
Packet
Sniffing and
Spoofing
Chester	Rebeiro	
IIT	Madras	

Some	of	the	slides	borrowed	from	the	book	‘Computer	Security:	A	Hands	on	Approach’	by	
Wenliang	Du	

Shared Networks
Every	network	packet	reaches	every	computer's	network	
Interface	card,	which	then	filters	packets	based	on	the	MAC	
address.	

A	network	packet	has	multiple	
concatenated	components.		

Packet Flow in the System

Network	Card	

network	packet	

check	if	destination	address	matches	the	
card's	MAC	address	

DMA	transfer	of	packet	to	kernel	memory	

Hardware	

Kernel	buffer	

Link	Level	Driver	

Protocol	Stack	Protocol	Stack	

Kernel	

User	Space	
Applications	only	receive	packets	that	are	
meant	for	the	CPU	and	the	registered	port	

Kernel	only	receive	packets	that	are	meant	for	
the	CPU		

All	packets	on	the	network	arrive	here	

From the Software

From Software
Domain:	IPV4.	Other	alternatives	are	AF_INET6	and	
many	more	

Type:	datagram,	connectionless,	fixed	
length,	unreliable	

associate	an	address	with	the	socket	
with	the	bind	call	

From Software

htons():	unsigned	short	from	host	order	to	network	order	
htonl():	unsigned	long	from	host	order	to	network	order	
ntohs()	:	unsigned	short	network	to	host	order	
ntohl()	:	unsigned	long,	network	to	host	order	

Promiscuous Mode

Network	
Card(P)	

network	packet	

No	filtering	done	if	the	network	card	is	
working	in	promiscuous	mode	

DMA	transfer	of	packet	to	kernel	memory	

Hardware	

Kernel	buffer	

Link	Level	Driver	

Protocol	Stack	

Kernel	

User	Space	
Application	can	receives	all	packets	that	the	
NIC	receives.	

Kernel	receive	all	packets	that	the	NIC	receives	

All	packets	on	the	network	arrive	here	

Packet Sniffers

• Applications	that	register	with	the	kernel	so	as	to	capture	all	packets	
seen	in	the	network.	

•  Typically	requires	superuser	permissions	

Packet Sniffers
Specify	that	the	socket	you	want	to	create	is	a	RAW	socket.		

Protocol	family:	AF_PACKET	implies		
low	level	protocol	

Packet Sniffers What	type	of	packets	should	we	receive?	ETH_P_ALL,	implies	
all	protocols.	Other	options	are	for	instance,	ETH_P_IP,	for	only	
IP	packets.	

Packet Sniffers Configure	the	NIC	to	ensure	that	all	packets	are	accepted	and	
passed	to	the	kernel.	Ignore	the	destination	field	in	the	packets.	

Packet Sniffers
Specify	that	the	socket	you	want	to	create	is	a	RAW	socket.		

RAW	SOCKET	
An	application	creating	a	normal	
socket	like	a	stream	or	datagram,	
will	not	receive	the	packet	
headers.	Information	like	MAC	
address,	source	IP,	etc.	is	not	
received.	Instead	only	the	payload	
present	in	each	packet.	
	
In	raw	sockets,	the	headers	are	not	
clipped.	Application	obtains	an	
unintercepted	packet.	

Flooding of Packets in User Space

• Applications	that	register	with	the	kernel	so	as	to	capture	all	packets	
seen	in	the	network.	

•  Typically,	sniffers	are	only	interested	in	a	small	subset	of	packets,	all	
the	other	packets	are	discarded.	

•  Improves	performance	considerably	(less	processing	time)	
• Would	require	much	less	expensive	hardware	

•  Filtering:	BSD	packet	filtering	(BPF)	provides	a	means	by	which	
sniffers	can	specify	to	the	kernel,	the	packets	they	are	interested	in.	

Filter Requirements

• Must	be	programmable	
•  Each	sniffer	may	be	interested	in	a	different	set	of	packets.	

