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Abstract

In the last two decades, the evolving cyber-threat landscape have
brought to center stage the contentious tradeoffs between security and
performance of modern microprocessors. The guarantees provided by the
hardware to ensure no violation of process boundaries have been shown to
be breached in several real-world scenarios. While modern CPU features
such as superscalar, out-of-order, simultaneous multi-threading, and spec-
ulative execution play a critical role in boosting system performance, they
are central for a potent class of security attacks termed transient micro-
architectural attacks. These attacks leverage shared hardware resources
in the CPU that are used during speculative and out-of-order execution to
steal sensitive information. Researchers have used these attacks to read
data from the Operating Systems (OS) and Trusted Execution Environ-
ments (TEE) and to even break hardware-enforced isolation.

Over the years, several variants of transient micro-architectural attacks
have been developed. While each variant differs in the shared hardware re-
source used, the underlying attack follows a similar strategy. This chapter
presents a panoramic view of security concerns in modern CPUs, focusing
on the mechanisms of these attacks and providing a classification of the
variants. Further, the authors discuss state-of-the-art defense mechanisms
towards mitigating these attacks.

1 Introduction

For over half a century, microprocessor research has focused on improving per-
formance. Various micro-architectural features such as cache memories, branch
prediction, superscalar, speculative and out-of-order execution were developed
to facilitate this. While some of these features, for example the cache mem-
ory, were introduced to hide the latency of slow components, others like branch
predictors, helped hide overheads due to operations that slow down program
execution. Features like out-of-order execution and speculative execution were
introduced to better utilize available resources. Side-by-side, features were in-
corporated in processors to support better multi-programming. Features such as
multi-core processors and hardware multi-threading were incorporated to allow
multiple users to simultaneously share a processor. These features accelerated
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new computing paradigms, especially cloud computing, where multiple users
simultaneously share common hardware, thereby drastically reducing computa-
tion costs.

A critical aspect of the cloud computing paradigm is the isolation between
users. To isolate one user’s program from another, security schemes such as
protection rings, segmentation, page table access controls bits, virtualization
support, hardware-based security, crypto-accelerators, and trusted execution
environments were introduced. Very soon, it was realized that these security
schemes were insufficient. The shared hardware became a source of information
leaks that could undermine the isolation provided by the processor. These
attacks, popularly known as micro-architectural attacks, made use of shared
hardware resources to glean sensitive information such cryptographic keys, web
pages visited, user passwords, and keystrokes. Different strategies such as time-
driven attacks, Prime+Probe, Flush+Reload, and Evict+Time were proposed
for this purpose. In a cloud computing environment, these attacks could leak
information from one user to another, in spite of having all security features
enabled.

In 2018, two potent micro-architectural attack variants were proposed, namely
Meltdown [36] and Spectre [32], that exploited the speculative and out-of-order
execution features present in microprocessors. These attacks leveraged the fact
that a processor’s speculation may not always be correct. When speculation
goes wrong, the speculatively executed instructions, called transient instruc-
tions, needs to be discarded, and the CPU should be rolled back to a previous
state. However, this rollback is not always perfect. The CPU would still have a
reminisce of the transient instructions. Researchers showed how this reminisce
can be used to leak secrets. These attacks, which came to be called transient
micro-architectural attacks, could read the contents of any memory region, in-
cluding the OS memory. It could also read memory from trusted enclaves, even
though the enclaves used encrypted memory.

Since 2018, there been several variants of transient micro-architectural at-
tacks including Zombieload [55], Foreshadow [12], Rogue In-Flight Data Load
(RIDL) [58], Fallout [14], Load Value Injection (LVI) [13], and Crosstalk [49].
Each variant found a new vulnerability that could bypass isolation in the CPU.
Many of these attacks are not easily prevented by software patches. For those
that can, the patches have huge performance penalties. It would require funda-
mental changes in the CPU design to mitigate these attacks in hardware.

This chapter would provide an introduction to transient micro-architectural
attacks. Starting from Meltdown and Spectre, the authors would dwell on the
basic principle of the attacks. This would be useful in distinguishing between
the various attack classes and discussing the available mitigation techniques.
Section 2 provides a background of modern CPU micro-architecture and also
gives an introduction to micro-architectural attacks. Section 3 discusses tran-
sient micro-architectural attacks and classifies them. Section 4 discusses the
defenses for these attacks, while the final section has the concluding remarks.
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2 Modern CPU Microarchitecture

Figure 1: An Out-of-order Superscalar processor with vulnerable components
shaded in Orange.

Notions of Security in Microprocesosrs. Beyond functional correctness,
modern microprocessors attempt to enforce a root of trust to mitigate the ever-
growing array of attacks. The goal of such approaches is to enable secure booting
and provide platform to launch Trusted Execution Environments (TEE) post
boot up. These TEEs, such as ARM Trustzone and Intel Software Guard Ex-
tensions (SGX) [53], ensure that the process boundaries guaranteed by the hard-
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ware are not violated by other processes. For example, the Intel SGX adopted in
2015, is a TEE feature supported by commercial processors that provide private
regions of memory for programs. These regions are known as enclaves, cannot
be accessed even from privileged software like the Operating System. This is
achieved by encrypting enclave code and data present in the DRAM. Decryp-
tion is done when the code or data is fetched into the processor. Thus, the
contents of an enclave, when in RAM, are always in an encrypted form and not
accessible to any code outside the enclave regardless of the privilege levels. In
recent years, however, researchers have shown that such trusted execution envi-
ronments are not a panacea against the threat of transient micro-architectural
attacks [12, 63]. The potency of these attacks is one of the reasons that led to
the deprecation of Intel SGX from upcoming desktop processors [17, 18], posing
further open questions regarding the security of hardware designs. In this sec-
tion, we explore the premise of such attacks on the micro-architecture from first
principles, starting with a background on the working of transient instruction
in superscalar CPUs.

Transient Instructions in Superscalar CPUs. Figure 1 shows a block dia-
gram of a superscalar CPU. In every clock cycle multiple instructions are fetched
from the instruction cache into an instruction/decode buffer which forms the
frontend. The instructions are decoded into a set of micro-ops and are continu-
ously fed to the exeuction engines, such as Arithmetic and Logic Units (ALU)
and Floating Point Units (FPU), through a dispatcher of allocation queues. The
scheduler ensures that the issue is possible only if the functional unit is available
and the operands used by the instruction are up-to-date. The instructions to the
functional units can be issued out-of-order and based on a speculation, for ex-
ample, the CPU can predict the outcome of a branch and speculatively execute
instructions at the predicted branch target. The results from these speculatively
executed instructions are stored in a temporary buffer and committed to reg-
isters and memory only when the speculation turns out correct. On the other
hand, if the speculation is wrong, for example a branch is mis-predicted, the
results from the speculatively executed instructions are dropped and not com-
mitted. These instructions are known as transient instructions. Besides branch
mis-predictions there are several reasons that can cause transient instructions.
For instance, a user-space program executing a load or store instruction from
an illegal memory, for example from the kernel space, can result in a memory
exception and also transient instructions. Another instance is of bounds check
instructions that identifies if an index is within an array bounds. Memory op-
erations following the bounds can be speculatively executed with any arbitrary
out-of-bound index.

