## On Saving Energy in Boolean Circuits via Negations

Jayalal Sarma<sup>1</sup> Kei Uchizawa<sup>2</sup>

<sup>1</sup>Indian Institute of Technology Madras, Chennai, India

<sup>2</sup>Graduate School of Science and Engineering, Yamagata University, Japan

FCT 2025, September 17, 2025

#### Contents

- 1. Energy Complexity in Circuits
- 2. Role of Negations in Saving Energy: The  $\mathcal{N}_*$ -basis
- 3. Our Results
  - 3.1 Power of  $\mathcal{N}_*$ -Circuits
  - 3.2 From Decision Trees to  $\mathcal{N}_*$ -Circuits
  - 3.3 Lower Bounds for Energy  $\mathcal{N}_*$ -circuits in terms of Size and Depth
  - 3.4 Lower Bounds from Matrix Rank
- 4. A Couple of Proof Ideas
- 5. Conclusion and Open Problems

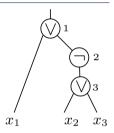


• C be a Boolean circuit over a basis  $\mathcal{B}$  for  $f:\{0,1\}^n \to \{0,1\}$ .

- C be a Boolean circuit over a basis  $\mathcal{B}$  for  $f: \{0,1\}^n \to \{0,1\}$ .
- For  $a \in \{0,1\}^n$  the energy complexity:  $EC_{\mathcal{B}}(C,a): \# \text{ of gates in } C \text{ that eval to 1s when the input } a$

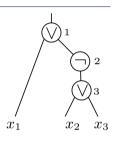
- C be a Boolean circuit over a basis  $\mathcal{B}$  for  $f:\{0,1\}^n \to \{0,1\}$ .
- For  $a \in \{0,1\}^n$  the energy complexity:  $EC_{\mathcal{B}}(C,a): \# \text{ of gates in } C \text{ that eval to 1s when the input } a$
- The energy complexity of the Boolean circuit C:

$$EC_{\mathcal{B}}(C) = \max_{a \in \{0,1\}^n} EC_{\mathcal{B}}(C, a)$$



- C be a Boolean circuit over a basis  $\mathcal{B}$  for  $f:\{0,1\}^n \to \{0,1\}$ .
- For  $a \in \{0,1\}^n$  the energy complexity:  $EC_{\mathcal{B}}(C,a): \# \text{ of gates in } C \text{ that eval to 1s when the input } a$
- The energy complexity of the Boolean circuit C:

$$EC_{\mathcal{B}}(C) = \max_{a \in \{0,1\}^n} EC_{\mathcal{B}}(C, a)$$



#### Energy Complexity of Boolean Functions

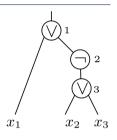
The energy complexity of the Boolean function f,

$$EC_{\mathcal{B}}(f) = \min_{C} \max_{a \in \{0,1\}^n} EC_{\mathcal{B}}(C, a)$$

where the minimum is over all the circuits C computing f.

- C be a Boolean circuit over a basis  $\mathcal B$  for  $f:\{0,1\}^n \to \{0,1\}.$
- For  $a \in \{0,1\}^n$  the energy complexity:  $EC_{\mathcal{B}}(C,a): \# \text{ of gates in } C \text{ that eval to 1s when the input } a$
- The energy complexity of the Boolean circuit C:

$$EC_{\mathcal{B}}(C) = \max_{a \in \{0,1\}^n} EC_{\mathcal{B}}(C, a)$$



#### Energy Complexity of Boolean Functions

The energy complexity of the Boolean function f,

$$EC_{\mathcal{B}}(f) = \min_{C} \max_{a \in \{0,1\}^n} EC_{\mathcal{B}}(C, a)$$

where the minimum is over all the circuits C computing f.

For  $n \in \mathbb{N}$ ,  $EC_{\mathcal{B}}(n) = \max_{f} EC_{\mathcal{B}}(f)$  where the max is over all n-bit functions.

