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Abstract. We present a system that is capable of segmenting, detecting and
tracking multiple people in a cluttered scene using multiple synchronized cam-
eras located far from each other. The system improves upon existing systems in
many ways including: (1) We do not assume that a foreground connected compo-
nent belongs to only one object; rather, we segment the views taking into account
color models for the objects and the background. This helps us to not only sep-
arate foreground regions belonging to different objects, but to also obtain better
background regions than traditional background subtraction methods (as it uses
foreground color models in the algorithm). (2) It is fully automatic and does not
require any manual input or initializations of any kind. (3) Instead of taking de-
cisions about object detection and tracking from a single view or camera pair, we
collect evidences from each pair and combine the evidence to obtain a decision
in the end. This helps us to obtain much better detection and tracking as opposed
to traditional systems.
Several innovations help us tackle the problem. The first is the introduction of a
region-based stereo algorithm that is capable of finding 3D points inside an ob-
ject if we know the regions belonging to the object in two views. No exact point
matching is required. This is especially useful in wide baseline camera systems
where exact point matching is very difficult due to self-occlusion and a substan-
tial change in viewpoint. The second contribution is the development of a scheme
for setting priors for use in segmentation of a view using bayesian classification.
The scheme, which assumes knowledge of approximate shape and location of
objects, dynamically assigns priors for different objects at each pixel so that oc-
clusion information is encoded in the priors. The third contribution is a scheme
for combining evidences gathered from different camera pairs using occlusion
analysis so as to obtain a globally optimum detection and tracking of objects.

The system has been tested using different density of people in the scene which
helps us to determine the number of cameras required for a particular density of
people.

Keywords: Multi-camera Tracking, Region-Based Stereo, Grouping and Seg-
mentation



Fig. 1. Four images from a 6-perspective sequence at a particular time instant. The boxes show
the positions found by the algorithm.

1 Introduction

In this paper we address the problem of segmenting, detecting and tracking multiple
people using a multi-perspective video approach. In particular, we are concerned with
the situation when the scene being viewed is sufficiently “crowded” that one cannot
assume that any or all of the people in the scene would be visually isolated from any
vantage point. This is normally the case in many surveillance applications. Figure 1
shows four images from a 6-perspective sequence that will be used to illustrate our al-
gorithm. Notice that in all four images, there is substantial occlusion so that one cannot
assume that we are seeing a person in isolation. We assume that our cameras are cali-
brated, and that people are moving on a calibrated ground plane. We also assume that
the cameras are frame synchronized.

The paper develops several novel ideas in order to solve the problem. The first and
most important is the introduction of a region-based stereo algorithm that is capable of
finding 3D points inside an object if we know the regions belonging to the object in two
views. No exact point matching is required. This is especially useful in wide baseline
camera systems where exact matching is very difficult due to self-occlusion and a sub-
stantial change in viewpoint. The second contribution is the development of a scheme
for setting priors for use in segmentation of a view using bayesian classification. The



scheme, which assumes knowledge of approximate shape and location of objects, dy-
namically assigns priors for different objects at each pixel so that occlusion information
is encoded in the priors. These priors are used to obtain good segmentation even in the
case of partial occlusions. The third contribution is a scheme for combining evidences
gathered from different camera pairs using occlusion analysis so as to obtain a globally
optimum detection and tracking of objects. Higher weight is given to those pairs which
have a clear view of that location than those whose view is potentially obstructed by
some objects. The weight is also determined dynamically and uses approximate shape
features to give a probabilistic answer for the level of occlusion.

Our system takes a unified approach to segmentation, detection and tracking using
multiple cameras. We neither detect nor track objects from a single camera or a camera
pair; rather evidence is gathered from multiple camera pairs and the decisions of detec-
tion and tracking are taken at the end by combining the evidences in a robust manner
taking occlusion into consideration. Also, we do not simply assume that a connected
component of foreground pixels corresponds to a single object. Rather, we employ a
segmentation algorithm to separate out regions belonging to different people. This helps
us to handle the case of partial occlusion and allows us to track people and objects in a
cluttered scene where no single person is isolated in any view.

