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Matrix Rank

Rank of a matrix M ∈ Fn×n has the following equivalent
definitions.

• The size of the largest submatrix with a non-zero determinant.

• The number of linearly independent rows/columns of a matrix.

• The smallest r such that M = AB where A ∈ Fn×r , B ∈ Fr×n.

rank bound: Given a matrix M and a value r , is rank(M) < r?
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rank bound: Given a matrix M and a value r , is rank(M) < r?

Motivations from linear algebra, control theory, from algorithmics,
complexity theory. In the context of seperating complexity classes,
it might facilitate application of well developed algebraic
techniques.



A Natural Optimisation Question

How “close” is M to a rank r matrix N?

• How does one define “closeness”? Various options are norm
of M − N, hamming weight of M − N.

• Representation of the “close” Matrix.

• Bounds, Complexity of computing them, Approximations.

Several practical applications:

• Low dimensional representation of large volumes of data.

• Netflix problem : DVD rental table is of “low” rank.

• Arises in feedback control system.



Under various norms...
• Frobenius Norm:
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Studied under the name low-rank approximations. Sampling
based approximations are known [Des07].

• General Matrix Norms:

||A||α,β = max
||x ||α=1

||Ax ||β

Nothing better is known.
• Related : p-norms (subspace approximation) : For a

k-dimensional linear subspace H such that for column vectors
v1 . . . vn minimize:
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Hamming is different

Definition (Rigidity)

Given a matrix M and r ≤ n, rigidity of the matrix M (RM(r)) is
the number of entries of the matrix that we need to change to
bring the rank below r .

[Val77] Interesting in a circuit complexity theory setting. If for some
ǫ > 0 there exists a δ > 0 such that an n × n matrix Mn has
rigidity RMn

(ǫn) ≥ n1+δ over a field F, then the
transformation x → Mx cannot be computed by linear size
logarithmic depth linear circuits.

[Raz89] For an explicit infinite sequence of (0,1)-matrices {Mn} over a

finite field F, if RM(r) ≥ n2

2(log r)o(1) for some r ≥ 2(log log n)ω(1)
,

then there is an explicit language LM /∈ PHcc , where PHcc is
the analog of PH in the communication complexity setting.



Lower bounds attempts

Find an explicit family of matrices {Mn} such that

RMn
(ǫn) ≥ n1+δ

For any r , rank(M) − r ≤ RM(r) ≤ (n − r)2
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Computing Rigidity - How “natural” is Valiant’s proof?

• Razborov-Rudich defined the concept of natural proofs for
lower-bound proofs. They defined the notion of a
combinatorial property being Γ-natural against a class ∆.

• Valiant’s reduction [Val77] identifies “high rigidity” as a a
combinatorial property of the matrices (which defines the
function computed) based on which he proves linear size lower
bounds for log-depth circuits. Among the n × n matrices, the
density of “rigid” matrices is high.

• Two requirements:
• The notion of natural proofs in arithmetic circuits?
• Tighten the default parameters : polynomial factors.



Computing Rigidity

rigid(M, r , k): Given a matrix M, values r and k , is RM(r) ≤ k?

Field F restriction bound

F - in NP

F2 - NP -complete [Des07]

Z or Q Boolean, constant k C=L-complete

Z or Q constant k C=L-hard

Fp constant k ModpL-complete

Q r = n C=L-complete
witness-search in LGapL

Z r = n and k = 1 in LGapL



For constant k , for 0-1 matrices,
rigidk ≤m singular

rigid(M, r , k): we need to test if if there is a set of 0 ≤ s ≤ k

entries of M, which, when flipped, yield a matrix of rank below r .

The number of such sets is bounded by Σk
s=0

(

n
s

)

= t ∈ nO(1).

Let the corresponding matrices be M1, M2 . . .Mt ; these can be
generated from M in logspace. Now,

(M, r) ∈ rigid(k) ⇐⇒ ∃i : (Mi , r) ∈ rank bound(Z)
⇐⇒ ∃i : (Ni , r) ∈ singular
⇐⇒ (N ′, r ′) ∈ rank bound(Z)

where Ni s can be obtained in logspace from Mi s and N ′ and r ′ can
be generated using standard techniques.



For constant k , for 0-1 matrices,
singular ≤m rigidk



For constant k , for 0-1 matrices,
singular ≤m rigidk

rigid(M, n, 0) tests if the matrix is singular.
To prove it for arbitrary k , tensor it with Ik+1, the rigidity gets
amplified by a factor of k .

M

M

M

0

0

N =

M ∈ singular(Z) =⇒
(N, n(k + 1) − k) ∈ rigid(N, n(k + 1) − k , 0)
⊆ rigid(N, n(k + 1) − k , k)

M 6∈ singular(Z) =⇒
(N, n(k + 1) − k) 6∈ rigid(N, n(k + 1) − k , k)



NP-hardness over F2

Nearest Codeword Problem(NCP): Fix a linear code
C : {0, 1}m → {0, 1}n over F2 with generator matrix Gm×n, a
received vector y , and distance k , check if there is a codeword x

such that ∆(x , y) ≤ k .