#### Vaintsvaig (1961)

For any finite basis  $\mathcal{B}$ , for every  $n \in \mathbb{N}$ ,  $\Omega(n) \leq \mathrm{EC}_{\mathcal{B}}(n) \leq O(2^n/n)$ 

#### $Vaintsvaig (19\overline{61})$

For any finite basis  $\mathcal{B}$ , for every  $n \in \mathbb{N}$ ,  $\Omega(n) \leq \mathrm{EC}_{\mathcal{B}}(n) \leq O(2^n/n)$ 

#### For Standard Basis $\mathcal{B} = \{ \land_2, \lor_2, \neg \}$

• Kasim-zade (1992) showed that over a *complete* Boolean basis, for all f,  $EC(f) \leq O(n^2)$  where circuit size is exponential.

#### Vaintsvaig (1961)

For any finite basis  $\mathcal{B}$ , for every  $n \in \mathbb{N}$ ,  $\Omega(n) \leq \mathrm{EC}_{\mathcal{B}}(n) \leq O(2^n/n)$ 

- Kasim-zade (1992) showed that over a *complete* Boolean basis, for all f,  $EC(f) \leq O(n^2)$  where circuit size is exponential.
- Lozhkin and Shupletsov (2015) improved this to  $3n(1+\epsilon(n))$  by constructing circuit of size  $\frac{2^n}{n}(1+\epsilon(n))$ .

#### Vaintsvaig (1961)

For any finite basis  $\mathcal{B}$ , for every  $n \in \mathbb{N}$ ,  $\Omega(n) \leq \mathrm{EC}_{\mathcal{B}}(n) \leq O(2^n/n)$ 

- Kasim-zade (1992) showed that over a *complete* Boolean basis, for all f,  $EC(f) \leq O(n^2)$  where circuit size is exponential.
- Lozhkin and Shupletsov (2015) improved this to  $3n(1+\epsilon(n))$  by constructing circuit of size  $\frac{2^n}{n}(1+\epsilon(n))$ .
- Dinesh *et al* (2020) improved this to 3n-1 with exponential size circuits.

#### Vaintsvaig (1961)

For any finite basis  $\mathcal{B}$ , for every  $n \in \mathbb{N}$ ,  $\Omega(n) \leq \mathrm{EC}_{\mathcal{B}}(n) \leq O(2^n/n)$ 

- Kasim-zade (1992) showed that over a *complete* Boolean basis, for all f,  $EC(f) \leq O(n^2)$  where circuit size is exponential.
- Lozhkin and Shupletsov (2015) improved this to  $3n(1+\epsilon(n))$  by constructing circuit of size  $\frac{2^n}{n}(1+\epsilon(n))$ .
- Dinesh *et al* (2020) improved this to 3n-1 with exponential size circuits.
- $EC(f) \leq DT(f)^3$  (Dinesh *et al* 2020).

#### Vaintsvaig (1961)

For any finite basis  $\mathcal{B}$ , for every  $n \in \mathbb{N}$ ,  $\Omega(n) \leq \mathrm{EC}_{\mathcal{B}}(n) \leq O(2^n/n)$ 

- Kasim-zade (1992) showed that over a *complete* Boolean basis, for all f,  $EC(f) \leq O(n^2)$  where circuit size is exponential.
- Lozhkin and Shupletsov (2015) improved this to  $3n(1+\epsilon(n))$  by constructing circuit of size  $\frac{2^n}{n}(1+\epsilon(n))$ .
- Dinesh *et al* (2020) improved this to 3n-1 with exponential size circuits.
- $EC(f) \leq DT(f)^3$  (Dinesh *et al* 2020).
- $\sqrt{\mathsf{DT}(f)} \le \mathsf{EC}(f) \le \mathsf{DT}(f)^2$  (Sun et al 2022)

#### A "close variant" - Dichotomy Theorem - Kasim-zade (1992)

Fix a finite basis  $\mathcal{B}$  (with d-ary gates for constant d), one of the following must hold:

- For every n,  $\Omega(n) \leq \widetilde{\mathrm{EC}}_{\mathcal{B}}(n) \leq O(n^2)$ .
- For every n,  $2^{n/2d} \leq \widetilde{EC}_{\mathcal{B}}(n) \leq 2^n/n$ .

