Goal-Directed MDPs
Models and Algorithms

Mausam
Indian Institute of Technology, Delhi
Joint work with Andrey Kolobov and Dan Weld

Planning a la Sutton

control

full sequential

model-based

value-based
tabular/function-approximation
TD/Monte-Carlo

Typical Planning Setting <§

vs. RL: model of the world is known

vs. flat: model of the world in a declarative representation
— symbolic
— large problems

vs. reward: goal directed

vs. complete state space: knowledge of the start state

domain independent: no additional human input

3 Key Messages e
M#0: No need for exploration-exploitation tradeoff
— planning is purely a computational problem (V.I. vs—Q)

M#1: Search in planning
— states can be ignored or reordered for efficient computation

M#2: Representation in planning

— develop interesting representations for Factored MDPs
— Exploit structure to design domain-independent algorithms

M#3: Goal-directed MDPs
— design algorithms/models that use explicit knowledge of goals

Agenda

Background: Stochastic Shortest Paths MDPs
Background: Heuristic Search for SSP MDPs

Algorithms: Automatic Basis Function Discovery

Models: SSPs = Generalized SSPs

Infinite Horizon Discounted Reward MDP

KS: A set of states \

* A: A set of actions

* T(s,a,s’): transition
model

* R(s,a,s’): reward

K'v: discount factor/

Where Does y Come From?

* y can affect optimal policy significantly
— y =0 + €: yields myopic policies for “impatient” agents
— y =1 - €: yields far-sighted policies, inefficient to compute

e How to set it?

— Sometimes suggested by data

* (e.g., inflation or interest rate)

— Often set to whatever gives a reasonable policy

Infinite Horizon Discounted Reward MDP

KS: A set of states \

* A: A set of actions

* T(s,a,s’): transition
model

* R(s,a,s’): reward

K'v: discount factor/

Stochastic Shortest Path MDP

KS: A set of states \

* A: A set of actions

* T(s,a,s’): transition
model

* R(s,a,s’): reward

K'v: discount factor/

Stochastic Shortest Path MDP

KS: A set of states \

* A: A set of actions

* T(s,a,s’): transition
model

* C(s,a,s’): cost

K'v: discount factor/

Stochastic Shortest Path MDP

KS: A set of states \

* A: A set of actions

* T(s,a,s’): transition
model

* C(s,a,s’): cost

- /

Stochastic Shortest Path MDP

KS: A set of states \

* A: A set of actions

" . Minimize
* T(s,a,s’): transition - expected cost to reach a goal
model - under full observability

, - indefinite horizon
* C(s,a,s’): cost

k'G: set of goals /

Bellman Equations for SSP

0 if se g

min » 7(s,a,5)[C(s,a,5) + V(5]

S,

add base case; no discount factor

SSP vs. IHDR?

Discounted Finite- horlzon
reward MDPs SS MDPs

Discounted Reward MDP - SSP

[Bertsekas&Tsitsiklis 95]

15

When is SSP well formed/defined

[Bertsekas, 1995]

ﬂ S: A set of states \
* A: A set of actions

* T(s,a,s’): transition model
* C(s,a,s’): cost

\- G: set of goals /

Under two conditions:

 Thereis a proper policy (reaches a goal with P= 1 from all states)

 Every improper policy incurs a cost of e from every state from
which it does not reach the goal with P=1

16

Agenda

Background: Stochastic Shortest Paths MDPs
Background: Heuristic Search for SSP MDPs

Algorithms: Automatic Basis Function Discovery

Models: SSPs = Generalized SSPs

Heuristic Search

* Limitations of VI
— enumeration of state space
— curse of dimensionality

* Heuristic search: insights
— knowledge of a start state to save on computation
~ (all sources shortest path = single source shortest path)

— additional knowledge in the form of heuristic fn
~ (dfs/bfs 2> A*)

SSP,,
K S: A set of states \

* A: A set of actions

* T(s,a,s’): transition model
* C(s,a,s’): cost
* G:setof goals

\" So: start state -/

Under two conditions:

 Thereis a proper policy (reaches a goal with P= 1 from all states)

 Every improper policy incurs a cost of e from every state from
which it does not reach the goal with P=1

19

SSP,,

* What is a solution to SSP_,

* Policy (§ —A)?
— are states that are not reachable from s, relevant?
— states that are never visited (even though reachable)?

