It is hard to predict, especially about the future.

Niels Bohr

You are what you pretend to be, so be careful what you pretend to be. Kurt Vonnegut

Convergence rate of TD(0) with function approximation

Prashanth L A^{\dagger}

Joint work with Nathaniel Korda[#] and Rémi Munos^{*}

[†]Indian Institute of Science

[#]MLRG - Oxford University

*Google DeepMind

March 27, 2015

Background

Markov Decision Processes (MDPs)

MDP: Set of States \mathcal{X} , Set of Actions \mathcal{A} , Rewards r(x, a)

Transition probability:

$$p(s, a, s') = Pr \{s_{t+1} = s' | s_t = s, a_t = a\}$$

The Controlled Markov Property

• Controlled Markov Property: $\forall i_0, i_1, \dots, s, s', b_0, b_1, \dots, a_t$ $P(s_{t+1} = s' \mid s_t = s, a_t = a, \dots, s_0 = i_0, a_0 = b_0) = p(s, a, s')$

Figure: The Controlled Markov Behaviour

$$V^{\pi}(s) = E \bigg[\sum_{t=0}^{\infty} \beta^{t} r(s_{t}, \pi(s_{t})) | s_{0} = s, \pi \bigg]$$

Value function

 V^{π} is the fixed point of the Bellman Operator \mathcal{T}^{π}

$$\mathcal{T}^{\pi}(V)(s) := r(s, \pi(s)) + \beta \sum_{s'} p(s, \pi(s), s') V(s')$$

$$V^{\pi}(s) = E\bigg[\sum_{t=0}^{\infty} \beta^t r(s_t, \pi(s_t)) \mid s_0 = s, \ \pi\bigg]$$

Value function -

 V^{π} is the fixed point of the Bellman Operator \mathcal{T}^{π}

$$\mathcal{T}^{\pi}(V)(s) := r(s, \pi(s)) + \beta \sum_{s'} p(s, \pi(s), s') V(s')$$

$$V^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \beta^{t} r(s_{t}, \pi(s_{t})) \mid s_{0} = s, \pi\right]$$
Value function
Reward

 V^{π} is the fixed point of the Bellman Operator 7

$$\mathcal{T}^{\pi}(V)(s) := r(s, \pi(s)) + \beta \sum_{s'} p(s, \pi(s), s') V(s')$$

$$V^{\pi}(s) = E \left[\sum_{t=0}^{\infty} \beta^{t} r(s_{t}, \pi(s_{t})) \mid s_{0} = s, \pi \right]$$
Value function
Reward
Policy

 V^{π} is the fixed point of the Bellman Operator \mathcal{T}

$$\mathcal{T}^{\pi}(V)(s) := r(s, \pi(s)) + \beta \sum_{s'} p(s, \pi(s), s') V(s')$$

$$V^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \beta^{t} r(s_{t}, \pi(s_{t})) \mid s_{0} = s, \pi\right]$$

Value function Reward Policy

 V^{π} is the fixed point of the Bellman Operator \mathcal{T}^{π} :

$$\mathcal{T}^{\pi}(V)(s) := r(s,\pi(s)) + \beta \sum_{s'} p(s,\pi(s),s')V(s')$$

Prashanth L A

Convergence rate of TD(0)

Policy evaluation using TD

Temporal difference learning

- Problem: estimate the value function for a given policy π
- Solution: Use TD(0)

$$V_{t+1}(s_t) = V_t(s_t) + \alpha_t \left(r_{t+1} + \gamma V_t(s_{t+1}) - V_t(s_t) \right).$$

Why TD(0)?

- Simulation based algorithms like Monte-Carlo (no model necessary!)
- Update a guess based on another guess (like DP)
- Guaranteed convergence to value function $V^{\pi}(s)$ under standard assumptions

Policy evaluation using TD

Temporal difference learning

- Problem: estimate the value function for a given policy π
- Solution: Use TD(0)

$$V_{t+1}(s_t) = V_t(s_t) + \alpha_t \left(r_{t+1} + \gamma V_t(s_{t+1}) - V_t(s_t) \right)$$

Why TD(0)?

- Simulation based algorithms like Monte-Carlo (no model necessary!)
- Update a guess based on another guess (like DP)
- Guaranteed convergence to value function $V^{\pi}(s)$ under standard assumptions

TD with Function Approximation

Linear Function Approximation.

$$V^{\pi}(s) pprox heta ^{T} \phi(s)$$

Parameter $\theta \in \mathbb{R}^d$ –

Feature $\phi(s) \in \mathbb{R}^{d}$

Note: $d \ll |S|$

TD Fixed Point

 $\Phi \ \theta^* = \ \Pi \ \mathcal{T}^{\pi}(\Phi \theta^*)$

Feature Matrix

with rows $\phi(s)^{\mathsf{T}}, \forall s \in \mathcal{S}$

Orthogonal Projection

to $\mathcal{B} = \{ \Phi \theta \mid \theta \in \mathbb{R}^d \}$

TD with Function Approximation

Linear Function Approximation.

TD(0) with function approximation

$$\theta_{n+1} = \theta_n + \gamma_n (r(s_n, \pi(s_n)) + \beta \theta_n^{\mathsf{T}} \phi(s_{n+1}) - \theta_n^{\mathsf{T}} \phi(s_n)) \phi(s_n)$$
Step-sizes Fixed-point iteration

J. N. Tsitsiklis and B.V. Roy. (1997) show that $\theta_n \to \theta^* a.s.$, where

 $A\theta^* = b$, where $A = \Phi^{\mathsf{T}}\Psi(I - \beta P)\Phi$ and $b = \Phi^{\mathsf{T}}\Psi r$.

¹J. N. Tsitsiklis and B.V. Roy. (1997) An analysis of temporal-difference learning with function approximation." In: IEEE Transactions on Automatic Control

Assumptions

Ergodicity Markov chain induced by the policy π is irreducible and aperiodic. Moreover, there exists a stationary distribution $\Psi(=\Psi_{\pi})$ for this Markov chain.

Linear independence Feature matrix Φ has full column rank $\Rightarrow \lambda_{\min}(\Phi^{\mathsf{T}}\Psi\Phi) \ge \mu > 0$

Bounded rewards $|r(s, \pi(s))| \leq 1$, for all $s \in S$.

Bounded features $\|\phi(s)\|_2 \leq 1$, for all $s \in S$.

Assumptions (contd)

Step sizes satisfy
$$\sum_{n} \gamma_n = \infty$$
, and $\sum_{n} \gamma_n^2 < \infty$.

Bounded mixing time \exists a non-negative function $B(\cdot)$ such that: $\forall s_0 \in S$ and $m \ge 0$,

$$\begin{split} &\sum_{\tau=0}^{\infty} \left\| \mathbb{E}(\phi(s_{\tau}) \mid s_0) - \mathbb{E}_{\Psi}(\phi(s_{\tau})) \right\| \le B(s_0), \\ &\sum_{\tau=0}^{\infty} \left\| \mathbb{E}[\phi(s_{\tau})\phi(s_{\tau+m})^{\mathsf{T}} \mid s_0] - \mathbb{E}_{\Psi}[\phi(s_{\tau})\phi(s_{\tau+m})^{\mathsf{T}}] \right\| \le B(s_0), \end{split}$$

where $B(\cdot)$ satisfies: for any q > 1, there exists a $K_q < \infty$ such that $\mathbb{E}[B^q(s) \mid s_0] \le K_q B^q(s_0)$.

In the long run we are all dead.

John Maynard Keynes

Question: What happens in a short run of TD(0) with function approximation?

Concentration Bounds: Non-averaged TD(0)

Non-averaged case: Bound in expectation

Step-size choice

$$\gamma_n = \frac{c}{2(c+n)}$$
, with $(1-\beta)^2 \mu c > 1/2$

Bound in expectation

$$\mathbb{E} \left\| heta_n - heta^*
ight\|_2 \leq rac{K_1(n)}{\sqrt{n+c}}$$
 , when

$$K_1(n) = \frac{2\sqrt{c} \|\theta_0 - \theta^*\|_2}{(n+c)^{2(1-\beta)^2\mu c - 1/2}} + \frac{c(1-\beta)(3+6H)B(s_0)}{\sqrt{2(1-\beta)^2\mu c - 1}}$$

H is an upper bound on $\|\theta_n\|_2$, for all *n*.

Non-averaged case: Bound in expectation

Step-size choice

$$\gamma_n = \frac{c}{2(c+n)}$$
, with $(1-\beta)^2 \mu c > 1/2$

Bound in expectation

$$\mathbb{E} \|\theta_n - \theta^*\|_2 \leq \frac{K_1(n)}{\sqrt{n+c}}$$
, where

$$K_1(n) = \frac{2\sqrt{c} \|\theta_0 - \theta^*\|_2}{(n+c)^{2(1-\beta)^2\mu c - 1/2}} + \frac{c(1-\beta)(3+6H)B(s_0)}{\sqrt{2(1-\beta)^2\mu c - 1}}$$

H is an upper bound on $\|\theta_n\|_2$, for all *n*.

Convergence rate of TD(0)

Non-averaged case: High probability bound

Step-size choice

$$\gamma_n = \frac{c}{2(c+n)}$$
, with $(\mu(1-\beta)/2 + 3B(s_0)) c > 1$

High-probability bound

$$\left(\|\theta_n-\theta^*\|_2\leq \frac{K_2(n)}{\sqrt{n+c}}\right)\geq 1-\delta$$
, where

$$K_2(n) := \frac{(1-\beta)c\sqrt{\ln(1/\delta)(1+9B(s_0)^2)}}{(\mu(1-\beta)/2+3B(s_0)^2)c-1} + K_1(n)$$

 $K_1(n)$ and $K_2(n)$ above are O(1)

Non-averaged case: High probability bound

Step-size choice

$$\gamma_n = \frac{c}{2(c+n)}$$
, with $(\mu(1-\beta)/2 + 3B(s_0)) c > 1$

High-probability bound

$$\mathbb{P}\left(\left\|\theta_n - \theta^*\right\|_2 \le \frac{K_2(n)}{\sqrt{n+c}}\right) \ge 1 - \delta, \text{ where }$$

$$K_2(n) := \frac{(1-\beta)c\sqrt{\ln(1/\delta)(1+9B(s_0)^2)}}{(\mu(1-\beta)/2+3B(s_0)^2)c-1} + K_1(n)$$

 $K_1(n)$ and $K_2(n)$ above are O(1)

Non-averaged case: High probability bound

Step-size choice

$$\gamma_n = \frac{c}{2(c+n)}$$
, with $(\mu(1-\beta)/2 + 3B(s_0)) c > 1$

High-probability bound

$$\mathbb{P}\left(\| heta_n- heta^*\|_2\leq rac{K_2(n)}{\sqrt{n+c}}
ight)\geq 1-\delta, ext{ where }$$

$$K_2(n) := \frac{(1-\beta)c\sqrt{\ln(1/\delta)(1+9B(s_0)^2)}}{(\mu(1-\beta)/2+3B(s_0)^2)c-1} + K_1(n)$$

 $K_1(n)$ and $K_2(n)$ above are O(1)

Why are these bounds problematic?

Obtaining optimal rate $O(1/\sqrt{n})$ with a step-size $\gamma_n = c/(c+n)$

In expectation: Require *c* to be chosen such that $(1 - \beta)^2 \mu c \in (1/2, \infty)$ In high-probability: *c* should satisfy $(\mu(1 - \beta)/2 + 3B(s_0)) c > 1$.

> Optimal rate requires knowledge of the mixing bound $B(s_0)$ Even for finite state space settings, $B(s_0)$ is a constant, albeit one that depends on the transition dynamics!

Solution

Iterate averaging

Why are these bounds problematic?

Obtaining optimal rate $O(1/\sqrt{n})$ with a step-size $\gamma_n = c/(c+n)$

In expectation: Require *c* to be chosen such that $(1 - \beta)^2 \mu c \in (1/2, \infty)$ In high-probability: *c* should satisfy $(\mu(1 - \beta)/2 + 3B(s_0)) c > 1$.

