Virtual Private Networks

Chester Rebeiro
IRVYELIER

s

Private Networks
Physically disconnected from the
outside Internet. Three properties:
e Users Authenticated.

Users are authorized and their identities verified.
e Content Protected.
Communication within the private network cannot be sniffed from outside.
cables are physically secured
* Integrity Preserved.
Nobody from outside the network can spoof

2
—
- _— —e e e — — eeee— — — — - —

Virtual Private Networks

Internet

__

Able to achieve: Users Authentication, Content Protection, and Integrity Preserved
without being physically located

Virtual Private Networks

Internet

. . . Firewall
client .
._
® o ¢

Any attempt to directly connect to a computer inside the private network will be
stopped by the firewall. Moreover, the IP address may not be valid.

Virtual Private Networks

Internet sy
® Firewall .~

O

VPN Server I NWPREL L

VPN Server: exposed to the outside network.
Outside computers will be authenticated by the VPN server. Once authenticated, a

secure channel is established between the VPN server and client, so packets are
encrypted and integrity preserved. .

e —
- _— —e e e — — eeee— — — — - —

Virtual Private Networks

Internet e
v Firewall -~

Client . ™

VPN Server Taa psnst et

Only way to connect to a system in the private network is via the VPN server.
Needs to be Transparent. The VPN client should be ignorant that it is a remote client.

s

7

VPN vs Application Level Security

* This is different from a regular application security, where TLS
can be used.
— |IP spoofing / sniffing can be done
— Client needs to open and initiate a TLS connection, thus no
transparency
 For VPN, the IP headers need to be encrypted
— However, traffic cannot be routed

IP Tunneling

VPN Client

Firewall

[D

for the destination

IP Packet

Encrypted packet

IP head Encrypted packet
for the VPN server

IP Tunneling

VPN Client

Firewall

@<

for the destination

IP Packet

O IP head Encrypted packet

N Se(\le‘ l decrypt

IP head Encrypted packet © | IPhead IP Packet

for the VPN server l

Encrypted packet

O Forward to destination

9

s

10

IP Tunneling

* Two ways of achieving IP Tunneling

— IPSec tunneling: uses IP Sec protocol which operates at the IP layer
and has a tunneling mode

— The entire IP packet is encapsulated into a new IP packet with a new

header added p z - .
— Done at the kernel level |“™ .. T erne
=
| S e;n;:: | t-:::j:r | Original IP Packet |
_______________ N S
_ Encrypted)

s

11

IP Tunneling

* Two ways of achieving IP Tunneling

— TLS tunneling: uses TLS library at the application layer to achieve
tunneling

— The entire IP packet is encapsulated into a new TCP/UDP packet with
a new header added

7 =)
— Done at the application A - B
Application | <= Application
New IP TCP/UDP - U
Ievel g;:ze / | e I v | Original IP Packet | S;:ze
Kernel Encrypted \ Kernel
\m======———————— eeeeeeeee—————

An Overview of How TLS/SSL VPN Works

This is just a normal TCP or
UDP based SSL connection

New New N P
Headers - Lo / Headers = 125 Pr| ma ry S|te
Tunnel ——— Tunnel !
application i v S— application
Internet ®\
VPN Client VPN Server
IP Data IP Data

Original IP Packet: U = V

VvV

Private Network 10.0.8.0/24

i :
s |
i New Packet: VPN client > VPN Server |
: :
) i
i i
E i
) 1

—
An Overview of How TLS/SSL VPN Works

1. Mutual authentication using

.............................. . ,ZZ‘ PKC, password authentication N .
ata
Tunnel 7 — L1 L \'", _' i Tunnel
application o v — application

