedy fringe
 initialize all new states by their heuristic value
 subset = all states in expanded graph that can reach s
 VI iterations until greedy graph changes (or low residuals)
 recompute the greedy graph

until greedy graph has no fringe

output the greedy graph as the final policy

54

iLAO* [Hansen&Zilberstein 01]

add s0 to the fringe and to greedy policy graph

repeat
 FIND: expand all states in greedy fringe
 initialize all new states by their heuristic value
 subset = all states in expanded graph that can reach s
 only one backup per state in greedy graph
 recompute the greedy graph

until greedy graph has no fringe

output the greedy graph as the final policy

in what order?
(fringe start)
DFS postorder

Real Time Dynamic Programming
[Barto et al 95]

• Original Motivation
– agent acting in the real world

• Trial
– simulate greedy policy starting from start state;
– perform Bellman backup on visited states
– stop when you hit the goal

• RTDP: repeat trials forever
– Converges in the limit #trials ! 1

55

No termination
condition!

Trial

56

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

Trial

57

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

h h h h

V

start at start state

repeat

perform a Bellman backup

simulate greedy action

Trial

58

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

h h h h

V

start at start state

repeat

perform a Bellman backup

simulate greedy action

h h

Trial

59

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

h h V h

V

start at start state

repeat

perform a Bellman backup

simulate greedy action

h h

Trial

60

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

h h V h

V

start at start state

repeat

perform a Bellman backup

simulate greedy action

h h

Trial

61

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

h h V h

V

start at start state

repeat

perform a Bellman backup

simulate greedy action

V h

Trial

62

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

h h V h

V

start at start state

repeat

perform a Bellman backup

simulate greedy action

until hit the goal

V h

Trial

63

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

h h V h

V

start at start state

repeat

perform a Bellman backup

simulate greedy action

until hit the goal

V h

RTDP

repeat
forever

RTDP Family of Algorithms

repeat
s Ã s0

repeat //trials
REVISE s; identify agreedy

FIND: pick s’ s.t. T(s, agreedy, s’) > 0
s Ã s’

until s 2 G

until termination test

64

• Admissible heuristic

⇒ V(s) · V*(s)

⇒ Q(s,a) · Q*(s,a)

• Label a state s as solved

– if V(s) has converged
best action

ResV(s) < ²

) V(s) won’t change!
label s as solved

sgs

Termination Test: Labeling

Labeling (contd)

66

best action

ResV(s) < ²

s' already solved
) V(s) won’t change!

label s as solved

sgs

s'

Labeling (contd)

67

best action

ResV(s) < ²

s' already solved

) V(s) won’t change!

label s as solved

sgs

s'

best action

ResV(s) < ²

ResV(s’) < ²

V(s), V(s’) won’t change!
label s, s’ as solved

sgs

s'best action

M#3: some algorithms
use explicit

knowledge of goals

M#1: some states
can be ignored for

efficient computation

Labeled RTDP [Bonet&Geffner 03b]

repeat
s Ã s0

label all goal states as solved

repeat //trials
REVISE s; identify agreedy

FIND: sample s’ from T(s, agreedy, s’)
s Ã s’

until s is solved

for all states s in the trial
try to label s as solved

until s0 is solved

68

• terminates in finite time

– due to labeling procedure

• anytime

– focuses attention on more probable states

• fast convergence

– focuses attention on unconverged states

69

LRTDP

LRTDP Extensions

• Different ways to pick next state

• Different termination conditions

• Bounded RTDP [McMahan et al 05]

• Focused RTDP [Smith&Simmons 06]

• Value of Perfect Information RTDP [Sanner et al

09]

70

Where do Heuristics come from?

• Domain-dependent heuristics

• Domain-independent heuristics

– dependent on specific domain representation

71

M#2: factored
representations
expose useful

problem structure

Take-Homes

• efficient computation given start state s0

– heuristic search

• automatic computation of heuristics

– domain independent manner

Shameless Plug

74

Agenda

• Background: Stochastic Shortest Paths MDPs

• Background: Heuristic Search for SSP MDPs

• Algorithms: Automatic Basis Function Discovery

• Models: SSPs Generalized SSPs

Previous Work

76

• Determinization
– Determinize the MDP
– Classical planners fast
– E.g., FF-Replan
– Cons: may be troubled by

• Complex contingencies
• Probabilities

• Function Approximation
– Dimensionality reduction
– Represent state values

with basis functions
• E.g., V*(s) ≈ ∑iwi bi(s)

– Cons:
• Need a human to get bi

Our Work

Marry these paradigms to extract problem-specific
structure in a fast, problem-independent way.

