
Benchmarking Resource Usage for
Spectrum Sensing on Commodity Mobile Devices

Ayon Chakraborty, Udit Gupta and Samir R. Das
Department of Computer Science, Stony Brook University, Stony Brook NY 11747, U.S.A.

{aychakrabort, ugupta, samir}@cs.stonybrook.edu

ABSTRACT
Effective management of various white space spectra may require
spectrum sensing at finer spatial granularity than is feasible with
expensive laboratory-grade spectrum sensors. To enable this, we
envision a future where commodity mobile devices would be ca-
pable of spectrum sensing as needed, possibly via crowd-sourcing.
However, since mobile devices are resource limited, understanding
their resource usage in this set up is important, specifically in terms
of overall latency and energy usage. In this work, we carry out a
comprehensive performance benchmarking study using 4 different
USB-powered software radios and 2 common smartphone/ embed-
ded computers as mobile spectrum sensing platforms. The study
evaluates latency and energy usage using a suite of commonly used
sensing algorithms specifically targeting TV white space spectrum.
The study shows that latency due to sensing and computation and
related energy usage are both modest.

CCS Concepts
•General and reference→Measurement; •Hardware→ Wire-
less devices;

1. INTRODUCTION
As the demand for wireless spectrum grows exponentially so

is the need for large-scale spectrum sensing. Large-scale sens-
ing serves various spectrum management needs depending on the
spectrum. For example, we anticipate that such large-scale sens-
ing would be a key enabler towards building a shared spectrum
access infrastructure by finding underutilized spectrum whites-
paces. It is widely understood that spectrum databases [6, 2] that
solely rely on wireless propagation models for finding such whites-
paces are largely error-prone [22] and needs to be ‘measurement-
augmented’ [13]. Many similar needs arise in spectrum monitor-
ing applications where the spectrum owner must monitor spectrum
usage to evaluate spatio-temporal usage patterns [22] or to detect
unauthorized use [24].

Depending on specific applications, there has been various pro-
posals about how spectrum sensors should be deployed. For exam-
ple, existing work deploys lab-grade spectrum sensors or high-end

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HotWireless’16, October 03-07, 2016, New York City, NY, USA
c© 2016 ACM. ISBN 978-1-4503-4251-3/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2980115.2980129

software radio platforms where convenient [15], including public
vehicles [22]. Many shared spectrum designs for exploiting white
spaces also deploy similar sensors on the access points (AP) [18,
11]. Regardless, it is always too expensive or impractical to de-
ploy laboratory-grade devices at any significant spatial granularity
covering arbitrary areas. Recently, there have been propositions
to scale sensing at finer spatial granularities using crowd-sourcing
mechanisms [19]. Initial prototypes have shown an early promise
using commodity mobile devices [16, 23, 17] as spectrum sensors.

However there is a concern that such mobile spectrum sensors
using commodity hardware may be too resource limited so be able
to gather useful data in a crowd-sourced scenario. For example, the
sensors may have slower sampling rate and higher retuning latency.
This increases the ‘scan time’ to sense a given amount of spectrum.
Further, spectrum sensing typically uses computationally involved
algorithms. Limited computational power on the mobile platform
makes signal detection slower or the accuracy poorer. Finally, the
energy budget on a mobile platform is limited and both sensing and
computation could be energy intensive.

Contributions: Our goal in this work is to perform systematic
performance evaluations to address these concerns. We use a
testbed comprising of 4 different USB-powered, small form-factor,
software-radio platforms and 2 different smartphone/ embedded
computer platforms. These platforms are all off-the shelf and pro-
vide representative capabilities of a mobile spectrum sensor that
could be built using today’s commodity technology. We evaluate
resource usage in terms of latency and energy consumptions for the
chosen platforms for 3 commonly used detection algorithms for TV
signals. Our general conclusion is that the resource usage is quite
modest. In particular, energy consumptions could be less than 20%
of energy cost of popular smart phone applications. Overall the
latency for sensing (including the necessary computation time) is
also modest – within about 100s of ms that could enable a range of
sensing applications.

