
IMOP

IIT Madras OpenMP Compiler Framework

A tutorial at CGO 2021 on

PACE Lab
Dept of CS&E, IIT Madras

Aman Nougrahiya V. Krishna Nandivada

February 27th, 2021

Webpage: bit.ly/imop-iitm

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021

A World of Compiler Frameworks

2

Famous compiler frameworks, with diverse compilation goals[1].

Wow, so many! These must be enough..

New Compiler Framework!We don’t need any
[1]	This	figure	has	been	created	using	Wordle.	

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021

IMOP

3

Welcome to this CGO Tutorial on a New Compiler Framework!

Okay, but… WHY?!

[2]	Clipart	taken	from	www.clipartstation.com

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021 4

WHY?!

Major issues with existing compiler frameworks for OpenMP :

Most of them (like GCC and LLVM) work at low-level of program
representations.

OpenMP is expressed and better understood at higher-level
representations.

Originally built for serial programs, hence their implementations of
analyses and transformations may yield incorrect results under
parallel semantics, as

- static analyses do not assume multiple threads of execution, and
- inter-task/inter-thread data flow is not modelled.

Further, significant manual efforts are required by the compiler
writers to keep the compiler stable (or, consistent) in response to
program changes.

Do the current ones not suffice?

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021

IMOP

5

To address these issues, we have developed

Pro-automation

Source-to-sourceOpenMP C

Open-source

IMOP is licensed under the MIT License.

Key Guiding Principle:
Ease the task of implementing various analyses and
transformation tools for (OpenMP) C programs, by
automating the tasks of a compiler writer.

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021

Pedagogical Usage of IMOP
IMOP in a graduate-level course assignment

6

In a graduate-level course, “Program Analysis, EVEN 16” (offered by Dr.
Rupesh Nasre, Dept of CSE, IIT Madras), we used IMOP as an alternative
framework for LLVM in one of the assignments.

In the assignment, students had to remove unsafe pointer dereferences from
the program.

Total 10 out of 25 students used IMOP; rest used LLVM.

None of the students had more than 1 lecture-hour exposure to IMOP in the
past; all students had used LLVM for previous 3 assignments in that course.

Average marks obtained by students who used IMOP were comparable to
(rather, negligibly higher than) that of students who used LLVM.

Submission-size in IMOP ranged between 30-100 LOC; in contrast, for LLVM,
the range was 350-550 LOC.

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021

Pedagogical Usage of IMOP
Feedback scores from the students

7

Average Ratings from the Survey:

• On readability of code written in IMOP versus that of LLVM: 4.14/5

• On ease of coding in IMOP over that in LLVM: 4.57/5

• On ease of debugging in IMOP over that in LLVM: 4/5

• Overall rating of IMOP: 4.29/5

We conducted a survey, asking students about their experiences working with
IMOP.

Total 7 out of 10 students took the survey.

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021

Pedagogical Usage of IMOP
Feedback comments from the students.

8

Following were the comments given by 4 out of 10 students who
used IMOP:

✦ “…I’d say working with it is less difficult than LLVM…"

✦ “...the ratio of how much one can achieve using the framework vs
initial overhead of learning it, seems to be much higher for IMOP from
my experience…"

✦ “...the nested CFG structure allowed easy traversals of the CFG…"

✦ “...I think the main aim of IMOP to make writing compiler passes
very easy has been achieved compared to LLVM...IMOP increases
developer productivity.”

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021

IMOP in Published Projects

9

(1) Jyothi Krishna Viswakaran Sreelatha, and Shankar Balachandran. IIT Madras.
Compiler Enhanced Scheduling for OpenMP for Heterogeneous
Multiprocessors. In Workshop on Energy Efficiency with Heterogeneous
Computing (EEHCO 2016). ACM, Prague, Czech Republic.

(2) Jyothi Krishna Viswakaran Sreelatha, Shankar Balachandran, and Rupesh Nasre.
IIT Madras. CHOAMP: Cost Based Hardware Optimization for Asymmetric
Multicore Processors. IEEE Transactions on Multi-Scale Computing Systems 4,
2 (TMSCS 2018), 163-176.