#### A "close variant" - Dichotomy Theorem - Kasim-zade (1992)

Fix a finite basis  $\mathcal{B}$  (with d-ary gates for constant d), one of the following must hold:

- For every n,  $\Omega(n) \leq \widetilde{\mathrm{EC}}_{\mathcal{B}}(n) \leq O(n^2)$ .
- For every n,  $2^{n/2d} \leq \widetilde{EC}_{\mathcal{B}}(n) \leq 2^n/n$ .

 $\widetilde{\mathrm{EC}}_{\mathcal{B}}(n)$  counts the gates where the output is 1 or at least one input is 1.

#### A "close variant" - Dichotomy Theorem - Kasim-zade (1992)

Fix a finite basis  $\mathcal{B}$  (with d-ary gates for constant d), one of the following must hold:

- For every n,  $\Omega(n) \leq \widetilde{\mathrm{EC}}_{\mathcal{B}}(n) \leq O(n^2)$ .
- For every n,  $2^{n/2d} \leq \widetilde{EC}_{\mathcal{B}}(n) \leq 2^n/n$ .

 $\widetilde{\mathrm{EC}}_{\mathcal{B}}(n)$  counts the gates where the output is 1 or at least one input is 1.

It was also shown that such a dichotomy does not hold for energy complexity  $EC_{\mathcal{B}}(n)$ .

## Known Results on Specific Basis

## Known Results on Specific Basis

#### Threshold Basis - $\mathcal{B}_{th}$ with linear threshold functions - (Uchizawa et al)

There exists explicit Boolean functions  $f:\{0,1\}^n \to \{0,1\}$  such that

- computable by constant-depth and linear-size threshold circuits.
- any constant-depth threshold circuit needs exponential size to compute if the energy is bounded.

## Known Results on Specific Basis

#### Threshold Basis - $\mathcal{B}_{th}$ with linear threshold functions - (Uchizawa et al)

There exists explicit Boolean functions  $f:\{0,1\}^n \to \{0,1\}$  such that

- computable by constant-depth and linear-size threshold circuits.
- any constant-depth threshold circuit needs exponential size to compute if the energy is bounded.

#### Bounds parameterized by Fanin - Suzuki et al (2013)

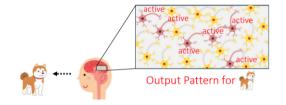
 $\mathcal{B}_\ell$  consisting of arbitrary Boolean functions of fanin  $\ell$  showed that

$$\Omega\left(\frac{n-m_f}{\ell}\right) \leq \mathsf{EC}_{\mathcal{B}_\ell}(f) \leq O\left(\frac{n}{\ell}\right)$$

for any symmetric function f, where  $m_f$  is the maximum number of consecutive 0s or 1s in the value vector of f.

#### Another Motivation for Threshold Basis

- Modeling neural networks as threshold circuits.
- A neuran firing uses energy.
- The brain needs to construct energy efficient output patterns.



Question: Can we evaluate computational power of a neural network with few number of active neurons? This leads to energy complexity.

• The above arguments (except for the threshold basis) critically used the fact that the fanin of the gates is bounded.

- The above arguments (except for the threshold basis) critically used the fact that the fanin of the gates is bounded.
- Fanin reduction increases energy.

- The above arguments (except for the threshold basis) critically used the fact that the fanin of the gates is bounded.
- Fanin reduction increases energy.
- More recently, we had shown (2024) that for the standard basis  $\mathcal{B}_* = \{\land, \lor, \neg\}$  where  $\land$  and  $\lor$  are of unbounded-fanin.

$$\left\{\begin{array}{c} f \text{ can be computed by a circuit } C \\ \text{of size } s \text{ and energy } e \end{array}\right\} \implies \left\{\begin{array}{c} \text{Number of output patterns} \\ \text{is at most } 2^{e \log e} \end{array}\right\}$$

- The above arguments (except for the threshold basis) critically used the fact that the fanin of the gates is bounded.
- Fanin reduction increases energy.
- More recently, we had shown (2024) that for the standard basis  $\mathcal{B}_* = \{\land, \lor, \neg\}$  where  $\land$  and  $\lor$  are of unbounded-fanin.

$$\left\{\begin{array}{c} f \text{ can be computed by a circuit } C \\ \text{of size } s \text{ and energy } e \end{array}\right\} \implies \left\{\begin{array}{c} \text{Number of output patterns} \\ \text{is at most } 2^{e \log e} \end{array}\right\}$$

This upper bound implies that f can also be computed by a depth-3 circuit C' of size  $s2^{e\log e+4e}$ .