2 Related Work

There are numerous single-camera detection and tracking algorithms, all of which face
the same difficulties of tracking 3D objects using only 2D information. These algo-
rithms are challenged by occluding and partially-occluding objects, as well as appear-
ance changes. Some researchers have developed multi-camera detection and tracking
algorithms in order to overcome these limitations.

Haritaoglu et. al. [6] developed a single camera system which employs a combina-
tion of shape analysis and tracking to locate people and their parts (head, hands, feet,
torso etc.) and tracks them using appearance models. In [7], they incorporate stereo in-
formation into their system. Kettnaker and Zabih [11] developed a system for counting
the number of people in a multi-camera environment where the cameras have a non-
overlapping field of view. Darrell et. al. [3] developed a tracking algorithm that uses
a stereo pair of cameras and integrates stereo, color and face pattern detection. Dense
stereo processing is used to isolate people from other objects and people in the back-
ground, and faces and bodies of people are tracked. All of these methods use a single
viewpoint (using one or two cameras) for a particular part of the scene and would have
problems in the case of objects occluded from that viewpoint.

Orwell et. al. [16] present a tracking algorithm to track multiple objects using mul-
tiple cameras using ”color” tracking. They model the connected blobs obtained from
background subtraction using color histogram techniques and use them to match and
track objects. In [17], Orwell et. al. present a multi-agent framework for determining
whether different agents are assigned to the same object seen from different cameras.
This method would have problems in the case of partial occlusions where a connected
foreground region does not correspond to one object, but has parts from several of them.



Cai and Aggarwal [1] extend a single-camera tracking system by starting with track-
ing in a single camera view and switching to another camera when the system predicts
that the current camera will no longer have a good view of the subject. Since in our
algorithm, we collect evidences from different pairs and only take the decision at the
end, we expect our algorithm to perform better than this approach.

Intille et. al. ([9] and [10]) present a system which is capable of tracking multiple
non-rigid objects. The system uses a top-view camera to identify individual blobs and
a “closed-world” assumption to adaptively select and weight image features used for
matching these blobs. Putting a camera(s) on the top is certainly a good idea since
it reduces occlusion, but is not possible in many situations. Also, the advantage of a
camera on top is reduced as we move away from the camera, which might require a
large number of cameras. Such a camera system would also not be able to identify
people or determine other important statistics (like height or color distributions) and
hence may not be very useful for many applications.

Krumm et. al. [13] present an algorithm that has goals very similar to ours. They
use stereo cameras and combine information from multiple stereo cameras (currently
only 2) in 3D space. They perform background subtraction and then detect human-
shaped blobs in 3D space. Color histograms are created for each person and are used to
identify and track people over time. The method of using short-baseline stereo matching
to back-project into 3D space and integrating information from different stereo pairs has
also been used by Darrell et. al. [4]. In contrast to [13] and [4], our approach utilizes
the wide-baseline camera arrangement that has the following advantages:

(1) It provides many more camera pairs that can be integrated (� �
� as compared to

��� for short baseline stereo, using � cameras),
(2) It has higher accuracy in back-projection and lower sensitivity to calibration

errors, and
(3) It provides more viewing angles with the same number of cameras so that oc-

clusion can be handled better.
On the other hand, the short-baseline stereo pair camera arrangement used, e.g., in

[4] has the advantages of
(1) more accurate correspondences due to small change in viewpoint, and
(2) better understood matching algorithms.
It is not evident which method is better and it appears that a combination of the two

methods might yield the best results.
Our region-based stereo algorithm can be considered to lie between wide-baseline

stereo algorithms, which try to match exact 3D points across the views, and volume
intersection algorithms which find the 3D shape of an object by intersection in 3D
space without regard to the intensity values observed (except for background subtrac-
tion). Wide-baseline stereo algorithms have the challenge of incorrect matches due to a
substantial change in viewpoint. Although some work has been done to improve upon
these methods(e.g. [18] and [8]), they are still not very robust due to this fundamental
difficulty.