(3) Jyothi Krishna Viswakaran Sreelatha, and Rupesh Nasre. IIT Madras. Optimizing
Graph Algorithms in Asymmetric Multicore Processors. IEEE Transactions on
CAD of Integrated Circuits and Systems 37, 11 (2018), 2673-2684.

(4) Gnanambikai Krishnakumar, Alekhya Reddy Kommuru, Chester Rebeiro. IIT
Madras. ALEXIA: A Processor with Light Weight Extensions for Memory
Safety. ACM Transactions on Embedded Computing Systems, (2019).

Note: IMOP is currently being used in 3 other projects (ours included).

IMOP has been used in the following published works, by other research groups:

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021

Tutorial Objectives
By the end of this tutorial, the participants shall be able to…

10

• Use IMOP to prototype program analyses/optimizations
discussed in this tutorial, and

• Consider IMOP for fast prototyping of their custom program
analyses/optimizations.

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021

Tutorial Objectives
In this tutorial, the participants will…

11

Understand (some of) the key design principles and
implementation details of IMOP.

Write

- a loop-unrolling pass for while-loops in just about 8 lines of code;

- a code-instrumentation pass for adding write barriers for a variable
in just about 12 lines of code;

- an OpenMP optimization pass, in about 30 lines of code, for
simple removal of redundant OpenMP barriers; and much more.

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021 12

Let us begin, then..

https://bit.ly/imop-vnc

The IMOP Compiler, IIT MadrasCGO 2021

Note: Detailed walkthrough is present in the provided handouts.

Hands-On Session #0
Testing the setup

13

We have already created ready-to-use virtual machines for your
use during this tutorial.

(A) Setup IMOP. 
Kindly read the instructions at: https://bit.ly/imop-vnc

(B) Run the project Demo0 to test the setup.

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021 14

Parser

		1	while	(x	<	11)	{

		2		 printf("%d",	x);

		3		 x++;

		4	}

Input Program

Grammar

	WhileStatement	::==	<WHILE>	"("	Expression	")"	Statement

	Statement	:==	ExpressionStatement	|	CompoundStatement	

|	IfStatement	|	.	.	.

Abstract Syntax Tree

WhileStatement

<WHILE>

"("

Expression
")"

Statement

11
x "<"

Abstract Syntax Tree

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021

Grammar and Parser of IMOP

15

• IMOP accepts programs written in standard C (ANSI), and (almost
all of) OpenMP 4.0. 

• Can handle all standard benchmarks—  
NPB, SPECOMP, Sequoia, etc.  

• IMOP is itself written in Java. 

• Parser of IMOP has been created using JavaCC/JTB[3].

[3]	http://compilers.cs.ucla.edu/jtb/	

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021

Invoking the parser

16

Abstract Syntax Tree

WhileStatement

<WHILE>

"("

Expression
")"

Statement

11
x "<"

Program.parseNormalizeInput(args);

Input Program

		1	while	(x	<	11)	{

		2		 printf("%d",	x);

		3		 x++;

		4	}

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021

public	static	void	main(String[]	args)	{

	 	

}

Invoking the parser

17

Preprocessed OpenMP C file

Program.parseNormalizeInput(args);

Command-line arguments

3

$	java	imop.Main	-f	foo.i	…	
2

$	gcc	-P	-E	foo.c	-o	foo.i 1

4

Stores root of the parsed AST in Program.root

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021

		1	public	static	void	main(String[]	args)	{

		2		

		3	

		4		 //	Print	the	program	to	the	terminal.

		5		 System.out.println(Program.getRoot());

		6		

		7		 //	Print	to	a	new	file	named	foo-f1.i

		8		 DumpSnapshot.dumpRoot("f1");

		9	}

Output Program

		1	while	(x	<	11)	{

		2		 printf("%d",	x);

		3		 x++;

		4	}

Print my program!

18

Abstract Syntax Tree

Program.parseNormalizeInput(args);

WhileStatement

<WHILE>

"("

Expression
")"

Statement

11
x "<"

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021

Information Objects

19

With each important AST node, we maintain a specific subclass
of NodeInfo.