> Optimal rate requires knowledge of the mixing bound $B(s_0)$ Even for finite state space settings, $B(s_0)$ is a constant, albeit one that depends on the transition dynamics!

Solution

Iterate averaging

Proof Outline

Let $z_n = \theta_n - \theta^*$. We first bound the deviation of this error from its mean:

$$\mathbb{P}(\|z_n\|_2 - \mathbb{E} \|z_n\|_2 \ge \epsilon) \le \exp\left(-\frac{\epsilon^2}{2\sum_{i=1}^n L_i^2}\right), \quad \forall \epsilon > 0 ,$$

and then bound the size of the mean itself:

$$\mathbb{E} \left\| z_n \right\|_2 \leq \left\| 2 \exp(-(1-\beta)\mu\Gamma_n) \left\| z_0 \right\|_2 \right\|_2$$

initial error

+
$$\left(\sum_{k=1}^{n-1} (3+6H)^2 B(s_0)^2 \gamma_{k+1}^2 \exp(-2(1-\beta)\mu(\Gamma_n-\Gamma_{k+1}))\right)$$

sampling and mixing error

Note that $L_i := \gamma_i$

Proof Outline

Let $z_n = \theta_n - \theta^*$. We first bound the deviation of this error from its mean:

$$\mathbb{P}(\|z_n\|_2 - \mathbb{E} \|z_n\|_2 \ge \epsilon) \le \exp\left(-\frac{\epsilon^2}{2\sum_{i=1}^n L_i^2}\right), \quad \forall \epsilon > 0 ,$$

and then bound the size of the mean itself:

E

$$\begin{aligned} \|z_n\|_2 &\leq \left[\underbrace{2 \exp(-(1-\beta)\mu\Gamma_n) \|z_0\|_2}_{\text{initial error}} + \left(\sum_{k=1}^{n-1} (3+6H)^2 B(s_0)^2 \gamma_{k+1}^2 \exp(-2(1-\beta)\mu(\Gamma_n-\Gamma_{k+1}) \right)^{\frac{1}{2}} \right], \end{aligned}$$

sampling and mixing error

Note that
$$L_i := \gamma_i \left[\prod_{j=i+1}^n \left(1 - 2\gamma_j \left(\mu \left(1 - \beta - \frac{\gamma_j}{2} \right) + [1 + \beta(3 - \beta)] B(s_0) \right) \right) \right]^{1/2}$$

Prashanth L A

Convergence rate of TD(0)

Proof Outline: Bound in Expectation

Let $f_{X_n}(\theta) := [r(s_n, \pi(s_n)) + \beta \theta_{n-1}^{\mathsf{T}} \phi(s_{n+1}) - \theta_{n-1}^{\mathsf{T}} \phi(s_n)] \phi(s_n)$. Then, TD update is equivalent to

$$\theta_{n+1} = \theta_n + \gamma_n \left[\mathbb{E}_{\Psi}(f_{X_n}(\theta_n)) + \epsilon_n + \Delta M_n \right]$$
(1)

Mixing error $\epsilon_n := \mathbb{E}(f_{X_n}(\theta_n) \mid s_0) - \mathbb{E}_{\Psi}(f_{X_n}(\theta_n))$ Martingale sequence $\Delta M_n := f_{X_n}(\theta_n) - \mathbb{E}(f_{X_n}(\theta_n) \mid s_0)$

Unrolling (1), we obtain:

$$z_{n+1} = (I - \gamma_n A) z_n + \gamma_n (\epsilon_n + \Delta M_n)$$
$$= \Pi_n z_0 + \sum_{k=1}^n \gamma_k \Pi_n \Pi_k^{-1} (\epsilon_k + \Delta M_k)$$

Here $A := \Phi^{\dagger} \Psi (I - \beta P) \Phi$ and $\Pi_{R} := [(I - \gamma_k A).$

Proof Outline: Bound in Expectation

Let $f_{X_n}(\theta) := [r(s_n, \pi(s_n)) + \beta \theta_{n-1}^{\mathsf{T}} \phi(s_{n+1}) - \theta_{n-1}^{\mathsf{T}} \phi(s_n)] \phi(s_n)$. Then, TD update is equivalent to

$$\theta_{n+1} = \theta_n + \gamma_n \left[\mathbb{E}_{\Psi}(f_{X_n}(\theta_n)) + \epsilon_n + \Delta M_n \right]$$
(1)

Mixing error $\epsilon_n := \mathbb{E}(f_{X_n}(\theta_n) \mid s_0) - \mathbb{E}_{\Psi}(f_{X_n}(\theta_n))$ Martingale sequence $\Delta M_n := f_{X_n}(\theta_n) - \mathbb{E}(f_{X_n}(\theta_n) \mid s_0)$ Unrolling (1), we obtain:

$$z_{n+1} = (I - \gamma_n A) z_n + \gamma_n (\epsilon_n + \Delta M_n)$$
$$= \Pi_n z_0 + \sum_{k=1}^n \gamma_k \Pi_n \Pi_k^{-1} (\epsilon_k + \Delta M_k)$$

Here $A := \Phi^{\mathsf{T}} \Psi(I - \beta P) \Phi$ and $\Pi_n := \prod_{k=1}^n (I - \gamma_k A).$

Proof Outline: Bound in Expectation

$$z_{n+1} = (I - \gamma_n A) z_n + \gamma_n (\epsilon_n + \Delta M_n)$$
$$= \Pi_n z_0 + \sum_{k=1}^n \gamma_k \Pi_n \Pi_k^{-1} (\epsilon_k + \Delta M_k)$$

By Jensen's inequality, we obtain

$$\mathbb{E}(\|z_n\|_2 \mid s_0) \le (\mathbb{E}(\langle z_n, z_n \rangle) \mid s_0)^{\frac{1}{2}} \le \left(2 \|\Pi_n z_0\|_2^2 + 3\sum_{k=1}^n \gamma_k^2 \|\Pi_n \Pi_k^{-1}\|_2^2 \mathbb{E}\left(\|\epsilon_k\|_2^2 \mid s_0\right) + 2\sum_{k=1}^n \gamma_k^2 \|\Pi_n \Pi_k^{-1}\|_2^2 \mathbb{E}\left(\|\Delta M_k\|_2^2 \mid s_0\right)\right)$$

Rest of the proof amounts to bounding each of the terms on RHS above.

Prashanth L A

Convergence rate of TD(0)

Proof Outline: High Probability Bound

Recall $z_n = \theta_n - \theta^*$. Step 1: (Error decomposition)

$$||z_n||_2 - \mathbb{E} ||z_n||_2 = \sum_{i=1}^n g_i - \mathbb{E}[g_i |\mathcal{F}_{i-1}] = \sum_{i=1}^n D_i,$$

where $D_i := g_i - \mathbb{E}[g_i | \mathcal{F}_{i-1}], g_i := \mathbb{E}[||z_n||_2 | \theta_i]$, and $\mathcal{F}_i = \sigma(\theta_1, \dots, \theta_n)$.

Step 2: (Lipschitz continuity)

Functions g_i are Lipschitz continuous with Lipschitz constants L_i

Step 3: (Concentration inequality)

$$\mathbb{P}(\|z_n\|_2 - \mathbb{E} \|z_n\|_2 \ge \epsilon) = \mathbb{P}\left(\sum_{i=1}^n D_i \ge \epsilon\right) \le \exp(-\lambda\epsilon) \exp\left(\frac{\alpha\lambda^2}{2}\sum_{i=1}^n L_i^2\right)$$

Proof Outline: High Probability Bound

Recall $z_n = \theta_n - \theta^*$. Step 1: (Error decomposition)

$$||z_n||_2 - \mathbb{E} ||z_n||_2 = \sum_{i=1}^n g_i - \mathbb{E}[g_i | \mathcal{F}_{i-1}] = \sum_{i=1}^n D_i,$$

where $D_i := g_i - \mathbb{E}[g_i | \mathcal{F}_{i-1}], g_i := \mathbb{E}[||z_n||_2 | \theta_i]$, and $\mathcal{F}_i = \sigma(\theta_1, \dots, \theta_n)$.

Step 2: (Lipschitz continuity)

Functions g_i are Lipschitz continuous with Lipschitz constants L_i .

Step 3: (Concentration inequality)

$$\mathbb{P}(\|z_n\|_2 - \mathbb{E} \|z_n\|_2 \ge \epsilon) = \mathbb{P}\left(\sum_{i=1}^n D_i \ge \epsilon\right) \le \exp(-\lambda\epsilon) \exp\left(\frac{\alpha\lambda^2}{2}\sum_{i=1}^n L_i^2\right)$$

Proof Outline: High Probability Bound

Recall $z_n = \theta_n - \theta^*$. Step 1: (Error decomposition)

$$||z_n||_2 - \mathbb{E} ||z_n||_2 = \sum_{i=1}^n g_i - \mathbb{E}[g_i | \mathcal{F}_{i-1}] = \sum_{i=1}^n D_i,$$

where $D_i := g_i - \mathbb{E}[g_i | \mathcal{F}_{i-1}], g_i := \mathbb{E}[||z_n||_2 | \theta_i]$, and $\mathcal{F}_i = \sigma(\theta_1, \dots, \theta_n)$.

Step 2: (Lipschitz continuity)

Functions g_i are Lipschitz continuous with Lipschitz constants L_i .

Step 3: (Concentration inequality)

$$\mathbb{P}(\|z_n\|_2 - \mathbb{E} \|z_n\|_2 \ge \epsilon) = \mathbb{P}\left(\sum_{i=1}^n D_i \ge \epsilon\right) \le \exp(-\lambda\epsilon) \exp\left(\frac{\alpha\lambda^2}{2}\sum_{i=1}^n L_i^2\right).$$

Concentration Bounds: Iterate Averaged TD(0)

Polyak-Ruppert averaging: Bound in expectation

Bigger step-size + Averaging

$$\gamma_n := \frac{(1-\beta)}{2} \left(\frac{c}{c+n}\right)^{\alpha}$$

 $\bar{\theta}_{n+1} := (\theta_1 + \ldots + \theta_n)/n$

with $\alpha \in (1/2, 1)$ and c > 0

 $K_1^A(n) := \sqrt{1 + 9B(s_0)^2} \left[\frac{\|\theta_0 - \theta^*\|_2}{(n+c)^{(1-\alpha)/2}} + \frac{2\beta(1-\beta)c^{\alpha}HB(s_0)}{(\mu c^{\alpha}(1-\beta)^2)^{\alpha}\frac{1+2\alpha}{2(1-\alpha)}} \right]$
Polyak-Ruppert averaging: Bound in expectation

Bigger step-size + Averaging

$$\gamma_n := \frac{(1-\beta)}{2} \left(\frac{c}{c+n}\right)^{\alpha}$$

$$\bar{\theta}_{n+1} := (\theta_1 + \ldots + \theta_n)/n$$

with $\alpha \in (1/2, 1)$ and c > 0

Bound in expectation

$$\mathbb{E} \left\| \bar{\theta}_n - \hat{\theta}_T \right\|_2 \leq \frac{K_1^{IA}(n)}{(n+c)^{\alpha/2}}, \text{ where }$$

$$K_1^A(n) := \sqrt{1 + 9B(s_0)^2} \left[\frac{\|\theta_0 - \theta^*\|_2}{(n+c)^{(1-\alpha)/2}} + \frac{2\beta(1-\beta)c^{\alpha}HB(s_0)}{(\mu c^{\alpha}(1-\beta)^2)^{\alpha}\frac{1+2\alpha}{2(1-\alpha)}} \right]$$

Iterate averaging: High probability bound

Bigger step-size + Averaging

$$\gamma_n := \frac{(1-\beta)}{2} \left(\frac{c}{c+n}\right)^{\alpha}$$

$$\left\| \hat{\theta}_T \right\|_2 \leq \left\| \frac{K_2^{IA}(n)}{(n+c)^{\alpha/2}} \right\| \geq 1-\delta$$
, where