- The above arguments (except for the threshold basis) critically used the fact that the fanin of the gates is bounded.
- Fanin reduction increases energy.
- More recently, we had shown (2024) that for the standard basis  $\mathcal{B}_* = \{\land, \lor, \neg\}$  where  $\land$  and  $\lor$  are of unbounded-fanin.

$$\left\{\begin{array}{c} f \text{ can be computed by a circuit } C \\ \text{of size } s \text{ and energy } e \end{array}\right\} \implies \left\{\begin{array}{c} \text{Number of output patterns} \\ \text{is at most } 2^{e \log e} \end{array}\right\}$$

This upper bound implies that f can also be computed by a depth-3 circuit C' of size  $s2^{e\log e+4e}$ .

This was further used in to establish lower bounds for the energy over the basis  $\mathcal{B}_*$ .

# Role of Negations in Saving Energy : The $\mathcal{N}_*$ -basis

• Monotone circuits incur energy as much as the size.

- Monotone circuits incur energy as much as the size.
- Energy efficient circuits must use negations cleverly to turn off unwanted parts of the circuits.

- Monotone circuits incur energy as much as the size.
- Energy efficient circuits must use negations cleverly to turn off unwanted parts of the circuits.
- Do negations actually help in reducing the energy dissipated in the ∧ and ∨ gates?

- Monotone circuits incur energy as much as the size.
- Energy efficient circuits must use negations cleverly to turn off unwanted parts of the circuits.
- Do negations actually help in reducing the energy dissipated in the  $\land$  and  $\lor$  gates?
- Negations costs energy too !.

- Monotone circuits incur energy as much as the size.
- Energy efficient circuits must use negations cleverly to turn off unwanted parts of the circuits.
- Do negations actually help in reducing the energy dissipated in the  $\land$  and  $\lor$  gates?
- Negations costs energy too !.

#### Our Basis - $\mathcal{N}_{*}$

Conjunction and disjunction with unbounded fan-in, where any input variable can be negated.



## Our Results 1: Power of $\mathcal{N}_*$ -Circuits

#### Universality

For any Boolean function  $f: \{0,1\}^n \to \{0,1\}$ , there exists and  $\mathcal{N}_*$ -circuit of size  $|f^{-1}(0)|$  and energy one.  $\mathsf{EC}_{\mathcal{N}_*}(n) = 1$ .

### Our Results 1: Power of $\mathcal{N}_*$ -Circuits

#### Universality

For any Boolean function  $f:\{0,1\}^n \to \{0,1\}$ , there exists and  $\mathcal{N}_*$ -circuit of size  $|f^{-1}(0)|$  and energy one.  $\mathsf{EC}_{\mathcal{N}_*}(n)=1$ .

Contrast:  $\mathcal{B}_*$ -circuits require:

- Energy  $\Omega(\sqrt{n})$  to compute  $PAR_n$  (defined as  $\bigoplus_{i \in [n]}$ ).
- Energy  $\Omega(\sqrt{\log n})$  for computing  $MUX_n$ .

# Our Results 1: Power of $\mathcal{N}_*$ -Circuits

### Universality

For any Boolean function  $f:\{0,1\}^n \to \{0,1\}$ , there exists and  $\mathcal{N}_*$ -circuit of size  $|f^{-1}(0)|$  and energy one.  $\mathsf{EC}_{\mathcal{N}_*}(n)=1$ .

Contrast:  $\mathcal{B}_*$ -circuits require:

- Energy  $\Omega(\sqrt{n})$  to compute  $PAR_n$  (defined as  $\bigoplus_{i \in [n]}$ ).
- Energy  $\Omega(\sqrt{\log n})$  for computing  $MUX_n$ .

#### Number of Output Patterns

There exists a DeMorgan circuit over the basis  $\mathcal{N}_*$  of size n, energy e, and  $(n/e+1)^e$  output patterns.