- Contains node-specific information and operations.

- Obtained using getInfo() invocation on the node.

n1

int	x	=	y	+	3;

n2

n1.getInfo().getInitializer() n2

Declaration

DeclarationInfo
Initializer

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021

Information Objects

20

With each important AST node, we maintain a specific subclass
of NodeInfo.

- Contains node-specific information and operations.

- Obtained using getInfo() invocation on the node.

n1.getInfo().unrollLoop(1);

		1	while	(x	<	11)	{

		2			printf("%d",	x);

		3			x++;

		4			if	(!(x	<	11))	break;

		5			printf("%d",	x);

		6			x++;

		7	}

WhileStatement

WhileStatementInfo

n1		1	while	(x	<	11)	{

		2		 printf("%d",	x);

		3		 x++;

		4	}

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021

Simple depth-first traversals over the AST.

- Too low-level; not recommended.

Better alternative: Use higher-level query functions, such as:

Get all functions
of a program

Get statement with label
L within a node n

Get all nodes of some
type (say if-statement)

within node n

21

Querying the AST

Misc.getInheritedEnclosee(n,	IfStatement.class)

Program.getRoot().getInfo().

getAllFunctionDefinitions()

n.getInfo().getStatementWithLabel("L")

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021 22

Example: Querying the AST

//	Print	all	statements	having	the	given	label.

public	static	void	demo1(String	label)	{

	 for	(FunctionDefinition	func	:	Program.getRoot().getInfo().

												getAllFunctionDefinitions())	{

	 	 Statement	stmt	=	func.getInfo().getStatementWithLabel(label);

	 	 if	(stmt	!=	null)	System.out.println(stmt);

	 }

	 System.exit(0);

}

Suggestion:
Look into the other methods present in various subclasses of NodeInfo.

Iterate over all the function definitions.
1

2
Get statement with

the given label.

Print the statement.

3

https://bit.ly/imop-vnc

The IMOP Compiler, IIT MadrasCGO 2021

Note: Detailed walkthrough is present in the provided handouts.

Hands-On Session #1
Working with the AST

23

(A) Parse a sample program using IMOP.

(B) From the generated AST, print the program to a file/terminal.

Note that IMOP performs some simplifications.

(C) Find and print all those statements that have a given label.

(D) Invoke loop unrolling on the given while-statement, and print.

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021 24

Control-flow graphs (CFGs) — approximations of how control
would flow among executable nodes of a function in runtime.

Useful for performing static analyses.

Unlike traditional frameworks, IMOP uses nested CFGs.

- Resembles higher-level representation of (OpenMP) C programs.

- Useful in modeling scope information (used by OpenMP clauses).

Control-Flow Graphs

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021

Begin
FunctionDefinition

CompoundStatement

WhileStatement

int x = 0;

x > 10

x++;

Begin

End

End

End

Begin

Example CFG

25

		1	int	main()	{

		2			int	x	=	0;

		3			while	(x	>	10)	x++;

		4	}

Do not contain nested CFG
nodes.

Leaf nodes

Contain other CFG nodes.

Entry/Exit points denoted by
special nodes: Begin/End.

Define control flow as per the
semantics of OpenMP and C.

Non-leaf nodes

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021

Types of nodes in Nested CFGs

26

IMOP models two types of CFG nodes:

- Non-leaf nodes, corresponding to nesting constructs of C and
OpenMP, such as

FunctionDefinition, WhileStatement, and CriticalConstruct.

- Leaf nodes, for other executable nodes in the program, such as,

ExpressionStatement, GotoStatement, and BarrierDirective.

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021

Example CFG

27

• IMOP automatically creates
CFG upon parsing.

• A DOT-file representation of
the CFG can be dumped at
output-dump/
foonestedDotGraph.gv

		1	int	main()	{

		2			int	x	=	0;

		3			while	(x	>	10)	x++;

		4	}

Begin
FunctionDefinition

CompoundStatement

WhileStatement

int x = 0;

x > 10

x++;

Begin

End

End

End

Begin

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021 28

x > 10

WhileStatement

x++;
End

Begin

n

CompoundStatement

int x = 0;

Begin

End

c1
c2

c3

Intra-procedural traversals

node.getInfo().getCFGInfo().
getSuccessors()

n c1 c2

Successors of a node

node.getInfo().getCFGInfo().
getPredecessors()

n c3 c2

Predecessors of a node

Traversals on CFG

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021 29

Different parts of a non-leaf
node, such as body and
predicate of various
constructs, are termed as its
CFG components.

