
A Polynomial Time Algorithm for Longest Paths in Convex
Graphs

1 Convex Graphs

A bipartite graph G = (S ∪ T,E) is convex if all its vertices from the set S can be numbered as 1, 2, · · · , |S|
and all vertices from T can be numbered as 1, 2, · · · , |T | in such a way that for every vertex of S or every
vertex of T (but not both), all neighbors of the vertex are numbered consecutively (is an interval of numbers).

2 Orderings and Monotone Paths

2.1 Ordering of Vertices

Let π1 = (s1, s2, · · · , sp) be the labelled vertices of partition S, and π2 = (t1, t2, · · · , tq) be that of partition
T . If T is a convex partition, we can obtain an ordering σS on S vertices as follows:
Initially set σS = π1.

1. Traverse the vertices of π2 from left to right.
2. Find the leftmost endpoint and rightmost endpoint of the neighborhood interval of every ti . Let sli and
sri be the leftmost and rightmost endpoints of the neighborhood interval of some ti respectively.

3. Update σS as follows: Insert ti immediately after its rightmost neighbor, i.e after sri ∀1 ≤ i ≤ q.

We denote the new ordering as: σS = (u1, u2, · · · , un). We denote by uf(ui) and uh(ui) the leftmost and
rightmost neighbour of ui (ui ∈ T) in σS respectively, which appear before ui in σS .
Similarly for σT ordering.

2.2 Monotone Path

Definition 1. A S-Monotone path of a convex graph G = (S ∪ T,E) is a simple path
P = {sα1

, tβ1
, sα2

, · · · , tβj−1
, sαj

, tβj
} such that s

k
≺σS

s
k+1
∀k, 1 ≤ k ≤ j − 1.

Similarly for T -Monotone path.

2.3 Non-monotone Path

A simple path of a convex graph G is called a non-monotone path if it does not follow ordering on S and T
vertices.

Lemma 1. Let G(S, T ;E) be a convex graph in which S is a convex partition. For every non-monotonic
path of length k in G, the first or last k-1 vertices can be reordered to get a T -monotonic path of length k-1.

Proof. We prove the lemma by induction on |S| and |T |.
Basis: To prove the basis, let P={ta, sα, tb, sγ , tc, sβ} be a non-monotonic path of length 6 in graph G. We
construct a path P ′ on first 5 vertices of path P such that P ′ satisfies T-monotonicity property. There are
two possible cases in which we can order T vertices to get a T -monotone path of length 5.

1. b ≺ a ≺ c. Since S is a convex partition, L(sγ) = tb and R(sγ) = tc, this implies that sγ is also adjacent
to ta. Hence, we have T -monotone path P ′={tb, sα, ta, sγ , tc}. (Figure 1) 1

s
α

s
β

s
γ

t
b

t
a

t
c

s
α

s
β

s
γ

t
b

t
a

t
c

Fig. 1. (a) Path P violating monotonicity property (b)T-Monotone path P ′

s
α

s
β

s
γ

t
b

t
c

t
a

s
α

s
β

s
γ

t
b

t
c

t
a

Fig. 2. (a) Path P violating monotonicity property (b)T-Monotone path P ′

2. b ≺ c ≺ a. As L(sα) = tb and R(sα) = ta, sα is adjacent to tc. Hence, we get a T -monotone path
P ′={tb, sγ , tc, sα, ta}. (Figure 2)

Thus the lemma works when the path contains atleast three T vertices.

Inductive Hypothesis: For the non-monotonic path P={tα1
, sβ1

, tα2
, sβ2

, · · · , sβj−1
, tαj

, sβj
}, |P | = k there

exist a path P ′ on first k − 1 vertices of path P which satisfies T -monotonicity property.
P ′={tγ1 , s∗, tγ2 , s∗, · · · , s∗, tγj}.

Inductive Step: Let P1 = P.tαj+1
, sβj+1

. Hence |P1| = k + 2.

1. If γj ≺ αj+1, since sβj
is adjacent to tαj

= tγi ; 1 ≤ i ≤ j we get a T -monotone path P ′1=P ′.sβj
, tαj+1

, sβj+1

of length k + 2.
2. Similarly if αj+1 ≺ γ1, we get a T -monotone path P ′1=sβj+1

, tαj+1
, sβj

.P ′ of length k + 2
3. If γm ≺ αj+1 ≺ γm+1 then in the path P ′={tγ1 , s∗, tγ2 , · · · , tγm , sβm , tγm+1 , · · · , s∗, tγj} we can see that
sβm is also adjacent to tαj+1 . Now we know that sβj is adjacent to tαj+1 and tαj = tγi ; 1 ≤ i ≤ j.