Example Domain

78

G
e
t
S

G
e
t

W

G
e
t
H

Example Domain (cont’d)

79

S
m
a
s
h

T
w
e
a
k

SSPs0 MDP

• S: A set of states

• A: A set of actions

• T(s,a,s’): transition
model

• C(s,a,s’): action cost

• s0: start state

• G: set of goals

GetW, GetH, GetS, Tweak, Smash

Contributions

ReTrASE — a scalable approximate MDP solver

– Combines function approximation with
classical planning

– Uses classical planner to automatically generate
basis functions

– Fast, memory-efficient, high-quality policies

81

The Big Picture: ReTrASE

82

Det(P)

Run a state space
exploration routine

(e.g, RTDP)

MDP P

State s

Policy

Value(s)

Extraction Module

Evaluate s

Determinize P

Trajectory

Run a classical planner

Regress
trajectory SixthSense

State s

Dead End

Nogoods

[Kolobov, Mausam, Weld, AIJ’12]

Basis Functions

Determinizing the Domain

P = 9/10

P = 1/10

83

Generating Trajectories

84

Det(P)

Run a state space
exploration routine

(e.g, RTDP)

MDP P

State s

Policy

Value(s)

Extraction Module

Evaluate s

Determinize P

Trajectory

Run a classical planner

Regress
trajectory SixthSense

State s

Dead End

NogoodsBasis Functions

Generating Trajectories

85

86

Det(P)

Run a state space
exploration routine

(e.g, RTDP)

MDP P

State s

Policy

Value(s)

Extraction Module

Evaluate s

Determinize P

Trajectory

Run a classical planner

Regress
trajectory SixthSense

State s

Dead End

NogoodsBasis Functions

Computing Basis Functions

Regressing Trajectories

87

basis functions

basis function
guarantees

goal is
reachable

from s

= 1

= 2

Initial weights

Basis Functions

88

89

Det(P)

Run a state space
exploration routine

(e.g, RTDP)

MDP P

State s

Policy

Value(s)

Extraction Module

Evaluate s

Determinize P

Trajectory

Run a classical planner

Regress
trajectory SixthSense

State s

Dead End

NogoodsBasis Functions

Computing Values

Meaning of Basis Function Weights

9090

Want to compute basis function weights
so that the blue basis function looks

“better” than the pink one!

Value of a Basis Function

• Basis function enables at least one trajectory

– applicable from all relevant states

• Trajectories combine to form policies

• Value of a basis function ~ “quality” of its policies

• Algorithm based on RTDP

– Learn basis function values

– Use them to compute values of states

91

Experimental Results

• Criteria:

– Scalability (vs. VI/RTDP-based planners)

– Solution quality (vs. IPPC winners)

• Domains: 6 from IPPC-06 and IPPC-08

• Competitors:

– Best performer on the particular domain

– Best performer in the particular IPPC

– LRTDP

92

The Big Picture

• ReTrASE is vastly more scalable than
VI/RTDP-based planners

• ReTrASE typically rivals or outperforms the
best-performing planners on IPPC goal-
oriented domains

93

Triangle-Tire: Memory Consumption

94

LRTDPOPT

ReTrASE

LRTDPFF

Triangle-Tire Problem #

LO
G

1
0
(A

m
o

u
n

t
o

f
M

e
m

o
ry

)

Triangle-Tire: Success Rate

95
Triangle-Tire World’08 Problem #

%
 o

f
Su

cc
e

ss
fu

l T
ri

al
s

ReTrASE

HMDPP

RFF-PG

Exploding Blocks World: Success Rate

96
Exploding Blocks World’06 Problem #

%
 o

f
Su

cc
e

ss
fu

l T
ri

al
s

ReTrASE

FFReplan

FPG

~2800 states!

SSPs0

Under two conditions:
• There is a proper policy (reaches a goal with P= 1 from all states)

• Every improper policy incurs a cost of ∞ from every state from
which it does not reach the goal with P=1

97

• S: A set of states

• A: A set of actions

• T(s,a,s’): transition model

• C(s,a,s’): cost

• G: set of goals

• s0: start state

?

