It is hard to predict, especially about the future.
Niels Bohr

You are what you pretend to be, so be careful what you pretend to be.
Kurt Vonnegut
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Background
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Background

Markov Decision Processes (MDPs)

MDP: Set of States X',  Set of Actions A, Rewards r(x, a)

Transition probability:

p(s,a,s") = Pr{s;s1 = s'|s; = s,a, = a}

R

t a[ sl+] rt+]
e mm—
t t+1
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Background

The Controlled Markov Property

e Controlled Markov Property: Vig, i1, ...,s,s by, b1 .. .,a,
P(sp1 =5 | si=s,a, =a,...,s0=1ig,a0=by) =p(s,a,s)

S
z St+l
o
=2 t—1 t t+1 +2

Figure: The Controlled Markov Behaviour
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Background

Value function

[Zﬂ sm(s) [s0=5, 7
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Background

Value function

[Zﬂ sm(s) [s0=5, 7

Value function /
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Background

Value function

[i son(s)) [so=s,

=0 /
Value function / Reward
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Background

Value function

oS 1

Value function / Reward Policy
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Background

Value function

[Zﬂ Sh ’SOZS,

s
Value function / Reward / Policy )

V™ is the fixed point of the Bellman Operator 7 ":

|

TT(V)(s) :=r(s,7(s) —i—ﬁZpsw W(s')
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Background

Policy evaluation using TD

Temporal difference learning
@ Problem: estimate the value function for a given policy 7
@ Solution: Use TD(0)

Vir1(se)) = Vilse) + ar (re1 + YVilser1) — Vilsi)) -
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Background

Policy evaluation using TD

Temporal difference learning
@ Problem: estimate the value function for a given policy 7
@ Solution: Use TD(0)

Vir1(se)) = Vilse) + ar (re1 + YVilser1) — Vilsi)) -

Why TD(0)?
@ Simulation based algorithms like Monte-Carlo (no model necessary!)
e Update a guess based on another guess (like DP)

e Guaranteed convergence to value function V" (s) under standard
assumptions
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Background

TD with Function Approximation

Linear Function Approximation.
- T
Vi(s)~ 0 ¢(s)

Parameter § € R? Feature ¢(s) € R?

Note: d << ||
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Background

TD with Function Approximation

Linear Function Approximation.

T
Vi(s) =~ 0  ¢(s) *_\\
Parameter § € R? / Feature ¢(s) € R

Note: d << ||

TD Fixed Point

O 6 = 11 TT(PO*)
Feature Matrix—/ \Orthogonal Projection

with rows ¢(s)", Vs € S toB={®0| 0 c R}
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Background

TD(0) with function approximation

Ont1 =00 +( Y (I"(Sn, W(sn)) =+ 60;¢(sn+l) - sz—gb(sn)) ¢(Sn)

Step-size) \ Fixed-point iteration

J. N. Tsitsiklis and B.V. Roy. (1997) show that 6,, — 0*a.s., where

A0* = b, where A = &'V (] — SP)® and b = O Ur.

1
J. N. Tsitsiklis and B.V. Roy. (1997) An analysis of temporal-difference learning with function approximation." In: IEEE Transactions
on Automatic Control
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Background

Assumptions

Ergodicity Markov chain induced by the policy 7 is irreducible and aperiodic.

Moreover, there exists a stationary distribution ¥ (= W) for this
Markov chain.

Linear independence Feature matrix ® has full column rank =
Amin (®TTP) > 1> 0

Bounded rewards |r(s,m(s))] < 1,foralls € S.

Bounded features ||¢(s)|, < 1,foralls € S.
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Background

Assumptions (contd)

Step sizes satisfy Z Yn = 00, and Z T < 0.
n n

Bounded mixing time 3 a non-negative function B(-) such that: Vsy € S and m > 0,

o0

> IE(b(s,) | 50) — Ew(d(s:)]| < Bso),

7=0

> IEB(s)d(sr4m)" | s0] = Ew[@(sr)$(s7+m) Il < Blso),
77=0)

where B(-) satisfies:
for any g > 1, there exists a K, < oo such that E[BY(s) | so] < K,B(s0).
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Concentration bounds: Non-averaged case

In the long run we are all dead.
John Maynard Keynes

Question: What happens in a short run of TD(0) with function
approximation?
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Concentration bounds: Non-averaged case

Concentration Bounds: Non-averaged TD(0)
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Concentration bounds: Non-averaged case

Non-averaged case: Bound in expectation

Step-size choice

Cc
=_—— with (1 —p)? 1/2
= sy Wit (1= B> 1/
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Concentration bounds: Non-averaged case

Non-averaged case: Bound in expectation

Step-size choice

Cc
=_—— with (1 —p)? 1/2
= sy Wit (1= B> 1/

Bound in expectation

Ki(n)
N E:

E |6, — 6|, < , where

2y/c||6o — 6" |l (1 = B)(3 + 6H)B(s0)

K =
R P O R T T

H is an upper bound on ||6,||,, for all n.
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Concentration bounds: Non-averaged case

Non-averaged case: High probability bound

Step-size choice

Yo = with (u(1—8)/2+3B(s0)) c > 1

_°
2(c+n)’
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Concentration bounds: Non-averaged case

Non-averaged case: High probability bound

Step-size choice

Yo = , with (u(1 = B)/2+ 3B(s0)) ¢ > 1

_°
2(c+n)
High-probability bound

Kx(n)

P (||9n — 0%, < ) > 1— 4, where

_ (1 B)ey/I(1/8)(1 + 9B(x0)?)

() = = 8)/2+ 3BGo))e — 1

+ Ki(n)
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Concentration bounds: Non-averaged case

Non-averaged case: High probability bound

Step-size choice

Yo = , with (u(1 = B)/2+ 3B(s0)) ¢ > 1

_°
2(c+n)
High-probability bound

Kx(n)

P (||9n — 0%, < ) > 1— 4, where

_ (1 B)ey/I(1/8)(1 + 9B(x0)?)

() = = 8)/2+ 3BGo))e — 1

+ Ki(n)

Ki(n) and K (n) above are O(1)
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Concentration bounds: Non-averaged case

Why are these bounds problematic?

Obtaining optimal rate O (1/+/n) with a step-size v, = ¢/(c + n)

In expectation: Require ¢ to be chosen such that (1 — 8)%uc € (1/2, )

In high-probability: ¢ should satisfy | (u(1 — 8)/2 + 3B(s0)) ¢ > 1.
Optimal rate requires knowledge of the mixing bound B(sy)

Even for finite state space settings, B(sp) is a constant,
albeit one that depends on the transition dynamics!
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Concentration bounds: Non-averaged case

Why are these bounds problematic?

Obtaining optimal rate O (1/+/n) with a step-size v, = ¢/(c + n)

In expectation: Require ¢ to be chosen such that (1 — 8)%uc € (1/2, )

In high-probability: ¢ should satisfy | (u(1 — 8)/2 + 3B(s0)) ¢ > 1.
Optimal rate requires knowledge of the mixing bound B(sy)

Even for finite state space settings, B(sp) is a constant,
albeit one that depends on the transition dynamics!

