
Formal Verification for Security in IoT Devices

Keerthi K.1, Indrani Roy1, Aritra Hazra2, and Chester Rebeiro1

1 Indian Institute of Technology Madras, India
{keerthi, indrroy, chester}@cse.iitm.ac.in,
2 Indian Institute of Technology Kharagpur, India

aritrah@cse.iitkgp.ernet.in

Abstract. Online detection of cyber-attacks on IoT devices is extremely
difficult due to the limited battery and computational power available in
these devices. An alternate approach is to shrink the attack surface in
order to reduce the threat of attack. This would require that the device
undergo more stringent security tests before deployment.

Formal verification is a promising tool that can be used to not only
detect potential vulnerabilities but also provide guarantees of security.
This chapter reviews several security issues that plague IoT devices such
as functional correctness of implementations, programming bugs, side-
channel analysis, and hardware Trojans. In each of these cases, we discuss
state-of-the-art mechanisms that use formal verification tools to detect
the vulnerability much before the device is deployed.

1 Introduction

The number of connected IoT devices has crossed 20 billion and expected to in-
crease at a rate of 15% per year. IoT devices are typically battery operated, have
low computing power, and less memory. Many of the devices have either no or
tiny operating systems that have limited functionalities. Operating system func-
tionalities are typically restricted to resource management for efficient energy
utilization. Security features such as secure boot, trusted execution, and even
memory protection are generally absent. These limiting features in IoT devices
makes them vulnerable to a variety of cyber-attacks.

The attack surface for IoT devices is considerably large. An attacker may use
one or more of the following attack vectors to compromise a device.

– First, there can be a weakness in the functionality of a device. For example,
an operation that was intended to be present but is either absent in the
implementation or not fully complete. For example, there may be an absence
of strong authentication methods or an absence of meta-level encryption
procedures.

– Even if the intended security operations are implemented in the device, there
may be flaws in the implementation. This is especially a problem with cryp-
tographic algorithms. The security guarantees of cryptographic algorithms
are well studied and investigated. The weakest link is generally not due to

the mathematical underpinnings of the algorithms but rather their imple-
mentations. The huge state space present in cryptographic implementations,
makes detecting these flaws difficult.

– Programming bugs such as buffer overflows, arithmetic overflow and under-
flows, and format-string vulnerabilities present in the implementations, can
be used to craft malicious payloads that can subvert execution leading to
security breaches.

– Trojans present in the hardware or software can provide unauthorized access
to the system or lead to information leakage. These Trojans are introduced
due to multiple third parties involved in the design and manufacture of IoT
devices. They are very difficult to detect but provide an easy vector for an
attacker.

– IoT devices are also vulnerable to multiple physical attacks such as fault in-
jection attacks, differential power analysis, and timing attacks. These attacks
would require the attacker to have physical access to the device, disturb the
device operations by injection of a fault, or passively monitoring the device’s
side-channels such as its power and energy consumption, electro-magnetic
radiation, and execution time to glean secret information.

This huge attack surface is a serious concern especially because many of the
IoT devices are used in cyber-physical systems such as process-control, smart-
grid, and medicals systems. A compromised device in any of these critical in-
frastructures could lead to considerable losses.

Due to the constrained resources in an IoT device, detecting cyber-attacks is
only possible from outside the device. Two potential directions to detect malware
outside the device is by monitoring the network for malware signatures or by
using side-channels such as the device’s power consumption, execution time, and
electro-magnetic radiation to identify patterns that would indicate an attack.
Both techniques face considerable challenges. For example, current side-channel
analysis techniques requires a measurement setup and therefore only possible
in a laboratory environment. Network monitoring techniques on the other hand
will not be effective for attacks that do not transmit much over the network or
those that camouflage their network activities. Furthermore both techniques will
not be able to detect zero-day exploits.

An alternate approach to achieving security in IoT devices is to prevent
rather than detect. This would require that the various attack vectors described
above are eliminated at design time there by reducing the attack surface. Tradi-
tionally this is done by good design practices, use of secure coding techniques,
static analysis, and extensive testing. However, these methodologies cannot pro-
vide guarantees of security; stronger mechanisms would therefore be required.
One promising direction is the use of formal verification to provide security
guarantees. Formal verification is a technique to mathematically ascertain the
correctness of designs using a diverse set of mathematical and logical methods.
Model checking [17] and theorem proving [23] procedures are often used to en-
sure the accuracy of implementations. In model checking, a model of a system
is exhaustively and automatically verified with respect to a given specification;

whereas in theorem proving, the system characteristics are derived mathemati-
cally and solved using automated reasoning techniques to infer the correctness
of the system.

The main drawback of using a theorem prover is that the user has to explicitly
provide the design and specification characteristics as algebraic constraints or
theorems. Model checkers, on the other hand, can act automatically over the
implementation with the given specifications and formulate SAT clauses from
the design behavior. It is, therefore, more effective and easier to use a model
checker as compared to a theorem prover for validating large implementations,
such as crypto-designs.

In this chapter, we shall discuss various applications of formal verification in
order to improve an IoT device’s security. We would use formal verification to
(a) prove the correctness of implementations with respect to its formal specifi-
cation. As a case study, we would consider the correctness verification of a multi-
precision library used for public-key cryptographic algorithms such as ECC and
RSA. (b) We would then prove the absence of programming vulnerabilities, such
as buffer overflows, in the multi-precision library. Multi-precision library imple-
mentations are especially interesting for formal verification due to their critical
usage with security sensitive aspects in the device, and their extremely complex
design space where comprehensive testing becomes practically impossible.

The chapter would also discuss other state-of-the-art research in the use of
formal verification for device security. In particular, (c) the chapter discusses
the use of formal verification to validate physical attack countermeasures. While
applying countermeasures for physical attacks such as side-channel analysis is
easy, proving their effectiveness is considerably more challenging. Formal veri-
fication would help considerably to achieve these security proofs. (d) Another
application of formal verification is to detect the presence of hardware Trojans
in designs. We discuss a recent work which demonstrates the use of model check-
ing tools to identify a Trojan that leaks sensitive information from the device.
(e) Finally we discuss the use of formal verification to ensure completeness of
security goals such as meta-level authentication and encryption.