On the other hand, volume intersection is very sensitive to background subtraction
errors, so that errors in segmenting even one of the views can seriously degrade the
recovered volume. Although there has been work recently (for e.g. [20]) addressing



some of these issues, these methods also have problems, especially in the case where
the objects are occluded in some views by other objects. Back-projection in 3D space
without regard to color also yields very poor results in cluttered scenes, where almost
all of the camera view is occupied by the foreground.

In contrast, we do not match points exactly across views; neither do we perform
volume intersection without regard to the objects seen. Rather, determination of regions
belonging to different objects is sufficient to yield 3D points guaranteed to lie inside the
objects.

3 General Overview of the Algorithm

Our system models different characteristics of people by observing them over time.
These models include color models at different heights of the person and “presence”
probabilities along the horizontal direction at different heights. These models are used
to segment images in each camera view. The regions thus formed are matched across
views using our region-matching stereo algorithm which yields 3D points potentially
lying inside objects. These points are projected onto the ground plane and ground points
are used to form an object location likelihood map using Gaussian kernels for a single
image pair. The likelihood maps are combined using occlusion analysis to obtain a
single map, which is then used to obtain ground plane positions of objects in the scene.
The algorithm is then iterated using these new ground plane positions and this process
is repeated until the ground plane positions are stable. The final ground plane positions
are then used to update the person models, and the whole process is repeated for the
next time step.

4 Modeling People

We model the appearance and locations of the people in the scene. These models, which
are developed by observing people over time (method explained in section 9), help us
segment people in the camera views. These models are developed from the sequences
automatically; no manual input is required.

4.1 Color Models

One of the attributes useful to model is the color distribution at different heights of the
person. A single color model for the whole person would not be able to capture the
vertical variation of the color. On the other hand, modeling the horizontal distribution
of color is very difficult without full 3D surface reconstruction, which would be too
time-consuming and hence not too interesting for tracking and surveillance type of
applications. In order to model the color distribution at different heights, we use the
well-known method of non-parametric Gaussian kernel estimation technique which is
well suited to our system. (see [5] for more details). Since the intensity levels change
across cameras due to aperture effects, and due to shadow and orientation effects in the
same view, we only use the ratios ����� �� �� and ����� �� �� in the color models.



4.2 “Presence” Probabilities

For our segmentation algorithm, we want to determine the probability that a particular
person is “present” (i.e. occupies space) along a particular line of sight. Towards that
end, we define “Presence” Probability (denoted by ���	
�) as the probability that a
person is present(i.e. occupies space) at height � and distance 
 from the vertical line
passing through the person’s center. This probability is a function of both the distance

 and height � since, e.g., the width of a person near the head is less than the width near
the center. This probability function also varies from person to person. The method for
estimating this probability by observation is described in section 9.

Fig. 2. Sample Presence Probabilities of people observed over time.

5 Pixel Classification in a Single View

We use Bayesian Classification to classify each pixel as belonging to a particular person,
or the background. The a posteriori probability that an observed pixel � (containing
both color and image position information) belongs to a person � (or the background)
is

��������������� � ���������� ����� (1)

The pixel is then classified as

Most likely class � ���
	
����������������� (2)

� ����� is given by the color model of the person at height �. For the background, we
use a background model of the scene using the method described in [14].