In addition to the out-of-order and speculative execution of processes, many
modern CPUs support the execution of multiple programs simultaneously. This
feature is known as Symmetrical Multi-threading (SMT). Instructions from two
or more programs simultaneously execute in a single pipeline sharing hardware
resources such as cache memories, branch prediction units, and various other
on-chip resources.
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Micro-architectural State. As instructions flow through the CPU, various
registers, buffers, caches and other memory structures in the CPU core store
temporary data and results from the execution. While a few of these memory
structures, for instance the general purpose registers, can be read or modified
using instructions by instructions in the ISA, a significant portion of the struc-
tures are hidden and inaccessible from software. To enforce separation between
applications, system software ensures that the data present in the ISA visi-
ble shared memory structures of one application cannot be read or modified by
another application. For example, during a context switch, general purpose reg-
isters are either invalidated or loaded with the context of the next process that
executes, thus achieving a temporal separation between the two processes. In
multi-core or multi-threaded CPUs on the other hand, the ISA visible memory
structures are duplicated enforcing spatial separation.

Unlike the visible structures, the hidden memory structures in the CPU, such
as cache memories and branch prediction units are not always spatially and tem-
porally separated between applications. They retain their values across context
switches and are possibly shared in multi-core and multi-threaded CPUs. For
example, a cache line that holds data from one application, can be evicted by
another application. Similarly, a branch predictor trained on branches in one
application, can influence the outcome of a prediction in another application.
At first glance, this may seem innocuous as the structures are hidden from
software. However, researchers have found that one application can indirectly
affect another by these shared hidden memory structures. This has lead to a
series of security vulnerabilities, commonly grouped in a category called micro-
architectural attacks. The red regions in Figure 1 are modules in the processor
with demonstrated security vulnerabilities. Researchers have used these vulner-
abilities to break cryptographic algorithms, read Operating System data and
break trusted execution environments.

Researchers have used these vulnerabilities to break cryptographic algo-
rithms [6, 46], design keyloggers [50], fingerprint websites [57], break security
features like Address Space Layout Randomization [5, 25, 28], leak sensitive
information from the operating system [32, 36] and trusted enclaves [12, 63].
They have been applied on a variety of devices ranging from mobile phones
to cloud computing servers. The next section provides a brief introduction to
micro-architectural attacks.

2.1 Micro-architectural Attacks

This section introduces micro-architectural attacks using the example of cache
memories. The cache memory is a high-speed memory placed between the CPU
and RAM to cache recently used instructions and data. It can be simultaneously
shared by multiple applications in a CPU core. Due to its small size, it can be
the cause of contention when applications compete for the same cache line.
The authors explain the fundamental working of micro-architectural attacks by
using three examples. The first uses a prime and probe algorithm on a shared
cache memory, while the second is an algorithm called flush and reload, that
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(a) Prime+Probe

(b) Flush+Reload

(c) Evict+Time

Figure 2: Prime+Probe, Flush+Reload, and Evict+Time are the most common
algorithms used to exfiltrate data in a micro-architectural attack. This figure
demonstrates these algorithms in a covert channel that uses cache memory to
transmit one bit of information from a sender to a receiver.

uses shared library code. The third is an evict and time algorithm on the cache
memory.

Prime+Probe Attacks. Prime and probe forms for the basis for several
micro-architectural attacks. It exploits the variance in the execution time caused
by two applications that contend for the same shared hardware resource. The
attack is discussed by showing an example of how the cache memory can be used
to create a covert communication channel between a high-privileged application
and a low-privileged application. Similar channels have been used on other
shared resources as well, such as, TLBs, branch prediction units, load and store
buffers, and even DRAM.

Consider that the high-privileged application called the sender and the low-
privileged application called the receiver share a common cache memory. For
example, the sender and receiver execute simultaneously on a CPU with a shared
L1 data cache memory. The objective of the covert channel is to use the increase
in execution time due to contention in the cache memory to transmit a message
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from the sender to the receiver. Apriori, the sender and receiver agree upon
two cache sets C0 and C1 for communicating bit 0 and 1, respectively. The
communication works as follows. (1) The receiver first performs memory load
operations that fill both cache sets. This is called the prime phase and is done by
loading data from addresses that map to sets C0 and C1 as shown in Figure 2a.
(2) Depending on the message bit, the sender performs a memory operation
to evict the receiver’s data from the corresponding cache set. For example, to
transmit a 0, the sender would evict the receiver’s data from the cache set C0.
(3) In the probe phase, the receiver repeats the memory operations in step (1),
but this time also measures the execution time. Based on the execution time,
the receiver can infer the transmitted bit since the memory access to the evicted
cache set would take longer owing to the cache miss.

Prime+probe in micro-architectural attacks work similarly, except for the
fact that the sender and receiver do not collude. Instead, the receiver primes
sufficient number of sets in the cache (step (1)), waits for the sender to execute
and evict one or more cache lines in these sets, and then performs a probe
similar to step (3) to identify patterns in the sender’s execution.

Flush+Reload Attacks. Unlike Prime+Probe attacks, where the information
leakage is due to conflicts in the cache memory, in the Flush+Reload attacks,
information leakage is caused without forcing cache conflicts. Consider, for
instance the high and low-privileged applications sharing memory pages. Such
sharing is common in systems that use shared libraries. A single copy of the
shared library present in RAM is used by multiple applications. The time
required to load data in a shared memory page depends on whether the data is
in the cache or not. If present in the cache, the load will be considerably faster
than if it is not present in the cache.

Consider that the sender and receiver of a covert channel decide on two
shared regions of code or data, for example in a shared library. These regions
are chosen so that they map to distinct cache sets: C0 and C1. In step (1),
the receiver ensures that the data in these two regions are not in the cache
shown in Figure 2b. This is performed by a flush operation that evicts the
addresses from the cache and is called the flush phase. On Intel x86 platforms,
an instruction called clflush is used to perform this. The clflush takes an
address as argument and flushes the addresses from all caches in the CPU. (2)
In the second step, the sender, performs a load operations to either C0 or S1
depending on whether it wants to transmit a 0 or 1 respectively. It would cause
the data from one of the two shared regions to be fetched into the cache. (3) The
receiver then performs loads on both addresses and measures the time taken.
This is called the reload phase. Only one of these two loads would result in a
cache hit. The time when there is a cache hit would be much shorter than the
time when there is a cache miss. This difference in time can be used to infer the
bit transmitted. Unlike the Prime+Probe attacks techniques, Flush+Reload is
independent of the cache attributes, like its associativity. It thus results in more
portable attacks.

In transient micro-architectural attacks, the attacker defines an array. Sim-
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ilar to the covert channel, in step (1) the attacker ensures that no elements of
the array is present in the cache memory. In step (2), the attacker triggers a
transient load operation that forces exactly one element from the array to be
loaded into cache. Similar to the step (3) in the covert channel, the attacker
would do a reload to identify which element was loaded. In element of the array
that is loaded transiently often reveal secret information, the Operating System
data.

Evict+Time Attacks. Evict+Time attacks closely resemble the Prime+Probe
attacks. The difference is that the adversary is able to accurately measure the
execution time of the sender application. While this is a strong assumption,
there are certain scenarios where such measurements are possible. For example,
when the adversary can trigger the execution of the sender and an observable
event marks the end of its execution. In such cases, the duration between the
trigger and the event, serves as a measure of the execution time of the sender.

Consider again the covert channel between the high-privileged sender and
low-privileged receiver application. The assumption at the start is that both
cache sets, C0 and C1, have the sender’s data. In the second step, the receiver
evicts one of the cache sets, say C0 as shown in Figure 2c. In the third step,
it triggers the sender to execute and monitors the execution time of the sender.
The sender would transmit a 0 or 1 by loading data from memory that maps
to the C0 and C1 cache set respectively. The time taken to perform this load
differs for the 0 and 1 bit transmissions. transmitting 0 will result in a cache
miss, thus experiencing a longer execution time compared to transmitting 1.
This difference in time is observed by the receiver to infer the transmitted bit.