# Our Results 1: Power of $\mathcal{N}_*$ -Circuits

### Universality

For any Boolean function  $f:\{0,1\}^n \to \{0,1\}$ , there exists and  $\mathcal{N}_*$ -circuit of size  $|f^{-1}(0)|$  and energy one.  $\mathsf{EC}_{\mathcal{N}_*}(n)=1$ .

Contrast:  $\mathcal{B}_*$ -circuits require:

- Energy  $\Omega(\sqrt{n})$  to compute  $PAR_n$  (defined as  $\bigoplus_{i \in [n]}$ ).
- Energy  $\Omega(\sqrt{\log n})$  for computing  $MUX_n$ .

#### Number of Output Patterns

There exists a DeMorgan circuit over the basis  $\mathcal{N}_*$  of size n, energy e, and  $(n/e+1)^e$  output patterns.

Contrast : Any  $\mathcal{B}_*$ -circuit of energy e has at most  $2^{O(e \log e)}$  output patterns.

• Decision tree is a tree representation of queries to variables to determine the function value at a given input.

- Decision tree is a tree representation of queries to variables to determine the function value at a given input.
- The rank of a decision tree T is inductively defined as follows:

$$rank(T) = \begin{cases} 0 & \text{if } T \text{ is a single leaf} \\ rank(T_{\ell}) + 1 & \text{if } rank(T_{\ell}) = rank(T_{r}) \\ \max\{rank(T_{\ell}), rank(T_{r})\} & \text{otherwise} \end{cases}$$

where  $T_{\ell}$  and  $T_r$  are the left and right subtrees of the root of T, respectively.

- Decision tree is a tree representation of queries to variables to determine the function value at a given input.
- The rank of a decision tree T is inductively defined as follows:

$$rank(T) = \begin{cases} 0 & \text{if } T \text{ is a single leaf} \\ rank(T_{\ell}) + 1 & \text{if } rank(T_{\ell}) = rank(T_{r}) \\ \max\{rank(T_{\ell}), rank(T_{r})\} & \text{otherwise} \end{cases}$$

where  $T_{\ell}$  and  $T_r$  are the left and right subtrees of the root of  $T_r$ , respectively.

### Rank Bound to Energy Bound

If a Boolean function f is computable by a decision tree of size s and rank r, then f is also computable by a  $\mathcal{N}_*$ -circuit of size O(s) and energy O(r).

- Decision tree is a tree representation of queries to variables to determine the function value at a given input.
- The rank of a decision tree T is inductively defined as follows:

$$rank(T) = \begin{cases} 0 & \text{if } T \text{ is a single leaf} \\ rank(T_{\ell}) + 1 & \text{if } rank(T_{\ell}) = rank(T_{r}) \\ \max\{rank(T_{\ell}), rank(T_{r})\} & \text{otherwise} \end{cases}$$

where  $T_{\ell}$  and  $T_r$  are the left and right subtrees of the root of T, respectively.

### Rank Bound to Energy Bound

If a Boolean function f is computable by a decision tree of size s and rank r, then f is also computable by a  $\mathcal{N}_*$ -circuit of size O(s) and energy O(r).

Contrast: There is a Boolean function that can be computed by a rank 1 Decision tree but every  $\mathcal{B}_*$  circuit computing it requires  $\Omega(\log n)$  energy.

# Our Results 3: Lower Bounds in terms of Size and Depth

# Our Results 3: Lower Bounds in terms of Size and Depth

#### Lower Bounds for DeMorgan Circuits

Let C be a DeMorgan  $\mathcal{N}_*$ -circuit computing  $\mathrm{PAR}_{[n]}$ . Then

$$\mathsf{EC}_{\mathcal{N}_*}(C) \ge \frac{n}{d \log s}$$

where s and d are the size and depth of C, respectively.

# Our Results 3: Lower Bounds in terms of Size and Depth

#### Lower Bounds for DeMorgan Circuits

Let C be a DeMorgan  $\mathcal{N}_*$ -circuit computing  $\mathrm{PAR}_{[n]}$ . Then

$$\mathsf{EC}_{\mathcal{N}_*}(C) \ge \frac{n}{d \log s}$$

where s and d are the size and depth of C, respectively.