Partial Policy

* Define Partial policy
—m:S = A whereSCS

* Define Partial policy closed w.r.t. a state s.
— is a partial policy 7,

— defined for all states s’ reachable by 7, starting
froms

21

Partial policy closed wrt s,

Partial policy closed wrt s,

\.

50) 9
s this policy closed wrt s,? m(s,)=a,
(52) 9

Partial policy closed wrt s,

\.

50) 9
s this policy closed wrt s,? m(s,)=a,
(52) 9

Partial policy closed wrt s,

s this policy closed wrt sy? 7rs

Policy Graph of 7w,

26

Greedy Policy Graph

* Define greedy policy: 7 = argmin_ QY(s,a)

* Define greedy partial policy rooted at s,,
— Partial policy rooted at s,
— Greedy policy
— denoted by 7},

* Define greedy policy graph
— Policy graph of T5o : denoted by G,

27

Heuristic Function

* h(s): S—R
— estimates V*(s)
— gives an indication about “goodness” of a state
— usually used in initialization V,(s) = h(s)
— helps us avoid seemingly bad states

e Define admissible heuristic
— optimistic
— h(s) < V*(s)

28

A General Scheme for
Heuristic Search in MDPs

 Two (over)simplified intuitions
— Focus on states in greedy policy wrt V rooted at s,
— Focus on states with residual > ¢

e Find & Revise:

— repeat
* find a state that satisfies the two properties above
e perform a Bellman backup

— until no such state remains

29

T e N e

£n

6 return a

FIND & REVISE [Bonet&Geffner 03a]

Start with a heuristic value function V «— h

while V' ’s greedy graph Gl; contains a state s with Resv[sj > ¢ do

FIND a state s in Gy, with Res" (s) > ¢

REVISE V (s) <

end

(perform Bellman backups)

Vv

* Convergence to V* is guaranteed

— if heuristic function is admissible
— ~no state gets starved in oo FIND steps

30

LAO* family

add s, to the fringe and to greedy policy graph

repeat

= FIND: expantates on the fringe (in greedy graph)
initialize all new states by their heuristic value

. a subset of affected states
. perforREVISE computations on this subset

recompute the greedy graph

until greedY graph has no fringe & residuals in greedy
graph smal

output the greedy graph as the final policy

LAO* [Hansen&Zilberstein 98]

add s, to the fringe and to greedy policy graph

repeat
= FIND: expand best state s on the fringe (in greedy graph)
" jnitialize all new states by their heuristic value
= subset = all states in expanded graph that can reach s
= perform VI on this subset
" recompute the greedy graph

until greedY graph has no fringe &residualsingreedy

output the greedy graph as the final policy

33

LAO*

add s; in the fringe and in greedy graph

34

LAO*

FIND: expand some states on the fringe (in greedy graph)

35

LAO*

.‘@ V(so)

SRR oo

FIND: expand some states on the fringe (in greedy graph)
initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s
perform VI on this subset