Solution

Iterate averaging
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entration boun averaged case

Proof Outline

Let z, = 0, — ™. We first bound the deviation of this error from its mean:

2
€
P(l|znll, = Ellzall, > €) <exp [ ——— |, VYe>0,

n
2312

i=1
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ation bounds: Non-;

Proof Outline

Let z, = 0, — ™. We first bound the deviation of this error from its mean:

2

n
2312

i=1

P(|lzall, = Ellzall, > €) <exp | — , Ve>0,

and then bound the size of the mean itself:

E enll, < [2exp<—<1 — B)uT) ol

initial error

n—1 1
4 ( S5 + 6H)2B(s0) 241 exp(—2(1 — B)u(Tn — Tir) ) } ,

k=1

sampling and mixing error

n

Note that L; := 'y,-[ 11 (1 - 2w,-<u (l . — %) + 1+ 83— B)]B(xo)))} 1/2

j=it1
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Concentration bounds: Non-averaged cas

Proof Outline: Bound in Expectation

Let fx, (0) := [r(su, 7(sn)) + BO)_ 1 I(snt1) — 01 _d(1)]¢(sn). Then, TD update is equivalent to

Ont1 = On + vn [Bw (fx, (0n)) + € + AM,] @

Mixing error €, := E(fx, (0n) | s0) — Ew (fx, (0n))
Martingale sequence  AM, := fx, (0n) — E(fx, (6x) | s0)
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Concentration bounds: Non-averaged cas

Proof Outline: Bound in Expectation

Let fx, (0) := [r(su, 7(sn)) + BO)_ 1 I(snt1) — 01 _d(1)]¢(sn). Then, TD update is equivalent to

9n+1 =0, + Yn [Eq,(fxn (Qn)) + e, + AM,J (1)

Mixing error €, := E(fx, (0n) | s0) — Ew (fx, (0n))
Martingale sequence  AM, := fx, (0n) — E(fx, (6x) | s0)
Unrolling (1), we obtain:

in4+1 = (I - 'YnA)Zn + M (En + AM,,)

=Tzo+ Y wILIT ' (e + AML)
k=1

n
Here A := ®"W(I — BP)® and I, := H (I — A).
k=1
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Concentration bounds: Non-averaged case

Proof Outline: Bound in Expectation

1t = (I = mA)zn + (€0 + AMy)
n
= I,z + Z'kanHk_l (Ek ar AMk)

k=1

By Jensen’s inequality, we obtain

E(lzall; | 50) < (E{zn, ) | 50)7

n 2
B (el 50) +23°92 [T E (AmlB | o) )
k=1

n
< (z Mol +33°7 ||
k=1
Rest of the proof amounts to bounding each of the terms on RHS above.
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Concentration bounds: Non-averaged

Proof Outline: High Probability Bound

Recall z, = 0, — 6*.
Step 1: (Error decomposition)

”ZHHZ_E”ZVlnz_Zgl_ [i | Fi- 1]—2017

where D; := gi — E[g;i | Fi—1], & := E[||zull, 6:], and F; = (61, - - -, 0n)
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Concentration bounds: Non-averaged case

Proof Outline: High Probability Bound

Recall z, = 0, — 6*.
Step 1: (Error decomposition)

2nlly = E [|znll, = Zgl —Efgi|Fim1] = ZDu
where D; := g; — E[g; |Fi—1], & := E[||zal|, |6:], and F; = (64, ..., 6n).

Step 2: (Lipschitz continuity)

Functions g; are Lipschitz continuous with Lipschitz constants L;.
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Concentration bounds: Non-averaged case

Proof Outline: High Probability Bound

Recall z, = 0, — 6*.
Step 1: (Error decomposition)

2nlly = E [|znll, = Zg: —Elgi |[Fim1] = ZDu
where D; := g; — E[g; |Fi—1], & := E[||zal|, |6:], and F; = (64, ..., 6n).

Step 2: (Lipschitz continuity)

Functions g; are Lipschitz continuous with Lipschitz constants L;.

Step 3: (Concentration inequality)

P(lzally — E |lznll, > €) = <ZD >e> < exp(—Xe) exp( Zﬁ)

i=1
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Concentration bounds: Iterate Averaging

Concentration Bounds: Iterate Averaged TD(0)
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Concentration bounds: Iterate Averaging

Polyak-Ruppert averaging: Bound in expectation

Bigger step-size + Averaging

Il = c \°% _
")/niz( 218) <C+n) 0n+1 :(91++0n)/n

with € (1/2,1) and ¢ > 0
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Concentration bounds: Iterate Averaging

Polyak-Ruppert averaging: Bound in expectation

Bigger step-size + Averaging

Il = c \°% _
")/niz( 2/3) <C+n) 0n+1 :(91++0n)/n

witha € (1/2,1) andc > 0

Bound in expectation

IA
H L}:/Z , where
160 — 6~ 26(1 = B)eHB(s0)
K (n) := /1 + 9B(s))? Yol
l(l’l) (SO) |:(n+c)(1a)/2 ( (1 _5)2) 2(1 a)
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Concentration bounds: Iterate Averaging

Iterate averaging: High probability bound

Bigger step-size + Averaging

o = (126) (c—T—l’l> Opt == (01 + ...+ 0)/n
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Concentration bounds: Iterate Averaging

Iterate averaging: High probability bound

Bigger step-size + Averaging

o = (125) <C—T—”l> Opt == (01 + ...+ 0)/n

High-probability bound
:[P) (

K5 (n) ==

3, _éTHz - (KéA(n)

W) > 1— 0, where
n-+c

1 9B 2 2c + 2(3%)
\j( +9B(s0)?) <H[12;3+B<XO)]CQ o

uls+ 58 nms

+ Ki(n)
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Concentration bounds: Iterate Averaging

Iterate averaging: High probability bound

Bigger step-size + Averaging

Yy 1= d ;B) (c—{c—n> Ony1 = (01 +...+6,)/n

High-probability bound

g

« can be chosen arbitrarily close to 1, resulting in a rate O (1 / \/ﬁ)

1A
én_éTH < Ky (n)
"

+)a/2> > 1— 0, where
n C

Prashanth L A Convergence rate of TD(0) March 27, 2015

24/84



Proof Outline

Let 9_n+| =0 +...+6y)/nand z, = 0_,,_H — 6*. Then,

2

n
2312

i=1

P(llznlly = Ellzally > €) <exp | = , Ve>0,

wmuw=%<h+Efﬁ(wﬂw(uc—ﬁ—%)+U+B@—mwm0>)

I=it+1j=i
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Concentration bounds: Iterate Ave:

Proof Outline

Let 9_,,+| =0 +...+6y)/nand z, = 9_n+1 — 0*. Then,

2

Pllznlly = Ellzall, > €) < exp [ ——
2512
i=1

, Ye>0,

=1

wmdw=%<%h§:H(hﬂw(uc—ﬁ—%)+U+BG—@MWO>)

=i+1 j=i

With v, = (1 — 8)(c¢/(c + n))“, we obtain
2

2c 50

1-8 ta
n 12 B +B(S0) ce 1
ZLIZ S 1 B( ) 2 X =
i=1 2|4 50 n

@[5+ 125
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Concentration bounds: Iterate Averaging

Proof outline: Bound in expectation

To bound the expected error we directly average the errors of the
non-averaged iterates:

_ 1 &
E||fps1 — 6%||, < - ZE 16 — 67|15,
k=1

and then specialise to the choice of step-size: v, = (1 — 5)(¢/(c + n))*

_ . /T+95B( o
B s = 07, < Y220 (S enppcto +0)/) o0 0,

n=1

+2BHc*(1 — B3) (,uca(l = ﬁ)%ia% (n+ c)_%>
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Centered TD(0)

Centered TD (CTD)
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Centered TD(0)

The Variance Problem

Why does iterate averaging work?

o in TD(0), each iterate introduces a high variance, which must be
controlled by the step-size choice

@ averaging the iterates reduces the variance of the final estimator

@ reduced variance allows for more exploration within the iterates through
larger step sizes
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Centered TD(0)

A Control Variate Solution

Centering: another approach to variance reduction
o instead of averaging iterates one can use an average to guide the iterates
@ now all iterates are informed by their history

@ constructing this average in epochs allows a constant step-size choice
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Centering: The Idea

Recall that for TD(0),

9n+1 =0, + Tn (V(Sn, W(sn)) + 59;¢(Sn+1) - 0;¢(sn)) ¢(Sn)
=f(0n)

and that 6, — 6™, the solution of F(0) := IIT™ (®6) — ®6 = 0.