#### Lower Bounds for Layered Circuits

Let C be a  $\mathcal{N}_*$ -circuit of size s and depth d that computes  $\mathrm{PAR}_{[n]}$ . If every input variable is connected to a gate in the bottom layer, then for sufficiently large n:

$$\mathsf{EC}_{\mathcal{N}_*}(C) \ge \frac{n}{d\log s}$$

Let  $f:\{0,1\}^n \times \{0,1\}^n \to \{0,1\}$  be a Boolean function. The communication matrix  $M_f$  is a  $2^n \times 2^n$  matrix with entry  $M_f(x,y) = f(x,y)$ .

Let  $f:\{0,1\}^n \times \{0,1\}^n \to \{0,1\}$  be a Boolean function. The communication matrix  $M_f$  is a  $2^n \times 2^n$  matrix with entry  $M_f(x,y) = f(x,y)$ .

#### Lower Bounds from Rank of the Communication Matrix

If a circuit C on 2n vars computes a Boolean function  $f: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$ , and has size s, depth d, then

$$\mathsf{EC}_{\mathcal{N}_*}(C) \ge rac{\log(rk(M_f))}{d\log s}$$

Let  $f:\{0,1\}^n \times \{0,1\}^n \to \{0,1\}$  be a Boolean function. The communication matrix  $M_f$  is a  $2^n \times 2^n$  matrix with entry  $M_f(x,y) = f(x,y)$ .

#### Lower Bounds from Rank of the Communication Matrix

If a circuit C on 2n vars computes a Boolean function  $f: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$ , and has size s, depth d, then

$$\mathsf{EC}_{\mathcal{N}_*}(C) \ge rac{\log(rk(M_f))}{d\log s}$$

• Any  $\mathcal{N}_*$ -circuit C is a polynomial-size and constant-depth circuit computing  $\mathrm{DISJ}_n$ , then C must have energy at least  $\Omega(n/\log n)$ .

Let  $f:\{0,1\}^n \times \{0,1\}^n \to \{0,1\}$  be a Boolean function. The communication matrix  $M_f$  is a  $2^n \times 2^n$  matrix with entry  $M_f(x,y) = f(x,y)$ .

#### Lower Bounds from Rank of the Communication Matrix

If a circuit C on 2n vars computes a Boolean function  $f: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$ , and has size s, depth d, then

$$\mathsf{EC}_{\mathcal{N}_*}(C) \ge rac{\log(rk(M_f))}{d\log s}$$

- Any  $\mathcal{N}_*$ -circuit C is a polynomial-size and constant-depth circuit computing  $\mathrm{DISJ}_n$ , then C must have energy at least  $\Omega(n/\log n)$ .
- This is tight!  $\mathrm{DISJ}_n$  can indeed be computed by a  $\mathcal{N}_*$ -circuit of size  $O(n^2/\log n)$ , depth 3 and energy  $O(n/\log n)$ .



#### Simplying $\mathcal{B}_*$ -circuit of small energy

### Simplying $\mathcal{B}_*$ -circuit of small energy

If a Boolean function f is computable by a  $\mathcal{B}_*$ -circuit of energy e, then we can force f to be constant by fixing at most  $e^2 + e$  variables.

ullet Let C be the circuit. It will have at most e negation gates.

## Simplying $\mathcal{B}_*$ -circuit of small energy

- Let C be the circuit. It will have at most e negation gates.
- Consider the bottom-most negation gate  $g \in C$ .

## Simplying $\mathcal{B}_*$ -circuit of small energy

- Let C be the circuit. It will have at most e negation gates.
- Consider the bottom-most negation gate  $g \in C$ .
- Input to g is a monotone circuit C'. It can have at most e gates.

# Simplying $\mathcal{B}_*$ -circuit of small energy

- Let C be the circuit. It will have at most e negation gates.
- Consider the bottom-most negation gate  $g \in C$ .
- Input to g is a monotone circuit C'. It can have at most e gates.
- ullet We set at most e input variables to eliminate the gates in C'

## Simplying $\mathcal{B}_*$ -circuit of small energy

- Let C be the circuit. It will have at most e negation gates.
- Consider the bottom-most negation gate  $g \in C$ .
- Input to g is a monotone circuit C'. It can have at most e gates.
- ullet We set at most e input variables to eliminate the gates in C'
- Repeat this for each negation.