LAO*

SR

FIND: expand some states on the fringe (in greedy graph)
initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s
perform VI on this subset

recompute the greedy graph

37

LAO*

FIND: expand some states on the frlnge in greedy graph)
initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s
perform VI on this subset

recompute the greedy graph

38

LAO*

FIND: expand some states on the frlnge in greedy graph)
initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s
perform VI on this subset

recompute the greedy graph

LAO*

SR

FIND: expand some states on the fringe (in greedy graph)
Initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s
perform VI on this subset

recompute the greedy graph

LAO*

FIND: expand some states on the frlnge in greedy graph)
initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s
perform VI on this subset

recompute the greedy graph

A

FIND: expand some states on the fringe (in greedy graph)
initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s
perform VI on this subset

recompute the greedy graph

LAO*

A

h

FIND: expand some states on the fringe (in greedy graph)
initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s
perform VI on this subset

recompute the greedy graph

LAO*

A

h

FIND: expand some states on the fringe (in greedy graph)
Initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s
perform VI on this subset

recompute the greedy graph

FIND: expand some states on the frlnge in greedy graph)
initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s
perform VI on this subset

recompute the greedy graph

A

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s
perform VI on this subset

recompute the greedy graph

46

LAO*

A

_e olo & RO
ee‘a OO OW)

FIND: expand some states on the fringe (in greedy grap
initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s
perform VI on this subset

recompute the greedy graph

47

output the greedy graph as the final policy

48

LAO*

A

output the greedy graph as the final policy

49

M#1: some states
can be ignored for
efficient compuation

S, was never expanded
s, was never touched

50

LAO* [Hansen&Zilberstein 98]

add s, to the fringe and to greedy policy graph .
one expansion

repeat W
= FIND: expand best state s on the fringe (in greedy graph)
= jnitialize all new states by their heuristic value
= subset = all states in expanded graph that can reach s
= perform VI on this subset

= recompute the greedy grap\
until greedy graph has no fringe [ot of computation
output the greedy graph as the final policy

51

Optimizations in LAO*

add s, to the fringe and to greedy policy graph

repeat
= FIND: expand best state s on the fringe (in greedy graph)
= jnitialize all new states by their heuristic value
" subset = all states in expanded graph that can reach s
= Vliterations until greedy graph changes (or low residuals)
= recompute the greedy graph

until greedy graph has no fringe

output the greedy graph as the final policy

52

Optimizations in LAO*

add s, to the fringe and to greedy policy graph

repeat
= FIND: expand all states in greedy fringe
" jnitialize all new states by their heuristic value
" subset = all states in expanded graph that can reach s
= VIliterations until greedy graph changes (or low residuals)
" recompute the greedy graph

until greedy graph has no fringe

output the greedy graph as the final policy

53

|LAO* [Hansen&Zilberstein 01]

add s, to the fringe and to greedy policy graph

repeat
= FIND: expand all states in greedy fringe
= jnitialize all new states by their heuristic value
= subset = all states in expanded graph that can reach s
= only one backup per state in greedy graph
= recompute the greedy graph

until greedy graph has no fringe

—

in what order?
(fringe > start)
output the greedy graph as the final policy = DFS postorder

54

Real Time Dynamic Programming
[Barto et al 95]

* Original Motivation
— agent acting in the real world

* Trial
— simulate greedy policy starting from start state;
— perform Bellman backup on visited states
— stop when you hit the goal

No termination
» RTDP: repeat trials forever,_ __—— condition!

— Converges in the limit #trials — 0o

55

Trial

/S

SRR

start at start state

repeat
perform a Bellman backup
simulate greedy action

start at start state

repeat
perform a Bellman backup
simulate greedy action

start at start state

repeat
perform a Bellman backup
simulate greedy action

start at start state

repeat
perform a Bellman backup
simulate greedy action

start at start state

repeat
perform a Bellman backup
simulate greedy action

start at start state
repeat
perform a Bellman backup
simulate greedy action
until hit the goal

RTDP

repeat |
forever

" start at start state

repeat
perform a Bellman backup
simulate greedy action

_until hit the goal

63

RTDP Family of Algorithms

repeat
sS4 S,

repeat //trials
REVISE s; identify a

greedy
FIND(PICKS’ 5.t. (S, agreeay S) > 0
S¢S’
until s € G

unti@ination test)