The organization of this chapter is as follows: Section 2 provides the back-
ground about symbolic model checking covering SAT and BDD based model
checking. The section also describes a model checking tool called CBMC for C
based bounded model checking [18]. Section 3 describes the use of model checking
to verify that an implementation is correct with respect to its formal specifica-
tion. A case study of a multi-precision library used for ECC and RSA is verified.
Section 4 describes program vulnerabilities and presents the use of CBMC as
a tool to detect such vulnerabilities. Section 5 presents the use of formal veri-
fication for side-channel countermeasures, while Section 6 describes the use of
formal verification for hardware Trojan detection. Section 7 shows how formal
verification can be used to identify meta-level authentication issues, while the
final section has the conclusion.

2 Background: Symbolic Model Checking

The term symbolic model checking is popularly interpreted as BDD-based model
checking, however any model checking technique that works on a symbolic rep-
resentation of the implementation can be called symbolic model checking. There
are mainly two kinds of symbolic methodology found in the literature; namely
BDD-based model checking and SAT-based model checking.

2.1 BDD-based Model Checking

Binary Decision Diagrams (BDDs) [8] are compact canonical representations of
Boolean functions. BDDs utilize self-similarity in the decision trees based on
Shanon’s expansion to give a more compact representation. Ken McMillan first
proposed model checking algorithms using BDD in his famous doctoral the-
sis [24]. The use of BDDs in model checking was instrumental in bringing the
technology into practice. Experimental results showed that the BDD-based ap-
proaches were able to handle 1020 states and beyond [10] – which was unthinkable
with algorithms that work on explicit representations of the state space.

To perform BDD-based model checking [14], a BDD representation, Z, for the
temporal property ¬ϕ is created (when, ϕ be the temporal formula of interest).
Then, the product of Z with the BDD for the transition relation of the design-
under-test (DUT) is computed. Let the BDD for the product be P. In the final
step of the model checking, the strategy is to check whether P is empty, that is,
whether the product has any fair path [9], [15].

2.2 SAT-based Model Checking

SAT is the traditional short form for the Boolean satisfiability problem. Given
a Boolean formula f , the problem is to determine whether f is satisfiable, that
is, whether there exists any valuation of the variables in f , under which f eval-
uates to True. Verification methods based on the SAT problem have recently
emerged as a promising solution. Dramatic improvements in SAT solver tech-
nology over the past decade have led to the development of several powerful
SAT solver tools [21], [28], [29], [31]. Verification methods based on these tools
have been shown to push the boundaries of functional verification in terms of
both capacity and efficiency, as reported in several academic and industrial case
studies [2], [3], [7]. This has fueled further interest and intense research activity
in the area of SAT-based FPV.

Bounded Model Checking (BMC) [13] based on SAT methods was intro-
duced by Biere et al. in [5], [6], [13] and is rapidly gaining popularity today as
a complementary technique to the existing BDD-based model checking. Given
a temporal logic property, ϕ, to be verified on a finite state transition system
M, the essential idea is to search for counter-examples to ϕ in the space of all
executions of M whose length is bounded by some finite integer k.

The problem is formulated by constructing the following propositional for-
mula:

fk = I ∧
k−1∧
i=0

R(Si, Si+1) ∧ (¬ϕk)

where I is the characteristic function for the set of initial states ofM, R(Si, Si+1)
is the characteristic function of the transition relation, relating the variables in Si

with those in Si+1, ofM for time step i. Thus, the formula
(
I ∧∧k−1

i=0 R(Si, Si+1)
)

precisely represents the set of all executions of M of length k or less, starting
with an initial state. ¬ϕk is a formula representing the condition that ϕ is vio-
lated by a bounded execution ofM of length k or less. Hence, fk is satisfiable iff
there exists an execution ofM of length k or less that violates ϕ. fk is typically
converted to conjunctive normal form (CNF) and is solved by a conventional
SAT solver.

Due to the success of SAT solvers in bounded model checking, there has been
growing interest in their use for unbounded model checking. Few of the recent
works in this direction can be found in [22], [25].

2.3 CBMC: The Formal Verification Tool

There are various academic as well as industrial tools available for formal veri-
fication of the system. In this work, we will evaluate the security attributes by
symbolic model checking approach with the help of tool named CBMC which
is a C based model checker [18]. CBMC takes two inputs: (i) the program to be
verified (written in C or C++), and (ii) the formal specification, as shown in
Figure 1. The loops in the program (p) are first unwound and then a Boolean
model Q(p) is obtained, which is checked for satisfiability with the negation of
the specification (¬q) using an in built SAT solver. If the model is satisfied,
which means that the negation of the specification is satisfied, then the verifica-
tion fails. CBMC reports this failure with a counter-example. If the model is not
satisfiable, then for all the possible combinations of the input, the specification
conditions are correct, therefore the program is verified to be correct based on
the given specifications.

3 Correctness of Crypto Implementations

An important security requirement for any program is to ensure its correctness
with respect to a specification. This becomes even more critical when the pro-
gram in consideration is an implementation of a cryptographic algorithm. An
error in a crypto-implementation, could be exploited to leak secrets such as the
cryptographic key. Extensive testing is the time-honored way of checking the
correctness of a crypto implementation. This however cannot provide guaran-
tees because of the huge state space of crypto-implementations. For example,
the state space of a typical implementation of an elliptic curve cryptographic
scheme is in the order of 2256. This is too huge a space to exhaustively test. A

CBMC

Negation

unsat sat

q

Translation to a

math, model(Q)

Spei�ation

Program

Q(p) ¬q

SAT Solver

OK(No Bug)

Q(p) ∧ ¬q

ounterexamples

p

Fig. 1: Flow of a C program verification using CBMC, showing a SAT solver
that checks the correctness of program p with respect to the specification q. The
counter example generated gives the program inputs for which specification q
fails [16].

more complete technique is to use formal verification, which generates stronger
guarantees of correctness based on a functional specification of the algorithm.