Internet

VPN Client VPN Server

IP Data IP Data

Original IP Packet: U = V

Private Network 10.0.8.0/24

i :
s |
i New Packet: VPN client > VPN Server |
: :
) i
i i
E i
: 1

An Overview of How TLS/SSL VPN Works

2. Routing _
Any packet to 10.0.8.x will Any packet to 10.0.7.x will be
be routed to the VPN client —r—v— / \,\ — routed to the VPN server
ata 114 l Data]
E Tunnel S T Hefders_ i I Tunnel E
E application , v — E application E
! ! Internet i ®\ E
E VPN Client : E VPN Server |
i IP | Data i i IP | Data i
i i New Packet: VPN client > VPN Server ! i
i @ ! Original IP Packet: U > V | @ |
| : | Vo=
L :

An Overview of How TLS/SSL VPN Works

Tunnel
application

New
Headers

VPN Client

IP Data

- - - - - - — - - — - -

Needs to encapsulate the frame received
in a TLS packet and directed to the VPN server.

Needs to be done in the application layer.

Not easily achieved.
Promiscuous mode, Raw packets, filtering

Alternatively: Virtual Network Cards.

s

16

Virtual Network Cards

* Most operating systems have two types of network interfaces:
— Physical: Corresponds to the physical Network Interface Card (NIC)

— Virtual: It is a virtualized representation of computer network interfaces that may or may not
correspond directly to the NIC card. Example: loopback device

* TUN Virtual Interface
— Work at OSl layer 3 or IP level
— Sending any packet to TUN will result in the packet being delivered to user space program

e TAP Virtual Interfaces

— Work at OSl layer 2 or Ethernet level

— Used for providing virtual network adapters for multiple guest machines connecting to a
physical device of the host machine

—
TUN/TAP Interfaces

Userspace Program

Socket TUN / TAP I
Interface Interface
A

Applications

TCP/UDP (Transport Layer)

IP (Network Layer)

Data-Link Layer

I A
Physical
NIC

I Network (e.g. Ethernet)

s>
Creating a TUN Interface

18

The flag IFF_TUN

}

int main () {

int tunfd;
struct ifreq ifr;
memset(&ifr, @, sizeof(ifr));

ifr.ifr_flags = IFF_TUN | IFF_NO_PI;

tunfd = open("/dev/net/tun", O_RDWR);
ioctl(tunfd, TUNSETIFF, &ifr);

specifies that we are

L creating a TUN

interface

_, Register a TUN device

printf("TUN file descriptor: %d \n", tunfd);

// We can interact with the device using this file descriptor.
// In our experiement, we will do the interaction from a shell.
// Therefore, we launch the bash shell here.
execve("/bin/bash", NULL,NULL);

‘n 9;

with the kernel

Needs CAP_NET_ADMIN

e —
- _— —e e e — — eeee— — — — - —

18

_—
Configure the TUN Interface

Find the TUN interface

root@optiplex:/home/chester/Desktop/netsec/vpn# ifconfig -a

tun@ Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00—¢
-00
POINTOPOINT NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0@ errors:0 dropped:® overruns:9 carrier:90
collisions:@ txqueuelen:500
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

_—
Configure the TUN Interface

Assign an IP address to the TUN interface and bring it up

</Desktop/netsec/vpn# sudo ifconfig tun® 10.0.8.99/24
rootRoptiplex:/home/chester/Desktop/netsec/vpn# ifconfig

tuno Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-0¢
-00
inet addr:10.0.8.99 P-t-P:10.0.8.99 Mask:255.255.255.0
UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:Q overruns:0 carrier:90
collisions:@ txqueuelen:500
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

_—
Set UP the Routing

21

Data from TUN Program TUN Program Data to
appt"hce""t}:c;:: °" ltun > socket |- O > socket > tun appt“}f:tl:z:: on
‘ Tunnel @ ; A
—_—— - —— — — — = A = e e e e e e L
°
Y
Protocol o . Protocol
Stack RO uti ng Stack
P TCP/UDP | 4 A
P TCP/UDP Data paCketS to header | header ata
header header th e tu n nel @
Y
A
P TCP/UDP | pata
header header
From other To other
o hosts hosts @