3 Transient Micro-architectural Attacks

When transient instructions execute, the hidden states of the CPU is modified.
While the results of a transient operation is discarded after the speculation is
proved wrong, the hidden state of the CPU is not rolled back. Thus, transient
instructions have a permanent impact on the CPU state. Consider for example,
the following code snippet.

I1. cmp r0, r1

I2. jne <dest_addr> /* branch to dest_addr, if r0 != r1 */

I3. mov r2, Addr1

I4. add r2, r1 /* r2 = r2 + r1 */

I5. load r3, r2 /* r3 = memory corresponding to (r2) */

In an out-of-order processor, instructions I3, I4, and I5 can be transiently ex-
ecuted if the CPU mispredicts the branch outcome at I2. If the memory load
in I5 results in a cache miss, it causes data at the address present in r2 to
be loaded into cache. Due to the misprediction, the CPU would discard the
results of instruction I3, I4, and I5; however, it would not roll back the state of
the cache memory. Thus, data corresponding to the memory load in I5 would
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Figure 3: In a transient attacks, the transient instruction modifies the hidden
states of CPU like cache memories, FPU, and ports, in a manner that depends
on secret information. In the next stage, the attacker exfiltrates these secrets
from the hidden states.

persist in the cache even after the transient executions are dropped. In 2018,
researchers showed that this reminiscence of a transient execution could lead to
serious security vulnerabilities that could potentially compromise every appli-
cation executing on the CPU. The two attacks, namely Meltdown and Spectre,
that were proposed in 2018 showed how this reminiscence could undermine the
security of application software on a variety of commercial microprocessors.
Since then, several variants of such transient attacks have been proposed. They
form a new class of extremely powerful micro-architectural attacks and have
come to be known as transient micro-architectural attacks or simply transient
attacks.

A typical transient attack has three stages, as shown in Figure 3. The first
stage disrupts the flow of program execution by forcing an exception or by induc-
ing a misprediction that could trigger transient execution. In the next stage,
the attacker relies on one or more of the transiently executed instructions to
modify a hidden CPU state, such as the cache memory, branch predictor, or
an internal buffer. The transient instruction is designed in a way so that the
modification in the hidden state is correlated with a secret. The secret, for in-
stance, can be keys of cryptographic ciphers, kernel code or data regions, or any
other sensitive information. Due to the exception or the misprediction that oc-
curred in the second phase, the transiently executed instructions are discarded,
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Table 1: Transitive Micro-architectural Attacks

Attack Requirement Source of Leakage

—Meltdown and Spectre Like Attacks—

Meltdown [36]
SMT

Transitive load
Spectre [32] BPU
Foreshadow [12] Transitive load

—Micro-architectural Data Sampling—

RIDL [58]
SMT

Line feed buffer
Fallout [14] Store buffer
Zombieload [55] Line feed buffer
LVI [13] Store buffer
Crosstalk [49] Staging buffer

while the hidden micro-architectural states remain unaltered. In the final stage,
the attacker exfiltrates information from the hidden micro-architectural state
using an algorithm like Prime+Probe, Evict+Time, or Flush+Reload, to glean
information about the secret.

After the initial attacks, vis-à-vis Meltdown and Spectre, several variants of
transient attacks have appeared in the literature [8, 12, 13, 14, 15, 49, 55, 56,
58, 63]. Each new attack identified a new medium of leakage. Broadly, these
attacks can be categorized into two classes based on the micro-architectural
medium used for the leakage. The first is address-controllable transient attacks
like Meltdown and Spectre, while the others are based on micro-architectural
data sampling from internal buffers. While at a high level, the stages in both
categories are the same and follow Figure 3, there are subtle differences be-
tween the two classes. Address-dependent attacks like Meltdown and Spectre
use micro-architectural components like cache memories or branch prediction
units as a medium for leakage. In these attacks, data (or instructions) placed
in strategic memory addresses are transiently loaded (or executed). For ex-
ample, in the covert channels described in Section 2.1, an address is used to
select a cache set. The choice of the cache set is used as a medium for informa-
tion leakage. In micro-architectural data sampling attacks like Zombieload and
Crosstalk, on the other hand, it is not the address that is critical. Instructions
are crafted so as to snoop into internal buffers like Re-order buffers, Line-Fill
buffers, and load and store buffers. Table 1 classify the known attacks into these
two categories.

3.1 Meltdown and Spectre like Attacks

These attacks require the knowledge memory regions of interest, and the at-
tacker can target them specifically. Attacks like Meltdown [36], Spectre [32]
and Foreshadow [12] fall in to this category. The upcoming sections look into
each of these attacks to elaborate on their design and mechanisms.
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Figure 4: Transitive execution of a memory load instruction causes data from
array to be loaded into cache memory. Unlike the visible micro-architectural
state, the cache contents are not rolled back when transient instructions are
discarded. The contents of the cache can be gleaned using techniques such as
Prime+Probe or Flush+Reload.

Meltdown. CPUs use protection rings to isolate privileged code. For example,
Intel CPUs have four rings: Ring 0 to Ring 3. Privileged code, such as the Oper-
ating System’s kernel, is assigned to Ring 0, while user processes are assigned to
Ring 3. The hardware ensures that during regular operations, code executing in
Ring 3 cannot read or write to Ring 0, thus isolating the kernel’s code and data
from userspace programs. The Meltdown attack exploits transient execution to
read kernel data from a user program, thus breaching the isolation provided by
the protection rings.

Prior to 2018, the kernel was mapped into the virtual address space of ev-
ery process, as shown in Figure 4. This simplifies system calls and interrupt
handling. Since the kernel was in Ring 0, a user function would not be able
to directly access the kernel. The Meltdown attack showed how a userspace
transient memory load or store operation to a kernel address caused the data
to be loaded into the cache memory. This data could then be gleaned using
one of the micro-architectural algorithms like Prime+Probe or Flush+Reload
(Section 2.1).

In the first stage of Meltdown, the attacker writes code [43] as shown in
Figure 4 that would perform a load from a kernel address. Specifically ptr is
made to hold a kernel address. In the ideal case, this should have immediately
created an exception because a user instruction is trying to read kernel data.
However, modern CPUs are designed in a way that delays the exception, al-
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lowing subsequent instructions to be transiently executed. The contents of the
kernel space data would thus be loaded into the register i, which is then used
to load an element from the array into y. During this process, y is also stored
in the cache memory. Notice that the array is indexed based on the kernel data.
All of these instructions are transiently executed. At the time of throwing the
exception, the CPU would discard the new values of i and y, but will not roll
back the cache memory.

In the final stage of Meltdown, either the Flush+Reload or the Prime+Probe
can be used to identify the cache set that holds the loaded array data, thus
revealing information about the kernel data. With the Flush+Reload, for in-
stance, the attacker would first ensure that all array elements are flushed from
the cache before the transient instructions M1 and M2 execute. Post their exe-
cution, exactly one element corresponding to y would be present in the cache.
The cache set that holds y can be inferred by measuring execution time to load
each array element. The cache set containing y would have the shortest load
time due to a cache hit. All other elements, by virtue of the initial flush, would
result in cache misses.

Spectre. While the Meltdown attack makes use of an illegal load or store
memory operation to induce a transient execution, Spectre makes use of mis-
predicted branches. Modern microprocessors have a Branch Prediction Unit
(BPU) that speculates the direction and the target address of a branch during
program execution. The prediction is done by learning patterns in taken and
not-taken branches from the branch history. For example, consider the following
code snippet, where array1 size is the size of array1 and is used to check the
bounds of the index x. Statements S2 and S3 are executed only if x is within
bounds.

