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Energy Complexity in Circuits



Energy of Circuits and Functions
• C be a Boolean circuit over a basis B for f : {0, 1}n → {0, 1}.

• For a ∈ {0, 1}n the energy complexity :
ECB(C, a) : # of gates in C that eval to 1s when the input a

• The energy complexity of the Boolean circuit C:

ECB(C) = max
a∈{0,1}n

ECB(C, a)

Energy Complexity of Boolean Functions
The energy complexity of the Boolean function f ,

ECB(f) = min
C

max
a∈{0,1}n

ECB(C, a)

where the minimum is over all the circuits C computing f .

For n ∈ N, ECB(n) = maxf ECB(f) where the max is over all n-bit functions.
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History of Energy Complexity

Vaintsvaig (1961)
For any finite basis B, for every n ∈ N, Ω(n) ≤ ECB(n) ≤ O(2n/n)

For Standard Basis B = {∧2, ∨2, ¬}
• Kasim-zade (1992) showed that over a complete Boolean basis, for all f ,

EC(f) ≤ O(n2) where circuit size is exponential.
• Lozhkin and Shupletsov (2015) improved this to 3n(1 + ϵ(n)) by constructing circuit

of size 2n

n (1 + ϵ(n)).
• Dinesh et al (2020) improved this to 3n − 1 with exponential size circuits.
• EC(f) ≤ DT(f)3 (Dinesh et al 2020).
•

√
DT(f) ≤ EC(f) ≤ DT(f)2 (Sun et al 2022)
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The Choice of the Basis Matters ....

A "close variant" - Dichotomy Theorem - Kasim-zade (1992)
Fix a finite basis B (with d-ary gates for constant d), one of the following must hold:

• For every n, Ω(n) ≤ ẼCB(n) ≤ O(n2).
• For every n, 2n/2d ≤ ẼCB(n) ≤ 2n/n.

ẼCB(n) counts the gates where the output is 1 or at least one input is 1.

It was also shown that such a dichotomy does not hold for energy complexity ECB(n).
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Known Results on Specific Basis

Threshold Basis - Bth with linear threshold functions - (Uchizawa et al)
There exists explicit Boolean functions f : {0, 1}n → {0, 1} such that

• computable by constant-depth and linear-size threshold circuits.
• any constant-depth threshold circuit needs exponential size to compute if the energy

is bounded.

Bounds parameterized by Fanin - Suzuki et al (2013)
Bℓ consisting of arbitrary Boolean functions of fanin ℓ showed that

Ω
(

n − mf

ℓ

)
≤ ECBℓ

(f) ≤ O

(
n

ℓ

)
for any symmetric function f , where mf is the maximum number of consecutive 0s or 1s
in the value vector of f .
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Another Motivation for Threshold Basis

• Modeling neural networks as threshold
circuits.

• A neuran firing uses energy.
• The brain needs to construct energy

efficient output patterns.

Question: Can we evaluate computational power of a neural network with few number of
active neurons? This leads to energy complexity.
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Energy for Circuits with Unbounded Fanin

• The above arguments (except for the threshold basis) critically used the fact that
the fanin of the gates is bounded.

• Fanin reduction increases energy.
• More recently, we had shown (2024) that for the standard basis B∗ = {∧, ∨, ¬}

where ∧ and ∨ are of unbounded-fanin.{
f can be computed by a circuit C

of size s and energy e

}
=⇒

{
Number of output patterns

is at most 2e log e

}

This upper bound implies that f can also be computed by a depth-3 circuit C ′ of
size s2e log e+4e.

This was further used in to establish lower bounds for the energy over the basis B∗.
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Role of Negations in Saving Energy :
The N∗-basis



Our Question: Role of Negations in Saving Energy

• Monotone circuits incur energy as much as the size.

• Energy efficient circuits must use negations cleverly to turn off unwanted parts of
the circuits.

• Do negations actually help in reducing the energy dissipated in the ∧ and ∨ gates?
• Negations costs energy too !.

Our Basis - N∗

Conjunction and disjunction with unbounded fan-in, where any input variable can be
negated.
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Our Results



Our Results 1: Power of N∗-Circuits

Universality
For any Boolean function f : {0, 1}n → {0, 1}, there exists and N∗-circuit of size
|f−1(0)| and energy one. ECN∗(n) = 1.

Contrast: B∗-circuits require:
• Energy Ω(

√
n) to compute PARn (defined as

⊕
i∈[n]).