 $\bar{\theta}_{n+1} := (\theta_1 + \ldots + \theta_n)/n$

$$K_2^A(n) := \frac{\sqrt{(1+9B(s_0)^2)\left(\frac{2\alpha}{\mu\left[\frac{1-\beta}{2}+B(s_0)\right]c^{\alpha}}+\frac{2(3\alpha)}{\alpha}\right)}}{\mu\left[\frac{1}{2}+\frac{B(s_0)}{1-\beta}\right]n^{(1-\alpha)/2}} + K_1(n)$$

Iterate averaging: High probability bound

Bigger step-size + Averaging

$$\gamma_n := \frac{(1-\beta)}{2} \left(\frac{c}{c+n}\right)^{\alpha}$$

$$\bar{\theta}_{n+1} := (\theta_1 + \ldots + \theta_n)/n$$

High-probability bound

$$\mathbb{P}\left(\left\|\bar{\theta}_n - \hat{\theta}_T\right\|_2 \leq \frac{K_2^{IA}(n)}{(n+c)^{\alpha/2}}\right) \geq 1 - \delta, \text{ where }$$

$$K_2^A(n) := \frac{\sqrt{\left(1 + 9B(s_0)^2\right) \left(\frac{2\alpha}{\mu\left[\frac{1-\beta}{2} + B(s_0)\right]c^{\alpha}} + \frac{2(3^{\alpha})}{\alpha}\right)}}{\mu\left[\frac{1}{2} + \frac{B(s_0)}{1-\beta}\right]n^{(1-\alpha)/2}} + K_1(n)$$

Iterate averaging: High probability bound

Bigger step-size + Averaging

$$\gamma_n := \frac{(1-\beta)}{2} \left(\frac{c}{c+n}\right)^{\alpha}$$

$$\bar{\theta}_{n+1} := (\theta_1 + \ldots + \theta_n)/n$$

High-probability bound

$$\mathbb{P}\left(\left\|\bar{\theta}_n - \hat{\theta}_T\right\|_2 \le \frac{K_2^{IA}(n)}{(n+c)^{\alpha/2}}\right) \ge 1 - \delta, \text{ where }$$

 α can be chosen arbitrarily close to 1, resulting in a rate $O(1/\sqrt{n})$.

Let
$$\bar{\theta}_{n+1} := (\theta_1 + \ldots + \theta_n)/n$$
 and $z_n = \bar{\theta}_{n+1} - \theta^*$. Then,

$$\mathbb{P}(\|z_n\|_2 - \mathbb{E} \|z_n\|_2 \ge \epsilon) \le \exp\left(-\frac{\epsilon^2}{2\sum_{i=1}^n L_i^2}\right), \quad \forall \epsilon > 0,$$

where
$$L_i := \frac{\gamma_i}{n} \left(1 + \sum_{l=i+1}^{n-1} \prod_{j=i}^{l} \left(1 - 2\gamma_j \left(\mu \left(1 - \beta - \frac{\gamma_j}{2} \right) + [1 + \beta(3 - \beta)] B(s_0) \right) \right) \right).$$

With $\gamma_n = (1 - \beta)(c/(c+n))^{\alpha}$, we obtain

Let
$$\bar{\theta}_{n+1} := (\theta_1 + \ldots + \theta_n)/n$$
 and $z_n = \bar{\theta}_{n+1} - \theta^*$. Then,

$$\mathbb{P}(\|z_n\|_2 - \mathbb{E} \|z_n\|_2 \ge \epsilon) \le \exp\left(-\frac{\epsilon^2}{2\sum_{i=1}^n L_i^2}\right), \quad \forall \epsilon > 0 ,$$

where
$$L_i := \frac{\gamma_i}{n} \left(1 + \sum_{l=i+1}^{n-1} \prod_{j=i}^{l} \left(1 - 2\gamma_j \left(\mu \left(1 - \beta - \frac{\gamma_j}{2} \right) + [1 + \beta(3 - \beta)] B(s_0) \right) \right) \right).$$

With $\gamma_n = (1 - \beta)(c/(c + n))^{\alpha}$, we obtain

$$\sum_{i=1}^{n} L_i^2 \leq \frac{\left[\frac{2\alpha}{\mu\left[\frac{1-\beta}{2} + B(s_0)\right]c^{\alpha}} + \frac{5^{\alpha}}{\alpha}\right]^2}{\mu^2 \left[\frac{1}{2} + \frac{B(s_0)}{1-\beta}\right]^2} \times \frac{1}{n}$$

Proof outline: Bound in expectation

To bound the expected error we directly average the errors of the non-averaged iterates:

$$\mathbb{E}\left\|\bar{\theta}_{n+1}-\theta^*\right\|_2 \leq \frac{1}{n}\sum_{k=1}^n \mathbb{E}\left\|\theta_k-\theta^*\right\|_2,$$

and then specialise to the choice of step-size: $\gamma_n = (1 - \beta)(c/(c + n))^{\alpha}$

$$\mathbb{E} \left\| \bar{\theta}_{n+1} - \theta^* \right\|_2 \le \frac{\sqrt{1+9B(s_0)}}{n} \left(\sum_{n=1}^{\infty} \exp(-\mu c(n+c)^{1-\alpha}) \|\theta_0 - \theta^*\|_2 + 2\beta H c^{\alpha} (1-\beta) \left(\mu c^{\alpha} (1-\beta)^2 \right)^{-\alpha \frac{1+2\alpha}{2(1-\alpha)}} (n+c)^{-\frac{\alpha}{2}} \right)$$

Centered TD (CTD)

The Variance Problem

Why does iterate averaging work?

- in TD(0), each iterate introduces a high variance, which must be controlled by the step-size choice
- averaging the iterates reduces the variance of the final estimator
- reduced variance allows for more exploration within the iterates through larger step sizes

A Control Variate Solution

Centering: another approach to variance reduction

- instead of averaging iterates one can use an average to guide the iterates
- now all iterates are informed by their history
- constructing this average in epochs allows a constant step-size choice

Recall that for TD(0),

$$\theta_{n+1} = \theta_n + \gamma_n \underbrace{(r(s_n, \pi(s_n)) + \beta \theta_n^{\mathsf{T}} \phi(s_{n+1}) - \theta_n^{\mathsf{T}} \phi(s_n)) \phi(s_n)}_{=f_n(\theta_n)}$$

and that $\theta_n \to \theta^*$, the solution of $F(\theta) := \prod T^{\pi}(\Phi \theta) - \Phi \theta = 0$.

Centering each iterate:

$$\theta_{n+1} = \theta_n + \gamma \left(\underbrace{f_n(\theta_n) - f_n(\bar{\theta}_n) + F(\bar{\theta}_n)}_{(*)}\right)$$

$$\theta_{n+1} = \theta_n + \gamma \left(\underbrace{f_n(\theta_n) - f_n(\bar{\theta}_n) + F(\bar{\theta}_n)}_{(*)} \right)$$

Why Centering helps?

- No updates after hitting θ^*
- An average guides the updates, resulting in low variance of term (*)
- Allows using a (large) constant step-size
- O(d) update same as TD(0)
- Working with epochs \Rightarrow need to store only the averaged iterate $\bar{\theta}_n$ and an estimate of $\hat{F}(\bar{\theta}_n)$

Centered update:

$$\theta_{n+1} = \theta_n + \gamma \left(f_n(\theta_n) - f_n(\bar{\theta}_n) + F(\bar{\theta}_n) \right)$$

Challenges compared to gradient descent with a accessible cost function

- F is unknown and inaccessible in our setting
- To prove convergence bounds one has to cope with the error due to **incomplete mixing**

Centered update:

$$\theta_{n+1} = \theta_n + \gamma \left(f_n(\theta_n) - f_n(\bar{\theta}_n) + F(\bar{\theta}_n) \right)$$

Challenges compared to gradient descent with a accessible cost function

- F is **unknown** and **inaccessible** in our setting
- To prove convergence bounds one has to cope with the error due to **incomplete mixing**

Centered TD(0)

Beginning of each epoch, an iterate $\bar{\theta}^{(m)}$ is chosen uniformly at random from the previous epoch

Set $\theta_{mM} := \theta^{(m)}$, and, for $n = mM, \ldots, (m+1)M =$

$$\theta_{n+1} = \theta_n + \gamma \left(f_{X_{i_n}}(\theta_n) - f_{X_{i_n}}(\bar{\theta}^{(m)}) + \hat{F}^{(m)}(\bar{\theta}^{(m)}) \right)$$

where $\hat{F}^{(m)}(\theta) := \frac{1}{M} \sum_{i=(m-1)M}^{mM} f_{X_i}(\theta)$

Centered TD(0)

Beginning of each epoch,

an iterate $\bar{\theta}^{(m)}$ is chosen uniformly at random from the previous epoch

Epoch run

Set $\theta_{mM} := \overline{\theta}^{(m)}$, and, for $n = mM, \dots, (m+1)M - 1$

$$\theta_{n+1} = \theta_n + \gamma \left(f_{X_{i_n}}(\theta_n) - f_{X_{i_n}}(\bar{\theta}^{(m)}) + \hat{F}^{(m)}(\bar{\theta}^{(m)}) \right)$$

where $\hat{F}^{(m)}(\theta) := \frac{1}{M} \sum_{i=(m-1)M}^{mM} f_{X_i}(\theta)$

(2)

Centering: Results

Epoch length and step size choice

Choose *M* and γ such that $C_1 < 1$, where

$$C_1 := \left(\frac{1}{2\mu\gamma M((1-\beta)-d^2\gamma)} + \frac{\gamma d^2}{2((1-\beta)-d^2\gamma)}\right)$$

Error bound

$$\begin{split} \|\Phi(\bar{\theta}^{(m)} - \theta^*)\|_{\Psi}^2 &\leq C_1^m \left(\|\Phi(\bar{\theta}^{(0)} - \theta^*)\|_{\Psi}^2 \right) \\ &+ C_2 H(5\gamma + 4) \sum_{k=1}^{m-1} C_1^{(m-2)-k} B_{(k-1)M}^{kM}(s_0), \end{split}$$

where $C_2 = \gamma/(2M((1-\beta) - d^2\gamma))$ and $B_{(k-1)M}^{con}$ is an upper bound on the partial sums

and
$$\sum_{i=(k-1)M}^{kM} (\mathbb{E}(\phi(s_i)\phi(s_{i+l}) \mid s_0) - \mathbb{E}_{\Psi}(\phi(s_i)\phi(s_{i+l})^{\mathsf{T}})), \text{ for } l = 0, 1.$$

Prashanth L A

Convergence rate of TD(0)

March 27, 2015 34 / 84

Centering: Results

Epoch length and step size choice

Choose *M* and γ such that $C_1 < 1$, where

$$C_1 := \left(\frac{1}{2\mu\gamma M((1-\beta)-d^2\gamma)} + \frac{\gamma d^2}{2((1-\beta)-d^2\gamma)}\right)$$

Error bound

$$\begin{split} \|\Phi(\bar{\theta}^{(m)} - \theta^*)\|_{\Psi}^2 &\leq C_1^m \left(\|\Phi(\bar{\theta}^{(0)} - \theta^*)\|_{\Psi}^2 \right) \\ &+ C_2 H(5\gamma + 4) \sum_{k=1}^{m-1} C_1^{(m-2)-k} B_{(k-1)M}^{kM}(s_0), \end{split}$$

where $C_2 = \gamma/(2M((1-\beta) - d^2\gamma))$ and $B_{(k-1)M}^{kM}$ is an upper bound on the partial sums

$$\sum_{i=(k-1)M}^{kM} (\mathbb{E}(\phi(s_i) \mid s_0) - \mathbb{E}_{\Psi}(\phi(s_i)))$$

and
$$\sum_{i=(k-1)M}^{kM} (\mathbb{E}(\phi(s_i)\phi(s_{i+l}) \mid s_0) - \mathbb{E}_{\Psi}(\phi(s_i)\phi(s_{i+l})^{\mathsf{T}})), \text{ for } l = 0, 1.$$

Prashanth L A

Convergence rate of TD(0)

March 27, 2015 34 / 84

Centering: Results cont.