## Simplying $\mathcal{B}_*$ -circuit of small energy

If a Boolean function f is computable by a  $\mathcal{B}_*$ -circuit of energy e, then we can force f to be constant by fixing at most  $e^2 + e$  variables.

- ullet Let C be the circuit. It will have at most e negation gates.
- Consider the bottom-most negation gate  $g \in C$ .
- Input to g is a monotone circuit C'. It can have at most e gates.
- We set at most e input variables to eliminate the gates in C'
- Repeat this for each negation.

#### Corollaries

- Energy  $\Omega(\sqrt{n})$  required to compute  $PAR_n$  (defined as  $\bigoplus_{i \in [n]}$ ).
- Energy  $\Omega(\sqrt{\log n})$  required for computing  $MUX_n$ .

# Universality of $\mathcal{N}_*$ -circuits with energy one

#### $\mathcal{N}_*$ -circuits with energy one

For any Boolean function  $f: \{0,1\}^n \to \{0,1\}$ , there exists and  $\mathcal{N}_*$ -circuit of size  $|f^{-1}(0)|$  and energy one.  $\mathsf{EC}_{\mathcal{N}_*}(n) = 1$ 

# Universality of $\mathcal{N}_*$ -circuits with energy one

#### $\mathcal{N}_*$ -circuits with energy one

For any Boolean function  $f:\{0,1\}^n \to \{0,1\}$ , there exists and  $\mathcal{N}_*$ -circuit of size  $|f^{-1}(0)|$  and energy one.  $\mathsf{EC}_{\mathcal{N}_*}(n)=1$ 

- Write  $\neg f$  in the sum of products form and attach a negation to get back f.
- Replace the root  $\vee$  gate with negated  $\wedge$  gate from  $\mathcal{N}_*$ .
- For  $a \in \{0,1\}^n$ , if f(a) = 0, exactly one of the  $\wedge$  gates output 1 if f(a) = 0.
- For  $a \in \{0,1\}^n$ , if f(a) = 1, only the root gate outputs 1.
- The size is  $|f^{-1}(0)|$  and energy is 1.

## From Rank-bounded Decision Trees to $\mathcal{N}_*$ -circuits

Decision tree T of rank r.

 $S_T$ : the "addresses" of the nodes of the tree.

 $\mathcal{L}_T$  : the addresses of the leaves of the tree.

# Uchizawa et al (2008)

Decision tree T of size s and rank r  $\longrightarrow$   $\left\{\begin{array}{c} \text{Equivalent DT } T' \text{ of size } s \\ \text{such that } \forall a \in L_T, wt(a) \leq r \end{array}\right\}$ 

- For each  $s \in S_{T'}$ , we make a  $\land$ -gate  $g_s$  with fan-in |s| + 1, receives the outputs of  $g_t$  for each  $t \prec s$  (negated if t0 is a prefix of s) and the variable  $x_s$ .
- Output gate g receives the output of every gate  $g_t$  for t satisfying that either

"
$$t0 \in L_{T'}$$
 and  $\ell_{t0} = 1$ " or " $t1 \in L_{T'}$  and  $\ell_{t1} = 1$ "

and the output is negated for the former case.

• This circuit has size O(s) and energy r+1.

# Lower bounds for DeMorgan Circuits over $\mathcal{N}_*$

#### Theorem

Let C be a DeMorgan  $\mathcal{N}_*$ -circuit computing  $\mathrm{PAR}_{[n]}$ . Then  $\mathrm{EC}_{\mathcal{N}_*}(C) \geq n/(d\log s)$  where s and d are the size and depth of C, respectively.

Aim : To show an input assignment  $a \in \{0,1\}^n$  such that at least  $n/(d\log s)$  gates output 1.

- Construction is iterative : While  $d \log s \leq |I|$ , we repeatedly apply a procedure to find a partial assignment of the desired a, and obtain a circuit C' computing  $\mathrm{PAR}_{I'}$  for some  $I' \subseteq I$  towards the next step.
- In a stage, we will set at most  $d \log s$  variables.
- ullet If an  $\lor$  gate directly receives an input literal, set the bit and proceed to next stage.

