
manuscript No.
(will be inserted by the editor)

Spy Cartel: Parallelizing Evict+Time Based Cache Attacks on Last
Level Caches

Himanshi Jain · D. Anthony Balaraju · Chester Rebeiro

Abstract A powerful cache timing attack can not only de-
termine the secret key of a cryptographic cipher accurately
but also do so quickly. Cache timing attacks that utilize the
shared L1 cache memory are known to have these two char-
acteristics. On the other hand, attacks using the shared Last
Level Cache (LLC) memory are not always successful in
obtaining the secret key, and they take considerably longer
than an L1 cache attack.
This paper leverages the fact that all LLC attacks run on
multi-core CPUs, facilitating the attack programs to be par-
allelized. We show how parallelization can be used to re-
duce the runtime and improve the attack’s success making
it on a par with L1 cache attacks. We then propose a new
methodology for LLC cache attacks, by which, an attacker
can maximize the attack success for a given timeframe. The
only additional requirement is learning about the target sys-
tem’s runtime behavior, which is done offline. We validate
all our claims on a 4-core and a 10-core CPU.

Keywords Cache timing attacks, Last Level Cache
memories, Evict+Time, Multi-core CPUs

1 Introduction
Cache timing attacks are a powerful form of cryptanalysis,
where an attacker exploits the fact that the cache memory is
shared in a system. The attacker runs a program, called the
spy, which contends with a victim program for the shared
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Fig. 1: A 10-CORE CPU WITH CORES C0, C1, . . . C9, CONNECTED WITH A
FRONT-SIDE RING BUS AND HAVING A SHARED LLC WITH SLICES S0, S1, . . . ,

S9. SPY PROGRAMS IN LLC ATTACKS CAN THUS BE PARALLELIZED TO
LEVERAGE THE SHARED LLC. PARALLELIZATION CAN PARTITION THE LLC

(P0, P1, . . . , P9) TO REDUCE ATTACK TIME OR CAN BE CONFIGURED TO
INCREASE ATTACK SUCCESS.

cache memory. This contention affects the number of cache
misses, which is manifested in the execution time of both
programs. Attackers have been able to monitor the execution
time and glean sensitive information from the victim. Cache
timing attacks have been known for about two decades. The
first set of attacks used the shared L1 data or instruction
cache [2, 3, 9, 11, 13, 16, 20, 23, 24, 30]. These attacks
make a strong assumption that the spy executes in the same
CPU core as the victim; albeit in a different hardware thread.
Recent attacks relaxed this assumption, by targeting the last
level cache (LLC) memory [4, 5, 17, 19, 22, 34]. In an LLC
attack, the spy and victim can reside on different cores in
a multi-core CPU and contention is for the shared cache
lines in the LLC. This is a big threat especially to multi-
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tenant cloud computing service providers, who permit dif-
ferent users to simultaneously share different cores of the
same CPU. Several forms of LLC attacks have been devel-
oped in the last few years such as [5, 17, 22, 34]. Many of
these attacks are much more complex than the L1 cache at-
tacks due to multiple reasons. First, the entire LLC is split
into slices, and the mapping from physical address to slice,
is based on a machine dependent undisclosed hash function.
Second, the LLC is considerably larger than the L1 cache.
The interesting cache sets, which hold victim’s sensitive in-
formation, would be a small fraction of the entire LLC. Due
to these reasons, creating a spy that contends for the same
cache lines as the victim, is considerably difficult. Further,
unlike L1 cache memories, which are indexed by virtual ad-
dresses, the LLC is indexed by physical addresses, which
are not visible to the attacker and change at every execution.
Thus, the spy would need to locate the interesting cache sets,
every time the victim is restarted. Due to these factors, an
LLC attack is several times slower than an L1 cache attack.
For example, from our experiments a typical L1 cache at-
tack on an implementation of AES1 takes 1.08 minutes on
average, while the same attack using the LLC takes 19.08
minutes on a 10 core machine. The LLC is also considerably
slower than the L1 cache. This may result in a decreased rate
at which the spy can contend for the shared cache sets. This
in turn reduces the impact on the execution time of the pro-
grams, resulting in lower attack success.

In this paper we are concerned with optimizing LLC at-
tacks based on the Evict+Time technique [23]. We leverage
one characteristic difference between the L1 cache memory
and the LLC: while the L1 cache is private to a CPU core,
the LLC is typically shared between all cores. This allows
the attacker to parallelize the spy so as to increase the attack
success and/or reduce the time required to mount the LLC
attack. For example, in a 10 core CPU, the victim would ex-
ecute in one core, while 9 other spies would execute in the
other cores; one in each core as shown in Figure 1. The spy
threads can be configured to parallelize the search for the
victim’s interesting cache sets, thereby reducing the attack
time. Alternatively, the attack’s success can be boosted by
focusing all spies on the interesting cache sets, thereby in-
creasing contention, which in turn increases the attack suc-
cess.

In this paper we first demonstrate how a parallel spy can
be used to boost the attack success and/or reduce the attack
time. We then present a novel attack methodology, by which
an attacker can choose a spy configuration apriori, so as to
maximize attack success within a given timeframe. Along
the way, we make several other novel contributions, which
we list below.

1 OpenSSL ver. 1.0.1f (https://www.openssl.org/)

– While all state-of-the-art works on LLC attacks [4, 5, 17,
19, 22, 34] have focused on different attack techniques,
ours is the first work that looks at LLC attacks with par-
allel spy threads. This is especially useful in LLC attacks
because of the multi-core architectures of modern CPUs.

– We study different search techniques in order to identify
the interesting cache sets in the LLC. We demonstrate
how each search strategy can affect the attack runtime
and accuracy of finding the interesting cache sets.

– Parallelizing the spy, results in flooding the front side
ring bus (ref. Figure 1). We investigate the impact of
flooding the bus on the success of the attack.

– For our experiments we compare two CPUs: a small 4-
core CPU and a larger 10-core CPU. This permits the
study of the relationship between the number of CPU
cores and the success of a cache timing attack. On both
the test systems, the proposed attack always outperforms
the naı̈ve attack technique, sometimes by over 60%. We
also show that the proposed attacks are better on CPUs
with larger number of cores.

