
IMPROVEMENTS IN CHARACTERISTICS OF

CRYPTOCURRENCIES: RIPPLE

A Project Report

submitted by

MAYANK DEENBANDHU MUNDHRA

in partial fulfilment of the requirements

for the award of the dual degree of

BACHELOR OF TECHNOLOGY and MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

June 2018

THESIS CERTIFICATE

This is to certify that the thesis titled IMPROVEMENTS IN CHARACTERISTICS

OF CRYPTOCURRENCIES: RIPPLE, submitted by Mayank Deenbandhu Mundhra,

to the Indian Institute of Technology, Madras, for the award of the dual degree of Bach-

elor of Technology and Master of Technology, is a bona fide record of the work done

by him under our supervision. The contents of this thesis, in full or in parts, have

not been submitted to any other Institute or University for the award of any degree or

diploma.

Prof. Chester Rebeiro
Dual Degree Project Guide
Assistant Professor
Dept. of Computer Science
IIT-Madras, 600 036

Prof. Ramkrishna Pasumarthy
Dual Degree Project Co-Guide
Associate Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai

Date: 14th June 2018

ACKNOWLEDGEMENTS

I would like to thank my guide Prof. Chester Rebeiro for his constant guidance and the

patience and faith he put in me.

I would like to thank my co-guide Prof. Ramkrishna Pasumarthy for facilitating me

to pursue this inter-disciplinary project.

I would like to thank the various teachers who have, over the course of time, taught

me and helped shape who I am.

I would like to thank the Department of Computer Science, Department of Electrical

Engineering and IIT Madras as a whole for providing me with the opportunity to follow

my dreams, pursue my passion and grow tremendously.

Lastly, I would like to thank my parents, grandparents and sister whose constant moti-

vation, support and guidance I am fortunate to have and am indeed indebted to them.

i

ABSTRACT

KEYWORDS: Cryptocurrency; Blockchain ; Byzantine Generals Problem; Real

Time Gross Settlement ; Ripple ; Unique Node List ; Kelips ; Dis-

tributed Hash Table ; Network Overlay ; Hops ; Information Prop-

agation.

A LATEX class along with a simple template thesis are provided here. These can be

used to easily write a thesis suitable for submission at IIT-Madras. The class provides

options to format PhD, MS, M.Tech. and B.Tech. thesis. It also allows one to write a

synopsis using the same class file. Also provided is a BIBTEX style file that formats all

bibliography entries as per the IITM format.

The formatting is as (as far as the author is aware) per the current institute guide-

lines.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES v

LIST OF FIGURES vi

ABBREVIATIONS vii

1 INTRODUCTION 1

1.1 Cryptocurrency . 1

1.1.1 The Double Spending Problem 1

1.1.2 The Byzantine Generals Problem 2

1.2 Bitcoin . 2

1.3 Ripple . 3

1.3.1 Comparison between Ripple and Bitcoin 3

2 LITERATURE SURVEY 4

2.1 Resources utilised and content surveyed 4

2.2 Select concepts from literature survey 5

2.2.1 Ripple Protocol Consensus Algorithm 5

2.2.2 Kelips . 8

2.3 Introduction . 10

3 OUR CONTRIBUTION 13

3.1 Fast Full Network Knowledge . 13

3.1.1 Distributed payment sytems, their utility and value goals. . . 13

3.1.2 Towards preventing forks, speeding up consensus, dynamically
updating UNLs and providing last mile connectivty using p2p
inspired network topologies 15

iii

3.1.3 Analysis - Information propagation, overlap and threshold. . 20

3.2 Simulation . 25

3.2.1 Experimental setup . 25

LIST OF TABLES

3.1 Results for SimC - The classic version used by Ripple for simulation 26

3.2 Results for UNL-A Link Latency Factor = 1 26

3.3 Results for UNL-A Link Latency Factor = 2 27

3.4 Results for UNL-A Link Latency Factor = 3 27

3.5 Total number of links in the network (Valid for all Link Latency Ratios) 27

v

LIST OF FIGURES

vi

ABBREVIATIONS

IITM Indian Institute of Technology, Madras

RPCA Ripple Protocol Consensus Algorithm

DHT Distributed Hash Table

UNL Unique Node List

NML Network Members List

P2P Peer to Peer

RTGS Real Time Gross Settlement

vii

CHAPTER 1

INTRODUCTION

With this dual degree program, we embarked on a journey of learning, fun and research.

We started with reading up relevant chapters of Andreas Antonopoulos’ book Master-

ing Bitcoin. We then explored the relevance and possibility of implementing blockchain

and bitcoin technology to make chit funds more secure and prevent frauds and finally

zeroed down on bringing about improvements in Ripple from a security perspective and

in general.

Over the course of the project, a huge amount of information was learnt, knowledge

gained and we have attempted to create value by bringing about improvements in Rip-

ple, and in general, so as to forward the field of Computer Science and salient areas of

Electrical Engineering. The ideas generated as a result of this project and papers to be

generated, will have applications in multiple areas of Computer Science and Electrical

Engineering. It’s applicability would range from computer systems, communication

networks, consensus algorithms, smart grids, etc, and the scope of its application is

limitless. In this thesis we provide insights into and a small glimpse of the various

knowledge and many key concepts learnt, and ideas and systems generated.

1.1 Cryptocurrency

Cryptocurrency is a digital asset designed to work as a medium of exchange and as a

virtual or alternate currency. Cryptocurrencies are able to satisfy and solve the Double

Spending Problem and the Byzantine Generals Problem which are important challenges

faced towards the implementation of Real Time Gross Settlement (RTGS) and Payment

Systems and are thus able to function as the same, generally as distributed systems.

1.1.1 The Double Spending Problem

The Double Spending Problem refers to the promise satisfaction and resource shortfall

problem arising when the same set of finite resources is pledged to multiple entities/

persons in lieu of goods or services rendered.

This problem is elegantly solved by blockchain, a chain of transaction blocks visible

to all, easy to verify but difficult to tamper, which is thus utilised by cryptocurrencies.