Fig. 3. Measuring distances (and heights) from the line of sight

We want the prior probabilities to include occlusion information so that the prior for
a person in front is higher near his estimated position compared to the priors far away
from him and compared to a person in rear. Doing this in a structured, consistent and
logical manner is the challenge. We employ the following methodology. For each pixel
�, we project a ray in space passing through the optical center of the camera (see Figure
3). We calculate the minimum distances 
	 of this ray from the vertical lines passing
through the currently estimated centers of the people. Also calculated are the heights
�	 of the shortest line segments connecting these lines. Then, the prior probability that
a pixel � is the image of person � is set as

��������� � �	��	 	 
	�
�

k occludes j

�	� �
��
	 

�� (3)

����������������� �
�

all j

�	� �	��	 	 
	�� (4)

where �	��	 	 
	� is the “presence” probability described in section 4.2. A person “�
occludes �” if the distance of � to the optical center of the camera is less than the
distance of � to the center.

The motivation for the definition is that a particular pixel originates from a person
if and only if (1) the person is present along that line of sight (Probability for this = � 	),



Fig. 4. The result of segmenting images shown in Figure 1

and (2) no other person in front of her is present along that line of sight (Probability = 1
- �
). If no person is present along a particular line of sight, we see the background. The
classification procedure enables us to incorporate both the color profile of the people,
and the occlusion information available in a consistent and logical manner.

It is interesting to note that we expect to obtain better background subtraction us-
ing our segmentation procedure than using traditional background subtraction methods
because we take into account models of the foreground objects in the scene in addition
to information about the background that is the only input for traditional background
subtraction methods. Indeed, this is what we observe during experiments.

We need a procedure to detect new people entering the scene and bootstraping the
algorithm in order to make it fully automatic. Towards that end, we detect unclassified
pixels as those for which ������ � � ����� is below a given threshold for all the person
models and the background, i.e. none of the person models or the background can ac-
count for the pixel with a high enough probability. For these pixels, we use a simple
color segmentation algorithm, which groups together pixels having similar color char-
acteristics. This segmentation creates additional regions in the image and these regions
are also matched across cameras as described in the next section.
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Fig. 5. The point of intersection of the diagonals of the quadrilateral formed by back-projecting
the endpoints of the matched segments yields a 3D point lying inside an object. The matching
segments are 1 and 1’, and 2 and 2’ respectively.

6 Region-Based Stereo

Along epipolar lines in pairs of views, we match regions from one camera view to
the regions in the other. Segments belonging to the same person in different views (as
determined by the classification algorithm) are matched to each other. Regions corre-
sponding to unclassified pixels are matched to each other based on color characteristics.
For each matched pair of segments, we project the end-points of the segments and form
a quadrilateral in the plane of the corresponding epipolar lines. The point of intersection
of the diagonals of this quadrilateral is taken to be belonging to the object (see Figure
5). This is because, for a convex object this is the only point that can be guaranteed to
lie inside the object (see proof in Appendix). This is assuming that the complete object
is visible and segmented completely as one region in each view. For any other 3D point
in the plane of the epipolar lines, it is possible to construct a case in which this point
will lie outside the object.

7 Producing Likelihood Estimates on the Ground Plane

Having obtained 3D points belonging to people, we want to detect and track people
in a robust manner rejecting outliers. Assuming the people are standing upright or are
otherwise extended primarily in the vertical direction, one natural way to do that would
be to do the estimation on the ground plane after projecting the 3D points onto it. It is
also possible to do clustering in 3D and this would be the method of choice for many



applications. However, for our application, estimation on the ground plane is better
since we are dealing with only walking people. We define a “likelihood” measure which
estimates whether a particular location on the ground plane is occupied by an object.
We develop likelihood maps for each camera pair used and then combine these maps in
a robust manner using the occlusion information available.

7.1 Likelihood from a Single Camera Pair

A simple way to develop likelihood maps using ground points is to use Gaussian ker-
nels. The weight and standard deviation of the kernels is based on the minimum width
of the segments that matched to give rise to that point, and the camera instantaneous
fields of view (IFOV). This gives higher weight to points originating from longer seg-
ments than from smaller ones. This is done for each pair of cameras for which the
segmentation and matching is performed.

