
TCP Attacks
Chester	Rebeiro	
IIT	Madras	

Some	of	the	slides	borrowed	from	the	book	‘Computer	Security:	A	Hands	on	Approach’	by	
Wenliang	Du	

A Typical TCP Client

2	

A Typical TCP Server create	a	IPV4	stream	
socket	

Bind	to	port	number	9090.	
This	will	tell	the	OS	to	
route	all	client	to	port	9090	
to	this	server	

Listen	for	connections	on	this	socket.	(This	is	a	non-blocking	call.	It	
is	used	to	inform	the	OS	that	there	server	is	ready	to	accept	
clients.	

Accept	connection	from	a	client.	
(This	is	typically	a	blocking	call)	

Finally,	communicate	with	the	client	using	read/write	calls	and	the	
socket.	

3	

The TCP Header

Ethernet	

header	
IP	

header	
TCP	

header	 Payload	

4	

Why TCP?
Main	problem	wih	IP		
•  Due	to	unpredictable	network	behavior,	load	balancing,	and	network	
congestions,	packets	can	be	lost,	duplicated,	or	delivered	out	of	order		

TCP	handles	these		
•  Acknowledging	every	packet	received	
•  By	rearranging	out-of-order	data	
•  By	automatic	retransmission	of	lost	data	
•  By	TCP	Congestion	avoidance	algorithms	

"TCP provides reliable, ordered, and error-checked
delivery of a stream of octets (bytes) between applications
running on hosts communicating via an IP network."	

https://en.wikipedia.org/wiki/Transmission_Control_Protocol	 5	

Out-of-order Reception of Frames
tim

e	

Payload	1	S	

Sequence	Number	(32	bit)	

S+
1	

TCP	header	

S+
2	

S+
3	

@	SENDER	

Payload	2	

Payload	3	

Payload	4	

tim
e	

Payload	3	S+
2	

S	

S+
3	

Payload	1		

Payload	4	

@	RECEIVER	
6	

Stop-and-Wait ARQ
S	 S+1	 S+2	 S+3	 S+4	

@SENDER	
Window	of	packets	to	be	sent	

S	

S+1	

S+2	

S+2	

S	

S+1	

S+4	

ACK	

ACK	

tim
e	

@SENDER�	
@RECEIVER	

Automatic	Repeat	Request	
	
Actual	implementation	may	vary	from	OS	to	OS	
and	will	depend	on	oter	factors	like		
(1)	expected	round	trip	time	
(2)	Max	number	of	retransmission	attempts	
	
	
Not	an	efficient	way	of	achieving	reliable	
communication.	

S+2	

S+2	https://tools.ietf.org/rfc/rfc3366.txt	 7	

Go-Back-N ARQ
S	 S+1	 S+2	 S+3	 S+4	

@SENDER	
Window	of	packets	to	be	sent	

S	

S+1	

S+2	

S+3	

S+4	

S+2	

S	

S+1	

S+4	

ACK	

ACK	

tim
e	

S+2	

S+3	

S+4	

@SENDER�	

@RECEIVER	

Automatic	Repeat	Request	
	
Actual	implementation	may	vary	from	OS	to	OS	
and	will	depend	on	oter	factors	like		
(1)	expected	round	trip	time	
(2)	window	size	in	OS	
(3)	Max	number	of	retransmission	attempts	

8	

Selective Repeat ARQ
S	 S+1	 S+2	 S+3	 S+4	

@SENDER	
Window	of	packets	to	be	sent	

S	

S+1	

S+2	

S+3	

S+4	
S+2	

S	

S+1	

S+4	

ACK	S+
1	

ACK	S
+3	

tim
e	

S+3	

S+5	

@SENDER�	

@RECEIVER	

S+2	 S	 S+1	 S+4	

@RECEIVER	
Window	of	received	packets	

(out-of-order)	

S	 S+1	 S+2	

@RECEIVER	
Reconstructing	packets	

ACK	S	

Acknowledge	with	the	
minimum	sequence	
number	that	has	not	been	
received	

ACK	S
+3	

9	

Bootstrapping Communication between
Server and Client

Three	Way	Handshaking	Protocol	

	connect	

Connection	state:	ESTABLISHED	

listen	invoked	

Full	connection	established	

x	and	y	are	random	
numbers	selected	by	client	
and	server	respectively.	

Connection	State:	SYN	RECEIVED	
(place	connection	details	in	a	queue)	

10	

Queue
The	queue	is	maintained	in	TCP	module	in	the	OS	on	a	per-server	basis	
	
The	queue	is	created	when	listen	is	called	

https://en.wikipedia.org/wiki/Transmission_Control_Protocol	

Specifies	the	size	of	the	queue.	
This	size	indicates	the	maximum	
rate	at	which	the	server	can	
accept	new	connections.	

11	

Queue Behavior on BSD
A	single	queue	is	present.	
	
	entries	can	move	SYN	RECEIVED	to	ESTABLISHED	
	
Entries	will	be	dequeued	when	
•  Connection	is	closed	
•  A	Reset	packet	is	obtained	

12	

Queue Behavior on Linux
Two	queues	are	present:	Syn-Queue	and	Accept-Queue	
•  	When	SYN	received,	entry	queued	in	Syn-Queue	
•  	When	ACK	received,	entry	moved	to	Accept-Queue	
Backlog	specifies	the	length	of	the	Accept-Queue	
The	length	of	Syn-Queue	is	present	in	/proc/sys/net/ipv4/
tcp_max_syn_backlog	
	
Entries	in	Syn-Queue	will	be	present	until:	(1)	ACK	received	(2)	SYN+ACK	retries	
have	been	completed	(presen	in	/proc/sys/net/ipv4/tcp_synack_retries)	
	
	
	 13	

Question!