The effect of mixing error

If the Markov chain underlying policy π satisfies the following property:

 $|P(s_t = s \mid s_0) - \psi(s)| \le C\rho^{t/M},$

then

 $\|\Phi(\bar{\theta}^{(m)} - \theta^*)\|_{\Psi}^2 \le C_1^m \left(\|\Phi(\bar{\theta}^{(0)} - \theta^*)\|_{\Psi}^2\right) + \frac{CMC_2H(5\gamma + 4)\max\{C_1, \rho^M\}^{(m-1)}}{CMC_2H(5\gamma + 4)\max\{C_1, \rho^M\}^{(m-1)}}$

When the MDP mixes exponentially fast (e.g. finite state-space MDPs) we get the exponential convergence rate (* only in the first term)

Otherwise the decay of the error is dominated by the mixing ra

Centering: Results cont.

The effect of mixing error

If the Markov chain underlying policy π satisfies the following property:

 $|P(s_t = s \mid s_0) - \psi(s)| \le C\rho^{t/M},$

then

$$\|\Phi(\bar{\theta}^{(m)} - \theta^*)\|_{\Psi}^2 \le C_1^m \left(\|\Phi(\bar{\theta}^{(0)} - \theta^*)\|_{\Psi}^2 \right) + \frac{CMC_2H(5\gamma + 4)\max\{C_1, \rho^M\}^{(m-1)}}{CMC_2H(5\gamma + 4)\max\{C_1, \rho^M\}^{(m-1)}}$$

When the MDP mixes exponentially fast (e.g. finite state-space MDPs) we get the exponential convergence rate (* only in the first term)

Otherwise the decay of the error is dominated by the mixing rate

Prashanth L A

Convergence rate of TD(0)

Centering: Results cont.

The effect of mixing error

If the Markov chain underlying policy π satisfies the following property:

 $|P(s_t = s \mid s_0) - \psi(s)| \le C\rho^{t/M},$

then

$$\|\Phi(\bar{\theta}^{(m)} - \theta^*)\|_{\Psi}^2 \le C_1^m \left(\|\Phi(\bar{\theta}^{(0)} - \theta^*)\|_{\Psi}^2\right) + CMC_2H(5\gamma + 4)\max\{C_1, \rho^M\}^{(m-1)}$$

When the MDP mixes exponentially fast (e.g. finite state-space MDPs) we get the exponential convergence rate (* only in the first term)

Otherwise the decay of the error is dominated by the mixing rate

Prashanth L A

Convergence rate of TD(0)

March 27, 2015 35 / 84

Let
$$\bar{f}_{X_{i_n}}(\theta_n) := f_{X_{i_n}}(\theta_n) - f_{X_{i_n}}(\bar{\theta}^{(m)}) + \mathbb{E}_{\Psi}(f_{X_{i_n}}(\bar{\theta}^{(m)}))$$

Step 1: (Rewriting CTD update)

$$\theta_{n+1} = \theta_n + \gamma \left(\bar{f}_{X_{i_n}}(\theta_n) + \epsilon_n \right) \text{ where } \epsilon_n := \mathbb{E}(f_{X_{i_n}}(\bar{\theta}^{(m)}) \mid \mathcal{F}_{mM}) - \mathbb{E}_{\Psi}(f_{X_{i_n}}(\bar{\theta}^{(m)}))$$

Step 2: (Bounding the variance of centered updates)

$$\mathbb{E}_{\Psi}\left(\left\|\bar{f}_{X_{i_n}}(\theta_n)\right\|_2^2\right) \le d^2 \left(\|\Phi(\theta_n - \theta^*)\|_{\Psi}^2 + \|\Phi(\bar{\theta}^{(m)} - \theta^*)\|_{\Psi}^2\right)$$

Let
$$\bar{f}_{X_{i_n}}(\theta_n) := f_{X_{i_n}}(\theta_n) - f_{X_{i_n}}(\bar{\theta}^{(m)}) + \mathbb{E}_{\Psi}(f_{X_{i_n}}(\bar{\theta}^{(m)})).$$

Step 1: (Rewriting CTD update)

$$\theta_{n+1} = \theta_n + \gamma \left(\bar{f}_{X_{i_n}}(\theta_n) + \epsilon_n \right) \text{ where } \epsilon_n := \mathbb{E}(f_{X_{i_n}}(\bar{\theta}^{(m)}) \mid \mathcal{F}_{mM}) - \mathbb{E}_{\Psi}(f_{X_{i_n}}(\bar{\theta}^{(m)}))$$

Step 2: (Bounding the variance of centered updates)

$$\mathbb{E}_{\Psi}\left(\left\|\bar{f}_{X_{i_n}}(\theta_n)\right\|_2^2\right) \leq d^2 \left(\|\Phi(\theta_n - \theta^*)\|_{\Psi}^2 + \|\Phi(\bar{\theta}^{(m)} - \theta^*)\|_{\Psi}^2\right)$$

Step 3: (Analysis for a particular epoch)

$$\begin{split} \mathbb{E}_{\theta_{n}} \|\theta_{n+1} - \theta^{*}\|_{2}^{2} &\leq \|\theta_{n} - \theta^{*}\|_{2}^{2} + \gamma^{2} \mathbb{E}_{\theta_{n}} \|\epsilon_{n}\|_{2}^{2} + 2\gamma(\theta_{n} - \theta^{*})^{\mathsf{T}} \mathbb{E}_{\theta_{n}} \left[\bar{f}_{X_{i_{n}}}(\theta_{n}) \right] + \gamma^{2} \mathbb{E}_{\theta_{n}} \left[\|\bar{f}_{X_{i_{n}}}(\theta_{n})\|_{2}^{2} \right] \\ &\leq \|\theta_{n} - \theta^{*}\|_{2}^{2} - 2\gamma((1 - \beta) - d^{2}\gamma) \|\Phi(\theta_{n} - \theta^{*})\|_{\Psi}^{2} + \gamma^{2} d^{2} \left(\|\Phi(\bar{\theta}^{(m)} - \theta^{*})\|_{\Psi}^{2} \right) + \gamma^{2} \mathbb{E}_{\theta_{n}} \|\epsilon_{n}\|_{2}^{2} \end{split}$$

Summing the above inequality over an epoch and noting that

$$\mathbb{E}_{\Psi,\theta_n} \|\theta_{n+1} - \theta^*\|_2^2 \ge 0 \quad \text{and} \quad (\bar{\theta}^{(m)} - \theta^*)^\mathsf{T} I(\bar{\theta}^{(m)} - \theta^*) \le \frac{1}{\mu} (\bar{\theta}^{(m)} - \theta^*)^\mathsf{T} \Phi^\mathsf{T} \Psi \Phi(\bar{\theta}^{(m)} - \theta^*) \;,$$

we obtain the following by setting $\theta_0 = \bar{\theta}^{(m)}$:

$$2\gamma M((1-\beta) - d^{2}\gamma) \|\Phi(\bar{\theta}^{(m+1)} - \theta^{*})\|_{\Psi}^{2} \leq \left(\frac{1}{\mu} + \gamma^{2} M d^{2}\right) \left(\|\Phi(\bar{\theta}^{(m)} - \theta^{*})\|_{\Psi}^{2}\right) \\ + \gamma^{2} \sum_{i=(m-1)M}^{mM} \mathbb{E}_{\theta_{i}} \|\epsilon_{i}\|_{2}^{2}$$

The final step is to unroll (across epochs) the final recursion above to obtain the rate for CTD.

Prashanth L A

Convergence rate of TD(0)

TD(0) on a batch

Dilbert's boss on big data!

LSTD - A Batch Algorithm

Given dataset $\mathcal{D} := \{(s_i, r_i, s'_i), i = 1, \dots, T)\}$

LSTD approximates the TD fixed point by

LSTD - A Batch Algorithm

Given dataset
$$\mathcal{D} := \{(s_i, r_i, s'_i), i = 1, \dots, T)\}$$

LSTD approximates the TD fixed point by

$$\hat{\theta}_T = \bar{A}_T^{-1} \bar{b}_T \xrightarrow{} O(d^2 T)$$
 Complexity

where
$$\bar{A}_T = \frac{1}{T} \sum_{i=1}^T \phi(s_i)(\phi(s_i) - \beta \phi(s'_i))^{\mathsf{T}}$$

 $\bar{b}_T = \frac{1}{T} \sum_{i=1}^T r_i \phi(s_i).$

Complexity of LSTD [1]

Figure: LSPI - a batch-mode RL algorithm for control

LSTD Complexity

• $O(d^2T)$ using the Sherman-Morrison lemma or

• $O(d^{2.807})$ using the Strassen algorithm or $O(d^{2.375})$ the Coppersmith-Winograd algorithm

Prashanth L A

Convergence rate of TD(0)

Complexity of LSTD [1]

Figure: LSPI - a batch-mode RL algorithm for control

LSTD Complexity

• $O(d^2T)$ using the Sherman-Morrison lemma or

• $O(d^{2.807})$ using the Strassen algorithm or $O(d^{2.375})$ the Coppersmith-Winograd algorithm

Prashanth L A

Convergence rate of TD(0)

Complexity of LSTD [2]

Problem

Practical applications involve high-dimensional features (e.g. Computer-Go:

 $d \sim 10^6$ \Rightarrow solving LSTD is computationally intensive

Related works: GTD¹, GTD2², iLSTD³

Solution

Use stochastic approximation (SA)

Complexity $O(dT) \Rightarrow O(d)$ reduction in complexity

Theory SA variant of LSTD does not impact overall rate of convergence

Experiments On traffic control application, performance of SA-based LSTD is comparable to LSTD, while gaining in runtime!

¹ Sutton et al. (2009) A convergent O(n) algorithm for off-policy temporal difference learning. In: NIPS

² Sutton et al. (2009) Fast gradient-descent methods for temporal-difference learning with linear func- tion approximation. In: ICML

Geramifard A et al. (2007) iLSTD: Eligibility traces and convergence analysis. In: NIPS

Complexity of LSTD [2]

Problem

Practical applications involve high-dimensional features (e.g. Computer-Go:

 $d \sim 10^6$ \Rightarrow solving LSTD is computationally intensive

Related works: GTD¹, GTD2², iLSTD³

Solution

Use stochastic approximation (SA)

Complexity $O(dT) \Rightarrow O(d)$ reduction in complexity

Theory SA variant of LSTD does not impact overall rate of convergence

Experiments On traffic control application, performance of SA-based LSTD is comparable to LSTD, while gaining in runtime!

¹Sutton et al. (2009) A convergent O(n) algorithm for off-policy temporal difference learning. In: NIPS

²Sutton et al. (2009) Fast gradient-descent methods for temporal-difference learning with linear func- tion approximation. In: ICML

Geramifard A et al. (2007) iLSTD: Eligibility traces and convergence analysis. In: NIPS

fast LSTD

Fast LSTD using Stochastic Approximation

Prashanth L A

Convergence rate of TD(0)

March 27, 2015 43 / 84

fast LSTD

Fast LSTD using Stochastic Approximation

Update rule:

$$\theta_{n} = \theta_{n-1} + \gamma_{n} \left(r_{i_{n}} + \beta \theta_{n-1}^{\mathsf{T}} \phi(s_{i_{n}}) - \theta_{n-1}^{\mathsf{T}} \phi(s_{i_{n}}) \right) \phi(s_{i_{n}})$$
Step-sizes Fixed-point iteration

Complexity: O(d) per iteration

Assumptions

Setting: Given dataset $\mathcal{D} := \{(s_i, r_i, s'_i), i = 1, \dots, T)\}$

Co-variance matrix has a min-eigenvalue

Assumptions

Setting: Given dataset $\mathcal{D} := \{(s_i, r_i, s'_i), i = 1, \dots, T)\}$

Bounded features

(A1) $\|\phi(s_i)\|_2 \le 1 -$

Bounded rewards

Co-variance matrix has a min-eigenvalue
Assumptions

Setting: Given dataset $\mathcal{D} := \{(s_i, r_i, s'_i), i = 1, \dots, T)\}$

Bounded features

(A1) $\|\phi(s_i)\|_2 \le 1$ (A2) $|r_i| \le R_{\max} < \infty$ -

Bounded rewards

Co-variance matrix has a min-eigenvalue

Assumptions

Setting: Given dataset $\mathcal{D} := \{(s_i, r_i, s'_i), i = 1, \dots, T)\}$

(A1) $\|\phi(s_i)\|_2 \leq 1$ (A2) $|r_i| \leq R_{\max} < \infty$ (A3) $\lambda_{\min}\left(\frac{1}{T}\sum_{i=1}^T \phi(s_i)\phi(s_i)^{\mathsf{T}}\right) \geq \mu.$ Bounded features Bounded rewards Co-variance matrix has a min-eigenvalue