Note: Each CFG component is a
CFG node.

Begin
WhileStatement

x > 10

x++;
End

1

2

4
3

Four CFG components of a WhileStatement

Begin node.

Predicate node.

Body node.

End node.

1

2

3

4

CFG Components

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021 30

CFG components of a non-leaf node can be obtained using
pre-defined methods in its CFGInfo object.

Get predicate of a
while-statement

whileStmt.getInfo().getCFGInfo().getPredicate()

Get elements of a
compound-statement

compStmt.getInfo().

											getCFGInfo().getElementList()

Get false branch of an
if-statement

ifStmt.getInfo().getCFGInfo().getElseBody()

Querying CFG Components

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021

Example: Querying the CFG Components

31

//	Query	CFG	components

public	static	void	demo2()	{

	 for	(WhileStatement	whileStmt	:	Misc.getInheritedEnclosee(Program.getRoot(),				

														WhileStatement.class))	{

	 	 System.out.println(whileStmt.getInfo().getCFGInfo().getPredicate());

	 }

	 for	(IfStatement	ifStmt	:	Misc.getInheritedEnclosee(Program.getRoot(),	

														IfStatement.class))	{

	 	 if	(!ifStmt.getInfo().getCFGInfo().hasElseBody())	{

	 	 	 System.out.println(ifStmt);

	 	 }

	 }

}

Print predicate of a while-statement.

1

Check whether an else-branch exists for an
if-statement.

2

https://bit.ly/imop-vnc

The IMOP Compiler, IIT MadrasCGO 2021

Note: Detailed walkthrough is present in the provided handouts.

Hands-On Session #2
Working with CFG Components and Traversals

32

(A) Print predicate and body (separately) of each while-statement
in the program.

(B) Print successors of those if-statements which do not have an
else-body.

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021

During parsing, IMOP automatically simplifies each call-site to
one of the two forms:

foo(s1,	s2,	...,	sn);

where,

foo is a function designator,

x is a temporary, and

s1,	s2,	...,	sn are compile-time constants or temporaries.

• The call-site is a non-leaf CFG node of type CallStatement.

Call Graphs

33

Call Statements

x	=	foo(s1,	s2,	...,	sn);

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021

Structure of a CallStatement

34

Begin

End

CallStatement

PreCallNode

PostCallNode

Call Graphs
There are two components in a CallStatement:
• PreCallNode

Denotes argument reads; after this node,
control flows to possible target functions.

• PostCallNode

Control flows in from possible targets into this
node; it denotes writing of the returned value
to the temporary (optional).

Begin

End

FunctionDefinition
foo()

x	=	foo(s1,	s2,	...,	sn);

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021 35

Begin

End

CallStatement

PreCallNode

PostCallNode

Traversals on Call Graphs

Begin

End

FunctionDefinition

c1

n1

c2

n2

node.getInfo().getCFGInfo().

getInterProceduralSuccessors()

n1

Successors of a node

n2c1

c2 n2

node.getInfo().getCFGInfo().

getInterProceduralPredecessors()

n2 c2

Predecessors of a node

n1

n1c1

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021

Queries on Call Graphs

36

To obtain all CallStatement’s in a node:

Misc.getInheritedEnclosee(node,	CallStatement.class))

To obtain all CallStatement’s that may target a function:

func.getInfo().getCallersOfThis()

To obtain all target FunctionDefinition’s of a CallStatement:

callStmt.getInfo().getCalledDefinitions()

To obtain arguments of a CallStatement:

callStmt.getPreCallNode().getArgumentList()

To check if a function is recursive:

func.getInfo().isRecursive()

https://bit.ly/imop-vnc

The IMOP Compiler, IIT MadrasCGO 2021

Note: Detailed walkthrough is present in the provided handouts.