There have been several efforts to prove the functional correctness of crypto-
implementations using formal verification. For example, ciphers like AES, MARS,
Twofish, RC6, Serpent, IDEA, and TEA were considered in [19]; several hash
functions and block ciphers in [4] and [32]. For public-key ciphers, functional
correctness has been discussed in [1] and [12].

In this section we discuss the formal verification of a multi-precision library.
This library forms the base over which public-key algorithm like ECC and RSA
are built.

3.1 Correctness of a multi-precision library

A multi-precision library for public-key cryptography includes implementations
of finite-field operations such as addition, subtraction, multiplication etc. These

implementations could have many flaws, most of which can be detected by formal
verification.

The multi-precision library we consider is written in ‘C’. We use the model
checking tool CBMC (ANSI-C Bounded Model Checking) [18] as a tool for ver-
ification. The approach we follow is to use a hierarchical verification technique
to handle the scalability issues and the huge state space of the library.

Implementation Aspects and Notations. A central data-structure used to
define multi-precision numbers is the bignum t structure, which comprises of an
array called digits used to store the multi-precision number and sign to store
its sign.

typedef struct{

word digits[MAXDIGITS];

int sign;

}bignum_t;

The multi-precision elements is represented using the macro MAXDIGITS - based
on the number of digits in the multi-precision number. It depends on the word

length of the processor executing the multi-precision library. For instance to
represent a field element in F256 on a micro-controller platform with a 16 bit
word size, MAXDIGITS would be defined as d256/16e = 16.

The finite field elements are represented using the above structure as follows:
A = (a15, a11, a10, · · · , a2, a1, a0), where ai (15 ≤ i ≤ 0) are word sized numbers
stored in digits in the bignum t structure, a15 is the most significant digit, while
a0 is the least significant digit. Multi-precision operations are denoted in capitals

with a ‘∗’ on top. For example A
∗
+ B represents multi-precision addition, while

the operations over the digits in the multi-precision number are in the standard
representation, such as ai + bi for digit addition. In the remainder of this section
we demonstrate several cases of formal verification of multi-precision operations.

Case 1 (Multi-Precision Addition): Let A and B be two multi-precision

numbers with n digits. To perform multi-precision addition (S = A
∗
+ B), we

add the digits of A and B as shown in Equation 1.

c−1 = 0

(ci, si) = ai + bi + ci−1 (0 ≤ i ≤ n− 1) ,
(1)

where si holds the sum of digits and ci the carry of each digit addition. The
output is stored in (cn−1||S).

Verification of Multi-Precision Addition. In Equation 1, we first verify that the
carry and sum of each digit (i.e. ci, si) is correct. Each digit is of 8, 16, or 32
bits depending on the execution platform. To perform the verification, we provide
conditions to CBMC (in the form of assertion statements) that will evaluate to
true if the addition is correct and false otherwise. The condition to verify the

addition of the digits of A and B considering the carry that occurs from one
digit to the next, i.e. verifying (ci, si) = (ai + bi + ci−1) is

((ci, si)− (bi + ci−1) = ai) 0 ≤ i ≤ n− 1; c−1 = 0 . (2)

CBMC will perform the multi-precision addition A
∗
+ B and verify digit-by-

digit checking exhaustively over the possible valuations of A and B, for the above
condition to be satisfied. If a failure is obtained, it means that the specification
failed for some values of A and B. CBMC will return the values which caused the
failure. This counter-example is the proof that CBMC provides of a verification
failure.

Listing 1.1: Implementation of multi-precision addition

void BN_uadd (bignum_t *S, bignum_t A, bignum_t B)
{

int i, j;
word c = 0;
S->sign = 1; /* sign of result forced to positive */
for(i = 0; i < MAXDIGITS; i++){

S->digits[i] = A.digits[i] + c;
c = (S->digits[i] < c);
S->digits[i] = S->digits[i] + B.digits[i];
c = c + (S->digits[i] < B.digits[i]);

}
while(c!=0){

S->digits[i] = S->digits[i] + c;
c = (S->digits[i] < c);
i = i + 1;

}
}

Listing 1.2: Specification for multi-precision addition

int BN_uadd_specification(bignum_t S, bignum_t A, bignum_t B)
{

int j;
word z, c = 0;
for(j = 0; j < MAXDIGITS; j++) {

z = (S.digits[j] < c);
S.digits[j] = S.digits[j] - c;
c = (S.digits[j] < B.digits[j]) + z;
S.digits[j] = S.digits[j] - B.digits[j];
if (S.digits[j] != A.digits[j]) return (false);

}
return (true);

}

Listing 1.3: Verification of multi-precision addition

void BN_uadd_verify ()
{

bignum_t S,A,B;
int nondet_int ();
A.sign = nondet_int ();
B.sign = nondet_int ();
__CPROVER_assume(A.sign ==1 && B.sign ==1);

BN_uadd (&S,A,B); /* Compute S = A + B */
assert(BN_uadd_specification(S,A,B));

}

Step 1

P = 1;

j = 0;

if(j < MAXDIGITS) {
//body

z = (S.digits[j] < c);

S.digits[j] = S.digits[j] - c;

c = (S.digits[j] < B.digits[j]) + z;

S.digits[j] = S.digits[j] - B.digits[j];

if (S.digits[j] != A.digits[j]) P = 0;

j = j + 1;

if(j < MAXDIGITS){
//body

j = j + 1;

...

if(j < MAXDIGITS){
//body

j = j + 1;

assert(!(j < MAXDIGITS));

}
...