Key Drawback of ReTrASE…

• Dead-end handling expensive

– expensive to identify: drain on time

– too many to store: drain on space

99

Det(P)

Run a state space
exploration routine

(e.g, RTDP)

MDP P

State s

Policy

Value(s)

Extraction Module

Evaluate s

Determinize P

Trajectory

Run a classical planner

Regress
trajectory SixthSense

State s

Dead End

NogoodsBasis Functions

Computing Values

Research Question

Can we devise a sound dead-end identification
procedure fast enough to obviate memoization?

100

Learns feature combinations whose presence
guarantees a state to be a dead end

Nogoods

101

Nogood

Generate-and-Test Procedure

• Generate a nogood candidate
– Key insight: Nogood = conjunction that defeats all b.f.s

– For each b.f., pick a literal that defeats it

• Test the candidate
– Needed for soundness, since we don’t know all b.f.s

– Use the non-relaxed Planning Graph algorithm
102

• Can act as submodule of many planners and ID dead ends
– By checking discovered nogoods against every state

–

Benefits of SixthSense

110

Take Homes

• Novel ideas to learn structure in the domain

• Basis functions
– Learn by regressing trajectories

– Represent good structure

– Generalize across states

• Nogoods
– Learn inductively; prove using a sound procedure

– Represent bad structure

– Generalize across dead-end states

Take Homes

• A novel use of classical planners for MDP algos

– retains the decision-theoretic nature of MDPs

– exploits the scalability of classical planners

• Automatic ways to generate basis functions

– no longer an onus on human designer

– exploits factored domain model

M#2: factored
representations
expose useful

problem structure

Agenda

• Background: Stochastic Shortest Paths MDPs

• Background: Heuristic Search for SSP MDPs

• Algorithms: Automatic Basis Function Discovery

• Models: SSPs Generalized SSPs

Theme of the Workshop

• Value Functions Generalized Value Functions

• Gradient Extra-gradient

• KL divergence Bergman divergence

• Contextual bandits Linear bandits

• SSPs ?

SSP/SSPs0

SSP MDP is a tuple <S, A, T, C, G, (s0)>, where:
• S is a finite state space
• A is a finite action set
• T is a stationary transition function
• C is a stationary cost function
• G is a set of absorbing cost-free goal states
• (s0 is an initial state)

Under two conditions:
• There is a proper policy (reaches a goal with P=1 from all states)
• Every improper policy incurs a cost of ∞ from every state from

which it does not reach the goal with PG = 1

120

Disallows dead ends
Prevents algos from halting if we allowed

dead ends, make cost a meaningless criterion

Stochastic Shortest-Path MDPs

• Example applications:

– Controlling a Mars rover

“How to collect scientific

data without damaging

the rover?”

– Route planning

“How to climb mount Everest

in the cheapest way?”

121

Dead ends are common!

Discrete MDP Research So Far

SSP MDPs
Negative MDPs

Positive-
bounded MDPs

Goal-oriented MDPs

????

-Model many
interesting scenarios
-Efficiently* solvable
by heuristic search

-What interesting
problems are here?
-How do we solve
them efficiently?

122

SSPADE: Dead Ends are Avoidable from s0

• D.e.s may be avoidable from s0 via an optimal policy

• Can’t compute V*(s) for every state

• But need only “relevant” states to get the “right” value

• Can be solved with optimal heuristic search from s0

– FIND shouldn’t starve states; REVISE should halt 123

S0 S1

a1

a2

a2
SG

S2
a2

a1

a1

a2

a3

[Kolobov, Mausam, Weld, UAI’12]

fSSPUDE: SSP with Unavoidable Dead
Ends (and a Finite Penalty on Them)

• First attempt: if the agent reaches a d.e., it pays D

V*(s) = ε(D+1) + ε·0 + (1- ε)·D = D + ε

• Makes non-d.e.s more “expensive” than d.e.s!
– Oops…

124

ds

sg

a T(s, a, d) = 1- ε

T(s, a, sg) = ε

C= ε(D+1)

D

fSSPUDE: SSP with Unavoidable Dead
Ends (and a Finite Penalty on Them)

• Second attempt: agent allowed to stop at any state

– by paying a price = penalty D

– Intuition: achieving a goal is worth –D to the agent

• Equivalent to SSP MDP with a special astop action

– applicable in each state

– leads directly to a goal by paying cost D

• Thus, algorithms for SSP apply to fSSPUDE!