Step-size choice

$$\gamma_n = \frac{(1-\beta)c}{2(c+n)}, \text{ with } (1-\beta)^2 \mu c \in (1.33,2)$$

Bound in expectation

$$\mathbb{E}\left\|\theta_n - \hat{\theta}_T\right\|_2 \le \left\|\frac{K_1}{\sqrt{n+c}}\right\|_2$$

High-probability hour

By iterate-averaging, the dependency of c on μ can be removed

Step-size choice

$$\gamma_n = \frac{(1-\beta)c}{2(c+n)}$$
, with $(1-\beta)^2 \mu c \in (1.33,2)$

Bound in expectation

$$\mathbb{E}\left\|\theta_n - \hat{\theta}_T\right\|_2 \leq \frac{K_1}{\sqrt{n+c}}$$

By iterate-averaging, the dependency of c on μ can be removed

Step-size choice

$$\gamma_n = \frac{(1-\beta)c}{2(c+n)}$$
, with $(1-\beta)^2 \mu c \in (1.33,2)$

Bound in expectation

$$\mathbb{E}\left\|\theta_n - \hat{\theta}_T\right\|_2 \leq \frac{K_1}{\sqrt{n+c}}$$

High-probability bound

$$\mathbb{P}\left(\left\| heta_n-\hat{ heta}_T
ight\|_2\leq rac{K_2}{\sqrt{n+c}}
ight)\geq 1-\delta,$$

By iterate-averaging, the dependency of c on μ can be removed

Step-size choice

$$\gamma_n = \frac{(1-\beta)c}{2(c+n)}$$
, with $(1-\beta)^2 \mu c \in (1.33,2)$

Bound in expectation

$$\mathbb{E}\left\|\theta_n - \hat{\theta}_T\right\|_2 \leq \frac{K_1}{\sqrt{n+c}}$$

High-probability bound

$$\mathbb{P}\left(\left\| heta_n-\hat{ heta}_T\right\|_2\leq rac{K_2}{\sqrt{n+c}}
ight)\geq 1-\delta,$$

By iterate-averaging, the dependency of c on μ can be removed

Convergence rate of TD(0)

fast LSTE

The constants

$$K_1(n) = \frac{\sqrt{c} \left\| \theta_0 - \hat{\theta}_T \right\|_2}{n^{((1-\beta)^2 \mu c - 1)/2}} + \frac{(1-\beta)ch^2(n)}{2}$$

$$K_2(n) = \frac{(1-\beta)c\sqrt{\log \delta^{-1}}}{2\sqrt{\left(\frac{4}{3}(1-\beta)^2\mu c - 1\right)}} + K_1(n),$$

where

$$h(k) := (1 + R_{\max} + \beta)^2 \max\left(\left(\left\|\theta_0 - \hat{\theta}_T\right\|_2 + \ln n + \left\|\hat{\theta}_T\right\|_2\right)^4, 1\right)$$

Both $K_1(n)$ and $K_2(n)$ are O(1)

Convergence rate of TD(0)

Bigger step-size + Averaging

$$\gamma_n := \frac{(1-\beta)}{2} \left(\frac{c}{c+n}\right)^{\alpha}$$

Bound in expectation

$$\left\|ar{ heta}_n - \hat{ heta}_T
ight\|_2 \leq rac{K_1^{IA}(n)}{(n+c)^{lpha/2}}$$

 $\bar{\theta}_{n+1} := (\theta_1 + \ldots + \theta_n)/n$

High-probability boun

Dependency of c on μ is removed dependency at the cost of $(1 - \alpha)/2$ in the rate.

Prashanth L A

Bigger step-size + Averaging

$$\gamma_n := \frac{(1-\beta)}{2} \left(\frac{c}{c+n}\right)^{\alpha}$$

$$\mathbb{E} \left\| ar{ heta}_n - \hat{ heta}_T
ight\|_2 \leq rac{K_1^{IA}(n)}{(n+c)^{lpha/2}}$$

 $\bar{\theta}_{n+1} := (\theta_1 + \ldots + \theta_n)/n$

High-probability bo

Dependency of c on μ is removed dependency at the cost of $(1 - \alpha)/2$ in the rate.

Bigger step-size + Averaging

$$\gamma_n := \frac{(1-\beta)}{2} \left(\frac{c}{c+n}\right)^{\alpha}$$

$$\mathbb{E} \left\| ar{ heta}_n - \hat{ heta}_T
ight\|_2 \leq rac{K_1^{IA}(n)}{(n+c)^{lpha/2}}$$

 $\bar{\theta}_{n+1} := (\theta_1 + \ldots + \theta_n)/n$

High-probability bound

$$\mathbb{P}\left(\left\|ar{ heta}_n - \hat{ heta}_T
ight\|_2 \leq rac{K_2^{lA}(n)}{(n+c)^{lpha/2}}
ight) \geq 1-\delta,$$

Dependency of c on μ is removed dependency at the cost of $(1 - \alpha)/2$ in the rate.

Bigger step-size + Averaging

$$\gamma_n := \frac{(1-\beta)}{2} \left(\frac{c}{c+n}\right)^{\alpha}$$

$$\mathbb{E} \left\| ar{ heta}_n - \hat{ heta}_T
ight\|_2 \leq rac{K_1^{IA}(n)}{(n+c)^{lpha/2}}$$

 $\bar{\theta}_{n+1} := (\theta_1 + \ldots + \theta_n)/n$

High-probability bound

$$\mathbb{P}\left(\left\|ar{ heta}_n - \hat{ heta}_T
ight\|_2 \leq rac{K_2^{IA}(n)}{(n+c)^{lpha/2}}
ight) \geq 1-\delta,$$

Dependency of c on μ is removed dependency at the cost of $(1 - \alpha)/2$ in the rate.

Prashanth L A

Convergence rate of TD(0)

March 27, 2015 47 / 84

The constants

Ш

~ II

$$\begin{split} K_1^{IA}(n) &:= \frac{C \left\| \theta_0 - \theta_T \right\|_2}{(n+c)^{(1-\alpha)/2}} + \frac{h(n)c^{\alpha}(1-\beta)}{(\mu c^{\alpha}(1-\beta)^2)^{\alpha} \frac{1+2\alpha}{2(1-\alpha)}}, \text{ and} \\ K_2^{IA}(n) &:= \frac{\sqrt{\log \delta^{-1}}}{\mu(1-\beta)} \left[3^{\alpha} + \left[\frac{2\alpha}{\mu c^{\alpha}(1-\beta)^2} + \frac{2^{\alpha}}{\alpha} \right]^2 \right] \frac{1}{(n+c)^{(1-\alpha)/2}} + K_1^{IA}(n). \end{split}$$

As before, both $K_1^{IA}(n)$ and $K_2^{IA}(n)$ are O(1)

¹
$$||f||_T^2 := T^{-1} \sum_{i=1}^T f(s_i)^2$$
, for any function f

²Lazaric, A., Ghavamzadeh, M., Munos, R. (2012) Finite-sample analysis of least-squares policy iteration. In: JMLR

Prashanth L A

Convergence rate of TD(0)

March 27, 2015 49 / 84

Artifacts of function approximation and least squares methods

Consequence of using SA for LSTD

Setting $n = \ln(1/\delta)T/(d\mu)$, the convergence rate is unaffected!

Artifacts of function approximation and least squares methods

Consequence of using SA for LSTD

Setting $n = \ln(1/\delta)T/(d\mu)$, the convergence rate is unaffected!

Artifacts of function approximation and least squares methods

Consequence of using SA for LSTD

Setting $n = \ln(1/\delta)T/(d\mu)$, the convergence rate is unaffected!

LSPI - A Quick Recap

$$\mathcal{Q}^{\pi}(s,a) = E\left[\sum_{t=0}^{\infty} \beta^{t} r(s_{t},\pi(s_{t})) \mid s_{0} = s, a_{0} = a\right]$$

 $\pi'(s) = \underset{a \in \mathcal{A}}{\arg\max} \, \theta^{\mathsf{T}} \phi(s, a)$

Prashanth L A

LSPI - A Quick Recap

$$Q^{\pi}(s,a) = E\left[\sum_{t=0}^{\infty} \beta^t r(s_t, \pi(s_t)) \mid s_0 = s, a_0 = a\right]$$

$$\pi'(s) = \operatorname*{arg\,max}_{a \in \mathcal{A}} \theta^{\mathrm{T}} \phi(s, a)$$

Prashanth L A

Policy Evaluation: LSTDQ and its SA variant

Given a set of samples $\mathcal{D} := \{(s_i, a_i, r_i, s'_i), i = 1, ..., T)\}$ LSTDQ approximates Q^{π} by

 $\hat{\theta}_{T} = \bar{A}_{T}^{-1}\bar{b}_{T} \text{ where}$ $\bar{A}_{T} = \frac{1}{T}\sum_{i=1}^{T} \phi(s_{i}, a_{i})(\phi(s_{i}, a_{i}) - \beta\phi(s_{i}', \pi(s_{i}')))^{\mathsf{T}}, \text{ and } \bar{b}_{T} = T^{-1}\sum_{i=1}^{T} r_{i}\phi(s_{i}, a_{i}).$

 $\theta_k = \theta_{k-1} + \gamma_k \left(r_{i_k} + \beta \theta_{k-1}^{\mathsf{T}} \phi(s'_{i_k}, \pi(s'_{i_k})) - \theta_{k-1}^{\mathsf{T}} \phi(s_{i_k}, a_{i_k}) \right) \phi(s_{i_k}, a_{i_k})$

Policy Evaluation: LSTDQ and its SA variant

Given a set of samples $\mathcal{D} := \{(s_i, a_i, r_i, s'_i), i = 1, ..., T)\}$ LSTDQ approximates Q^{π} by

 $\hat{\theta}_T = \bar{A}_T^{-1} \bar{b}_T \text{ where}$ $\bar{A}_T = \frac{1}{T} \sum_{i=1}^T \phi(s_i, a_i) (\phi(s_i, a_i) - \beta \phi(s'_i, \pi(s'_i)))^{\mathsf{T}}, \text{ and } \bar{b}_T = T^{-1} \sum_{i=1}^T r_i \phi(s_i, a_i).$

Fast LSTDQ using SA:

 $\theta_k = \theta_{k-1} + \gamma_k \left(r_{i_k} + \beta \theta_{k-1}^{\mathsf{T}} \phi(s_{i_k}', \pi(s_{i_k}')) - \theta_{k-1}^{\mathsf{T}} \phi(s_{i_k}, a_{i_k}) \right) \phi(s_{i_k}, a_{i_k})$

Fast LSPI using SA (fLSPI-SA)

Input: Sample set $D := \{s_i, a_i, r_i, s'_i\}_{i=1}^T$

repeat

Policy Evaluation

For k = 1 to τ - Get random sample index: $i_k \sim U(\{1, \dots, T\})$ - Update fLSTD-SA iterate θ_k

 $\theta' \leftarrow \theta_{\tau}, \Delta = \|\theta - \theta'\|_2$

Policy Improvemen

Dbtain a greedy policy $\pi'(s) = \underset{a \in \mathcal{A}}{\arg \max \theta'} \phi(s, a)$

 $\theta \leftarrow \theta', \pi \leftarrow \pi'$

until $\Delta < \epsilon$

Fast LSPI using SA (fLSPI-SA)

Input: Sample set $D := \{s_i, a_i, r_i, s'_i\}_{i=1}^T$

repeat

Policy Evaluation

For k = 1 to τ - Get random sample index: $i_k \sim U(\{1, \dots, T\})$ - Update fLSTD-SA iterate θ_k