- If 1 ≤ i ≤ m, we get a T -monotone path P ′1={tγ1 , s∗, tγ2 , · · · , tγm , sβj
, tαj+1

, sβm
, tγm+1

, · · · , s∗, tγj}.
Here |P ′1| = k + 1 and V (P ′1) = V (P1) \ sβj+1

.

1 Graphs considered here are undirected. In the diagram, the arrowheads simply represent the vertex-traversal
sequence in the path.

2

- If m+1≤ i ≤ j, we get a T -monotone path P ′1={tγ1 , s∗, tγ2 , · · · , tγm , sβm , tαj+1 , sβj , tγm+1 , · · · , s∗, tγj}.
Here |P ′1| = k + 1 and V (P ′1) = V (P1) \ sβj+1 .

Lemma 2. If the longest path in G is non-monotonic, the longest T -monotone path P ′ can be extended, by
shifting a T vertex, um (belonging to the path P ′) who has a neighbour S vertex us (not belonging to P ′),
along with its adjacent left or right S vertex in the path P ′, either to the beginning or the end of the path
and extending it by one (us).

Proof. The S partition is convex and the T partition is non-convex. Let P ′′ denotes the longest non-monotone
path. The longest T -monotone path obtained from the algorithm (Phase 3) is P ′ = {u1, u2, · · · , un}.
|P ′′| = |P ′|+ 1.

– From the longest T -monotone path P ′ obtained, find out the T vertex in P ′, um that has an unvisited
neighbour S vertex, us, i.e. us doesn’t belong to P ′.

– If possible, shift um and it’s adjacent S vertex um−1 to the front i.e. before u1 or shift um and adjacent
S vertex um+1 to the back i.e. after un.

– Add us to um to extend the path.

If shifted to the beginning we will get P ′′ = {us, um, um−1, u1, u2, · · ·um−2, um+1, · · ·un}.
If shifted to the end, we will get P ′′ = {u1, u2, · · · , um−1, um+2, · · ·un, um+1, um, us}.

To obtain a non-monotonic path, we need to consider atleast 3 vertices on each partition. Hence |S| = |T | = 3.
We consider only hamiltonian non-monotonic paths, as paths of length lesser than 6 will always be mono-
tonic. For e.g., consider a path of length 5 having 3 T vertices and 2 S vertices or vice versa . It will always
be monotonic with respect to the smaller partition. Similarly, paths of lesser lengths, will be monotonic with
respect to both partitions. Hence, we consider hamiltonian paths.

Considering all hamiltonian paths, the possible non-monotonic paths are:
Paths where S and T can occur in the order:
132
213
231
312
eg.T1 S1 T3 S3 T2 S2.
This results in 32 paths.

Construction. We construct each graph by first drawing the non-monotonic longest path (one of the
32), then we make the S partition convex (shown by the dotted edges in Figure 3). No extra edges are added
since it increases the chance of getting a monotonic longest path or a biconvex graph. We get a biconvex
graph if all the T vertices are adjacent to S2.
On analyzing all these graphs, we obtain 4 graphs with non-monotonic longest paths. The rest are either
biconvex or have monotonic longest paths.
These four graphs are shown in Figure 3.

Considering the first graph, the longest monotonic path obtained from the algorithm is T1 S1 T2 S3 T3.
Now applying the shifting algorithm:

1. T2 has an unvisited S vertex S2, which is not in the path.

2. Shift S3 and T2 after T3. This is possible because an edge exists between T3 and S3, and between S1
and T3.

3. Thus we get the path: T1 S1 T3 S3 T2 S2 on adding S2 after T2.

3

S 1

S 2

S 3

T 1

T 2

T 3

T 1

T 2

T 3

S 1

S 2

S 3

T 1

T 2

T 3

S 1

S 2

S 3

T 1

T 2

T 3

S 1

S 2

S 3

1

2 4

3

Fig. 3.

The same algorithm holds good for other 3 graphs.