• Must	be	as	close	to	the	NIC	as	possible	(filter	as	early	as	possible)	
•  Rules	out	user-space	filtering	
•  Kernel	based	filtering	
•  Hardware	based	filtering	

Operating System Filters

Network	
Card(P)	

network	packet	

No	filtering	done,	if	the	network	card	is	
working	in	promiscuous	mode	

DMA	transfer	of	packet	to	kernel	memory	

Hardware	

Kernel	buffer	

Link	Level	Driver	

Protocol	Stack	

Kernel	

User	Space	

Sniffer	only	receives	all	packets	that	the	NIC	
receives	AND	that	pass	the	filter.	

Kernel	receive	all	packets	that	the	NIC	receives	

All	packets	on	the	network	arrive	here	

Filter	

Sniffer	

buffer	

Filter	

tcpdump	

buffer	

BSD Packet Filters (BPF)

•  1992,	Steven	McCanne	and	Van	Jacobson	from	Lawrence	Berkeley	
Laboratory	

•  Incorporated	in	Linux	kernel	in	1997	
•  Variants	still	used	in	latest	versions	

•  JIT	engine	
•  Low	level	language	defined	
•  User	level	application	writes	filter	rules	using	this	language	and	attaches	it	to	
a	socket	

•  The	kernel,	verifies	sanity	of	these	rules	and	then	applies	them	to	all	packets	
it	receives.	

bpf architecture

https://www.kernel.org/doc/Documentation/networking/filter.txt	

Architecture	

bpf architecture

https://www.kernel.org/doc/Documentation/networking/filter.txt	

Instruction	Set	

bpf architecture

https://www.kernel.org/doc/Documentation/networking/filter.txt	

Addressing	Modes	

bpf architecture

https://www.kernel.org/doc/Documentation/networking/filter.txt	

Extensions	

bpf asm example
Load	2	bytes	(half	word)	from	the	12th	offset	in	the	packet	

https://en.wikipedia.org/wiki/EtherType	

A	value	of	0x0800	indicates	
that	data	is	an	IPv4	packet	

bpf asm example
Reaches	here	only	if	it	is	an	IPv4	packet.		
We	now	check	if	it	is	a	TCP	packet	

https://en.wikipedia.org/wiki/EtherType	

At	offset	23,	a	value	of	6	indicates	
that	data	is	a	TCP	packet	

14	

IPV4	Header	

bpf asm another example

Randomly	sample	25%	of	the	ICMP	packets	

bpf_asm

bpf_asm	

Bpf	assembly	

Bpf	opcode	

bpf in the Linux kernel

•  JIT	compiler	built	into	the	Linux	kernel	
• Can	be	enabled	as	follows:	

•  Internally	64-bit	kernels	use	an	enhanced	BPF	(eBPF)	format	
•  Internally	32-bit	kernels	use	the	classical	BPF	format	

echo	1	>	/proc/sys/net/core/bpf_jit_enable	

Usage in Linux

filter	to	dump	packets	on		
interface	em1	port	22.	

Create	a	raw	socket	and	attach	the	filter.	

setsockopt

•  SO_ATTACH_FILTER:	attach	a	filter	to	a	socket	
	
•  SO_DETACH_FILTER:	detach	a	filter	from	a	socket.	
	
•  SO_LOCK_FILTER:	lock	a	filter	to	a	socket.	The	filter	cannot	be	
detached	or	modified.	Any	attempt	to	detach	a	locked	filter	will	result	
in	an	error.	

Enhanced BPF
•  Instructions	looks	more	like	that	of	the	native	architecture	(makes	coding	
simpler)	

•  10	registers	(R0	to	R9)	instead	of	2	registers	(A,	X)	with	each	register	64	bit	
instead	of	32	bit	

•  A	Frame	Register	(R10)	

Enhanced BPF

• Restricted	C	compiled	to	eBPF	(C->eBPF->native	code).	
• Closer	(1-to-1)	mapping	from	eBPF	to	native	code	
•  Instructions	looks	more	like	that	of	the	native	architecture	(makes	
coding	simpler)	

•  10	registers	(R0	to	R9)	instead	of	2	registers	(A,	X)	with	each	register	64	bit	
instead	of	32	bit	

•  A	Frame	Register	(R10)	
•  jt/jf	replaced	with	jf/fall-through	
•  bpf_call	instruction	which	can	call	other	kernel	functions	

Checks in the Kernel

• Before	attaching	a	filter,	the	following	checks	need	to	be	performed.	
• BPF	program	terminates	(does	not	have	any	loops)	