s

Setup the Routing

<op/netsec/vpn# sudo route add -net 10.0.8.0/24 tuno@

root@optiplex:/home/chester/Desktop/netsec/vpn# route -n

Kernel IP routing table

22

Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 10.21.239.254 0.0.0.0 UG 100 0 0 etho
10.0.8.0 0.0.0.0 255.255.255.0 U 0 0 0 tuno
110.0.8.0 0.0.0.0 255.255.255.0 U 0 %) @ tuno |
10.21.224.0 0.0.0.0 255.255.240.0 U 100 0 0 etho
10.24.4.7 10.21.239.254 255.255.255.255 UGH 100 0 0 etho
169.254.0.0 0.0.0.0 255.255.0.0 U 1000 0 0 etho

Packets to this destination should be routed to the tun0
interface, i.e., they should go through the tunnel.

All other traffic will be routed to this
interface, i.e., they will not go through

the tunnel

e —
- _— —e e e — — eeee— — — — - —

s

23

Ping to the TUN interface

chester@optlplex ~$ ping 10.0.8.99

PING 10.0.8.99 (10.0.8.99) 56(84) bytes of data.

64 bytes from 10.0.8.99: icmp_seq=1 ttl=64 time=0.027 ms
64 bytes from 10.0.8.99: icmp_seq=2 ttl=64 time=0.035 ms
64 bytes from 10.0.8.99: icmp_seq=3 ttl=64 time=0.045 ms
64 bytes from 10.0.8.99: icmp_seq=4 ttl=64 time=0.048 ms

_—
Reading From TUN Interface

24

We did an experiment by sending a ping packet to 10.0.8.32. The packet
was sent to the TUN interface and then to our program. We use “xxd” to
read from the interface and convert the into hexdump.

IP Header

4500 0054
0ad0 0821
0000 0000
1415 1617
2425 2627

e4dc
0800
798e
1819
2829

4000
612d
0200
lalb
2a2b

4001
0710
0000
1cid
2c2d

AN

3149 0a00
0001 9703
0000 1011
lelf 2021
2e2f 3031

rootPoptiplex:/home/chester/Desktop/netsec/vpn# xxd <&3
00000000:
"{ 00000010 :
00000020:

00000030
00000040

0863 E..T..0.0.1I...c
beS5c ...!..a—-....... \
1213 . Vo
2228 i is i (R
3233 $%&'()*+,-./0123

s>
Writing To TUN Interface

* We can write data to TUN interfaces.
 We can create a valid packet using the same “xxd” command.

 Copy-paste the xxd output from the previous slide into a file
called “hexfile” and run “xxd —r hexfile > packetfile”.

 Now we write the packetfile to the interface:

cat packetfile >& 3

* We should be able to observe the packet using Wireshark.

s>
Establish a Transport-Layer Tunnel

* Atunnelis just a TLS/SSL connection.

 Two applications (VPN client and server applications) just
establish a TLS/SSL connection between themselves.

* Traffic inside are protected by TLS/SSL

What makes this TLS/SSL connection a tunnel?
— The payloads inside are IP packets

— Thatis why it is called IP tunnel

How to Send/Receive Packets via Tunnel

Sending a packet via the tunnel
* Get an IP packet from the TUN interface
* Encrypt it (also add MAC)

* Send it as a payload to the other end of the
tunnel

TUN Interface IP Tunnel

p Receiving a packet from the tunnel
* Get a payload from the tunnel
* Decrypt it and verify its integrity
(O * We get the actual packet
* Write the packet to the TUN interface

TUN Interface IP Tunnel

Monitoring Both Interfaces ?

Create TUN interface

* Each tunnel application has Establish the tunnel with the

other end (socket interface)

two interfaces: socket and TUN
o NEEd tO monitor bOth Monitor both TUN and socket

interfaces

* Forward packets between
these two interfaces

Socket
TUN or socket

Get data from TUN, Get data from tunnel,
send it to tunnel write to TUN interface

s

Implementation (Monitoring the 2 Interfaces)

int main (int argc, char *x argv([]) {
int tunfd, sockfd;

tunfd = createTunDevice () ;
sockfd connectToUDPServer () ;

// Enter the main loop

while (1) { select () will be blocked

fd_set readFDSet; until one of the interfaces
has data.