Hands-On Session #3
Working with Call Graphs (CGs)

37

(A) Print all call-sites present lexically within a given function.

(B) Print all call-sites in the program that may have a given
function as their target.

(C) For a given call-statement: (i) print its target function(s), and
(ii) print all its arguments.

(D) Test whether a given method is recursive.

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021

Scopes, Symbols, and Types

38

There are two kinds of symbols — (i) variables, and (ii)
functions.

Each symbol has following key attributes: (i) a name, (ii) a
type, (iii) a declaration, and (iv) a scope that declares the
symbol.

IMOP models 3 kinds of scopes —

- global (TranslationUnit), function (FunctionDefinition),

and local (CompoundStatement).

Each scope maintains a symbol table for symbols defined in it.

scope.getInfo().getSymbolTable()

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021

Working with Symbols

39

Misc.getSymbolEntry(“x”,)n3

	.getInfo().getDeclaredSymbol()n2

“x” int Scopeif n2

Symbol sx

getName()
getType()

getDefiningScope()

getDeclaringNode()

int	foo()	{

	 float	x	=	0.1;

	 if	(x	==	0)	{

	 	 int	x	=	10;

	 	 ...	y	=	10	+	x;

	 	 bar(x	+	y);

	 }

}

n3

n2

n1

https://bit.ly/imop-vnc

The IMOP Compiler, IIT MadrasCGO 2021

Note: Detailed walkthrough is present in the provided handouts.

Hands-On Session #4
On Scopes, Symbols, and Types

40

(A) Print the names and types of symbols declared in a given
function.

(B) Print the scopes for each argument passed to a given call-
statement.

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021

Memory Abstractions

41

There are two main components of the data environment, from
the perspective of static analyses: (i) stack, and (ii) heap.

In IMOP, we term each element of these abstract components
as Cell.

- A stack-cell corresponding to a scalar is denoted by its Symbol.

- For each syntactic heap-allocation site, we model a single
HeapCell.

For efficiency, IMOP also maintains a single fixed GenericCell,
which is used to model the universal set of cells.

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021

Cell Accesses in a Node

42

For each leaf/non-leaf CFG node, the list of cells that may be
accessed, read, and written, by that node can be obtained using

int	main()	{

	 int	*a,	b	=	0;

	 int	c	=	10;

	 a	=	&b;

	 *a	=	10	+	c++;

}

n1

node.getInfo().getReads()

n1 {a, c}

node.getInfo().getWrites()

n1 {b, c}

node.getInfo().getAccesses()

n1 {a, b, c}

https://bit.ly/imop-vnc

The IMOP Compiler, IIT MadrasCGO 2021

Note: Detailed walkthrough is present in the provided handouts.

Hands-On Session #5
Working with the Memory Abstractions

43

(A) Write a pass that prints the set of cells (read and/or written) in
a given expression-statement (say, with label “thisStmt”).

(B) Write a pass that prints all those expression-statements
which may write to a variable with given name (“thisVar”).

(C) Write a pass that prints the kind of data-dependences (RAW,
WAR, or WAW), if any, that given two statements (with labels
“l1” and “l2”) may have.

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021

Creating New Code Snippets

44

Creation of new snippets of code during compiler passes is quite
common.

e.g., creation of code snippets to be inserted in the program for
instrumentation purposes.

In almost all standard compiler frameworks, such as GCC, LLVM, Cetus, etc.,
compiler writers need to create the AST denoting the snippet, manually!

IMOP utilizes the underlying parser to automatically create the AST for
requested snippet using:

- string of the snippet to be created,

- type of the non-terminal at the root of the snippet AST.

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021

Creating Snippets: Traditional Way

45

a[i]	=	0;

a[i]

ArrayAccess
0

IntegerLiteral

a

Identifier
i

Expression

new	ArrayAccess(..,	..)

new	AssignmentExpression(..,	..)

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021

Creating Snippets in IMOP

46

a[i]	=	0;

FrontEnd.parseAndNormalize(“a[i] = 0;”,	Statement.class);

In IMOP, given the string-equivalent of a snippet to be generated, the actual
AST can be obtained in a single step, as shown above.