What	should	be	done	when	the	Accept	Queue	is	full?		

14	

SYN Flooding Attack
Flood	the	Syn-Queue	
1	send	a	lot	of	SYN	packets	to	the	server	quickly	
2	Do	not	respond	with	the	ACK	packet	
•  SYN-queue	will	get	filled	up	and	the	server		
					will	not	accept	any	new	connections	

	
	
	
	

15	

SYN Flooding Attack
Flood	the	Syn-Queue	
1	send	a	lot	of	SYN	packets	to	the	server	quickly	
2	Do	not	respond	with	the	ACK	packet	
•  		SYN-queue	will	get	filled	up	and	the	server	will	not	accept	any	new	connections	

	
	
	
	

Dequeue	can	occur	only	in	the	following	two	conditions	
1	A	reset	packet	is	received.		
								(Can	occur	sometimes	but	unlikely)	
2	The	entry	in	the	SYN	times	out	(40	seconds)	and	will	be	removed.	
								(Attacker	can	send	many	more	SYN	packets	to	always	keep	the	buffer	full)	
	
	
	
	

16	

Need for Spoofed Syn Packets
If	all	SYN	packets	are	from	the	same	IP,	then	SYN	Flooding	attack	can	be	easily	
detected	and	blocked	by	the	firewall.	
	
Therefore,	SYN	packets	need	to	go	from	spoofed	random	
IPs	
	
All	SYN+ACKs	likely	to	reach	a	non-existent	IP.	
However,	if	it	actually	reaches	a	valid	IP,	then	the		
system	will	send	a	Reset	packet,	which	will	remove	
the	entry	from	the	queue.		
	

17	

Launching a Syn Flooding Attack

18	

Launching a Syn Flooding Attack
Normal	Operation	

Under	Attack	

CPU	utilization	is	not	high	

19	

Countermeasure #1
Don't	store	SYN	requests.		
	
Only	store	Accepted	connections	(after	the	3-handshake	protocol	is	completed)	
No	Queue	present,	so	cannot	be	flooded!		

20	

Countermeasure #1

Will	not	work!	
	
	SincenSYN	requests	are	not	stored,	validity	of	ACK	packets	cannot	be	determined.	
Send	spoofed	ACK	packets,	to	flood	the	Accept-Queue.	

Don't	store	SYN	requests.		
	
Only	store	Accepted	connections	(after	the	3-handshake	protocol	is	completed)	
No	Queue	present,	so	cannot	be	flooded!		

21	

Countermeasure #2
SYN	Cookies	
D.	J.	Bernstein	(1996).	Incorporated	in	Linux	and		
FreeBSD	kernels.		
	
*	Spoofed	SYN	attacks	can	be	blocked	by	the	
firewall.	
*	If	we	can	identify	an	ACK	packet	is	valid,	without	
storing	the	SYN	packets,	then	spoofed	ACK	attacks	
will	not	be	possible	too.	

Owns	a	secret	key	K	

22	

Hash Functions

23	

MAC (Message Authentication Codes)
Keyed	Hash	Functions	 Secret	key	(K)	

MAC	 0110101001	

Message	(x)	
Constant	length	digest	
(Y)	

Y	=	MAC_k(X)	

24	

Countermeasure #2 (SYN Cookies)
	
1.  At	Server:	On	receiving	SYN	Packet,	with	TCP	header	H1,	

compute	y	=	MAC_k(H1)	
(y	is	sent	as	sequence	number	in	SYN+ACK		
	instead	of	a	random	number)	

	
2.  A	valid	ACK	packet,	would	have	y+1	in	the	

acknowledgement	field	and	x+1	in	the	sequence	field.	
Other	fields	will	remain	the	same.	
•  From	the	header	H2	of	the	ACK	packet,	determine	H1'	
•  Recompute	y'=MAC_k(H1')	
•  Check	if	y'	and	y	for	equality	

Owns	a	secret	key	K	

25	

Closing a TCP Connection
Two	ways	to	close	a	TCP	Connection	
•  FIN	Packet	(graceful	closure)	
				-	typically	done	when	server	/	client	
				wants	to	terminate	the	connection.	

				-	4	way	handshake	

•  RST	Packet	(abrupt	closure)	
				-	used	when	there	is	no	time	to	do	the		
				FIN	protocol	
				-	Errors	in	the	transmission		

				-	SYN	attacks	

https://ipwithease.com/tcp-fin-vs-rst-packets/	 26	

TCP Reset Attack
Consider	a	TCP	connection	established	between	two	systems		

10.1.22.124:2020	 110.11.122.24:8000	

27	

TCP Reset Attack
A	Single	Reset	Packet	can	break	a	TCP	connection	between	two	systems.		