2. MOBILE SPECTRUM SENSING
In this section we describe the prototype mobile spectrum sen-

sors we considered in our benchmarking study along with three
general categories of algorithms that are highly used for determin-
ing spectrum occupancy.

2.1 Mobile Spectrum Sensor Prototypes
The mobile spectrum sensor consists of two units – 1) the sensing

unit that primarily obtains the signal samples, and 2) the compute
unit that runs the signal detection algorithms. Since the empha-
sis of this work is on “commodity” mobile platforms, we focus
on small-factor, low power devices easily available in the market.
Unfortunately, there is no combination of commodity sensing-plus-

(a) RTL Dongle with phone (b) BladeRF with RPi (c) USRP B200 with RPi (d) USRP B210 with RPi
Figure 1: Some examples of platform configurations considered in this work. RPi stands for Raspberry-Pi.

RTL-SDR BladeRF USRP B200 USRP B210
Radio Spectrum 24MHz - 1.7 GHz 300MHz - 3.8 GHz 50MHz - 6GHz 50MHz - 6GHz
Sample Size 8-bit 12-bit 12-bit 12-bit
Sample Rate 2.5 Msps 40 Msps 61 Msps 61 Msps
Frequency Correction ±50ppm ±2ppm ±2ppm ±2ppm
FPGA N/A Altera Cyclone 4E Spartan 6 XC6SLX75 Spartan 6 XC6SLX150
Interface USB 2 USB 2/3 USB 2/3 USB 2/3
Form factor USB flash drive 5" x 3.5" 5.9" x 3.8" 5.9" x 3.8"
Cost ≈ 20$ ≈ 420$ ≈ 670$ ≈ 1100$

Table 1: Capabilities and cost of the sensing units considered

compute unit that has a form factor of a mobile phone, but approx-
imations are possible.
Sensing unit: There are several sensing units currently available
that are USB-powered though they indeed vary significantly cost,
capability and power consumption. We choose 4 of these de-
vices. They are basically USB-powered SDRs: 1) RTL-SDR [5],
2) BladeRF [1], 3) USRP B200 [7], 4) USRP B210 [8]. The latter
3 are FPGA-based devices. Each sample (I/Q) from the RTL-SDR
is a byte while it is 12-bits for the other three sensors. More bits
means less quantization noise. RTL-SDR has a maximum sample
rate of 2.5Msps, BladeRF has 40Msps and the USRPs got 61Msps
each. Sample rate is simply how many samples can be collected
per unit time. This also determines the signal bandwidth that can
be sensed at a time. See Table 1 for a general comparison of fea-
tures among the sensors.
Compute unit: The choice of the compute unit is relatively
straightforward. One of the chosen platform is a late-model mo-
bile phone with USB On-the-Go support (Samsung Galaxy S4 with
a quad-core 1.6 GHz CPU, 400 MHz GPU and 2 GB memory) so
that it can act as a USB host. The other one is a popular low cost
embedded platform that can easily be battery driven (Raspberry Pi
with 700 MHz CPU and 256 MB memory). Figure 1 shows pictures
of our chosen platforms.

2.2 Sensing Algorithms
Spectrum sensing is a signal detection task, performed by a suit-

ably designed algorithm. The algorithm could be generic or spe-
cific to the type of signal. Regardless, these algorithms may incur
significant computational overhead on the mobile platform, specif-
ically when a high detection performance is desired. We assume
that the detection must be performed locally on the mobile platform
itself, as transferring the signal samples to a remote server will con-
sume a very significant cost, both in terms of latency and energy.
Performance here is characterized by probability of detection (PD)
and probability of false alarm (PFA). Given limited resources, un-
derstanding the performance vis-a-vis resource ‘cost’ in terms of
latency and battery energy is important. We will evaluate these
aspects in our chosen testbed with respect to three representative
algorithms of differing characteristics for primary signal detection
in the TV white space (TVWS). We use TVWS just as a case study

given a significant literature in this space, and given the spectrum
range limitations of the chosen platforms. In future, we would like
to study other bands and signals as well. In the following subsec-
tions we briefly describe these algorithms. Each algorithm oper-
ates directly on a set of I/Q (in-phase and quadrature phase) sam-
ples collected by the sensing unit. Two important parameters are
the sampling rate (samp_rate) of the ADC and the sampling time
(T). They yields the number of samples N = T × samp_rate.
The sampling rate also determines the bandwidth of the signal that
can be sensed.