• Energy Ω(
√

log n) for computing MUXn.

Number of Output Patterns
There exists a DeMorgan circuit over the basis N∗ of size n, energy e, and (n/e + 1)e

output patterns.

Contrast : Any B∗-circuit of energy e has at most 2O(e log e) output patterns.
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Our Results 2: From Decision Trees to N∗-Circuits
• Decision tree is a tree representation of queries to variables to determine the

function value at a given input.

• The rank of a decision tree T is inductively defined as follows:

rank(T ) =


0 if T is a single leaf
rank(Tℓ) + 1 if rank(Tℓ) = rank(Tr)
max{rank(Tℓ), rank(Tr)} otherwise

where Tℓ and Tr are the left and right subtrees of the root of T , respectively.

Rank Bound to Energy Bound
If a Boolean function f is computable by a decision tree of size s and rank r, then f is
also computable by a N∗-circuit of size O(s) and energy O(r).

Contrast: There is a Boolean function that can be computed by a rank 1 Decision tree
but every B∗ circuit computing it requires Ω(log n) energy.
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Our Results 3: Lower Bounds in terms of Size and Depth

Lower Bounds for DeMorgan Circuits
Let C be a DeMorgan N∗-circuit computing PAR[n]. Then

ECN∗(C) ≥ n

d log s

where s and d are the size and depth of C, respectively.

Lower Bounds for Layered Circuits
Let C be a N∗-circuit of size s and depth d that computes PAR[n]. If every input
variable is connected to a gate in the bottom layer, then for sufficiently large n:

ECN∗(C) ≥ n

d log s
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Our Results 4: Lower Bounds in terms of Matrix Rank

Let f : {0, 1}n × {0, 1}n → {0, 1} be a Boolean function. The communication matrix
Mf is a 2n × 2n matrix with entry Mf (x, y) = f(x, y).

Lower Bounds from Rank of the Communication Matrix
If a circuit C on 2n vars computes a Boolean function f : {0, 1}n × {0, 1}n → {0, 1},
and has size s, depth d, then

ECN∗(C) ≥ log(rk(Mf )
d log s

• Any N∗-circuit C is a polynomial-size and constant-depth circuit computing DISJn,
then C must have energy at least Ω(n/ log n).

• This is tight! - DISJn can indeed be computed by a N∗-circuit of size O(n2/ log n),
depth 3 and energy O(n/ log n).
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A Couple of Proof Ideas



A Distinction between N∗-circuit and B∗-circuit

Simplying B∗-circuit of small energy
If a Boolean function f is computable by a B∗-circuit of energy e, then we can force f to
be constant by fixing at most e2 + e variables.

• Let C be the circuit. It will have at most e negation gates.
• Consider the bottom-most negation gate g ∈ C.
• Input to g is a monotone circuit C ′. It can have at most e gates.
• We set at most e input variables to eliminate the gates in C ′

• Repeat this for each negation.

Corollaries
• Energy Ω(

√
n) required to compute PARn (defined as

⊕
i∈[n]).

• Energy Ω(
√

log n) required for computing MUXn.
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Universality of N∗-circuits with energy one

N∗-circuits with energy one
For any Boolean function f : {0, 1}n → {0, 1}, there exists and N∗-circuit of size
|f−1(0)| and energy one. ECN∗(n) = 1

• Write ¬f in the sum of products form and attach a negation to get back f .
• Replace the root ∨ gate with negated ∧ gate from N∗.
• For a ∈ {0, 1}n, if f(a) = 0, exactly one of the ∧ gates output 1 if f(a) = 0.
• For a ∈ {0, 1}n, if f(a) = 1, only the root gate outputs 1.
• The size is |f−1(0)| and energy is 1.
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From Rank-bounded Decision Trees to N∗-circuits

Decision tree T of rank r.
ST : the "addresses" of the nodes of the tree.
LT : the addresses of the leaves of the tree.