It is assumed that each participant can see the exact same consistent version of the

blockchain at any given time (even after addition of new blocks).The assumption is

difficult to satisfy in distributed settings owing to challenges such as latency, genuinely

faulty nodes, malicious nodes

1.1.2 The Byzantine Generals Problem

The Byzantine Generals Problem refers to the challenge of achieving consensus in a

group of generals via message passing. There may be possibility of the messages being

delayed, not reaching, being forged, some of the generals being traitorous and prevent-

ing the group to reach at an appropriate consensus/ any consensus at all.

A system with genuine, faulty and malicious nodes connected directly or indirectly and

with the network latency constraints can be considered as a representative system for the

Byzantine Generals Problem in the blockchain and distributed systems domain. Cryp-

tocurrencies attempt to solve the Byzantine Generals Problem by employing approaches

such as Proof-of-Work, Proof-of-Stake and Consensus

1.2 Bitcoin

Bitcoin is a well-known and remarkable cryptocurrency which first introduced blockchain

technology, bringing about a breakthrough in solving the Double Spending Problem

and thus making it feasible for cryptocurrencies to serve as Real Time Gross Settlement

(RTGS) and Payment Systems. Bitcoin was created/ invented by an unknown person or

group of persons going by the name Satoshi Nakamoto. It is open source in nature.

Bitcoin is decentralised and works as a distributed peer to peer network, thus being able

to work in the absence of a single centralised authority, bank or administrator and con-

duct transactions between users directly and in the absence of an intermediary.

It solves the Byzantine Generals Problem using Proof-of-Work, making it easy to verify

new blocks (a group of newly broadcast transactions to be added to the blockchain) but

difficult and time-consuming to produce. New blocks, which satisfy the Proof-of-Work

2

constraint, are generated by a process called mining. These new blocks are created in

an expected block interval of 10 minutes. Mining helps incentivise the process of main-

taining and building the blockchain by rewarding a certain number of bitcoins to the

first miner who generates the accepted/ acceptable block.

1.3 Ripple

Ripple is a blockchain based distributed payments system and cryptocurrency by Ripple

Labs, based on the white paper "The Ripple Protocol Consensus Algorithm" by David

Schwartz, Noah Youngs, Arthur Britto.

Ripple solves the Double Spending Problem using distributed ledger and SHAMap to

record the state of the system and solves the Byzantine Generals Problem using con-

sensus via it’s Ripple Protocol Consensus Algorithm (RPCA).

Ripple works on a network of servers running the Ripple Protocol Consensus Algorithm

(RPCA). The state of the Ripple network and transactions is maintained in a distributed

ledger to which new transactions are added post consensus and validation, once all

servers agree on the transactions’ validity. Each server relies on a Unique Node List

(UNL), a list of trusted servers which it believes won’t collectively defraud it. As per

the server, the network has reached consensus on a transaction when a quorum (mini-

mum percentage) of servers in its UNL agree upon the transaction’s validity.

Ripple is currently being adopted by various financial institutions as it provides the ben-

efits of cryptocurrencies and distributed decentralised systems while still having a party

(Ripple Labs) which takes up necassary liabilities.

1.3.1 Comparison between Ripple and Bitcoin

Ripple uses consensus which is less intensive computationally and energy-wise com-

pared to Bitcoin. A new block is added quicker in Ripple (4 seconds) as compared to

Bitcoin (10 minutes), ensuring that transactions and economic activity proceed in near

real-time and without any lag and, with similar security guarantees as that of Bitcoin.

Ripple is partly open-sourced and chaperoned by Ripple Labs, till an appropriate time

when it can be taken up by a robust Ripple community, becoming fully open-sourced.

Bitcoin is fully open-sourced

3

CHAPTER 2

LITERATURE SURVEY

2.1 Resources utilised and content surveyed

Below is a list of some of the relevant resources utilised and content surveyed as part

of the literature survey for this project

Books

• Mastering Bitcoin by Andreas Antonopoulos - Read select chapters

Papers and Reports

• The Ripple Protocol Consensus Algorithm by David Schwartz, Noah Youngs,
Arthur Britto

• Kelips : Building an Efficient and Stable P2P DHT Through Increased Memory
and Background Overhead by Indranil Gupta, Ken Birman, Prakash Linga, Al
Demers, Robbert van Renesse

• The Byzantine Generals Problem by Leslie Lamport, Robert Shostak, and
Marshall Pease

• Ripple: Overview and Outlook by Frederik Armknecht, Ghassan O. Karame,
Avikarsh Mandal , Franck Youssef, Erik Zenner

• Ripple Protocol Consensus Algorithm Review by Peter Todd - Read till
Subsection 4.1 on Unique Node List

• Byzantine-Resilient Random Membership Sampling (BRAHMS) by Edward
Bortnikov, Maxim Gurevich, Idit Keidar, Gabriel Kliot, and Alexander Shraer -
Utilised powerpoint presentation from FuDiCoIII Technical Session 6a:
Perspectives on BFT 1

Courses

• Cryptography and Network Security, course by Prof. Chester Rebeiro (IIT
Madras)

• Distributed Network Algorithms: Foundations and Future Directions, course by
Prof. John Augustine (IIT Madras) and Prof. Gopal Pandurangan

• Cloud Computing Concepts - Part I, Coursera course by Prof. Indranil Gupta
(UIUC) url: https://www.coursera.org/learn/cloud-computing

• Foundations of Memory and Consistency Models, course by Prof. Krishna
Nandivada (IIT Madras) and Prof. Suresh Jagannathan

Tech Talks and Videos

• Ripple Tech Talk: Understanding Consensus (Mar 2015) by Ripple. url:
https://youtu.be/7abKUs9tYZg

• Ripple Explained with David Schwartz, Chief Cryptographer of Ripple Labs by
Naation. url: https://youtu.be/GyNXedeCyNg

• Epicenter EB92 âĂŞ Stefan Thomas: Understanding Ripple by Epicenter. url:
https://youtu.be/KMydq_m9f_4

• How Ripple Works - The Consensus Process (ADVANCED) by Ripple. url:
https://youtu.be/pj1QVb1vlC0

Ripple Codebase

• Ripple Github repository

Other knowledge sources

• Ripple Website

• Ripple Forum

• Ripple Developer Center

2.2 Select concepts from literature survey

starting with a brief description of Ripple’s consensus algorithm, UNL overlaps,

relevant work and a relevant analysis from our end

2.2.1 Ripple Protocol Consensus Algorithm

In this subsection we describe the following

1. Components of Ripple and it’s consensus algorithm, as is in the RPCA white
paper

2. Details of the Ripple Protocol Consensus Algorithm

3. Details on agreement and forking with relevance to the consensus algorithm

5

Relevant components

Server: A server is any entity running the Ripple Server software (as opposed to the

Ripple Client software which only lets a user send and receive funds), which

participates in the consensus process.