10.1.22.124:2020	 110.11.122.24:8000	

A	spoofed	RST	packet	can	break	
the	connection	

Comcast	vs	BitTorrent		
https://www.pcworld.com/article/139795/article.html	
	
The	Great	Firewall	of	China	
https://en.wikipedia.org/wiki/Great_Firewall	
	
	

28	

Building the Spoofed RST Packet

Information	needed	to	Spoof:	
	
1.  Source	IP	address		
2.  Destination	IP	address	
3.  Destination	Port	Address	
4.  Source	Port	Address	
5.  Sequence	Number	
	
	Difficulty	of	the	attack	can	vary	depending	
on	the	attacker	capabilities	

29	

TCP Reset Attack
(with man-in-the-middle or sniffer)

10.1.22.124:2020	 110.11.122.24:8000	

Sniff	and	then	spoof	

Spoofed	RST	Packet	should	have	the	right	TCP	
signature	
1.	Source	IP	address	(known)	
2.	Destination	IP	address	(known)	
3.	Destination	Port	Address	(known)	
4.	Source	Port	Address	(known)	
5.	Sequence	Number	(can	be	efficiently	estimated)	

30	

TCP Reset Attack on Telnet Connection

Goal:	To	break	the	Telnet	connection	between	User	and	Server	
Setup:	User	(10.0.2.18)	and	Server	(10.0.2.17)	
Steps	:	
●  Use	Wireshark	on	attacker	machine,	to	sniff	the	traffic	
●  Retrieve	the	destination	port	(23),	Source	port	number	(44421)	and	sequence	number.	

TCP Reset Attack on Telnet Connection

Using	netwox	tool	40,	we	can	generate	a	spoofed	RST	packet	to	the	client	or	server.	If	the	attack	is	
successful,	the	other	end	will	see	a	message	“Connection	closed	by	foreign	host”	indicating	that	the	
connection	is	broken.	
	

TCP Reset Attack on SSH connections

●  If	the	encryption	is	done	at	the	network	layer,	the	entire	TCP	packet	including	the	
header	is	encrypted,	which	makes	sniffing	or	spoofing	impossible.		

●  But	as	SSH	conducts	encryption	at	Transport	layer,	the	TCP	header	remains	
unencrypted.	Hence	the	attack	is	successful	as	only	header	is	required	for	RST	packet.	

TCP Reset Attack on Video-Streaming Connections
This	attack	is	similar	to	previous	attacks	only	with	the	difference	in	the	
sequence	numbers	as	in	this	case,	the	sequence	numbers	increase	very	fast	
unlike	in	Telnet	attack	as	we	are	not	typing	anything	in	the	terminal.	
	
	
	

To	achieve	this,	we	use	Netwox	78	tool	to	reset	each	packet	that	comes	from	the	user	
machine	(10.0.2.18).	If	the	user	is	watching	a	Youtube	video,	any	request	from	the	user	
machine	will	be	responded	with	a	RST	packet.	

Guessing the Sequence Number
(with sniffing)

Maximum	of	232	Sequence	Numbers	Possible.	
However,	the	server	will	accept	sequence	number	that	is	within	its	window	
The	window	is	defined	from	RCV.NXT	to	(RCV.NXT	+	RCV.WND	-	1)	
			(RCV.NXT	is	the	next	sequence	number;	RCV.WND	is	the	window	size)	

	

	
	

	
	

Window	size	can	vary	from	one	system	to	another	and	one	application	to	another	

Strange	Attractors	and	TCP/IP	Sequence	Number	Analysis	-	One	Year	Later	
http://lcamtuf.coredump.cx/newtcp/	
	 35	

RCV.NXT	 RCV.NXT		+	RCV.WND	

TCP Reset Attack
(without sniffing)

110.11.122.24:8000	

Spoofed	RST	Packet	should	have	the	
right	TCP	signature	
1.	Source	IP	address	(known)	
2.	Destination	IP	address	(known)	
3.	Destination	Port	Address	(known)	
4.	Source	Port	Address	(unknown)	
5.	Sequence	Number	(unknown)	

36	

Guessing the Sequence Number
(without sniffing)

Slipping	in	the	Window,	TCP	Reset	Attacks,	Paul	Watson,	2004	

(minimum,		default,	and	maximum	window	sizes)	

37	

Accepted	sequence	number	range	:	2^32	/	349388	<	1500	
																																																																	2^32	/	87380	<	50000	

In	reality,	a	better	estimate	of	the	sequence	
number	can	be	obtained.	

Initial Sequence Numbers

•  ISN	are	not	truly	random	
•  Problem	occurs	due	to	the	closure	
protocol	(4	way	handshake)	

38	

M1	 M2	

FIN	

ACK	

FIN	
ACK	

connected	 connected	

FIN_WAIT1	
CLOSE_WAIT	

FIN_WAIT2	

TIME_WAIT	

LAST_ACK	

CLOSED	

CLOSED	

2MSL	
(maximum	segment	length)	

Initial Sequence Numbers

• Are	not	truly	random	
•  Problem	occurs	due	to	the	closure	
protocol	(4	way	handshake)	

39	

M1	 M2	
connected	 connected	

FIN_WAIT1	
CLOSE_WAIT	

FIN_WAIT2	

CLOSED	

LAST_ACK	

CLOSED	

Why	TIME_WAIT?	

Connection	reopened	between	M1	and	M2	using	SYN,	SYN+ACK,	ACK	

Without	TIME_WAIT,	there	is	a	chance	that	this	stale	segment	
may	get	accepted	in	the	new	connection	
If	the	initial	sequence	number	is	less	than		
the	old	sequence	number	

Initial Sequence Numbers

• Are	not	truly	random	
•  Problem	occurs	due	to	the	closure	
protocol	(4	way	handshake)	

40	

M1	 M2	

FIN	

ACK	

FIN	
ACK	

connected	 connected	

FIN_WAIT1	
CLOSE_WAIT	

FIN_WAIT2	

TIME_WAIT	

LAST_ACK	

CLOSED	

CLOSED	

2MSL	

This	will	be	ignored	

Make	the	TIME_WAIT	large	enough	so	that	any	stale	
segment	will	reach	before		the	next	connection	is	
opened.	This	is	the	TCP’s	quite	time.	