64

Termination Test: Labeling

e Admissible heuristic
= V(s) < V*(s)
= Q(s,a) < Q*(s,a)

e Label a state s as solved

xS
i o
if V(s) has converged Qf"o best action
AN
¥

ResV(s) < €
= V(s) won'’t change!
label s as solved

Labeling (contd)

xS
S .
Q,Q best action

ResV(s) < €
s' already solved
= V(s) won'’t change!

label s as solved

66

Labeling (contd)

& & M#3: some algorithms
Qfe best action Q use explicit
é? Q? knowledge of goals
< &
N\

ResV(s) < ¢
s' already solved

, »
= V(s) won’t change! M#1: some states
can be ignored for

label s as solved efficient computation

67

La b@led RTDP [Bonet&Geffner 03b]

repeat
S < S,
label all goal states as solved

repeat //trials
REVISE s; identify a,ceq,
FIND: sample s’ from T(s, a
S ¢

until s is solved

4
greedy’ S)

for all states s in the trial
try to label s as solved
until s, is solved

68

LRTDP

 terminates in finite time

— due to labeling procedure

* anytime

— focuses attention on more probable states

* fast convergence

— focuses attention on unconverged states

LRTDP Extensions

Different ways to pick next state
Different termination conditions

Bounded RTDP [McMahan et al 05]
Focused RTDP [Smith&Simmons 06]

Value of Perfect Information RTDP [sanner et al
09]

70

Where do Heuristics come from?

* Domain-dependent heuristics

* Domain-independent heuristics

— dependent on specific domain representation

M#2: factored
representations

expose useful
problem structure

71

Take-Homes

* efficient computation given start state s,

— heuristic search

e automatic computation of heuristics

— domain independent manner

Shameless Plug

L\{’\é: MORGAN &CLAYPOOL PUBLISHERS

Planning with Markov
Decision Processes
An Al Perspectifve

Mausam

Andrey Kolobov

SYNTHESIS LECTURES ON ARTIFICIAL
INTELLIGENCE AND MACHINE LEARNING

Ronald | Brachman, William W. Cohen, and Thomas G. Dierterich, S v Fodstors

74

Agenda

Background: Stochastic Shortest Paths MDPs
Background: Heuristic Search for SSP MDPs

Algorithms: Automatic Basis Function Discovery

Models: SSPs = Generalized SSPs

P@widve ki ork

* Determinization * Function Approximation
— Determinize the MIDP — Dimensionality reduction
— Classical planners fast — Represent state values
— E.g., FF-Replan with basis functions
— Cons: may be troubled by * E.g., V¥(s)=3w,;bs)
« Complex contingencies — Cons:
* Probabilities * Need a human to get b,

Marvry these paradigms to extract problem-specific
structure in a fast, problem-independent way.

Example Domain

Example Domain (cont’d)

Y,
awm, ?g W %g

w | | 2% W% |

SSP_, MDP

KS: A set of states \ kS 4 l

* A: A set of actions

g\\

|

* T(s,a,s’): transition GetW, GetH, GetS, Tweak, Smash

model

* (C(s,a,s’): action cost w* 7& ;‘%J

° s,: start state

&G: set of goals / W ﬁ%’

Contributions

ReTrASE — a scalable approximate MDP solver

— Combines function approximation with
classical planning

— Uses classical planner to automatically generate
basis functions

— Fast, memory-efficient, high-quality policies

81

The Big Picture: ReTrASE

[Kolobov, Mausam, Weld, AlJ’12]

Extraction Module

-

—SE.

Run a classical planner
N W Dead End
I—A

exploration routine State s trajectory
g AT

Evaluate s

Determinizing the Domain

Generating Trajectories

———

Run a state space
exploration routine
(e.g, RTDP)

~N

-

Extraction Module

Run a classical planner

,«\ W Dead End
R

State s

! Regress
trajectory

Evaluate s

Generating Trajectories

wikx |

1

wae x|

1

WAL KX X

e
e

Computing Basis Functions

———

Run a state space
exploration routine
(e.g, RTDP)

-

Extraction Module

~N

4
pas

State s

Run a classical planner

SixthSense

Trajectory

Regress
trajectory

Basis Functions

g

Evaluate s

Regressing Trajectories
/ basis functior

w ?/ & k T guarantees

goal is
reacl«able
from s

Wy | oW | —1

basls fuwctwws f[nitial we:ghts

S
S
N
S
S
\\
N

WAL KX X

Basis Functions

Computing Values
4

Extraction Module

—SE.