The structure of the paper is as follows: Section 2 gives the
necessary background required for this work. Section 3 has
the related work on cache timing attacks, particularly fo-
cusing on LLC attacks. Section 4 presents an Evict+Time
based cache attack, which we consider in this paper. First
the overview is presented and then the details are discussed.
Section 5 and Section 6 present optimizations for the vari-
ous phases of the attack using a parallel spy. In Section 7, we
present a generic algorithm to find the best strategy to par-
allelize the spy, given a bound on the attack time. Section 8
has the results of our attack, while Section 9 concludes the
paper.

2 Background
In this section, we give a brief introduction to last level cache
memories and cache timing attacks. We then define a met-
ric which we use to quantify the attack success of a cache
timing attack.

2.1 Last Level Cache Memories
Most current server class processors have three levels of
caches, level 1 (L1), level 2 (L2), and last level cache (LLC
or L3). The L1 and L2 caches are private to each core
whereas the LLC is shared across all the cores of a CPU.
Cache memories in most Intel processors adhere to the in-
clusiveness property, where data present in the L1 and L2
caches is a strict subset of the data present in the LLC. This
feature has been exploited in all last level cache attacks.

Cache memories are organized as cache lines, typically
of 64 bytes. Cache lines are further organized as cache sets.
In the L1 cache, data is mapped into one of these cache
sets using the set index bits of the virtual address. In the
LLC however, the physical address determines the cache
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set. Since physical addresses are not known to attackers with
user level privileges, cache attacks on the LLC are consider-
ably more difficult. Besides this, there are a number of subtle
differences in the organization of an LLC compared to an L1
cache, which further increases the attack difficulty.

The LLC is split into slices, with each CPU core asso-
ciated with a slice. All the slices are connected with a front
side ring bus and are accessible from any of the cores (ref.
Figure 1). Due to slicing, the mapping of an address to a
cache set is more complicated at the LLC compared to the
L1 cache. Intel processors use an undisclosed hash function
to uniformly distribute addresses across the slices [19, 35].
These hash functions, which are machine dependent, map a
given physical address to any one of the LLC slices.

2.2 Evict+Time Cache Timing Attacks
In this attack, the attacker runs a spy process simultane-
ously with the victim process. The spy is designed to share
a cache with the victim process and continuously performs
some memory accesses. In parallel it also invokes the victim
process and monitors the execution time. If the spy’s mem-
ory accesses happen to interfere with the victim’s memory
accesses due to the shared cache memory, then there is an in-
crease in the execution time of the victim. These execution
time changes are then analyzed to reveal secret information
about the victim [6, 12, 23, 30].

2.3 Measuring the Attack Success
We use a metric similar to guessing entropy [18] to gauge
the effectiveness of an attack. Let n1 denote the worst case
number of guesses it takes for an attacker to determine the
secret key of a cipher without any side-channel information.
Further, let n2 denote the number of guesses it takes to deter-
mine the secret key, given the execution time side-channel.
We compute the success of the attack as follows:

%AttackSuccess =
|n1−n2|

n1
×100 . (1)

This metric indicates how much better the side-channel at-
tack is compared to a random guess of the secret key. If for
instance, the number of possible key values is 256. Then n1
is 256. Suppose, given the side-channel leakage, the number
of guesses required (i.e. n2) is 10, then success of the attack
is 96.1%.

3 Related Work
In the last decade, there were several works that demon-
strated vulnerabilities of cryptographic ciphers due to the
L1 cache. The attacks were classified as time-driven [6, 8,
14, 21, 25–27, 29, 31], trace-driven [1, 7, 15, 23, 36], or
access-driven [11, 20, 23, 24, 30]. Many of these attacks as-
sumed that the attacker shared a CPU core with the victim
in a hyperthreaded environment. The fact that hyperthread-
ing was disabled in many newer CPUs, and time-sharing

of CPU cores were not permitted, led researchers to look
beyond the L1 cache and utilize the LLC to mount cache
attacks. The first LLC attack was based on Flush+Reload.
It was introduced by Yarom and Falkner in [34]. An effi-
cient Cross-VM Flush+Reload cache attack was later devel-
oped by Irazoqui et al. [4]. Both these attacks have the con-
straint that memory pages need to be shared between the at-
tacker and the victim. In order to prevent these attacks many
cloud services providers disabled de-duplication of memory
pages. Recent works, managed to design LLC attacks with-
out needing de-duplication. In these attacks, the attacker tar-
gets a small fraction of the LLC sets that are likely to leak
the victim’s secret information. The complications however,
is that the number of sets in the LLC is considerably large,
which slows down cache probing and also affects success.
Intel’s undocumented hash function that obfuscates cache
mappings in the LLC further hampers the attacks. In 2015,
Maurice et al. [19] and Yarom et al. [35] demonstrated how
the hash function can be reverse engineered thus determin-
ing the exact mapping between memory addresses and LLC
slices. The technique in [19] requires knowledge of phys-
ical addresses, which is not always possible. Around the
same time, Irazoqui, Eisenbarth, and Sunar showed that even
without sharing of pages, LLC attacks can be developed by
leveraging huge pages [5]. Liu et al. in [17], also used huge
pages in their attacks to identify conflicting sets. The algo-
rithms that were proposed, eliminated the need for physical
addresses to reverse engineer the hash function.

Most of the LLC attacks demonstrated so far are time
consuming and in many cases inefficient. The unknown ad-
dresses and the undisclosed mapping between physical ad-
dresses and slices increases the complexity of the attacks
further. In this paper we present optimization techniques to
improve LLC attacks. The optimizations can be used to in-
crease attack success or reduce attack runtime. We describe
how an attacker can choose among these multiple optimiza-
tion techniques to derive the best attack.

4 Evict+Time based Last Level Cache Attack
In this section, we present an Evict+Time based cache attack
on the last level cache. We divide the entire attack into three
phases: learning, scout, and strike. While the learning phase
is done offline, the scout and strike are online phases.

4.1 Attack Assumptions
We assume that the attacker has sufficient time to reverse
engineer the mapping between physical addresses and cache
slices. During the attack, we assume that the attacker co-
resides with the victim on the same CPU; not necessarily
the same core. There are several techniques to achieve such
co-location like [28, 32, 33]. We also assume that the LLC
is shared between all cores in the CPU and the attacker can
accurately measure execution time.
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The attacker runs a spy process, which accesses the same
cache set as the victim, thus interfering with the victim’s ex-
ecution. We assume that the attacker can accurately measure
the disturbances in the victim’s execution time due to the in-
terference.