2MSL	is	approx	4	minutes	
This	can	reduce	the	connection	rate		

https://tools.ietf.org/html/rfc793#section-3.3	

Initial Sequence Numbers

• Are	not	truly	random	
•  Problem	occurs	due	to	the	closure	
protocol	(4	way	handshake)	

41	

M1	 M2	

FIN	

ACK	

FIN	
ACK	

connected	 connected	

FIN_WAIT1	
CLOSE_WAIT	

FIN_WAIT2	

TIME_WAIT	

LAST_ACK	

CLOSED	

CLOSED	

2MSL	

This	will	be	ignored	

Heuristics	used	to	reduce	quite	time:	either	use	a	
timestamp	with	each	segment	transmitted	or	ensure	
that	new	sequence	number	is	greater	than	the	old	
sequence	number.	
	

https://tools.ietf.org/html/rfc793#section-3.3	

Generation of Initial Sequence Number

42	RFC	1948	

 19

A SYN segment in which the source end-point {Source Address, Source Port} is the
same as the destination end-point {Destination Address, Destination Port} will
result in a “simultaneous open” scenario, such as the one described in page 32 of
RFC 793 [Postel, 1981c]. Therefore, those TCP implementations that correctly
handle simultaneous opens should already be prepared to handle these unusual
TCP segments.

3.3. Sequence number

This field contains the sequence number of the first data octet in this segment. If the SYN flag
is set, the sequence number is the Initial Sequence Number (ISN) of the connection, and the
first data octet has the sequence number ISN+1.

3.3.1. Generation of Initial Sequence Numbers

The choice of the Initial Sequence Number of a connection is not arbitrary, but aims to
minimise the chances of a stale segment from being accepted by a new incarnation of a
previous connection. RFC 793 [Postel, 1981c] suggests the use of a global 32-bit ISN
generator, whose lower bit is incremented roughly every 4 microseconds.

However, use of such an ISN generator makes it trivial to predict the ISN that a TCP will use
for new connections, thus allowing a variety of attacks against TCP, such as those described
in Section 5.2 and Section 11 of this document. This vulnerability was first described in
[Morris, 1985], and its exploitation was widely publicised about 10 years later [Shimomura,
1995].

As a matter of fact, protection against old stale segments from a previous incarnation of the
connection comes from allowing the creation of a new incarnation of a previous connection
only after 2*MSL have passed since a segment corresponding to the old incarnation was last
seen. This is accomplished by the TIME-WAIT state, and TCP’s “quiet time” concept.
However, as discussed in Section 3.1 and Section 11.1.2 of this document, the ISN can be
used to perform some heuristics meant to avoid an interoperability problem that may arise
when two systems establish connections at a high rate. In order for such heuristics to work,
the ISNs generated by a TCP should be monotonically increasing.

RFC 1948 [Bellovin, 1996] proposed a scheme that greatly reduces the chances of an
attacker from guessing the ISN of a TCP, while still producing a monotonically-increasing
sequence that allows implementation of the optimisation described in Section 3.1 and Section
11.1.2 of this document. Basically, the document proposes to compute the ISN of a new
connection as a result of the expression:

ISN = M + F(localhost, localport, remotehost, remoteport, secret_key)

where M is a monotonically increasing counter maintained within TCP, and F() is a hash
function. As it is vital that F() not be computable from the outside, RFC 1948 [Bellovin, 1996]
suggests it to be a cryptographic hash function of the connection-id and some secret data.
 4	microsecond	timer	to	ensure	that	sequence	numbers	are	random	

(monotonically	increasing	counter	maintained	by	TCP)	

Hash	Function	to	ensure	that	an	attacker	cannot	predict	the	initial	sequence	number	
after	viewing	some	other	connection	from	that	host.	

Number of Systems behind a NAT

43	

•  Network	Address	Translator	
•  Remapping	one	IP	address	space	into	another	by	modifying	network	address	information	in	
the	IP	header	of	packets	while	they	are	in	transit	in	a	routing	device.	

•  Used	when	
•  A	network	was	moved	:	IP	addresses	don’t	change,	instead	the	gateway	provides	a	remapping	
•  IPv4	address	exhaustion	:	one	public	address	of	a	NAT	gateway	can	be	used	for	an	entire	private	
network.	

Number of Systems behind a NAT

44	

•  Network	Address	Translator	
•  Remapping	one	IP	address	space	into	another	by	modifying	network	address	information	in	
the	IP	header	of	packets	while	they	are	in	transit	in	a	routing	device.	

•  Used	when	
•  A	network	was	moved	:	IP	addresses	don’t	change,	instead	the	gateway	provides	a	remapping	
•  IPv4	address	exhaustion	:	one	public	address	of	a	NAT	gateway	can	be	used	for	an	entire	private	
network.	

	
	

•  Sequence	numbers	can	be	used	by	attackers	to	identify	the	number	of	machines	
behind	a	NAT.		

•  Each	machine,	will	have	a	different	initial	sequence	number	space.	