Uchizawa et al (2008){
Decision tree T of
size s and rank r

}
−→

{
Equivalent DT T ′ of size s

such that ∀a ∈ LT , wt(a) ≤ r

}
• For each s ∈ ST ′ , we make a ∧-gate gs with fan-in |s| + 1, receives the outputs of gt

for each t ≺ s (negated if t0 is a prefix of s) and the variable xs.
• Output gate g receives the output of every gate gt for t satisfying that either

“t0 ∈ LT ′ and ℓt0 = 1” or “t1 ∈ LT ′ and ℓt1 = 1”

and the output is negated for the former case.
• This circuit has size O(s) and energy r + 1.
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Lower bounds for DeMorgan Circuits over N∗

Theorem
Let C be a DeMorgan N∗-circuit computing PAR[n]. Then ECN∗(C) ≥ n/(d log s)
where s and d are the size and depth of C, respectively.

Aim : To show an input assignment a ∈ {0, 1}n such that at least n/(d log s) gates
output 1.

• Construction is iterative : While d log s ≤ |I|, we repeatedly apply a procedure to
find a partial assignment of the desired a, and obtain a circuit C ′ computing PARI′

for some I ′ ⊆ I towards the next step.
• In a stage, we will set at most d log s variables.
• If an ∨ gate directly receives an input literal, set the bit and proceed to next stage.
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Proof Idea (Contd.)

• No ∨ gate receives a direct input literal. Bottom layer is only ∧ gates.
• We will show that there exists an ∧ gate in the bottom later with fanin at most

d log s. We will set the variables and proceed to the next stage.
• We can assume that the circuit has alternating ∨ and ∧ gates.
• Suppose for contradiction that every ∧ gate in the bottom layer has fanin larger

than d log s.
• Since the circuit is computing parity on |I| variables, we have for each g in the

bottom layer:

SC
1 (g) ≤ 2|I|−d log s = 2|I|

sd

where S1 is the number of input settings to the circuit which makes g output 1.
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Proof Idea (Contd.)

• By an induction on the layers, for each g ∈ Gℓ,

SC
1 (g) ≤ 2|I|

sd−ℓ+1

• This is a contradiction since the number of assignments that makes the root output
1 will be at most 2|I|

s < 2|I|−1.
• Hence there must exist an ∧ gate in the bottom layer with fanin at most d log s.
• We set those d log s bits such that ∧ gate outputs 1 and continue to the next stage.
• Repeat the stages until d log s > |I|.
• Since we are setting the gates to value 1. we should be able to do this only for e

steps before hitting the contraint d log s > |I|.
• Hence n ≤ ed log s.
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A Connection to Rank of the Communication Matrix

• Let C be a N∗-circuit. For every gate g in C:
• I(g) : input variables that are connected to g
• I ′(g) : set of the gates in GC that feed into g.

• GC : functions obtained from g by fixing the outputs of the gates in I ′(g).
• Define

rC = max
g1,...,ge∈GC

rk(M)∧[g1,...,ge])

Lemma - (Implicit in Uchizawa and Abe (2023))
Let C be a circuit of size s, depth d and energy e. Then it holds that

rk(MC) ≤ (se · rC)O(d).
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A Connection to Rank of the Communication Matrix

Observe that our functions in GC can be only ∧, ∨ and constant functions.
We show rC ≤ 2e and this derives our result.

Theorem
If a N∗-circuit C computes a Boolean function of 2n variables, has size s, depth d and
energy e, then it holds that

log(rk(MC)) = O(ed log s)
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Other Applications
• Let f : {0, 1}n → {0, 1} be a Boolean function. Let g : {0, 1}2 → {0, 1} by a 2-bit

gadget function. Define Fg : {0, 1}n × {0, 1}n → {0, 1} defined as
Fg(x, y) = f(z1, z2, . . . zn) where zi = g(xi, yi).

• Let Mg
f for the matrix MFg .

• Let M∗
f be a matrix that satisfies

rk(M∗
f ) = max(rk(M∧

f ), rk(M∨
f ))

• Shrestov (2010): for any Boolean function f , the deg(f) is upper bounded by
rk(M∗

f ).

Corollary
If a circuit C of size s, depth d, computes a Boolean function F such that MF = M∗

f ,
then it holds that ECN∗(C) ≥ Ω

(
deg(f)
d log s

)
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Conclusion and Open Problems



Conclusion and Open Problems

• We showed upper and lower bounds for Energy complexity over the N∗.
• Motivation is to understand the power and limiations of negations in saving energy.
• Shortcoming: ideally we would like to have design techniques where negations can

be used to switch off "irrelavant parts" of the circuit.
• Can we relate the energy over N∗ to other Boolean complexity measures?
• Lower bound techniques for energy complexity? Limitations?
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Thank you for your attention.

Questions?
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