Aman Nougrahiya

Doctoral Research Scholar

PACE Lab, SSB 216, Department of CS&E, IIT Madras (India)

Email: amannoug@cse.iitm.ac.in ⊠

LinkedIn: amannoug[□]

Contact: +91-9962609717 Website: www.cse.iitm.ac.in/~amannoug^{C²} GitHub: amannougrahiya^{C²}

Google Scholar: Aman Nougrahiya

Summary

Compiler researcher (PhD thesis submitted) with 10+ years of academic experience in **compiler construction**, **static analysis**, **incremental compilation** and **program optimizations**. Published two first-author journal papers – in **ACM TOPLAS** and PACMPL (**ACM OOPSLA**). Sole developer of the **IMOP** compiler framework (spans 170kLOC; used in 9 research papers). Holds a patent granted in India, with international filings in US and China. Delivered talks in esteemed global universities, such as *Harvard University*, *Brown University*, and *UT Austin*, among others.

Education

PhD + MS (Dual Degree) - Computer Science, IIT Madras, India

Jul 2012 - Present

Thesis Title: Design and Implementation of Efficient Self-Stabilizing Compilers

(CGPA: 9.6)

Advisor: Prof. V. Krishna Nandivada

Thesis submitted: Dec 2024; Expected graduation: Feb-Mar 2025

Bachelor of Engineering - Information Technology, OIST Bhopal, India

Aug 2007 - May 2011 With Honors (78.2%)

Publications

[1] IncIDFA: an Efficient and Generic Algorithm for Incremental Iterative Dataflow Analysis. **Nougrahiya, Aman**, and Nandivada, V. Krishna.

Apr 2025

To appear in the Proceedings of ACM on Programming Languages (PACMPL, ACM OOPSLA 2025).

 $\cite{Monthlemontation} \enskip In the Monthlemontation of a Self-Stabilizing Compiler.$

Jun 2024

Nougrahiya, Aman, and Nandivada, V. Krishna.

ACM Transactions on Programming Languages and Systems (ACM TOPLAS). Vol. 46, Issue 2, Article 6, Pages 1-58. Invited oral presentation given at ACM OOPSLA 2024 (Pasadena, USA). https://doi.org/10.1145/3649308^[2]

Patents

[1] System and Method for Performing Self-Stabilizing Compilation.

Nandivada, V. Krishna, and Nougrahiya, Aman. IIT Madras.

- U.S. Patent[□]: Published. Application No. US20240020101A1

Jan 2024

- China Patent[□]: Published. Application No. CN116583822A

Aug 2023

- Indian Patent[□]: Granted. Patent No. 383458

Dec 2020

Selected Research Projects

Key open-source[□] projects that I independently designed and developed with my advisor, V. Krishna Nandivada:

The IMOP Compiler Framework

- IMOP^C is an open-source compiler framework for writing program analysis, profiling, and source-to-source optimization passes for **OpenMP** C programs.
- Developed exclusively as part of my doctoral research work, IMOP comprises over 170k lines of code in Java.
- IMOP has been utilized as the implementation platform for **9 research papers** published at esteemed venues, including TOPLAS, OOPSLA (PACMPL), TACO, PACT, and others.
- Co-organized and presented five half-day tutorials (video link[□]) on IMOP at reputed venues CGO 2020, CGO 2021, PLDI 2021, CGO 2022, and CGO 2023. (Next tutorial: CGO 2025[□].)

Self-Stabilizing Compilation

- Proposed *Homeostasis*, a novel compiler design to enable *self-stabilization* in object-oriented compilers.
- Tackles a long-standing challenge: When a program undergoes multiple optimizations during its compilation, the results of various program analyses may need to be *stabilized*, that is, made consistent with the modified program. Manual stabilization is cumbersome and error-prone.

- *Homeostasis* performs stabilization of all analysis-results **automatically** and **efficiently**, without requiring any additional effort from the compiler pass writers.
- Published in **ACM TOPLAS**^[1]; patent granted in India^[1], with international filings in US^[2] and China^[1].