4.2 Overview of the Attack
The attack comprises of three phases:

– Learning Phase. We reuse techniques from [17] to de-
termine conflicting lines in an LLC set. This involves
finding an eviction and a conflict array. An eviction ar-
ray Ei contains memory addresses that fills exactly one
slice of an LLC set i, while a conflict array Ci contains
all the eviction arrays corresponding to all slices of the
cache set i. Thus a conflict array for an LLC cache set
in a 10 core CPU would comprise of 10 eviction arrays;
one for each slice.

– Scout Phase. In this step, we search for the interesting
LLC cache sets that the victim uses. If the victim’s vir-
tual address space is known, for example compile time
allocated data, then a few clues about the mapped cache
sets are obtained. Thus, search is restricted to a small
subset of the LLC sets. On the other hand, for dynami-
cally allocated data or when the victim’s virtual address
space is not known, the entire LLC needs to be probed
to identify the interesting cache sets used by the victim.
The latter is especially the case when the victim is coded
in a Languages such as Java or JavaScript, where the
virtual address space is not easily observable. Since the
physical address mapping may change every time the
victim is restarted, the scout phase will have to be re-
run, every time the victim’s physical address mapping
changes.

– Strike Phase. Once the attacker has identified the vic-
tim’s interesting cache sets, she monitors execution time
and then uses statistical techniques to derive sensitive
information from the victim.

It is most important to optimize the scout and strike phases,
since they are executed online. In this section we elaborate
each of these phases, while the following sections present
techniques to optimize the scout and strike phases.

Learning Phase. When a physical address reaches the LLC,
a hash function selects the LLC slice, while the set index bits
in the physical address identifies the cache set within the
slice. This mapping is machine dependent. In the learning
phase, we follow the approach of [17] to identify a set of
addresses that gets mapped to the same cache set in a slice.
We call such a set as the eviction array for the cache set i
and denote it by Ei . For a CPU with M cores (i.e. M cache
slices), there are M such eviction arrays for each cache set.
The union of these eviction arrays is called a conflict array
for the set i, and denoted by Ci.

Algorithm 1: Identifying an eviction array for one
slice of a cache set

Input: E : A set of at-least w+1 addresses in the huge array
that map to cache set i

samples : the number of timing measurements to be
made (typically around 220)
Output: True : E is an eviction array else False: E is not an

eviction array
1 begin
2 for iteration← 1 to (samples) do
3 Choose an address x from E.
4 Access x. // cold miss at x
5 Access x again and measure access time t1.

// cache hit at x
6 Access all other members of E. // To evict x
7 Access and measure the access time t2 of x.

8 if Average(t2− t1)≥ threshold then
9 return True // E is an eviction array

10 else
11 return False // E is not an eviction array

To determine a conflict array for a cache set, we define
a large array that uses 2MB huge pages. The huge pages
will ensure that the set index bits of the physical address can
be observed from the corresponding virtual address [17]. To
build a conflict array for the i-th cache set, we need to find
M eviction arrays. Algorithm 1 shows how an eviction ar-
ray can be identified. The input is a set E of at least w+ 1
addresses picked from the huge array that map to the i-th
cache set, where w is the associativity of the LLC. If these
w+ 1 addresses form an eviction array, they will fall in the
same slice and conflict. Algorithm 1 identifies a conflict by
an increase in memory access time and will return True. Oth-
erwise it will return False.

Algorithm 1 is repeated multiple times until M non-
conflicting eviction arrays are found. This would form the
conflict array Ci for cache set i. The non-conflicting require-
ment ensures that the M eviction arrays correspond to differ-
ent slices of the cache set. This conflict array is valid till the
system is rebooted. Upon reboot, the huge array may get
mapped to a different physical address, therefore invalidat-
ing the conflict array. It is therefore essential to optimize this
algorithm. We refer the reader to [17] for a more optimized
algorithm. For this work we have evaluated two CPUs: a
four core Intel Core i7-3770 CPU and a 10 core machine
Intel E5-2640 v4 CPU. Optimized version of the algorithm
from [17] was used for the purpose.

Scout Phase. The objective of the scout phase is to deter-
mine the LLC cache sets that the victim occupies. We are
especially interested in the cache sets that would leak sensi-
tive information about the victim. The process of determin-
ing these cache sets, which we denote as interesting cache
sets, depends on the attacker’s knowledge about the victim
process. If the attacker knows the victim’s physical address
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Fig. 2: SCOUT PHASE COMPLEXITY DEPENDS ON THE ATTACKER’S
KNOWLEDGE ABOUT THE VICTIM PROCESS’ ADDRESS SPACE.

map, she can uniquely determine the LLC cache sets that
the victim will occupy from the set index bits in the vic-
tim’s physical address. On the other hand, if the attacker
only knows the victim’s virtual address map, she would only
be able to identify the L1 cache sets that the victim occupies.
Each L1 cache set can be mapped from G LLC cache sets;
where G is the factor by which the LLC is larger than the
L1 cache. For example, with a 32KB L1 data cache and a
2MB LLC slice, G is 32. This means that, with knowledge
of the victim’s virtual address space, the attacker would need
to search through 32 LLC cache sets to identify the interest-
ing ones. If neither the victim’s virtual address map nor the
physical address map is known, then the attacker would need
to search through all LLC cache sets in order to identify the
interesting sets. These alternatives are depicted in Figure 2.
In this paper, we consider the latter category, where the at-
tacker neither knows the victim’s virtual address map nor
physical address map and therefore would require to search
the entire LLC to find the interesting cache sets.

To determine if an LLC cache set i is interesting, the at-
tacker executes the victim continuously and also runs a spy
in parallel, which continuously executes load operations to
memory locations determined by the conflicting array Ci.
If the victim is indeed accessing the cache set i, then there
would be an interference between the victim and the spy pro-
cesses due to the shared cache set. This leads to an increase
in execution time of the victim process as well as the spy
process.