Run a classical planner
,«\ W Dead End
I—A

exploration routine State s trajectory
g AT

Evaluate s

Meaning of Basis Function Weights

Want to compute basis function weights
so that the blue basis function looks
“better”’ than the pink one!

90

Value of a Basis Function

Basis function enables at least one trajectory

— applicable from all relevant states
Trajectories combine to form policies
Value of a basis function ~ “quality” of its policies

Algorithm based on RTDP

— Learn basis function values
— Use them to compute values of states

Experimental Results

* Criteria:
— Scalability (vs. VI/RTDP-based planners)
— Solution quality (vs. IPPC winners)

e Domains: 6 from IPPC-06 and IPPC-08

* Competitors:
— Best performer on the particular domain

— Best performer in the particular IPPC
— LRTDP

92

The Big Picture

* ReTrASE is vastly more scalable than
VI/RTDP-based planners

* ReTrASE typically rivals or outperforms the
best-performing planners on IPPC goal-
oriented domains

93

Triangle-Tire: Memory Consumption
8 LRTDP -

7 / LRTDP,,

ReTrASE

LOG,,(Amount of Memory)

1 2 3 4) 6 7 8 9 10

Triangle-Tire Problem # y

% of Successful Trials

Triangle-Tire: Success Rate
ReTrASE
HMDPP

| | | | | | | | a RFF_PG

2 3 4 5 B 7 8 9 1
Triangle-Tire World’08 Problem #

~ 2800 states!

ReTrASE
FFReplan

Success Rate

ing Blocks World

101

1]
= o
o) ™~

l L L l L
o o = o =)
) [w [T T

a0

S|eld] |NJssaddNg Jo %

Explod

96

Exploding Blocks World’06 Problem #

sO

K S: A set of states

* A: A set of actions

* T(s,a,s’): transition model
* C(s,a,s’): cost

* G:setof goals

\" So: start state -/

Under two conditions:

 Thereis a proper policy (reaches a goal with P=1 frotates)

 Every improper policy incurs a cost of e from every state from
which it does not reach the goal with P=1

97

Key Drawback of ReTrASE...

* Dead-end handling expensive
— expensive to identify: drain on time
— too many to store: drain on space

Computing Values
4

Extraction Module

—SE.

Run a classical planner
,«\ W Dead End
I—A

exploration routine State s trajectory

(e.g, RTDP)

Evaluate s

Research Question

dentification
emoization?

Learns feature combinations whose presence

guarantees a state to be a dead end
A LN |

YESWE CAN

100

Nogoods

Nogood

Generate-and-Test Procedure

* Generate a nogood candidate
— Key insight: Nogood = conjunction that defeats all b.f.s

B%‘ﬂ”ﬁ*

= T wd |

— For each b.f., pick a literal that defeats it

 Test the candidate

— Needed for soundness, since we don’t know all b.f.s
— Use the non-relaxed Planning Graph algorithm

102

Benefits of SixthSense

e Can act as submodule of many planners and ID dead ends
— By checking discovered nogoods against every state

90 | m@m \emory savings

100y

~J1000
o000

[ssslss/sslealelels
>
L]

%8 = ® = Time savings

. =®= |\lemory savings

Y
L T

SAVINGS AS PERCENTAG
NG
Z

SAVINGS AS PERCENTAGE

QBEWN= 2NWBEOOY

= = = Time savings

1 2 3456 7 89 1011121312 15 123456 7 8 91011121314 15
EXPLODING BLOCKS WORLD-08 PROBLEM # EXPLODING BLOCKS WORLD-08 PROBLEM #