Centering each iterate:

Opt1 =0, +7y fn(gn) *fn(gn) JFF(én)
*)

Prashanth L A Convergence rate of TD(0)
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Centering: The Idea

Opt1 =00+ v fn<‘9n) _fn(én> + F( n)
*)

Why Centering helps?
@ No updates after hitting *
@ An average guides the updates, resulting in low variance of term (*)
@ Allows using a (large) constant step-size
@ O(d) update - same as TD(0)

@ Working with epochs = need to store only the averaged iterate 6, and an
estimate of F(6,)
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Centering: The Idea

Centered update:

Opnt1 =0, +7y (fn(‘gn) _fn(én) +F(§n))
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Centering: The Idea

Centered update:

0n+1 = on + Y (fn(en) _fn(én) +F(_n))

Challenges compared to gradient descent with a accessible cost function
@ F is unknown and inaccessible in our setting

@ To prove convergence bounds one has to cope with the error due to incomplete
mixing
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Centered TD(0)

gom, frm (g

Centering

Beginning of each epoch,

Take action Update 6,
7(Sn) using (2)
Simulation Fixed point iteration

Oyt

gumtn) lmt ) (glnt)y

Epoch Run

an iterate ") is chosen uniformly at random from the previous epoch

Convergence rate of TD(0)

Centering

March 27, 2015




Centered TD(0)

gom, frm (g

Centering

Beginning of each epoch,

o gumtn) lmt ) (glnt)y

Take action Update 6,
7(Sn) using (2)
Simulation Fixed point iteration

Centering

Epoch Run

an iterate ") is chosen uniformly at random from the previous epoch

Epoch run

Set O,y 1= 0_('"), and, forn=mM,...,(im+ 1)M — 1

where £ (9) := —

Prashanth L A

1

Out1 = 00 +v(f, (62) — i, (B)) + F (@),

mM

Z fo(e)

i=(m—1)M

Convergence rate of TD(0)
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Centered TD(0)

Centering: Results

Epoch length and step size choice

Choose M and ~y such that C; < 1, where

- 1 ~d?
@ = (ZMM((I —B) —dy) 21— p) —dzv))
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Centered TD(0)

Centering: Results

Epoch length and step size choice

Choose M and ~y such that C; < 1, where

1

_ vd?
@ = (ZMM((I —B) —&y) | 2(1-B) —dzv))

Error bound

lo@™ — 613 < ¢t (186 - 6%)13)

m—1
+CH(5Y+4) Y "D TRBI | (s0),
k=1

kM
where C; = ~/(2M((1 — B) — dz-y)) and B]ET—I)M is an upper bound on the partial sums Z (E(o(si) | s0) — Ew (&(si)))
i=(k—1)M
kM T
and > (E(¢(s0)d(sir) | 50) — Ew (d(s)(siq1) ), forl =0, 1.

i=(k—1)M
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Centered TD(0)

Centering: Results cont.

The effect of mixing error
If the Markov chain underlying policy 7 satisfies the following property:

|P(s: = s | s0) — 9(s)| < Cp/™,
then

120 — 6% < cf (1@ — 0)I1%) + CMCH(Sy +4) max{C), p}™ =V

Prashanth L A Convergence rate of TD(0) March 27, 2015

35/84



Centered TD(0)

Centering: Results cont.

The effect of mixing error
If the Markov chain underlying policy 7 satisfies the following property:

|P(s: = s | s0) — 9(s)| < Cp/™,
then

120 — 6% < cf (1@ — 0)I1%) + CMCH(Sy +4) max{C), p}™ =V

When the MDP mixes exponentially fast
(e.g. finite state-space MDPs)
we get the exponential convergence rate
(* only in the first term)
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Centered TD(0)

Centering: Results cont.

The effect of mixing error
If the Markov chain underlying policy 7 satisfies the following property:

|P(s: = s | 50) — 9(s)| < Cp'’™,

then

120 — 6% < cf (1@ — 0)I1%) + CMCH(Sy +4) max{C), p}™ =D

When the MDP mixes exponentially fast
(e.g. finite state-space MDPs)
we get the exponential convergence rate
(* only in the first term)

Otherwise the decay of the error is dominated by the mixing rate
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Proof Outline

Let fx;, (6n) := fi,, (0) — fx;, (0) + Eg (fx,, (0™)).

Step 1: (Rewriting CTD update)

61 = 6+ (Fi, (6n) + en ) where & := E(fx,, (0) | Funr) — Bu(f, (0")))
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Centered TD(0)

Proof Outline

Let i, (6) := fx,, (0n) — fir,, 0 + Ew (fx,, (6")).
Step 1: (Rewriting CTD update)

Oos1 = On + w(’xin (6n) + e,,) where €, := E(f, (0") | Fn) — Euw (fx,, (0™))
Step 2: (Bounding the variance of centered updates)

By ([, @)13) < & (1900 — 6713 + 2@ — 67113
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Proof Outline

Step 3: (Analysis for a particular epoch)

Eg, 1011 — 0% 113 < 116, — 0% (13 + v*Eo, ll€all3 +2v(6n — 0%)Eq, [fx;, (6n)] + v*Eo, [fo,-n (9n)||§]

< 118s = 0*113 = 29((1 = B) = )1 2(8: — 6913+ (120 — 6113 ) +7°Eo, llenl}

Summing the above inequality over an epoch and noting that

By g,[0ni1 — 0[5 >0 and (8 —6*)T1(6™ — 0*) < — (6" — 6*)TdT WD — 6*) ,

1
i

we obtain the following by setting 6y = ot

N * 1 n(n *
29M((1 = B) — d*)||2E ) - "), < (; + szdz) (le@™ — )13
mM
+7 Y Egllel;
i=(m—1)M

The final step is to unroll (across epochs) the final recursion above to obtain the rate for CTD.
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Centered TD(0)

TD(0) on a batch
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Dilbert’s boss on big data!

COMNSULTANTS SA%Y IT COMES FROM ACCORDING TO THE
THREE CUTNTILLION | EVERYLIJHERE. IT B BOOE OF LWIIRIPEDIA,
| BYTES OF DATA ARE | EMHOLIS ALL i ITS NAME IS "BIG
CREATED EVERY DAY, R DATA"
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LSTD - A Batch Algorithm

Given dataset D := {(s;,ri,s}),i=1,...,T)}
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LSTD - A Batch Algorithm

Given dataset D := {(s;,ri,s}),i=1,...,T)}

LSTD approximates the TD fixed point by

Or = A7 'br ; O(d*T) Complexity

7

where Ay = % Z B(si) (@ (si) — Bp(si))T
B
T

by = % > rid(si).