S1. if (x < array1_size){

S2. i = array1[x];

S3. y = array2[i * 256];

S4. }

If the snippet is executed repeatedly with legal values of x, the BPU would
learn the execution pattern and speculatively execute statements S2 and S3.
The results in i and y, however, would be committed only after the check
x < array1 size is completed. After a while of such repeated executions, if
x is made illegal (i.e. x ≥ array1 size), the BPU would predict incorrectly
leading to transiently executed S1 and S2. The two transient memory operations
would load data into cache. The mis-prediction would ignore the new values
computed for i and y but not rollback the cache memory. The final stage of
Spectre is similar to Meltdown and uses micro-architectural attack techniques
like Evict+Time and Flush+Reload to glean information about array1[x] from
the cache memory. For example, if array1[x] corresponds to a kernel region,
the attack would reveal the contents of the kernel location.

Spectre is one of the most powerful of all transient attacks because it is very
difficult to mitigate. Over the years, multiple variants of Spectre have been
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proposed that exploit the different components of branch speculation in the
processor. The different variants of Spectre attempt to tune different tables in
the BPU. For example, [32, 56] exploits the Path History Table (PHT), while
[8, 15, 32] exploits the Branch Target Buffer (BTB), and [33, 39] use the Return
Stack Buffers (RSB).

Foreshadow. The Meltdown attack breaches the isolation provided by CPU’s
protection rings there by reading kernel data from a user program. Since 2015,
Intel has added another level of protection in its processors. The Intel Security
Guard Extension (SGX) is a feature supported by commercial processor variants
(deprecated, 11th generation Intel Core onwards [17, 18]) that provide private
regions of memory, called enclaves, for programs. It is ensured that the contents
of an enclave, when in RAM, are always in an encrypted form, barring any access
to a piece of code outside the enclave, regardless of the privilege levels.

The Foreshadow attack makes use of the fact that data in the SGX enclaves
are stored in the plain form in the L1 cache. This allows transient instructions
to compute on the cached secrets. The challenge is to cache secret data in the
enclave and use them in transient operations. Given this, the Foreshadow works
very similar to Meltdown [36]. It uses a local buffer that is transiently accessed
at indices that depend on secret data stored in the enclave. Now that the entries
from the buffer are in the cache, the attacker simply deploys the Flush+Reload
technique to establish the secret from the enclave.

In principle, Foreshadow attacks are a variant of the Meltdown attack that
use the same vulnerability, not just to read kernel memory from user space, but
to rupture security mechanisms Intel SGX [53] that attempt to provide secure
enclave protection domains. An improvement on the basic attack is Foreshadow-
NG (Next Generation) [63] which has the potential to read any information that
comes to the L1 cache affecting Virtual Machines (VMs), hypervisors (VMM),
operating system (OS) kernel memory, and System Management Mode(SMM)
memory.

3.2 Micro-architectural Data Sampling Attacks

Supporting speculative and out-of-order execution in a microprocessor often
requires buffers at several locations in the CPU pipeline that temporary stores
details about in-flight instructions. For example, Reorder Buffers (ROBs) are
used to track instructions executed out-of-order and commit their results in the
correct order. Other examples are the store buffers, used to track pending stores
involved in optimizations. Micro-architectural Data Sampling (MDS) attacks
are able to snoop into these temporary buffers to glean secret data from other
applications. Unlike Meltdown and Spectre like attacks, MDS attacks are not
tied to specific memory addresses, making it almost impossible to mitigate from
software. This section summarizes the known MDS attacks.

Rogue In-Flight Data Load (RIDL). In traditional cache memories, a cache
miss would block any further memory requests until the cache miss is serviced.
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Figure 5: In the RIDL attack, the attacker (in green) snoops into the Line Fill
Buffer (LFB) to read the victim’s sensitve data present in the address (A).

In out-of-order CPUs, addresses corresponding to cache misses are stored in a
Line Fill Buffer (LFB), so that subsequent memory requests can be serviced.
This helps create a non-blocking cache. On receiving a memory request that
results in a cache miss, an entry in the LFB is created to store the requested
address. Subsequently, when the memory block is fetched, it is stored in the
LFB entry corresponding to the memory address. The block is also stored in
the cache memory and forwarded to the CPU core. The RIDL attack is able
to snoop into the Line Fill Buffer (LFB) to retrieve the data from the stored
block. Interestingly, the attack does not depend on the address of the memory
request, but only requires a cache miss that makes an entry in the LFB.

RIDL assumes that the attacker and victim share a common L1 cache mem-
ory. The steps of the attack are shown in Figure 5. The attacker first ensures
that buffer is flushed from cache and then triggers the victim to execute a load
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instruction, say at address A. If this victim’s load results in a miss in the L1
cache, a new entry would be created in the LFB which would store the physical
address of A. The attacker, running on a different thread in the same core, issues
a load to an address present in a new invalid page. Since this page is new, it
would result in a TLB miss and trigger a page table walk. The CPU would
eventually detect that the load request is from an invalid page and mark it for
exception. The exception is however thrown much later when the operation’s
results are committed in-order. During this time, the memory load operation
from buffer[1024 * v] would continue transitively using an arbitrary value of
v picked from an entry in the LFB. The address parts of the LFB entry is not
matched, therefore, with significant probability, the entry would correspond to
the victim’s load request at A, resulting in v holding the value of the victim’s
data d. Thus buffer[1024 * v] is indexed at a location that is dependent on
d. The result, is stored in i, as well as in a cache set. After the exception is
thrown due to the illegal address, the transitive results in v and i are discarded,
however, the cache is not rolled back. Flush+Reload is then used to identify i,
thus revealing information about the attacker’s data.

Zombieload. This attack [44], exploits LFB like RIDL, some unknown micro-
architectural components and the concept of micro-code assists to mount the
attack. Recall that an LFB tracks all load values that are not present in the L1
data cache and needs servicing from higher-level cache hierarchies. Whenever
there are complex micro-architectural conditions, such as page-faults, it can be
handled in one of two ways: (i) The fault can be delegated to a software service
routine, or (ii) One can employ microcode assists, where the fault is handled
through a set of microcode routines, which is faster than delegating to a software.
A microcode assist always triggers a pipeline flush resetting the architectural
state. However, in-flight instructions still finish execution only to be discarded
later. Similarly, the outstanding LFB entries are not discarded. To not incur
additional delays in completing the execution of in-flight instructions, the LFB
is allowed to load stale values for previous load or store instructions, altering
the micro-architectural state and potentially allowing the leakage of data. This
data can be gleaned by the process of data-sampling explained above.

Though this attack looks similar to RIDL, the key contrast of this work is
that the above leakage occurs even if the authors systematically ensure using
Intel TSX [29] that there is no entry filled in Line Buffer during a cache miss.
Intel TSX is a set of hardware extensions that enable one program or a program-
thread to acquire a lock on certain memory locations in the memory which is
prohibited from being updated or used by any other program until released.
This enables concurrent programming as the updates in these locations are
done atomically by one program or a thread at a time. Within a TSX window,
and during certain situations, a miss in the L1-cache never creates a line-buffer
entry. However, even without LFB, the leak happens, rather surprisingly at a
much higher rate. This suggests that Zombieload is working not only because
of LFB but also due to other unknown micro-architectural components, such as
FPU register file and store buffer.
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(a) Data Bounce occurs due to Condition 1.