7.2 Combining Results from Many Camera Pairs Using Occlusion Analysis

Given the likelihood maps from matching across pairs of cameras, we describe a method
for combining likelihood maps that makes use of occlusion information available from
the approximate position of the people. For each of the cameras, we form a probability
map that gives us the probability that a particular location x is visible from the camera.
First of all, the camera center is projected onto the ground plane. Then, for each point x
on the ground plane, we calculate the perpendicular distance 
 	 of each person � from
the line joining the camera center and the point x. Then, defining “presence” probabil-
ities �	�� in a way similar to section 4.2, but taking only the width as parameter (by
averaging over the height parameter), we find the probability that the point x is visible
from the camera � as

����� �
�

j occludes x
�	� �	�
	�� (5)

where � occludes x if its distance from the camera is less than x. Now, for a particular
camera pair ��		 ���, the weight for the ground point � is calculated as


���������� � ������������ (6)

The weight is essentially the probability that x is visible from both the cameras. The
weighted likelihood value is then calculated as

����� �

�
������� 
�����������������������

������� 
����������
(7)

This definition helps us to dynamically weigh the different likelihood values such
that the values with the highest confidence level (least occlusion) are weighted the
most. Note that the normalization constant is different for each ground plane point and
changes over time.



Fig. 6. (a) The likelihood map obtained for the image set shown in Figure 1 by applying the
occlusion-analysis weighting scheme. The dots show the position state variable of the Kalman
filter tracking the person. (b) The likelihood map for another time step from the same sequence.

8 Tracking on the Ground Plane

After obtaining the combined likelihood map, we identify objects by examining like-
lihood clusters and identifying regions where the sum of likelihoods exceeds a given
threshold. The centroids of such likelihood “blobs” are obtained simply using

�������� �

�
���������� � � ������

�
�����

(8)

where ����� is the likelihood at point �. These object blobs are then tracked over time
using a Kalman filter.

9 Updating Models of People

Observed images and information about the current position of the people are used to
update models of people and create ones for the “new” people detected. For each pixel,
we calculate the “presence” probabilities �	 for each person as described earlier. We
determine if �	 is above a certain threshold for a particular person and below another
(lower) threshold for all others. This helps us in ensuring that the pixel is viewing the
particular person only and nothing else (except the background). In order to determine if
the pixel belongs to the background or not, we use the background model to determine
the probability that the pixel color originates from the background. If this probability is
below a certain threshold, then we determine that the pixel belongs to the person; else
it belongs to the background. If it belongs to the person, it is added as a kernel to the
color model of the person at that height. We update the “presence” probability � 	 for
the person by incrementing the count for the total number of observations at height �



Fig. 7. Cumulative errors for four sequences of 200 time steps each by (a) averaging likelihoods
and using no occlusion analysis, and (b) using occlusion analysis.

and width 
 for the person and incrementing the count for positive matches only if this
pixel is determined to belong to the person (according to the above mentioned method).
The “presence” probability at that height and width is then simply the second count
divided by the first.

10 Implementation and Experiments

Image sequences are captured using up to 16 color CCD cameras. These cameras, which
are attached to “Acquisition” PCs via frame grabbers, are capable of being externally
triggered for synchronization purposes. Cameras are located at positions surrounding
the lab so that they see the objects from different viewpoints. All of the cameras are
calibrated using a global coordinate system and the ground plane is also determined.
Frame synchronization across cameras is achieved using a TTL-level signal generated
by a Data Translation DT340 card attached to a controller PC, and transmitted via coax-
ial cables to all the cameras. For video acquisition, the synchronization signal is used
to simultaneously start all cameras. No timecode per frame is required.

In the distributed version of the algorithm where we use a Pentium II Xeon 450MHz
PC for each of the cameras, the system currently takes about 2 seconds per iteration of
the ground plane position finding loop. On the average, we need about 2 - 3 iterations
per time step, so the running time of the algorithm is about 5 seconds per time step.
We believe that by code optimizations and faster processors, we will be able to run the
algorithm in real time.