Ledger: The ledger is a record of the amount of currency in each users account and

represents the ground truth of the network. The ledger is repeatedly updated

with transactions that successfully pass through the consensus process.

Last-Closed Ledger: The last-closed ledger is the most recent ledger that has been

ratified by the consensus process and thus represents the current state of the

network.

Open Ledger: The open ledger is the current operating status of a node (each node

maintains its own open ledger). Transactions initiated by end users of a given

server are applied to the open ledger of that server, but transactions are not

considered final until they have passed through the consensus process, at which

point the open ledger becomes the last-closed ledger.

Unique Node List (UNL): Each server, s, maintains a unique node list, which is a set

of other servers that s queries when determining consensus. Only the votes of

the other members of the UNL of s are considered when determining consensus

(as opposed to every node on the network). Thus the UNL represents a subset of

the network which when taken collectively, is trusted by s to not collude in an

attempt to defraud the network. Note that this definition of trust does not require

that each individual member of the UNL be trusted (see section 3.2).

Proposer: Any server can broadcast transactions to be included in the consensus

process, and every server attempts to include every valid transaction when a new

consensus round starts. During the consensus process, however, only proposals

from servers on the UNL of a server s are considered by s.

Ripple Consensus Algorithm

The Ripple Protocol consensus algorithm (RPCA), is applied every few seconds by all

nodes, in order to maintain the correctness and agreement of the network. Once

6

consensus is reached, the current ledger is considered closed and becomes the

last-closed ledger. Assuming that the consensus algorithm is successful, and that there

is no fork in the network, the last-closed ledger maintained by all nodes in the network

will be identical. 3.1 Definition The RPCA proceeds in rounds. In each round:

• Initially, each server takes all valid transactions it has seen prior to the beginning
of the consensus round that have not already been applied (these may include
new transactions initiated by end users of the server, transactions held over from
a previous consensus process, etc.), and makes them public in the form of a list
known as the candidate set.

• Each server then amalgamates the candidate sets of all servers on its UNL, and
votes on the veracity of all transactions.

• Transactions that receive more than a minimum percentage of yes votes are
passed on to the next round, if there is one, while transactions that do not receive
enough votes will either be discarded, or included in the candidate set for the
beginning of the consensus process on the next ledger.

• The final round of consensus requires a minimum percentage of 80% of a
servers UNL agreeing on a transaction. All transactions that meet this
requirement are applied to the ledger, and that ledger is closed, becoming the
new last-closed ledger.

Agreement and forking

Agreement is the property that ensures that all the nodes in the distributed network

agree to the same common version of the ledger and thus ensures absence of "forks" in

the ledger where one of two or more different versions of ledger are accepted and exist

as "ground truth" for certain subsets of nodes. The presence of fork results in the

problem of "double-spending" resolving which is at the heart and crux of blockchain

technologies and prevents defrauding of legitimate users by spending the same amount

of money twice. It was proposed in the Ripple white paper that a minimum 20%

overlap in the UNL suffices to prevent forks in the network when the consensus

algorithm requires agreement of a threshold of at least 80% of a node’s UNL.

However, after a formal analysis of the forking criteria by [Ghassan,et al], they have

come up with a mathematical formulato ensure that forks do not occur in the

system. By this formula for ensuring no forks in the current Ripple system with a

threshold of 80%, it is necessary that at least 40% of the UNLs overlap between any

two nodes. This is the condition to prevent forks as mentioned by [Ghassan, et al].

7

2.2.2 Kelips

Kelips is a third generation peer-to-peer (p2p) Distributed Hash Table (DHT) system

by Indranil Gupta, et. al. It achieves constant O(1) time file look-up complexity by

having increased memory and background overhead. It adapts quickly to churn and is

tolerant to failures and faults through efficient query re-routing. This helps ensure

most/all queries are serviced quickly.

One of the factors that makes using Kelips feasible in today’s scenarios is the trade-off

that memory is cheap and easily available while processing/ bandwidth is expensive.

Bandwidth/ latency costs can be overcome by efficient query routing and appropriate

selection of parameters for selecting affinity groups (eg. geographical distance,

network speeds, etc.).

At the core of Kelips lies the concept of affinity groups. Consider a distributed system

of N nodes. The nodes are divided into
√
N buckets/affinity groups of size

√
N each.

The assignment of node to specific buckets is on the basis of hash functions and the

parameter chosen for input for these hash functions and based on application.

Similarly files are stored in specific affinity groups selected on a similar basis of

hashing.

Memory: Each node stores

• the file tuple entries (file name and IP address+port number pairs) for all files
which are hashed to the node’s affinity group.

• IP address and port number pairs for all nodes in the said node’s affinity group.

• IP address and port number pairs for w nodes each in each of the other affinity
groups (of which the node is not a part of).

Affinity groups: As previously mentioned each node is associated with a unique

(node) affinity group determined on the basis of a hash function.

Similarly each file tuple entry (file detail) too is associated with a specific file affinity

group(similar/same as node affinity group) determined on the basis of the above

mentioned hash function. This entry is stored in all/most nodes associated with the

said file affinity group.

8

Node join:

• the parameter gets hashed and the home affinity group is identified

• node contacts a well know introducer for that affinity group, which supplies
– list of contacts/nodes in the affinity group.(Could be a complete or partial

list)

– list of members it has for each of the other affinity groups.(Could be a list
of w nodes per affinity group or all known nodes)

• (optional) the node could also ask members of its own affinity groups and
members of other affinity groups which it knows for relevant members’ list

• the node intimates all nodes in its list about it’s presence. The introducer too
may intimate its contacts on the new node join.

• Apart from this there is a heart beat mechanism that intimates on a node’s
liveness and keeps the contact list fresh.