Observation. We observe that in all these four graphs, S2 is adjacent only to T2. The longest T monotone
path can either be:
Path 1: T1 S1 T2 S3 T3 (which we observe in graphs 1 and 2)
Path 2: T1 S3 T2 S1 T3 (which we observe in graphs 3 and 4)

By drawing Path 1 and the edge connecting S2 and T2, we get a biconvex graph. But, the graph has
to be convex, hence there must exist an edge between either T1 and S3, or between T3 and S1. If an edge
exists between T1 and S3, we can shift T2 and S1 to the front. Else, if an edge exists between T3 and S1,
we can shift T2 and S3 to the end.

Similarly, by drawing Path 2 and the edge connecting S2 and T2, we get a biconvex graph. But, the graph
has to be convex, hence there must exist an edge between either T1 and S1, or between T3 and S3. If an
edge exists between T1 and S1, we can shift T2 and S3 to the front. Else, if an edge exists between T3 and
S3, we can shift T2 and S1 to the end.

Thus, for all the possible cases, we can perform the shift on the longest monotone path to get the longest
non-monotonic path.

4

3 The Modified Algorithm and Correctness

3.1 Some constructs and notations used in the algorithm

Definition 2. For every pair of indices i,j such that 1 ≤ i ≤ j ≤ n we define the graph G(i, j) to be the
subgraph G[A] of G induced by the set A = {ui, ui+1, · · · , uj} \ {uk ∈ S(G) : uf(uk) ≺σT

ui}.

Definition 3. Let P be a path of G(i, j), 1 ≤ i ≤ j ≤ n. The path P is called T -bimonotone if P is a
T -Monotone path of G(i, j) and both endpoints of P belong to T -partition.

Similarly we define S-bimonotone path symmetrically.

Notation 1 Let σT = (u1, u2, · · · , un) be the ordering on G [or σS = (u1, u2, · · · , un)]. ∀uk ∈ T (G) [or
∀uk ∈ S(G)] we denote by P (uk; i, j) the set of longest T -bimonotone [or S-bimonotone] paths of G(i, j)
with uk as its right endpoint and by l(uk; i, j) the number of vertices of a path in P (uk; i, j). Let np(uk; i, j)
denotes the number of paths in the set P (uk; i, j).

3.2 Algorithm

In this section, we will present how the existing algorithm for finding the longest path in a biconvex graph
can be modified and extended to solve the longest path problem on convex graphs. We have to make some
modifications in the loops and subroutine of the main algorithm to get all the T and S-bimonotone paths.
This is because all the extended bimonotone paths must be considered on which we will apply shifting
algorithm to obtain non-monotone longest paths (if exists). Phase 1 and 3 of the algorithm are similar to
that of algorithm for longest path problem on biconvex graph. Let G(S ∪ T,E) be a convex graph in which
S is the convex partition and T is non-convex partition.

– Phase 1:
It takes the convex graph G and generates ordering σT = (u1, u2, · · · , un). Now, for all ti, tj, where,
1 ≤ i < j ≤ |T |, do the following:
1. Choose the subsequence σtij = (uk, uk+1, · · · , um) such that uk is the vertex ti and um is either tj

or, um ∈ S(G) and it lies between tj and tj+1 in the ordering σT . If there are multiple S vertices
lying between tj and tj+1 in σT , then um is the rightmost of them.

2. Run the first phase of the algorithm for all σtij as the input ordering. There k and m will replace
indices 1 and n respectively.

3. Remember the maximum path length obtained over these iterations and all the paths of that maxi-
mum length.

– Phase 2:
Symmetric to phase 1, this phase is executed for vertices of S-partition with the initial ordering σS =
(u1, u2, · · · , un). As T is the non-convex partition, we dont have proper ordering on S vertices. Thus we
may get some longest S-bimonotone paths in which some edges do not belong to the given convex graph.
Remove all such non-existing SS paths.

– Phase 3:
1. Let the path lengths obtained as output from Phase 1 and Phase 2 be x and z respectively. Compute
max{x, z} . Without loss of generality, let x be the maximum.

2. Consider all the T -bimonotone paths of length x obtained from Phase1. Check if the end vertices of
the paths have any unvisited neighbour, i.e., neighbour which does not occur on that path.

3. If such a neighbour exists, extend the path till that neighbour. Let P ′ denotes this extended path.
4. Output x+ 1 as the maximum monotone path length and P ′ as the longest monotone path.
5. Else, output x as the maximum monotone path length and the corresponding path as the longest

monotone path.