}
} assert(P ==1);

Step 2

P1 = 1;

j1 = 0;

if(j1 < MAXDIGITS){
//body

z1 = (S1.digits[j1] < c1);

S2.digits[j1] = S1.digits[j1] - c1;

c2 = (S2.digits[j1] < B1.digits[j1]) + z1;

S3.digits[j1] = S2.digits[j1] - B1.digits[j1];

if (S3.digits[j1] != A1.digits[j1]) P2 = 0;

j2 = j1 + 1;

if(j2 < MAXDIGITS){
//body

j3 = j2 + 1;

...

if(jn−1 < MAXDIGITS){
//body

jn = jn−1 + 1;

assert(!(jn < MAXDIGITS));

}
...

}
} assert(P2==1 && P3==1 && ... && Pn==1);

Step 3

C := (P1 = 1)

∧ (j1 = 0)

∧ z1 = ((j1 < MAXDIGITS)∧(S1.digits[j1] < c1)) ? 1 : 0

∧ S2.digits[j1] = (j1 < MAXDIGITS) ? S1.digits[j1] - c1 : S1.digits[j1]

∧ c2 = ((j1 < MAXDIGITS)∧(S2.digits[j1] < B1.digits[j1])) ? (1+z1) : z1

∧ S3.digits[j1] = (j1 < MAXDIGITS)?(S2.digits[j1]-B1.digits[j1]) : S1.digits[j1]

∧ P2 = ((j1 < MAXDIGITS)∧(S3.digits[j1] 6= A1.digits[j1])) ? 0 : P1

∧ j2 = (j1 < MAXDIGITS) ? (j1 + 1) : j1

∧ ...

P := (P2 == 1 ∧ P3 == 1 ∧ . . . Pn == 1)

Fig. 2: Given the function BN uadd specification, Step 1 shows how CBMC
unwinds the loop and the Step 2 shows the renaming of the variables in function
body. Step 2 is converted to Boolean formula, with set of constraints C and
properties P is given in Step 3

Listing 1.1 gives the implementation of multi-precision addition shown in
Equation 1. Functional correctness of the implementation is done by digit addi-
tion of the result with operand B as given in Equation 2. The implementation
aspects of the addition specification is shown in Listing 1.2. Implementation
BN uadd verify in Listing 1.3 performs the formal verification, which invokes
BN uadd and BN uadd specification. CBMC performs the following steps for
verification:

1. CBMC unwinds all the loops in the program, based on the number of it-
erations specified using command ‘--unwind N’. Each copy of the loop is
replaced by an if statement to check the terminating conditions and at the
end of N copies, an unwinding assertion is added by CBMC to avoid further
iterations. The unwinding of BN uadd specification in listing 1.2 is shown

in Step 1 of Figure 2. We have used an additional variable P to represent
the return value of the function, which is initialized to 1 and made 0 if false
is returned (corresponding to Line 10 of BN uadd specification). The as-
sertion in the last line of Step 1 corresponds to the assertion in Line 9 of the
function BN uadd verify.

2. The next step is to rename the program variables as shown in Figure 2
Step 2, which is transformed to SSA (static single assignment). For example
j = j + 1 is converted to j2 = j1 + 1. In Step 2, each if block renames the
variable P to P1, P2, . . ., Pn. Therefore, the assertion statement should check
all the n values of P instead of one variable.

3. In the third step, CBMC uses set of rules to convert SSA statements are
converted to Boolean formula [18]. The rules define a set of constraints (C)
and set of properties (P). These are shown in Step 3 of Figure 2.

4. The SAT solver in CBMC, try to solve C ∧¬P and returns counter-example
if solution found, which means that verification is failed; otherwise it returns
verification successful

Case 2 (Multi-Precision Subtraction): Let A and B be two multi-precision

numbers of n digits each. To perform multi-precision subtraction (D = A
∗
− B),

we subtract the digits of A and B as shown in Equation 3.

br−1
= 0

di = (bri , (ai − bri−1
))− bi (0 ≤ i ≤ n− 1) ,

(3)

where di holds the difference between digits and bri holds the borrow of each
individual digits. The output of the result is stored in d.

Verifying Multi-Precision Subtraction. To verify subtraction, we assume that
multi-precision addition has already been verified and proven to be correct.

Thus, verifying D = A
∗
− B is simply done using A = D

∗
+ B. In the specifica-

tion function for multi-precision subtraction, we invoke multi-precision addition
(Equation 1) with operands D and B. The result is verified to be equal to the
original value of A using an assert statement.

Case 3 (Multi-Precision Left-Rotation): The multi-precision left-rotate
takes a multi-precision number A having b bits and an integer m. It shifts A
left by m bits and the bits that fall off at the most significant end are inserted

in the least significant end. This is represented as Ar = A
∗
≪ m.

Verifying Multi-Precision Left-Rotation. We verify multi-precision left-rotate, by
checking the bit position before and after rotation. i.e., the specification given
to CBMC checks that m most significant bits of A is shifted to corresponding
least significant positions in Ar. The remaining (b−m) bits of A are left shifted
by m bits in Ar.

For example: let A = (a15, a14, a13, · · · , a2, a1, a0), be a multi-precision num-
ber on a 16-bit platform and ai (11 ≤ i ≤ 0) be 16 bit words in A. (A ≪ m)

and

Point Addition

Point Doubling

Scalar

Finite Field Operations

Multiplication

Fig. 3: Pyramid-like structure of an ECC implementation, where the bottom
layer finite field operations include multi-precision addition, multiplication etc

where m = 16, will result in Ar = (a14, a13, a12, · · · , a1, a0, a15). Verification is
done by checking whether all the bits are shifted exactly m bits to lower position
and also the most significant m bits are shifted to least significant m bits.

3.2 Verifying an ECC Implementation

Elliptic curve cryptography implementations have a pyramid-like structure as
shown in Figure 3. The operations in the base of the pyramid are multi-precision
algorithms like addition, subtraction, multiplication, and inversion; all done in
the underlying finite field of the Elliptic curve. The verification of the point
addition and doubling functions is thus carried out to ensure that the correct
invocation of all the lower level finite field functions.