Ephemeral Port Selection Algorithm
•  In	addition	to	guessing	the	sequence	numbers,	all	TCP	spoofing	attacks	require	
the	attacker	to	know	the	IP	addresses,	source	and	destination	port	numbers	

•  IP	addresses,	destination	port	can	be	determined	easily	
•  Randomize	the	source	port	used	
	

•  Ephemeral	ports	used	by	client	systems	and	assigned	by	the	IP	layer	
•  Defined	range	by	IANA	is	49152	to	65535.		
•  Use	in	Linux	kernel	is	32768	to	61000.	
•  Windows	XP	is	1025	to	5000;	Windows	Server,	Vista	is	49152	to	65535	

	
Ephemeral	ports	in	Linux	/proc/sys/net/ipv4/ip_local_port_range	

45	

Ephemeral Port Selection Algorithm

46	

 14

[Larsen and Gont, 2008] recently suggested an approach that is meant to comply with the
requirements stated above, which resembles the proposal in RFC 1948 [Bellovin, 1996] for
selecting TCP Initial Sequence Numbers. Basically, it proposes to give each triple {Source
Address, Destination Address, Destination Port} a separate port number space,
by selecting ephemeral ports by means of an expression of the form:

port = min_port + (counter + F()) % (max_port - min_port + 1)

Equation 1: Simple hash-based ephemeral port selection algorithm
where:

• port: Ephemeral port number selected for this connection.

• min_port: Lower limit of the ephemeral port number space.

• max_port: Upper limit of the ephemeral port number space.

• counter: A variable that is initialised to some arbitrary value, and is incremented once for
each port number that is selected.

• F(): A hash function that should take as input both the local and remote IP addresses, the
TCP destination port, and a secret key. The result of F should not be computable without
the knowledge of all the parameters of the hash function.

The hash function F() separates the port number space for each triple {Source Address,
Destination Address, Destination Port} by providing an “offset” in the port number
space that is unique (assuming no hash collisions) for each triple. As a result, subsequent
connections to the same end-point would be assigned incremental port numbers, thus
maximising the port reuse cycle while still making it difficult for an attacker to guess the
selected ephemeral port number used for connections with other endpoints.

Keeping track of the last ephemeral port selected for each of the possible values of F() would
require a considerable amount of system memory. Therefore, a possible approach would be to
keep a global counter variable, which would reduce the required system memory at the
expense of a shorter port reuse cycle. This latter approach would have the same port reuse
properties than the widely implemented approach of selecting ephemeral port numbers
incrementally (without randomisation), while still reducing the predictability of ephemeral port
numbers used for connections with other endpoints. Figure 3 shows this algorithm in pseudo-
code.

 14

[Larsen and Gont, 2008] recently suggested an approach that is meant to comply with the
requirements stated above, which resembles the proposal in RFC 1948 [Bellovin, 1996] for
selecting TCP Initial Sequence Numbers. Basically, it proposes to give each triple {Source
Address, Destination Address, Destination Port} a separate port number space,
by selecting ephemeral ports by means of an expression of the form:

port = min_port + (counter + F()) % (max_port - min_port + 1)

Equation 1: Simple hash-based ephemeral port selection algorithm
where:

• port: Ephemeral port number selected for this connection.

• min_port: Lower limit of the ephemeral port number space.

• max_port: Upper limit of the ephemeral port number space.

• counter: A variable that is initialised to some arbitrary value, and is incremented once for
each port number that is selected.

• F(): A hash function that should take as input both the local and remote IP addresses, the
TCP destination port, and a secret key. The result of F should not be computable without
the knowledge of all the parameters of the hash function.

The hash function F() separates the port number space for each triple {Source Address,
Destination Address, Destination Port} by providing an “offset” in the port number
space that is unique (assuming no hash collisions) for each triple. As a result, subsequent
connections to the same end-point would be assigned incremental port numbers, thus
maximising the port reuse cycle while still making it difficult for an attacker to guess the
selected ephemeral port number used for connections with other endpoints.

Keeping track of the last ephemeral port selected for each of the possible values of F() would
require a considerable amount of system memory. Therefore, a possible approach would be to
keep a global counter variable, which would reduce the required system memory at the
expense of a shorter port reuse cycle. This latter approach would have the same port reuse
properties than the widely implemented approach of selecting ephemeral port numbers
incrementally (without randomisation), while still reducing the predictability of ephemeral port
numbers used for connections with other endpoints. Figure 3 shows this algorithm in pseudo-
code.

Ephemeral Port Selection Algorithm

47	

 14

[Larsen and Gont, 2008] recently suggested an approach that is meant to comply with the
requirements stated above, which resembles the proposal in RFC 1948 [Bellovin, 1996] for
selecting TCP Initial Sequence Numbers. Basically, it proposes to give each triple {Source
Address, Destination Address, Destination Port} a separate port number space,
by selecting ephemeral ports by means of an expression of the form:

port = min_port + (counter + F()) % (max_port - min_port + 1)

Equation 1: Simple hash-based ephemeral port selection algorithm
where:

• port: Ephemeral port number selected for this connection.

• min_port: Lower limit of the ephemeral port number space.

• max_port: Upper limit of the ephemeral port number space.

• counter: A variable that is initialised to some arbitrary value, and is incremented once for
each port number that is selected.

• F(): A hash function that should take as input both the local and remote IP addresses, the
TCP destination port, and a secret key. The result of F should not be computable without
the knowledge of all the parameters of the hash function.

The hash function F() separates the port number space for each triple {Source Address,
Destination Address, Destination Port} by providing an “offset” in the port number
space that is unique (assuming no hash collisions) for each triple. As a result, subsequent
connections to the same end-point would be assigned incremental port numbers, thus
maximising the port reuse cycle while still making it difficult for an attacker to guess the
selected ephemeral port number used for connections with other endpoints.

Keeping track of the last ephemeral port selected for each of the possible values of F() would
require a considerable amount of system memory. Therefore, a possible approach would be to
keep a global counter variable, which would reduce the required system memory at the
expense of a shorter port reuse cycle. This latter approach would have the same port reuse
properties than the widely implemented approach of selecting ephemeral port numbers
incrementally (without randomisation), while still reducing the predictability of ephemeral port
numbers used for connections with other endpoints. Figure 3 shows this algorithm in pseudo-
code.