=l
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fast LSTD

Complexity of LSTD [1]

Policy
Evaluation

Policy Q-value Q™

Policy
Improvement

Figure: LSPI - a batch-mode RL algorithm for control
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fast LSTD

Complexity of LSTD [1]

Policy
/ Evaluation \1
Policy Q-value Q™
\ Policy /
Improvement
Figure: LSPI - a batch-mode RL algorithm for control

LSTD Complexity
@ 0(d’T) using the Sherman-Morrison lemma or

@ 0(4>*") using the Strassen algorithm or 0(4**”) the
Coppersmith-Winograd algorithm
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March 27, 2015

41/84



fast LSTD

Complexity of LSTD [2]

Problem

Practical applications involve high-dimensional features (e.g. Computer-Go:
6

d~10°) = solving LSTD is computationally intensive

Related works: GTD !, GTD2 2, iLSTD *
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Complexity of LSTD [2]

Problem

Practical applications involve high-dimensional features (e.g. Computer-Go:
d~ 106) => solving LSTD is computationally intensive

Related works: GTD !, GTD2 2, iLSTD *

Solution
Use stochastic approximation (SA)
Complexity O(dT) = O(d) reduction in complexity
Theory SA variant of LSTD does not impact overall rate of convergence

Experiments On traffic control application, performance of SA-based LSTD
is comparable to LSTD, while gaining in runtime!

Sutton et al. (2009) A convergent O(n) algorithm for off-policy temporal difference learning. In: NIPS
2
Sutton et al. (2009) Fast gradient-descent methods for temporal-difference learning with linear func- tion approximation. In: ICML

Geramifard A et al. (2007) iLSTD: Eligibility traces and convergence analysis. In: NIPS
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Fast LSTD using Stochastic Approximation

Pick i,, uniformly Update 6,
0” —_— . —_— . ’ - 0n+1
in {1,...,T} using (si, i, S7,)
Random Sampling SA Update
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Fast LSTD using Stochastic Approximation

Pick i,, uniformly Update 6,
0,, —_— . D —— . 0 _— 0n+1
in {1,...,T} using (s;,,7i,, 5],
Random Sampling SA Update
Update rule:

O =01+ Tn (rin + ﬁe;l;—lgb(sgn) _ 9;—1d)(sin)) ¢(sin)

Step-sizes > & Fixed-point iteration

Complexity: O(d) per iteration
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Assumptions

Setting: Given dataset D := {(s;, ry,50),i = 1,...,T)}
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fast LSTD

Assumptions

Setting: Given dataset D := {(s;, ry,50),i = 1,...,T)}

Bounded features

Bl ), < 12—
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fast LSTD

Assumptions

Setting: Given dataset D := {(s;, ry,50),i = 1,...,T)}

Bounded features

QU< e

AR R < oo S Bounded rewards
i = max
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fast LSTD

Assumptions

Setting: Given dataset D := {(s;, ry,50),i = 1,...,T)}

Bounded features

QU< e

(A2) ‘ri| < Rmax e ——

T . )
(A3) Amin ( : Z @(-S'i)¢(si)T> Co-variance matrix

Bounded rewards

= > [t L
i =l hasa min-eigenvalue

i=1
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fast LSTD

Convergence Rate

Step-size choice

C
=" with (1—pB)? 1.33.2
Yn +n),w1 (1—=8)"pc € (1.33,2)
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fast LSTD

Convergence Rate

Step-size choice
= 7+nc with (1 — B)2uc € (1.33,2)

Bound in expectation

K

Vn+c

E|

9,, - éTH S
2
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fast LSTD

Convergence Rate

Step-size choice
= 7+nc with (1 — B)2uc € (1.33,2)

Bound in expectation

K

Vn+c

E|

9,, - éTH S
2

High-probability bound
:[[D (
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fast LSTD

Convergence Rate

Step-size choice
= 7+nc with (1 — B)2uc € (1.33,2)

Bound in expectation

K

Vn+c

E|

9,, - éTH <
2
High-probability bound

]P’( e,,—éTHzg = )21—6,

vn—+c
By iterate-averaging, the dependency of ¢ on p can be removed
Convergence rate of TD(0) March 27, 2015
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fast LSTD

The constants

. \ﬁHQO i éTHZ (1 _ B)Chz(l’l)
= (=BpPme=ny2 + 5 :

(1 — B)c/logé—!

20/ (41— Bue —1)

Kl (l’l)

Ky (n) =

aF Kl(ﬂ),

where

h(k) :=(1 + Rmax + ) max ((Hé’o T éer TRt Héer>4 ’ 1)

Both K| (n) and K;(n) are O(1)
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fast LSTD

Iterate Averaging

Bigger step-size + Averaging

e (1;@ (Cin) Bust = (01 + ... +0,)/n
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fast LSTD

Iterate Averaging

Bigger step-size + Averaging

'yn::(l_ﬂ)< < )a Bt = (61 + . ..

2 c+n

Bound in expectation

sfpn-i, < 0

n+ c)e/2
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fast LSTD

Iterate Averaging

Bigger step-size + Averaging

1-p c \¢ -
")/n::( 5 )<C—|—n) 0n+1 :(01++9n)/n
Bound in expectation
_ R KIA(I’I)
_ < 1V
E‘g" GTHZ = (n+c)e?

High-probability bound

P (5., < 8 )2 1-a

n+c)/?
Prashanth L A Convergence rate of TD(0) March 27, 2015

471784



fast LSTD

Iterate Averaging

Bigger step-size + Averaging

'yn::(l_ﬂ)< < )a Bt = (61 + . ..

2 c+n

Bound in expectation

B|

ol . KR
_ < 1V
On GTHz = (n+c)e/?

High-probability bound

PO

n+c)e/2

R

+6,)/n

Dependency of ¢ on p is removed dependency at the cost of (1 — «)/2 in the rate.
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fast LSTD

The constants

_clo-a],  wwea-s

Ki) -
(4 (a1 - gy

, and

1

1A
(n+¢)1=2)/2 s ()-

1, Wlogés—1 | 200 2% 2
ey {3 + | e

As before, both K™ (n) and K2 (n) are O(1)
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fast LSTD

Performance bounds

True value function v Approximate yalue function v, := ®6,

lv— 5, lIr i e A= B)2uT

approximation error estimation error computational error

"
1 _
IrlF =17" Z./(.vi)z,for any function f.

i=1
2
Lazaric, A., Ghavamzadeh, M., Munos, R. (2012) Finite-sample analysis of least-squares policy iteration. In: JMLR
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fast LSTD

Performance bounds

) lIv = Thvljr 4 e
|| V— V, ||T§ m +0< (1—5)2,uT>+0< (1_5)2M2n1n6>
——

approximation error estimation error computational error
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fast LSTD

Performance bounds

L v — Tv]|r d 1 1
||V— Vy HTS ﬁ +0< (1—5)2[1,T>+0< Wl]n6>l
—_——

approximation error estimation error computational error

Artifacts of function approximation and
least squares methods
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fast LSTD