The verification of ECC scalar multiplication is done in a similar manner,
since the algorithm invokes the point addition and point doubling functions.
Given that point addition and point doubling have already been verified to be
correct, the scalar multiplication involves the number of times point addition
and point doubling is computed based on the scalar.

Results. This section contains the results of the verification of our Elliptic curve
crypto-library. Implementation of four out of the five NIST specified Elliptic
curves over F192, F224, F256, and F384 [34] were verified. CBMC Version 5.7 [18]
on an Ubuntu 14.04 Linux machine on a quad core Intel i5-3340 CPU @ 3.10GHz
was used as the platform for the study. In all cases, we assume a 16 bit word
size that forms a digit used to partially represent a multi-precision number.
Table 1 shows the verification time for the four different NIST specified curves.
Figure 4 shows the verification time and execution time for 4 NIST specified

Table 1: Time taken (in hours) by CBMC to verify scalar multiplication opera-
tion of 4 different curves, assuming a 16 bit word size.

Function Description Time(in hours)

192-bit F192 23
Scalar Multiplication 224-bit F224 34

256-bit F256 64
354-bit F384 183

Fig. 4: Time taken in log scale for execution and verification of scalar multipli-
cation for the 4 NIST Elliptic curves F192, F224, F256, and F384.

Elliptic curves F192, F224, F256 and F384 [34] and also the increase in verification
time of Karatsuba multiplication as field size increases.

3.3 Verifying an RSA Implementation

RSA also has a similar pyramidal structure like ECC but with just two levels. The
base comprises of multi-precision operations just as in ECC, albeit with much
larger numbers. The upper level comprises of modular exponentiation, which
is used for encryption and decryption. Hence it is clear that the verification is

done using the assume-guaranteed hierarchical verification technique, where all
the finite field operations are verified and found to be correct.

4 Program Vulnerability Detection

Even though programs may be verified to be correct, minor bugs in the code can
be exploited to subvert the implementation and execute malicious payloads. To
detect such bugs, which we call programming vulnerabilities, we need to analyze
the implementation. Formal verification tools such as CBMC [18] can be used
for this purpose.

The first step is to classify bugs according to vulnerability numbers present
in the CVE database [26]. This database lists publicly known vulnerabilities
and exposures. The CWE database classifies lists according to various known
weaknesses [27]. The sub-category CWE-310, View-658 lists the various weak-
nesses of software written in the C programming language. Another sub-category
View-702, lists potential weaknesses introduced during implementation. To de-
tect program vulnerabilities, we assume that these databases would help iden-
tify a majority of the vulnerabilities in the implementation. We begin this sec-
tion by highlighting the various programming vulnerabilities, before discussing
the detection details. The CVE database [26] reports 8690 buffer overflow (in-
cluding arithmetic overflow) vulnerabilities. This can be mapped to 82 CWE
weaknesses [27], of which we found that 42 are applicable to a multi-precision li-
brary. The model-checking tool CBMC [18], can verify the array bounds, pointer
safety, and integer arithmetic etc. This covers 83% of the classified bugs in the
databases.

Buffer Overflow. Buffer overflow is a serious security concern, which has been
studied for several years. A buffer is a continuous chunk of memory, such as an
array, and is associated with a pointer. Buffer overflows occur when the pointer is
accessed beyond the bounds. An attacker may use buffer overflows to write into
an illegal memory that could then be used to subvert execution. Programming
languages such as C and C++ are prone to buffer overflows, where there are no
built-in bound check conditions. These overflows, such as in the example given
below, are typically not detected at compile time.

int buffer[10];

int i = 10;

buffer [i+1] = 20;

Buffer overflows have different variants such as – (1) Heap overflows: where the
overflow occur in dynamically allocated memory; (2) Stack overflows: exploits
overflow the stack based buffer, which can change the local variables in the
program, return address, and even function pointers.

Consider the buffer overflow example above, CBMC will detect the buffer
overflow in the program by inserting proper bound check conditions for each
array access. The output from CBMC tool is as follows:

Result from CBMC

State <S> file <name.c> line <L> function main

--

i=10 (00000000000000000000000000001010)

Violated property:

file <name.c> line <L> function main

array ‘buffer’ upper bound

(signed long int)(1 + i) < 10l

VERIFICATION FAILED

CBMC performs buffer overflow checks by inserting conditions in the source code
that would validate a pointer access is legal. It would then check whether the
conditions are reachable or not. As an example, conditions such as

(i >= 0) and ¬(i >= MAXDIGITS− 1)

These conditions automatically determine if an array of size MAXDIGITS, accessed
with index i, violates the lower or upper bound properties (i.e., whenever a[i]
occurs in the program).

Integer Overflow. An integer overflow could occur in programs that deal with
arithmetic operations, where a computation result exceeds the range of the rep-
resentation. Integer overflows can also occur due to improper type conversion,
which can affect the security of the program and lead to unintended behavior of
the program.

int i = -2147483648;

i = i - 1;

The example given above is an integer overflow, where the value of i has the low-
est value in its representation and the subtraction changes its value to 2147483647.

To detect potential integer overflows, CBMC automatically inserts specific
properties for each variable as given below.

(i < INT MIN) || (i > INT MAX)

This determines whether the defined variable i with data-type (in our example
int) violates the underflow or overflow property. CBMC determine whether the
property is reachable for each access of these variables. For the integer overflow
program given above, the verification result returned by CBMC is as follows :

Result from CBMC

State <S> file <name.c> line <L> function main

--

i=-2147483648 (10000000000000000000000000000000)

Violated property:

file <name.c> line <L> function main

arithmetic overflow on signed -

!overflow("-", signed int, i, 1)

VERIFICATION FAILED

4.1 Program Vulnerability Detection in a Multi-precision Library

Direct verification for buffer overflow and integer overflow need not be effective
for a crypto implementation due to its large mathematical model. For detecting
all possible vulnerabilities, we have used a hierarchical verification. The method
verify all the lower level implementation for vulnerabilities. These verified im-
plementation can be used for verification of higher level implementations. Hier-
archical verification will help to determine the flow of these vulnerabilities in the
program and also help to speed up the verification.