File look-up or File query. (Including multi hop)

There can be many variations and optimisations to the file search protocol. We’ll just

mention a simplified version of the same.

It can be divided into two main parts - 1. file look-up and file’s home node

identification 2. query servicing by the home node

1. File look-up and file’s home node identification:

When a query is initiated at a node, the node hashes the file name and checks as
to which affinity group the file falls into. File affinity group is based on same
hash function as the node affinity groups
• If file falls in the same affinity group as the node, node checks if

– it has the file
– if not, checks file tuple entries for the group, and then forwards the

query to the relevant IP address+port number pair; the home node for
the file.

– if the relevant file tuple entry/ IP address+port number pair is not
found/ invalid, the query is forward to another node(s) in the same
affinity group, selected based on specific criteria or randomly.

• -If file does not belong to the same affinity group as the node and it’s
affinity group, the query is forwarded to the relevant contact(s) the node
has associated with the file’s affinity group. (Note: The contact(s) could be
all or some associated with the relevant group. Choice of contact/node
could be on the basis of parameters like latency, etc. or randomly)

• Once the query is forwarded, the receiving node undergoes the above
mentioned steps.

9

• If the query can not reach the relevant affinity group/node, it is sent to the
next best node(s) in affinity groups associated with the current node or with
the file tuple or other affinity groups other than the above mentioned ones.

– The node receiving the query iterates thorugh the above steps.
(Make a decision tree for this/ use kelips topology and demonstrate the
choice via generic example)

2. Query servicing by the home node:

Once the home node is identified and the node in question has checked that it
has the file, it establishes a connection with the original source (client) of the
query and the file transfer takes place.

File insertion: File insertion/storage happens at the node to which the file is

uploaded, and once done, that node then gossips the file tuple to relevant affinity

group and its contacts. The entry is propagated and kept alive via the gossip

stream viz rate limited and has rations.

(Note: acutal files are stored in the node to which file is uploaded. That node

then broadcasts the file tuple entries (file name and it’s IP address+port number

pair). This data is then stored by nodes in the affinity group

2.3 Introduction

Ripple tries to solve the challenge of malicious nodes generating false/ faulty

transactions by employing public key cryptography at a node level (enforcing trust and

accountability) and account level (eliminating the vulnerability at the node level and

moving it to the client level for appropriate and easier handling) and by letting nodes/

servers choose which nodes to trust on. However, there is scope for more work in this

area.

The other challenge of network slow down and partitioning that is often faced is of

interest in this paper.

resulting in negation of legitimate transactions and financial activity on the discarded

fork(s) and also loss incurred due to the Double Spend attack

Safety net - While this ensures that the system is not defrauded and ensures security, it

also means that no transactions go through and thus halting financial activity. Though

relatively safer, it still is a loss making situation.

New transactions are added to the distributed ledger post agreement via the consensus

10

and validation processes which involve servers voting on the transaction’s validity and

accepting the same once passed or approved by a minimum threshold (quorum) of

servers. From a server’s view point, instead of the whole network a representative of

the same, the Unique Node List (UNL), a list of trusted servers which the server in

discussion believes won’t collectively defraud it is chosen. Such a server running the

RPCA believes that the network has reached consensus when the votes received from

servers on its UNL crosses a certain minimum threshold required for consensus.

A server’s UNL is manually chosen by its administrators and is expected to be chosen

such that the servers in the UNL would be able to receive transactions from the various

parts of the network and forward them to it, thus providing full coverage of the

network.

However there is no guaranteed fool-proof way of ensuring this and there are no

guidelines and mechanisms to ensure sufficient overlap of UNLs which ensures the

correctness of the consensus and prevents forks. Thus there is scope for improvement

in the way UNLs are chosen be it in a generic form of guidelines/suggested

mechanisms which help achieve the desired security and correctness with sufficient

overlap and network partition tolerance while improving the rate of achieving

consensus. Utilising this, a way of automating the UNL updation can be come up with

which helps improve ease of use. By setting a base network overlay structure for

efficient message propagation at fast rates, configuring the UNL to leverage this and

thus also increasing the overlap, one can further reduce the threshold of votes required

to reach consensus, and increase the rate of arriving at a consensus thus significantly

reducing the time it takes to achieve consensus. If properly designed, the overlay

structure and message propagation can help achieve last mile connectivity. These

approaches also increase the resilience to blockchain and network forks, reducing their

risks. These benefits can potentially bring about significant improvements and utility

benefits in Ripple, consensus algorithms, other approaches to solve the Byzantine

Generals Problem (blockchain and other domains), thus making such systems more

adoptable.

We leverage years of research done and more to come in the area of Distributed Hash

Table(DHT) based P2P query and look-up systems. This ensures that as the research in

these areas progresses further, the solution to Byzantine Generals Problem in

blockchain, other domains and in general also progresses and improves. It also brings

11

back renewed focus and interest in DHT and P2P systems and helps improve newer

areas as well. Getting inspired by the core mechanics of query, look-up, and routing

mechanisms, and leveraging their base substrate/ structure, we come up with reverse

routing mechanisms to help propagate information efficiently (speedily, surely and at

lower costs). The network overlay of the DHT based systems is leveraged and set up

for the propagation of information, the message passing being on the connected edges

in the DHT and as per the reverse routing mechanism. The trusted nodes list (UNL)

for consensus is designed to take full benefit of the underlying network overlay graph,

and ensuring that we get sufficient overlap and receive all the information generated

across the network easily, providing each node with full knowledge of the network in a

manner of speaking and thereby tackling the Byzantine Generals Problem.

[Being inspired by and leveraging its base network overlay structure and coming up

with a message and information propagation system by getting inspired by and

leveraging its query routing system and creating a reverse routing mechanism, we are

able to apply it to Ripple as a representative crypto-currency to help] improve

transaction speed, reduce transaction time, reduce minimum thresholds for consensus,

improve overlap for provable security, significantly reduce the chances of network and

blockchain forks and provide last mile connectivity.

12

CHAPTER 3

OUR CONTRIBUTION

3.1 Fast Full Network Knowledge

We describe in detail our work, suggested algorithms, UNL structure, applying and

leveraging the network topology and information propagation in Section 4, along with

a mathematical analysis of the correctness and rate of convergence in Section 5.