As an example, consider the AES implementation,
which uses four T-tables, each of 1024 bytes2. Each T-table
spreads over 16 LLC cache sets. These are the interesting
cache sets, which the attacker must locate. Assuming that
neither the virtual nor physical addresses of these T-tables
are known to the attacker, she would have to search through
the entire LLC in order to find the cache sets that the T-tables

2 OpenSSL ver. 1.0.1f (https://www.openssl.org/)
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Fig. 3: FREQUENCY DISTRIBUTION OF EXECUTION TIME AT THE VICTIM FOR

INTERESTING AND NON-INTERESTING CACHE SETS. WITH 219 EXECUTION TIME
MEASUREMENTS, THE INTERESTING CACHE SETS CAN BE IDENTIFIED WITH AN
ACCURACY OF 96% WHEN VICTIM EXECUTION TIME IS MEASURED.

occupy. To achieve this, she would first find the conflicting
arrays for all the LLC cache sets as described in the learn-
ing phase. In the scout phase, for each cache set, she would
access the conflicting array continuously and monitor the
execution time of the AES encryption or the memory access
time in the spy process. An increased memory access time
would indicate that the set is potentially interesting. Figure 3
shows the frequency distribution of the execution time for an
interesting cache set (blue) and a non-interesting cache set
(red) on a 4 core Intel(R) Core(TM) i7-3770 CPU with 219

encryptions of victim. We found that measuring the time at
the victim (Figure 3) led to significantly higher accuracy in
identifying the interesting cache sets. Figure 4 shows the fre-
quency of obtaining high execution time when the spy was
accessing a particular LLC cache set of a 10 core Intel CPU.
The graph is plotted after making 219 victim AES encryp-
tions for each cache set. The 64 interesting cache sets for
AES are marked in blue in the figure.

Strike Phase. If the victim makes memory accesses that are
dependent on its secret information, then the cache timing
can be made to leak information about the secret. We ex-
plain the strike phase with AES as an example. The AES
implementation we consider, accesses 1024 byte T-tables at
locations that depend on the plaintext and secret key. In par-
ticular, the first round of AES accesses the T-tables at lo-
cations given by p⊕ k, where p is a plaintext byte and k is
a byte of the secret key. Cache-timing attacks are feasible
on this implementation because the locations of the T-tables
accessed during encryption depends on the secret key.
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Algorithm 2: Strike phase to obtain secret key byte ki

Input: q- targeted cache set in a T-table
Output: Guessed key byte ki

1 begin
Init: total time : array of size 256, initially empty
Init: count : array of size 256, initially empty

2

/* Invoke N encryptions and build timing

profile */

3 for iterations← 1 to N do
4 PT ← (p0||p1|| · · · ||pm−1) where p j

R←− {0,255} for
0≤ j ≤ m−1

5 (CT, t)← Ek(PT )
6 total time[p j] = (total time[p j]+ t) where

0≤ j ≤ m−1
7 count[p j] = (count[p j]+1) where 0≤ j ≤ m−1

8

/* Compute execution time deviations in

array D */

9 avg[k] = total time[k]
count[k] for 0≤ k ≤ 255

10 Average = ∑
255
r=0 total time[r]

∑
255
r=0 count[r]

11 D[k] = |Average−avg[k]| for 0≤ k ≤ 255
12

/* Obtain the byteValue with maximum

deviation */

13 byteValue = argmaxi Di // find the i
corresponding to maximum deviation

14 return (byteValue⊕q)

To obtain bits of the secret key, we develop an
Evict+Time based cache attack. The attacker first uses the
scout phase to find the LLC cache sets that hold the T-tables.

There are 16 such interesting cache sets per table. She picks
one (say the q-th (0≤ q≤ 15)) interesting cache set, which
we denote as It , and continuously accesses the correspond-
ing conflict array in the spy process. If p⊕ k happens to ac-
cess the cache set It , it would result in a higher execution
time of the AES victim due to conflicts with the spy. We de-
tect this increased execution time and use q to determine bits
in the secret key byte ki.

Algorithm 2 has the complete attack. The attacker in-
vokes the victim encryption routine for a large number of
times (Lines 3 to 7). In each iteration of the loop, the attacker
chooses a random plaintext PT , of m bytes and invokes the
AES encryption Ek to obtain the ciphertext CT . Addition-
ally, the time taken t, to perform the encryption is measured
and logged in an array called total time at the index pi (Line
6). Also the number of times pi occurred is recorded in the
array count (Line 7). After the loop, the deviation from the
average execution time is computed. The highest deviated
value, corresponds to conflicts with the targeted cache set It .
The corresponding plaintext byte byteValue and the index in
the T-table q that falls in the same cache set It are ex-ored to
compute the value of key byte ki.

Figure 5 plots the absolute deviations of execution time
for the victim with various values of the plaintext byte
pi. The blue lines in the graph corresponds to collisions
with the targeted LLC cache set It . The value on the x-
axis corresponding to the maximum deviation is obtained
as byteValue and used to compute the secret key byte ki.
LLC attacks offer several avenues to improve the success. In
the next section, we describe optimization techniques for the
strike phase, while Section 6 describes optimization tech-
niques for the scout phase.

5 Optimizing the Strike Phase
The success of a cache-timing attack depends on the amount
of interference between the spy and the victim processes.
If the spy can evict the interesting cache lines at a higher
rate, there would be an increase in interference with the vic-
tim process, leading to a higher attack success. Typically,
L1 cache attacks are expected to be more powerful because
of the quick memory accesses that are possible. However,
LLC attacks have two distinct advantages over L1 cache at-
tacks. First, the spy process in an LLC attack runs on an
independent CPU core, which can be made to be less loaded
compared to a spy in the L1 cache attack, that shares the
CPU core with the victim. Due to this, the spy in an LLC
attack executes much faster than the spy in an L1 cache at-
tack. This leads to higher interference between the spy and
victim processes and hence a better attack success.

Second, an attacker may be able to run a spy in every
core of the CPU. For instance, suppose a victim is executing
in one of the cores of a 4 core CPU, the attacker can run a spy
thread in each of the remaining 3 CPU cores. Each of these
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Fig. 6: AVERAGE ATTACK SUCCESS VS NUMBER OF TIME MEASUREMENTS (EN-
CRYPTIONS) IN THE STRIKE PHASE WITH DIFFERENT SPY CONFIGURATIONS.

spy threads, would target the same interesting cache line.
This increases the eviction rate for that cache line, further
increasing the interference and therefore the attack success.

Figure 6 compares the attack success for the Evict+Time
based cache attack on AES on two CPUs with the number
of time measurements made (N) in Algorithm 2. Each graph
compares the L1 cache attack with a single threaded LLC
cache attack and a parallel version. In the 4-core CPU (Fig-
ure 6a), both the LLC attacks perform better than the L1
cache attack. In the 10-core CPU (Figure 6b), the attack with
a spy having 9 threads, performs as good as the L1 cache at-
tack.