 14

[Larsen and Gont, 2008] recently suggested an approach that is meant to comply with the
requirements stated above, which resembles the proposal in RFC 1948 [Bellovin, 1996] for
selecting TCP Initial Sequence Numbers. Basically, it proposes to give each triple {Source
Address, Destination Address, Destination Port} a separate port number space,
by selecting ephemeral ports by means of an expression of the form:

port = min_port + (counter + F()) % (max_port - min_port + 1)

Equation 1: Simple hash-based ephemeral port selection algorithm
where:

• port: Ephemeral port number selected for this connection.

• min_port: Lower limit of the ephemeral port number space.

• max_port: Upper limit of the ephemeral port number space.

• counter: A variable that is initialised to some arbitrary value, and is incremented once for
each port number that is selected.

• F(): A hash function that should take as input both the local and remote IP addresses, the
TCP destination port, and a secret key. The result of F should not be computable without
the knowledge of all the parameters of the hash function.

The hash function F() separates the port number space for each triple {Source Address,
Destination Address, Destination Port} by providing an “offset” in the port number
space that is unique (assuming no hash collisions) for each triple. As a result, subsequent
connections to the same end-point would be assigned incremental port numbers, thus
maximising the port reuse cycle while still making it difficult for an attacker to guess the
selected ephemeral port number used for connections with other endpoints.

Keeping track of the last ephemeral port selected for each of the possible values of F() would
require a considerable amount of system memory. Therefore, a possible approach would be to
keep a global counter variable, which would reduce the required system memory at the
expense of a shorter port reuse cycle. This latter approach would have the same port reuse
properties than the widely implemented approach of selecting ephemeral port numbers
incrementally (without randomisation), while still reducing the predictability of ephemeral port
numbers used for connections with other endpoints. Figure 3 shows this algorithm in pseudo-
code.

 15

Figure 3: Simple hash-based ephemeral port selection algorithm

An analysis of a sample scenario can help to understand how this algorithm works. Table 2
illustrates, for a number of consecutive connection requests, some possible values for each of
the variables used in this ephemeral port selection algorithm. Additionally, the table shows the
result of the port selection function.

Nr. IP address:port offset min_port max_port counter port
#1 10.0.0.1:80 1000 1024 65535 1024 3048
#2 10.0.0.1:80 1000 1024 65535 1025 3049
#3 192.168.0.1:80 4500 1024 65535 1026 6550
#4 192.168.0.1:80 4500 1024 65535 1027 6551
#5 10.0.0.1:80 1000 1024 65535 1028 3052

Table 1: Sample scenario for a simple hash-based port randomisation algorithm

The first two entries of the table illustrate the contents of each of the variables when two
ephemeral ports are selected to establish two consecutive connections to the same remote
end-point {10.0.0.1, 80}. The two ephemeral ports that get selected belong to the same port
number “sequence”, since the result of the hash function F() is the same in both cases. The
second and third entries of the table illustrate the contents of each of the variables when the
algorithm later selects two ephemeral ports to establish two consecutive connections to the
remote end-point {192.168.0.1, 80}. The result of F() is the same for these two cases, and
thus the two ephemeral ports that get selected belong to the same “sequence”.

 /* Initialization code at system boot time. *
 * Initialization value could be random. */
 counter = 0;

 /* Ephemeral port selection function */

num_ephememeral = max_port - min_port + 1;
 offset = F(local_IP, remote_IP, remote_port, secret_key);
 count = num_ephemeral;

 do {
 port = min_port + (counter + offset) % num_ephemeral;
 counter++;

 if(four-tuple is unique)
 return port;

 count--;

 } while (count > 0);

 15

Figure 3: Simple hash-based ephemeral port selection algorithm

An analysis of a sample scenario can help to understand how this algorithm works. Table 2
illustrates, for a number of consecutive connection requests, some possible values for each of
the variables used in this ephemeral port selection algorithm. Additionally, the table shows the
result of the port selection function.

Nr. IP address:port offset min_port max_port counter port
#1 10.0.0.1:80 1000 1024 65535 1024 3048
#2 10.0.0.1:80 1000 1024 65535 1025 3049
#3 192.168.0.1:80 4500 1024 65535 1026 6550
#4 192.168.0.1:80 4500 1024 65535 1027 6551
#5 10.0.0.1:80 1000 1024 65535 1028 3052

Table 1: Sample scenario for a simple hash-based port randomisation algorithm

The first two entries of the table illustrate the contents of each of the variables when two
ephemeral ports are selected to establish two consecutive connections to the same remote
end-point {10.0.0.1, 80}. The two ephemeral ports that get selected belong to the same port
number “sequence”, since the result of the hash function F() is the same in both cases. The
second and third entries of the table illustrate the contents of each of the variables when the
algorithm later selects two ephemeral ports to establish two consecutive connections to the
remote end-point {192.168.0.1, 80}. The result of F() is the same for these two cases, and
thus the two ephemeral ports that get selected belong to the same “sequence”.