•  Depth	first	search	of	the	program's	control	flow	graph	
•  Unreachable	instructions	are	prohibited	

• Verify	by	single	stepping	through	each	line	in	the	BPF	program	
•  Ensure	virtual	machine	state	and	check	if	the	stack	is	valid	
•  Prevent	out-of-bound	jumps	and	out-of-range	data	

•  Ensure	no	pointer	arithmetic	
•  Ensure	registers	are	not	read	before	being	accessed	

Limitations

• Not	portable.	Programs	written	for	one	operating	system	may	not	
work	on	another	OS	(No	common	API)	

• Optimizations	in	the	filtering	not	easily	achieved.	The	JIT	compiler	in	
the	OS	cannot	extract	optimizations.	

• Usability	is	not	easy.	Programmers	would	need	to	efficiently	develop	
BPF	code.	

PCap (Packet Capture)

•  It	is	a	library	that	provides	APIs	for	packet	capture.	
• Has	a	compiler	(pcap_compile)	that		

•  Takes	as	input	filtering	rules	using	human	readable	Boolean	expressions.	
•  Converts	the	Boolean	expressions	into	BPF	pseudo-code,	which	can	be	used	
by	the	kernel.	

• Well	defined	APIs	available	on	many	platforms:	
•  Port	in	Linux	is	called	libpcap	
•  Port	in	Windows	is	called	WinPCap.		
(APIs	are	common	across	ports)	

PCap filter expressions

Three	types	of	qualifiers:	type,	dir,	proto	
1.	type:	identifier	of	a	machine,	port	number	etc.		
					Options	include:	host,	net,	port,	portrange	
	
					Examples:	
					host	iitm.ac.in																		
					port	5000	
					portrange	5000-6000	

https://linux.die.net/man/7/pcap-filter	

PCap filter expressions

Three	types	of	qualifiers.	
2.	dir:	transfer	directions	to	or	from	the	id.	
					Options	include:	src,	dst,	src	or	dst,	src	and	dst,		
	
					Examples:	
					src	host	iitm.ac.in																		
					src	or	dst	port	5000								(equivalent	to	port	5000)	
					portrange	5000-6000	

https://linux.die.net/man/7/pcap-filter	

PCap filter expressions
Three	types	of	qualifiers.	
3.	proto:	transfer	directions	to	or	from	the	id.	
				Options	include:	ether,	fddi,	tr,	wlan,	ip,	ip6,	arp,	rarp,	decnet,	tcp	and		
				udp	
Examples:	
•  ether	src	foo	:		all	ethernet	packets	where	the	source	address	is	host	foo	
•  arp	net	128.3	:	all	arp	packets	to	network	128.3	
•  tcp	port	21	:	all	tcp	packets	to	port	21	
•  udp	portrange	7000-7009	

https://linux.die.net/man/7/pcap-filter	

PCap Filter examples

•  Examples:	
	
	

	

https://linux.die.net/man/7/pcap-filter	

host	foo	and	not	port	ftp	and	not	port	ftp-data	
Any	traffic	from/to	the	host	name	foo	except	traffic	on	ftp	and	ftp-data	ports	

gateway	snup	and	(port	ftp	or	ftp-data)		
All	FTP	traffic	through	the	gatewap	snup	

gateway	snup	and	ip[2:2]	>	576		
All	gateway	traffic	through	snup	with	size	greater	than	576	bytes	

ether[0]	&	1	=	0	and	ip[16]	>=	224		

IP	broadcast	or	multicast	traffic	that	were	not	sent	via	Ethernet	broadcast/multicast		
Byte	0	LSB	1	in	Ethernet	frame	indicates	a	broadcast	
IP	broadcast	have	destination	address	224.0.0.0	to	239.255.255.255	

PCap Filter examples

•  Examples:	
	
	

	

https://linux.die.net/man/7/pcap-filter	

host	helios	and	\(hot	or	ace	\)​	

ip	and	not	net	localnet	

tcp[tcpflags]	&	(tcp-syn|tcp-fin)	!=	0	and	not	src	and	dst	net	localnet	

PCap Filter examples

•  Examples:	
	
	

	

https://linux.die.net/man/7/pcap-filter	

host	helios	and	\(hot	or	ace	\)​	
Any	traffic	from	the	host	name	helios	and	with	destination	hot	or	ace	will	be	logged.	