Energy Based Detection: This is the simplest and the most intu-
itive of the algorithms and can be used for any signal even when
the signal properties are unknown. The idea here is to determine
the total power contained within the channel (or a part thereof) of
interest. We determine this by computing the sum of the squared
magnitude of each bin of an M -bin FFT on the I/Q samples. This
estimates the total channel power and forms the test statistic. If
this quantity is more than a predetermined decision threshold (e.g.,
noise floor specific to the device), we determine that the channel is
occupied (signal present).

While the basic idea is straightforward, there are several issues.
It is hard to select the decision threshold perfectly due to the uncer-
tainties in noise floor estimation. Some parts of noise (e.g., quanti-
zation noise and thermal noise) can indeed be estimated by known
methods [10]. More bits in the ADC and also more bins in FFT re-
duce the noise and improve detection performance. However, other
sources of noise such as due to channel fading, mismatch between
the I and Q signal pathways, non-ideal behavior of the oscillator,
etc are hard to estimate [21]. Some form of measurement-based
calibration needs to be adopted in practical settings. This can be
done in a device specific fashion by measuring the channel power
in a channel known to be empty.

It is also well-understood that more samples improve the detec-
tion performance.1 However, there is a limit to this in practical
settings at very low SNRs (so-called ‘SNR wall’ [21]), where even
infinite number of samples will not provide any acceptable detec-

1In our work every M -th sample is averaged and fed to the M -bin
FFT. This is equivalent to repeated FFTs and averaging the powers
in the bins later.

-60

-50

-40

-30

-20

 524 524.25 524.5 524.75 525

R
el

at
iv

e
P

ow
er

 (d
B

)

Frequency (MHz)

Threshold = Total Power in Bins

(a) Energy based detector

-60

-50

-40

-30

-20

 524 524.25 524.5 524.75 525

R
el

at
iv

e
P

ow
er

 (d
B

)

Frequency (MHz)

Pilot Signal

Threshold

Average Bin Power

(b) Feature based detector

 0

 0.2

 0.4

 0.6

 0.8

 1

1 256 512 778 1024

N
or

m
al

iz
ed

 A
m

pl
itu

de

FFT Bins

Expected FFT Component
Threshold

(c) Autocorrelation based detector

Figure 2: Visual clues for the three sensing algorithms, interpretation of the threshold.

tion performance. Given a number of samples available, perfor-
mance can be improved by increasing the number of bins in the
FFT. But given the O(M logM) complexity, this increases com-
putation time.

Feature Based Detection: This techniques takes advantage of
some known features within the signal. For example, in the ATSC
TV signal there is a pilot at 309 KHz offset from the lower edge of
the channel and the pilot signal’s power is less than the channel’s
aggregate power by approximately 11.3 dB [9]. This also means
that the bin corresponding to the pilot tone has a much higher sig-
nal strength compared to its neighboring bins in the FFT, if we
apply the previous energy-based detection. We can indeed apply a
very similar method but now just focused on detecting the presence
of pilot instead of evaluating the entire channel power. Since the
pilot occupies a significantly smaller bandwidth (basically a tone)
this helps to reduce the noise compared to the case when the entire
channel is considered. Definitely, increasing the number of bins in
the FFT and prolonging the sensing time (more samples) provide
advantages in this case too. In particular, larger number of bins
can discriminate the pilot better even when the signal is very weak.
A very similar technique is used in [13, 22] to track the pilot in
presence of a sufficiently high noise floor.

With the same number of bins, this techniques could be only
slightly slower than the energy-based method as a few modest ad-
ditional computation steps are needed.

Autocorrelation Based detection: The above two techniques are
fundamentally based on computing the power within the whole or
part of a channel. Now, instead of calculating any power directly,
we exploit the fact that the pilot tone is a sinusoidal signal and
autocorrelating the signal samples obtained from a bandwidth con-
taining the pilot must contain a corresponding sinusoidal signal in
the autocorrelation function (ACF). The autocorrelation-based de-
tector [14] is based on this intuition.