110

Take Homes

* Novel ideas to learn structure in the domain

e Basis functions
— Learn by regressing trajectories
— Represent good structure
— Generalize across states

 Nogoods
— Learn inductively; prove using a sound procedure

— Represent bad structure
— Generalize across dead-end states

Take Homes

* A novel use of classical planners for MDP algos

— retains the decision-theoretic nature of MDPs

— exploits the scalability of cla R
representatlons

expose useful
problem structure

e Automatic ways to generate ba
— no longer an onus on human designer
— exploits factored domain model

Agenda

Background: Stochastic Shortest Paths MDPs
Background: Heuristic Search for SSP MDPs

Algorithms: Automatic Basis Function Discovery

Models: SSPs = Generalized SSPs

Theme of the Workshop §

Value Functions = Generalized Value Functions
Gradient = Extra-gradient

KL divergence =2 Bergman divergence
Contextual bandits = Linear bandits

SSPs = ?

(© \
‘@

SSP/SSP,,

SSP MDP is atuple<S, A, T, G, G, (s,)>, where:
* Sis afinite state space

* Ais afinite action set

e Tis a stationary transition function

* (Cis astationary cost function

 Gisasetof absorbing cost-free goal states

* (s, is an initial state)

Under two conditions:
 There is a proper policy (reaches a goal with P=1 frotates)

incurs a cost of =a)}from every stdffe from

which it does not reach the gGa&I'=® D=1 .
° ¢ "Disallows'dead ends

Prevents algos from halting if we allowed
dead ends, make cost a meaningless criterion

120

Stochastic Shortest-Path MDPs
Dead ends are ¢

 Example applications:

aotrolling a Mars rover

IIH ,
data with®

o collect scientific
damaging
the rover?”

B¥_AUSE IT’S THERE;
EvereSd®, "« =
ay?” ,:\'\' S A

— Route planning

“How to climb mo

in the cheapes

Discrete MDP Research So Far
Goal-oriented MDPs

-Model many -What interesting
interesting scenarios problems are here?
-Efficiently* solvable -How do we solve
by heuristic search them efficiently?

o J o 2/

SSPADE: Dead Ends are Avoidable from s,

[Kolobov, Mausam, Weld, UAI’12]

* D.e.s may be avoidable from s, via an optimal policy

=
33 -

 Can’t compute V*(s) for every state

* But need only “relevant” states to get the “right” value

* Can be solved with optimal heuristic search from s,
— FIND shouldn’t starve states; REVISE should halt e

fSSPUDE: SSP with Unavoidable Dead
Ends (and a Finite Penalty on Them)
* First attempt: if the agent reaches a d.e., it pays D

@ a -T.:T(S’a’d)zl-E@D
C=g(2+1)

T(s,a,s,) / €

V*(s)=e(Z7%1) + -0+ (1- €)- D
 Makes non-d.e.s more “expensive” than d.e.s!
— Oops...

124

fSSPUDE: SSP with Unavoidable Dead
Ends (and a Finite Penalty on Them)

[Kolobov, Mausam, Weld, UAI’12]
* Second attempt: agent allowed to stop at any state

— by paying a price = penalty D
— Intuition: achieving a goal is worth —D to the agent

* Equivalent to SSP MDP with a special a., ., action

stop
— applicable in each state

— |leads directly to a goal by paying cost D

* Thus, algorithms for SSP apply to fSSPUDE!