[Kolobov, Mausam, Weld, UAI’12]

MAXPROB: Dealing with Unavoidable
Infinitely Damaging Dead Ends-1

126

S0 S1

a1

C = 2

C = 1

a2

a2

C = 7

C = 1

SG

C = 3

T = 0.3

T = 0.7

Sd
C = 0.8a2

a1
a3

C = 5
P*G(s1)= 0.3

P*G(sd)= 0

P*G(s1)= 0.3

• Comparing policies in terms of cost meaningless
• MAXPROB/GSSP MDPs: evaluate policies by probability of reaching goal

– Set all action costs to 0 (they don’t matter), reward 1 for reaching goal
– Fixed-point methods such as VI or LRTDP don’t converge because of traps

0 0

0
0

0

0

-1 [Kolobov, Mausam, Weld,
Geffner ICAPS’11]

MDP Examples

S0
2

0.5
S1 S2 S3 S4

0

0

-1
-1

-1

0
G

SSP

S0
2

0.5
S1 S2 S3 S4

0

0

0
-1

0

0
G

SSP

S0
2

0.5
S1 S2 S3 S4

1

-1

1
-1

-1

0
G

SSP

127

Generalized SSPs: Definition

• An MDP M = <S, A, T, R, G, s0> for which

– There is a proper policy (reaches the goal with P=1)

– Sum of non-negative rewards accumulated by any
policy starting at s0 is bounded from above

• Solving a GSSP = finding a reward-maximizing
Markovian policy that reaches the goal

128

Generalized SSPs: Example

129

S0
2

0.5
S1 S2 S3 S4

0

0

0
-1

0

0
G

S0
2

0.5
S1 S2 S3 S4

1

-1

1
-1

-1

0
G

GSSP

GSSP

Generalized SSPs: Example

S0
2

0.5
S1 S2 S3 S4

0

0

0
-1

0

0
G

Proper policy exists

130

Generalized SSPs: Example

S0
2

0.5
S1 S2 S3 S4

0

0

0
-1

0

0
G

For any ∏, sum of non-negative rewards ≤ 2

131

Generalized SSPs: Example

S0
2

0.5
S1 S2 S3 S4

0

0

0
-1

0

0
G

Solution

S0
2

0.5
S1 S2 S3 S4

0

0

0
-1

0

0
G

Not a solution

132

GSSPs: Is V* A Fixed Point of B?

• Reminder: in SSPs, V* = B V*, where

– B is the Bellman backup operator

– B V(s) = maxa {R(s, a) + ∑s’ in succ(s,a)T(s, a, s’)V(s’)

• In SSPs, V* is a fixed point of B

– Still true in GSSPs:

-0.5
2

0.5
-∞ -∞ -1 -1

0

0

0
-1

0

0
0

133

GSSPs: Is V* The Unique Fixed Point of B?

• In SSPs, V* is the unique fixed point of B
– I.e., V* = B o B o … B V0, V0 is a heuristic value function
– Not true in GSSPs:

– Moreover, all suboptimal fixed points are admissible!

-0.5
2

0.5
-∞ -∞ -1 -1

0

0

0
-1

0

0
0

3
2

0.5
1 1 1 1

0

0

0
-1

0

0
0

134

GSSPs: Is Every V*-greedy ∏ A Solution?

• In SSPs, every ∏ greedy w.r.t V* reaches the
goal

– Not true in GSSPs:

-0.5
2

0.5
-∞ -∞ -1 -1

0

0

0
-1

0

0
0

135

Efficiently Solving GSSPs: Attempt #1

• Just Run F&R!

– Start with an admissible V0

– Done!

3
2

0.5
1 1 1 1

0

0

0
-1

0

0
0

3
2

0.5
1 1 1 1

0

0

0
-1

0

0
0

136

Attempt #1: What Went Wrong?

• In GSSPs, suboptimal fixed points are admissible!
– When starting with V0 ≥ V*, F&R hit one of them.