Assume we autocorrelate N samples and look at the ACF at each
lag from 0 to N . If the signal is periodic (with a period p) and has
multiple cycles within the interval (0, N), the ACF will also be pe-
riodic and show maximum correlation (peak amplitude of the ACF)
at lags that are multiples of p. We tune the sensing unit at a cen-
ter frequency fc and obtain I/Q samples at a certain sample rate.
Suppose the pilot tone is expected at fpilot. The ACF function now
contains a sinusoid with a frequency |fc− fpilot|. It is advisable to
keep the sample rate small but enough to accommodate the interval
(fc, fpilot) within the Nyquist bandwidth. The presence of the si-
nusoid can be detected again by taking an FFT of the ACF function
itself and detecting the presence of a peak at the desired frequency
(|fc − fpilot|).

The autocorrelation-based technique is generally understood to
be able to detect presence of very weak signals. This is because it is

not based on direct energy comparisons that could be impacted by
noise. Noise is generally uncorrelated and and thus even when the
signal is very weak, the above correlations could be discovered at
specific frequencies. However, while we expect a better detection
performance with this technique, it is computationally intensive.
Computing autocorrelation itself requires an FFT and inverse FFT.
Another additional FFT computation is needed to detect the peak.

2.3 Signal Detection Performance
The three algorithms have different detection performances in

terms of PD or PFA. This performance also depends on 1) the
received signal power or SNR, and 2) the number of samples (pro-
portional to the sensing time at a given sample rate) fed to the al-
gorithm [20, 21]. Thus, depending on the context and expected
performance a given algorithm can be preferred over the other to
optimize resource costs. For brevity, in this short paper we do not
report the signal detection performance; we limit our analysis only
to latency and power/energy measurements. We use two cases with
10K and 100K samples (10ms and 100ms sensing time for the stud-
ied sample rate of 1 Msps) as representatives. Here we want so as-
sure the reader that these many samples are enough for reasonable
detection performance even for fairly weak TV signals. For exam-
ple, our analysis (not reported here) shows that even in the smaller,
10K samples case and for a very weak TV signal (−90 dBm), PD

could be higher than 85% with PFA less than 15% for all algo-
rithms studied here independent of the platform. 100K samples
further increases the PD to more than 92% with PFA slightly be-
low 10% for the same TV signal for all the three algorithms.

3. BENCHMARKING RESOURCE USAGE
We essentially evaluate two important metrics for the signal de-

tection task: 1) latency and 2) energy usage. We perform these
evaluations separately for the sensing and compute units. These
benchmarking efforts highlight that both latency and energy usage
are reasonable showcasing the feasibility of mobile spectrum sens-
ing.

3.1 Latency
Latency measures the responsiveness of the mobile spectrum

sensor platform. A series of events take place from the time when
the mobile spectrum sensor is instructed to start sensing till the time
it reports the spectrum occupancy decision. This involves turning
on or retuning the sensing unit, obtaining and processing the I/Q
samples in the compute unit and determining spectrum occupancy
via a sensing algorithm presented in the previous section. Three
latency components are relevant:
1. Startup latency (sensing unit): This is the time elapsed after

instructing the device to power up until the first sample is ob-

 0

 2

 4

 6

 8

 10

Retune Delay

Ti
m

e
(m

s)
RTLSDR

USRPB200
USRPB210

BladeRF

Startup Delay
 0

 50

 100

 150

 200

 250

 300

Ti
m

e
(m

s)

(a) Sensing unit latency

 0

 20

 40

 60

10ms

Ti
m

e
(m

s)

N
FF

T=
12

8

100ms
 0
 50
 100
 150
 200

Ti
m

e
(m

s)

 0
 25
 50
 75

 100

Ti
m

e
(m

s)

N
FF

T=
10

24

Energy
Feature

Autocorrelation

 0
 50
 100
 150
 200

Ti
m

e
(m

s)

(b) Compute unit latency (Raspberry Pi)

 0

 15

 30

 45

10ms

Ti
m

e
(m

s)

N
FF

T=
12

8

100ms
 0
 40
 80
 120
 160

Ti
m

e
(m

s)

 0
 30
 60
 90

 120

Ti
m

e
(m

s)

N
FF

T=
10

24

Energy
Feature

Autocorrelation

 0
 50
 100
 150
 200

Ti
m

e
(m

s)

(c) Compute unit latency (phone)
Figure 3: Latency measurement results.