6 Optimizing the Scout Phase
The purpose of the scout phase is to find LLC cache sets
that are occupied by the victim process. Assuming that no
information about the physical address space of the victim
is known (ref. Figure 2), the attacker would require to search
through all the cache sets in the LLC to identify the interest-
ing victim cache sets. This search process would take a long
time as the LLC is considerably large. Further, the scout
phase could have false negatives, where interesting cache
sets are not identified. In this section, we describe optimiza-
tion techniques to reduce the false negatives and the runtime
of the scout phase.

6.1 Searching for Interesting Sets
One option to optimize the scout phase is to do a binary
search for the interesting sets. For an L1 cache set (say the
i-th set), a binary search is done on the LLC cache sets that
map to this i-th L1 set. We denote these LLC cache sets as
GL1i . For example, assuming that the L1 cache has 64 sets,

and there are 2048 sets in a slice, GL10 will have the LLC
cache sets 0,64,128,192, · · · ,1984. We assume that each
GL1i has at most one interesting cache set. This is generally
the case as the victim’s sensitive data is generally clustered
together in contiguous cache sets. For example, in the AES
T-table implementation, each T-table maps to 16 contiguous
cache sets.

For determining if any interesting cache sets are present
in GL1i , we can perform a binary search. In each step of
the binary search, the spy process would continuously ac-
cess all conflicting arrays of a subset of GL1i . To start off,
the spy would sequentially access half of the conflicting sets
in GL1i . While the spy executes, the victim process is also
executed in parallel in a different CPU core and its average
execution time is measured. If this execution time exceeds a
threshold, we denote that there is an interesting set and per-
form the next step of binary search on a smaller subset of
GL1i . This continues until the interesting set, if present, is
uniquely identified.

The advantage of a binary search is that it would take
the shortest time to search through the entire LLC. However,
there would be considerable number of false negatives. The
false negatives are especially prominent at the start of the
binary search, where the spy sequentially accesses a larger
number of conflicting arrays. This reduces the eviction rate
per LLC cache set thereby reducing the accuracy of identi-
fying the interesting sets.

An alternate approach is a linear search technique, where
the spy continuously accesses one cache set in GL1i at a time.
This reduces false negatives but would increase runtime for
the scout phase. The best approach we found is the one in
which the spy process accesses a fixed small subset of GL1i

at a time. This approach provides a good trade off between
false negatives and the runtime for the scout phase. For ex-
ample, the spy continuously accesses four cache sets of GL1i

at a time. We call this the Split 4 search. If an increase in ex-
ecution time in the victim process is observed, we infer that
one of these four cache sets is interesting. We then perform
a binary search on these four cache sets to uniquely identify
the interesting set.

The accuracy of the result and runtime for the scout
phase varies with the value of N. An increase in N improves
accuracy of identifying interesting victim sets, but takes a
longer time to execute. Figure 7 compares the scout phase
runtime and false negatives with different search strategies
(Split sz) and values of N, where sz is a power of two, typi-
cally 4 or 8. The percentage of false negatives varies directly
with the number of LLC cache sets probed simultaneously
(sz) and it varies inversely with N. On the other hand, the
runtime varies inversely with sz and varies directly with N.
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(c) PERCENTAGE FALSE NEGATIVES VS SEARCH STRATEGY ON 10-CORE INTEL
E5-2640 V4.
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(d) RUNTIME VS SEARCH STRATEGY ON 10-CORE INTEL E5-2640 V4.

Fig. 7: THE GRAPHS SHOW SEARCH STRATEGY VS PERCENTAGE OF FALSE NEGATIVES AND SEARCH STRATEGY VS THE SCOUT PHASE RUNTIME FOR DIFFERENT
VALUES OF N . AS N INCREASES, RUNTIME INCREASES BUT FALSE NEGATIVES REDUCE. THE NUMBER OF CACHE SETS PROBED (SEARCH STRATEGY) AT A TIME
DIRECTLY AFFECTS THE FALSE NEGATIVES AND INVERSELY AFFECTS THE RUNTIME. A GOOD TRADE OFF BETWEEN THE TWO, IS FOR SEARCH STRATEGIES Split 4 AND
Split 8.

6.2 Scout Phase with Multiple Threads
As described in Section 5, LLC attacks have the advantage
of parallelizing the spy and executing one spy in each core.
In an M core CPU, the attacker can create M−1 spy threads;
assuming at-most one spy (or victim) runs in each core as
seen in Figure 1. The M− 1 spy threads can be configured
to either reduce the time for the scout phase or increase the
accuracy in detecting interesting cache sets.

Increasing Accuracy. Accuracy in detecting interesting
cache sets is affected by eviction rate of the cache sets shared
between victim and spy. A lower eviction rate would imply
that the victim is less affected by the spy. As a result, its ex-
ecution time is not affected much. Multiple spy threads tar-
geting the same cache set would increase the eviction rate,
which would make detection of interesting cache sets more
accurate.

Reducing Time. In order to reduce runtime for the entire
scout phase, the LLC cache sets can be partitioned (P0, P1,
. . . , P9, in Figure 1). Each partition can then be searched in
parallel by different spy threads. For example, in a 10 core
CPU, the attacker can divide the LLC sets into 9 partitions.
Apart from the CPU core holding the victim, spy threads
on all the remaining cores will get assigned a different par-
tition of the LLC. For an LLC with 2048 cache sets, each
spy thread would only need to search about 228 (2048/9)
cache sets. This will reduce the runtime for the scout phase
by approximately one ninth. However, with this scheme, the

accuracy with which interesting cache sets are found, will be
reduced. In fact, the accuracy will be worse compared to a
spy that is not parallelized. This is because, the 9 spy threads
would be making memory accesses at a high rate to different
memory locations. We would also have the victim executing.
There would be contention for the shared resources, namely
the front-side ring bus and the shared LLC. Of the 9 spy
threads, only one thread could be accessing an interesting
cache set at a given time. Due to contention of the shared re-
sources, the eviction rate of the victim would reduce leading
to a reduced accuracy in detecting the interesting cache sets.
We discuss this further and provide results in Section 8.