 /* Initialization code at system boot time. *
 * Initialization value could be random. */
 counter = 0;

 /* Ephemeral port selection function */

num_ephememeral = max_port - min_port + 1;
 offset = F(local_IP, remote_IP, remote_port, secret_key);
 count = num_ephemeral;

 do {
 port = min_port + (counter + offset) % num_ephemeral;
 counter++;

 if(four-tuple is unique)
 return port;

 count--;

 } while (count > 0);

CPNI,	"Security	Assessment	of	the	TransmissionControl Protocol (TCP)"	

Ephemeral Port Selection Algorithm

48	CPNI,	"Security	Assessment	of	the	TransmissionControl Protocol (TCP)"	

 16

However, this sequence is different from that of the first two port numbers selected before, as
the value of F() is different from that obtained when those two ports numbers (#1 and #2) were
selected earlier. Finally, in entry #5 another ephemeral port is selected to connect to the same
end-point as in entries #1 and #2. We note that the selected port number belongs to the same
sequence as the first two port numbers selected (#1 and #2), but that two ports of that
sequence (3050 and 3051) have been skipped. This is the consequence of having a single
global counter variable that gets incremented whenever a port number is selected. When
counter is incremented as a result of the port selections #3 and #4, this causes two ports
(3050 and 3051) in all the other the port number sequences to be “skipped”, unnecessarily.

[Larsen and Gont, 2008] describes an improvement to this algorithm, in which a value derived
from the three-tuple {Source Address, Destination Address, Destination Port} is
used as an index into an array of “counter” variables, which would be used in the equation
described above. The rationale of this approach is that the selection of an ephemeral port
number for a given three-tuple {Source Address, Destination Address, Destination
Port} should not necessarily cause the counter variables corresponding to other three-tuples
to be incremented. Figure 4 illustrates this improved algorithm in pseudo-code.

Figure 4: Double hash-based ephemeral port selection algorithm

 /* Initialization at system boot time */
 for(i = 0; i < TABLE_LENGTH; i++)
 table[i] = random() % 65536;

 /* Ephemeral port selection function */
 num_ephemeral = max_port - min_port + 1;
 offset = F(local_IP, remote_IP, remote_port, secret_key1);
 index = G(local_IP, remote_IP, remote_port, secret_key2);
 count = num_ephemeral;

 do {
 port = min_port + (offset + table[index]) % num_ephemeral;
 table[index]++;

 if(four-tuple is unique)
 return port;

 count--;

 } while (count > 0);

 17

Table 2 illustrates a possible result for the same sequence of events as those in Table 1,
along with the values for each of the involved variables.

Nr. IP address:port offset min_port max_port index table[index] port
#1 10.0.0.1:80 1000 1024 65535 10 1024 3048
#2 10.0.0.1:80 1000 1024 65535 10 1025 3049
#3 192.168.0.1:80 4500 1024 65535 15 1024 6548
#4 192.168.0.1:80 4500 1024 65535 15 1025 6549
#5 10.0.0.1:80 1000 1024 65535 10 1026 3050

Table 2: Sample scenario for a double hash-based port randomisation algorithm

The table illustrates that the destination end-points “10.0.0.1:80” and “192.168.0.1:80” result in
different values for index and therefore the increments in one of the port number sequence
does not affect the other sequences, thus minimising the port reuse frequency.

We recommend the implementation of the ephemeral port selection algorithm illustrated in
Figure 4.

3.1.3. TCP ephemeral port range

We recommend that TCP select ephemeral ports from the range 1024-65535 (i.e., set
min_port and the max_port variables of the previous section to 1024 and 65535, respectively).
This maximises the port number space from which the ephemeral ports are selected, while
intentionally excluding the port numbers in the range 0-1023, which in UNIX systems have
traditionally required super-user privileges to bind them.

4.4BSD implementations have traditionally chosen ephemeral ports from the range 1024-
5000, thus greatly increasing the chances of an attacker of guessing the selected port
number [Wright and Stevens, 1994]. Unfortunately, most current implementations are still
using a small range of the whole port number space, such as 1024-49151 or 49152-65535.

It is important to note that a number of applications rely on binding specific port numbers that
may be within the ephemeral ports range. If such an application was run while the
corresponding port number was in use, the application would fail.

This problem does not arise from port randomisation itself, and has actually been
experienced by users of popular TCP implementations that do not actually randomise their
ephemeral ports.

A solution to this potential problem would be to maintain a list of port numbers that are usually
needed for running popular applications. In case the port number selected by Equation 1 was
in such a list, the next available port number would be selected, instead. This “list” of port
numbers could be implemented as an array of bits, in which each bit would correspond to
each of the 65536 TCP port numbers, with a value of 0 (zero) meaning that the corresponding
TCP port is available for allocation as an ephemeral port, and a value of 1 (one) meaning that
the corresponding port number should not be allocated as an ephemeral port. The
specification of which ports should be “reserved” for applications may depend on the
underlying operating system, and is out of the scope of this document.

Pattern in Use of Source Ports
Predictable	way	with	which	ports	are	allocated	in	various	systems:	

Slipping	in	the	Window,	TCP	Reset	Attacks,	Paul	Watson,	2004	 49	

TCP Session Hijacking Attacks

•  Spoof	a	packet	with	a	valid	TCP	signature	(source	IP,	dest.	IP,	source	
port,	dest.	Port,	and	valid	sequence	number)	

•  The	receiver	will	not	be	able	to	distinguish	this	spoofed	packet	from	an	actual	
packet	

•  Attacker	may	be	able	to	run	malicious	commands	on	the	server	

50	

Hijacking a Telnet Connection

Set	up:	User	:	10.0.2.18,	Server	:	10.0.2.17,	Attacker	:	10.0.2.16	
Steps:	
●  User	establishes	a	telnet	connection	with	the	server.	
●  Use	Wireshark	on	attacker	machine	to	sniff	the	traffic	
●  Retrieve	the	destination	port	(23),	source	port	number	(44425)	and	sequence	number.	