Performance bounds

L v — Tv]|r d 1 1
||V— Vy HTS ﬁ +0< (1—5)2[1,T>+0< Wl]n6>l
—_——

approximation error estimation error computational error

Artifacts of function approximation and
least squares methods

Consequence of using SA for LSTD
Setting n = In(1/0)7/(dp), the convergence rate is unaffected!
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Fast LSPI using SA

LSPI - A Quick Recap

Policy
K Evaluation

Policy Q-value Q™

\ Policy
Improvement
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Fast LSPI using SA

LSPI - A Quick Recap

Policy
K Evaluation \1

Policy Q-value Q™

\ Policy /
Improvement

o0

E r(s;,m |SO:500_G]

t=0

7' (s) = argmax 07 ¢ (s, a)
acA
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Fast LSPI using SA

Policy Evaluation: LSTDQ and its SA variant

Given a set of samples D := {(s;, a;, ri,s}),i=1,...,T)}
LSTDQ approximates Q" by

éT = A;II_JT where

. T
Ar = %Z B (si, @) (B(sir ar) — Bo(sl, m(s))))T, and by = T~ " rig(si, ai).
i=1 i=1
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Fast LSPI using SA

Policy Evaluation: LSTDQ and its SA variant

Given a set of samples D := {(s;, a;, ri,s}),i=1,...,T)}
LSTDQ approximates Q" by

éT = A;II_JT where

. T
Ar = %Z B (si, @) (B(sir ar) — Bo(sl, m(s))))T, and by = T~ " rig(si, ai).
i=1 i=1

Fast LSTDQ using SA:

O = Or—1 + Yk (rik + 6911——1¢(s§ka W(S;k)) - 911——1¢(sikaaik)) d)(sikv al'k)
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Fast LSPI using SA

Fast LSPI using SA (fLSPI-SA)

Input: Sample set D := {s;, a;, i, )},
repeat

Policy Evaluation

Fork=1tor
- Get random sample index: iy ~ U({l,...,T})
- Update fLSTD-SA iterate 6,

0 0, A=0-0¢],
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Fast LSPI using SA

Fast LSPI using SA (fLSPI-SA)

Input: Sample set D := {s;, a;, i, )},
repeat

Policy Evaluation

Fork=1tor
- Get random sample index: iy ~ U({l,...,T})
- Update fLSTD-SA iterate 6,

0 0, A=0-0¢],

Policy Improvement

Obtain a greedy policy 7'(s) = argmax 6" ¢(s, a)
acA

00, ma

until A < ¢
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Experiments - Signal Control

Simulation Results on 7x9-grid network

Tracking error Throughput (TAR)
-10*
05 15F
= 04
< A
o) :
= o =)
02} -
0.1}
e0gten — LSPI
or | ‘ ‘ ‘ ‘ ‘ 0 —fLSPL-SA
0 100 200 300 400 500 ‘

Il Il Il Il Il
0 1,000 2,000 3,000 4,000 5,000

step k of fLSTD-SA time steps
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Experiments - Traffic Signal Control

Runtime Performance on three road networks

10° ‘
2 1.91-10° -
15| -
2
8
L =i L
£
£
=
05 | -
30,144
4917
o] e 86 159 87 i
T T T
7x9-Grid 14x9-Grid 14x18-Grid
(d = 504) (d = 1008) (d = 2016)

‘ [CJLSPI [ ]fLSPI-SA ‘
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Experiments - Traffic Signal Control

SGD in Linear Bandits
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Experiments - Traffic Signal Control

Complacs News Recommendation Platform

@ NOAM database: 17 million articles from 2010

'In collaboration with Nello Cristianini and Tom Welfare at University of Bristol
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Experiments - Traffic Signal Control

Complacs News Recommendation Platform

@ NOAM database: 17 million articles from 2010

@ Task: Find the best among 2000 news feeds

'In collaboration with Nello Cristianini and Tom Welfare at University of Bristol
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Experiments - Traffic Signal Control

Complacs News Recommendation Platform

@ NOAM database: 17 million articles from 2010
o Task: Find the best among 2000 news feeds

@ Reward: Relevancy score of the article

'In collaboration with Nello Cristianini and Tom Welfare at University of Bristol
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Experiments - Traffic Signal Control

Complacs News Recommendation Platform

@ NOAM database: 17 million articles from 2010
o Task: Find the best among 2000 news feeds
e Reward: Relevancy score of the article

o Feature dimension: 80000 (approx)

'In collaboration with Nello Cristianini and Tom Welfare at University of Bristol
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Experiments - Traffic Signal Control

More on relevancy score

Problem: Find the best news feed for Crime stories
Sample scores:

Five dead in Finnish mall shooting Score: 1.93
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Experiments - Traffic Signal Control

More on relevancy score

Problem: Find the best news feed for Crime stories
Sample scores:

Five dead in Finnish mall shooting Score: 1.93

Holidays provide more opportunities to drink ~ Score: —0.48
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Experiments - Traffic Signal Control

More on relevancy score

Problem: Find the best news feed for Crime stories
Sample scores:

Five dead in Finnish mall shooting Score: 1.93
Holidays provide more opportunities to drink ~ Score: —0.48

Russia raises price of vodka Score: 2.67
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Experiments - Traffic Signal Control

More on relevancy score

Problem: Find the best news feed for Crime stories
Sample scores:

Five dead in Finnish mall shooting Score: 1.93
Holidays provide more opportunities to drink ~ Score: —0.48
Russia raises price of vodka Score: 2.67

Why Obama Care Must Be Defeated Score: 0.43
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Experiments - Traffic Signal Control

More on relevancy score

Problem: Find the best news feed for Crime stories
Sample scores:

Five dead in Finnish mall shooting Score: 1.93

Holidays provide more opportunities to drink ~ Score: —0.48

Russia raises price of vodka Score: 2.67
Why Obama Care Must Be Defeated Score: 0.43
University closure due to weather Score: —1.06
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Experiments - Traffic Signal Control

A linear bandit algorithm

——()——{ Choose x, Observe y,

Estimate UCBs
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Experiments - Traffic Signal Control

A linear bandit algorithm

X, := argmax UCB(x)

xeD

%

Choose x,,

Observe y,,

Estimate UCBs

Prashanth L A

Convergence rate of TD(0)
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Experiments - Traffic Signal Control

A linear bandit algorithm

Xp := arg max UCB(x) Rewards y,
x€D s.t. Elyn | x4] = x,0*

——()——{ Choose x, Observe y,

Estimate UCBs
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Experiments - Traffic Signal Control

A linear bandit algorithm

Xp := arg max UCB(x) Rewards y,
x€D s.t. Elyn | x4] = x,0*

——()——{ Choose x, Observe y,

Estimate UCBs

Regression used to compute UCB(x) := x"0, + o/ XAy x
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Experiments - Traffic Signal Control

UCB values

@ Mean-reward estimate

UCB(x) =

=
)
_|._
Q

Q>
&
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Experiments - Traffic 1 Control

UCB values

@ Mean-reward estimate

UCB(x) = pa(x) +a a(x)

@ Confidence width
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Experiments - Traffic Signal Control

UCB values

@ Mean-reward estimate

UCB(x) = pa(x) +a a(x)

@ Confidence width /

At each round ¢, select a tap. Optimize the quality of n selected beers
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Experiments - Traffic Signal Control