– B can’t change V over traps – strongly connected
components in V’s greedy graph

• Can yield an arbitrarily poor solution

137

3
2

0.5
1 1 1 1

0

0

0
-1

0

0
0

Efficiently Solving GSSPs: FRET

• Find, Revise, Eliminate Traps

– First heuristic search algorithm for MDPs beyond SSP

– Provably optimal if the heuristic is admissible

• Main idea

– Run F&R until convergence

– Eliminate traps in the policy envelope

– Repeat until no more traps

139

5
2

0.5
2.3 2 1 1.1

0

0

0
-1

0 0
0

4
2

0.5
2 2 1 1

0

0

0
-1

0 0
0

4
2

0.5
1 1

-1
0 0

0

1.5
2

0.5
1 1

-1
0 0

0

0

0

1.5
2

0.5
-1

0
0

1.5
2

0.5
-1

0
0

-∞

-∞

-∞ -1

-∞ -1

Start with an
admissible V0

Run F&R until
convergence

Eliminate Traps in
the resulting Vi

R
e
p
e
a
t

Find-and-Revise

Find-and-Revise

Eliminate Traps

No traps left –
done!

FRET Example: Finding V*

140

FRET Example: Extracting ∏*

-0.5
2

0.5
-∞ -∞ -1 -1

0

0

0
-1

0

0
0

• Iteratively “connect” states to the goals

– Using optimal actions

– Until s0 is connected

141

Experimental Setup

• Problems: MAXPROB versions of EBW

• Planners: VI vs FRET

• Heuristics: Zero for VI, One+SixthSense for FRET

– SixthSense soundly identifies some of the “dead
ends”; their values are set to 0

142

Experimental Setup

143

Goal-Oriented MDP Hierarchy

144

SSP
Discounted-

reward MDPs
Finite-horizon

MDPs

SSPADE

fSSPUDE

iSSPUDE

GSSP

S3Ps

Future Work: Solving S3P

• Stochastic Safest and Shortest Path (S3P) MDPs

– Teichteil-Koenigsbuch, AAAI’12

– Goal-oriented MDPs with no restriction on costs

145

S0 S1

a1

C(s1, a1, s0) = -1

C(s0, a1, s1) = 1

a2

a2

C(s0, a2, s0) = -7.2

C(s1, a2, sG) = 1

SG

C(s1, a2, s2) = -3

T(s1, a2, sG) = 0.3

T(s1, a2, s2) = 0.7

S2 C(s2, a2, s2) = 0.8C(s2, a1, s2) = 2.4 a1 a2

a1

Alternating
cycles

Non-positive
cycles

Unavoidable
dead ends

Take Homes

• SSP MDPs exclude interesting planning scenarios

• Generalized SSPs
– handle zero-cost cycles
– GSSP contains SSP and several other MDP classes
– heuristic search algorithm (FRET)

• Dead-ends tricky in undiscounted goal MDPs
• Well-formed extensions of SSP MDPs

– can have unintuitive DP properties
– what is beyond GSSPs?
– loads of open questions: theoretical & algorithmic

M#3: some models
use explicit

knowledge of goals

Agenda

• Background: Stochastic Shortest Paths MDPs

• Background: Heuristic Search for SSP MDPs

• Algorithms: Automatic Basis Function Discovery

• Models: SSPs Generalized SSPs

S0

S0, L

S0, S

S0, R

S1 S2

S1, R S2, L

G

S0

S0, L

S0, S

S1

G

AND-OR Graph in Flat Space

ASAP Graph

S3

S3, L

S0

S0, L

S0, S

S0, R

S1 S2

S1, R S2, L

G

AS Graph[1]

S0

S0, L

S0, SS1

S1, R

G

ASAM Graph[2]

[1]: Robert Givan, Thomas Dean, and Matthew Greig. Equivalence notions and model minimization in Markov decision
processes. Artificial Intelligence, 2003
[2]: Balaraman Ravindran and A Barto. Approximate homomorphisms: A framework for
nonexact minimization in Markov decision processes. In ICKBCS, 2004.

Key Properties

PROPERTY 1: The original MDP does not reduce
to an abstract MDP

PROPERTY 2: ASAP subsumes abstractions
computed by AS and ASAM

PROPERTY 3: Value Iteration on abstract AND-OR
graph returns optimal value functions for the
original MDP

Experiments
[Anand, Grover, Mausam, Singla – submitted]

M#1: states can be
ignored (abstracted)

for efficient
computation

3 Key Messages
• M#0: No need for exploration-exploitation tradeoff

– planning is purely a computational problem (V.I. vs. Q)

• M#1: Search in planning

– states can be ignored or reordered for efficient computation

• M#2: Representation in planning

– develop interesting representations for Factored MDPs
 Exploit structure to design domain-independent algorithms

• M#3: Goal-directed MDPs

– design algorithms/models that use explicit knowledge of goals

151