(b) Write Transitive Forwarding Vulnerability occurs due to Condition 2.

Figure 6: Fallout makes use of Store-to-Load forwarding of data in the store
buffer to a speculatively executed load operation. The load operation can be
from a different security domain, for example the kernel. The result of the load
is stored in the r1 register and exfilterated using Flush+Reload. Flush+Reload
is similar way to previous attacks. The flush is done before the exception causing
instruction, while the reload is done after the transitive execution is discarded.

Fallout. Out-of-order processors hide the latency associated with store oper-
ations by using a store buffer. On encountering a store operation, an entry is
created in the buffer to hold the virtual address, physical address, and the value
to be stored in memory. After the entry is created, subsequent operations in
the program can speculatively execute permitting the stores to complete asyn-
chronously. If one of the subsequent operations is a load, the data from the store
buffer is forwarded. This is called store-to-load forwarding. Such store-to-load
forwarding is possible in two conditions:

• Condition 1. If the complete address in the load matches the complete
address of an entry in the store buffer, then the value in the entry can be
directly used.

• Condition 2. If the virtual to physical address translation for the load
fails, and a few least significant bits match with an entry in the store
buffer, then the value in the entry can be speculatively used.

In their paper [14], the authors show how both these conditions can lead to
transient attacks. The attacks arise from the fact that store-to-load forwarding
can happen across security domains. It only requires either of the two conditions
to be met. For example, the value in the store buffer entry will be forwarded
just by matching address bits in the store buffer entry and the load operation.
The store could be from the kernel, while the load from a user-space program.
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Figure 7: In LVI, the attacker injects a malicious value through load forwarding
and uses that to leak sensitive data.

The second condition, leads to an attack called Data Bounce, that is used
to identify if a virtual address is valid (i.e. mapped to a physical address). The
pseudo-code is shown in Figure 6a. This attack can be used to break Address
Space Layout Randomization (ASLR) [1, 7, 66]. The first condition, leads to
a vulnerability called Write Transient Forwarding (WTF). The vulnerability
can be used to snoop into stores from another process. Figure 6 provides more
details about these attacks.

Load Value Injection (LVI). In traditional Out-of-order processors, a store
to a memory-location followed by a subsequent load instruction to the same
memory-location can be slow as it comprises of two sequential instruction exe-
cutions involving costly memory accesses. However, a widely used optimization
to alleviate this, as explained above in fallout, is to perform store-to-load for-
warding that will forward the contents of the producing store directly to the
consuming load if both the entries are present in the load/store buffer. How-
ever, the effective addresses of the load / store instructions are not resolved until
later and hence they are speculated instead. Therefore, during speculation there
is a possibility that a wrong store forwards a value to the load. LVI uses this
key principle to poison the data that the victim operates on to leak information.
This is illustrated using Figure 7. In this example, the untrusted arg is sent by
the attacker which the victim stores within its buffer space (trusted memory),
termed as the poisoning phase. Now, in case there is a page-fault caused when
dereferencing trusted ptr, the trusted ptr erroneously receives value from the
untrusted ptr due to store-to-load forwarding within the load-store buffers un-
der speculation. This poisoned data is now the index variable for an array whose
values can now be leaked through standard cache-based attacks such as Flush
+ Reload. Generally, the attack contains three phases: (i) Micro-architectural
poisoning where the attacker prepares the injection of a poison value by loading
that in one of the micro-architectural buffers, (ii) The attacker then provokes
the victim into executing instructions that cause a page fault or exception which
triggers this store-to-load data poisoning. This can be done, for instance, by
evicting a set of victim’s virtual memory pages, and (iii) Gadget-based secret
transmission, where the attacker finds exploitable code gadgets that can leak

17



data under incorrect transient execution behavior and lead the victim to that
code-gadget by carefully poisoning the data.

Crosstalk. Crosstalk demonstrates that MDS vulnerabilities exist beyond the
CPU core through a shared memory buffer, called staging buffer, that is shared
across multiple CPU cores. The authors identify several micro-instructions that
touch the buffer. These instructions, if executed transiently, can potentially lead
to leakage from one CPU core to another. One usecase of Crosstalk is to leak
hardware generated random numbers that uses Intel’s Secure Key Technology.
The Secure Key technology makes use of an off-core hardware random number
generator. The generator is initialized using the RDSEED instruction and the
random numbers are read using the RDREAD instruction. These form the basis of
several cryptographic primitives including, Intel’s security enclaves. Executing
either of these instructions touches the staging buffer. MDS attacks can be
mounted on the buffer by transiently executing RDRAND and RDSEED thus leaking
the seed or the random numbers generated by the hardware random number
generator.

4 Countermeasures

Since their discovery, there have been extensive efforts to design develop coun-
termeasures for transient micro-architectural attacks. The countermeasures can
be broadly classified as prevention-based or detection-based. Prevention-based
solutions attempt to stop the attack by thwarting the execution at one of the
three phases (refer Figure 3). Näıve preventive solutions, for instance, disable
speculative execution, thus preventing any transient execution, the first stage of
the attack. Another näıve preventive solution disables all timers, thus prevent-
ing timing channels. This would disable stage 3, i.e. the transmission of leakage.
In contrast, detection-based solutions do not disable any feature, rather, they
aim to identify patterns in the program execution that can be attributed to an
attack. While preventive-based solutions have high overheads, detection-based
solutions suffer from false positives. Over the last few years, there have been
multiple detection-based and preventive-based solutions proposed. Table 2 pro-
vides a list of these solutions. This section provides a description and analysis
of some of these existing solutions.

4.1 Prevention-based Countermeasures

Figure 3 shows the stages of a transient attack. The attacker first identifies a
source of leakage, as listed in Table 1. The next step involves the transient move-
ment of data from the source to the medium of leakage. Finally, the attacker
uses techniques established in Section 2.1 to transfer the secret information from
the medium. Thwarting any of these sequential stages is sufficient to prevent the
attack. Different preventive countermeasures target attacks at different stages
of their execution, as described in Table 2.
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Table 2: Countermeasures for Transient Micro-Architectural Attacks are clas-
sified as either prevention-based or detection-based. While prevention-based
techniques aim to either modify or disable some functionality in the software or
hardware, detection-based techniques rely on accurately identifying attacks from
their run-time characteristics. [HW: Hardware implementation, SW: Software
Implementation]

Stage of
Paper

HW
or SW? Threat Model

Reported
applicability Overheads

–Prevention-based–

Source
of Leakage

NDA [62]

HW

Speculative execution attacks 4-32%
Context [54] Spectre-like 0-338%

InvisiSpec [67] Spectre-like 5-17%
Safespec [30] Meltdown, Spectre-like 3%

SpectreGuard [23] Spectre-like 8-20%
Specshield [4] Speculative execution attacks 21%
Spectrum [24] Spectre-like 2%
MuonTrap [2] Spectre-like 4%

Invisible Speculation [51] Cache and memory side-channels 11%
Reversispec [65] Speculative load attacks 8.3%

Medium
of Leakage

Random-fill [37]

HW

Contention and reuse based attacks Negligible
Newcache [38] Contention and reuse based attacks Negligible
CEASER [47] Contention-based attacks 1%

Encrypted-address cache [48] Contention-bases attacks 1%
Scattercache [64] Cache leakage techniques (Section 2.1) 2-4%