What Command Do We Want to Run
●  By	hijacking	a	Telnet	connection,	we	can	run	an	arbitrary	command	on	

the	server,	but	what	command	do	we	want	to	run?	
●  Consider	there	is	a	top-secret	file	in	the	user’s	account	on	Server	called	

“secret”.	If	the	attacker	uses	“cat”	command,	the	results	will	be	
displayed	on	server’s	machine,	not	on	the	attacker’s	machine.	

●  In	order	to	get	the	secret,	we	run	a		TCP	server	program	so	that	we	can	
send	the	secret	from	the	server	machine	to	attacker’s	machine.	

Session Hijacking: Steal a Secret
“cat”	command	prints	out	the	content	of	the	secret	file,	but	instead	of	
printing	it	out	locally,	it	redirects	the	output	to	a	file	called	/dev/tcp/
10.0.2.16/9090	(virtual	file	in	/dev	folder	which	contains	device	files).	This	
invokes	a	pseudo	device	which	creates	a	connection	with	the	TCP	server	
listening	on	port	9090	of	10.0.2.16	and	sends	data	via	the	connection.	
The	listening	server	on	the	attacker	machine	will	get	the	content	of	the	file.	

Launch the TCP Session Hijacking Attack
●  Convert	the	command	string	into	hex	

●  Netwox	tool	40	allows	us	to	set	each	single	field	of	a	TCP	packet.	

Launch the TCP Session Hijacking Attack

What happens to the actual client and server
after the hijacked packet is sent?

56	

Reverse shell
●  The	best	command	to	run	after	having	hijacked	the	connection	is	to	run	

a	reverse	shell	command.	
●  To	run	shell	program	such	as	/bin/bash	on	Server	and	use	input/output	

devices	that	can	be	controlled	by	the	attackers.	
●  The	shell	program	uses	one	end	of	the	TCP	connection	for	its	input/

output	and	the	other	end	of	the	connection	is	controlled	by	the	attacker	
machine.	

●  Reverse	shell	is	a	shell	process	running	on	a	remote	machine	connecting	
back	to	the	attacker.	

●  It	is	a	very	common	technique	used	in	hacking.	

Defending Against Session Hijacking
●  Making	it	difficult	for	attackers	to	spoof	packets	

●  Randomize	source	port	number	
●  Randomize	initial	sequence	number		
●  Not	effective	against	local	attacks		

●  Encrypting	payload	

FIN-WAIT2 Flooding Attack

60	

FIN	

ACK	

FIN	
ACK	

connected	 connected	

FIN_WAIT1	
CLOSE_WAIT	

FIN_WAIT2	

TIME_WAIT	

LAST_ACK	

CLOSED	

CLOSED	

A	typical	TCP	closure	

FIN-WAIT2 Flooding Attack

61	

FIN	

ACK	

FIN	
ACK	

connected	 connected	

FIN_WAIT1	
CLOSE_WAIT	

FIN_WAIT2	

TIME_WAIT	

LAST_ACK	

CLOSED	

CLOSED	

A	typical	TCP	closure	

FIN	

ACK	

connected	 connected	

FIN_WAIT1	
CLOSE_WAIT	

FIN_WAIT2	

Skipping	the	LAST_ACK	

FIN-WAIT2 Flooding Attack

62	

FIN	

ACK	

FIN	
ACK	

connected	 connected	

FIN_WAIT1	
CLOSE_WAIT	

FIN_WAIT2	

TIME_WAIT	

LAST_ACK	

CLOSED	

CLOSED	

A	typical	TCP	closure	

FIN	

ACK	

connected	 connected	

FIN_WAIT1	
CLOSE_WAIT	

FIN_WAIT2	

Skipping	the	LAST_ACK	

There	is	no	limit	on	the	amount	of	time	that	a	TCP	will	remain	
in	the	FIN_WAIT	2	state.		
	
Attack:	Create	a	large	number	of	connections	with	a	server.	Force	
The	server	to	close	connections,	and	then	ignore	the	connection	
after	CLOSE_WAIT.	
	
This	results	in	memory	exhaustion	attacks.	

FIN-WAIT2 Flooding Attack

63	

FIN	

ACK	

FIN	
ACK	

connected	 connected	

FIN_WAIT1	
CLOSE_WAIT	

FIN_WAIT2	

TIME_WAIT	

LAST_ACK	

CLOSED	

CLOSED	

A	typical	TCP	closure	

FIN	

ACK	

connected	 connected	

FIN_WAIT1	
CLOSE_WAIT	

FIN_WAIT2	

Skipping	the	LAST_ACK	

There	is	no	limit	on	the	amount	of	time	that	a	TCP	will	remain	
in	the	FIN_WAIT	2	state.		
	
Attack:	Create	a	large	number	of	connections	with	a	server.	Force	
The	server	to	close	connections,	and	then	ignore	the	connection	
after	CLOSE_WAIT.	
	
This	results	in	memory	exhaustion	attacks.	
	
Since	the	application	has	terminated	the	connection,	therefore	
Memory	exhaustion	takes	place	in	the	kernel	(TCP	stack)	and	not	
in	the	application.	

Countermeasures for FIN-WAIT2 Flooding
●  Enforce	limits	on	the	number	of	connections	with	no	user-space	controlling	
process	

●  Setting	a	maximum	number	of	on-going	connections	
	
●  Enforce	limits	on	the	duration	of	FIN-WAIT2	state.	

○  If	FIN	does	not	arrive,	then	abort	connection		

64	