Table 2 shows the verification time for vulnerability detection in a multi-
precision library.

5 Formal Verification of Side Channel Countermeasures

IoT devices that are physically accessible to an attacker are vulnerable to side-
channel attacks. These attacks detect sensitive information flowing through un-
intended covert channels such as the device’s power consumption. For example,
if the device performs an operation, E, such as y ← E(x, k), with a secret key
k and plaintext bits x, then information about k is leaked through the device’s
power consumption.

Masking is a popular countermeasure used to prevent this leakage [11]. With
this countermeasure, sensitive variables like k are masked so that there is no
leakage through the power traces. The mask is then removed at the end of the

Table 2: Program vulnerability detection in a multi-precision library

Function Description Time(in seconds)
Number of

Vulnerabilities
Detected

Copy x← y 0.002 1

Addition r = x + y 0.333 3

Subtraction r = x− y 0.398 3

Compare x == y 0.628 0

Karatsuba multiplication r = x× y 53.46 16

Left-shift r = x� 1 0.004 0

Right-shift r = x� n 0.006 2

operation. For example, if E is a linear function, then for a randomly chosen
value of mask, r, the operation E(x, k ⊕ r) is done instead. No leakage about k
is present in the power consumption if r is secret. Moreover, the correct result y
is obtained by computing E(x, k⊕ r)⊕E(x, r). This works because E is a linear
function and E(x, k ⊕ r) = E(x, k)⊕ E(x, r).

Masking non-linear operations is not so trivial. It is time consuming and
error-prone as information can leak through intermediate operations. For exam-
ple, consider the non-linear operation (o = x ∧ k ∧ r). A value of o = 1, which
can be distinguished in the power consumption, will leak the value of k, which
would also be 1 in this case. Formal verification has been used to verify perfect
masking. The property used in formal verification is that every intermediate op-
eration I that is used in the computation of the non-linear function E, should be
perfectly masked [20]. We assume that every intermediate operation I is Boolean
and has parameters x bits of the plaintext, k secret key, and random mask r.
The property fed to the model checker to verify perfect masking is the following:

∃x∃k ∃k′ (
∑
r

I(x, k, r) 6=
∑
r

E(x, k′, r)) .

The property verifies that for any input x and a pair of keys k and k′ (k 6= k′),
the probability distribution of I(x, k, r) differs from that of I(x, k′, r). If this
holds then some information about the secret key k is leaked through the side-
channel. In this case, the intermediate operation I is not perfectly masked. If the
model checker finds that the above property is not satisfied, it means that no
information is leaked. Hence the intermediate operation I is perfectly masked.

Besides power consumption based channels, execution time can also lead to
information leakage. Developing constant time implementations is a difficult task
in modern processor environments because the execution time not only depends
on the implementation but also depends on micro-architectural components such
as cache memories, branch prediction, multi-threading, etc. We could have secret
independent branching to avoid the timing attack based on the secret data. The
secret dependency, the implementation should avoid (a) conditional branching
should not depend on secret data (b) indirect load using the secret data [33].

6 Detecting Hardware Trojans using Formal Verification

To minimize development costs and time-to-market, most system developers
operate in a fabless mode, integrating multiple third party Intellectual Property
cores into System on Chips (SoC) that are used in IoT devices. This design flow
creates multiple opportunities for malicious code or circuits to be introduced
into the device that could act as Trojans. For example, Trojans in connected
IoT devices could act as backdoors and permit unauthorized users to enter into
the device and access privileged information. This can lead to denial of service
attacks, manipulation of data, or interception of sensitive data.

A typical Trojan is designed to be passive most of the time and active only
when triggered. In a normal setting, the trigger is an extremely rare event, for

Standard (AES)

Is the 128−bit plaintext all 1’s?

Advanced Encryption
Key[127:0]

Plaintext[127:0]

Output[127:0]

Fig. 5: The Trojan is triggered when the plaintext (128-bit) is all ones, which
triggers the multiplexer and returns the secret key as Ciphertext[30].

example, a specific time event or particular inputs. Due to this stealthy nature,
detecting the presence of Trojans is a considerable challenge especially when they
are introduced in the hardware. Even 100% test coverage, will not guarantee the
absence of Trojans in a hardware design. An attacker, however, with knowledge
of the trigger conditions, could easily activate the Trojan to compromise the
device.

In the literature several algorithms have been suggested to detect hardware
Trojans. One of the most popular is FANCI, which identifies stealthy signals in
a design [35]. Another tool called VeriTrust, uses the fact that gates triggered
by Trojans, will not be driven by functional inputs. VeriTrust marks these gates
as suspicious [36]. While these approaches can detect a Trojan with certain level
of accuracy, they will not be able to guarantee the absence of a Trojan in the
design. Moreover, they can only evaluate combinational parts of the design and
would require considerable manual analysis.

In [30], Rajendran et al. proposed to use formal verification to detect Trojans
in hardware designs. If a Trojan is present, formal verification can guarantee
finding its trigger condition. Rajendran et al. use model checking for the purpose
of detecting hardware Trojans that leak sensitive information from the device.
The input to the model checker is the target property to be checked along with
a formal description of the design in temporal logic. The property to be checked
is: “does the design leak sensitive information?”. If a Trojan is present in the
design, the output of the model checker will be a set of states denoting the
trigger condition. As a case study, [30] considered a Trojan that could leak an
encryption key as shown in Figure 5. In normal working conditions, the design
would encrypt data with the stored key. However, when a trigger is fed via the
plaintext input, the output of the circuit would be the AES encryption key rather
than the ciphertext, thereby leaking the key. In the simplest case, a specific value
of plaintext, for example all 1s, could act as trigger resulting in leakage of the
entire secret key or a subset of the secret key. This can be modeled formally
using the property:

∃i ∈ I 3 D |= (s == o) .