Section 6 deals with experimental work, set up, analysis and the interpretations, while

Section 7 provides all the insights into benefits, general applicability followed by a

brief conclusion to the paper.

3.1.1 Distributed payment sytems, their utility and value goals.

One of the goals of distributed payment systems and such systems in general is to

improve utility by having faster and faster transactions with same/similar levels of

certainty and security. At the same time, you wouldn’t want to compromise on security

and would prefer a system that is provably secure (especially in a tolerance threshold

that you are comfortable with). Such a system should be resilient to and not prone to

forks, which can lead to the double spending problem, the bane of such systems. The

reason for avoiding the same is two fold - 1. if some one maliciously tries to spend the

same money twice and thus try to defraud the system and 2. the fact that if the

legitimate transactions on the other discarded fork of the blockchain are declared

invalid, it will lead to a loss of value, as it will negate all the financial activity, trade

and transactions happened post the fork (which is often detected later on). It may lead

to trade happening only one sided, with the other party finally not receiving any value

for the goods and services provided. Such challenges often undermine the trust and

reliability of the system and bring into question the very veracity of such a system.

Thus, undermining the value of the system and is one of the biggest concerns for their

adoption. For such systems to be viable for use, it is thus imperative that they be

designed to not be vulnerable to such forks and be mindful of the various security

considerations needed to operate them. Often there is a safety net designed in such

systems and also Ripple, where it is said that in the eventuality of a fork, the system

would not make forward progress and thus no malicious transaction will go through.

While this ensures that the system is not defrauded and ensures security, it also means

that no transactions go through and thus causing a halt in financial activity. This in

itself is a loss making situation, though safer than the other alternative. Thus the work,

engineering and research, going on in this area to ensure that such systems be fast,

fault and partition tolerant, and secure is of importance to ensure the trust and adoption

of such systems by a wider populace.

Also, in real life payment systems, it is essential to ensure last mile connectivity for

wide spread adoption and the system to really succeed. Since you should be able to

conduct transactions even in areas with relatively poor network connectivity. In our

work below we present a method of implementing and automating updation of UNL

(generic and randomised network topology) which ensures the same degree of

certainty, trust and guarantee in transactions as with the original system (if not more)

in a lowered threshold for consensus, hence reducing the time taken for consensus to

be achieved. It also provides for the last mile connectivity requirements for such

system. It also helps reduce chances of network partitions and forks, and helping make

the system more secure.

The overlay network can be also be utilised to determine the network state, latency and

connection detection.

It may be noted that since the network topology implemented is generic per se within

the framework for UNL described, the UNL implementation too is generic overall.

14

3.1.2 Towards preventing forks, speeding up consensus,

dynamically updating UNLs and providing last mile

connectivty using p2p inspired network topologies

Network topology/overlay

We first set up the network topology, the same/similar as Kelips. The network is

divided into
√
N affinity groups of size

√
N each. Membership to the affinity group

can be determined on the basis of hash functions and various parameters as defined by

constraints and conditions/the community. It could include parameters like hash of IP,

relative netspeed and latencies(connections inside the affinity group being faster),etc.

Unique Node List(UNL): For the ease of understanding and application we divide

the UNL into two parts - UNL-A and UNL-B. The UNL of a server would thus

include

• UNL-A:
√
N − 1nodes (all the other nodes) from the server’s own affinity group.

• UNL-B: c nodes from each of the other
√
N − 1 affinity groups(Ideallyc ≥ 3).

The specifics of UNL configuration and threshold related calculations could be based

on various contraints which will be discussed later in the paper.

Network members list(NML): Is a list maintained by each server. It is a list of all

live/ reasonably live servers the server has seen/been made aware of so far. It is a

super set of the UNL with a list of

• known introducers for each affinity group, known as NML-C

• other servers in the servers’ affinity group, known as NML-A
NML− A ≡ UNL− A

• servers in affinity groups other than the server’s, known as NML-B. Generally
always,(NML−B ⊇ UNL−B)(Except near the boundary values of refresh
time periods reached in both UNL and NML)

The servers in the list are classified/segregated by affinity group.

15

Server and introducer behaviour

Every server(other than introducers)

• pings its UNL
– to servers in its UNL, periodically(t2).

– to servers in its NML, over a longer time period(t3) than UNL pinging(not
needed) (t3>>t2)

– to requesting servers, on pull request.

• pings its NML
– to requesting servers, on NML pull request. (NML pull request is rarely

used, eg if all introducers are down)

Each round of consensus(many rounds result in consensus of a single ledger) takes

time t1.t1<<t2<<t3

Introducers send NML on pull request. Every introducer is also a server and behaves

like a server.

Non-faulty nodes under normal execution, participate in consensus and have liveness

protocols running.

Various states of a non-faulty node under normal execution

A non-faulty node exists in three states(Is it needed? Has been put for the three

headings)

• Node join: When it joins the network

• Node leave: When it decides to shut down/leave the network under normal
circumstances

• Node live/normal execution: When the node functions normally and participates
in the consensus process.

Node join: When a new node joins the network,

• the node details are first hashed and affinity group is identified at the node. The
node if and when connects to other nodes, sends a header containing its details
and affinity group. The affinity group and details can be cross verified at every
node to which the node connects. It also starts building its UNL and NML.

16

• The node connects to known introducers (from its and other affinity groups) in
the system (and sends an NML pull request with a node join tag: is this needed
or is it understood).

• The introducers send their NML data1

• The node adds these to its NML and also connects to a total of the following
number of new nodes of following specification it finds out about(make table for
this)

– in its own affinity group => all

– in other affinity groups => c× b total for each other affinity group. Where
b > 1 (Either mention this or all or once own affinity group is formed, from
them and from introducers. The own affinity group awareness protocol will
always be running)

• The nodes other than introducers on being connected to, provide only their UNL
data to the requesting node.

• Condition for node to exit node join mode is as follows

if(server has contacted all the nodes per affinity group){
if(server has contacted all members of its own affinity group){
exit node join mode
}
}

– Remember that the lists are updated every time a new node is found to be
added to the appropriate group and condition rechecked.