Incremental Iterative Dataflow Analysis

- Proposed *IncIDFA*, a novel algorithm that delivers a precise and efficient incremental version of any monotone iterative dataflow analysis (IDFA), supporting **arbitrary lattices** and dataflow functions.
- Ensures **no loss of precision** in incremental updates of dataflow solutions compared to full recomputation.
- Enables fully automated incrementalization of new dataflow problems, supporting arbitrary program changes.
- Achieved up to 11× speedup in IDFA stabilization time during evaluations on real-world benchmark programs.
- Accepted for publication in PACMPL (ACM OOPSLA 2025).

Automating Static Analyses with SAT/SMT Solvers

- Integrated Microsoft's **Z3 SMT solver** into **IMOP**, enabling automation of various static analyses.
- Addressing a critical challenge: While SMT solvers enable complex analyses (e.g., field-sensitive inter-thread dependence analysis) by expressing them as systems of constraints, manually generating these constraints is tedious, error-prone, and difficult for compiler writers.
- Automates both **the generation of constraint systems** and **the invocation of the Z3 solver**, providing precise analysis results from a seed constraint.

Incremental Concurrency Analysis

- Proposed *IncEPA*, an efficient *incremental* and *context-sensitive* phase analysis for parallel programs.
- Phase analysis infers execution ordering relations among statement groups in a parallel program.
- IncEPA addresses the high cost of full recomputation of analysis results in response to program optimizations.
- Supports programming models that utilize textually unaligned and unnamed global barriers, such as OpenMP.
- Achieved up to 191× speedup over state-of-the-art phase analysis on real-world benchmark programs.

Synchronization Optimizations

- Proposed novel compiler optimizations to reduce the total number of runtime barriers in OpenMP C programs.
- Utilized standard transformations, including **code motion**, **loop unrolling**, and **memory renaming**, while ensuring correctness under the weak memory model of OpenMP.
- Achieved up to $3 \times$ **speedup** in execution time for stencil computations, such as the heated-plate simulation.

Teaching and Work Experience

reaching and work experience		
Project Associate, IC&SR, IIT Madras		
Projects' Coordinator: Prof. V. Krishna Nandivada		
Project Title: 1156:KAS: Keeping Analysis Stable	Jan 2024 - Present	
Funded by IBM Canada Limited		
• Project Title: Efficient Analysis and Optimizations for Parallel Applications	Jul 2023 - Dec 2023	
Funded by Science and Engineering Research Board (SERB), Govt. of India		
• Project Title: Programming Model/Language and Compiler for Emerging HPC S	ystems Apr 2022 - Jun 2023	
Funded by Ministry of Electronics and Information Technology (MEIT), Govt.	of India	
Project Title: Optimizing HPC Applications	Jun 2021 - Oct 2022,	
Funded by Science and Engineering Research Board (SERB), Govt. of India	Jun 2019 - Nov 2020	
Teaching Assistant, Dept. of CSE, IIT Madras		
• Compiler Design (CS3300)	Jul - Nov 2017, Jul - Nov 2016	
Received the Star TA Award (2017), and the Outstanding TA award (2016).		
 Modern Compilers – Theory and Practice (CS6013) 	Jan - May 2017, Jul - Nov 2013	
Program Analysis (CS6843)	Jan - May 2016	
Computational Engineering (CS1100)	Jul - Nov 2015, Jan - May 2013	
Received the Outstanding TA award (2015).		
 Principles of Programming Languages (CS6848) 	Jan - May 2015, Jan - May 2014	
Research Intern, Microsoft Research India	Sep 2014 - Dec 2014	
Project Title: Broom: Region-Based Memory Management	Bengaluru, India	
Mentor: Dr. Ganesan Ramalingam		
Assistant Teacher, APT (a Red Hat Certified Training Partner)	Aug 2011 - Mar 2012	
Taught a batch of 15-20 students for RHCSA and RHCE certifications	Bhopal, India	