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021

Creating an unrolled loop
Code Snippet Generation: An example

47

//	Print	the	loop-unrolled	form	of	a	while-statement.

public	void	printUnrolledLoop(WhileStatement	loop)	{

			WhileStatementCFGInfo	cfgInfo	=	loop.getInfo().getCFGInfo();

	 String	snippetStr	=	“while	(”	+	cfgInfo.getPredicate()	+	“)	{”

																								+	cfgInfo.getBody()	+	"if	(!("

																								+	cfgInfo.getPredicate()	+	"))	{break;}"	

																								+	cfgInfo.getBody()	+	"}";

	 Statement	newBody	=	FrontEnd.parseAndNormalize(snippetStr,	Statement.class);

	 CompoundStatementNormalizer.removeExtraScopes(loop);

	 System.out.println(newBody);

}

Create the string-equivalent of the string to be generated.1

Invoke the parser to create
AST of the new snippet.

2

Optionally, remove extra { } from the generated code.3

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021 48

Let us revise the notion of CFG
Components.

Different parts of a non-leaf node,
such as body and predicate of
various constructs, are termed as
its CFG components.

Elementary transformations of a
non-leaf node are those which can
add/remove/replace its CFG
components.  
 
For example, one that replaces the
predicate of a while-loop.

Begin
WhileStatement

x > 10

x++;
End

1

2

4
3

Four CFG components of a WhileStatement

Begin node. Predicate node.

Body node. End node.

1 2

3 4

Elementary Transformations

whileSmt.getInfo().getCFGInfo().setPredicate(newPred);

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021

Example: Simple Transformations

49

//	Add	empty	else	body	to	the	if-statement	if	none	exists.

public	static	void	addEmptyElse(IfStatement	ifStmt)	{

	 IfStatementCFGInfo	cfgInfo	=	ifStmt.getInfo().getCFGInfo();

	 if	(cfgInfo.hasElseBody())	{

	 	 return;

	 }

	 Statement	emptyElse	=	FrontEnd.parseAndNormalize("{}",	Statement.class);

	 cfgInfo.setElseBody(emptyElse);

}

https://bit.ly/imop-vnc

The IMOP Compiler, IIT MadrasCGO 2021

Note: Detailed walkthrough is present in the provided handouts.

Hands-On Session #6
Simple Program Transformations

50

(A) Write a pass to perform loop unrolling for while loops.

(B) Write a pass that translates a do-while loop to a while loop.
(Assume that no jump statements exist in the body.)

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021

Higher-level CFG transformations

51

Assume that we wish to add a read
barrier for each read of parameter rb of
foo().

There are 3 key tasks involved:

Creation of snippet for read barrier;
simple and straightforward.
Detection of nodes that may be
reading from the parameter rb; this
too is simple.
Performing the actual instrumention;
where shall we add the code?

		1	int	foo(int	rb)	{

		2		 int	x	=	rb;

		3		 while	(x	<	10	+	rb)	{

		4		 	 x	+=	2;

		5		 	 if	(x	==	4)	{

		6	l1:	continue;

		7		 	 }	else	{

		8		 	 	 if	(x	==	5)	goto	l1;

		9		 	 	 else	{x--;	continue;}

	10		 	 }

	11		 }

	12	}

In this example

There are two reads for rb -- at Line 2 and 3.

For Line 2, we can simply add the read barrier code immediately before the
line.

But for Line #3, we need to insert read barriers at 3 positions!

Handling of such corner cases can be difficult, repetitive, time-consuming, and error-
prone.

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021

Higher-level CFG transformations

52

		1	int	foo(int	rb)	{

		2		 int	x	=	rb;

		3		 while	(x	<	10	+	rb)	{

		4		 	 x	+=	2;

		5		 	 if	(x	==	4)	{

		6	l1:	continue;

		7		 	 }	else	{

		8		 	 	 if	(x	==	5)	goto	l1;

		9		 	 	 else	{x--;	continue;}

	10		 	 }

	11		 }

	12	}

Handling of such corner cases can be
difficult, repetitive, time-consuming, and
error-prone.