ip	and	not	net	localnet	
Traffic	that	is	not	sourced	or	destined	for	local	hosts	

tcp[tcpflags]	&	(tcp-syn|tcp-fin)	!=	0	and	not	src	and	dst	net	localnet	
start	and	end	packets	(the	SYN	and	FIN	packets)	of	each	TCP	conversation	that	involves	a	non-local	host.	

tcpdump (uses PCap library)
Output	the	BPF	code	for	the	input	predicate	

Filter	IP	and	UDP	packets	

Low	level	BPF	output	

Packet Sniffing using PCap API

	
	

	

Is	filled	with	the	packet		
Received.	This	contains	
the	raw	ICMP	packet	

fills	compiled	BPF	
program	in	fp.	Has	the	
form	struct	
bpf_program	*fp	

Processing Ethernet Header

Processing Ethernet Header

Processing IP Packet

*packet	

*(packet	+	sizeof(struct	ethheader))	

Processing IP Header

Further Processing of Packet
•  If	we	want	to	further	process	the	packet,	such	as	printing	out	the	header	of	the	
TCP,	UDP	and	ICMP,	we	can	use	the	similar	technique.	

• We	move	the	pointer	to	the	beginning	of	the	next	header	and	type-cast	
• We	need	to	use	the	header	length	field	in	the	IP	header	to	calculate	the	actual	
size	of	the	IP	header	

•  In	the	following	example,	if	we	know	the	next	header	is	ICMP,	we	can	get	a	
pointer	to	the	ICMP	part	by	doing	the	following:	

	
	

	

Packet Spoofi
ng

Sending Normal Packets Using Sockets

-luv:	listen	for	incoming	
UDP	packets,	verbose		

Manipulating Transmitted Packets
•  Generally,	transmitting	packets	has	only	control	of	few	fields	in	the	header.	
•  Example	

•  Destination	IP	address	can	be	set	
•  Source	IP	address	is	not	set:	

•  Operating	system,	will	automatically	fill	these	fields	before	tranmitting	the	packet	to	the	hardware	

•  Spoofing	
•  Permits	manipulation	of	critical	fields	in	the	packet	headers	
•  Can	create	unrealistic	/	bogus	packets.	For	example:	

•  Transmit	a	TCP	packet	with	SYN	and	FIN	bits	turned	on	
•  The	response	from	the	receiver	is	unpredictable	and	depends	on	the	OS	

•  Used	in	many	network	attacks	like	
•  TCP	SYN	Flooding,	TCP	session	hijacking,	DNS	cache	poisoning	attack	
•  Supplied	information	depends	on	the	type	of	attack	being	carried	out	

Spoofing Tools
•  Netwox	
•  Scapy	
•  Spoofing	from	first	principles	

•  Two	Major	Steps	
(1)	constructing	the	packet	in	a	buffer	
						(this	step	is	going	to	depend	on	the	type	of	packet)	
(2)	sending	the	packet	out	

Constructing an ICMP Ping Packet
STEP	1	

Ping	request	(echo	
request)	

Constructing an ICMP Ping Packet
STEP	1	

Sending Spoofed Packets Using Raw
Sockets

STEP	2	

Spoofing UDP Packets

Spoofing UDP Packets

MAC Address Spoofing?
How	to	spoof	MAC	addresses?	
Needs	hardware	and	OS	support	

#	ip	link	set	dev	eth0	down		

#	ip	link	set	dev	eth0	address	XX:XX:XX:XX:XX:XX		

#	ip	link	set	dev	eth0	up	

MAC	is	restricted	to	local	networks.	
Thus	MAC	spoofing	is	only	a	problem	with	insider	threats	

Sniffing and Spoofing

Threat:	Man	in	the	middle	attacks	
Sniff	a	packet.	Spoof	the	response	

•  Procedure	
•  Use	PCAP	API	to	capture	the	packets	of	interests	
•  Make	a	copy	from	the	captured	packet	
•  Replace	the	UDP	data	field	with	a	new	message	and	swap	the	source	and	
destination	fields		

•  Send	out	the	spoofed	reply	

Sniffing and Spoofing a UDP Example
why	*4?	

Sniffing and Spoofing a UDP Example