DAWG [31] Cache timing attacks 4-7%
SecDCP [60] Timing side-channels 12.5%

MI6 [10] Spectre-like 16.4%

Transmission
of Leakage

Timewarp [40] HW Timing side-channels Negligible
InvarSpec [69] SW Speculative execution attacks [67]: 10.9%

oo7 [59] SW Spectre-like 5.9%
SPECCFI [34] SW Spectre-like 1.9%

–Detection-based–

Transmission
of Leakage

Cyclone [26]

SW

Cache leakage techniques 3.6%
[16] Cache leakage techniques -

NIGHTs-WATCH [41] Cache leakage techniques 2%
WHISPER [42] Cache leakage techniques -

[3] Cache leakage techniques -
CloudRadar [68] Cross VM attacks 5%
CacheShield [11] Cross VM attacks -
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Prevention-based countermeasures provide a preemptive solution to these
attacks. While the goal of all solutions is to disable potentially vulnerable be-
havior of programs, they differ in the attack phase they target. For example, a
preventive solution, called TimeWarp [40] fuzzes the timers in order to prevent
attackers from making fine-grained measurements. Such fine-grained measure-
ments are needed to distinguish between micro-architectural events like cache
hits and misses. Without precise time measurements, the third phase of the
attack, namely the flush+reload, would fail. While most of these solutions are
implemented in the hardware, there are also proposals that work from the soft-
ware [34, 59, 67].

Prevention at the source of leakage. These countermeasures attempt to
thwart attacks at the source of leakage. The most popular approach is to re-
design speculative execution in processors to make it leakage-free. A typical
solution in this direction divides load instructions into safe and unsafe cate-
gories based on the threat model. For example, a load instruction that has
committed its results can be considered safe, while a speculative load that is
yet to be completed is considered unsafe to prevent Meltdown and Spectre-like
attacks. Countermeasures designed on this philosophy allow the safe loads to
alter the global state of the caches. Unsafe loads, however, are not allowed to
affect the state of the cache hierarchy [2, 4, 24, 65, 67]. To implement this, a
buffer is inserted in the processor design that temporally holds the results from
speculatively executed instructions until the instruction is completed.

Prevention at the medium of leakage. Cache memories store a subset of
data in the memory based on temporal and spatial locality. As the cache is
several times smaller than the main memory, multiple addresses map to the
same location in the cache resulting in contention. The contention is possible
within a process and also across processes. An attacker models this contention to
glean information in the cache, using techniques seen in Section 2.1. Specialized
cache memory designs have been proposed for thwarting the attacks by reducing
cache contention.

In [46], Percival suggests eliminating cache contention by modifying the
cache eviction algorithms. The modified eviction algorithms would minimize
the extent to which one thread can evict data from another thread. In [45],
Page proposed to partition a cache memory that was built of direct-mapped
cache sets that could dynamically be partitioned into protected regions by the
use of specialized cache management instructions. By tagging memory accesses
with partition identifiers, each memory access is hashed to a dedicated parti-
tion. While this prevents cache contention from multiple processes, the cache
memory is under-utilized due to rigid partitions. For example, a process may
use very few cache lines of its partition. The unused cache lines are not available
to another process.

In [61], Wang and Lee provide an improvement on the work by Page [45]
using a construct called partition-locked cache (PLCache), where the cache lines
of interest are locked in the cache, thereby creating a private partition. These
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locked cache lines cannot be evicted by other cache accesses not belonging to
the private partition. In the hardware, each cache line requires additional tags
comprising of a flag to indicate if the line is locked, and an identifier to indicate
the owner of the cache line. The under-utilization of Page’s partitioned cache
still persists because the locked lines cannot be used by other processes, even
after the owner no longer requires them.

In [22], Domnitser et al. provide a low-cost solution to prevent attacks based
on the fact that the cipher evicts one or more lines of the spy data from the
cache. The solution, which requires minor modifications of the replacement
policies in cache memories, restricts an application from holding more than a
pre-determined number of lines in each set of a set-associative cache. With such
a cache memory, the spy can never hold all cache lines in the set, therefore the
probability that the cipher evicts spy data is reduced. By controlling the number
of lines that the spy can hold, a tradeoff between performance and security can
be achieved. Over the years, several other cache partitioning techniques have
been suggested [31, 52] which strengthens the defense while improving usability.

Another well-known modification defense for cache-based attacks makes use
of randomization. Wang and Lee propose a random-permutation cache (RP-
Cache) in [61], whereas the name suggests, randomizes the cache interference to
make the attack more difficult. The design is based on the fact that information
is leaked only when cache interference is present between two different processes.
RPCache aims at randomizing such interferences so that no useful information
is gleaned. The architecture requires an additional hardware called the permu-
tation table, which maps the set bits in the effective address to obtain new set
bits. These are then used to index the cache set array. Changing the contents
of the permutation table will invalidate the respective lines in the cache. This
causes additional cache misses and randomization in the cache interference.

An advancement of random cache architectures are designs that encrypt the
mapping of addresses to cache sets. CEASER incorporates a block cipher [47, 48]
for performing the encryption. The encryption key is periodically changed to
obtain a different mapping for the cache sets. An important aspect of this de-
sign is the encryption algorithm, since it lies in the critical path and influences
the time for load and store operations. While traditional ciphers have consid-
erable latencies, ciphers designed specifically for this purpose may not provide
sufficiently strong encryption [9].

Prevention at the transmission of leakage. While there are several tech-
niques to thwart transient attacks by modification in the cache and the exe-
cution, existing literature also includes some preventive solution that aims to
target the root cause of timing channels, such as fuzzing the timer [40] or in-
creasing the entropy [21] in the timing information. There also solutions that
use program analysis [59, 69] on the program code to identify vulnerable regions
and forbid speculative execution in those code sections [23].
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4.2 Detection-based Countermeasures

Unlike prevention-based countermeasures, detection-based solutions tend to be
reactive in their approach. The detection of any micro-architectural attack
involves recognizing some anomalous or malicious pattern of execution. The
prevalent technique to classify attacks is to discover features that can provide
distinct boundaries between these attacks and benign programs using some sta-
tistical method or Machine learning (ML) algorithms. Owing to this, detection-
based techniques are more prudent at identifying the transmission of leakage,
where the attacker performs distinct operations in the cache to glean the secrets.

A widely popular technique to capture program execution behavior is the
use of Hardware Performance Counters (HPCs). These are registers provided
by the hardware designer, to monitor certain micro-architectural events in the
system. Originally intended for debugging purposes, over the last two decades,
HPCs have been shown to profile programs to detect anomalies, malware [20]
and specific micro-architectural attacks [3, 16, 35, 41, 42, 68], including those
based on transient execution. Such solutions do not detect the anomalies in
transient execution, but the step where the attacker gleans the sensitive data.

Another approach to using HPCs for attack detection is presented by the
authors in [27]. It uses the observation that contention in a resource leaks
information only when it is cyclic, meaning domain A interferes with domain
B and sequentially domain B interferes with A. Thus the proposal to design a
detection for such cyclic interference patterns using HPCs. While most detection
techniques profile the attacker, there are approaches to profile the victim for
anomalies [11]. The end goal of this design is to secure specific domains, rather
than a blanket attack detection.

5 Conclusions

The last few years have seen several variants of transient micro-architectural
attacks. The root cause in all these attacks is the unintended influence of
speculatively executed operations with the hardware. Given the complexity of
modern microprocessors, many new variants are likely to be discovered in the
future. Next-generation microprocessors should be designed to not just prevent
known attacks but should be resilient to future attacks as well. This would
require security-aware design methodologies that involve the following.