IMOP resolves this issue by letting the
programmer use one of the following
five CFG transformations:

1. Insert immediate predecessor.
2. Insert immediate successor.
3. Insert on the edge.
4. Node remover.
5. Node replacer.

These transformations hide the syntactic forms/placements of nodes involved in the
process.

In our example, for Line #3, we will require just one invocation of
InsertImmediatePredecessor to (automatically) handle all the possible cases.

InsertImmediatePredecessor.insert(node,	instrumentationCode);

https://bit.ly/imop-vnc

The IMOP Compiler, IIT MadrasCGO 2021

Note: Detailed walkthrough is present in the provided handouts.

Hands-On Session #7
Using Higher-Level CFG Transformations

53

Write barrier: Write a pass that instruments a program such
that immediately before write to a scalar variable thisVar at
runtime, a notification is displayed.

a) Detect all those leaf CFG nodes that may write to
thisVar.

b) Create a notification message as a printf() statement.

c) Insert the newly created statement immediately before the
detected node.

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021

OpenMP

54

IMOP has been written with OpenMP semantics in mind, since as
early as its design phase.

All program abstractions of IMOP preserve OpenMP semantics.

For data-flow analyses, IMOP provides a framework where
compiler writer needs to provide only that data which is required
for serial C programs. OpenMP semantics are handled internally
by IMOP.

Many new program abstractions for parallelism, such as
concurrency analysis, and LockSet analysis, are already present
in IMOP.

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021

Inter-Task Communications

55

x = 3;

flush

flush

print x;

1

2

3

4

OpenMP API specifies that following
four events are necessary for a
communication to happen between
two threads:

(i) T1 writes to a shared location,

(ii) T1 flushes that location,

(iii) T2 flushes that location, and

(iv) T2 reads from that location.

We model these communications in
IMOP by creating edges betweeen
those (implicit/explicit) flushes that
may observe this pattern.

T1 T2

The resulting modified CFG is used in all data-flow and other static analyses to ensure
that OpenMP semantics are preserved.

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021

Concurrency Analysis

56

Barrier directives are program points where threads of a team
wait for each other, before any thread is allowed to proceed.

A phase is defined as a collection of statements from one set
of barriers to the next set of barriers.

Two statements can never run in parallel if they do not share
any common phase.

This observation helps improve the precision/efficiency of static

analyses of parallel programs using phase (or concurrency) analysis.

• IMOP provides various interfaces that can be used for answering
related queries.

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021

Concurrency Analysis

57

To obtain all the static phases that are present in a
ParallelConstruct.

parCons.getInfo().getConnectedPhases()

To obtain the set of statements that may belong to a phase.

ph.getNodeSet()

To obtain the set of barriers that may end a phase.

ph.getEndPoints()

To obtain all the phases in which a statement may run.

stmt.getInfo().getNodePhaseInfo().getPhaseSet()

Note: For our purpose, we should typecast “AbstractPhase<?,	?>” to its
subclass “Phase”, wherever needed.

A glimpse into the interface

https://bit.ly/imop-vnc

The IMOP Compiler, IIT MadrasCGO 2021

Note: Detailed walkthrough is present in the provided handouts.

Hands-On Session #8
Analyzing Concurrency in OpenMP programs

58

(A) Print the number of static phases in every parallel-construct.

(B) Print the highest number of statements in any static phase in
the system.

(C) Print the set of all those CFG leaf nodes that may run in
parallel with the given expression statement.

https://bit.ly/imop-vnc

The IMOP Compiler, IIT MadrasCGO 2021

Note: Detailed walkthrough is present in the provided handouts.

Hands-On Session #9
Project: Remove redundant barriers.

59

Check if a barrier-directive is required to preserve dependeces among
phases across it. If not, then delete the barrier.

a) For any given barrier, get the set of phases that it may end, and
the set of phases that may start after it.

b) For each pair of phases from the sets in the last step, see if the
pair conflicts, i.e. see if there exists any conflicting accesses
between two phases of the pair.

c) If no conflicts are found across a barrier, remove it from the
program.