• Once NML building is finished, as node join mode ends, UNL is made. It should
be noted that NML-A and UNL-A are the same, and contain the same nodes.
Hence UNL-A changes as NML-A changes across all modes.UNL-B is made by
choosing c nodes for each affinity group at random from NML-B

Node leave: Send out a public key cryptographically signed leave message to each

member of its UNL.

This is forwarded by the members in similar way as transactions.

Node liveness: Node is live is known by:

1Alternatively, introducers send data containing lists of
– introducers they are aware of

– nodes they are aware of in their affinity group

– nodes they are aware of in other affinity groups (these may be more than or less than the c nodes
used in UNL)

Note: This is an optimzation and need not be done - since data received is a one time set-up cost. For
high churn, however, the needful optimizations can be done and may make a difference.

17

*For knowing of liveness of other node:

• Receipt of info from/about any node
– if it is not part of NML, update UNL and NML.

*For maintaining its own liveness with the network:

• Regular proposal push at t1 interval

• UNL push at t2 interval

• NML push at t3 interval

*On receipt of node leave message, delete the node immediately. Forward the node

leave message.

Nodes and servers also employ the following for maintaining the liveness of nodes in

their NML and UNL:

• Failure detectors

• Tombstone node, if not heard from, after 2*time period.

• Delete node after 2*tombstone time period.

• Note: Time period is as per UNL and NML time period.

• If tombstoned nodes reupdate themselves and ping their details, before deletion/
their details with appropriate timestamp(timestamp after the tombstone) are got
before deletion, they can be made live again.

• Tombstoned nodes are not an active part of the UNL(decide whether they will be
a part of the consensus process and thresholds{mostly not}). They are not sent
out as part of UNL/NML pushes.

Also UNLs and NMLs have a threshold and percentage of the amount of change they

can tolerate and can happen over a certain time period.

Maintaining the UNL and NML:

The NML and UNL at a server are maintained by updating based on data received

from UNL and NML push from other nodes and UNL/NML pull by the server. Nodes

which are not there in the NML & UNL are added to respective categories of UNL and

NML (This is for all cases excluding UNL-B).

18

UNL-B is created by randomly choosing c nodes at random from NML-B. If a node in

UNL-B is tombstoned/deleted, a new node is selected by choosing it at random from

NML-B (excluding nodes already in UNL-B). Thus UNL-B is maintained at c nodes

per affinity group if NML-B is greater than or equal to c nodes for each affinity group.

For smaller sizes of NML-B for specific affinity group, UNL-B mirrors NML-B for

that specific affinity group. For sizes less than c for specific affinity group for UNL-B

and/or less than c*b for specific affinity group for NML-B, the system actively tries to

update the respective list and add nodes by querying other nodes it knows in the

respective affinity group of the list and also other nodes from other affinity groups.

If size of UNL-B for each affinity group is less than 1, the system goes into a sceptical

state(???) and actively tries to get a node for that particular affinity group.

Note: The concept of NML-B is different from randomly choosing nodes of other

affinity groups from the list of known nodes of other affinity groups used in

Kelips(The one used in Kelips is a one time thing, after that the updates in Kelips

happens via push notifications. However 1. That is vulnerable to eclipse attacks and

attacks detailed in BRAHMS paper 2. Not truly random and only done once and later

network can converge to some nodes which keep pinging more, thus losing out on

randomisation. The other approach, our resolves the above issues and implements the

algorithm detailed in BRAHMS paper, thus improving security).

Modified consensus algorithm and dynamically updated UNL:

Here we propose slight modifications to the consensus algorithm in terms of

thresholds, UNLs and some small points. For all other practical purposes, the

algorithm is the same as the original Ripple Protocol Consensus Algorithm as

mentioned in the ripple white paper and as quoted from the paper above in section.

For each round i at each server

Stage 1: Candidate set generation

• Transactions in the candidate set which could not pass the previous consensus
round but are still live and valid are re-included in the candidate set.

• The server flushes it’s transaction input queue which contains various
transactions from clients and candidate set transactions of other servers, received
previously. These can be received during the previous consensus round/

19

currently received(after the previous transaction flush)/pending from the
previous queue flush

• Transactions the server feels are valid and potential candidates for consensus are
added to the server’s candidate set.

• The server then declares it’s candidate set to other servers in it UNL.

• Note: The mandatory wait time for all servers to catch up and generate/share
their candidate sets reduces due to the network topology. If some servers still are
unable to catch up

– their suggestions for potential transactions to candidate sets can be taken
up the next round (If this is a large majority, the time can be tweaked, also
the current consensus round wouldn’t pass)

– their suggestions and suggestions they receive get relayed indirectly
through the multi-hop infrastructure.

This ensures that every server has visibility of most/all transactions

Stage 2: Consensus sub-rounds

• After the mandatory wait time, the servers send out their proposals for each
sub-round of consensus

• The absolute threshold for mathematical certainty decreases after each
sub-round as the number of hops increases and network overlap increases and
servers get increasingly more visibility of the network.

• The sub round threshold increases after each sub-round, as is there in the ripple
protocol. However, the threshold need not be more than the absolute threshold
for mathematical certainity.

Note: The time for each sub-round is equal to the average time/median time it takes for

1 hop to complete in the network. It can change/adapt as per the network latencies.

Note: The servers don’t need to send proposals for each sub-round; similar to RPCA.

Refer video.

-== add this somewhere. == The proposals for sub-round can be sent for each round

saying this sub round or send only once.

3.1.3 Analysis - Information propagation, overlap and threshold.

In this section, we describe how information is propagated, calculate the network

overlap and determine the per sub-round thresholds for provable security and

achieving mathematical ceratinty for the absence of forks.