• While there have been several countermeasures proposed, most have been
evaluated in an ad-hoc manner. This makes it difficult to quantitatively
compare countermeasures and gauge their effectiveness. There is an ur-
gent need to standardize evaluation for security in microprocessors. These
standards would provide methodologies to gauge the isolation between
software entities. For example, a methodology that can quantify how well
the OS is isolated from a userspace program. These methodologies could
provide toolkits to analyze isolation or a suite of benchmark programs to
evaluate the isolation.
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• Pre and post-Silicon verification of hardware is mainly focused on func-
tional aspects of the design. Automation tools are designed to minimize
area, power, and boot performance. Security vulnerabilities, often fixed
in hindsight, have proved expensive. Design automation tools should be
augmented to validate for security early in the design phase. This can
be a daunting task due to the vast state space of modern microproces-
sors. Artificial Intelligence (AI) is a promising tool that could help design
automation for security. Although the use of AI in Electronic Design
Automation (EDA) is in its infancy, AI is finding applications to reduce
design verification time and achieve more optimized designs.

• Proposed preventive-countermeasures are designed to stymie specific vari-
ants of the attacks. For example, countermeasures for Meltdown are un-
able to protect against the newer MDS attacks. With multiple attack
variants expected in the near future, defense solutions are always catching
up with the attacks.

Detection-based countermeasures, on the other hand, can easily adapt to
new attacks. However, most detection countermeasures work from soft-
ware, and are slow and inaccurate. CPU hardware can be augmented with
attack sensors that can detect attacks at runtime with far better accuracy.
These sensors should be generic enough to be configured for new attack
variants.

An alternate methodology is to use watchdogs, which monitor processor
behavior to detect ongoing attacks. Programmable watchdogs have been
proposed in [19], and can be extended for micro-architectural attacks.

References

[1] PaX: ASLR Documentation. https://pax.grsecurity.net/docs/aslr.txt, Ac-
cessed: 2021-3-2.

[2] Sam Ainsworth and Timothy M. Jones. Muontrap: Preventing cross-
domain spectre-like attacks by capturing speculative state. In 47th
ACM/IEEE Annual International Symposium on Computer Architecture,
ISCA 2020, Valencia, Spain, May 30 - June 3, 2020, pages 132–144. IEEE,
2020.

[3] Manaar Alam, Sarani Bhattacharya, and Debdeep Mukhopadhyay. Victims
can be saviors: A machine learning–based detection for micro-architectural
side-channel attacks. J. Emerg. Technol. Comput. Syst., 17(2), January
2021.

[4] Kristin Barber, Anys Bacha, Li Zhou, Yinqian Zhang, and Radu Teodor-
escu. Specshield: Shielding speculative data from microarchitectural covert
channels. In 28th International Conference on Parallel Architectures and

23



Compilation Techniques, PACT 2019, Seattle, WA, USA, September 23-26,
2019, pages 151–164. IEEE, 2019.

[5] Antonio Barresi, Kaveh Razavi, Mathias Payer, and Thomas R. Gross.
CAIN: silently breaking ASLR in the cloud. In 9th USENIX Workshop on
Offensive Technologies, WOOT ’15, Washington, DC, USA, August 10-11,
2015., 2015.

[6] Daniel J. Bernstein. Cache-timing Attacks on AES, 2005.

[7] Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar. Address obfuscation:
An efficient approach to combat a broad range of memory error exploits. In
Proceedings of the 12th USENIX Security Symposium, Washington, D.C.,
USA, August 4-8, 2003. USENIX Association, 2003.

[8] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner,
Alessandro Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus.
Smotherspectre: Exploiting speculative execution through port contention.
In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan
Katz, editors, Proceedings of the 2019 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS 2019, London, UK, November
11-15, 2019, pages 785–800. ACM, 2019.

[9] R. Bodduna, V. Ganesan, P. SLPSK, K. Veezhinathan, and C. Rebeiro.
Brutus: Refuting the security claims of the cache timing randomization
countermeasure proposed in ceaser. IEEE Computer Architecture Letters,
19(1):9–12, 2020.

[10] Thomas Bourgeat, Ilia Lebedev, Andrew Wright, Sizhuo Zhang, Arvind,
and Srinivas Devadas. Mi6: Secure enclaves in a speculative out-of-order
processor. In Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO ’52, page 42–56, New York, NY,
USA, 2019. Association for Computing Machinery.

[11] Samira Briongos, Gorka Irazoqui, Pedro Malagón, and Thomas Eisenbarth.
Cacheshield: Detecting cache attacks through self-observation. In Ziming
Zhao, Gail-Joon Ahn, Ram Krishnan, and Gabriel Ghinita, editors, Pro-
ceedings of the Eighth ACM Conference on Data and Application Secu-
rity and Privacy, CODASPY 2018, Tempe, AZ, USA, March 19-21, 2018,
pages 224–235. ACM, 2018.

[12] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and
Raoul Strackx. Foreshadow: Extracting the keys to the intel SGX kingdom
with transient out-of-order execution. In William Enck and Adrienne Porter
Felt, editors, 27th USENIX Security Symposium, USENIX Security 2018,
Baltimore, MD, USA, August 15-17, 2018, pages 991–1008. USENIX As-
sociation, 2018.

24



[13] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Marina
Minkin, Daniel Genkin, Yuval Yarom, Berk Sunar, Daniel Gruss, and Frank
Piessens. LVI: hijacking transient execution through microarchitectural
load value injection. In 2020 IEEE Symposium on Security and Privacy,
SP 2020, San Francisco, CA, USA, May 18-21, 2020, pages 54–72. IEEE,
2020.

[14] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz Lipp,
Marina Minkin, Daniel Moghimi, Frank Piessens, Michael Schwarz, Berk
Sunar, Jo Van Bulck, and Yuval Yarom. Fallout: Leaking data on
meltdown-resistant cpus. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng
Wang, and Jonathan Katz, editors, Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2019, Lon-
don, UK, November 11-15, 2019, pages 769–784. ACM, 2019.

[15] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin,
and Ten-Hwang Lai. Sgxpectre: Stealing intel secrets from SGX enclaves
via speculative execution. IEEE Secur. Priv., 18(3):28–37, 2020.

[16] Marco Chiappetta, Erkay Savas, and Cemal Yilmaz. Real time detection
of cache-based side-channel attacks using hardware performance counters.
Appl. Soft Comput., 49(C):1162–1174, December 2016.

[17] Intel Corporation. 11th Generation Intel Core Proces-
sor Desktop Datasheet, Volume 1, Revision 003, 2021.
https://cdrdv2.intel.com/v1/dl/getContent/634648, Accessed: 2022-
2-6.

[18] Intel Corporation. 12th Generation Intel Core Proces-
sor Desktop Datasheet, Volume 1, Revision 004, 2022.
https://cdrdv2.intel.com/v1/dl/getContent/655258, Accessed: 2022-
2-6.

[19] Leila Delshadtehrani, Sadullah Canakci, Boyou Zhou, Schuyler Eldridge,
Ajay Joshi, and Manuel Egele. Phmon: A programmable hardware monitor
and its security use cases. In Srdjan Capkun and Franziska Roesner, editors,
29th USENIX Security Symposium, USENIX Security 2020, August 12-14,
2020, pages 807–824. USENIX Association, 2020.

[20] John Demme, Matthew Maycock, Jared Schmitz, Adrian Tang, Adam
Waksman, Simha Sethumadhavan, and Salvatore Stolfo. On the feasibility
of online malware detection with performance counters. In Proceedings of
the 40th Annual International Symposium on Computer Architecture, ISCA
’13, page 559–570, New York, NY, USA, 2013. Association for Computing
Machinery.