Trade off Between Accuracy and Time. Instead of par-
titioning the cache into nine parts, the cache can be parti-
tioned in many other ways. For example, the cache can be
partitioned into 3, with 3 spy threads assigned to each par-
tition. Compared to having 9 partitions, this scheme would
increase accuracy (lower false negatives) in determining in-
teresting cache sets, but would also have higher runtime. For
a 10-core CPU, with a spy having 9 threads, there are 253
different configurations. Each configuration would provide a
different accuracy and would have different runtime. Some
configurations would have high accuracy but take longer,
while other configurations would have lower accuracy but
complete faster. In the next section we discuss an attack
methodology, by which an attacker can choose a spy con-
figuration, depending on the available time-frame, so as to
maximize the attack success.
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7 Spy Configuration for Maximizing Attack Success
All cryptanalytic attacks are time bounded. An attack is only
considered successful if it can retrieve the secret key within
practical time bounds. For side-channel attacks in particular,
these bounds are more critical because the attacker needs ac-
cess to the device performing the cryptographic operations.
For cache-timing attacks, the time bounds are also important
to elude detection. In this section we present a new attack
methodology by which an attacker can maximize her suc-
cess for a given time bound. To maximize success for a given
time bound, the attacker would have to choose a spy config-
uration, which provides best success. If she optimizes for
time, by maximally partitioning the LLC, the attack’s suc-
cess may by reduced. If she optimizes for success, by con-
figuring all spy threads for the same cache set or increasing
the encryptions (N for the scout phase and in Algorithm 2
for the strike phase), she may not complete the attack within
the given time-frame. She therefore has to choose a spy con-
figuration that would allow her to maximize success and also
ensure that the attack is completed. In this section we pro-
pose a methodology by which an attacker can decide apri-
ori, the optimal spy configuration. The only requirement is
a marginal increase in the offline learning. No modifications
are required in the online scout or strike phases.

7.1 Spy Configurations
In an M core CPU, we assume at-most M− 1 spy threads.
These M− 1 spy threads can be assigned to P partitions in
the LLC, where 1 ≤ P < M. A spy configuration is a func-
tion that maps the M threads to the P partitions. Each spy
configuration is denoted as follows:

C(a1,a2, · · · ,aP) ,

where a1 , a2, · · · , aP denote the number of spy threads as-
signed to each partition. Note that a1+a2+ · · ·+aP ≤M−1
and ai ≥ 1, (1≤ i≤ P). For example, a spy configuration for
M = 10 and P = 2, is C(5,4). This configuration means that
the LLC of the 10-core CPU is partitioned into two, the first
partition has 5 spy threads, while the second partition has
4 spy threads assigned to it. Similarly there are 7 more spy
configurations with P = 2: C(8,1), C(1,8), C(7,2), C(2,7),
C(6,3), C(3,6), and C(4,5). Our proposed attack method-
ology cannot distinguish between permuted spy configura-
tions such as C(8,1) and C(1,8). In this example, we there-
fore only consider 4 spy configurations instead of 8.

For each spy configuration that we consider, there are
two parameters that impact the success of the attack and the
runtime of the scout phase. First is the number of partitions
P, while the second is the number of victim encryptions N
made in the strike phase (Algorithm 2) and scout phase. An
increase in P would imply shorter runtime but lower accu-
racy of detecting interesting cache sets. An increase in N
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Fig. 8: THE GRAPH SHOWS THAT THERE IS A LINEAR RELATIONSHIP BETWEEN
DOD AND THE ATTACK SUCCESS (CPUS: 10-CORE INTEL E5-2640 V4 AND 4-CORE
INTEL I7-3770).

4 core, Intel(R) Core(TM) i7-3770 10core, Intel machine Xeon(R) E5-2640 v4
Spy Configuration C(a1 ,a2 , ,aP )

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N C
(1
,1
,
,a
P
) (

D
oD

) C(2)
C(1,1)

C(1,2)

C(5) C(5,4)
C(3,3,3)

219

C(1,1, ,aP )

̂219

C(1,1, ,aP )

219

C(1,1, ,aP )

̂219

C(1,1, ,aP )

Fig. 9: THIS FIGURE COMPARES THE THEORETICALLY ESTIMATED DOD WITH THE
EMPIRICAL DOD FOR FEW SPY CONFIGURATIONS IN TWO CPUS. FOR EACH CASE
N = 219 .

would imply longer runtime but higher accuracy. In Sec-
tion 7.2, we introduce a metric to evaluate a spy configu-
ration.

7.2 Evaluating Spy Configurations
Algorithm 2, Line 11, computes the average deviation in ex-
ecution time of the victim under different inputs. The input
corresponding to the highest deviation is used to compute
the victim’s secrets (the secret key byte in Algorithm 2).
These deviations are also observed in Figure 5, where the
blue indicates the highest deviations, corresponding to con-
flicts with the interesting cache sets, and the red indicates
all other deviations. These deviations can be used as an indi-
cator of the attack success. Higher the blue deviation com-
pared to the red, higher the attack success. To capture these
deviations, we define a metric, based on test vector leakage
assessment(TVLA) [10] as follows:

D=
|Xb−Xr|√

Sb
2

Nb
+ Sr

2

Nr

. (2)

Here Xb and Xr are respectively the means of deviations
corresponding to the blue and red regions in Figure 5 while
Sb and Sr represent the corresponding standard deviations,
and Nb and Nr are the corresponding number of points. We
denote this metric as the Deviation of Deviations (DoD).

Figure 8 shows that there is a linear relationship between
attack success and D. Thus, this metric is a good indicator of
the attack success and can be used to evaluate spy configu-
rations. Figure 10 plots this metric for different spy configu-
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rations in a 4-core and a 10-core CPU. We list the inferences
from these figures:

– As the number of spy threads targeting the same cache
set increases, D will also increase (Figures 10a and 10c).
Therefore the attack success will also increase.

– If the number of partitions increases, then D decreases
due to flooding of the front side ring bus and the LLC
(Figures 10b and 10d).

– As N increases, D increases and eventually saturates.
After a large number of encryptions (i.e. large N), the

different spy configurations will result in same D, there-
fore similar attack success. This is evident from Fig-
ures 10a and 10c, where the trends due to different spy
configurations would eventually intersect.

– As one would expect, since the 4-core CPU can only
have 3 spy threads, the benefits obtained is lesser com-
pared to the 10-core CPU, with 9 spy threads (Fig-
ures 10a and 10c). We also observe that the 10-core CPU
is more affected with higher number of partitions com-
pared to the 4-core CPU (Figures 10b and 10d).