20

Importance of Consensus, information propagation

Before we begin, we would like to briefly highlight the importance of the consensus

algorithm, especially when block chain and public key cryptography resolve the

byzantine generals problem to a very good extent. One can easily see that

implementing public key cryptography prevents man in the middle attacks by ensuring

that only the legitimate sender is able to send the message and the message is

untampered with, thus eliminating one of the major concerns of the byzantine generals

problem. However, a node can still behave maliciously by not forwarding the message

and preventing the other nodes from making an appropriate choice. Also, while the

nodes can not create faulty transactions, a malicious client side application/ user can

try to double spend by issuing two transactions with the same transaction number to

two different nodes. In the absence of an appropriate consensus process and the

eventuality of a network partition/delay in information propagation, it may be possible

for the two partitions to agree upon different sets of transactions. This makes the

system open double spends, haemorrhaging the money and value of the system. While,

it is possible to identify the malicious account(not necessarily user), the damage is

already done. The money may not always be recoverable. Also, a fork in the block

chain causes reduced trust in the system, causing decreased adoption, members leaving

and thus causing a loss in the systems value. In light of the above mentioned points, it

is important to have a consensus algorithm that prevents such vulnerabilities and also

have an information propogation mechanism that ensures that not only are malicious

nodes unable to prevent the network from making forward progress but also that they

are not able to cause forks in the system.

Information propagation and UNL overlap

In this section we discuss how information is propagated per-hop in a

p2p(Kelips)-inspired topology (in the context of Ripple) and how this affects UNL

overlap between two nodes. It should be noted that there is a subtle difference between

candidate set propagation and proposal propagation in the context of UNL overlap. For

UNL overlap, it is proposal propagation which should be considered. This is owing to

the way Ripple’s consensus protocol is currently configured. We explain this via an

example.

21

We now describe how the information propogation takes place and analyse the UNL

overlap. Apart from some differences, the overall propagation(via hops) is similar to

Kelips’ file querying and file insertion mechanisms, as the substrate/network topology

used is Kelips’ . The value lies in identifying the usage of p2p-inspired network

toplogies, in the implementation in the context, dynamically updating UNLs and

getting reduced thresholds for same security, preventing forks, and also other

applications and benefits.

In the context of Ripple and applying p2p(Kelips)-inspired topology, each round has

two halves equalling a total of 2 hops. The first half is the propagation of the candidate

transaction while the second, propagation of proposals. We can for the purpose of

utility configure the system such that it treats consensus proposals also as possible

candidate transactions. Thus a proposal when received is checked in not just into the

proposal queue but also the candidate set queue(could do check for candidate set on

the proposal queue instead as a memory optimization). This may possibly help reduce

messages sent(message cost and thus dependency on latency) and thus reduce the time

it takes to reach consensus for a transaction’s life time and also for a consensus ledger.

Thus, all proposals are potential candidate transactions(the ones before entering

candidate set) but not all candidate set transactions are proposals. Thus, here we

discuss for each hop, considering proposal propogation.

Ai receives transactions from client and verifies validity and propagates it. Overlap

between Ai and Aj belonging to same affinity group

Synchronous system in absence of failures

Hop 1.

No/minimal overlap (Proposal stand point)

Hop 2.

UNLOverlap ≥ 50%(own affinity group).

Hop 3

100% overlap

Synchronous system in the presence of f failures. Link Latency ratio

(UNL-A/UNL-B) = 1

22

f1 failures internal to affinity group A , f2 failures for nodes connected to Ai, f3

failures for nodes connected to Aj

Hop 1

No/minimal overlap (Proposal stand point)

Hop 2

UNLOverlap ≥ 1− f1√
N−1 ×

′ a′

’a’ is the weightage of UNL-A in the consensus process.

’b’ is the weightage of UNL-B in the consensus process.

Hop 3

Hop 4(
1− f1√

N−1 ×
′ a′

)
+

(
1− f−f1

c×(
√
N−1)

×′ b′
)
≤ UNLOverlap ≤(

1− f1√
N−1 ×

′ a′
)
+′ b′

Consensus sub-round thresholds

As highlighted in section 3.2 of the paper [Citation Ghassan O’Karame paper] for a %

threshold, % overlap in UNL is needed. By utilising the formula derived, it suffices to

say that if there is an increase in possible overlap between each UNL, the min

threshold needed for arriving at consensus can be further reduced, thus decreasing the

time taken to reach consensus. It can be noted that for a 90% overlap in UNL, we can

work with as little as 55% threshold. (Note the minimum 66% threshold is valid in the

classical byzantine generals problem. In the case of implementing public key

cryptography to the problem, we can go much lower than the 66% threshold)

Round 1: x%

Round 2

The other benefits of this is that even if a server is able to connect to 1 other server/

one non-faulty server, it’s message gets relayed and the whole system will reach

consensus in normal number of rounds+1. The server can then receive the info that

consensus passed after a certain number of rounds from that link and thus the server

23

while not receiving proposals acts as a relay of transactions and also receives latest

updates on the last/latest validated ledger. This way, we can ensure last mile

connectivity. The same previously was not guaranteed to happen. It also protects the

system/ server when all but 1 other servers in its UNL are non faulty/non-byzantine.

Only one good node connected takes care of the outreach and preventing eclipse

attacks. This apart from the NML-B/UNL-B choosing structure/process which

incorporates BRAHMS. Thus improving security. Since the server’s success and other

statistics are maintained by the community, extremely malicious nodes can be weeded

out. Due to public key crypto, fake transactions are very very difficult to create. So a

node can only be malicious by witholding info(solved due to last mile connectivity)

{and by declaring wrong ledger(reputational cost)}.

Message complexity(normal and compared to ripple standard)

Time complexity(normal and compared to ripple standard)

Memory storage complexity

Benefits

• Reduced threshold, same security but less time

• Improved security, UNL more systematized

• Last mile connectivity

• Network diagnostics

• Connection detection

• Network state

• Network latency

• Load balancing

• 3 degrees of separation

• Resilience to Byzantine attacks, Sybil and Eclipse attacks; BRAHMS

• Consensus is energy efficient compared to Proof of Work and also resilient to
Sybil

24

3.2 Simulation

3.2.1 Experimental setup

For the purpose of experimental analysis and benchmarking, we utilise the simulation

code ’Sim.cpp’ mentioned in the Ripple White Paper. We compare 3 different versions

of the code with number of nodes and malicious nodes scaled appropriately for

comparison purpose. A brief description of the different versions is mentioned below

1. SimC - The original version of Sim.cpp by Ripple. Number of links, link
latencies, connections remain same as the original. We call this version
Sim-Classic.