MAXPROB: Dealing with Unavoidable
Infinitely Damaging Dezi\rd Ends-1

C= -1 [Kolobov, Mausam, Weld,
c=zx0 _ Geffner ICAPS'11]

 Comparing policies in terms of cost meaningless

« MAXPROB/GSSP MDPs: evaluate policies by probability of reaching goal
— Set all action costs to O (they don’t matter), reward 1 for reaching goal
— Fixed-point methods such as VI or LRTDP don’t converge because of traps

126

MDP Examples
Y’ SSP

, -1 | 0 1 0
G L), (TSNS,

Kssp

5L, SIS G

XKssp

Generalized SSPs: Definition
* An MDP M =<S, A, T, R, G, s> for which
— There is a proper policy (reaches the goal with P=1)

— Sum of non-negative rewards accumulated by any
policy starting at s, is bounded from above

* Solving a GSSP = finding a reward-maximizing
Markovian policy that reaches the goal

Generalized SSPs: Example

V¥’ GSSP _

5L, (SIS G

. KGSSP |

Generalized SSPs: Example

Proper policy exists

130

Generalized SSPs: Example

For any T, sum of non-negative rewards < 2

131

Generalized SSPs: Example

Solution

5 0 0 1 0
GG S), s S 6
Not a solution

5 0 0 1 0
A ZOHONOX D=

132

GSSPs: Is V* A Fixed Point of B?

e Reminder: in SSPs, V* = BV*, where

— B is the Bellman backup operator
— B V(s) = max, {R(s,) + 3¢ in succ(s.a) T (S, @, SIV(S')

* |In SSPs, V* is a fixed point of B
— Still true in GSSPs:

GSSPs: Is V* The Unique Fixed Point of B?

* In SSPs, V* is the unique fixed point of B
—l.e,V¥=BoBo..BV,,V,is a heuristic value function
— Not true in (ci)SSPs:

— Moreover, all suboptimal fixed points are admissible!

134

GSSPs: Is Every V*-greedy [T A Solution?

* |n SSPs, every T greedy w.r.t V* reaches the
goal

— Not true in GSSPs:

135

Efficiently Solving GSSPs: Attempt #1

 Just Run F&R!

— Start with an admissible V,
O, (N
0.5

— Done!

0 0 1 0
G (L), ()0)

%

Attempt

1: What Went Wrong?

* |n GSSPs, suboptimal fixed points are admissible!
— When starting with V, 2 V*, F&R hit one of them.

— B can’t change V over traps — strongly connected
components in V’s greedy graph

* Canyield an arbitrarily poor solution

137

Efficiently Solving GSSPs: FRET

* Find, Revise, Eliminate Traps
— First heuristic search algorithm for MDPs beyond SSP
— Provably optimal if the heuristic is admissible

* Main idea
— Run F&R until convergence
— Eliminate traps in the policy envelope
— Repeat until no more traps

139

~+ QO DO T M =0

FRET Example: Finding V*

. 0 0) 0
OO ONOT O O =

Run F&R until

convergence H ’) U = N v 1 0
Eliminate Traps in t l - - —I déi ! ! .ﬂ :

the resulting V, 5 U 1)
O SIENOx: O (O~
==~ 0

Find-and-Revise

Eliminate Traps

2

i} 0
0.
Find-and-Revise

: '1 Q O
left - -~
No traps left @ /05‘ D

done!

FRET Example: Extracting TT*

* [teratively “connect” states to the goals
— Using optimal actions
— Until s, is connected

2 . 951 0
OZOrONOXOE 0

141

Experimental Setup

* Problems: MAXPROB versions of EBW
 Planners: VI vs FRET

 Heuristics: Zero for VI, One+SixthSense for FRET

— SixthSense soundly identifies some of the “dead
ends”; their values are setto O

142

& p
1

STATES
MEMORIZED

Experimental Setup

= P

CPU TIME
IN SECONDS

x 10°

== FRET *,*" """" ’

LR AT ',,;"

*-l'
1 2 3 4 5 G
FBW PROBLEM #

x 10°

o ,..--l"..l

FRET e
----I".-'rl *‘f
2 3 4 5 6

EBEW PROBLEM #

143

Goal-Oriented MDP Hierarchy

S3Ps
ISSPUDE
GSSP
SSPADE
" Discounted- Finite-horizo
_reward MDPs SSP MDPs

fSSPUDE

144

Future Work: Solving S3P

» Stochastic Safest and Shortest Path (S3P) MDPs
— Teichteil-Koenigsbuch, AAAI'12
— Goal-oriented MDPs with no restriction on costs
C(Sg @y So) =-7.2 Clspay, 51) =1
a d;
d;