UCB values

Linearity = No need to estimate mean-reward of all arms,
estimating 6 is enough

@ Regression én — A= lbn

UCB(x) = pa(x) +a a(x)
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Experiments - Traffic Signal Control

UCB values

@ Regression 6, = j
+a 6(x)

UCB(x) = ju(x)

@ Mahalanobis distance of’x from

Ay \/xTA,T]x
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Experiments - Traffic Signal Control

UCB values
@ Regression 6, = }
UCB(x

° Mahalanobls distance of’x from

xTA Iy

Optimize the beer you drink, before you get drunk
Convergence rate of TD(0) March 27,2015 62/84



Experiments - Traffic Signal Control

Performance measure

Best arm: x* = arg min{x"6*}.
X
T

Regret: Ry = Z(x* —x;)'0*
i=1

Goal: ensure Ry grows sub-linearly with T
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Experiments - Traffic Signal Control

Performance measure

Best arm: x* = arg min{x"6*}.
X
T

Regret: Ry = Z(x* —x;)'0*
i=1

Goal: ensure Ry grows sub-linearly with T

Linear bandit algorithms ensure sub-linear regret!
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Experiments - Traffic Signal Control

Complexity of Least Squares Regression

——()—{ Choosex, — Observey,

Estimate é,,

Figure: Typical ML algorithm using Regression
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Experiments - Traffic Signal Control

Complexity of Least Squares Regression

4,0_,

Figure: Typical ML algorithm using Regression

Regression Complexity

Choose x,

]

Observe y,

Estimate é,,

@ 0(d’) using the Sherman-Morrison lemma or

@ 0(d*"") using the Strassen algorithm or 0(4’°") the
Coppersmith-Winograd algorithm

Problem: Complacs News feed platform has high-dimensional features

(d ~ 10°) = solving OLS is computationally costly

Prashanth L A

Convergence rate of TD(0)
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Experiments - Traffic Signal Control

Fast GD for Regression
Pick i, uniformly Update 6,
en 0n+1
in {1’ coo ’"} using (xinayin)
Random Sampling GD Update

Solution: Use fast (online) gradient descent (GD)
o Efficient with complexity of only O(d) (Well-known)

@ High probability bounds with explicit constants can be derived (not fully
known)
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Experiments - Traffic Signal Control

Bandits+GD for News Recommendation

LinUCB: a well-known contextual bandit algorithm that employs
regression in each iteration

Fast GD: provides good approximation to regression (with low

computational cost)
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Experiments - Traffic Signal Control

Bandits+GD for News Recommendation

LinUCB: a well-known contextual bandit algorithm that employs
regression in each iteration

Fast GD: provides good approximation to regression (with low

computational cost)

Strongly-Convex Bandits: no loss in regret except log-factors Proved!

Non Strongly-Convex Bandits: Encouraging empirical results for linUCB+fast
GD] on two news feed platforms
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y convex bandits

fast GD

Pick i, uniformly Update 6,
6, . . Ont1
n {17"'7”} using (xinayin)
Random Sampling GD Update
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Strongly convex bandits

fast GD

Pick i, uniformly Update 6,
6, . . Ont1
n {17"'7”} using (xinayin)
Random Sampling GD Update

e Step-sizes

0p = 0p_1+ Tn ())i,, - el—lxin) Xiy
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Strongly convex bandits

fast GD

Pick i, uniformly Update 6,
6, . . Ont1
n {17"'7”} using (xinayin)
Random Sampling GD Update

o Step-sizes

0p = 0p_1+ Tn ())i,, - el—lxin) Xiy

@ Sample gradient \J
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y convex bandits

Assumptions

Setting: y, = x,0* + &,, where &, is i.i.d. zero-mean
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Strongly convex bandits

Assumptions

Setting: y, = x,0* + &,, where &, is i.i.d. zero-mean

Bounded features

(A1) sup|[x,l, < 1.
n
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Strongly convex bandits

Assumptions

Setting: y, = x,0* + &,, where &, is i.i.d. zero-mean
.S SR Bounded features
(A1) sup [|x.]|, < 1.

n

Bounded noise
(AZIIEEIE.] v, S SR
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Strongly convex bandits

Assumptions

Setting: y, = x,0* + &,, where &, is i.i.d. zero-mean

Bounded features

/
(A1) sup [|x.]|, < 1.

Bounded noise
(AN, V. S S

| Strongly convex co-variance

1
(A3) Amin (n insz> Z M ——— . matrix (for each n)!

=l
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Strongly convex bandits

Why deriving error bounds is difficult?

9,, - én :en . énfl + énfl - én
=0,_1 — én—l 2 én—l - én + Vn(yin - el—l'xin)‘xin

ZH,,(90 — 9*) +Z'YanHk_lAMk — ZH,,H,:'(Gk — 9](_1),

Initial Error ! =l

Sampling Error Drift Error

_ 1 & u - 5
Note: A, = — Z X,‘X;r, II, := H (1 - 'ykAk), and AM;, is a martingale difference.
n =
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Strongly convex bandits

Why deriving error bounds is difficult?

9,, - én :en . énfl + énfl - én
=0,_1 — én—l 2 én—l - én + 'Yn(yin - el—l'xin)‘xin

ZH,,(90 — 9*) +Z'YanHk_lAMk — ZH,,H,:'(G,( — 9](_1),

Initial Error ! =l

Sampling Error Drift Error

Present in earlier SGD works
and can be handled easily

_ 1 & u - 5
Note: A, = — Z X,‘X;r, II, := H (1 - 'ykAk), and AM;, is a martingale difference.
n = _
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Strongly convex bandits

Why deriving error bounds is difficult?

9,, - én :en . énfl + énfl - én
=0,_1 — én—l 2 én—l - én + 'Yn(yin - el—l'xin)‘xin

ZH,,(90 — 9*) +Z'YanHk_lAMk — ZH,,H,:'(G,( — 9](_1),

Initial Error ! =l

Sampling Error Drift Error
Present in earlier SGD works Consequence of changing target
and can be handled easily Hard to control!

_ 1 & u - 5
Note: A, = — Z X,‘X;r, II, := H (1 - 'ykAk), and AM;, is a martingale difference.
n = _
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Strongly convex bandits

Handling Drift Error

n

1 B ll‘L
Note F, (0) := = > (yi — 0™x;)* and A, = = Y xax]. Also, E[y, | x,] = x}0".
ote F,(6) (yi — 0"x;)" an =2 Also, Ely, [ ] = x,

2 4 5
i=1 i=1
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Strongly convex bandits

Handling Drift Error

n

1 B 1 n
Note F,(0) := = Z(yi —0'x;)*and A, = — Zx,»x,T. Also, Ely, | x,] = x.0*.
n

i= i=1

To control the drift error, we observe that
(VFu(B) =0 = VF,,fl(én_l))

= (o — 00 = 68 30— (50— 0413

1
Dani, Varsha, Thomas P. Hayes, and Sham M. Kakade, (2008) "Stochastic Linear Optimization under Bandit Feedback." In: COLT
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Strongly convex bandits

Handling Drift Error

n

1

B ll‘L
Note F,(0) := = . —0'x;)?and A, = — 1. Also, Ely, | x,] = x"6*.
ote Fy(6) := = > (v — 07x;)” an ~ D] Also, Ely, | 5] =x,

2

=l i=1

To control the drift error, we observe that
(VFu(Bn) = 0=VF,1(00))

n

= <én71 - én - gnA;llxn i (x;(é" = 0*))147711)6”) .