 $\theta' \leftarrow \theta_{\tau}, \Delta = \|\theta - \theta'\|_2$

Policy Improvement

Obtain a greedy policy $\pi'(s) = \underset{a \in \mathcal{A}}{\arg \max \theta'} \phi(s, a)$

 $\theta \leftarrow \theta', \pi \leftarrow \pi'$

until $\Delta < \epsilon$

The traffic control problem

Simulation Results on 7x9-grid network

Throughput (TAR)

Runtime Performance on three road networks

SGD in Linear Bandits

- NOAM database: 17 million articles from 2010
- Task: Find the best among 2000 news feeds
- Rowards Relevancy score of the article
- Feature dimension: 80000 (approx)

¹In collaboration with Nello Cristianini and Tom Welfare at University of Bristol

Prashanth L A

Convergence rate of TD(0)

March 27, 2015 58 / 84

- NOAM database: 17 million articles from 2010
- Task: Find the best among 2000 news feeds
- Roward, Relevancy score of the article
- Feature dimension: 80000 (approx

¹In collaboration with Nello Cristianini and Tom Welfare at University of Bristol

Prashanth L A

Convergence rate of TD(0)

March 27, 2015 58 / 84

- NOAM database: 17 million articles from 2010
- Task: Find the best among 2000 news feeds
- Reward: Relevancy score of the article
- Feature dimension: 80000 (appro

¹In collaboration with Nello Cristianini and Tom Welfare at University of Bristol

Prashanth L A

Convergence rate of TD(0)

March 27, 2015 58 / 84

- NOAM database: 17 million articles from 2010
- Task: Find the best among 2000 news feeds
- Reward: Relevancy score of the article
- Feature dimension: 80000 (approx)

¹In collaboration with Nello Cristianini and Tom Welfare at University of Bristol

Problem: Find the best news feed for Crime stories

Sample scores:

Five dead in Finnish mall shooting dida work ovide more opportunities to the Rossin mises price of codes Why Obama Care Dete University closure

Score: 1.93

Score: -0.48

Score: 2.67

Score: 0.43

Score: -1.06

Problem: Find the best news feed for Crime stories Sample scores:

Five dead in Finnish mall shooting Holidays provide more opportunities to drink

University closure

Score: 1.93

Score: -0.48

Score: 2.67

Score: 0.43

Score: -1.06

Problem: Find the best news feed for Crime stories Sample scores:

Five dead in Finnish mall shootingScore: 1.93Holidays provide more opportunities to drinkScore: -0.48Russia raises price of vodkaScore: 2.67Why Obama Can DereScore: 0.43University closureScore: -1.06

Problem: Find the best news feed for Crime stories Sample scores:

Five dead in Finnish mall shootingScore: 1.93Holidays provide more opportunities to drinkScore: -0.48Russia raises price of vodkaScore: 2.67Why Obama Care Must Be DefeatedScore: 0.43

Problem: Find the best news feed for Crime stories Sample scores:

Five dead in Finnish mall shooting	Score: 1.93
Holidays provide more opportunities to drink	Score: -0.48
Russia raises price of vodka	Score: 2.67
Why Obama Care Must Be Defeated	Score: 0.43
University closure due to weather	Score: -1.06

A linear bandit algorithm

Regression used to compute $UCB(x) := x^{\mathsf{T}}\hat{\theta}_n + \alpha \sqrt{x^{\mathsf{T}}A_n^{-1}x}$

Prashanth L A

Convergence rate of TD(0)
A linear bandit algorithm

Regression used to compute $UCB(x) := x^{\mathsf{T}}\hat{\theta}_n + \alpha \sqrt{x^{\mathsf{T}}A_n^{-1}x}$

Prashanth L A

A linear bandit algorithm

Regression used to compute $UCB(x) := x^{\mathsf{T}}\hat{\theta}_n + \alpha \sqrt{x^{\mathsf{T}}A_n^{-1}x}$

Prashanth L A

A linear bandit algorithm

Prashanth L A

• Mean-reward estimate

$UCB(x) = \hat{\mu}(x) + \alpha \hat{\sigma}(x)$

• Confidence width

At each round t, select a tap. Optimize the quality of n selected beers

Prashanth L A

Convergence rate of TD(0)

March 27, 2015 61 / 84

• Mean-reward estimate

$$UCB(x) = \hat{\mu}(x) + \alpha \quad \hat{\sigma}(x)$$

• Confidence width -

At each round *t*, select a tap. Optimize the quality of *n* selected beers

• Mean-reward estimate

$$UCB(x) = \hat{\mu}(x) + \alpha \quad \hat{\sigma}(x)$$

• Confidence width —

At each round *t*, select a tap. Optimize the quality of *n* selected beers

 $\label{eq:linearity} \mbox{$\stackrel{$\rightarrow$}$ No need to estimate mean-reward of all arms,} \\ \mbox{$estimating θ^* is enough}$

• Regression $\hat{\theta}_n = A_n^{-1} b_n$

 $UCB(x) = \hat{\mu}(x) + \alpha \hat{\sigma}(x)$

• Mahalanobis distance of x he $A_n: \sqrt{x^{T}A_n^{-1}x}$

Optimize the beer you drink, before you get drunk

Prashanth L A

Convergence rate of TD(0)

March 27, 2015 62 / 84

• **Regression** $\hat{\theta}_n = A_n^{-1} b_n$

 $UCB(x) = \hat{\mu}(x) + \alpha \quad \hat{\sigma}(x)$

• Mahalanobis distance of x from $A_n: \sqrt{x^{\mathsf{T}}A_n^{-1}x}$

Optimize the beer you drink, before you get drunk

• **Regression** $\hat{\theta}_n = A_n^{-1} b_n$

 $UCB(x) = \hat{\mu}(x) + \alpha \quad \hat{\sigma}(x)$

• Mahalanobis distance of x from $A_n: \sqrt{x^{\mathsf{T}}A_n^{-1}x}$

Optimize the beer you drink, before you get drunk

Performance measure

Best arm:
$$x^* = \arg \min_{x} \{x^T \theta^*\}.$$

Regret: $R_T = \sum_{i=1}^{T} (x^* - x_i)^T \theta^*$
Goal: ensure R_T grows sub-linearly with T

Linear bandit algorithms ensure sub-linear regret

Performance measure

Best arm:
$$x^* = \arg\min_{x} \{x^T \theta^*\}.$$

Regret: $R_T = \sum_{i=1}^{T} (x^* - x_i)^T \theta^*$
Goal: ensure R_T grows sub-linearly with T

Linear bandit algorithms ensure sub-linear regret!

Complexity of Least Squares Regression

Figure: Typical ML algorithm using Regression

Regression Complexity

- $O(d^2)$ using the Sherman-Morrison lemma or
- $O(d^{2.807})$ using the Strassen algorithm or $O(d^{2.375})$ the Coppersmith-Winograd algorithm

Problem: Complace News feed platform has high-dimensional features $(d \sim 10^5) \Rightarrow$ solving OLS is computationally costly

Complexity of Least Squares Regression

Figure: Typical ML algorithm using Regression

Regression Complexity

- $O(d^2)$ using the Sherman-Morrison lemma or
- $O(d^{2.807})$ using the Strassen algorithm or $O(d^{2.375})$ the Coppersmith-Winograd algorithm

Problem: Complace News feed platform has high-dimensional features $(d \sim 10^5) \Rightarrow$ solving OLS is computationally costly

Fast GD for Regression

Solution: Use fast (online) gradient descent (GD)

- Efficient with complexity of only O(d) (Well-known)
- High probability bounds with explicit constants can be derived (not fully known)

Bandits+GD for News Recommendation

LinUCB: a well-known contextual bandit algorithm that employs regression in each iteration

Fast GD: provides good approximation to regression (with low computational cost)

Strongly-Convex Bandits: no loss in regret except log-factors Proved!

Non Strongly-Convex Bandits: Encouraging empirical results for linUCB+fast GD] on two news feed platforms

Bandits+GD for News Recommendation

LinUCB: a well-known contextual bandit algorithm that employs regression in each iteration

Fast GD: provides good approximation to regression (with low computational cost)

Strongly-Convex Bandits: no loss in regret except log-factors Proved!

Non Strongly-Convex Bandits: Encouraging empirical results for linUCB+fast GD] on two news feed platforms

fast GD

• Step-si

$$\theta_n = \theta_{n-1} + \gamma_n \left(y_{i_n} - \theta_{n-1}^{\mathsf{T}} x_{i_n} \right) x_{i_n}$$

Sample gradient

fast GD

• Sample gradient

fast GD

Setting: $y_n = x_n^{\mathsf{T}} \theta^* + \xi_n$, where ξ_n is i.i.d. zero-mean

(A1) $\sup_{n} |\xi_{n}| \le 1, \forall n.$ (A2) $|\xi_{n}| \le 1, \forall n.$

Strongly convex co-variance matrix (for each *n*)!

Setting: $y_n = x_n^{\mathsf{T}} \theta^* + \xi_n$, where ξ_n is i.i.d. zero-mean

Bounded features

Bounded noise

Strongly convex co-variance matrix (for each *n*)!

(A1) $\sup_{n} ||x_n||_2 \le 1.$

Setting: $y_n = x_n^{\mathsf{T}} \theta^* + \xi_n$, where ξ_n is i.i.d. zero-mean

(A1) $\sup_{n} ||x_{n}||_{2} \leq 1.$

(A2) $|\xi_n| \le 1, \forall n$.

 \rightarrow Bounded features

Bounded noise

Strongly convex co-variance matrix (for each *n*)!

Setting: $y_n = x_n^T \theta^* + \xi_n$, where ξ_n is i.i.d. zero-mean

(A1) $\sup_{n} ||x_n||_2 \le 1.$ Bounded noise (A2) $|\xi_n| \le 1, \forall n$. (A3) $\lambda_{\min}\left(\frac{1}{n}\sum_{i=1}^{n-1}x_ix_i^{\mathsf{T}}\right) \geq \mu.$

Bounded features

Strongly convex co-variance matrix (for each n)!

Why deriving error bounds is difficult?

$$\begin{aligned} \theta_n - \hat{\theta}_n &= \theta_n - \hat{\theta}_{n-1} + \hat{\theta}_{n-1} - \hat{\theta}_n \\ &= \theta_{n-1} - \hat{\theta}_{n-1} + \hat{\theta}_{n-1} - \hat{\theta}_n + \gamma_n (y_{i_n} - \theta_{n-1}^{\mathsf{T}} x_{i_n}) x_{i_n} \\ &= \underbrace{\Pi_n (\theta_0 - \theta^*)}_{\text{Initial Error}} + \underbrace{\sum_{k=1}^n \gamma_k \Pi_n \Pi_k^{-1} \Delta \tilde{M}_k}_{\text{Sampling Error}} - \underbrace{\sum_{k=1}^n \Pi_n \Pi_k^{-1} (\hat{\theta}_k - \hat{\theta}_{k-1})}_{\text{Drift Error}}, \end{aligned}$$

Present in earlier SGD works and can be handled easily Consequence of changing target Hard to control!