[21] Abhijitt Dhavlle, Raj Mehta, Setareh Rafatirad, Houman Homayoun, and
Sai Manoj Pudukotai Dinakarrao. Entropy-shield: Side-channel entropy
maximization for timing-based side-channel attacks. In 21st International

25



Symposium on Quality Electronic Design, ISQED 2020, Santa Clara, CA,
USA, March 25-26, 2020, pages 161–166. IEEE, 2020.

[22] Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael B. Abu-Ghazaleh, and
Dmitry Ponomarev. Non-monopolizable caches: Low-complexity Mitiga-
tion of Cache Side-Channel Attacks. TACO, 8(4):35, 2012.

[23] Jacob Fustos, Farzad Farshchi, and Heechul Yun. Spectreguard: An effi-
cient data-centric defense mechanism against spectre attacks. In Proceed-
ings of the 56th Annual Design Automation Conference 2019, DAC 2019,
Las Vegas, NV, USA, June 02-06, 2019, page 61. ACM, 2019.

[24] Ed Younis Gonz̊alez Abraham, Ben Korpan and Jerry
Zhao. Spectrum : Classifying , replicating and mitigat-
ing spectre attacks on a speculating risc-v microarchitecture.
2018. https://people.eecs.berkeley.edu/ kubitron/courses/cs262a-
F18/projects/reports/project4 report.pdf, Accessed: 2021-4-4.

[25] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano Giuf-
frida. ASLR on the line: Practical cache attacks on the MMU. In 24th
Annual Network and Distributed System Security Symposium, NDSS 2017,
San Diego, California, USA, February 26 - March 1, 2017, 2017.

[26] Austin Harris, Shijia Wei, Prateek Sahu, Pranav Kumar, Todd M. Austin,
and Mohit Tiwari. Cyclone: Detecting contention-based cache informa-
tion leaks through cyclic interference. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 2019,
Columbus, OH, USA, October 12-16, 2019, pages 57–72. ACM, 2019.

[27] Austin Harris, Shijia Wei, Prateek Sahu, Pranav Kumar, Todd M. Austin,
and Mohit Tiwari. Cyclone: Detecting contention-based cache informa-
tion leaks through cyclic interference. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 2019,
Columbus, OH, USA, October 12-16, 2019, pages 57–72. ACM, 2019.

[28] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical timing side
channel attacks against kernel space ASLR. In Proceedings of the 2013
IEEE Symposium on Security and Privacy, SP ’13, page 191–205, USA,
2013. IEEE Computer Society.

[29] Intel. Intel C++ Compiler Classic Developer Guide and Reference.
https://software.intel.com/content/dam/develop/external/documents/
cpp compiler classic.pdf, Accessed: 2021-3-2.

[30] Khaled N. Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu Song,
Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. Safe-
spec: Banishing the spectre of a meltdown with leakage-free speculation.
In Proceedings of the 56th Annual Design Automation Conference 2019,
DAC ’19, New York, NY, USA, 2019. Association for Computing Machin-
ery.

26



[31] Vladimir Kiriansky, Ilia A. Lebedev, Saman P. Amarasinghe, Srinivas De-
vadas, and Joel S. Emer. DAWG: A defense against cache timing attacks in
speculative execution processors. In 51st Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 2018, Fukuoka, Japan, October
20-24, 2018, pages 974–987. IEEE Computer Society, 2018.

[32] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Exploiting
speculative execution. In 2019 IEEE Symposium on Security and Privacy,
SP 2019, San Francisco, CA, USA, May 19-23, 2019, pages 1–19. IEEE,
2019.

[33] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu Song,
and Nael B. Abu-Ghazaleh. Spectre returns! speculation attacks using the
return stack buffer. In Christian Rossow and Yves Younan, editors, 12th
USENIX Workshop on Offensive Technologies, WOOT 2018, Baltimore,
MD, USA, August 13-14, 2018. USENIX Association, 2018.

[34] Esmaeil Mohammadian Koruyeh, Shirin Haji Amin Shirazi, Khaled N.
Khasawneh, Chengyu Song, and Nael B. Abu-Ghazaleh. Speccfi: Mit-
igating spectre attacks using CFI informed speculation. In 2020 IEEE
Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA,
May 18-21, 2020, pages 39–53. IEEE, 2020.

[35] Congmiao Li and Jean-Luc Gaudiot. Detecting malicious attacks exploiting
hardware vulnerabilities using performance counters. In Vladimir Getov,
Jean-Luc Gaudiot, Nariyoshi Yamai, Stelvio Cimato, J. Morris Chang,
Yuuichi Teranishi, Ji-Jiang Yang, Hong Va Leong, Hossain Shahriar,
Michiharu Takemoto, Dave Towey, Hiroki Takakura, Atilla Elçi, Susumu
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Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
RIDL: rogue in-flight data load. In 2019 IEEE Symposium on Security
and Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019, pages
88–105. IEEE, 2019.

[59] Guanhua Wang, S. Chattopadhyay, Ivan Gotovchits, T. Mitra, and Ab-
hik Roychoudhury. oo7: Low-overhead defense against spectre attacks via
binary analysis. ArXiv, abs/1807.05843, 2018.

[60] Yao Wang, Andrew Ferraiuolo, Danfeng Zhang, Andrew C. Myers, and
G. Edward Suh. Secdcp: secure dynamic cache partitioning for efficient
timing channel protection. In Proceedings of the 53rd Annual Design Au-
tomation Conference, DAC 2016, Austin, TX, USA, June 5-9, 2016, pages
74:1–74:6. ACM, 2016.

[61] Zhenghong Wang and Ruby B. Lee. New Cache Designs for Thwarting
Software Cache-Based Side Channel Attacks. In Dean M. Tullsen and Brad
Calder, editors, ISCA, pages 494–505. ACM, 2007.

[62] Ofir Weisse, Ian Neal, Kevin Loughlin, Thomas F. Wenisch, and Baris
Kasikci. Nda: Preventing speculative execution attacks at their source. In
Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO ’52, page 572–586, New York, NY, USA, 2019.
Association for Computing Machinery.

[63] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Raoul Strackx, Thomas F. Wenisch, and
Yuval Yarom. Foreshadow-NG: Breaking the virtual memory abstraction
with transient out-of-order execution. Technical report, 2018.

[64] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael Schwarz,
Daniel Gruss, and Stefan Mangard. Scattercache: Thwarting cache attacks
via cache set randomization. In Nadia Heninger and Patrick Traynor, ed-
itors, 28th USENIX Security Symposium, USENIX Security 2019, Santa
Clara, CA, USA, August 14-16, 2019, pages 675–692. USENIX Associa-
tion, 2019.

[65] You Wu and Xuehai Qian. Reversispec: Reversible coherence protocol for
defending transient attacks. CoRR, abs/2006.16535, 2020.

[66] Jun Xu, Zbigniew Kalbarczyk, and Ravishankar K. Iyer. Transparent run-
time randomization for security. In 22nd Symposium on Reliable Distributed

30



Systems (SRDS 2003), 6-8 October 2003, Florence, Italy, page 260. IEEE
Computer Society, 2003.

[67] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison, Christo-
pher W. Fletcher, and Josep Torrellas. Invisispec: Making speculative
execution invisible in the cache hierarchy (corrigendum). In Proceedings of
the 52nd Annual IEEE/ACM International Symposium on Microarchitec-
ture, MICRO 2019, Columbus, OH, USA, October 12-16, 2019, page 1076.
ACM, 2019.

[68] Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee. Cloudradar: A real-time
side-channel attack detection system in clouds. In Fabian Monrose, Marc
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