Thus, drift is controlled by the convergence of 6, to 6
Key: confidence ball result!

1
Dani, Varsha, Thomas P. Hayes, and Sham M. Kakade, (2008) "Stochastic Linear Optimization under Bandit Feedback." In: COLT
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Strongly convex bandits

Error bound

With v, = ¢/(4(c +n)) and uc/4 € (2/3,1) we have:
High prob. bound For any § > 0,

K 1 hl (n)
P |6n—6a]| < ! >1-46
n n = 0og 5 a4 \/ﬁ
Optimal rate O (n_l/ 2)
Bound in expectation
R H90 - én h
E He,ﬁe,, < 2 | )
2 nke Vn
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Error bound

With v, = ¢/(4(c +n)) and uc/4 € (2/3,1) we have:

High prob. bound For any § > 0,
Ku @ hl (n
lo + >1-0.
\/ g I 2

Optimal rate 0 _l/ 2
Bound in expectation
E |6x -8 +

@ Initial error \/

1
K¢ is a constant depending on 4 and ¢ and fy (1), hy (n) hide log factors.

_gn

hy(n)
o

By iterate-averaging, the dependency of ¢ on p can be removed.
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Error bound

With v, = ¢/(4(c +n)) and uc/4 € (2/3,1) we have:

High prob. bound For any § > 0,
K h
<4/ “Clog LIRS )
Vn

Optimal rate O (n_ iy 2)

Bound in expectation

0y — 0, h
’ 2 4 2 (1)

oo, < o2 0O

o Initial error
@ Sampling error

1
K¢ is a constant depending on 4 and ¢ and fy (1), hy (n) hide log factors.

By iterate-averaging, the dependency of ¢ on p can be removed.
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PEGE Algorithm'

Input A basis {b1, . .., by} € D for R?.
For each cyclem = 1,2, ... do

Exploration Phase
@ Pull each of the d basis Fori—=1tod
arms once

- Choose arm b;
- Observe y;(m).

—1
~ 1 d m d
bt =~ (Z b,»b;r> S5 b (i)
i=1 i=1j=1
Exploitation Phase

Find x = arg min{6] ,x}
xED

Choose arm x m times consecutively.

1
P. Rusmevichientong and J,N. Tsitsiklis, (2010) Linearly Parameterized Bandits. In: Math. Oper. Res.
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PEGE Algorithm'

Input A basis {b1, . .., by} € D for R?.
For each cyclem = 1,2, ... do

Exploration Phase

Fori=1tod
- Choose arm b;
- Observe y;(m).

@ Pull each of the d basis
arms once

@ Using losses, compute

OLS A a 1w
\—> Oma = i (Z bib,-T> DD bui(i).

i=1 i=1 j=1

Exploitation Phase

Find x = arg min{6] ,x}
xED

Choose arm x m times consecutively.

1
P. Rusmevichientong and J,N. Tsitsiklis, (2010) Linearly Parameterized Bandits. In: Math. Oper. Res.
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onvex bandits

PEGE Algorithm'

Input A basis {b1, . .., by} € D for R?.
For each cyclem = 1,2, ... do

Exploration Phase
@ Pull each of the d basis Fori—=1tod
arms once

- Choose arm b;
- Observe y;(m).

@ Using losses, compute
OLS ) wa o
\—> Oma = -~ (Z bib,-T> ST biyi(0)-

i=1 i=1 j=1
@ Use OLS estimate to
compute a greedy Exploitation Phase

decision U x = arg min{f,,,x}
x€D

Choose arm x m times consecutively.

1
P. Rusmevichientong and J,N. Tsitsiklis, (2010) Linearly Parameterized Bandits. In: Math. Oper. Res.
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y convex bandits

PEGE Algorithm'

Input A basis {b1, . .., by} € D for R?.
For each cyclem = 1,2, ... do

Exploration Phase
@ Pull each of the d basis Fori—=1tod
arms once

- Choose arm b;
- Observe y;(m).

@ Using losses, compute
OLS . I ! m
\—> Oma = - (Z bib,-T> ST biyi(0)-
i=1 i=1j=1
@ Use OLS estimate to
compute a greedy Exploitation Phase

decision T/ Find x=argmin{f),x}
x€D

@ Pull the greedy arm m

times Choose arm x m times consecutively.

1
P. Rusmevichientong and J,N. Tsitsiklis, (2010) Linearly Parameterized Bandits. In: Math. Oper. Res.
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Strongly convex bandits

PEGE Algorithm with fast GD

Input A basis {b1, . .., by} € D for R%.
For each cyclem = 1,2, ... do

@ Pull each of the d basis Exploration Phase

arms once \ Fori=1tod

- Choose arm b;
- Observe y;(m).

Update fast GD iterate 6,,,4

Exploitation Phase
Find x = argmin{6] ;x}
xeD

Choose arm x m times consecutively.
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Strongly convex bandits

PEGE Algorithm with fast GD

Input A basis {b1, . .., by} € D for R%.

For each cyclem = 1,2, ... do
@ Pull each of the d basis Exploration Phase

arms once \ Fori=1tod

- Choose arm b;

h 1 - Observe y;(m).
@ Using losses, update fast

GD iterate -
\_> Update fast GD iterate 6,,,4

Exploitation Phase
Find x = argmin{6] ;x}
xeD

Choose arm x m times consecutively.
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Strongly convex bandits

PEGE Algorithm with fast GD

Input A basis {b1, . .., by} € D for R%.
For each cyclem = 1,2, ... do

@ Pull each of the d basis Exploration Phase
arms once \ Fori=1tod
- Choose arm b;

h - Observe y;(m).
@ Using losses, update fast

GD iterate -
\_> Update fast GD iterate 6,,,4

@ Use fast GD iterate to
compute a greedy
decision

Exploitation Phase

Find x = argmin{6] ,x}
xXED

Choose arm x m times consecutively.
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Strongly convex bandits

PEGE Algorithm with fast GD

Input A basis {b1, . .., by} € D for R%.
For each cyclem = 1,2, ... do

@ Pull each of the d basis Exploration Phase
arms once \ Fori=1tod
- Choose arm b;

h - Observe y;(m).
@ Using losses, update fast

GD iterate -
\_> Update fast GD iterate 0,,,4

@ Use fast GD iterate to
compute a greedy
decision

Exploitation Phase

Find x = argmin{8] ,x}
xXED

@ Pull the greedy arm m Choose arm x m times consecutively.

times \—//
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Strongly convex bandits

Regret bound for PEGE+fast GD

(Strongly Convex Arms):

(A3) The function G : § — argmin{6"x} is J-Lipschitz.
x€D

Theorem

T
Under (Al)-(A3), regret Ry := Zx}@* — né%lxm* satisfies
X!

i=1

Rr < CKi(n)%a~"(||0%]l, + 16" [, VT \

The bound is worse than that for PEGE by only a factor of O(log*(n))
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Non-strongly convex bandits

Fast inUCB

——()——{ Choose x, Observe y,

Use 0,, to estimate én
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Non-strongly convex bandits

Fast inUCB

Xp := arg max UCB(x) Rewards y,
x€D s.t. Elyn | x4] = x,0*

——()——{ Choose x, Observe y,

Use 0,, to estimate én
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Non-strongly convex bandits