FD ZERO (&readFDSet) ;

FD_SET (sockfd, s&readFDSet); /

FD_SET (tunfd, &readFDSet);

| select (FD_SETSIZE, &readFDSet, NULL, NULL, NULL); |

if (FD_ISSET (tunfd, &readFDSet)) tunSelected (tunfd, sockfd);
if (FD_ISSET (sockfd, &readFDSet)) socketSelected(tunfd, sockfd);

Implementation (TUN = Socket)

void tunSelected(int tunfd, int sockfd) {
int len; \ 4
char buff [BUFF_SIZE]; ﬂ

printf ("Got a packet from TUN\n"); TUN Interface IP Tunnel

bzero (buff, BUFF_SIZE);

len = read(tunfd, buff, BUFF_SIZE);

sendto (sockfd, buff, len, 0, (struct sockaddr =x) &peerAddr,
sizeof (peerAddr));

Note: the encryption step is omitted from the code (for the sake of simplicity)

Implementation (Socket = TUN)

void socketSelected (int tunfd, int sockfd) {

int 1len; I
char buff[BUFF_SIZE]; ﬂ

TUN Interface IP Tunnel

printf ("Got a packet from the tunnel\n");
bzero (buff, BUFF_SIZE);

len = recvfrom(sockfd, buff, BUFF_SIZE, 0, NULL, NULL);
write (tunfd, buff, 1len);

Note: the decryption step is omitted from the code (for the sake of simplicity)

Bypassing Firewalls using VPN

EYIOE!SSIng Firewall using VPN: the 2

Main ldea

Jo=:

User

www.facebook.com

VPN Client VPN Server

* Send our Facebook-bound packets to the TUN interface towards VPN server
* VPN server will release our Facebook-bound packets to the Internet

* Facebook’s reply packets will be routed to the VPN server (question: why)

* VPN server sends the reply packets back to us via the tunnel

Experiment: Network Setup

facebook.com

tun0
10.4.2.99

VPN Client VPN Server

s

Setting UP Firewall

35

* Setup firewall to block User from accessing Facebook

 We run the following command to get the list of IP prefixes
owned by Facebook:

$ whois -h whois.radb.net -- ’"-i origin AS32934’

 We can also get IP addresses returned by Facebook’s DNS server

by running the following command (this IP address can change):
dig www.facebook.com

s

36

Blocking Facebook

S sudo ufw enable
$ sudo ufw deny out on eth6 to 31.13.0.0/16
$ sudo ufw status

One of the IP prefixes belong to Facebook

/

Status: active
To Action From
31.13.0.0/16 DENY OUT Anywhere on eth6
Facebook becomes unreachable
seed@User (10.0.2.6) : °$ ping www.facebook.com
PING star-mini.clOr.facebook.com (31.13.71.36) 56(84) bytes of data.
ping: sendmsg: Operation not permitted
ping: sendmsg: Operation not permitted
ping: sendmsg: Operation not permitted
ping: sendmsg: Operation not permitted
ping: sendmsg: Operation not permitted

e —
- _— —e e e — — eeee— — — — - —

_—
Bypassing the Firewall

* We add a routing entry to the user machine, changing the route
for all Facebook traffic. Instead of going through eth6, we use the
TUN interface:

$ sudo route add -net 31.13.0.0/24 tunO
 The Facebook-bound packets are going through our tunnel.

 The Facebook-bound packets are hidden inside a packet going to
the VPN server, so it does not get blocked.

* VPN server will release the packet to the Internet.

e Replies from Facebook will come back to VPN server, which will
forward it back to us via the tunnel.

e —
- _— —e e e — — eeee— — — — - —