In order to evaluate our algorithm, we conducted experiments on four sequences
containing 3, 4, 5 and 6 people respectively. The attempt was to increase the den-
sity of people till the algorithm broke down and to study the breakdown thresholds
and other characteristics. Each sequence consisted of 200 frames taken at the rate
of 10 frames/second and people were constrained to move in a region approximately



Fig. 8. Total errors as a function of time for the sequence with 5 people using 8 cameras. Note
how the errors decrease with time as the models become more robust. Errors after the initial
period occur mainly because of people coming too close to each other.

3.5mX3.5m in size. Matching was done for only adjacent pairs of cameras (� pairs)and
not for all of the ��

� pairs possible. This helps us control the time complexity of the
algorithm, but reduces the quality of the results obtained.

For each of the sequences, we calculated the number of false objects found and the
number of true objects missed by the algorithm. We calculated these metrics using 4,
8 and 16 cameras in order to study the effect of varying the number of cameras and to
determine the breakdown characteristics, thus enabling us to determine the minimum
number of cameras required to properly identify and track a certain number of objects.
The cumulative errors over the 200 frames are shown in Figure 7(b). Also shown in
Figure 7(a) are the error metrics obtained when the likelihood values obtained from
different cameras are weighted equally and occlusion analysis is not used. This helps
us observe the improvement obtained by using the occlusion analysis scheme. Most of
the errors occur when the models for people are not very accurate, e.g., in the beginning
and when a new person enters the scene. However, as models become better, it is able
to correct itself after a few time steps only. The sequences containing 5 and 6 people
have severe occlusion at many time steps such that a person is surrounded by the others
in such a way that he is not visible from any of the cameras. This results in these people
not being detected for those time steps.

11 Summary and Conclusions

In this paper, we have presented a system for segmenting, detecting and tracking multi-
ple people using multiple synchronized cameras located far from each other. It is fully
automatic and does not require any manual input or initialisations. It is able to han-
dle occlusions and partial occlusions caused by the dense location of these objects and
hence can be useful in many practical surveillance applications.
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is the only point guaranteed to lie inside the object
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Appendix

In this section, we prove that, in the case of a convex object O, the point of intersection
of the diagonals of the quadrilateral formed by backprojecting the end-points of corre-
sponding segments of that convex object is guaranteed to lie inside the object; and that
no other point can be guaranteed thus.

We prove this with the help of an illustration showing the plane corresponding to the
epipolar lines. (see Figure 9). Let  and � be the rays back-projected from the left and
right ends of the segment as seen from the first camera. Let � and � be the corresponding
rays from the second camera. Now, let ��	 ��	 �� and �� be the points of intersection
of , �, � and � as shown in the diagram. Let � be the point of intersection of the
diagonals of ��������. Since camera 1 sees some point on line  that belongs to O,
and O is guaranteed to lie between rays � and �, we can conclude that there exists a
point on the line segment ���� that lies on the boundary of O. Let this point be called
A. Similarly, we can conclude the existence of points from O on line segments � ���,
���� and ����. Let these points be called B, C and D respectively. Since the object is
convex, we can now conclude that all points lying inside the quadrilateral ABCD also
lie within O.



Now, consider the line segment ��. Omitting details, we can easily prove that
the point � lies on the same side of �� as the quadrilateral ����. Similarly, we
can prove that � lies on the same side of lines ��, �� and �� as the quadrilateral
����. But this means that � lies inside ����, hence inside O.

For any point � � other than � , it is possible to place A, B, C and D such that the
point � � lies outside the quadrilateral ABCD. For, it must lie on one side of at least one
of the lines ���� and ����. If it lies on the side of ���� towards ��, then we can place
AB such that � � lies on the side of AB towards ��, thus implying that it lies outside
ABCD.

Therefore, the point � is the only point guaranteed to lie inside O.
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