 0

 0.5

 1

 1.5

 2

 2.5

 3

Idle

P
ow

er
 (W

)

RTLSDR
USRPB200

USRPB210
BladeRF

Sampling
 0

 0.5

 1

 1.5

 2

 2.5

 3

P
ow

er
 (W

)

(a) Sensing unit power

 0

 15

 30

 45

10ms

E
ne

rg
y

(m
J)

N
FF

T=
12

8

100ms
 0

 40

 80

 120

E
ne

rg
y

(m
J)

 0
 25
 50
 75

 100

E
ne

rg
y

(m
J)

N
FF

T=
10

24

Energy
Feature

Autocorrelation

 0
 50
 100
 150

E
ne

rg
y

(m
J)

(b) Compute unit energy (Raspberry Pi)

 0

 10

 20

 30

10ms

E
ne

rg
y

(m
J)

N
FF

T=
12

8

100ms
 0

 20

 40

 60

E
ne

rg
y

(m
J)

 0

 50

 100

 150

E
ne

rg
y

(m
J)

N
FF

T=
10

24

Energy
Feature

Autocorrelation

 0

 50

 100

 150

E
ne

rg
y

(m
J)

(c) Compute unit energy (phone)
Figure 4: Power/energy measurement results.

tained.

2. Retune latency (sensing unit): This is the time elapsed after
issuing a sensing instruction involving a frequency change or
change in sample rate until the first sample is obtained, assum-
ing that the device is already powered up.

3. Compute latency (compute unit): This is the computation time
of the sensing algorithm from the time the first sample is re-
ceived by the compute unit. The algorithms are implemented in
C and ported to the Android and Raspbian platforms. Pipelining
is used to improve latency by overlapping sensing and compu-
tation as serializing them makes the overall latency very high.2

The latency results are presented in Figure 3. Note in subfig-
ure 3(a) that the retune latency is more than an order of magnitude
smaller than startup latency (< 10ms vs. 100s of ms). This indi-
cates that samples can be fetched relatively quickly if the device is
on. However, we will later see that the idle mode power consump-
tion is relatively high and thus keep the device powered on while
samples are not needed may not be a recommended practice. Sub-
figures 3(b) and (c) present the compute latency for the two chosen
platforms. Two sensing times are used 10ms and 100ms. These
translate to 10K and 100K samples, respectively, at 1Msps sample
rate. These samples are averaged before feeding to the actual algo-
rithm (involving FFT computations etc.) as explained in Section 2.
We use two FFT sizes in the algorithm, 128 and 1024. As expected,
the autocorrelation detector is somewhat slower than other two de-
tectors. The difference is more significant for larger FFT sizes and

2This actually requires a tricky implementation. The sensing unit
delivers the samples to the compute unit in terms of blocks of ad-
justable size (e.g., 1024 bytes). The compute unit processes a block
while the sensing unit fetches the next. Obviously, block size im-
pacts performance. We experimented with various block sizes. For
the parameters of our experiments, 1024 bytes block works well.
This is the size used in all reported results.

 0

 2.5

 5

 7.5

 10
25

6

51
2

10
24

20
48

40
96

81
92

Im
pr

ov
em

en
t F

ac
to

r

Number of FFT bins
Figure 5: Improvement in computation latency for performing
FFT in CPU vs. GPU in Samsung Galaxy S6 smartphone for
different bin sizes.
also for smaller number of samples. The latter is due to the fact that
the averaging times dominate for larger number of samples.
Improvement using GPU: We also consider using the GPU (Sam-
sung Galaxy S4 only, having a Qualcomm Adreno-320 GPU) for
faster computation. We use openCL framework [4] that gives an
excellent choice for executing parallel code on mobile GPUs. How-
ever, use of GPU provides only modest improvements for the FFT
sizes considered in this work (upto 1024). Significant improve-
ments were noted with larger sizes, e.g., a factor of ≈9 improve-
ment with size 8192 (see Figure 5 for details). Thus, we deem GPU
to be useful only when sensing over a wider band.