Fast inUCB
X, := arg max UCB(x) Rewards y,
x€D s.t. Elyn | x4] = x,0*

——()——{ Choose x, Observe y,

Use 0,, to estimate én

Fast GD used to compute UCB(x) := x'0, + a\/ qub,(f)
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Non-strongly convex bandits

Adaptive regularization

n—1
1
Problem: In many settings, Apin ( E x,x}) > v may not hold.
n
i=1
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Non-strongly convex bandits

Adaptive regularization

n—1
1
Problem: In many settings, Amin ( E x,x}) > 1 may not hold.
n
i=1

Solution: Adaptively regularize with )Tn

n

o 1 T \2 2
0, = argmngZ(y, 0'x:)° + A |0

=
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Non-strongly convex bandits

Adaptive regularization

n—1
1
Problem: In many settings, Amin ( E x,x}) > 1 may not hold.
n
i=1

Solution: Adaptively regularize with )Tn

n

o 1 T \2 2
0, = argmngZ(y, 0'x:)° + A |0

=
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Non-strongly convex bandits

Adaptive regularization

n—1
1
Problem: In many settings, Amin ( E x,x}) > 1 may not hold.
n

i=1

Solution: Adaptively regularize with A,

n

o 1 T \2 2
0, = argmngZ(y, 0'x:)° + A |0

=

Pick i, uniformly Update 6,
Hn e — 0n+l
in{1,...,n} using (x;,,yi,)
Random Sampling GD Update

GD update:

T
On = On—1 + (i, — Oh_1%,)%i, — Anbn—1)
Convergence rate of TD(0) March 27, 2015
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Non-strongly convex bandits

Why deriving error bounds is “really” difficult here?

O — 0, =11,(60 — 0" ZHH (0 — O +Z’kaH AMy,
Y k=1
Initial Error
Drift Error Sampling Error

n
Note: I, := H (I — k(A + \iI)) and Op_i — Oy = Q(nil),whenevera € (0,1)
k=1

Prashanth L A Convergence rate of TD(0) March 27, 2015

3)

77184



Non-strongly convex bandits

Why deriving error bounds is “really” difficult here?

0, — 6, =T1,(60 — 0 LI (0 — 6c1) + ) %ILI ' AM,,
0 Z ke — 6k—1) Zk k

Initial Error &t

/ Drift Error Sampling Error
n

Need Z YA — 00 to bound the initial error
k=1

n
Note: I, := H (I = vk (Ax + MiI)) and Op_i — Oy = Q(nil),whenevera € (0,1)
k=1
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Non-strongly convex bandits

Why deriving error bounds is “really” difficult here?

0, — 6, =T1,(60 — 0 LI (0 — 6c1) + ) %ILI ' AM,,
0 Z ke — 6k—1) Zk k

Initial Error

k=1

/ Drift Error
n

Need Z YA — 00 to bound the initial error
k=1

Set v, = O(n~®) (forcing A, = Q(n~(1=2)))

n

Note: I, := H (I — vk (Ax + \iI)) and R — Q(nil),whenevera € (0,1)

k=1
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Non-strongly convex bandits

Why deriving error bounds is “really” difficult here?

0, — 6, =T1,(60 — 0 LI (0 — 6 1)+ %ILILT'AM;,  (3)
0 Z ke — 6k—1) Zk k

Initial Error &t

/ Drift Error Sampling Error
n

Need Z YA — 00 to bound the initial error
k=1

Set v, = O(n~®) (forcing A, = Q(n~(1=2)))

Bad news:
This choice when plugged into (3) results in only a constant error bound!

n
Note: I, := H (I = v (Ax + MiI)) and Op_1 — Oy = Q(nil),whenevera € (0,1)
k=1
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News recommendation application

Dilbert’s boss on news recommendation (and ML)

BASED ON YOUR
INTERNET HISTORY.
YOU MIGHT BE DUMB

ENOUGH TO ENJOY
EXTREME SPORTS.

Dilbert com  DilbertCanoonistiigmail com

Prashanth L A

CLICK HERE TO BUY A

TICKET TO BASE JUMP

FROM THE INTERNA-
TIONAL SPACE STATION.

11 o2013 Scon AdEma, ING. Dut by el ks

I THINK
THE INTER—
NET IS

KILL ME

CALL IT
“MACHINE
TRYING TO | gARNING.”

WE
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News recommendation application

Preliminary Results on Complacs News Feed Platform

0 - .
2
<

5100 |- 1
(]
£
=
E

5 —200 - |
@)

>

—300 ! ! ! !
0 200 400 600
iteration

\ —e LinUCB = LinUCB-GD
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News recommendation

Experiments on Yahoo! Dataset !

Featured | Entertainment Sports Life

McNair's final hours

SToRY:

85 [osing conlral, = Detalls

it (1 'hiiliag

ap
BIRE ﬁ.m

o More: Featured | Buzz

menl, star

Figure: The Featured tab in Yahoo! Today module

1
Yahoo User-Click Log Dataset given under the Webscope program (2011)
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pplication

Tracking Error

Tracking error: SGD Tracking error: SVRG' Tracking error: SAG>

1 —e—SGD : —o—SVRG ! * SAG

Py = 3
S oost T 05t T osh
= = = ?
s ) wpe | | o S
ol : ‘ o Fmapposve 0| P oSl
0 2 4 0 2 4 0 2 4
iteration n of linUCB-GID* iteration n of linUCB-SVRY iteration 7 of flinUCB-SAG

1
Johnson, R., and Zhang, T. (2013) “Accelerating stochastic gradient descent using predictive variance reduction”. In: NIPS

2
Roux, N. L., Schmidt, M. and Bach, F. (2012) “A stochastic gradient method with an exponential convergence rate for finite training
sets.” arXiv preprint arXiv:1202.6258.
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News recommendation application

Runtime Performance on two days of the Yahoo! dataset

108 |
L72.10°

1.5 1.37 - 10° |
@
g

o 1 |
£
=

2 05 L

0 woptye Ml |

T T
Day-2 Day-4

‘ [JLinUCB [ ]fLinUCB-GD [_|fLinUCB-SVRG [JJfLinUCB-SAG
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For Further Reading

For Further Reading |

@ Nathaniel Korda and Prashanth L.A.,

On TD(0) with function approximation: Concentration bounds and a centered
variant with exponential convergence.

arXiv:1411.3224, 2014.

@ Prashanth L.A., Nathaniel Korda and Rémi Munos,

Fast LSTD using stochastic approximation: Finite time analysis and application
to traffic control.

ECML, 2014.

@ Nathaniel Korda, Prashanth L.A. and Rémi Munos,

Fast gradient descent for least squares regression: Non-asymptotic bounds and
application to bandits.

AAAL 2015.
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For Further Reading

Dilbert’s boss (again) on big data!

E

g

WE HAVE A GIGANTIC |z
DATABASE FULL OF H
CUSTOMER BEHAVIOR |§
INFORMATION. §
) €

i

5

H

E

Prashanth L A

EXCELLENT. WE CAN
USE NON-LINEAR
MATH AND DATA
MINING TECHNOLOGY
TO OPTIMIZE OUR
RETAIL CHANNELS!

)

Convergence rate of TD(0)

|i[iflon © 2000 Unilea Fustire Sysaicate, inc.

IF THAT'S THE
SAME THING AS
SPAM, WE'RE
HAVING A GOOD
MEETING HERE.
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