It means that there exists some trigger i from the set of possible input patterns
I such that in the design D, the secret s is mapped to the output o. The model
checker would search for an input assignment over the entire input space I that
would satisfy the key leakage property, which is (s == o). If such an assignment
can be found then the corresponding input becomes the trigger for the Trojan.

The limitation of this approach is that the model checking property should
comprehensively capture all trigger and leakage conditions if the Trojan is to
be detected. Rajendran et al. [30] discusses multiple other options for creating
the trigger and leaking the secret key. For example, the trigger could arrive over
multiple clock cycles. The secret key leakage could be only a few bits of the
entire key. Alternatively, the leakage could be a function of the key rather than
the actual key bits.

Another limitation is in the scalability of formal verification to detect well
concealed hardware Trojans in larger circuits. The results of Rajendran et al.
were limited to preforming bounded model checking on 12 clock cycles of the
designs. It would take considerably longer to verify if the Trojan’s trigger oc-
curred much later clock cycles. The scalability of formal verification to detect
better concealed Trojans in larger designs is still an open problem.

7 Leveraging Formal Verification to Identify Meta-level
Authentication Loopholes

Designers are often more keen to adopt security counter-measures over the cryp-
tographic implementations and apply formal certification procedures to eliminate
possible security flaws in the system design. However, there can be functional
gaps in the meta-level of the implementation which may lead to weaknesses.
Such gaps are often manifested, as designers (while implementing) are unaware
of the IoT environment where these devices will be deployed in future. Such
meta-level gaps can be categorized as follows:

[Level-1] Absence of Authentication. The access points of a secure imple-
mentation may require the use of authentication, may be in the form of
passwords, which is completely oblivious to the designer. Hence, (s)he has
not performed/devised any password or authentication checks in the high-
level invocation of this implementation which may led to exploitation in the
implementation and extract out secure data.

[Level-2] Inability to Provide Strong Authentication. Though the designer has
implemented an authentication mechanism to safeguard the access of a secure
implementation, however there may be shortcomings in the formulations
where the authentication mechanism may be simple enough (for example, in
case of simple passwords or reduced set of variations in the key space) that
it may get regenerated by exhaustive enumeration of the possible variations
of the encryption within computational limits.

[Level-3] Missing Checks over Authentication Process. Even if a strong au-
thentication wrapper is present around the invocation of a secure implemen-
tation, there may be loopholes in the usage of the authentication process

which may lead to serious flaws in the design. A strong authentication may
get destroyed when multiple attackers can log through the same authen-
tication strategy and distribute the search space to derive the encryption
strategy/key. There is a possibility that this approach may lead to break-
through in the authentication barrier which may have been computationally
infeasible by single or two simultaneous user. Therefore, placing a limit on
the number of accesses (for example, there may be checks to prohibit more
than two login simultaneously) may resolve these issues.

The above discussion points to the fact that it may not be sufficient to formally
certify the secure design/implementation, but we need to formally model the
environment where this implementation is being deployed/invoked from. Then,
another round of formal certification is mandatory to ensure the flaws in the
meta-level authentication over the design. To adopt the formal certification in
this level, we perform the following strategy:

– First, we abstract the functionality of the secure implementation in the form
of assumptions (assume properties).

– Then, we formally model the authentication wrapper which invokes the se-
cure design implementation in the form of assume properties.

– Next, the mentioned three-level attributes are captured in terms of a set of
formal specifications.

– Finally, formal verification is performed over the authentication model (which
instantiates the design in the form of assume properties) with respect to the
formal specifications formed.

8 Conclusions

Recent developments in formal verification have significantly extended the capa-
bilities of these tools. Theorem proving and model checking can potentially be
applied to solve several hard problems in security, especially in the IoT domain.
This chapter provided an overview of formal verification applied to solve five
critical security issues related to an IoT device. Formal verification scales very
well for some of the problems considered, such as detecting programming bugs
in software and proving side-channel security.

Innovative usage of the formal verification tools is required to solve certain
problems involving huge state space. This chapter demonstrated the use of a hi-
erarchical verification methodology for verifying the correctness of cryptographic
implementations, which has considerably huge state space making a näıve invo-
cation of the formal verification tool fail. Identifying certain security problems,
such as detection of hardware Trojans, though feasible with formal verification,
is very restricted. The state-of-the-art can for instance, only detect Trojans that
are triggered in the first few clock cycles of the device operation. If the Trojan
is well concealed, for example, gets triggered much later in the device operation,
then identifying them would be considerably more difficult.

References

1. Affeldt, R.: On construction of a library of formally verified low-level arithmetic
functions. In: Proceedings of the ACM Symposium on Applied Computing, SAC
2012, Riva, Trento, Italy, March 26-30, 2012. pp. 1326–1331 (2012)

2. Amla, N., Du, X., Kuehlmann, A., Kurshan, R.P., McMillan, K.L.: An Analysis
of SAT-Based Model Checking Techniques in an Industrial Environment. In: Pro-
ceedings of International Conference on Correct Hardware Design and Verification
Methods (CHARME). pp. 254–268 (2005)

3. Amla, N., Kurshan, R.P., McMillan, K.L., Medel, R.: Experimental Analysis of
Different Techniques for Bounded Model Checking. In: Proceedings of International
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). pp. 34–48 (2003)

4. Appel, A.W.: Verification of a cryptographic primitive: SHA-256. ACM Trans.
Program. Lang. Syst. 37(2), 7:1–7:31 (2015), http://doi.acm.org/10.1145/2701415

5. Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic Model Checking
Using SAT Procedures Instead of BDDs. In: Proceedings of 36th Annual Design
Automation Conference. pp. 317–320 (1999)

6. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic Model Checking without
BDDs. Lecture Notes in Computer Science 1579, 193–207 (1999)

7. Biere, A., Clarke, E.M., Raimi, R., Zhu, Y.: Verifying Safety Properties of a Pow-
erPC Microprocessor Using Symbolic Model Checking without BDDs. In: Proceed-
ings of International Conference on Computer-Aided Verification (CAV). pp. 61–71
(1999)