Note:
$$\bar{A}_n = \frac{1}{n} \sum_{i=1}^n x_i x_i^{\mathsf{T}}, \Pi_n := \prod_{k=1}^n (I - \gamma_k \bar{A}_k)$$
, and $\Delta \tilde{M}_k$ is a martingale difference.
Prashanth L A Convergence rate of TD(0)

Why deriving error bounds is difficult?

$$\theta_{n} - \hat{\theta}_{n} = \theta_{n} - \hat{\theta}_{n-1} + \hat{\theta}_{n-1} - \hat{\theta}_{n}$$

$$= \theta_{n-1} - \hat{\theta}_{n-1} + \hat{\theta}_{n-1} - \hat{\theta}_{n} + \gamma_{n}(y_{i_{n}} - \theta_{n-1}^{\mathsf{T}}x_{i_{n}})x_{i_{n}}$$

$$= \underbrace{\prod_{n}(\theta_{0} - \theta^{*})}_{\text{Initial Error}} + \underbrace{\sum_{k=1}^{n} \gamma_{k}\prod_{n}\prod_{k}^{-1}\Delta\tilde{M}_{k}}_{\text{Sampling Error}} - \underbrace{\sum_{k=1}^{n}\prod_{n}\prod_{k}^{-1}(\hat{\theta}_{k} - \hat{\theta}_{k-1})}_{\text{Drift Error}},$$
Present in earlier SGD works
and can be handled easily
$$Consequence \text{ of changing target}}_{\text{Hard to control!}}$$

Note:
$$\bar{A}_n = \frac{1}{n} \sum_{i=1}^n x_i x_i^{\mathsf{T}}, \Pi_n := \prod_{k=1}^n (I - \gamma_k \bar{A}_k)$$
, and $\Delta \tilde{M}_k$ is a martingale difference.
Prashanth L A Convergence rate of TD(0)

Why deriving error bounds is difficult?

$$\theta_{n} - \hat{\theta}_{n} = \theta_{n} - \hat{\theta}_{n-1} + \hat{\theta}_{n-1} - \hat{\theta}_{n}$$

$$= \theta_{n-1} - \hat{\theta}_{n-1} + \hat{\theta}_{n-1} - \hat{\theta}_{n} + \gamma_{n}(y_{i_{n}} - \theta_{n-1}^{\mathsf{T}}x_{i_{n}})x_{i_{n}}$$

$$= \underbrace{\prod_{n}(\theta_{0} - \theta^{*})}_{\text{Initial Error}} + \underbrace{\sum_{k=1}^{n} \gamma_{k}\prod_{n}\prod_{k}^{-1}\Delta\tilde{M}_{k}}_{\text{Sampling Error}} - \underbrace{\sum_{k=1}^{n}\prod_{n}\prod_{k}^{-1}(\hat{\theta}_{k} - \hat{\theta}_{k-1})}_{\text{Drift Error}},$$
resent in earlier SGD works
and can be handled easily
Consequence of changing target
Hard to control!

Note:
$$\bar{A}_n = \frac{1}{n} \sum_{i=1}^n x_i x_i^{\mathsf{T}}, \Pi_n := \prod_{k=1}^n (I - \gamma_k \bar{A}_k)$$
, and $\Delta \tilde{M}_k$ is a martingale difference.
Prashanth L A Convergence rate of TD(0)

Handling Drift Error

Note
$$F_n(\theta) := \frac{1}{2} \sum_{i=1}^n (y_i - \theta^T x_i)^2$$
 and $\bar{A}_n = \frac{1}{n} \sum_{i=1}^n x_i x_i^T$. Also, $\mathbb{E}[y_n \mid x_n] = x_n^T \theta^*$.

To control the drift error, we observe that

$$\left(\nabla F_n(\hat{\theta}_n) = 0 = \nabla F_{n-1}(\hat{\theta}_{n-1})\right)$$
$$\implies \left(\hat{\theta}_{n-1} - \hat{\theta}_n = \xi_n A_{n-1}^{-1} x_n - (x_n^{\mathsf{T}}(\hat{\theta}_n - \theta^*)) A_{n-1}^{-1} x_n\right).$$

Thus, drift is controlled by the convergence of θ_n to θ' **Key: confidence ball result**¹

Dani, Varsha, Thomas P. Hayes, and Sham M. Kakade, (2008) "Stochastic Linear Optimization under Bandit Feedback." In: COLT

Prashanth L A

Convergence rate of TD(0)

March 27, 2015 70 / 84

Handling Drift Error

Note
$$F_n(\theta) := \frac{1}{2} \sum_{i=1}^n (y_i - \theta^T x_i)^2$$
 and $\bar{A}_n = \frac{1}{n} \sum_{i=1}^n x_i x_i^T$. Also, $\mathbb{E}[y_n \mid x_n] = x_n^T \theta^*$.

To control the drift error, we observe that

$$\left(\nabla F_n(\hat{\theta}_n) = 0 = \nabla F_{n-1}(\hat{\theta}_{n-1})\right)$$
$$\implies \left(\hat{\theta}_{n-1} - \hat{\theta}_n = \xi_n A_{n-1}^{-1} x_n - (x_n^{\mathsf{T}}(\hat{\theta}_n - \theta^*)) A_{n-1}^{-1} x_n\right).$$

Thus, drift is controlled by the convergence of $\hat{\theta}_n$ to θ^* **Key: confidence ball result**¹

¹Dani, Varsha, Thomas P. Hayes, and Sham M. Kakade, (2008) "Stochastic Linear Optimization under Bandit Feedback." In: COLT

Handling Drift Error

Note
$$F_n(\theta) := \frac{1}{2} \sum_{i=1}^n (y_i - \theta^T x_i)^2$$
 and $\bar{A}_n = \frac{1}{n} \sum_{i=1}^n x_i x_i^T$. Also, $\mathbb{E}[y_n \mid x_n] = x_n^T \theta^*$.

To control the drift error, we observe that

$$\left(\nabla F_n(\hat{\theta}_n) = 0 = \nabla F_{n-1}(\hat{\theta}_{n-1})\right)$$
$$\implies \left(\hat{\theta}_{n-1} - \hat{\theta}_n = \xi_n A_{n-1}^{-1} x_n - (x_n^{\mathsf{T}}(\hat{\theta}_n - \theta^*)) A_{n-1}^{-1} x_n\right).$$

Thus, drift is controlled by the convergence of $\hat{\theta}_n$ to θ^* **Key: confidence ball result**¹

¹Dani, Varsha, Thomas P. Hayes, and Sham M. Kakade, (2008) "Stochastic Linear Optimization under Bandit Feedback." In: COLT

Error bound

With $\gamma_n = c/(4(c+n))$ and $\mu c/4 \in (2/3, 1)$ we have:

High prob. bound For any $\delta > 0$,

$$P\left(\left\|\frac{\theta_n - \hat{\theta}_n}{\|_2}\right\|_2 \le \sqrt{\frac{K_{\mu,c}}{n}\log\frac{1}{\delta}} + \frac{h_1(n)}{\sqrt{n}}\right) \ge 1 - \delta$$

Optimal rate
$$O\left(n^{-1/2}\right)$$

Bound in expectation

$$\mathbb{E}\left\|\theta_n - \hat{\theta}_n\right\|_2 \leq \frac{\left\|\theta_0 - \hat{\theta}_n\right\|_2}{n^{\mu c}} + \frac{h_2(n)}{\sqrt{n}}.$$

• Initial error

 $K_{\mu,c}$ is a constant depending on μ and c and $\mu_1(n)$, $h_2(n)$ hide log factors By iterate-averaging, the dependency of c on μ can be removed

Error bound

With $\gamma_n = c/(4(c+n))$ and $\mu c/4 \in (2/3, 1)$ we have:

High prob. bound For any $\delta > 0$,

 $P\left(\left\|\left\|\theta_n - \hat{\theta}_n\right\|_2\right) \leq \sqrt{\frac{K_{\mu,c}}{n}\log\frac{1}{\delta}} + \frac{h_1(n)}{\sqrt{n}}\right) \geq 1 - \delta.$ Optimal rate $O\left(n^{-1/2}\right)$ = Bound in expectation $\mathbb{E}\left\|\theta_n - \hat{\theta}_n\right\|_2 \leq \frac{\left\|\theta_0 - \hat{\theta}_n\right\|_2}{n^{\mu c}} + \frac{h_2(n)}{c}.$ Initial error –

 ${}^{1}K_{\mu,c}$ is a constant depending on μ and c and $h_{1}(n)$, $h_{2}(n)$ hide log factors. ² By iterate-averaging, the dependency of c on μ can be removed.

Error bound

With $\gamma_n = c/(4(c+n))$ and $\mu c/4 \in (2/3, 1)$ we have:

High prob. bound For any $\delta > 0$,

 ${}^{1}_{K_{\mu,c}}$ is a constant depending on μ and c and $h_{1}(n)$, $h_{2}(n)$ hide log factors.

² By iterate-averaging, the dependency of c on μ can be removed.

Input A basis $\{b_1, \ldots, b_d\} \in D$ for \mathbb{R}^d .

- Pull each of the *d* basis arms once —
- Using losses, compute OLS
- Use OLS estimate to compute a greedy decision
- Pull the greedy arm *m* times

For each cycle $m = 1, 2, \ldots$ do

Exploration Phase

For i = 1 to d- Choose arm b_i - Observe $y_i(m)$.

$$\hat{\theta}_{md} = \frac{1}{m} \left(\sum_{i=1}^{d} b_i b_i^\mathsf{T} \right)^{-1} \sum_{i=1}^{m} \sum_{j=1}^{d} b_i y_j(i).$$

Exploitation Phase Find $x = \underset{x \in D}{\arg\min\{\hat{\theta}_{md}^{\mathsf{T}}x\}}$

Choose arm x m times consecutively.

¹P. Rusmevichientong and J,N. Tsitsiklis, (2010) Linearly Parameterized Bandits. In: Math. Oper. Res.

Input A basis $\{b_1, \ldots, b_d\} \in D$ for \mathbb{R}^d .

Pull each of the *d* basis arms once —______

• Using losses, compute OLS

- Use OLS estimate to compute a greedy decision
- Pull the greedy arm *m* times

For each cycle $m = 1, 2, \ldots$ do

Exploration Phase

For i = 1 to d- Choose arm b_i - Observe $y_i(m)$.

$$\hat{\theta}_{md} = \frac{1}{m} \left(\sum_{i=1}^{d} b_i b_i^\mathsf{T} \right)^{-1} \sum_{i=1}^{m} \sum_{j=1}^{d} b_i y_j(i).$$

Exploitation Phase Find $x = \underset{x \in D}{\arg\min\{\hat{\theta}_{md}^{\mathsf{T}}x\}}$

Choose arm x m times consecutively.

P. Rusmevichientong and J,N. Tsitsiklis, (2010) Linearly Parameterized Bandits. In: Math. Oper. Res.

Input A basis $\{b_1, \ldots, b_d\} \in D$ for \mathbb{R}^d .

Pull each of the *d* basis arms once —______

• Using losses, compute OLS

• Use OLS estimate to compute a greedy decision

Pull the greedy arm m times For each cycle $m = 1, 2, \ldots$ do

Exploration Phase

For i = 1 to d- Choose arm b_i - Observe $y_i(m)$.

$$\hat{\theta}_{md} = \frac{1}{m} \left(\sum_{i=1}^{d} b_i b_i^\mathsf{T} \right)^{-1} \sum_{i=1}^{m} \sum_{j=1}^{d} b_i y_j(i).$$

Exploitation Phase Find $x = \underset{x \in D}{\arg\min\{\hat{\theta}_{md}^{\mathsf{T}}x\}}$

Choose arm x m times consecutively.

P. Rusmevichientong and J,N. Tsitsiklis, (2010) Linearly Parameterized Bandits. In: Math. Oper. Res.

Prashanth L A

Input A basis $\{b_1, \ldots, b_d\} \in D$ for \mathbb{R}^d .

Pull each of the *d* basis arms once —______

• Using losses, compute OLS

• Use OLS estimate to compute a greedy decision _____

For each cycle $m = 1, 2, \ldots$ do

Exploration Phase

For i = 1 to d- Choose arm b_i - Observe $y_i(m)$.

$$\hat{\theta}_{md} = \frac{1}{m} \left(\sum_{i=1}^{d} b_i b_i^\mathsf{T} \right)^{-1} \sum_{i=1}^{m} \sum_{j=1}^{d} b_i y_j(i).$$

Exploitation Phase Find $x = \underset{x \in D}{\arg\min\{\hat{\theta}_{md}^{\mathsf{T}}x\}}$

• Pull the greedy arm *m* times

Choose arm x m times consecutively.

P. Rusmevichientong and J,N. Tsitsiklis, (2010) Linearly Parameterized Bandits. In: Math. Oper. Res.
Input A basis $\{b_1, \ldots, b_d\} \in D$ for \mathbb{R}^d .

• Pull each of the *d* basis arms once —

- Using losses, update fast GD iterate
- Use fast GD iterate to compute a greedy decision
- Pull the greedy arm *m* times

For each cycle $m = 1, 2, \ldots$ do

Exploration Phase

For i = 1 to d- Choose arm b_i - Observe $y_i(m)$.