Thus D is a function of the number of victim encryptions
(N) and the spy configuration. For a given N and spy config-
uration, C(a1,a2, · · · ,aP), we denote the corresponding met-
ric as DN

C(a1,a2,··· ,aP)
. In Section 7.3, we propose an algorithm

to estimate this metric.

7.3 Apriori Estimation of D for a Spy Configuration
Given a spy configuration C(a1,a2, · · · ,aP) and the num-
ber of encryptions N, we devise an algorithm to estimate
DN

C(a1,a2,··· ,aP)
. We denote this estimate as D̂N

C(a1,a2,··· ,aP)
.

The algorithm for an M-core CPU is as follows.

1. For the given N, we first determine the DoD for
the following 3 spy configurations using Algorithm 2:
C(1), C(M− 1), C(1,1,1, · · · (M−1) times)). These DoDs,
which are determined empirically, are denoted as DN

C(1),
DN

C(M−1), and DN
C(1,1,1,···(M−1) times)) respectively. All three

configurations use Equation 2 to compute the DoD. The
first two spy configurations, compute the DoD with min-
imum spy threads (i.e. one) and maximum spy threads
(i.e. M− 1) respectively. In both cases, the number of
partitions is 1, and the spy threads simultaneously target
the same cache set. This captures (approximately) the
entire range of possible DoD values. The third spy con-
figuration, maximally partitions the LLC. This captures
the impact of flooding of the shared front side bus and
LLC on the DoD.

2. Given these three DoDs, we can estimate DoDs D̂N
C(2),

D̂N
C(3), · · · , D̂

N
C(M−2) using the following formulation:

D̂N
C(i) =DN

C(1)+(i−1)×
DN

C(M−1)−DN
C(1)

M−2
, (3)

where 2≤ i≤M−2. These estimated DoDs correspond
to a number of spy threads targeting a single partition.
This estimation is based on the assumption that the DoD
varies linearly with the number of spy threads. The com-
ponent

(i−1)×
DN

C(M−1)−DN
C(1)

M−2
,

represents the increase in the DoD with i− 1 additional
spy threads, compared to a single-threaded spy C(1).
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3. Next, we estimate the DoD with increasing partitions us-
ing the following formulation:

D̂N
C(1,1,...(i times))=DN

C(1)−(i−1)×
DN

C(1)−DN
C(1,1,...,(M−1 times))

M−2
,

(4)
where 2≤ i≤M−2. These DoDs correspond to i parti-
tions of the LLC, with each partition having exactly one
spy thread. The estimation is based on the assumption
that the DoD varies inversely with the number of parti-
tions in the LLC. The component

(i−1)×
DN

C(1)−DN
C(1,1,...,(M−1 times))

M−2
,

represents the decrease in the DoD with (i− 1) ad-
ditional partitions, and each partition assigned to one
thread. The decrease in DoD is due to the contention for
the shared front side bus and LLC.

4. Now, we can estimate the DoD for any spy configura-
tion. We assume that the spy configuration partitions the
LLC into P partitions. Since all partitions are of equal
size, the interesting set can be present in any of the par-
titions with equal probability. Let us first assume that
the interesting set is in the i-th partition, which has ai
spy threads attached to it. The estimated DoD obtained
in this case is influenced positively by these ai threads,
and negatively by the remaining spy threads, which tar-
get the other partitions. We further assume that the neg-
ative effect is only influenced by the number of spy
threads targeting the P−1 partitions that do not contain
the interesting set. Thus the estimated DoD for this i-
th partition is

(
DN

C(1)+ D̂N
C(ai)
− D̂N

C(1,1,...,( j times))

)
, where

j = ∑
P
k=1;k 6=i ak .

To find the estimated DoD considering all partitions, we
compute each DoD independently and take the average
as follows:

DN
C(a1,a2,··· ,aP)

=
1
P

P

∑
i=1

(
DN

C(1)+D̂N
C(ai)
−D̂N

C(1,1,...,( j times))

)
where j = ∑

P
k=1;k 6=i ak (5)

Figure 9 compares the estimated DoD that we compute
with empirically obtained DoD for a few configurations
in the 4-core and 10-core CPUs. Similar results are ob-
tained for all other spy configurations as well.

7.4 Apriori Estimation of Runtime for a Spy
Configuration
Runtime for the scout phase depends on the number of cache
sets that need to be searched and the time taken to determine
if a cache set is interesting. The latter depends on the num-
ber of timing measurements made, which we denote by N.

An increase in the number of timing measurements, will in-
crease the runtime, but also increases the accuracy of detect-
ing interesting cache sets. If the cache sets are partitioned
into P partitions, where 1 ≤ P ≤ M− 1, then time for the
scout phase reduces by a fraction of P.

In order to estimate the runtime for the scout phase for a
given spy configuration, the following steps are followed:

1. For different N values, we execute the spy configuration
C(1) and record the time taken for the entire scout phase.
We choose this configuration because it is the fastest sin-
gle spy thread configuration.

2. Again, for different N values, we execute the spy config-
uration C(M−1), where M is the number of cores in the
CPU and record the time taken for the entire scout phase.
We choose this configuration because it is the slowest
single-threaded spy configuration.

3. We find the average scout phase time considering C(1)
and C(M−1), for all the different values of N.

4. Now, for a given N and any spy configuration with P
partitions, we can approximate the scout time as 1/P of
the time computed in step 3.

7.5 Methodology for Configuring Parallel Spy Threads
We now present the attack methodology by which an at-
tacker can choose a spy configuration and a value of N that
would maximize success given a time-frame Tf . This choice
is made offline during the learning phase. The chosen spy
configuration is then used during the scout and strike phases
of the attack. The attack methodology comprises of three
steps as follows:

1. For every possible spy configuration, we use the steps
in Section 7.4 to determine the maximum value of N for
which the entire scout and strike phase can be completed
within the giving time-frame Tf .

2. For these spy configurations and their respective values
of N, we estimate the DoD as discussed in Section 7.3.

3. We select the spy configuration with the highest DoD.
This spy configuration is used during the scout and strike
phases of the attack.