NCP is NP-hard.
Reduction: Given NCP(G , k , y) define M as

G

G

G

y

k+1
copies

Claim : RM(m − 1) ≤ k ⇐⇒ NCP(G , k , y).



Inapproximability results for rigid

Theorem
Over F2, for any constant α > 1, given a matrix M ∈ Fm×n

2 of

rank r , deciding if RM(r − 1) ≤ k or RM(r − 1) ≥ αk is NP-hard.

Theorem
Assuming NP is not contained in DTIME(nlog n), over F2, for any

ǫ > 0, for α ≤ 2n log0.5−ǫ

, given a matrix M ∈ Fm×n
2 , of rank r it is

impossible to distinguish between the following two cases:

1. RM(r − 1) ≤ k.

2. RM(r − 1) ≥ αk.



The Minrank problem

Let F be a field. with E , S ⊆ F.

MinRank: Given a matrix M with entries from E ∪ {x1 . . . xk},

(E, S) − minrankF(M) = min
(α1,...αk )∈Sk

rankF(M(α1, . . . αk))
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Guess the entries of the matrix to be changed and replace them
with distinct variables.
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rankF(M(α1, . . . αk))

rigid ∈ NP1−Minrank

1-Minrank : Every variable occurs exactly once.

Guess the entries of the matrix to be changed and replace them
with distinct variables.
We don’t know much for the 1-Minrank problem either.



Bounded Rigidity

Definition (Bounded Rigidity)

Given a matrix M and r < n, bounded rigidity of the matrix M

(RM(b, r)) is the number of entries of the matrix that we need to
change to bring the rank below r , if the change allowed per entry
is atmost b.

• b-rigid(M, r , k , b): Given a matrix M, values b, r and k , is
RM(b, r) ≤ k?

• Another formulation : Define an interval of matrices [A] where

mij − b ≤ aij ≤ mij + b

Question : Is there a rank r matrix B ∈ [A] such that M − B

has atmost k non-zero entries?



Why should there be?

Consider the matrix












2k 0 0 0 0
0 2k 0 0 0
0 0 2k 0 0
0 0 0 2k 0
0 0 0 0 2k













• RM(b, n − 1) is undefined unless b ≥ 2k

n
.

• Question : For a given matrix M, bound b, target rank r , can
we efficiently test whether RM(b, r) is defined ?
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• RM(b, n − 1) is undefined unless b ≥ 2k
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.

• Question : For a given matrix M, bound b, target rank r , can
we efficiently test whether RM(b, r) is defined ?

It is NP-hard.



NP-completeness for a restricted case
For a given matrix M, bound b, testing whether RM(b, n − 1) is
defined, is NP-complete.
Membership:

• The bound b defines an interval for each entry of the matrix.

• Determinant: a multlilinear polynomial in the entries of M.

• Zero-on-an-edge Lemma: For a multilinear polynomial
p(x1, x2 . . . xt), consider the hypercube defined by the interval
of each of the xi s. If there is a zero of the polynomial in the
hypercube then there is a zero on an edge of the hypercube



NP-completeness for a restricted case
For a given matrix M, bound b, testing whether RM(b, n − 1) is
defined, is NP-complete.
Membership:

• The bound b defines an interval for each entry of the matrix.

• Determinant: a multlilinear polynomial in the entries of M.

• Zero-on-an-edge Lemma: For a multilinear polynomial
p(x1, x2 . . . xt), consider the hypercube defined by the interval
of each of the xi s. If there is a zero of the polynomial in the
hypercube then there is a zero on an edge of the hypercube

• NP algorithm : Guess the edge of the hypercube where the
zero occurs and verify if the signs of determinant at each end
point are opposite.



NP-completeness for a restricted case

Hardness: The interval [M − θJ, M + θJ] is singular if and only
if RM(n, θ) is defined.
By a reduction from MAXCUT problem, [PR93] showed that that
checking interval singularity is NP-hard. Hence the hardness
follows in our case too.



Increasing the Rank : MaxRank problem

MaxRank: Given a matrix M with entries from F ∪ {x1 . . . xk},

MaxRank(M) = max
(α1,...αk )∈Fk

rank(M(α1, . . . αk))
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MaxRank: Given a matrix M with entries from F ∪ {x1 . . . xk},

MaxRank(M) = max
(α1,...αk )∈Fk

rank(M(α1, . . . αk))

• Over Z, there is a randomized polynomial time algorithm
which can test if MaxRank is less than k .

• Over F2, the problem is NP-complete.

Max version ofrigid ∈ NP1−Maxrank

1-Maxrank : Every variable occurs exactly once.
MaxRank is in P (Geelen ’93).



Open Problems

• A better upper bound for computing rigidity over Q.

• Is there an efficient algorithm when r is a constant?

• An NP upper bound for bounded rigidity - a generalisation of
the zero-on-an-edge lemma to arbitrary rank.
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