Non-positive Clsy, ay, so) =-1
cgc[es Alternatmg

cycles

C(Sl’ az, 52) = _3
T(sy, @5, 5,) = 0.7

Unavoidable
dead ends

C(s,, ay,s,)=2.4 C(s,, a,, s,) =0.8 145

Take Homes

SSP MDPs exclude interesting planning scenarios

Generalized SSPs M#3: some models
— handle zero-cost cycles use explicit
— GSSP contains SSP and several of knowledge of goals

— heuristic search algorithm (FRET)

Dead-ends tricky in undiscounted goal MDPs

Well-formed extensions of SSP MDPs
— can have unintuitive DP properties
— what is beyond GSSPs?
— loads of open questions: theoretical & algorithmic

Agenda

Background: Stochastic Shortest Paths MDPs
Background: Heuristic Search for SSP MDPs

Algorithms: Automatic Basis Function Discovery

Models: SSPs = Generalized SSPs

g&

SO, L SO, R
& H Qé .
S1,R S2,L S3,L

: = LY :ll CH DY
ks e eogtal eogbel
05| €s2) (s2y [sos (s h
7 \ e
:ll mmE, : SO,S :
S1,R SZ;L : Sl,R : *sammun?

AS Graph!t! ASAM Graph? ASAP Graph

[1]: Robert Givan, Thomas Dean, and Matthew Greig. Equivalence notions and model minimization in Markov decision
processes. Artificial Intelligence, 2003

[2]: Balaraman Ravindran and A Barto. Approximate homomorphisms: A framework for

nonexact minimization in Markov decision processes. In ICKBCS, 2004.

Key Properties

PROPERTY 1: The original MDP does not reduce
to an abstract MDP

PROPERTY 2: ASAP subsumes abstractions
computed by AS and ASAM

PROPERTY 3: Value lteration on abstract AND-OR
graph returns optimal value functions for the
original MDP

Accumulated Cost

Accumulated Cost

Experiments

[Anand, Grover, Mausam, Singla — submitted]

32 Domain: Sailing Wind Dimensions: 100x100 150 Domain: Game of Life Dimensions: 3x3
31 === UCT 22 34 45 58 71 99 131 169 214
o -3 nmtems AS-UCT = 160%,
o Mg =¥ ASAM-UCT 3 "*ﬂ% ~-— UCT
g e A S AP-UCT 3 -170 2 cimgp== AS-UCT
L —— ASAM-UCT
= —tr— ASAP-UCT
25 L] 'Ir|“r
- |
25 h“"rhﬁ.l:"'ll.-,‘ .
2 M#1: states can be
100 200 300 400 0 .
Time of a trial in ignored (abstracted) trial (in ms)
for efficient S
31 Domain: Sailing Wind i _ Dimensions: 4x4
ol computation 753 201 246 295 349 412 476
30 R h-.--"""- mnnfmu | JCT
o ._""n-.f".l.:'.m-_.. - e ASUCT
R+ = 260 l..._u.”_ —— ASAM-UCT|
28 £ Rk T
=t AS-UCT 3
26 Ve ASAM-UCT 2

o5 g ASAP-UCT

80 90 100 110 120 130 140
Time of a trial (in ms) Time of a trial (in ms)

3 Key Messages Y
M#0: No need for exploration-exploitation tradeoff
— planning is purely a computational problem (V.I. vs—Q)

M#1: Search in planning
— states can be ignored or reordered for efficient computation

M#2: Representation in planning

— develop interesting representations for Factored MDPs
— Exploit structure to design domain-independent algorithms

M#3: Goal-directed MDPs
— design algorithms/models that use explicit knowledge of goals