8 Results
In this section, we compare our attack methodology, with a
naı̈ve Evict+Time based attack technique. The victim is an
OpenSSL (ver. 1.0.1f) implementation of AES. We assume
that the attacks must first probe the entire LLC during the
scout phase and then determine the AES secret key in the
strike phase. The naı̈ve implementation is the spy configura-
tion C(1) has a single-threaded spy. For a given time-frame,
we set the value of N (ref. Algorithm 2 and Figure 11) for
this configuration such that the entire LLC is probed (i.e.
scout phase must be completed) and the attack’s success is
maximum. For instance in a 4-core CPU, if Tf is 1.5 sec-
onds, N must be 216. If N < 216, the attack’s success is re-
duced, while if N > 216, the scout phase does not complete.
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Table 1: OVERHEADS (IN MINUTES) FOR THE LEARNING PHASE DUE TO THE PROPOSED ATTACK METHODOLOGY IN TWO CPUS: M=4 (4-CORE INTEL I7-3770) AND
M=10 (10-CORE INTEL E5-2640 V4)

M Spy

Configuration

Number of Encryptions (N)
213 214 215 216 217 218 219 220 221 222 223 224

4
C(1) 0.8 0.9 1.1 1.2 2.5 4.5 8.1 15.9 29 - - -
C(3) 0.9 1 1.2 1.8 2.7 4.7 8.9 16.7 32 - - -

C(1,1,1) 0.3 0.3 0.4 0.6 0.9 1.6 2.9 5.6 10.6 - - -

10
C(1) - - - 1.59 2.12 5.3 9.54 19 36 72 145 290
C(9) - - - 2.12 3.2 6.4 12.7 24.4 49.8 97.5 195 392

C(1(9times)) - - - 0.24 0.36 0.71 1.4 2.7 5.5 10.8 21.6 43.6
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Fig. 11: SUCCESS OF THE ATTACK VS TIMEFRAME OF OUR ATTACK METHODOLOGY AND THE SINGLE-THREADED ATTACK (C(1)). EACH SPY CONFIGURATION AND
log2 N IS ALSO SHOWN FOR EACH ATTACK. THE RESULTS SHOW THAT OUR Split 4 CONFIGURATIONS ALWAYS PROVIDES THE HIGHEST ATTACK SUCCESS. THE PROFITS
ARE MORE VISIBLE FOR SMALL TIMEFRAMES.

If the time-frame increases, then N can also increase. This
would improve the attack’s success.
Our attack implementation has an additional step during
the offline learning phase. In this step we compute DN

C(1),
DN

C(M−1), and DN
C(1,1,1,···(M−1) times)) for different N. These

DoD values are then used to select optimal attack strate-
gies for various time-frames as discussed in Section 7.5.

Each choice comprises of a spy configuration and a value
of N. C(1, · · · , (M−1)times) is the least because each thread only
probes about 1/(M−1) sets of the entire LLC. The spy con-
figuration C(M− 1) is slowed down due to contention for
the shared front side bus and the LLC cache sets. Figures 11
compares the online phase of our attack with the single
threaded spy configuration (C(1)) for different time-frames
(Tf ). For example, in the 4-core CPU, Tf = 1.5 indicates



Spy Cartel: Parallelizing Evict+Time Based Cache Attacks on Last Level Caches 13

50 60 70 80 90
Attack Success

1

2

3

4

5

6

At
ta

ck
 ti

m
e(

in
 m

in
ut

es
)

C(1)
Our Spy Configuration without Split 4
Our Spy Configuration with Split 4

(a) CPU: INTEL 4-CORE I7-3770.

50 60 70 80 90
Attack Success

0

5

10

15

20

25

At
ta

ck
 ti

m
e(

in
 m

in
ut

es
)

C(1)
Our Spy Configuration without Split 4
Our Spy Configuration with Split 4

(b) CPU: 10-CORE INTEL E5-2640 V4

Fig. 12: THE GRAPHS COMPARES THE ATTACK SUCCESS VS ATTACK TIME. HIGHER SUCCESS AT LOWER ATTACK TIME IS BETTER.

that the time taken for the entire online phase (scout+strike)
is under 1.5 minutes. Without any split (ref. Section 6.2), our
attack determines the secret key with an average success of
81%. The best attack we find, comprises of the spy configu-
ration C(3) and having a value of N = 215. This means that
the LLC has only one partition and three spy threads prob-
ing the same cache set simultaneously.
When a Split 4 search strategy is used, the attack determines
the secret key with a success of about 94% for Tf = 1.5.
The attack uses a spy configuration C(2,1). This means that
the LLC is partitioned into two. Two spy threads probe one
partition, while the third spy thread probes the other parti-
tion. Since each spy thread needs to probe only half the sets
in the LLC, N can be increased from 215 to 219. All our
attacks have a much higher success compared to the single-
threaded spy, which has a success of about 67%. Notice that
the Split 4 search always provides the highest attack success.
The high success with the Split 4 search is because the scout
phase completes about 4 times faster than a search without
any splits. This permits larger N values to be chosen, result-
ing in better success.
As seen in Figure 11, the success of our attacks compared to
the single-threaded attack is much more pronounced when
the time-frame is small. This is due to the fact that N has
to be small in order that the single-threaded attack strategy
completes the entire scout phase. A small N results in poor
attack success. As the time-frame increases, larger N can
be used, which increases the success further. The impact of
our attack methodology is more useful for CPUs with larger
number of cores. This can be seen in Figure 11, where, even
after 25 minutes, the single-threaded attack does not provide
as much success as our attack configurations.
Figure 12 shows a different perspective of the attack success
and time. It highlights the minimum average time required
to attain a certain level of success. As can be seen from the
graphs, our attack methodologies achieve higher success at
much lesser time.
9 Conclusions
In this paper, we demonstrate how a multi-threaded spy can
be used to improve the attack success as well as reduce run-
time. We propose an attack methodology, by which, the at-
tacker can choose a spy configuration that would maximize

success for a given time-frame. The methodology is espe-
cially useful when the time-frame is small. For instance,
given a time-frame of 1 minute, a single threaded LLC attack
may not complete, while our parallel attack with optimally
configured spy threads, would complete and achieve a suc-
cess of over 50%. The attack methodology only requires an
additional offline step to characterize the effect of multiple
spies executing simultaneously.

Our research found that the proposed methodology with
optimally chosen parallel spy threads, is more beneficial in
CPUs having large number of processing cores. Such CPUs
are becoming the norm, especially for servers and cloud
computing platforms. These machines are also most vulner-
able to cache-timing attacks due to multi-user environments.
The parallel spy LLC attacks further increases the threat to
these systems.
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