Invited Talks

I have given invited talks on *Homeostasis*: *Design and Implementation of a Self-Stabilizing Compiler*, at the following US universities:

• Northeastern University, Boston, USA, hosted by Prof. Arjun Guha	Nov 2024
• Tufts University, Boston, USA, hosted by Prof. Jeff Foster	Nov 2024
• Brown University, Providence, USA, hosted by Prof. Shriram Krishnamurthi	Nov 2024
• Harvard University, Boston, USA, hosted by Prof. Stephen Chong	Oct 2024
• Texas State University, San Marcos, USA, hosted by Prof. Martin Burtscher	Oct 2024
• UT Austin, Texas, USA, hosted by Prof. Keshav Pingali	Oct 2024

On the topic *IMOP*: a Self-Stabilizing Source-to-Source Compiler Framework for OpenMP C, I have given following invited talks, tutorials, and lectures:

• Half-day tutorials at the following editions of IEEE/ACM CGO:

 (Scheduled) CGO 2025 Tutorials, Las Vegas, USA 	Mar 2025
- CGO 2023 Tutorials, Montreal, Canada	Feb 2023
- CGO 2022 Tutorials, Virtual	Apr 2022
- CGO 2021 Tutorials, Virtual	Feb 2021
- CGO 2020 Tutorials, San Diego, USA	Feb 2020
• Invited talk at Stony Brook University , New York, USA, hosted by Prof. Barbara Chapman	Mar 2023
• Half-day tutorial at ACM PLDI 2021, Virtual	Jun 2021
• Invited talk at SERI 2019, IISc Bangalore, India, sponsored by India Chapter of ACM SIGSOFT	July 2019
• Invited lecture in CS6843: Program Analysis, by Prof. Rupesh Nasre, Dept. of CSE, IIT Madras, India	Mar 2019

Services

• Invited as Artifact Evaluation PC member for PLDI 2025	Mar 2025
Student volunteer at ACM SPLASH (OOPSLA) 2024, Pasadena, USA	Oct 2024
Artifact Evaluation PC member for PPoPP 2019	Dec 2019
• Invited lecture on the topic Life Lessons from Around: Approach to Adversity	Mar 2019
in the course GN1101: Life Skills, Dept. of Management Studies, IIT Madras	
Artifact Evaluation PC member for PPoPP 2018	Jan 2018
Student volunteer at ICSE 2014, Hyderabad, India	Jun 2014

Technical Skills and Certifications

- Compiler Frameworks/Tools known: IMOP, LLVM, Microsoft's Roslyn Compiler, Soot, ROSE, JavaCC/JTB, and Microsoft's Z3 SMT Solver
- Languages/APIs known: Java, OpenMP, GCC C, GCC C++, Cilk, CUDA, Microsoft Visual C#, and POSIX Threads
- Others: Latex, Git, Docker, Bash, Awk, Vim, Gnuplot, Inkscape, DOT (a graph description language)
- Certifications:
 - Red Hat Certified Engineer (RHCE), for Red Hat Enterprise Linux 6
 - Red Hat Certified System Administrator (RHCSA), for Red Hat Enterprise Linux 6
 - Oracle Certified Professional^C, Java SE 6 Programmer (OCP Java SE 6)

Awards and Honours

- · Received travel grants for attending ACM OOPSLA 2024, to give oral presentation on the TOPLAS paper:
 - ACM SIGPLAN PAC Travel Grant
 - ACM-IARCS Students Travel Grant
- As a teaching assistant at IIT Madras, I was granted the following awards:
 - Star TA award for Compiler Design (ODD 2017)
 - Outstanding Teaching Assistant award for Compiler Design (ODD 2016)
 - Outstanding Teaching Assistant award for Computational Engineering (EVEN 2015)
- GATE (Graduate Aptitude Test in Engineering) 2011 score: 99.06 percentile