Other Key Features of IMOP

60

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021

Data-Flow Analysis

61

Iterative data-flow analysis is an important class of compiler
passes.

IMOP provides a set of generic inter-thread inter-procedural flow-
sensitive data-flow analysis passes.

For every existing and new instantiations of these generic passes,
following guarantees are automatically ensured:

- They respect the OpenMP semantics.

- Their internal states are self-stable, in response to any existing
or new program changes.

Generic Iterative Data-Flow Passes

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021

Data-Flow Analysis

62

To instantiate the generic passes, compiler writers need to provide only
the following information:

- Structure of the flow-facts;

- Value of the TOP element of lattice;

- Meet operation on two flow-facts;

- Notion of equality of two flow-facts; and

- Transfer function for various kinds of CFG node.

No additional information is needed from the compiler writers to ensure
self-stabilization and adherence to OpenMP semantics.

Various instantiations of the generic passes exist in IMOP — points-to,
reaching definitions, liveness, dominator, lockset, copy propagation, etc.

Instantiating Generic IDFA Passes

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021

Need for Compiler Stabilization

63

Optimization passes involve program analyses and transformations.

Transformations rely on program analyses for correctness, efficiency,
precision, etc.

In general, mainstream compilers do not automatically update program
abstractions (analyses and representations) in response to program
transformations — this can lead to incorrect application of downstream
passes!

To resolve this challenge, compiler writers need to manually address these
questions:

(a) What abstractions need stabilization in response to transformations?

(b) How to stabilize an abstraction?

(c) Where to write the stabilization code?

These queries need to be handled upon addition of each new analysis or
optimization to the compiler.

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021

Tackling Stabilization Behind the Scene
IMOP: a Self-Stabilizing Compiler

64

In IMOP, compiler writers need not write any code to ensure
self-stabilization while adding any

- new transformations, and/or

- any new data-flow passes.

For other kinds of abstractions, compiler writers need to
handle only a subset of stabilization tasks themselves.

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021

Other interesting features of IMOP

65

Lambda-based generic graph collectors.

- Set of functionalities that automate the graph-traversal
mechanism for frequently-occurring traversal patterns.

Interface for Z3 SMT solver (by Microsoft).

- Many analyses can be represented as a system of constraints.

- IMOP can automatically generate underlying system of
inequations, given one or more seed constraint(s).

- It then internally invokes Z3 SMT solver to return a conservative
analysis result.

- Used for auto-parallelization, dead-code removal, adding field-
sensitivity to analyses, etc.

Maura et al., Z3: an efficient SMT solver, (TACAS 2008). 

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021

How far have we walked so far?

66

• Used the parser of IMOP, for a simple pretty-printing pass; perform
simple queries on the AST.

• Understood the nested control-flow graphs (CFGs) and call graphs (CGs)
of IMOP; perform traversals and queries on them.

• Worked with scopes, symbols, and types.

• Learnt how to query various memory abstractions maintained by IMOP.

• Created new code snippets, and perform simple transformations on
the program.

• Performed higher-level (semantic-level) transformations, hiding the
sytnactic complexities of C and OpenMP.

• Utilized the existing concurrency analysis in IMOP.

• Taken a glimpse into some other important features, and use-cases, of
IMOP.

bit.ly/imop-iitm

The IMOP Compiler, IIT MadrasCGO 2021

Miles To Go

67

IMOP is a source-to-source compiler framework, for OpenMP C programs.  
In this tutorial, we have learnt how to use some of its key features.

Developer of IMOP : Aman Nougrahiya 
Project Advisor : V. Krishna Nandivada 
Total size of IMOP : ∼154 kLOC (about ∼127 kLOC coded manually; rest

generated by JavaCC/JTB).

Release date : 22-February-2020 (during CGO 2020).

Official website : 		https://bit.ly/imop-iitm 
Github public repository: https://bit.ly/imop-compiler	

What next?
For further development of IMOP (such as to add support for missing
OpenMP constructs/directives), YOUR contributions would really matter:

Kindly try out IMOP, contribute towards enhancing its quality and
capabilities, and let us know your suggestions for improvements.

Thank you! Questions and Feedback are Most Welcome! :)