3.2 Energy Consumption
Just like latency, we evaluate energy consumption in both the

sensing unit and compute unit. For the sensing unit, there are two
states considered: 1) Idle state: the device is powered up, but oth-
erwise idle, 2) Steady state: the device is sensing and sending the
I/Q samples to the compute unit. An external power meter (specif-

 0
 10
 20
 30
 40
 50
 60
 70

Sen
sin

g
Call

Vide
o

W
eb

E
ne

rg
y

(J
)

Figure 6: Comparison of spectrum sensing energy consump-
tion with respect to typical applications in a smartphone. One
minute duration is assumed.

ically, Monsoon power monitor [3] along with a separate logging
laptop3) is used to log real time power usage in mW or W. When
appropriate, power is integrated over time to determine energy (in
mJ or J).

The power/energy measurement results are presented in Figure 4.
The experimental parameters for subfigures (b) and (c) are exactly
the same as those in Figure 3, e.g., sampling for 10ms or 100ms
at 1Msps sampling rate and two FFT sizes – 128 and 1024. Fig-
ure 4(a) shows that the idle mode power consumption is relatively
high except in RTL-SDR. This is due to the lack of FPGA in RTL-
SDR. The plots in Figure 4(b) and (c) generally track the corre-
sponding latency numbers, except for autocorrelation-based detec-
tor. For the latter, the energy expenses appear a little higher than
what latency figures would normally indicate. This is perhaps due
to significant CPU hungry computations.

3.3 Comparison with Typical Applications
To give the reader a sense how the energy values compare with a

typical use cases on a smartphone platform, we compare spectrum
sensing with three other applications, viz., making a call, video
playback, web browsing. For the latter use cases we borrow the ex-
perimental results from [12]. For video playback and web browsing
(on WiFi) the phone consumes approximately 455mW and 353mW.
Additionally, screen backlight consumes about 500mW. Making a
phone call (GSM) it consumes about 1054mW. Compare these with
an RTL-SDR monitoring the lower 1MHz edge of a TV channel
(contains the pilot) and using a sample rate of 1 Msps. Assum-
ing the sensing budget to be 10ms, the sensor in sampling state
consumes about 10mJ, the computation takes approx. 90mJ for au-
tocorrelation detector using 1024-bin FFT, hence 100mJ per scan.
Each scan spans about 70ms time including sensing and computa-
tion. Considering a 1-minute time slot, assume sensing is scheduled
every 2 seconds, there would be 30 scans. The 30 scans in a minute
will consume 3000mJ that take about 30× 70 = 2100ms. Adding
some retuning latencies etc., the sensor will be practically idle for
57 seconds that consumes about 5700mJ. Thus it consumes about
8.7J in a minute. Figure 6 compares this with the corresponding
energy consumptions for the other applications. Spectrum sensing
costs only about 15 − 20% of any of these other applications and
still ensures the phone is actually idle most of the time.

4. CONCLUSIONS
3For measurements, the Monsoon meter needs to power the device
via a USB port directly. For measurements on the sensing unit,
custom USB cables were created so that the Monsoon powers the
unit, while the compute unit is still connected via USB to provide
instructions and receive measurement samples.

Ever-surging demand for wireless spectrum, dynamic spectrum
sharing and possibility of wireless technologies to co-exist in the
same spectrum make it necessary to enable real-time spectrum
monitoring at a high degree of spatial granularity. In this paper
we have made a case that imparting spectrum sensing capabili-
ties on commodity mobile devices is the only reasonable mech-
anism to achieve such scale. We have established the feasibility
of our proposition by performing a set of benchmarking exper-
iments using spectrum occupancy detection in TVWS as a test
case. We have used a suite of USB-powered, small form-factor
SDR platforms as sensing units supplemented by commodity mo-
bile phone/embedded computers as compute units. We have ap-
plied several common spectrum sensing algorithms to study their
sensing performance vis-a-vis the total latency and energy cost. We
have shown that energy usage is modest relative to common smart-
phone applications.