8. Bryant, R.: Graph-based Algorithms for Boolean-function Manipulation. IEEE
Transactions on Computers 35(8), 677–691 (1986)

9. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L.: Sequential Circuit Verifi-
cation Using Symbolic Model Checking. In: Proceedings of 28th Annual Design
Automation Conference. pp. 46–51 (1991)

10. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic Model
Checking: 1020 States and Beyond. Information and Computation 98(2), 142–170
(1986)

11. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to coun-
teract power-analysis attacks. In: Wiener, M.J. (ed.) Advances in Cryptology -
CRYPTO ’99, 19th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 15-19, 1999, Proceedings. Lecture Notes in Computer
Science, vol. 1666, pp. 398–412. Springer (1999), https://doi.org/10.1007/3-540-
48405-1

12. Chen, Y., Hsu, C., Lin, H., Schwabe, P., Tsai, M., Wang, B., Yang, B., Yang, S.:
Verifying curve25519 software. In: Proceedings of the 2014 ACM SIGSAC Confer-
ence on Computer and Communications Security, Scottsdale, AZ, USA, November
3-7, 2014. pp. 299–309 (2014)

13. Clake, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded Model Checking Using Sat-
isfiability Solving. The Journal of Formal Methods in System Design 19(1), 7–34
(2001)

14. Clarke, E.M., Grumberg, O., Hamaguchi, K.: Another Look at LTL Model Check-
ing. In: Proceedings of International Conference on Computer-Aided Verification
(CAV). pp. 47–71 (1994)

15. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (2000)
16. Clarke, E., Kroening, D.: The CPROVER User Manual (2006)

17. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press (2001)
18. Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:

Tools and Algorithms for the Construction and Analysis of Systems, 10th Interna-
tional Conference, TACAS 2004, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2004, Barcelona, Spain, March 29 -
April 2, 2004, Proceedings. pp. 168–176 (2004)

19. Duan, J., Hurd, J., Li, G., Owens, S., Slind, K., Zhang, J.: Functional correctness
proofs of encryption algorithms. In: Logic for Programming, Artificial Intelligence,
and Reasoning, 12th International Conference, LPAR 2005, Montego Bay, Jamaica,
December 2-6, 2005, Proceedings. pp. 519–533 (2005)

20. Eldib, H., Wang, C., Schaumont, P.: Formal verification of software countermea-
sures against side-channel attacks. ACM Trans. Softw. Eng. Methodol. 24(2), 11:1–
11:24 (2014), http://doi.acm.org/10.1145/2685616

21. Goldberg, E., Novikov, Y.: BerkMin: A Fast and Robust SAT-Solver. In: Proceed-
ings of Design Automation and Test Conference in Europe Conference (DATE).
pp. 142–149 (2002)

22. Kang, H.J., Park, I.C.: SAT-based Unbounded Model Checking. In: Proceedings
of 40th Annual Design Automation Conference. pp. 840–843 (2003)

23. Kroening, D., Strichman, O.: Decision Procedures - An Algorithmic Point of
View. Texts in Theoretical Computer Science. An EATCS Series, Springer (2008),
https://doi.org/10.1007/978-3-540-74105-3

24. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers (1993)
25. McMillan, K.L.: Applying SAT Methods in Unbounded Symbolic Model Check-

ing. In: Proceedings of International Conference on Computer-Aided Verification
(CAV). pp. 250–264 (2002)

26. The MITRE Corporation: Common Vulnerabilities and Exposures,
https://cwe.mitre.org/

27. The MITRE Corporation: Common Weakness and Enumerations,
https://cwe.mitre.org/

28. Moskewicz, M., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineer-
ing an Effcient SAT Solver. In: Proceedings of 38th Annual Design Automation
Conference. pp. 530–535 (2001)

29. Nguyen, D.M., Stoffel, D., Welder, M., Kunz, W.: Conflict Driven Learning in a
Quantified Boolean Satisfiability Solver. In: Proceedings of International Confer-
ence on Computer-Aided Design (ICCAD). pp. 442–449 (2002)

30. Rajendran, J., Dhandayuthapany, A.M., Vedula, V., Karri, R.: Formal security
verification of third party intellectual property cores for information leakage. In:
29th International Conference on VLSI Design and 15th International Conference
on Embedded Systems, VLSID 2016, Kolkata, India, January 4-8, 2016. pp. 547–
552. IEEE Computer Society (2016), https://doi.org/10.1109/VLSID.2016.143

31. Silva, M., Sakallah, K.A.: GRASP: A Search Algorithm for Propositional Satisfia-
bility. IEEE Transactions on Computing 48(5), 506–521 (1999)

32. Smith, E.W., Dill, D.L.: Automatic formal verification of block cipher implemen-
tations. In: Formal Methods in Computer-Aided Design, FMCAD 2008, Portland,
Oregon, USA, 17-20 November 2008. pp. 1–7 (2008)

33. Tsai, M., Wang, B., Yang, B.: Certified verification of algebraic properties on low-
level mathematical constructs in cryptographic programs. In: Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, CCS
2017, Dallas, TX, USA, October 30 - November 03, 2017. pp. 1973–1987 (2017)

34. U.S. Department of Commerce, National Institute of Standards and Technology:
Digital signature standard (DSS) (2000)

35. Waksman, A., Suozzo, M., Sethumadhavan, S.: FANCI: identification of stealthy
malicious logic using boolean functional analysis. In: Sadeghi, A., Gligor, V.D.,
Yung, M. (eds.) 2013 ACM SIGSAC Conference on Computer and Communications
Security, CCS’13, Berlin, Germany, November 4-8, 2013. pp. 697–708. ACM (2013),
http://doi.acm.org/10.1145/2508859.2516654

36. Zhang, J., Yuan, F., Wei, L., Liu, Y., Xu, Q.: VeriTrust: Verification for Hardware
Trust. IEEE Trans. on CAD of Integrated Circuits and Systems 34(7), 1148–1161
(2015), https://doi.org/10.1109/TCAD.2015.2422836