5

– Phase 4:
1. Apply shifting algorithm on each of the longest monotone path P ′ obtained from phase 3.
2. If the longest path is non-monotonic, the shifting algorithm will obtain that path from path P ′. Let
P ′′ denotes this longest non-monotonic path.

3. Output |P ′|+ 1 as the maximum path length and P ′′ as the longest path which is non-monotonic.
4. Else, output |P ′| as the maximum path length and |P ′| as the longest path which is monotonic.

Algorithm 1 Longest Path (Phase 1)

Input: The convex graph G and input ordering σt1n = (u1, u2,, un).
Output: Longest T-bimonotone paths of G and the longest path length.

for j = 1 to n do
for i = j down to 1 do

if i = j and ui ∈ T (G) then
l(ui; i, i)← 1;
np(ui; i, i)← 1;
Add path (ui) to P (ui; i, i)

end if
if i 6= j then

for all uk ∈ T (G) , i ≤ k ≤ j− 1 do
l(uk; i, j)← l(uk; i, j − 1);
np(uk; i, j)← np(uk; i, j − 1);
Copy all the paths in P (uk; i, j − 1) to P (uk; i, j);

end for
if uj ∈ T (G) then

l(uj ; i, j)← 1;
np(uj ; i, j)← 1;
Add path (uj) to P (uj ; i, j)

end if
if uj is a S vertex i.e uj ∈ S(G) and i ≤ f(uj) then

execute process G(i,j)
end if

end if
end for

end for
compute the max{l(uk; 1;n) : uk ∈ T (G)} and the corresponding paths in P (uk; 1, n). Return (max {l(uk; 1, n) :
uk ∈ T (G)}) as the maximum path length and paths in P (uk; 1, n) as longest T-bimonotone paths.
We carry out the second phase by re-running the algorithm with σs1n = (u1, u2,, un). By replacing vertex set
T with S and vice versa. The output of second phase is a longest S-bimonotone path of G and the longest path
length.

6

Algorithm 2 The subroutine process(G(i,j))

for y = f(uj) + 1 to j − 1 do
for x = f(uj) to y − 1 do

if ux, uy ∈ T (G) then
w1 ← l(ux; i, j − 1);
w2 ← l(uy;x+ 1, j − 1);
if w1 + w2 + 1 > l(uy; i, j) then

l(uy; i, j)← w1 + w2 + 1 ;
np(uy; i, j) = 0
Remove all the paths in p(uy; i, j)
for all paths P ′1 in P (ux; i, j − 1) do

for all paths P ′2 in P (uy;x+ 1, j − 1) do
Add path (P ′1, uj , P

′
2) to P (uy; i, j);

np(uy; i, j) + +;
end for

end for
end if
if w1 + w2 + 1 = l(uy; i, j) then

for all paths P ′1 in P (ux; i, j − 1) do
for all paths P ′2 in P (uy;x+ 1, j − 1) do

Add path (P ′1, uj , P
′
2) to P (uy; i, j);

np(uy; i, j) + +;
end for

end for
end if

end if
end for

end for
return the value {l(uk; i, j)} and the path {P (uk; i, j), ∀uk ∈ T (G(f(uj) + 1, j − 1))}

7

Algorithm 3 The shifting (Phase 4)

Input: Longest T-monotone paths P ′ = {u1, u2, · · ·um−2, um−1, um, um+1, um+2, · · ·un} of G obtained from phase 3.
Output: Longest non-monotone paths of G (if exist) and its length |P ′|+ 1.

for all paths P ′ = {u1, u2, · · ·um−2, um−1, um, um+1, um+2, · · ·un} do
for m = 2 to n− 1 do

if um ∈ T (G) and {∃us ∈ N(um) : us /∈ P ′} then
if u1 ∈ T (G) then

if (um−1, u1) ∈ E(G) and (um−2, um+1) ∈ E(G) then
Output P ′′ = {us, um, um−1, u1, u2, · · ·um−2, um+1, um+2, · · ·un} as the longest path and
|P ′′| as maximum path length

end if
end if
if un ∈ T (G) then

if (un, um+1) ∈ E(G) and (um−1, um+2) ∈ E(G) then
Output P ′′ = {u1, u2, · · ·um−2, um−1, um+2, · · ·un, um+1, um, us} as the longest path and
|P ′′| as maximum path length

end if
end if

end if
end for

end for

3.3 Proof Of Correctness

Refer to Lemma 1 and 2.

4 Time Complexity

8