5. ACKNOWLEDGEMENTS
This work was partially supported by NSF grant AST-1443951.

6. REFERENCES
[1] Blade-RF. http://nuand.com/.
[2] Google Spectrum Database. http://www.google.com/get/spectrumdatabase/.
[3] Monsoon Power Monitor.

https://www.msoon.com/LabEquipment/PowerMonitor/.
[4] openCL. https://www.khronos.org/opencl/.
[5] RTL-SDR. http://sdr.osmocom.org/trac/wiki/rtl-sdr.
[6] Spectrum Bridge website. http://spectrumbridge.com.
[7] USRP B-200. http://www.ettus.com/product/details/UB200-KIT.
[8] USRP B-210. http://www.ettus.com/product/details/UB210-KIT.
[9] Second report and order and memorandum opinion and order in the matter of

unlicensed operation in the TV broadcast bands. FCC ET Docket 08-260, Nov.
2008.

[10] W. R. Bennett. Spectra of quantized signals. Bell System Technical Journal,
27:446–471, 1948.

[11] M. Buddhikot, C. Kim, and J. Ryoo. Design and implementation of an
end-to-end architecture for 3.5 GHz shared spectrum. In Proc. IEEE DySPAN,
2015.

[12] A. Carroll and G. Heiser. An analysis of power consumption in a smartphone.
In Proc. USENIX ATC, 2010.

[13] A. Chakraborty and S. R. Das. Measurement-augmented spectrum databases for
white space spectrum. In Proc. ACM CoNEXT, 2014.

[14] S. Chaudhari, V. Koivunen, and H. V. Poor. Autocorrelation-based decentralized
sequential detection of OFDM signals in cognitive radios. Signal Processing,
IEEE Transactions on, 57(7):2690–2700, 2009.

[15] A. Iyer, K. K. Chintalapudi, V. Navda, R. Ramjee, V. Padmanabhan, and
C. Murthy. SpecNet: Spectrum sensing sans frontieres. In Proc. NSDI, 2011.

[16] A. Nika, Z. Zhang, X. Zhou, B. Y. Zhao, and H. Zheng. Towards commoditized
real-time spectrum monitoring. In Proc. ACM HotWireless, 2014.

[17] D. Pfammatter, D. Giustiniano, and V. Lenders. A software-defined sensor
architecture for large-scale wideband spectrum monitoring. In Proc. IEEE
IPSN, 2015.

[18] S. Sen, T. Zhang, M. M. Buddhikot, S. Banerjee, D. Samardzija, and S. Walker.
A dual technology femto cell architecture for robust communication using
whitespaces. In Dynamic Spectrum Access Networks (DYSPAN), 2012 IEEE
International Symposium on, pages 242–253. IEEE, 2012.

[19] J. Shi, Z. Guan, C. Qiao, T. Melodia, D. Koutsonikolas, and G. Challen.
Crowdsourcing access network spectrum allocation using smartphones. In Proc.
ACM HotNets, 2014.

[20] R. Tandra and A. Sahai. Fundamental limits on detection in low SNR under
noise uncertainty. In Wireless Networks, Communications and Mobile
Computing, 2005 International Conference on, volume 1, pages 464–469.
IEEE, 2005.

[21] R. Tandra and A. Sahai. SNR walls for signal detection. Selected Topics in
Signal Processing, IEEE Journal of, 2(1):4–17, 2008.

[22] T. Zhang and S. Banerjee. A Vehicle-based Measurement Framework for
Enhancing Whitespace Spectrum Databases. In Proc. ACM MobiCom, 2014.

[23] T. Zhang, A. Patro, N. Leng, and S. Banerjee. A wireless spectrum analyzer in
your pocket. In Proc ACM HotMobile, 2015.

[24] M. Zheleva, R. Chandra, A. Chowdhery, A. Kapoor, and P. Garnett. Txminer:
Identifying transmitters in real-world spectrum measurements. In Proc. IEEE
DySPAN, 2015.