# Proof Idea (Contd.)

- $\bullet$  No  $\vee$  gate receives a direct input literal. Bottom layer is only  $\wedge$  gates.
- We will show that there exists an  $\wedge$  gate in the bottom later with fanin at most  $d \log s$ . We will set the variables and proceed to the next stage.
- We can assume that the circuit has alternating  $\vee$  and  $\wedge$  gates.
- Suppose for contradiction that every  $\wedge$  gate in the bottom layer has fanin larger than  $d\log s$ .
- Since the circuit is computing parity on  $\vert I \vert$  variables, we have for each g in the bottom layer:

$$S_1^C(g) \le 2^{|I| - d\log s} = \frac{2^{|I|}}{s^d}$$

where  $S_1$  is the number of input settings to the circuit which makes g output 1.

# Proof Idea (Contd.)

• By an induction on the layers, for each  $g \in G_{\ell}$ ,

$$S_1^C(g) \le \frac{2^{|I|}}{s^{d-\ell+1}}$$

- This is a contradiction since the number of assignments that makes the root output 1 will be at most  $\frac{2^{|I|}}{s} < 2^{|I|-1}$ .
- Hence there must exist an  $\wedge$  gate in the bottom layer with fanin at most  $d \log s$ .
- We set those  $d \log s$  bits such that  $\wedge$  gate outputs 1 and continue to the next stage.
- Repeat the stages until  $d \log s > |I|$ .
- Since we are setting the gates to value 1. we should be able to do this only for e steps before hitting the contraint  $d \log s > |I|$ .
- Hence  $n < ed \log s$ .

#### A Connection to Rank of the Communication Matrix

- Let C be a  $\mathcal{N}_*$ -circuit. For every gate g in C:
  - ullet I(g): input variables that are connected to g
  - I'(g) : set of the gates in  $G_C$  that feed into g.
- $G_C$ : functions obtained from g by fixing the outputs of the gates in I'(g).
- Define

$$r_C = \max_{g_1, \dots, g_e \in G_C} rk(M)_{\wedge [g_1, \dots, g_e]})$$

# Lemma - (Implicit in Uchizawa and Abe (2023))

Let C be a circuit of size s, depth d and energy e. Then it holds that

$$rk(M_C) \le (s^e \cdot r_C)^{O(d)}$$
.

#### A Connection to Rank of the Communication Matrix

Observe that our functions in  $G_C$  can be only  $\wedge$ ,  $\vee$  and constant functions. We show  $r_C \leq 2^e$  and this derives our result.

#### Theorem

If a  $\mathcal{N}_*$ -circuit C computes a Boolean function of 2n variables, has size s, depth d and energy e, then it holds that

$$\log(rk(M_C)) = O(ed \log s)$$

# Other Applications

- Let  $f:\{0,1\}^n \to \{0,1\}$  be a Boolean function. Let  $g:\{0,1\}^2 \to \{0,1\}$  by a 2-bit gadget function. Define  $F_g:\{0,1\}^n \times \{0,1\}^n \to \{0,1\}$  defined as  $F_g(x,y)=f(z_1,z_2,\ldots z_n)$  where  $z_i=g(x_i,y_i)$ .
- Let  $M_f^g$  for the matrix  $M_{F_g}$ .
- ullet Let  $M_f^*$  be a matrix that satisfies

$$rk(M_f^*) = \max(rk(M_f^{\wedge}), rk(M_f^{\vee}))$$

• Shrestov (2010): for any Boolean function f, the  $\deg(f)$  is upper bounded by  $rk(M_f^*)$ .

#### Corollary

If a circuit C of size s, depth d, computes a Boolean function F such that  $M_F = M_f^*$ , then it holds that  $\mathsf{EC}_{\mathcal{N}_*}(C) \geq \Omega\left(\frac{\deg(f)}{d\log s}\right)$ 



# Conclusion and Open Problems

- We showed upper and lower bounds for Energy complexity over the  $\mathcal{N}_*$ .
- Motivation is to understand the power and limitaions of negations in saving energy.
- Shortcoming: ideally we would like to have design techniques where negations can be used to switch off "irrelavant parts" of the circuit.
- Can we relate the energy over  $\mathcal{N}_*$  to other Boolean complexity measures?
- Lower bound techniques for energy complexity? Limitations?

Thank you for your attention.

Questions?