2. SimRM - A modified version of Sim.cpp with the number of links and link
latencies similar to SimK, described below. The UNL and network topology is
randomised as is in SimC. We call this version Sim-Ripple Mid (as it has
number of links scaled to the number in SimK but employing the randomised
topology as is in the SimC)

3. SimK - A modified version of Sim.cpp where the network topology is inspired
by the p2p system, Kelips. The connections, UNL, number of links are
appropriately set up in a manner similar to the approach described in the paper
above. The ratio of link latencies (links within affinity group to links outside) is
varied, as described in the results below. We call this version Sim-Kelips.

The system initially starts in perfect disagreement (similar to the original simulation)

with half of the nodes proposing “yes” and the other half proposing no. The initial

state of the nodes too is randomised and changes for each test case. The nodes change

their stance to the stance taken by a majority of nodes in their UNL(greater than 50%).

Note: This threshold is the same as is in the original ripple simulation Sim.cpp. It is

technically sound owing to the fact that in the case of implementing public key

cryptography, the minimum permissible threshold is 50%. However, the network and

simulation reach consensus when 80% of the network agrees to a certain result.

Both Sim.cpp and the versions mentioned above are generic compared to the actual

real life implementation of Ripple. This is so that it be applicable in a number of

different settings and not just the specific case. However as everything else is the same,

it is possible to compare the differences occuring due to introduction of a network

topology inspired by Kelips.

25

Table 3.1: Results for SimC - The classic version used by Ripple for simulation

SimC
Consensus Time (ms) Number of Messages Total Links

Average 585.60 19019.82 5120
Median 577 19028 5120
Mode 552 19073 5120

Table 3.2: Results for UNL-A Link Latency Factor = 1

SimK SimRM
Consensus Time (ms) Number of Messages Consensus Time (ms) Number of Messages

SimK(1,1) SimRM(1,1)
Average 198.20 69535.13 311.69 85715.72
Median 180 70570.5 289 86671.5
Mode 122 72896 284 89418

SimK(1,2) SimRM(1,2)
Average 237.17 64618.22 416.85 84880.89
Median 212.5 64281 398 86148.5
Mode 166 72375 352 87556

SimK(1,3) SimRM(1,3)
Average 242.48 60507.18 440.64 81840.16
Median 213 58422.5 420 82280
Mode 163 52464 384 82837

It might be noted that in SimK the threshold for reaching consensus is set at 80%

similar to the other two cases, and does not decrease as the rounds proceed. In the

eventuality where the thresholds for changing stance (in simulation 50%; in actual

implementation, accepted if a transaction is a possible candidate) and also for reaching

consensus decrease as the number of rounds proceed in SimK, there is expected to be a

speed up in the consensus process compared to SimC and SimRM where the

thresholds remain constant with time. At the same time as demonstrated above and in

[Citation Ghassan O’Karame paper], the security and reliability guarantees are

maintained similar to the original Ripple Protocol.

26

Table 3.3: Results for UNL-A Link Latency Factor = 2

SimK SimRM
Consensus Time (ms) Number of Messages Consensus Time (ms) Number of Messages

SimK(2,1) SimRM(2,1)
Average 258.83 71812.23 350.98 84779.98
Median 231.5 72074.5 327 85946
Mode 164 81605 307 81133

SimK(2,2) SimRM(2,2)
Average 396.21 69603.78 583.12 85055.69
Median 368.5 71083.5 552 85745.5
Mode 406 72004 501 89719

SimK(2,3) SimRM(2,3)
Average 460.23 66929.68 702.52 84447.96
Median 412.5 67962.5 665.5 85656
Mode 285 75661 645 86181

Table 3.4: Results for UNL-A Link Latency Factor = 3

SimK SimRM
Consensus Time (ms) Number of Messages Consensus Time (ms) Number of Messages

SimK(3,1) SimRM(3,1)
Average 273.76 70496.5 355.24 82563.23
Median 245 69783 332 83794
Mode 222 77565 315 84769

SimK(3,2) SimRM(3,2)
Average 477.29 71502.03 639.88 84685.34
Median 433.5 72530.5 597 85861
Mode 312 74275 501 87854

SimK(3,3) SimRM(3,3)
Average 603.99 69484.87 819.78 83811.76
Median 534.5 70103 784 84565
Mode 360 71069 806 89394

Table 3.5: Total number of links in the network (Valid for all Link Latency Ratios)

Total Links
SimK SimRM

Average 20969.3 23040
Median 20970 23040
Mode 20960 23040

27

REFERENCES

1. Lamport, L., LATEX: A document preparation system. Addision-Wesley, 1986.

2. Ramachandran, P., MayaVi: A free tool for CFD data visualization. In 4th Annual
CFD Symposium. Aeronautical Society of India, 2001. Software available at:
http://mayavi.sf.net.

3. Ramachandran, P. (2004). LATEX class for dissertations submitted to IIT-M. Ph.D.
thesis, Department of Aerospace Engineering, IIT-Madras, Chennai – 600036.

4. Ramachandran, P., S. C. Rajan, and M. Ramakrishna (2003). A fast,
two-dimensional panel method. SIAM Journal on Scientific Computing, 24(6),
1864–1878.

5. van Rossum, G. et al. (1991–). The Python programming language. URL
http://www.python.org/.

28

http://www.python.org/

LIST OF PAPERS PLANNED

1. Description: Conference Paper:
Tentative Title: "Fast Full Network Knowledge".
Keywords: DHT, Kelips, Ripple, UNL, Threshold, Network Overlay

2. Description: Journal Paper:
Untitled
Keywords: DHT, Kelips, Pastry, Chord, Ripple, UNL, Threshold, Network
Overlay

29

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	INTRODUCTION
	Cryptocurrency
	The Double Spending Problem
	The Byzantine Generals Problem

	Bitcoin
	Ripple
	Comparison between Ripple and Bitcoin

	LITERATURE SURVEY
	Resources utilised and content surveyed
	Select concepts from literature survey
	Ripple Protocol Consensus Algorithm
	Kelips

	Introduction

	OUR CONTRIBUTION
	Fast Full Network Knowledge
	Distributed payment sytems, their utility and value goals.
	Towards preventing forks, speeding up consensus, dynamically updating UNLs and providing last mile connectivty using p2p inspired network topologies
	Analysis - Information propagation, overlap and threshold.

	Simulation
	Experimental setup