Update fast GD iterate θ_{md}

Exploitation Phase Find $x = \underset{x \in D}{\arg\min\{\theta_{md}^{\mathsf{T}}x\}}$

Input A basis $\{b_1, \ldots, b_d\} \in D$ for \mathbb{R}^d .

Pull each of the *d* basis arms once

• Using losses, update fast GD iterate

 Use fast GD iterate to compute a greedy decision

• Pull the greedy arm *m* times

For each cycle $m = 1, 2, \ldots$ do

Exploration Phase For i = 1 to d- Choose arm b_i

- Observe $y_i(m)$.

 \rightarrow Update fast GD iterate θ_{md}

Exploitation Phase Find $x = \underset{x \in D}{\arg\min\{\theta_{md}^{\mathsf{T}}x\}}$

Input A basis $\{b_1, \ldots, b_d\} \in D$ for \mathbb{R}^d .

• Pull each of the *d* basis arms once

• Using losses, update fast GD iterate

• Use fast GD iterate to compute a greedy decision —

• Pull the greedy arm *m* times

For each cycle $m = 1, 2, \ldots$ do

Exploration Phase For i = 1 to d- Choose arm b_i

- Observe $y_i(m)$.

 \rightarrow Update fast GD iterate θ_{md}

Exploitation Phase Find $x = \underset{x \in D}{\operatorname{arg\,min}} \{\theta_{md}^{\mathsf{T}}x\}$

Input A basis $\{b_1, \ldots, b_d\} \in D$ for \mathbb{R}^d .

• Pull each of the *d* basis arms once

• Using losses, update fast GD iterate

 Use fast GD iterate to compute a greedy decision For each cycle m = 1, 2, ... do Exploration Phase

For i = 1 to d- Choose arm b_i - Observe $y_i(m)$.

 \rightarrow Update fast GD iterate θ_{md}

Exploitation Phase Find $x = \underset{x \in D}{\operatorname{arg\,min}} \{\theta_{md}^{\mathsf{T}}x\}$

• Pull the greedy arm *m* times _____

Regret bound for PEGE+fast GD

(Strongly Convex Arms): (A3) The function $G: \theta \to \underset{x \in \mathcal{D}}{\arg\min\{\theta^{\mathsf{T}}x\}}$ is *J*-Lipschitz.

Theorem

Under (A1)-(A3), regret
$$R_T := \sum_{i=1}^T x_i^{\mathsf{T}} \theta^* - \min_{x \in \mathcal{D}} x^{\mathsf{T}} \theta^*$$
 satisfies
$$R_T \leq CK_1(n)^2 d^{-1} (\|\theta^*\|_2 + \|\theta^*\|_2^{-1}) \sqrt{2} d^{-1} ($$

The bound is worse than that for PEGE by only a factor of $O(\log^4(n))^{|}$

Prashanth L A

Fast linUCB

Fast GD used to compute $UCB(x) := x^{\mathsf{T}}\theta_n + \alpha \sqrt{x^{\mathsf{T}}\phi_n^{(x)}}$

Prashanth L A

Fast linUCB

Fast GD used to compute $UCB(x) := x^{\mathsf{T}}\theta_n + \alpha \sqrt{x^{\mathsf{T}}\phi_n^{(x)}}$

Prashanth L A

Fast linUCB

Prashanth L A

Problem: In many settings, λ_{\min}

$$\frac{1}{n}\sum_{i=1}^{n-1} x_i x_i^{\mathsf{T}} \right) \ge \mu \text{ may not hold.}$$

Solution: Adaptively regularize with λ_n

$$\tilde{\theta}_n := \arg\min_{\theta} \frac{1}{2n} \sum_{i=1}^n (y_i - \theta^{\mathsf{T}} x_i)^2 + \frac{\lambda_n \|\theta\|}{\lambda_n \|\theta\|}$$

Pick i_n uniformly in $\{1, \ldots, n\}$

Random Samplif

Update θ_n using (x_{i_n}, y_{i_n})

GD update:

$\theta_n = \theta_{n-1} + \gamma_n ((y_{i_n} - \theta_{n-1}^{\mathsf{T}} x_{i_n}) x_{i_n} - \lambda_n \theta_{n-1})$

Prashanth L A

Convergence rate of TD(0)

March 27, 2015 76 / 84

Problem: In many settings, λ_{\min}

$$\frac{1}{n}\sum_{i=1}^{n-1} x_i x_i^{\mathsf{T}} \ge \mu \text{ may not hold.}$$

Solution: Adaptively regularize with λ_n

$$\tilde{\theta}_n := \arg\min_{\theta} \frac{1}{2n} \sum_{i=1}^n (y_i - \theta^{\mathsf{T}} x_i)^2 + \frac{\lambda_n \|\theta\|^2}{2}$$

Problem: In many settings, λ_{\min}

$$\frac{1}{n}\sum_{i=1}^{n-1} x_i x_i^{\mathsf{T}} \ge \mu \text{ may not hold.}$$

Solution: Adaptively regularize with λ_n

$$\tilde{\theta}_n := \arg\min_{\theta} \frac{1}{2n} \sum_{i=1}^n (y_i - \theta^{\mathsf{T}} x_i)^2 + \frac{\lambda_n \|\theta\|^2}{2}$$

Problem: In many settings, $\lambda_{\min}\left(\frac{1}{n}\sum_{i=1}^{n-1}x_ix_i^{\mathsf{T}}\right) \ge \mu$ may not hold.

Solution: Adaptively regularize with λ_n

$$\tilde{\theta}_n := \arg\min_{\theta} \frac{1}{2n} \sum_{i=1}^n (y_i - \theta^{\mathsf{T}} x_i)^2 + \frac{\lambda_n \|\theta\|^2}{|\theta|^2}$$

GD update:

$$\theta_n = \theta_{n-1} + \gamma_n((y_{i_n} - \theta_{n-1}^{\mathsf{T}} x_{i_n}) x_{i_n} - \lambda_n \theta_{n-1})$$

Prashanth L A

$$\theta_{n} - \tilde{\theta}_{n} = \underbrace{\prod_{n}(\theta_{0} - \theta^{*})}_{\text{Initial Error}} - \underbrace{\sum_{k=1}^{n} \prod_{n} \prod_{k}^{-1} (\tilde{\theta}_{k} - \tilde{\theta}_{k-1})}_{\text{Drift Error}} + \underbrace{\sum_{k=1}^{n} \gamma_{k} \prod_{n} \prod_{k}^{-1} \Delta \tilde{M}_{k}}_{\text{Sampling Error}}, \quad (3)$$
Need $\sum_{k=1}^{n} \gamma_{k} \lambda_{k} \rightarrow \infty$ to bound the initial error
$$\text{Set } \gamma_{n} = O(n^{-\alpha}) \text{ (forcing } \lambda_{n} = \Omega(n^{-(1-\alpha)})\text{)}$$
This choice when plugged into (3) results in only a constant error bound!

Note:
$$\Pi_n := \prod_{k=1}^{n} \left(I - \gamma_k (\bar{A}_k + \lambda_k I) \right)$$
 and $\tilde{\theta}_{n-1} - \tilde{\theta}_n = \Omega(n^{-1})$, whenever $\alpha \in (0, 1)$

Prashanth L A

$$\theta_{n} - \tilde{\theta}_{n} = \underbrace{\prod_{n}(\theta_{0} - \theta^{*})}_{\text{Initial Error}} - \underbrace{\sum_{k=1}^{n} \prod_{n} \prod_{k}^{-1} (\tilde{\theta}_{k} - \tilde{\theta}_{k-1})}_{\text{Drift Error}} + \underbrace{\sum_{k=1}^{n} \gamma_{k} \prod_{n} \prod_{k}^{-1} \Delta \tilde{M}_{k}}_{\text{Sampling Error}}, \quad (3)$$
Need $\sum_{k=1}^{n} \gamma_{k} \lambda_{k} \to \infty$ to bound the initial error
Set $\gamma_{n} = O(n^{-\alpha})$ (forcing $\lambda_{n} = \Omega(n^{-(1-\alpha)})$)
Bad news:
This choice when plugged into (3) results in only a constant error bound!

Note:
$$\Pi_n := \prod_{k=1}^n (I - \gamma_k(\bar{A}_k + \lambda_k I)) \text{ and } \tilde{\theta}_{n-1} - \tilde{\theta}_n = \Omega(n^{-1}), \text{ whenever } \alpha \in (0, 1)$$

Prashanth L A

$$\theta_n - \tilde{\theta}_n = \underbrace{\Pi_n(\theta_0 - \theta^*)}_{\text{Initial Error}} - \underbrace{\sum_{k=1}^n \Pi_n \Pi_k^{-1}(\tilde{\theta}_k - \tilde{\theta}_{k-1})}_{\text{Drift Error}} + \underbrace{\sum_{k=1}^n \gamma_k \Pi_n \Pi_k^{-1} \Delta \tilde{M}_k}_{\text{Sampling Error}}, \quad (3)$$

Need
$$\sum_{k=1}^{n} \gamma_k \lambda_k \to \infty$$
 to bound the initial error

Set
$$\gamma_n = O(n^{-\alpha})$$
 (forcing $\lambda_n = \Omega(n^{-(1-\alpha)})$)

Bad news:

This choice when plugged into (3) results in only a constant error bound

Note:
$$\Pi_n := \prod_{k=1}^n (I - \gamma_k(\bar{A}_k + \lambda_k I))$$
 and $\tilde{\theta}_{n-1} - \tilde{\theta}_n = \Omega(n^{-1})$, whenever $\alpha \in (0, 1)$

Prashanth L A

$$\theta_{n} - \tilde{\theta}_{n} = \underbrace{\Pi_{n}(\theta_{0} - \theta^{*})}_{\text{Initial Error}} - \underbrace{\sum_{k=1}^{n} \Pi_{n} \Pi_{k}^{-1}(\tilde{\theta}_{k} - \tilde{\theta}_{k-1})}_{\text{Drift Error}} + \underbrace{\sum_{k=1}^{n} \gamma_{k} \Pi_{n} \Pi_{k}^{-1} \Delta \tilde{M}_{k}}_{\text{Sampling Error}}, \quad (3)$$
Need $\sum_{k=1}^{n} \gamma_{k} \lambda_{k} \to \infty$ to bound the initial error

Set
$$\gamma_n = O(n^{-\alpha})$$
 (forcing $\lambda_n = \Omega(n^{-(1-\alpha)})$)

Bad news:

This choice when plugged into (3) results in only a constant error bound!

Note:
$$\Pi_n := \prod_{k=1}^n \left(I - \gamma_k (\bar{A}_k + \lambda_k I) \right)$$
 and $\tilde{\theta}_{n-1} - \tilde{\theta}_n = \Omega(n^{-1})$, whenever $\alpha \in (0, 1)$

Prashanth L A

Dilbert's boss on news recommendation (and ML)

Preliminary Results on Complacs News Feed Platform

Experiments on Yahoo! Dataset¹

Figure: The Featured tab in Yahoo! Today module

¹Yahoo User-Click Log Dataset given under the Webscope program (2011)

Tracking Error

Tracking error: SGD

Johnson, R., and Zhang, T. (2013) "Accelerating stochastic gradient descent using predictive variance reduction". In: NIPS Roux, N. L., Schmidt, M. and Bach, F. (2012) "A stochastic gradient method with an exponential convergence rate for finite training sets," arXiv preprint arXiv:1202.6258.

Prashanth L.A

Convergence rate of TD(0)

March 27, 2015 81/84

Runtime Performance on two days of the Yahoo! dataset

For Further Reading I

Nathaniel Korda and Prashanth L.A.,

On TD(0) with function approximation: Concentration bounds and a centered variant with exponential convergence.

arXiv:1411.3224, 2014.

Prashanth L.A., Nathaniel Korda and Rémi Munos,

Fast LSTD using stochastic approximation: Finite time analysis and application to traffic control.

ECML, 2014.

Nathaniel Korda, Prashanth L.A. and Rémi Munos,

Fast gradient descent for least squares regression: Non-asymptotic bounds and application to bandits.

AAAI, 2015.

Dilbert's boss (again) on big data!

